xref: /freebsd/sys/kern/uipc_socket.c (revision c128b2d129a8e305b673ef5e3da76af1fb91ae60)
1 /*-
2  * Copyright (c) 2004 The FreeBSD Foundation
3  * Copyright (c) 2004-2005 Robert N. M. Watson
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 4. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)uipc_socket.c	8.3 (Berkeley) 4/15/94
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_inet.h"
38 #include "opt_mac.h"
39 #include "opt_zero.h"
40 #include "opt_compat.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/fcntl.h>
45 #include <sys/limits.h>
46 #include <sys/lock.h>
47 #include <sys/mac.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #include <sys/mutex.h>
51 #include <sys/domain.h>
52 #include <sys/file.h>			/* for struct knote */
53 #include <sys/kernel.h>
54 #include <sys/event.h>
55 #include <sys/poll.h>
56 #include <sys/proc.h>
57 #include <sys/protosw.h>
58 #include <sys/socket.h>
59 #include <sys/socketvar.h>
60 #include <sys/resourcevar.h>
61 #include <sys/signalvar.h>
62 #include <sys/sysctl.h>
63 #include <sys/uio.h>
64 #include <sys/jail.h>
65 
66 #include <vm/uma.h>
67 
68 #ifdef COMPAT_IA32
69 #include <sys/mount.h>
70 #include <compat/freebsd32/freebsd32.h>
71 
72 extern struct sysentvec ia32_freebsd_sysvec;
73 #endif
74 
75 static int	soreceive_rcvoob(struct socket *so, struct uio *uio,
76 		    int flags);
77 
78 static void	filt_sordetach(struct knote *kn);
79 static int	filt_soread(struct knote *kn, long hint);
80 static void	filt_sowdetach(struct knote *kn);
81 static int	filt_sowrite(struct knote *kn, long hint);
82 static int	filt_solisten(struct knote *kn, long hint);
83 
84 static struct filterops solisten_filtops =
85 	{ 1, NULL, filt_sordetach, filt_solisten };
86 static struct filterops soread_filtops =
87 	{ 1, NULL, filt_sordetach, filt_soread };
88 static struct filterops sowrite_filtops =
89 	{ 1, NULL, filt_sowdetach, filt_sowrite };
90 
91 uma_zone_t socket_zone;
92 so_gen_t	so_gencnt;	/* generation count for sockets */
93 
94 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
95 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
96 
97 SYSCTL_DECL(_kern_ipc);
98 
99 static int somaxconn = SOMAXCONN;
100 static int somaxconn_sysctl(SYSCTL_HANDLER_ARGS);
101 /* XXX: we dont have SYSCTL_USHORT */
102 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLTYPE_UINT | CTLFLAG_RW,
103     0, sizeof(int), somaxconn_sysctl, "I", "Maximum pending socket connection "
104     "queue size");
105 static int numopensockets;
106 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,
107     &numopensockets, 0, "Number of open sockets");
108 #ifdef ZERO_COPY_SOCKETS
109 /* These aren't static because they're used in other files. */
110 int so_zero_copy_send = 1;
111 int so_zero_copy_receive = 1;
112 SYSCTL_NODE(_kern_ipc, OID_AUTO, zero_copy, CTLFLAG_RD, 0,
113     "Zero copy controls");
114 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, receive, CTLFLAG_RW,
115     &so_zero_copy_receive, 0, "Enable zero copy receive");
116 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, send, CTLFLAG_RW,
117     &so_zero_copy_send, 0, "Enable zero copy send");
118 #endif /* ZERO_COPY_SOCKETS */
119 
120 /*
121  * accept_mtx locks down per-socket fields relating to accept queues.  See
122  * socketvar.h for an annotation of the protected fields of struct socket.
123  */
124 struct mtx accept_mtx;
125 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF);
126 
127 /*
128  * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
129  * so_gencnt field.
130  */
131 static struct mtx so_global_mtx;
132 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
133 
134 /*
135  * Socket operation routines.
136  * These routines are called by the routines in
137  * sys_socket.c or from a system process, and
138  * implement the semantics of socket operations by
139  * switching out to the protocol specific routines.
140  */
141 
142 /*
143  * Get a socket structure from our zone, and initialize it.
144  * Note that it would probably be better to allocate socket
145  * and PCB at the same time, but I'm not convinced that all
146  * the protocols can be easily modified to do this.
147  *
148  * soalloc() returns a socket with a ref count of 0.
149  */
150 struct socket *
151 soalloc(int mflags)
152 {
153 	struct socket *so;
154 
155 	so = uma_zalloc(socket_zone, mflags | M_ZERO);
156 	if (so != NULL) {
157 #ifdef MAC
158 		if (mac_init_socket(so, mflags) != 0) {
159 			uma_zfree(socket_zone, so);
160 			return (NULL);
161 		}
162 #endif
163 		SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd");
164 		SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv");
165 		TAILQ_INIT(&so->so_aiojobq);
166 		mtx_lock(&so_global_mtx);
167 		so->so_gencnt = ++so_gencnt;
168 		++numopensockets;
169 		mtx_unlock(&so_global_mtx);
170 	}
171 	return (so);
172 }
173 
174 /*
175  * socreate returns a socket with a ref count of 1.  The socket should be
176  * closed with soclose().
177  */
178 int
179 socreate(dom, aso, type, proto, cred, td)
180 	int dom;
181 	struct socket **aso;
182 	int type;
183 	int proto;
184 	struct ucred *cred;
185 	struct thread *td;
186 {
187 	struct protosw *prp;
188 	struct socket *so;
189 	int error;
190 
191 	if (proto)
192 		prp = pffindproto(dom, proto, type);
193 	else
194 		prp = pffindtype(dom, type);
195 
196 	if (prp == NULL || prp->pr_usrreqs->pru_attach == NULL ||
197 	    prp->pr_usrreqs->pru_attach == pru_attach_notsupp)
198 		return (EPROTONOSUPPORT);
199 
200 	if (jailed(cred) && jail_socket_unixiproute_only &&
201 	    prp->pr_domain->dom_family != PF_LOCAL &&
202 	    prp->pr_domain->dom_family != PF_INET &&
203 	    prp->pr_domain->dom_family != PF_ROUTE) {
204 		return (EPROTONOSUPPORT);
205 	}
206 
207 	if (prp->pr_type != type)
208 		return (EPROTOTYPE);
209 	so = soalloc(M_WAITOK);
210 	if (so == NULL)
211 		return (ENOBUFS);
212 
213 	TAILQ_INIT(&so->so_incomp);
214 	TAILQ_INIT(&so->so_comp);
215 	so->so_type = type;
216 	so->so_cred = crhold(cred);
217 	so->so_proto = prp;
218 #ifdef MAC
219 	mac_create_socket(cred, so);
220 #endif
221 	knlist_init(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv),
222 	    NULL, NULL, NULL);
223 	knlist_init(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd),
224 	    NULL, NULL, NULL);
225 	so->so_count = 1;
226 	error = (*prp->pr_usrreqs->pru_attach)(so, proto, td);
227 	if (error) {
228 		ACCEPT_LOCK();
229 		SOCK_LOCK(so);
230 		so->so_state |= SS_NOFDREF;
231 		sorele(so);
232 		return (error);
233 	}
234 	*aso = so;
235 	return (0);
236 }
237 
238 int
239 sobind(so, nam, td)
240 	struct socket *so;
241 	struct sockaddr *nam;
242 	struct thread *td;
243 {
244 
245 	return ((*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td));
246 }
247 
248 void
249 sodealloc(struct socket *so)
250 {
251 
252 	KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
253 	mtx_lock(&so_global_mtx);
254 	so->so_gencnt = ++so_gencnt;
255 	mtx_unlock(&so_global_mtx);
256 	if (so->so_rcv.sb_hiwat)
257 		(void)chgsbsize(so->so_cred->cr_uidinfo,
258 		    &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
259 	if (so->so_snd.sb_hiwat)
260 		(void)chgsbsize(so->so_cred->cr_uidinfo,
261 		    &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
262 #ifdef INET
263 	/* remove acccept filter if one is present. */
264 	if (so->so_accf != NULL)
265 		do_setopt_accept_filter(so, NULL);
266 #endif
267 #ifdef MAC
268 	mac_destroy_socket(so);
269 #endif
270 	crfree(so->so_cred);
271 	SOCKBUF_LOCK_DESTROY(&so->so_snd);
272 	SOCKBUF_LOCK_DESTROY(&so->so_rcv);
273 	uma_zfree(socket_zone, so);
274 	mtx_lock(&so_global_mtx);
275 	--numopensockets;
276 	mtx_unlock(&so_global_mtx);
277 }
278 
279 /*
280  * solisten() transitions a socket from a non-listening state to a listening
281  * state, but can also be used to update the listen queue depth on an
282  * existing listen socket.  The protocol will call back into the sockets
283  * layer using solisten_proto_check() and solisten_proto() to check and set
284  * socket-layer listen state.  Call backs are used so that the protocol can
285  * acquire both protocol and socket layer locks in whatever order is required
286  * by the protocol.
287  *
288  * Protocol implementors are advised to hold the socket lock across the
289  * socket-layer test and set to avoid races at the socket layer.
290  */
291 int
292 solisten(so, backlog, td)
293 	struct socket *so;
294 	int backlog;
295 	struct thread *td;
296 {
297 
298 	return ((*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td));
299 }
300 
301 int
302 solisten_proto_check(so)
303 	struct socket *so;
304 {
305 
306 	SOCK_LOCK_ASSERT(so);
307 
308 	if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
309 	    SS_ISDISCONNECTING))
310 		return (EINVAL);
311 	return (0);
312 }
313 
314 void
315 solisten_proto(so, backlog)
316 	struct socket *so;
317 	int backlog;
318 {
319 
320 	SOCK_LOCK_ASSERT(so);
321 
322 	if (backlog < 0 || backlog > somaxconn)
323 		backlog = somaxconn;
324 	so->so_qlimit = backlog;
325 	so->so_options |= SO_ACCEPTCONN;
326 }
327 
328 /*
329  * Attempt to free a socket.  This should really be sotryfree().
330  *
331  * We free the socket if the protocol is no longer interested in the socket,
332  * there's no file descriptor reference, and the refcount is 0.  While the
333  * calling macro sotryfree() tests the refcount, sofree() has to test it
334  * again as it's possible to race with an accept()ing thread if the socket is
335  * in an listen queue of a listen socket, as being in the listen queue
336  * doesn't elevate the reference count.  sofree() acquires the accept mutex
337  * early for this test in order to avoid that race.
338  */
339 void
340 sofree(so)
341 	struct socket *so;
342 {
343 	struct socket *head;
344 
345 	ACCEPT_LOCK_ASSERT();
346 	SOCK_LOCK_ASSERT(so);
347 
348 	if (so->so_pcb != NULL || (so->so_state & SS_NOFDREF) == 0 ||
349 	    so->so_count != 0) {
350 		SOCK_UNLOCK(so);
351 		ACCEPT_UNLOCK();
352 		return;
353 	}
354 
355 	head = so->so_head;
356 	if (head != NULL) {
357 		KASSERT((so->so_qstate & SQ_COMP) != 0 ||
358 		    (so->so_qstate & SQ_INCOMP) != 0,
359 		    ("sofree: so_head != NULL, but neither SQ_COMP nor "
360 		    "SQ_INCOMP"));
361 		KASSERT((so->so_qstate & SQ_COMP) == 0 ||
362 		    (so->so_qstate & SQ_INCOMP) == 0,
363 		    ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP"));
364 		/*
365 		 * accept(2) is responsible draining the completed
366 		 * connection queue and freeing those sockets, so
367 		 * we just return here if this socket is currently
368 		 * on the completed connection queue.  Otherwise,
369 		 * accept(2) may hang after select(2) has indicating
370 		 * that a listening socket was ready.  If it's an
371 		 * incomplete connection, we remove it from the queue
372 		 * and free it; otherwise, it won't be released until
373 		 * the listening socket is closed.
374 		 */
375 		if ((so->so_qstate & SQ_COMP) != 0) {
376 			SOCK_UNLOCK(so);
377 			ACCEPT_UNLOCK();
378 			return;
379 		}
380 		TAILQ_REMOVE(&head->so_incomp, so, so_list);
381 		head->so_incqlen--;
382 		so->so_qstate &= ~SQ_INCOMP;
383 		so->so_head = NULL;
384 	}
385 	KASSERT((so->so_qstate & SQ_COMP) == 0 &&
386 	    (so->so_qstate & SQ_INCOMP) == 0,
387 	    ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)",
388 	    so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP));
389 	SOCK_UNLOCK(so);
390 	ACCEPT_UNLOCK();
391 	SOCKBUF_LOCK(&so->so_snd);
392 	so->so_snd.sb_flags |= SB_NOINTR;
393 	(void)sblock(&so->so_snd, M_WAITOK);
394 	/*
395 	 * socantsendmore_locked() drops the socket buffer mutex so that it
396 	 * can safely perform wakeups.  Re-acquire the mutex before
397 	 * continuing.
398 	 */
399 	socantsendmore_locked(so);
400 	SOCKBUF_LOCK(&so->so_snd);
401 	sbunlock(&so->so_snd);
402 	sbrelease_locked(&so->so_snd, so);
403 	SOCKBUF_UNLOCK(&so->so_snd);
404 	sorflush(so);
405 	knlist_destroy(&so->so_rcv.sb_sel.si_note);
406 	knlist_destroy(&so->so_snd.sb_sel.si_note);
407 	sodealloc(so);
408 }
409 
410 /*
411  * Close a socket on last file table reference removal.
412  * Initiate disconnect if connected.
413  * Free socket when disconnect complete.
414  *
415  * This function will sorele() the socket.  Note that soclose() may be
416  * called prior to the ref count reaching zero.  The actual socket
417  * structure will not be freed until the ref count reaches zero.
418  */
419 int
420 soclose(so)
421 	struct socket *so;
422 {
423 	int error = 0;
424 
425 	KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter"));
426 
427 	funsetown(&so->so_sigio);
428 	if (so->so_options & SO_ACCEPTCONN) {
429 		struct socket *sp;
430 		ACCEPT_LOCK();
431 		while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) {
432 			TAILQ_REMOVE(&so->so_incomp, sp, so_list);
433 			so->so_incqlen--;
434 			sp->so_qstate &= ~SQ_INCOMP;
435 			sp->so_head = NULL;
436 			ACCEPT_UNLOCK();
437 			(void) soabort(sp);
438 			ACCEPT_LOCK();
439 		}
440 		while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) {
441 			TAILQ_REMOVE(&so->so_comp, sp, so_list);
442 			so->so_qlen--;
443 			sp->so_qstate &= ~SQ_COMP;
444 			sp->so_head = NULL;
445 			ACCEPT_UNLOCK();
446 			(void) soabort(sp);
447 			ACCEPT_LOCK();
448 		}
449 		ACCEPT_UNLOCK();
450 	}
451 	if (so->so_pcb == NULL)
452 		goto discard;
453 	if (so->so_state & SS_ISCONNECTED) {
454 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
455 			error = sodisconnect(so);
456 			if (error)
457 				goto drop;
458 		}
459 		if (so->so_options & SO_LINGER) {
460 			if ((so->so_state & SS_ISDISCONNECTING) &&
461 			    (so->so_state & SS_NBIO))
462 				goto drop;
463 			while (so->so_state & SS_ISCONNECTED) {
464 				error = tsleep(&so->so_timeo,
465 				    PSOCK | PCATCH, "soclos", so->so_linger * hz);
466 				if (error)
467 					break;
468 			}
469 		}
470 	}
471 drop:
472 	if (so->so_pcb != NULL) {
473 		int error2 = (*so->so_proto->pr_usrreqs->pru_detach)(so);
474 		if (error == 0)
475 			error = error2;
476 	}
477 discard:
478 	ACCEPT_LOCK();
479 	SOCK_LOCK(so);
480 	KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF"));
481 	so->so_state |= SS_NOFDREF;
482 	sorele(so);
483 	return (error);
484 }
485 
486 /*
487  * soabort() must not be called with any socket locks held, as it calls
488  * into the protocol, which will call back into the socket code causing
489  * it to acquire additional socket locks that may cause recursion or lock
490  * order reversals.
491  */
492 int
493 soabort(so)
494 	struct socket *so;
495 {
496 	int error;
497 
498 	error = (*so->so_proto->pr_usrreqs->pru_abort)(so);
499 	if (error) {
500 		ACCEPT_LOCK();
501 		SOCK_LOCK(so);
502 		sotryfree(so);	/* note: does not decrement the ref count */
503 		return (error);
504 	}
505 	return (0);
506 }
507 
508 int
509 soaccept(so, nam)
510 	struct socket *so;
511 	struct sockaddr **nam;
512 {
513 	int error;
514 
515 	SOCK_LOCK(so);
516 	KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF"));
517 	so->so_state &= ~SS_NOFDREF;
518 	SOCK_UNLOCK(so);
519 	error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam);
520 	return (error);
521 }
522 
523 int
524 soconnect(so, nam, td)
525 	struct socket *so;
526 	struct sockaddr *nam;
527 	struct thread *td;
528 {
529 	int error;
530 
531 	if (so->so_options & SO_ACCEPTCONN)
532 		return (EOPNOTSUPP);
533 	/*
534 	 * If protocol is connection-based, can only connect once.
535 	 * Otherwise, if connected, try to disconnect first.
536 	 * This allows user to disconnect by connecting to, e.g.,
537 	 * a null address.
538 	 */
539 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
540 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
541 	    (error = sodisconnect(so)))) {
542 		error = EISCONN;
543 	} else {
544 		/*
545 		 * Prevent accumulated error from previous connection
546 		 * from biting us.
547 		 */
548 		so->so_error = 0;
549 		error = (*so->so_proto->pr_usrreqs->pru_connect)(so, nam, td);
550 	}
551 
552 	return (error);
553 }
554 
555 int
556 soconnect2(so1, so2)
557 	struct socket *so1;
558 	struct socket *so2;
559 {
560 
561 	return ((*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2));
562 }
563 
564 int
565 sodisconnect(so)
566 	struct socket *so;
567 {
568 	int error;
569 
570 	if ((so->so_state & SS_ISCONNECTED) == 0)
571 		return (ENOTCONN);
572 	if (so->so_state & SS_ISDISCONNECTING)
573 		return (EALREADY);
574 	error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so);
575 	return (error);
576 }
577 
578 #ifdef ZERO_COPY_SOCKETS
579 struct so_zerocopy_stats{
580 	int size_ok;
581 	int align_ok;
582 	int found_ifp;
583 };
584 struct so_zerocopy_stats so_zerocp_stats = {0,0,0};
585 #include <netinet/in.h>
586 #include <net/route.h>
587 #include <netinet/in_pcb.h>
588 #include <vm/vm.h>
589 #include <vm/vm_page.h>
590 #include <vm/vm_object.h>
591 #endif /*ZERO_COPY_SOCKETS*/
592 
593 /*
594  * sosend_copyin() accepts a uio and prepares an mbuf chain holding part or
595  * all of the data referenced by the uio.  If desired, it uses zero-copy.
596  * *space will be updated to reflect data copied in.
597  *
598  * NB: If atomic I/O is requested, the caller must already have checked that
599  * space can hold resid bytes.
600  *
601  * NB: In the event of an error, the caller may need to free the partial
602  * chain pointed to by *mpp.  The contents of both *uio and *space may be
603  * modified even in the case of an error.
604  */
605 static int
606 sosend_copyin(struct uio *uio, struct mbuf **retmp, int atomic, long *space,
607     int flags)
608 {
609 	struct mbuf *m, **mp, *top;
610 	long len, resid;
611 	int error;
612 #ifdef ZERO_COPY_SOCKETS
613 	int cow_send;
614 #endif
615 
616 	*retmp = top = NULL;
617 	mp = &top;
618 	len = 0;
619 	resid = uio->uio_resid;
620 	error = 0;
621 	do {
622 #ifdef ZERO_COPY_SOCKETS
623 		cow_send = 0;
624 #endif /* ZERO_COPY_SOCKETS */
625 		if (resid >= MINCLSIZE) {
626 #ifdef ZERO_COPY_SOCKETS
627 			if (top == NULL) {
628 				MGETHDR(m, M_TRYWAIT, MT_DATA);
629 				if (m == NULL) {
630 					error = ENOBUFS;
631 					goto out;
632 				}
633 				m->m_pkthdr.len = 0;
634 				m->m_pkthdr.rcvif = NULL;
635 			} else {
636 				MGET(m, M_TRYWAIT, MT_DATA);
637 				if (m == NULL) {
638 					error = ENOBUFS;
639 					goto out;
640 				}
641 			}
642 			if (so_zero_copy_send &&
643 			    resid>=PAGE_SIZE &&
644 			    *space>=PAGE_SIZE &&
645 			    uio->uio_iov->iov_len>=PAGE_SIZE) {
646 				so_zerocp_stats.size_ok++;
647 				so_zerocp_stats.align_ok++;
648 				cow_send = socow_setup(m, uio);
649 				len = cow_send;
650 			}
651 			if (!cow_send) {
652 				MCLGET(m, M_TRYWAIT);
653 				if ((m->m_flags & M_EXT) == 0) {
654 					m_free(m);
655 					m = NULL;
656 				} else {
657 					len = min(min(MCLBYTES, resid),
658 					    *space);
659 				}
660 			}
661 #else /* ZERO_COPY_SOCKETS */
662 			if (top == NULL) {
663 				m = m_getcl(M_TRYWAIT, MT_DATA, M_PKTHDR);
664 				m->m_pkthdr.len = 0;
665 				m->m_pkthdr.rcvif = NULL;
666 			} else
667 				m = m_getcl(M_TRYWAIT, MT_DATA, 0);
668 			len = min(min(MCLBYTES, resid), *space);
669 #endif /* ZERO_COPY_SOCKETS */
670 		} else {
671 			if (top == NULL) {
672 				m = m_gethdr(M_TRYWAIT, MT_DATA);
673 				m->m_pkthdr.len = 0;
674 				m->m_pkthdr.rcvif = NULL;
675 
676 				len = min(min(MHLEN, resid), *space);
677 				/*
678 				 * For datagram protocols, leave room
679 				 * for protocol headers in first mbuf.
680 				 */
681 				if (atomic && m && len < MHLEN)
682 					MH_ALIGN(m, len);
683 			} else {
684 				m = m_get(M_TRYWAIT, MT_DATA);
685 				len = min(min(MLEN, resid), *space);
686 			}
687 		}
688 		if (m == NULL) {
689 			error = ENOBUFS;
690 			goto out;
691 		}
692 
693 		*space -= len;
694 #ifdef ZERO_COPY_SOCKETS
695 		if (cow_send)
696 			error = 0;
697 		else
698 #endif /* ZERO_COPY_SOCKETS */
699 		error = uiomove(mtod(m, void *), (int)len, uio);
700 		resid = uio->uio_resid;
701 		m->m_len = len;
702 		*mp = m;
703 		top->m_pkthdr.len += len;
704 		if (error)
705 			goto out;
706 		mp = &m->m_next;
707 		if (resid <= 0) {
708 			if (flags & MSG_EOR)
709 				top->m_flags |= M_EOR;
710 			break;
711 		}
712 	} while (*space > 0 && atomic);
713 out:
714 	*retmp = top;
715 	return (error);
716 }
717 
718 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
719 
720 int
721 sosend_dgram(so, addr, uio, top, control, flags, td)
722 	struct socket *so;
723 	struct sockaddr *addr;
724 	struct uio *uio;
725 	struct mbuf *top;
726 	struct mbuf *control;
727 	int flags;
728 	struct thread *td;
729 {
730 	long space, resid;
731 	int clen = 0, error, dontroute;
732 	int atomic = sosendallatonce(so) || top;
733 
734 	KASSERT(so->so_type == SOCK_DGRAM, ("sodgram_send: !SOCK_DGRAM"));
735 	KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
736 	    ("sodgram_send: !PR_ATOMIC"));
737 
738 	if (uio != NULL)
739 		resid = uio->uio_resid;
740 	else
741 		resid = top->m_pkthdr.len;
742 	/*
743 	 * In theory resid should be unsigned.
744 	 * However, space must be signed, as it might be less than 0
745 	 * if we over-committed, and we must use a signed comparison
746 	 * of space and resid.  On the other hand, a negative resid
747 	 * causes us to loop sending 0-length segments to the protocol.
748 	 *
749 	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
750 	 * type sockets since that's an error.
751 	 */
752 	if (resid < 0) {
753 		error = EINVAL;
754 		goto out;
755 	}
756 
757 	dontroute =
758 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
759 	if (td != NULL)
760 		td->td_proc->p_stats->p_ru.ru_msgsnd++;
761 	if (control != NULL)
762 		clen = control->m_len;
763 
764 	SOCKBUF_LOCK(&so->so_snd);
765 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
766 		SOCKBUF_UNLOCK(&so->so_snd);
767 		error = EPIPE;
768 		goto out;
769 	}
770 	if (so->so_error) {
771 		error = so->so_error;
772 		so->so_error = 0;
773 		SOCKBUF_UNLOCK(&so->so_snd);
774 		goto out;
775 	}
776 	if ((so->so_state & SS_ISCONNECTED) == 0) {
777 		/*
778 		 * `sendto' and `sendmsg' is allowed on a connection-
779 		 * based socket if it supports implied connect.
780 		 * Return ENOTCONN if not connected and no address is
781 		 * supplied.
782 		 */
783 		if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
784 		    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
785 			if ((so->so_state & SS_ISCONFIRMING) == 0 &&
786 			    !(resid == 0 && clen != 0)) {
787 				SOCKBUF_UNLOCK(&so->so_snd);
788 				error = ENOTCONN;
789 				goto out;
790 			}
791 		} else if (addr == NULL) {
792 			if (so->so_proto->pr_flags & PR_CONNREQUIRED)
793 				error = ENOTCONN;
794 			else
795 				error = EDESTADDRREQ;
796 			SOCKBUF_UNLOCK(&so->so_snd);
797 			goto out;
798 		}
799 	}
800 
801 	/*
802 	 * Do we need MSG_OOB support in SOCK_DGRAM?  Signs here may be a
803 	 * problem and need fixing.
804 	 */
805 	space = sbspace(&so->so_snd);
806 	if (flags & MSG_OOB)
807 		space += 1024;
808 	space -= clen;
809 	if (resid > space) {
810 		error = EMSGSIZE;
811 		goto out;
812 	}
813 	SOCKBUF_UNLOCK(&so->so_snd);
814 	if (uio == NULL) {
815 		resid = 0;
816 		if (flags & MSG_EOR)
817 			top->m_flags |= M_EOR;
818 	} else {
819 		error = sosend_copyin(uio, &top, atomic, &space, flags);
820 		if (error)
821 			goto out;
822 		resid = uio->uio_resid;
823 	}
824 	KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
825 	/*
826 	 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
827 	 * than with.
828 	 */
829 	if (dontroute) {
830 		SOCK_LOCK(so);
831 		so->so_options |= SO_DONTROUTE;
832 		SOCK_UNLOCK(so);
833 	}
834 	/*
835 	 * XXX all the SBS_CANTSENDMORE checks previously
836 	 * done could be out of date.  We could have recieved
837 	 * a reset packet in an interrupt or maybe we slept
838 	 * while doing page faults in uiomove() etc. We could
839 	 * probably recheck again inside the locking protection
840 	 * here, but there are probably other places that this
841 	 * also happens.  We must rethink this.
842 	 */
843 	error = (*so->so_proto->pr_usrreqs->pru_send)(so,
844 	    (flags & MSG_OOB) ? PRUS_OOB :
845 	/*
846 	 * If the user set MSG_EOF, the protocol
847 	 * understands this flag and nothing left to
848 	 * send then use PRU_SEND_EOF instead of PRU_SEND.
849 	 */
850 	    ((flags & MSG_EOF) &&
851 	     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
852 	     (resid <= 0)) ?
853 		PRUS_EOF :
854 		/* If there is more to send set PRUS_MORETOCOME */
855 		(resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
856 		top, addr, control, td);
857 	if (dontroute) {
858 		SOCK_LOCK(so);
859 		so->so_options &= ~SO_DONTROUTE;
860 		SOCK_UNLOCK(so);
861 	}
862 	clen = 0;
863 	control = NULL;
864 	top = NULL;
865 out:
866 	if (top != NULL)
867 		m_freem(top);
868 	if (control != NULL)
869 		m_freem(control);
870 	return (error);
871 }
872 
873 /*
874  * Send on a socket.
875  * If send must go all at once and message is larger than
876  * send buffering, then hard error.
877  * Lock against other senders.
878  * If must go all at once and not enough room now, then
879  * inform user that this would block and do nothing.
880  * Otherwise, if nonblocking, send as much as possible.
881  * The data to be sent is described by "uio" if nonzero,
882  * otherwise by the mbuf chain "top" (which must be null
883  * if uio is not).  Data provided in mbuf chain must be small
884  * enough to send all at once.
885  *
886  * Returns nonzero on error, timeout or signal; callers
887  * must check for short counts if EINTR/ERESTART are returned.
888  * Data and control buffers are freed on return.
889  */
890 #define	snderr(errno)	{ error = (errno); goto release; }
891 int
892 sosend(so, addr, uio, top, control, flags, td)
893 	struct socket *so;
894 	struct sockaddr *addr;
895 	struct uio *uio;
896 	struct mbuf *top;
897 	struct mbuf *control;
898 	int flags;
899 	struct thread *td;
900 {
901 	long space, resid;
902 	int clen = 0, error, dontroute;
903 	int atomic = sosendallatonce(so) || top;
904 
905 	if (uio != NULL)
906 		resid = uio->uio_resid;
907 	else
908 		resid = top->m_pkthdr.len;
909 	/*
910 	 * In theory resid should be unsigned.
911 	 * However, space must be signed, as it might be less than 0
912 	 * if we over-committed, and we must use a signed comparison
913 	 * of space and resid.  On the other hand, a negative resid
914 	 * causes us to loop sending 0-length segments to the protocol.
915 	 *
916 	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
917 	 * type sockets since that's an error.
918 	 */
919 	if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
920 		error = EINVAL;
921 		goto out;
922 	}
923 
924 	dontroute =
925 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
926 	    (so->so_proto->pr_flags & PR_ATOMIC);
927 	if (td != NULL)
928 		td->td_proc->p_stats->p_ru.ru_msgsnd++;
929 	if (control != NULL)
930 		clen = control->m_len;
931 
932 	SOCKBUF_LOCK(&so->so_snd);
933 restart:
934 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
935 	error = sblock(&so->so_snd, SBLOCKWAIT(flags));
936 	if (error)
937 		goto out_locked;
938 	do {
939 		SOCKBUF_LOCK_ASSERT(&so->so_snd);
940 		if (so->so_snd.sb_state & SBS_CANTSENDMORE)
941 			snderr(EPIPE);
942 		if (so->so_error) {
943 			error = so->so_error;
944 			so->so_error = 0;
945 			goto release;
946 		}
947 		if ((so->so_state & SS_ISCONNECTED) == 0) {
948 			/*
949 			 * `sendto' and `sendmsg' is allowed on a connection-
950 			 * based socket if it supports implied connect.
951 			 * Return ENOTCONN if not connected and no address is
952 			 * supplied.
953 			 */
954 			if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
955 			    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
956 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
957 				    !(resid == 0 && clen != 0))
958 					snderr(ENOTCONN);
959 			} else if (addr == NULL)
960 			    snderr(so->so_proto->pr_flags & PR_CONNREQUIRED ?
961 				   ENOTCONN : EDESTADDRREQ);
962 		}
963 		space = sbspace(&so->so_snd);
964 		if (flags & MSG_OOB)
965 			space += 1024;
966 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
967 		    clen > so->so_snd.sb_hiwat)
968 			snderr(EMSGSIZE);
969 		if (space < resid + clen &&
970 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
971 			if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO))
972 				snderr(EWOULDBLOCK);
973 			sbunlock(&so->so_snd);
974 			error = sbwait(&so->so_snd);
975 			if (error)
976 				goto out_locked;
977 			goto restart;
978 		}
979 		SOCKBUF_UNLOCK(&so->so_snd);
980 		space -= clen;
981 		do {
982 			if (uio == NULL) {
983 				resid = 0;
984 				if (flags & MSG_EOR)
985 					top->m_flags |= M_EOR;
986 			} else {
987 				error = sosend_copyin(uio, &top, atomic,
988 				    &space, flags);
989 				if (error != 0) {
990 					SOCKBUF_LOCK(&so->so_snd);
991 					goto release;
992 				}
993 				resid = uio->uio_resid;
994 			}
995 			if (dontroute) {
996 				SOCK_LOCK(so);
997 				so->so_options |= SO_DONTROUTE;
998 				SOCK_UNLOCK(so);
999 			}
1000 			/*
1001 			 * XXX all the SBS_CANTSENDMORE checks previously
1002 			 * done could be out of date.  We could have recieved
1003 			 * a reset packet in an interrupt or maybe we slept
1004 			 * while doing page faults in uiomove() etc. We could
1005 			 * probably recheck again inside the locking protection
1006 			 * here, but there are probably other places that this
1007 			 * also happens.  We must rethink this.
1008 			 */
1009 			error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1010 			    (flags & MSG_OOB) ? PRUS_OOB :
1011 			/*
1012 			 * If the user set MSG_EOF, the protocol
1013 			 * understands this flag and nothing left to
1014 			 * send then use PRU_SEND_EOF instead of PRU_SEND.
1015 			 */
1016 			    ((flags & MSG_EOF) &&
1017 			     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1018 			     (resid <= 0)) ?
1019 				PRUS_EOF :
1020 			/* If there is more to send set PRUS_MORETOCOME */
1021 			    (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1022 			    top, addr, control, td);
1023 			if (dontroute) {
1024 				SOCK_LOCK(so);
1025 				so->so_options &= ~SO_DONTROUTE;
1026 				SOCK_UNLOCK(so);
1027 			}
1028 			clen = 0;
1029 			control = NULL;
1030 			top = NULL;
1031 			if (error) {
1032 				SOCKBUF_LOCK(&so->so_snd);
1033 				goto release;
1034 			}
1035 		} while (resid && space > 0);
1036 		SOCKBUF_LOCK(&so->so_snd);
1037 	} while (resid);
1038 
1039 release:
1040 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
1041 	sbunlock(&so->so_snd);
1042 out_locked:
1043 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
1044 	SOCKBUF_UNLOCK(&so->so_snd);
1045 out:
1046 	if (top != NULL)
1047 		m_freem(top);
1048 	if (control != NULL)
1049 		m_freem(control);
1050 	return (error);
1051 }
1052 #undef snderr
1053 
1054 /*
1055  * The part of soreceive() that implements reading non-inline out-of-band
1056  * data from a socket.  For more complete comments, see soreceive(), from
1057  * which this code originated.
1058  *
1059  * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
1060  * unable to return an mbuf chain to the caller.
1061  */
1062 static int
1063 soreceive_rcvoob(so, uio, flags)
1064 	struct socket *so;
1065 	struct uio *uio;
1066 	int flags;
1067 {
1068 	struct protosw *pr = so->so_proto;
1069 	struct mbuf *m;
1070 	int error;
1071 
1072 	KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
1073 
1074 	m = m_get(M_TRYWAIT, MT_DATA);
1075 	if (m == NULL)
1076 		return (ENOBUFS);
1077 	error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK);
1078 	if (error)
1079 		goto bad;
1080 	do {
1081 #ifdef ZERO_COPY_SOCKETS
1082 		if (so_zero_copy_receive) {
1083 			int disposable;
1084 
1085 			if ((m->m_flags & M_EXT)
1086 			 && (m->m_ext.ext_type == EXT_DISPOSABLE))
1087 				disposable = 1;
1088 			else
1089 				disposable = 0;
1090 
1091 			error = uiomoveco(mtod(m, void *),
1092 					  min(uio->uio_resid, m->m_len),
1093 					  uio, disposable);
1094 		} else
1095 #endif /* ZERO_COPY_SOCKETS */
1096 		error = uiomove(mtod(m, void *),
1097 		    (int) min(uio->uio_resid, m->m_len), uio);
1098 		m = m_free(m);
1099 	} while (uio->uio_resid && error == 0 && m);
1100 bad:
1101 	if (m != NULL)
1102 		m_freem(m);
1103 	return (error);
1104 }
1105 
1106 /*
1107  * Following replacement or removal of the first mbuf on the first mbuf chain
1108  * of a socket buffer, push necessary state changes back into the socket
1109  * buffer so that other consumers see the values consistently.  'nextrecord'
1110  * is the callers locally stored value of the original value of
1111  * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
1112  * NOTE: 'nextrecord' may be NULL.
1113  */
1114 static __inline void
1115 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
1116 {
1117 
1118 	SOCKBUF_LOCK_ASSERT(sb);
1119 	/*
1120 	 * First, update for the new value of nextrecord.  If necessary, make
1121 	 * it the first record.
1122 	 */
1123 	if (sb->sb_mb != NULL)
1124 		sb->sb_mb->m_nextpkt = nextrecord;
1125 	else
1126 		sb->sb_mb = nextrecord;
1127 
1128         /*
1129          * Now update any dependent socket buffer fields to reflect the new
1130          * state.  This is an expanded inline of SB_EMPTY_FIXUP(), with the
1131 	 * addition of a second clause that takes care of the case where
1132 	 * sb_mb has been updated, but remains the last record.
1133          */
1134         if (sb->sb_mb == NULL) {
1135                 sb->sb_mbtail = NULL;
1136                 sb->sb_lastrecord = NULL;
1137         } else if (sb->sb_mb->m_nextpkt == NULL)
1138                 sb->sb_lastrecord = sb->sb_mb;
1139 }
1140 
1141 
1142 /*
1143  * Implement receive operations on a socket.
1144  * We depend on the way that records are added to the sockbuf
1145  * by sbappend*.  In particular, each record (mbufs linked through m_next)
1146  * must begin with an address if the protocol so specifies,
1147  * followed by an optional mbuf or mbufs containing ancillary data,
1148  * and then zero or more mbufs of data.
1149  * In order to avoid blocking network interrupts for the entire time here,
1150  * we splx() while doing the actual copy to user space.
1151  * Although the sockbuf is locked, new data may still be appended,
1152  * and thus we must maintain consistency of the sockbuf during that time.
1153  *
1154  * The caller may receive the data as a single mbuf chain by supplying
1155  * an mbuf **mp0 for use in returning the chain.  The uio is then used
1156  * only for the count in uio_resid.
1157  */
1158 int
1159 soreceive(so, psa, uio, mp0, controlp, flagsp)
1160 	struct socket *so;
1161 	struct sockaddr **psa;
1162 	struct uio *uio;
1163 	struct mbuf **mp0;
1164 	struct mbuf **controlp;
1165 	int *flagsp;
1166 {
1167 	struct mbuf *m, **mp;
1168 	int flags, len, error, offset;
1169 	struct protosw *pr = so->so_proto;
1170 	struct mbuf *nextrecord;
1171 	int moff, type = 0;
1172 	int orig_resid = uio->uio_resid;
1173 
1174 	mp = mp0;
1175 	if (psa != NULL)
1176 		*psa = NULL;
1177 	if (controlp != NULL)
1178 		*controlp = NULL;
1179 	if (flagsp != NULL)
1180 		flags = *flagsp &~ MSG_EOR;
1181 	else
1182 		flags = 0;
1183 	if (flags & MSG_OOB)
1184 		return (soreceive_rcvoob(so, uio, flags));
1185 	if (mp != NULL)
1186 		*mp = NULL;
1187 	if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING)
1188 	    && uio->uio_resid)
1189 		(*pr->pr_usrreqs->pru_rcvd)(so, 0);
1190 
1191 	SOCKBUF_LOCK(&so->so_rcv);
1192 restart:
1193 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1194 	error = sblock(&so->so_rcv, SBLOCKWAIT(flags));
1195 	if (error)
1196 		goto out;
1197 
1198 	m = so->so_rcv.sb_mb;
1199 	/*
1200 	 * If we have less data than requested, block awaiting more
1201 	 * (subject to any timeout) if:
1202 	 *   1. the current count is less than the low water mark, or
1203 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
1204 	 *	receive operation at once if we block (resid <= hiwat).
1205 	 *   3. MSG_DONTWAIT is not set
1206 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1207 	 * we have to do the receive in sections, and thus risk returning
1208 	 * a short count if a timeout or signal occurs after we start.
1209 	 */
1210 	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
1211 	    so->so_rcv.sb_cc < uio->uio_resid) &&
1212 	    (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1213 	    ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1214 	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
1215 		KASSERT(m != NULL || !so->so_rcv.sb_cc,
1216 		    ("receive: m == %p so->so_rcv.sb_cc == %u",
1217 		    m, so->so_rcv.sb_cc));
1218 		if (so->so_error) {
1219 			if (m != NULL)
1220 				goto dontblock;
1221 			error = so->so_error;
1222 			if ((flags & MSG_PEEK) == 0)
1223 				so->so_error = 0;
1224 			goto release;
1225 		}
1226 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1227 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1228 			if (m)
1229 				goto dontblock;
1230 			else
1231 				goto release;
1232 		}
1233 		for (; m != NULL; m = m->m_next)
1234 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
1235 				m = so->so_rcv.sb_mb;
1236 				goto dontblock;
1237 			}
1238 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1239 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1240 			error = ENOTCONN;
1241 			goto release;
1242 		}
1243 		if (uio->uio_resid == 0)
1244 			goto release;
1245 		if ((so->so_state & SS_NBIO) ||
1246 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1247 			error = EWOULDBLOCK;
1248 			goto release;
1249 		}
1250 		SBLASTRECORDCHK(&so->so_rcv);
1251 		SBLASTMBUFCHK(&so->so_rcv);
1252 		sbunlock(&so->so_rcv);
1253 		error = sbwait(&so->so_rcv);
1254 		if (error)
1255 			goto out;
1256 		goto restart;
1257 	}
1258 dontblock:
1259 	/*
1260 	 * From this point onward, we maintain 'nextrecord' as a cache of the
1261 	 * pointer to the next record in the socket buffer.  We must keep the
1262 	 * various socket buffer pointers and local stack versions of the
1263 	 * pointers in sync, pushing out modifications before dropping the
1264 	 * socket buffer mutex, and re-reading them when picking it up.
1265 	 *
1266 	 * Otherwise, we will race with the network stack appending new data
1267 	 * or records onto the socket buffer by using inconsistent/stale
1268 	 * versions of the field, possibly resulting in socket buffer
1269 	 * corruption.
1270 	 *
1271 	 * By holding the high-level sblock(), we prevent simultaneous
1272 	 * readers from pulling off the front of the socket buffer.
1273 	 */
1274 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1275 	if (uio->uio_td)
1276 		uio->uio_td->td_proc->p_stats->p_ru.ru_msgrcv++;
1277 	KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
1278 	SBLASTRECORDCHK(&so->so_rcv);
1279 	SBLASTMBUFCHK(&so->so_rcv);
1280 	nextrecord = m->m_nextpkt;
1281 	if (pr->pr_flags & PR_ADDR) {
1282 		KASSERT(m->m_type == MT_SONAME,
1283 		    ("m->m_type == %d", m->m_type));
1284 		orig_resid = 0;
1285 		if (psa != NULL)
1286 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
1287 			    M_NOWAIT);
1288 		if (flags & MSG_PEEK) {
1289 			m = m->m_next;
1290 		} else {
1291 			sbfree(&so->so_rcv, m);
1292 			so->so_rcv.sb_mb = m_free(m);
1293 			m = so->so_rcv.sb_mb;
1294 			sockbuf_pushsync(&so->so_rcv, nextrecord);
1295 		}
1296 	}
1297 
1298 	/*
1299 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
1300 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
1301 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
1302 	 * perform externalization (or freeing if controlp == NULL).
1303 	 */
1304 	if (m != NULL && m->m_type == MT_CONTROL) {
1305 		struct mbuf *cm = NULL, *cmn;
1306 		struct mbuf **cme = &cm;
1307 
1308 		do {
1309 			if (flags & MSG_PEEK) {
1310 				if (controlp != NULL) {
1311 					*controlp = m_copy(m, 0, m->m_len);
1312 					controlp = &(*controlp)->m_next;
1313 				}
1314 				m = m->m_next;
1315 			} else {
1316 				sbfree(&so->so_rcv, m);
1317 				so->so_rcv.sb_mb = m->m_next;
1318 				m->m_next = NULL;
1319 				*cme = m;
1320 				cme = &(*cme)->m_next;
1321 				m = so->so_rcv.sb_mb;
1322 			}
1323 		} while (m != NULL && m->m_type == MT_CONTROL);
1324 		if ((flags & MSG_PEEK) == 0)
1325 			sockbuf_pushsync(&so->so_rcv, nextrecord);
1326 		while (cm != NULL) {
1327 			cmn = cm->m_next;
1328 			cm->m_next = NULL;
1329 			if (pr->pr_domain->dom_externalize != NULL) {
1330 				SOCKBUF_UNLOCK(&so->so_rcv);
1331 				error = (*pr->pr_domain->dom_externalize)
1332 				    (cm, controlp);
1333 				SOCKBUF_LOCK(&so->so_rcv);
1334 			} else if (controlp != NULL)
1335 				*controlp = cm;
1336 			else
1337 				m_freem(cm);
1338 			if (controlp != NULL) {
1339 				orig_resid = 0;
1340 				while (*controlp != NULL)
1341 					controlp = &(*controlp)->m_next;
1342 			}
1343 			cm = cmn;
1344 		}
1345 		if (so->so_rcv.sb_mb)
1346 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1347 		else
1348 			nextrecord = NULL;
1349 		orig_resid = 0;
1350 	}
1351 	if (m != NULL) {
1352 		if ((flags & MSG_PEEK) == 0) {
1353 			KASSERT(m->m_nextpkt == nextrecord,
1354 			    ("soreceive: post-control, nextrecord !sync"));
1355 			if (nextrecord == NULL) {
1356 				KASSERT(so->so_rcv.sb_mb == m,
1357 				    ("soreceive: post-control, sb_mb!=m"));
1358 				KASSERT(so->so_rcv.sb_lastrecord == m,
1359 				    ("soreceive: post-control, lastrecord!=m"));
1360 			}
1361 		}
1362 		type = m->m_type;
1363 		if (type == MT_OOBDATA)
1364 			flags |= MSG_OOB;
1365 	} else {
1366 		if ((flags & MSG_PEEK) == 0) {
1367 			KASSERT(so->so_rcv.sb_mb == nextrecord,
1368 			    ("soreceive: sb_mb != nextrecord"));
1369 			if (so->so_rcv.sb_mb == NULL) {
1370 				KASSERT(so->so_rcv.sb_lastrecord == NULL,
1371 				    ("soreceive: sb_lastercord != NULL"));
1372 			}
1373 		}
1374 	}
1375 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1376 	SBLASTRECORDCHK(&so->so_rcv);
1377 	SBLASTMBUFCHK(&so->so_rcv);
1378 
1379 	/*
1380 	 * Now continue to read any data mbufs off of the head of the socket
1381 	 * buffer until the read request is satisfied.  Note that 'type' is
1382 	 * used to store the type of any mbuf reads that have happened so far
1383 	 * such that soreceive() can stop reading if the type changes, which
1384 	 * causes soreceive() to return only one of regular data and inline
1385 	 * out-of-band data in a single socket receive operation.
1386 	 */
1387 	moff = 0;
1388 	offset = 0;
1389 	while (m != NULL && uio->uio_resid > 0 && error == 0) {
1390 		/*
1391 		 * If the type of mbuf has changed since the last mbuf
1392 		 * examined ('type'), end the receive operation.
1393 	 	 */
1394 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1395 		if (m->m_type == MT_OOBDATA) {
1396 			if (type != MT_OOBDATA)
1397 				break;
1398 		} else if (type == MT_OOBDATA)
1399 			break;
1400 		else
1401 		    KASSERT(m->m_type == MT_DATA,
1402 			("m->m_type == %d", m->m_type));
1403 		so->so_rcv.sb_state &= ~SBS_RCVATMARK;
1404 		len = uio->uio_resid;
1405 		if (so->so_oobmark && len > so->so_oobmark - offset)
1406 			len = so->so_oobmark - offset;
1407 		if (len > m->m_len - moff)
1408 			len = m->m_len - moff;
1409 		/*
1410 		 * If mp is set, just pass back the mbufs.
1411 		 * Otherwise copy them out via the uio, then free.
1412 		 * Sockbuf must be consistent here (points to current mbuf,
1413 		 * it points to next record) when we drop priority;
1414 		 * we must note any additions to the sockbuf when we
1415 		 * block interrupts again.
1416 		 */
1417 		if (mp == NULL) {
1418 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1419 			SBLASTRECORDCHK(&so->so_rcv);
1420 			SBLASTMBUFCHK(&so->so_rcv);
1421 			SOCKBUF_UNLOCK(&so->so_rcv);
1422 #ifdef ZERO_COPY_SOCKETS
1423 			if (so_zero_copy_receive) {
1424 				int disposable;
1425 
1426 				if ((m->m_flags & M_EXT)
1427 				 && (m->m_ext.ext_type == EXT_DISPOSABLE))
1428 					disposable = 1;
1429 				else
1430 					disposable = 0;
1431 
1432 				error = uiomoveco(mtod(m, char *) + moff,
1433 						  (int)len, uio,
1434 						  disposable);
1435 			} else
1436 #endif /* ZERO_COPY_SOCKETS */
1437 			error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1438 			SOCKBUF_LOCK(&so->so_rcv);
1439 			if (error)
1440 				goto release;
1441 		} else
1442 			uio->uio_resid -= len;
1443 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1444 		if (len == m->m_len - moff) {
1445 			if (m->m_flags & M_EOR)
1446 				flags |= MSG_EOR;
1447 			if (flags & MSG_PEEK) {
1448 				m = m->m_next;
1449 				moff = 0;
1450 			} else {
1451 				nextrecord = m->m_nextpkt;
1452 				sbfree(&so->so_rcv, m);
1453 				if (mp != NULL) {
1454 					*mp = m;
1455 					mp = &m->m_next;
1456 					so->so_rcv.sb_mb = m = m->m_next;
1457 					*mp = NULL;
1458 				} else {
1459 					so->so_rcv.sb_mb = m_free(m);
1460 					m = so->so_rcv.sb_mb;
1461 				}
1462 				sockbuf_pushsync(&so->so_rcv, nextrecord);
1463 				SBLASTRECORDCHK(&so->so_rcv);
1464 				SBLASTMBUFCHK(&so->so_rcv);
1465 			}
1466 		} else {
1467 			if (flags & MSG_PEEK)
1468 				moff += len;
1469 			else {
1470 				if (mp != NULL) {
1471 					int copy_flag;
1472 
1473 					if (flags & MSG_DONTWAIT)
1474 						copy_flag = M_DONTWAIT;
1475 					else
1476 						copy_flag = M_TRYWAIT;
1477 					if (copy_flag == M_TRYWAIT)
1478 						SOCKBUF_UNLOCK(&so->so_rcv);
1479 					*mp = m_copym(m, 0, len, copy_flag);
1480 					if (copy_flag == M_TRYWAIT)
1481 						SOCKBUF_LOCK(&so->so_rcv);
1482  					if (*mp == NULL) {
1483  						/*
1484  						 * m_copym() couldn't allocate an mbuf.
1485 						 * Adjust uio_resid back (it was adjusted
1486 						 * down by len bytes, which we didn't end
1487 						 * up "copying" over).
1488  						 */
1489  						uio->uio_resid += len;
1490  						break;
1491  					}
1492 				}
1493 				m->m_data += len;
1494 				m->m_len -= len;
1495 				so->so_rcv.sb_cc -= len;
1496 			}
1497 		}
1498 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1499 		if (so->so_oobmark) {
1500 			if ((flags & MSG_PEEK) == 0) {
1501 				so->so_oobmark -= len;
1502 				if (so->so_oobmark == 0) {
1503 					so->so_rcv.sb_state |= SBS_RCVATMARK;
1504 					break;
1505 				}
1506 			} else {
1507 				offset += len;
1508 				if (offset == so->so_oobmark)
1509 					break;
1510 			}
1511 		}
1512 		if (flags & MSG_EOR)
1513 			break;
1514 		/*
1515 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
1516 		 * we must not quit until "uio->uio_resid == 0" or an error
1517 		 * termination.  If a signal/timeout occurs, return
1518 		 * with a short count but without error.
1519 		 * Keep sockbuf locked against other readers.
1520 		 */
1521 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1522 		    !sosendallatonce(so) && nextrecord == NULL) {
1523 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1524 			if (so->so_error || so->so_rcv.sb_state & SBS_CANTRCVMORE)
1525 				break;
1526 			/*
1527 			 * Notify the protocol that some data has been
1528 			 * drained before blocking.
1529 			 */
1530 			if (pr->pr_flags & PR_WANTRCVD && so->so_pcb != NULL) {
1531 				SOCKBUF_UNLOCK(&so->so_rcv);
1532 				(*pr->pr_usrreqs->pru_rcvd)(so, flags);
1533 				SOCKBUF_LOCK(&so->so_rcv);
1534 			}
1535 			SBLASTRECORDCHK(&so->so_rcv);
1536 			SBLASTMBUFCHK(&so->so_rcv);
1537 			error = sbwait(&so->so_rcv);
1538 			if (error)
1539 				goto release;
1540 			m = so->so_rcv.sb_mb;
1541 			if (m != NULL)
1542 				nextrecord = m->m_nextpkt;
1543 		}
1544 	}
1545 
1546 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1547 	if (m != NULL && pr->pr_flags & PR_ATOMIC) {
1548 		flags |= MSG_TRUNC;
1549 		if ((flags & MSG_PEEK) == 0)
1550 			(void) sbdroprecord_locked(&so->so_rcv);
1551 	}
1552 	if ((flags & MSG_PEEK) == 0) {
1553 		if (m == NULL) {
1554 			/*
1555 			 * First part is an inline SB_EMPTY_FIXUP().  Second
1556 			 * part makes sure sb_lastrecord is up-to-date if
1557 			 * there is still data in the socket buffer.
1558 			 */
1559 			so->so_rcv.sb_mb = nextrecord;
1560 			if (so->so_rcv.sb_mb == NULL) {
1561 				so->so_rcv.sb_mbtail = NULL;
1562 				so->so_rcv.sb_lastrecord = NULL;
1563 			} else if (nextrecord->m_nextpkt == NULL)
1564 				so->so_rcv.sb_lastrecord = nextrecord;
1565 		}
1566 		SBLASTRECORDCHK(&so->so_rcv);
1567 		SBLASTMBUFCHK(&so->so_rcv);
1568 		/*
1569 		 * If soreceive() is being done from the socket callback, then
1570 		 * don't need to generate ACK to peer to update window, since
1571 		 * ACK will be generated on return to TCP.
1572 		 */
1573 		if (!(flags & MSG_SOCALLBCK) &&
1574 		    (pr->pr_flags & PR_WANTRCVD) && so->so_pcb) {
1575 			SOCKBUF_UNLOCK(&so->so_rcv);
1576 			(*pr->pr_usrreqs->pru_rcvd)(so, flags);
1577 			SOCKBUF_LOCK(&so->so_rcv);
1578 		}
1579 	}
1580 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1581 	if (orig_resid == uio->uio_resid && orig_resid &&
1582 	    (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
1583 		sbunlock(&so->so_rcv);
1584 		goto restart;
1585 	}
1586 
1587 	if (flagsp != NULL)
1588 		*flagsp |= flags;
1589 release:
1590 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1591 	sbunlock(&so->so_rcv);
1592 out:
1593 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1594 	SOCKBUF_UNLOCK(&so->so_rcv);
1595 	return (error);
1596 }
1597 
1598 int
1599 soshutdown(so, how)
1600 	struct socket *so;
1601 	int how;
1602 {
1603 	struct protosw *pr = so->so_proto;
1604 
1605 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1606 		return (EINVAL);
1607 
1608 	if (how != SHUT_WR)
1609 		sorflush(so);
1610 	if (how != SHUT_RD)
1611 		return ((*pr->pr_usrreqs->pru_shutdown)(so));
1612 	return (0);
1613 }
1614 
1615 void
1616 sorflush(so)
1617 	struct socket *so;
1618 {
1619 	struct sockbuf *sb = &so->so_rcv;
1620 	struct protosw *pr = so->so_proto;
1621 	struct sockbuf asb;
1622 
1623 	/*
1624 	 * XXXRW: This is quite ugly.  Previously, this code made a copy of
1625 	 * the socket buffer, then zero'd the original to clear the buffer
1626 	 * fields.  However, with mutexes in the socket buffer, this causes
1627 	 * problems.  We only clear the zeroable bits of the original;
1628 	 * however, we have to initialize and destroy the mutex in the copy
1629 	 * so that dom_dispose() and sbrelease() can lock t as needed.
1630 	 */
1631 	SOCKBUF_LOCK(sb);
1632 	sb->sb_flags |= SB_NOINTR;
1633 	(void) sblock(sb, M_WAITOK);
1634 	/*
1635 	 * socantrcvmore_locked() drops the socket buffer mutex so that it
1636 	 * can safely perform wakeups.  Re-acquire the mutex before
1637 	 * continuing.
1638 	 */
1639 	socantrcvmore_locked(so);
1640 	SOCKBUF_LOCK(sb);
1641 	sbunlock(sb);
1642 	/*
1643 	 * Invalidate/clear most of the sockbuf structure, but leave
1644 	 * selinfo and mutex data unchanged.
1645 	 */
1646 	bzero(&asb, offsetof(struct sockbuf, sb_startzero));
1647 	bcopy(&sb->sb_startzero, &asb.sb_startzero,
1648 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1649 	bzero(&sb->sb_startzero,
1650 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1651 	SOCKBUF_UNLOCK(sb);
1652 
1653 	SOCKBUF_LOCK_INIT(&asb, "so_rcv");
1654 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
1655 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
1656 	sbrelease(&asb, so);
1657 	SOCKBUF_LOCK_DESTROY(&asb);
1658 }
1659 
1660 /*
1661  * Perhaps this routine, and sooptcopyout(), below, ought to come in
1662  * an additional variant to handle the case where the option value needs
1663  * to be some kind of integer, but not a specific size.
1664  * In addition to their use here, these functions are also called by the
1665  * protocol-level pr_ctloutput() routines.
1666  */
1667 int
1668 sooptcopyin(sopt, buf, len, minlen)
1669 	struct	sockopt *sopt;
1670 	void	*buf;
1671 	size_t	len;
1672 	size_t	minlen;
1673 {
1674 	size_t	valsize;
1675 
1676 	/*
1677 	 * If the user gives us more than we wanted, we ignore it,
1678 	 * but if we don't get the minimum length the caller
1679 	 * wants, we return EINVAL.  On success, sopt->sopt_valsize
1680 	 * is set to however much we actually retrieved.
1681 	 */
1682 	if ((valsize = sopt->sopt_valsize) < minlen)
1683 		return EINVAL;
1684 	if (valsize > len)
1685 		sopt->sopt_valsize = valsize = len;
1686 
1687 	if (sopt->sopt_td != NULL)
1688 		return (copyin(sopt->sopt_val, buf, valsize));
1689 
1690 	bcopy(sopt->sopt_val, buf, valsize);
1691 	return (0);
1692 }
1693 
1694 /*
1695  * Kernel version of setsockopt(2)/
1696  * XXX: optlen is size_t, not socklen_t
1697  */
1698 int
1699 so_setsockopt(struct socket *so, int level, int optname, void *optval,
1700     size_t optlen)
1701 {
1702 	struct sockopt sopt;
1703 
1704 	sopt.sopt_level = level;
1705 	sopt.sopt_name = optname;
1706 	sopt.sopt_dir = SOPT_SET;
1707 	sopt.sopt_val = optval;
1708 	sopt.sopt_valsize = optlen;
1709 	sopt.sopt_td = NULL;
1710 	return (sosetopt(so, &sopt));
1711 }
1712 
1713 int
1714 sosetopt(so, sopt)
1715 	struct socket *so;
1716 	struct sockopt *sopt;
1717 {
1718 	int	error, optval;
1719 	struct	linger l;
1720 	struct	timeval tv;
1721 	u_long  val;
1722 #ifdef MAC
1723 	struct mac extmac;
1724 #endif
1725 
1726 	error = 0;
1727 	if (sopt->sopt_level != SOL_SOCKET) {
1728 		if (so->so_proto && so->so_proto->pr_ctloutput)
1729 			return ((*so->so_proto->pr_ctloutput)
1730 				  (so, sopt));
1731 		error = ENOPROTOOPT;
1732 	} else {
1733 		switch (sopt->sopt_name) {
1734 #ifdef INET
1735 		case SO_ACCEPTFILTER:
1736 			error = do_setopt_accept_filter(so, sopt);
1737 			if (error)
1738 				goto bad;
1739 			break;
1740 #endif
1741 		case SO_LINGER:
1742 			error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
1743 			if (error)
1744 				goto bad;
1745 
1746 			SOCK_LOCK(so);
1747 			so->so_linger = l.l_linger;
1748 			if (l.l_onoff)
1749 				so->so_options |= SO_LINGER;
1750 			else
1751 				so->so_options &= ~SO_LINGER;
1752 			SOCK_UNLOCK(so);
1753 			break;
1754 
1755 		case SO_DEBUG:
1756 		case SO_KEEPALIVE:
1757 		case SO_DONTROUTE:
1758 		case SO_USELOOPBACK:
1759 		case SO_BROADCAST:
1760 		case SO_REUSEADDR:
1761 		case SO_REUSEPORT:
1762 		case SO_OOBINLINE:
1763 		case SO_TIMESTAMP:
1764 		case SO_BINTIME:
1765 		case SO_NOSIGPIPE:
1766 			error = sooptcopyin(sopt, &optval, sizeof optval,
1767 					    sizeof optval);
1768 			if (error)
1769 				goto bad;
1770 			SOCK_LOCK(so);
1771 			if (optval)
1772 				so->so_options |= sopt->sopt_name;
1773 			else
1774 				so->so_options &= ~sopt->sopt_name;
1775 			SOCK_UNLOCK(so);
1776 			break;
1777 
1778 		case SO_SNDBUF:
1779 		case SO_RCVBUF:
1780 		case SO_SNDLOWAT:
1781 		case SO_RCVLOWAT:
1782 			error = sooptcopyin(sopt, &optval, sizeof optval,
1783 					    sizeof optval);
1784 			if (error)
1785 				goto bad;
1786 
1787 			/*
1788 			 * Values < 1 make no sense for any of these
1789 			 * options, so disallow them.
1790 			 */
1791 			if (optval < 1) {
1792 				error = EINVAL;
1793 				goto bad;
1794 			}
1795 
1796 			switch (sopt->sopt_name) {
1797 			case SO_SNDBUF:
1798 			case SO_RCVBUF:
1799 				if (sbreserve(sopt->sopt_name == SO_SNDBUF ?
1800 				    &so->so_snd : &so->so_rcv, (u_long)optval,
1801 				    so, curthread) == 0) {
1802 					error = ENOBUFS;
1803 					goto bad;
1804 				}
1805 				break;
1806 
1807 			/*
1808 			 * Make sure the low-water is never greater than
1809 			 * the high-water.
1810 			 */
1811 			case SO_SNDLOWAT:
1812 				SOCKBUF_LOCK(&so->so_snd);
1813 				so->so_snd.sb_lowat =
1814 				    (optval > so->so_snd.sb_hiwat) ?
1815 				    so->so_snd.sb_hiwat : optval;
1816 				SOCKBUF_UNLOCK(&so->so_snd);
1817 				break;
1818 			case SO_RCVLOWAT:
1819 				SOCKBUF_LOCK(&so->so_rcv);
1820 				so->so_rcv.sb_lowat =
1821 				    (optval > so->so_rcv.sb_hiwat) ?
1822 				    so->so_rcv.sb_hiwat : optval;
1823 				SOCKBUF_UNLOCK(&so->so_rcv);
1824 				break;
1825 			}
1826 			break;
1827 
1828 		case SO_SNDTIMEO:
1829 		case SO_RCVTIMEO:
1830 #ifdef COMPAT_IA32
1831 			if (curthread->td_proc->p_sysent == &ia32_freebsd_sysvec) {
1832 				struct timeval32 tv32;
1833 
1834 				error = sooptcopyin(sopt, &tv32, sizeof tv32,
1835 				    sizeof tv32);
1836 				CP(tv32, tv, tv_sec);
1837 				CP(tv32, tv, tv_usec);
1838 			} else
1839 #endif
1840 				error = sooptcopyin(sopt, &tv, sizeof tv,
1841 				    sizeof tv);
1842 			if (error)
1843 				goto bad;
1844 
1845 			/* assert(hz > 0); */
1846 			if (tv.tv_sec < 0 || tv.tv_sec > INT_MAX / hz ||
1847 			    tv.tv_usec < 0 || tv.tv_usec >= 1000000) {
1848 				error = EDOM;
1849 				goto bad;
1850 			}
1851 			/* assert(tick > 0); */
1852 			/* assert(ULONG_MAX - INT_MAX >= 1000000); */
1853 			val = (u_long)(tv.tv_sec * hz) + tv.tv_usec / tick;
1854 			if (val > INT_MAX) {
1855 				error = EDOM;
1856 				goto bad;
1857 			}
1858 			if (val == 0 && tv.tv_usec != 0)
1859 				val = 1;
1860 
1861 			switch (sopt->sopt_name) {
1862 			case SO_SNDTIMEO:
1863 				so->so_snd.sb_timeo = val;
1864 				break;
1865 			case SO_RCVTIMEO:
1866 				so->so_rcv.sb_timeo = val;
1867 				break;
1868 			}
1869 			break;
1870 
1871 		case SO_LABEL:
1872 #ifdef MAC
1873 			error = sooptcopyin(sopt, &extmac, sizeof extmac,
1874 			    sizeof extmac);
1875 			if (error)
1876 				goto bad;
1877 			error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
1878 			    so, &extmac);
1879 #else
1880 			error = EOPNOTSUPP;
1881 #endif
1882 			break;
1883 
1884 		default:
1885 			error = ENOPROTOOPT;
1886 			break;
1887 		}
1888 		if (error == 0 && so->so_proto != NULL &&
1889 		    so->so_proto->pr_ctloutput != NULL) {
1890 			(void) ((*so->so_proto->pr_ctloutput)
1891 				  (so, sopt));
1892 		}
1893 	}
1894 bad:
1895 	return (error);
1896 }
1897 
1898 /* Helper routine for getsockopt */
1899 int
1900 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
1901 {
1902 	int	error;
1903 	size_t	valsize;
1904 
1905 	error = 0;
1906 
1907 	/*
1908 	 * Documented get behavior is that we always return a value,
1909 	 * possibly truncated to fit in the user's buffer.
1910 	 * Traditional behavior is that we always tell the user
1911 	 * precisely how much we copied, rather than something useful
1912 	 * like the total amount we had available for her.
1913 	 * Note that this interface is not idempotent; the entire answer must
1914 	 * generated ahead of time.
1915 	 */
1916 	valsize = min(len, sopt->sopt_valsize);
1917 	sopt->sopt_valsize = valsize;
1918 	if (sopt->sopt_val != NULL) {
1919 		if (sopt->sopt_td != NULL)
1920 			error = copyout(buf, sopt->sopt_val, valsize);
1921 		else
1922 			bcopy(buf, sopt->sopt_val, valsize);
1923 	}
1924 	return (error);
1925 }
1926 
1927 int
1928 sogetopt(so, sopt)
1929 	struct socket *so;
1930 	struct sockopt *sopt;
1931 {
1932 	int	error, optval;
1933 	struct	linger l;
1934 	struct	timeval tv;
1935 #ifdef MAC
1936 	struct mac extmac;
1937 #endif
1938 
1939 	error = 0;
1940 	if (sopt->sopt_level != SOL_SOCKET) {
1941 		if (so->so_proto && so->so_proto->pr_ctloutput) {
1942 			return ((*so->so_proto->pr_ctloutput)
1943 				  (so, sopt));
1944 		} else
1945 			return (ENOPROTOOPT);
1946 	} else {
1947 		switch (sopt->sopt_name) {
1948 #ifdef INET
1949 		case SO_ACCEPTFILTER:
1950 			error = do_getopt_accept_filter(so, sopt);
1951 			break;
1952 #endif
1953 		case SO_LINGER:
1954 			SOCK_LOCK(so);
1955 			l.l_onoff = so->so_options & SO_LINGER;
1956 			l.l_linger = so->so_linger;
1957 			SOCK_UNLOCK(so);
1958 			error = sooptcopyout(sopt, &l, sizeof l);
1959 			break;
1960 
1961 		case SO_USELOOPBACK:
1962 		case SO_DONTROUTE:
1963 		case SO_DEBUG:
1964 		case SO_KEEPALIVE:
1965 		case SO_REUSEADDR:
1966 		case SO_REUSEPORT:
1967 		case SO_BROADCAST:
1968 		case SO_OOBINLINE:
1969 		case SO_ACCEPTCONN:
1970 		case SO_TIMESTAMP:
1971 		case SO_BINTIME:
1972 		case SO_NOSIGPIPE:
1973 			optval = so->so_options & sopt->sopt_name;
1974 integer:
1975 			error = sooptcopyout(sopt, &optval, sizeof optval);
1976 			break;
1977 
1978 		case SO_TYPE:
1979 			optval = so->so_type;
1980 			goto integer;
1981 
1982 		case SO_ERROR:
1983 			optval = so->so_error;
1984 			so->so_error = 0;
1985 			goto integer;
1986 
1987 		case SO_SNDBUF:
1988 			optval = so->so_snd.sb_hiwat;
1989 			goto integer;
1990 
1991 		case SO_RCVBUF:
1992 			optval = so->so_rcv.sb_hiwat;
1993 			goto integer;
1994 
1995 		case SO_SNDLOWAT:
1996 			optval = so->so_snd.sb_lowat;
1997 			goto integer;
1998 
1999 		case SO_RCVLOWAT:
2000 			optval = so->so_rcv.sb_lowat;
2001 			goto integer;
2002 
2003 		case SO_SNDTIMEO:
2004 		case SO_RCVTIMEO:
2005 			optval = (sopt->sopt_name == SO_SNDTIMEO ?
2006 				  so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
2007 
2008 			tv.tv_sec = optval / hz;
2009 			tv.tv_usec = (optval % hz) * tick;
2010 #ifdef COMPAT_IA32
2011 			if (curthread->td_proc->p_sysent == &ia32_freebsd_sysvec) {
2012 				struct timeval32 tv32;
2013 
2014 				CP(tv, tv32, tv_sec);
2015 				CP(tv, tv32, tv_usec);
2016 				error = sooptcopyout(sopt, &tv32, sizeof tv32);
2017 			} else
2018 #endif
2019 				error = sooptcopyout(sopt, &tv, sizeof tv);
2020 			break;
2021 
2022 		case SO_LABEL:
2023 #ifdef MAC
2024 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
2025 			    sizeof(extmac));
2026 			if (error)
2027 				return (error);
2028 			error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
2029 			    so, &extmac);
2030 			if (error)
2031 				return (error);
2032 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
2033 #else
2034 			error = EOPNOTSUPP;
2035 #endif
2036 			break;
2037 
2038 		case SO_PEERLABEL:
2039 #ifdef MAC
2040 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
2041 			    sizeof(extmac));
2042 			if (error)
2043 				return (error);
2044 			error = mac_getsockopt_peerlabel(
2045 			    sopt->sopt_td->td_ucred, so, &extmac);
2046 			if (error)
2047 				return (error);
2048 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
2049 #else
2050 			error = EOPNOTSUPP;
2051 #endif
2052 			break;
2053 
2054 		case SO_LISTENQLIMIT:
2055 			optval = so->so_qlimit;
2056 			goto integer;
2057 
2058 		case SO_LISTENQLEN:
2059 			optval = so->so_qlen;
2060 			goto integer;
2061 
2062 		case SO_LISTENINCQLEN:
2063 			optval = so->so_incqlen;
2064 			goto integer;
2065 
2066 		default:
2067 			error = ENOPROTOOPT;
2068 			break;
2069 		}
2070 		return (error);
2071 	}
2072 }
2073 
2074 /* XXX; prepare mbuf for (__FreeBSD__ < 3) routines. */
2075 int
2076 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
2077 {
2078 	struct mbuf *m, *m_prev;
2079 	int sopt_size = sopt->sopt_valsize;
2080 
2081 	MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA);
2082 	if (m == NULL)
2083 		return ENOBUFS;
2084 	if (sopt_size > MLEN) {
2085 		MCLGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT);
2086 		if ((m->m_flags & M_EXT) == 0) {
2087 			m_free(m);
2088 			return ENOBUFS;
2089 		}
2090 		m->m_len = min(MCLBYTES, sopt_size);
2091 	} else {
2092 		m->m_len = min(MLEN, sopt_size);
2093 	}
2094 	sopt_size -= m->m_len;
2095 	*mp = m;
2096 	m_prev = m;
2097 
2098 	while (sopt_size) {
2099 		MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA);
2100 		if (m == NULL) {
2101 			m_freem(*mp);
2102 			return ENOBUFS;
2103 		}
2104 		if (sopt_size > MLEN) {
2105 			MCLGET(m, sopt->sopt_td != NULL ? M_TRYWAIT :
2106 			    M_DONTWAIT);
2107 			if ((m->m_flags & M_EXT) == 0) {
2108 				m_freem(m);
2109 				m_freem(*mp);
2110 				return ENOBUFS;
2111 			}
2112 			m->m_len = min(MCLBYTES, sopt_size);
2113 		} else {
2114 			m->m_len = min(MLEN, sopt_size);
2115 		}
2116 		sopt_size -= m->m_len;
2117 		m_prev->m_next = m;
2118 		m_prev = m;
2119 	}
2120 	return (0);
2121 }
2122 
2123 /* XXX; copyin sopt data into mbuf chain for (__FreeBSD__ < 3) routines. */
2124 int
2125 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
2126 {
2127 	struct mbuf *m0 = m;
2128 
2129 	if (sopt->sopt_val == NULL)
2130 		return (0);
2131 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
2132 		if (sopt->sopt_td != NULL) {
2133 			int error;
2134 
2135 			error = copyin(sopt->sopt_val, mtod(m, char *),
2136 				       m->m_len);
2137 			if (error != 0) {
2138 				m_freem(m0);
2139 				return(error);
2140 			}
2141 		} else
2142 			bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
2143 		sopt->sopt_valsize -= m->m_len;
2144 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
2145 		m = m->m_next;
2146 	}
2147 	if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
2148 		panic("ip6_sooptmcopyin");
2149 	return (0);
2150 }
2151 
2152 /* XXX; copyout mbuf chain data into soopt for (__FreeBSD__ < 3) routines. */
2153 int
2154 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
2155 {
2156 	struct mbuf *m0 = m;
2157 	size_t valsize = 0;
2158 
2159 	if (sopt->sopt_val == NULL)
2160 		return (0);
2161 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
2162 		if (sopt->sopt_td != NULL) {
2163 			int error;
2164 
2165 			error = copyout(mtod(m, char *), sopt->sopt_val,
2166 				       m->m_len);
2167 			if (error != 0) {
2168 				m_freem(m0);
2169 				return(error);
2170 			}
2171 		} else
2172 			bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
2173 	       sopt->sopt_valsize -= m->m_len;
2174 	       sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
2175 	       valsize += m->m_len;
2176 	       m = m->m_next;
2177 	}
2178 	if (m != NULL) {
2179 		/* enough soopt buffer should be given from user-land */
2180 		m_freem(m0);
2181 		return(EINVAL);
2182 	}
2183 	sopt->sopt_valsize = valsize;
2184 	return (0);
2185 }
2186 
2187 void
2188 sohasoutofband(so)
2189 	struct socket *so;
2190 {
2191 	if (so->so_sigio != NULL)
2192 		pgsigio(&so->so_sigio, SIGURG, 0);
2193 	selwakeuppri(&so->so_rcv.sb_sel, PSOCK);
2194 }
2195 
2196 int
2197 sopoll(struct socket *so, int events, struct ucred *active_cred,
2198     struct thread *td)
2199 {
2200 	int revents = 0;
2201 
2202 	SOCKBUF_LOCK(&so->so_snd);
2203 	SOCKBUF_LOCK(&so->so_rcv);
2204 	if (events & (POLLIN | POLLRDNORM))
2205 		if (soreadable(so))
2206 			revents |= events & (POLLIN | POLLRDNORM);
2207 
2208 	if (events & POLLINIGNEOF)
2209 		if (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat ||
2210 		    !TAILQ_EMPTY(&so->so_comp) || so->so_error)
2211 			revents |= POLLINIGNEOF;
2212 
2213 	if (events & (POLLOUT | POLLWRNORM))
2214 		if (sowriteable(so))
2215 			revents |= events & (POLLOUT | POLLWRNORM);
2216 
2217 	if (events & (POLLPRI | POLLRDBAND))
2218 		if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK))
2219 			revents |= events & (POLLPRI | POLLRDBAND);
2220 
2221 	if (revents == 0) {
2222 		if (events &
2223 		    (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM |
2224 		     POLLRDBAND)) {
2225 			selrecord(td, &so->so_rcv.sb_sel);
2226 			so->so_rcv.sb_flags |= SB_SEL;
2227 		}
2228 
2229 		if (events & (POLLOUT | POLLWRNORM)) {
2230 			selrecord(td, &so->so_snd.sb_sel);
2231 			so->so_snd.sb_flags |= SB_SEL;
2232 		}
2233 	}
2234 
2235 	SOCKBUF_UNLOCK(&so->so_rcv);
2236 	SOCKBUF_UNLOCK(&so->so_snd);
2237 	return (revents);
2238 }
2239 
2240 int
2241 soo_kqfilter(struct file *fp, struct knote *kn)
2242 {
2243 	struct socket *so = kn->kn_fp->f_data;
2244 	struct sockbuf *sb;
2245 
2246 	switch (kn->kn_filter) {
2247 	case EVFILT_READ:
2248 		if (so->so_options & SO_ACCEPTCONN)
2249 			kn->kn_fop = &solisten_filtops;
2250 		else
2251 			kn->kn_fop = &soread_filtops;
2252 		sb = &so->so_rcv;
2253 		break;
2254 	case EVFILT_WRITE:
2255 		kn->kn_fop = &sowrite_filtops;
2256 		sb = &so->so_snd;
2257 		break;
2258 	default:
2259 		return (EINVAL);
2260 	}
2261 
2262 	SOCKBUF_LOCK(sb);
2263 	knlist_add(&sb->sb_sel.si_note, kn, 1);
2264 	sb->sb_flags |= SB_KNOTE;
2265 	SOCKBUF_UNLOCK(sb);
2266 	return (0);
2267 }
2268 
2269 static void
2270 filt_sordetach(struct knote *kn)
2271 {
2272 	struct socket *so = kn->kn_fp->f_data;
2273 
2274 	SOCKBUF_LOCK(&so->so_rcv);
2275 	knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1);
2276 	if (knlist_empty(&so->so_rcv.sb_sel.si_note))
2277 		so->so_rcv.sb_flags &= ~SB_KNOTE;
2278 	SOCKBUF_UNLOCK(&so->so_rcv);
2279 }
2280 
2281 /*ARGSUSED*/
2282 static int
2283 filt_soread(struct knote *kn, long hint)
2284 {
2285 	struct socket *so;
2286 
2287 	so = kn->kn_fp->f_data;
2288 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2289 
2290 	kn->kn_data = so->so_rcv.sb_cc - so->so_rcv.sb_ctl;
2291 	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2292 		kn->kn_flags |= EV_EOF;
2293 		kn->kn_fflags = so->so_error;
2294 		return (1);
2295 	} else if (so->so_error)	/* temporary udp error */
2296 		return (1);
2297 	else if (kn->kn_sfflags & NOTE_LOWAT)
2298 		return (kn->kn_data >= kn->kn_sdata);
2299 	else
2300 		return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat);
2301 }
2302 
2303 static void
2304 filt_sowdetach(struct knote *kn)
2305 {
2306 	struct socket *so = kn->kn_fp->f_data;
2307 
2308 	SOCKBUF_LOCK(&so->so_snd);
2309 	knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1);
2310 	if (knlist_empty(&so->so_snd.sb_sel.si_note))
2311 		so->so_snd.sb_flags &= ~SB_KNOTE;
2312 	SOCKBUF_UNLOCK(&so->so_snd);
2313 }
2314 
2315 /*ARGSUSED*/
2316 static int
2317 filt_sowrite(struct knote *kn, long hint)
2318 {
2319 	struct socket *so;
2320 
2321 	so = kn->kn_fp->f_data;
2322 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
2323 	kn->kn_data = sbspace(&so->so_snd);
2324 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2325 		kn->kn_flags |= EV_EOF;
2326 		kn->kn_fflags = so->so_error;
2327 		return (1);
2328 	} else if (so->so_error)	/* temporary udp error */
2329 		return (1);
2330 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2331 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
2332 		return (0);
2333 	else if (kn->kn_sfflags & NOTE_LOWAT)
2334 		return (kn->kn_data >= kn->kn_sdata);
2335 	else
2336 		return (kn->kn_data >= so->so_snd.sb_lowat);
2337 }
2338 
2339 /*ARGSUSED*/
2340 static int
2341 filt_solisten(struct knote *kn, long hint)
2342 {
2343 	struct socket *so = kn->kn_fp->f_data;
2344 
2345 	kn->kn_data = so->so_qlen;
2346 	return (! TAILQ_EMPTY(&so->so_comp));
2347 }
2348 
2349 int
2350 socheckuid(struct socket *so, uid_t uid)
2351 {
2352 
2353 	if (so == NULL)
2354 		return (EPERM);
2355 	if (so->so_cred->cr_uid != uid)
2356 		return (EPERM);
2357 	return (0);
2358 }
2359 
2360 static int
2361 somaxconn_sysctl(SYSCTL_HANDLER_ARGS)
2362 {
2363 	int error;
2364 	int val;
2365 
2366 	val = somaxconn;
2367 	error = sysctl_handle_int(oidp, &val, sizeof(int), req);
2368 	if (error || !req->newptr )
2369 		return (error);
2370 
2371 	if (val < 1 || val > USHRT_MAX)
2372 		return (EINVAL);
2373 
2374 	somaxconn = val;
2375 	return (0);
2376 }
2377