1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. 6 * Copyright (c) 2004 The FreeBSD Foundation 7 * Copyright (c) 2004-2008 Robert N. M. Watson 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 35 */ 36 37 /* 38 * Comments on the socket life cycle: 39 * 40 * soalloc() sets of socket layer state for a socket, called only by 41 * socreate() and sonewconn(). Socket layer private. 42 * 43 * sodealloc() tears down socket layer state for a socket, called only by 44 * sofree() and sonewconn(). Socket layer private. 45 * 46 * pru_attach() associates protocol layer state with an allocated socket; 47 * called only once, may fail, aborting socket allocation. This is called 48 * from socreate() and sonewconn(). Socket layer private. 49 * 50 * pru_detach() disassociates protocol layer state from an attached socket, 51 * and will be called exactly once for sockets in which pru_attach() has 52 * been successfully called. If pru_attach() returned an error, 53 * pru_detach() will not be called. Socket layer private. 54 * 55 * pru_abort() and pru_close() notify the protocol layer that the last 56 * consumer of a socket is starting to tear down the socket, and that the 57 * protocol should terminate the connection. Historically, pru_abort() also 58 * detached protocol state from the socket state, but this is no longer the 59 * case. 60 * 61 * socreate() creates a socket and attaches protocol state. This is a public 62 * interface that may be used by socket layer consumers to create new 63 * sockets. 64 * 65 * sonewconn() creates a socket and attaches protocol state. This is a 66 * public interface that may be used by protocols to create new sockets when 67 * a new connection is received and will be available for accept() on a 68 * listen socket. 69 * 70 * soclose() destroys a socket after possibly waiting for it to disconnect. 71 * This is a public interface that socket consumers should use to close and 72 * release a socket when done with it. 73 * 74 * soabort() destroys a socket without waiting for it to disconnect (used 75 * only for incoming connections that are already partially or fully 76 * connected). This is used internally by the socket layer when clearing 77 * listen socket queues (due to overflow or close on the listen socket), but 78 * is also a public interface protocols may use to abort connections in 79 * their incomplete listen queues should they no longer be required. Sockets 80 * placed in completed connection listen queues should not be aborted for 81 * reasons described in the comment above the soclose() implementation. This 82 * is not a general purpose close routine, and except in the specific 83 * circumstances described here, should not be used. 84 * 85 * sofree() will free a socket and its protocol state if all references on 86 * the socket have been released, and is the public interface to attempt to 87 * free a socket when a reference is removed. This is a socket layer private 88 * interface. 89 * 90 * NOTE: In addition to socreate() and soclose(), which provide a single 91 * socket reference to the consumer to be managed as required, there are two 92 * calls to explicitly manage socket references, soref(), and sorele(). 93 * Currently, these are generally required only when transitioning a socket 94 * from a listen queue to a file descriptor, in order to prevent garbage 95 * collection of the socket at an untimely moment. For a number of reasons, 96 * these interfaces are not preferred, and should be avoided. 97 * 98 * NOTE: With regard to VNETs the general rule is that callers do not set 99 * curvnet. Exceptions to this rule include soabort(), sodisconnect(), 100 * sofree() (and with that sorele(), sotryfree()), as well as sonewconn() 101 * and sorflush(), which are usually called from a pre-set VNET context. 102 * sopoll() currently does not need a VNET context to be set. 103 */ 104 105 #include <sys/cdefs.h> 106 __FBSDID("$FreeBSD$"); 107 108 #include "opt_inet.h" 109 #include "opt_inet6.h" 110 #include "opt_kern_tls.h" 111 #include "opt_sctp.h" 112 113 #include <sys/param.h> 114 #include <sys/systm.h> 115 #include <sys/capsicum.h> 116 #include <sys/fcntl.h> 117 #include <sys/limits.h> 118 #include <sys/lock.h> 119 #include <sys/mac.h> 120 #include <sys/malloc.h> 121 #include <sys/mbuf.h> 122 #include <sys/mutex.h> 123 #include <sys/domain.h> 124 #include <sys/file.h> /* for struct knote */ 125 #include <sys/hhook.h> 126 #include <sys/kernel.h> 127 #include <sys/khelp.h> 128 #include <sys/ktls.h> 129 #include <sys/event.h> 130 #include <sys/eventhandler.h> 131 #include <sys/poll.h> 132 #include <sys/proc.h> 133 #include <sys/protosw.h> 134 #include <sys/sbuf.h> 135 #include <sys/socket.h> 136 #include <sys/socketvar.h> 137 #include <sys/resourcevar.h> 138 #include <net/route.h> 139 #include <sys/signalvar.h> 140 #include <sys/stat.h> 141 #include <sys/sx.h> 142 #include <sys/sysctl.h> 143 #include <sys/taskqueue.h> 144 #include <sys/uio.h> 145 #include <sys/un.h> 146 #include <sys/unpcb.h> 147 #include <sys/jail.h> 148 #include <sys/syslog.h> 149 #include <netinet/in.h> 150 #include <netinet/in_pcb.h> 151 #include <netinet/tcp.h> 152 153 #include <net/vnet.h> 154 155 #include <security/mac/mac_framework.h> 156 157 #include <vm/uma.h> 158 159 #ifdef COMPAT_FREEBSD32 160 #include <sys/mount.h> 161 #include <sys/sysent.h> 162 #include <compat/freebsd32/freebsd32.h> 163 #endif 164 165 static int soreceive_rcvoob(struct socket *so, struct uio *uio, 166 int flags); 167 static void so_rdknl_lock(void *); 168 static void so_rdknl_unlock(void *); 169 static void so_rdknl_assert_lock(void *, int); 170 static void so_wrknl_lock(void *); 171 static void so_wrknl_unlock(void *); 172 static void so_wrknl_assert_lock(void *, int); 173 174 static void filt_sordetach(struct knote *kn); 175 static int filt_soread(struct knote *kn, long hint); 176 static void filt_sowdetach(struct knote *kn); 177 static int filt_sowrite(struct knote *kn, long hint); 178 static int filt_soempty(struct knote *kn, long hint); 179 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id); 180 fo_kqfilter_t soo_kqfilter; 181 182 static struct filterops soread_filtops = { 183 .f_isfd = 1, 184 .f_detach = filt_sordetach, 185 .f_event = filt_soread, 186 }; 187 static struct filterops sowrite_filtops = { 188 .f_isfd = 1, 189 .f_detach = filt_sowdetach, 190 .f_event = filt_sowrite, 191 }; 192 static struct filterops soempty_filtops = { 193 .f_isfd = 1, 194 .f_detach = filt_sowdetach, 195 .f_event = filt_soempty, 196 }; 197 198 so_gen_t so_gencnt; /* generation count for sockets */ 199 200 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 201 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 202 203 #define VNET_SO_ASSERT(so) \ 204 VNET_ASSERT(curvnet != NULL, \ 205 ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so))); 206 207 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]); 208 #define V_socket_hhh VNET(socket_hhh) 209 210 /* 211 * Limit on the number of connections in the listen queue waiting 212 * for accept(2). 213 * NB: The original sysctl somaxconn is still available but hidden 214 * to prevent confusion about the actual purpose of this number. 215 */ 216 static u_int somaxconn = SOMAXCONN; 217 218 static int 219 sysctl_somaxconn(SYSCTL_HANDLER_ARGS) 220 { 221 int error; 222 int val; 223 224 val = somaxconn; 225 error = sysctl_handle_int(oidp, &val, 0, req); 226 if (error || !req->newptr ) 227 return (error); 228 229 /* 230 * The purpose of the UINT_MAX / 3 limit, is so that the formula 231 * 3 * so_qlimit / 2 232 * below, will not overflow. 233 */ 234 235 if (val < 1 || val > UINT_MAX / 3) 236 return (EINVAL); 237 238 somaxconn = val; 239 return (0); 240 } 241 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue, 242 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, sizeof(int), 243 sysctl_somaxconn, "I", 244 "Maximum listen socket pending connection accept queue size"); 245 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, 246 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE, 0, 247 sizeof(int), sysctl_somaxconn, "I", 248 "Maximum listen socket pending connection accept queue size (compat)"); 249 250 static int numopensockets; 251 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, 252 &numopensockets, 0, "Number of open sockets"); 253 254 /* 255 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket 256 * so_gencnt field. 257 */ 258 static struct mtx so_global_mtx; 259 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); 260 261 /* 262 * General IPC sysctl name space, used by sockets and a variety of other IPC 263 * types. 264 */ 265 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 266 "IPC"); 267 268 /* 269 * Initialize the socket subsystem and set up the socket 270 * memory allocator. 271 */ 272 static uma_zone_t socket_zone; 273 int maxsockets; 274 275 static void 276 socket_zone_change(void *tag) 277 { 278 279 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 280 } 281 282 static void 283 socket_hhook_register(int subtype) 284 { 285 286 if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype, 287 &V_socket_hhh[subtype], 288 HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 289 printf("%s: WARNING: unable to register hook\n", __func__); 290 } 291 292 static void 293 socket_hhook_deregister(int subtype) 294 { 295 296 if (hhook_head_deregister(V_socket_hhh[subtype]) != 0) 297 printf("%s: WARNING: unable to deregister hook\n", __func__); 298 } 299 300 static void 301 socket_init(void *tag) 302 { 303 304 socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL, 305 NULL, NULL, UMA_ALIGN_PTR, 0); 306 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 307 uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached"); 308 EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL, 309 EVENTHANDLER_PRI_FIRST); 310 } 311 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL); 312 313 static void 314 socket_vnet_init(const void *unused __unused) 315 { 316 int i; 317 318 /* We expect a contiguous range */ 319 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 320 socket_hhook_register(i); 321 } 322 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 323 socket_vnet_init, NULL); 324 325 static void 326 socket_vnet_uninit(const void *unused __unused) 327 { 328 int i; 329 330 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 331 socket_hhook_deregister(i); 332 } 333 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 334 socket_vnet_uninit, NULL); 335 336 /* 337 * Initialise maxsockets. This SYSINIT must be run after 338 * tunable_mbinit(). 339 */ 340 static void 341 init_maxsockets(void *ignored) 342 { 343 344 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 345 maxsockets = imax(maxsockets, maxfiles); 346 } 347 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 348 349 /* 350 * Sysctl to get and set the maximum global sockets limit. Notify protocols 351 * of the change so that they can update their dependent limits as required. 352 */ 353 static int 354 sysctl_maxsockets(SYSCTL_HANDLER_ARGS) 355 { 356 int error, newmaxsockets; 357 358 newmaxsockets = maxsockets; 359 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req); 360 if (error == 0 && req->newptr && newmaxsockets != maxsockets) { 361 if (newmaxsockets > maxsockets && 362 newmaxsockets <= maxfiles) { 363 maxsockets = newmaxsockets; 364 EVENTHANDLER_INVOKE(maxsockets_change); 365 } else 366 error = EINVAL; 367 } 368 return (error); 369 } 370 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, 371 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, &maxsockets, 0, 372 sysctl_maxsockets, "IU", 373 "Maximum number of sockets available"); 374 375 /* 376 * Socket operation routines. These routines are called by the routines in 377 * sys_socket.c or from a system process, and implement the semantics of 378 * socket operations by switching out to the protocol specific routines. 379 */ 380 381 /* 382 * Get a socket structure from our zone, and initialize it. Note that it 383 * would probably be better to allocate socket and PCB at the same time, but 384 * I'm not convinced that all the protocols can be easily modified to do 385 * this. 386 * 387 * soalloc() returns a socket with a ref count of 0. 388 */ 389 static struct socket * 390 soalloc(struct vnet *vnet) 391 { 392 struct socket *so; 393 394 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO); 395 if (so == NULL) 396 return (NULL); 397 #ifdef MAC 398 if (mac_socket_init(so, M_NOWAIT) != 0) { 399 uma_zfree(socket_zone, so); 400 return (NULL); 401 } 402 #endif 403 if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) { 404 uma_zfree(socket_zone, so); 405 return (NULL); 406 } 407 408 /* 409 * The socket locking protocol allows to lock 2 sockets at a time, 410 * however, the first one must be a listening socket. WITNESS lacks 411 * a feature to change class of an existing lock, so we use DUPOK. 412 */ 413 mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK); 414 mtx_init(&so->so_snd_mtx, "so_snd", NULL, MTX_DEF); 415 mtx_init(&so->so_rcv_mtx, "so_rcv", NULL, MTX_DEF); 416 so->so_rcv.sb_sel = &so->so_rdsel; 417 so->so_snd.sb_sel = &so->so_wrsel; 418 sx_init(&so->so_snd_sx, "so_snd_sx"); 419 sx_init(&so->so_rcv_sx, "so_rcv_sx"); 420 TAILQ_INIT(&so->so_snd.sb_aiojobq); 421 TAILQ_INIT(&so->so_rcv.sb_aiojobq); 422 TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so); 423 TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so); 424 #ifdef VIMAGE 425 VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p", 426 __func__, __LINE__, so)); 427 so->so_vnet = vnet; 428 #endif 429 /* We shouldn't need the so_global_mtx */ 430 if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) { 431 /* Do we need more comprehensive error returns? */ 432 uma_zfree(socket_zone, so); 433 return (NULL); 434 } 435 mtx_lock(&so_global_mtx); 436 so->so_gencnt = ++so_gencnt; 437 ++numopensockets; 438 #ifdef VIMAGE 439 vnet->vnet_sockcnt++; 440 #endif 441 mtx_unlock(&so_global_mtx); 442 443 return (so); 444 } 445 446 /* 447 * Free the storage associated with a socket at the socket layer, tear down 448 * locks, labels, etc. All protocol state is assumed already to have been 449 * torn down (and possibly never set up) by the caller. 450 */ 451 void 452 sodealloc(struct socket *so) 453 { 454 455 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); 456 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL")); 457 458 mtx_lock(&so_global_mtx); 459 so->so_gencnt = ++so_gencnt; 460 --numopensockets; /* Could be below, but faster here. */ 461 #ifdef VIMAGE 462 VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p", 463 __func__, __LINE__, so)); 464 so->so_vnet->vnet_sockcnt--; 465 #endif 466 mtx_unlock(&so_global_mtx); 467 #ifdef MAC 468 mac_socket_destroy(so); 469 #endif 470 hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE); 471 472 khelp_destroy_osd(&so->osd); 473 if (SOLISTENING(so)) { 474 if (so->sol_accept_filter != NULL) 475 accept_filt_setopt(so, NULL); 476 } else { 477 if (so->so_rcv.sb_hiwat) 478 (void)chgsbsize(so->so_cred->cr_uidinfo, 479 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 480 if (so->so_snd.sb_hiwat) 481 (void)chgsbsize(so->so_cred->cr_uidinfo, 482 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 483 sx_destroy(&so->so_snd_sx); 484 sx_destroy(&so->so_rcv_sx); 485 mtx_destroy(&so->so_snd_mtx); 486 mtx_destroy(&so->so_rcv_mtx); 487 } 488 crfree(so->so_cred); 489 mtx_destroy(&so->so_lock); 490 uma_zfree(socket_zone, so); 491 } 492 493 /* 494 * socreate returns a socket with a ref count of 1 and a file descriptor 495 * reference. The socket should be closed with soclose(). 496 */ 497 int 498 socreate(int dom, struct socket **aso, int type, int proto, 499 struct ucred *cred, struct thread *td) 500 { 501 struct protosw *prp; 502 struct socket *so; 503 int error; 504 505 /* 506 * XXX: divert(4) historically abused PF_INET. Keep this compatibility 507 * shim until all applications have been updated. 508 */ 509 if (__predict_false(dom == PF_INET && type == SOCK_RAW && 510 proto == IPPROTO_DIVERT)) { 511 dom = PF_DIVERT; 512 printf("%s uses obsolete way to create divert(4) socket\n", 513 td->td_proc->p_comm); 514 } 515 516 prp = pffindproto(dom, type, proto); 517 if (prp == NULL) { 518 /* No support for domain. */ 519 if (pffinddomain(dom) == NULL) 520 return (EAFNOSUPPORT); 521 /* No support for socket type. */ 522 if (proto == 0 && type != 0) 523 return (EPROTOTYPE); 524 return (EPROTONOSUPPORT); 525 } 526 527 MPASS(prp->pr_attach); 528 529 if (IN_CAPABILITY_MODE(td) && (prp->pr_flags & PR_CAPATTACH) == 0) 530 return (ECAPMODE); 531 532 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0) 533 return (EPROTONOSUPPORT); 534 535 so = soalloc(CRED_TO_VNET(cred)); 536 if (so == NULL) 537 return (ENOBUFS); 538 539 so->so_type = type; 540 so->so_cred = crhold(cred); 541 if ((prp->pr_domain->dom_family == PF_INET) || 542 (prp->pr_domain->dom_family == PF_INET6) || 543 (prp->pr_domain->dom_family == PF_ROUTE)) 544 so->so_fibnum = td->td_proc->p_fibnum; 545 else 546 so->so_fibnum = 0; 547 so->so_proto = prp; 548 #ifdef MAC 549 mac_socket_create(cred, so); 550 #endif 551 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 552 so_rdknl_assert_lock); 553 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 554 so_wrknl_assert_lock); 555 if ((prp->pr_flags & PR_SOCKBUF) == 0) { 556 so->so_snd.sb_mtx = &so->so_snd_mtx; 557 so->so_rcv.sb_mtx = &so->so_rcv_mtx; 558 } 559 /* 560 * Auto-sizing of socket buffers is managed by the protocols and 561 * the appropriate flags must be set in the pru_attach function. 562 */ 563 CURVNET_SET(so->so_vnet); 564 error = prp->pr_attach(so, proto, td); 565 CURVNET_RESTORE(); 566 if (error) { 567 sodealloc(so); 568 return (error); 569 } 570 soref(so); 571 *aso = so; 572 return (0); 573 } 574 575 #ifdef REGRESSION 576 static int regression_sonewconn_earlytest = 1; 577 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW, 578 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test"); 579 #endif 580 581 static struct timeval overinterval = { 60, 0 }; 582 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW, 583 &overinterval, 584 "Delay in seconds between warnings for listen socket overflows"); 585 586 /* 587 * When an attempt at a new connection is noted on a socket which supports 588 * accept(2), the protocol has two options: 589 * 1) Call legacy sonewconn() function, which would call protocol attach 590 * method, same as used for socket(2). 591 * 2) Call solisten_clone(), do attach that is specific to a cloned connection, 592 * and then call solisten_enqueue(). 593 * 594 * Note: the ref count on the socket is 0 on return. 595 */ 596 struct socket * 597 solisten_clone(struct socket *head) 598 { 599 struct sbuf descrsb; 600 struct socket *so; 601 int len, overcount; 602 u_int qlen; 603 const char localprefix[] = "local:"; 604 char descrbuf[SUNPATHLEN + sizeof(localprefix)]; 605 #if defined(INET6) 606 char addrbuf[INET6_ADDRSTRLEN]; 607 #elif defined(INET) 608 char addrbuf[INET_ADDRSTRLEN]; 609 #endif 610 bool dolog, over; 611 612 SOLISTEN_LOCK(head); 613 over = (head->sol_qlen > 3 * head->sol_qlimit / 2); 614 #ifdef REGRESSION 615 if (regression_sonewconn_earlytest && over) { 616 #else 617 if (over) { 618 #endif 619 head->sol_overcount++; 620 dolog = !!ratecheck(&head->sol_lastover, &overinterval); 621 622 /* 623 * If we're going to log, copy the overflow count and queue 624 * length from the listen socket before dropping the lock. 625 * Also, reset the overflow count. 626 */ 627 if (dolog) { 628 overcount = head->sol_overcount; 629 head->sol_overcount = 0; 630 qlen = head->sol_qlen; 631 } 632 SOLISTEN_UNLOCK(head); 633 634 if (dolog) { 635 /* 636 * Try to print something descriptive about the 637 * socket for the error message. 638 */ 639 sbuf_new(&descrsb, descrbuf, sizeof(descrbuf), 640 SBUF_FIXEDLEN); 641 switch (head->so_proto->pr_domain->dom_family) { 642 #if defined(INET) || defined(INET6) 643 #ifdef INET 644 case AF_INET: 645 #endif 646 #ifdef INET6 647 case AF_INET6: 648 if (head->so_proto->pr_domain->dom_family == 649 AF_INET6 || 650 (sotoinpcb(head)->inp_inc.inc_flags & 651 INC_ISIPV6)) { 652 ip6_sprintf(addrbuf, 653 &sotoinpcb(head)->inp_inc.inc6_laddr); 654 sbuf_printf(&descrsb, "[%s]", addrbuf); 655 } else 656 #endif 657 { 658 #ifdef INET 659 inet_ntoa_r( 660 sotoinpcb(head)->inp_inc.inc_laddr, 661 addrbuf); 662 sbuf_cat(&descrsb, addrbuf); 663 #endif 664 } 665 sbuf_printf(&descrsb, ":%hu (proto %u)", 666 ntohs(sotoinpcb(head)->inp_inc.inc_lport), 667 head->so_proto->pr_protocol); 668 break; 669 #endif /* INET || INET6 */ 670 case AF_UNIX: 671 sbuf_cat(&descrsb, localprefix); 672 if (sotounpcb(head)->unp_addr != NULL) 673 len = 674 sotounpcb(head)->unp_addr->sun_len - 675 offsetof(struct sockaddr_un, 676 sun_path); 677 else 678 len = 0; 679 if (len > 0) 680 sbuf_bcat(&descrsb, 681 sotounpcb(head)->unp_addr->sun_path, 682 len); 683 else 684 sbuf_cat(&descrsb, "(unknown)"); 685 break; 686 } 687 688 /* 689 * If we can't print something more specific, at least 690 * print the domain name. 691 */ 692 if (sbuf_finish(&descrsb) != 0 || 693 sbuf_len(&descrsb) <= 0) { 694 sbuf_clear(&descrsb); 695 sbuf_cat(&descrsb, 696 head->so_proto->pr_domain->dom_name ?: 697 "unknown"); 698 sbuf_finish(&descrsb); 699 } 700 KASSERT(sbuf_len(&descrsb) > 0, 701 ("%s: sbuf creation failed", __func__)); 702 /* 703 * Preserve the historic listen queue overflow log 704 * message, that starts with "sonewconn:". It has 705 * been known to sysadmins for years and also test 706 * sys/kern/sonewconn_overflow checks for it. 707 */ 708 if (head->so_cred == 0) { 709 log(LOG_DEBUG, "sonewconn: pcb %p (%s): " 710 "Listen queue overflow: %i already in " 711 "queue awaiting acceptance (%d " 712 "occurrences)\n", head->so_pcb, 713 sbuf_data(&descrsb), 714 qlen, overcount); 715 } else { 716 log(LOG_DEBUG, "sonewconn: pcb %p (%s): " 717 "Listen queue overflow: " 718 "%i already in queue awaiting acceptance " 719 "(%d occurrences), euid %d, rgid %d, jail %s\n", 720 head->so_pcb, sbuf_data(&descrsb), qlen, 721 overcount, head->so_cred->cr_uid, 722 head->so_cred->cr_rgid, 723 head->so_cred->cr_prison ? 724 head->so_cred->cr_prison->pr_name : 725 "not_jailed"); 726 } 727 sbuf_delete(&descrsb); 728 729 overcount = 0; 730 } 731 732 return (NULL); 733 } 734 SOLISTEN_UNLOCK(head); 735 VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL", 736 __func__, head)); 737 so = soalloc(head->so_vnet); 738 if (so == NULL) { 739 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 740 "limit reached or out of memory\n", 741 __func__, head->so_pcb); 742 return (NULL); 743 } 744 so->so_listen = head; 745 so->so_type = head->so_type; 746 so->so_options = head->so_options & ~SO_ACCEPTCONN; 747 so->so_linger = head->so_linger; 748 so->so_state = head->so_state; 749 so->so_fibnum = head->so_fibnum; 750 so->so_proto = head->so_proto; 751 so->so_cred = crhold(head->so_cred); 752 #ifdef MAC 753 mac_socket_newconn(head, so); 754 #endif 755 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 756 so_rdknl_assert_lock); 757 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 758 so_wrknl_assert_lock); 759 VNET_SO_ASSERT(head); 760 if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) { 761 sodealloc(so); 762 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 763 __func__, head->so_pcb); 764 return (NULL); 765 } 766 so->so_rcv.sb_lowat = head->sol_sbrcv_lowat; 767 so->so_snd.sb_lowat = head->sol_sbsnd_lowat; 768 so->so_rcv.sb_timeo = head->sol_sbrcv_timeo; 769 so->so_snd.sb_timeo = head->sol_sbsnd_timeo; 770 so->so_rcv.sb_flags = head->sol_sbrcv_flags & SB_AUTOSIZE; 771 so->so_snd.sb_flags = head->sol_sbsnd_flags & SB_AUTOSIZE; 772 if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) { 773 so->so_snd.sb_mtx = &so->so_snd_mtx; 774 so->so_rcv.sb_mtx = &so->so_rcv_mtx; 775 } 776 777 return (so); 778 } 779 780 /* Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED. */ 781 struct socket * 782 sonewconn(struct socket *head, int connstatus) 783 { 784 struct socket *so; 785 786 if ((so = solisten_clone(head)) == NULL) 787 return (NULL); 788 789 if (so->so_proto->pr_attach(so, 0, NULL) != 0) { 790 sodealloc(so); 791 log(LOG_DEBUG, "%s: pcb %p: pr_attach() failed\n", 792 __func__, head->so_pcb); 793 return (NULL); 794 } 795 796 (void)solisten_enqueue(so, connstatus); 797 798 return (so); 799 } 800 801 /* 802 * Enqueue socket cloned by solisten_clone() to the listen queue of the 803 * listener it has been cloned from. 804 * 805 * Return 'true' if socket landed on complete queue, otherwise 'false'. 806 */ 807 bool 808 solisten_enqueue(struct socket *so, int connstatus) 809 { 810 struct socket *head = so->so_listen; 811 812 MPASS(refcount_load(&so->so_count) == 0); 813 refcount_init(&so->so_count, 1); 814 815 SOLISTEN_LOCK(head); 816 if (head->sol_accept_filter != NULL) 817 connstatus = 0; 818 so->so_state |= connstatus; 819 soref(head); /* A socket on (in)complete queue refs head. */ 820 if (connstatus) { 821 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 822 so->so_qstate = SQ_COMP; 823 head->sol_qlen++; 824 solisten_wakeup(head); /* unlocks */ 825 return (true); 826 } else { 827 /* 828 * Keep removing sockets from the head until there's room for 829 * us to insert on the tail. In pre-locking revisions, this 830 * was a simple if(), but as we could be racing with other 831 * threads and soabort() requires dropping locks, we must 832 * loop waiting for the condition to be true. 833 */ 834 while (head->sol_incqlen > head->sol_qlimit) { 835 struct socket *sp; 836 837 sp = TAILQ_FIRST(&head->sol_incomp); 838 TAILQ_REMOVE(&head->sol_incomp, sp, so_list); 839 head->sol_incqlen--; 840 SOCK_LOCK(sp); 841 sp->so_qstate = SQ_NONE; 842 sp->so_listen = NULL; 843 SOCK_UNLOCK(sp); 844 sorele_locked(head); /* does SOLISTEN_UNLOCK, head stays */ 845 soabort(sp); 846 SOLISTEN_LOCK(head); 847 } 848 TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list); 849 so->so_qstate = SQ_INCOMP; 850 head->sol_incqlen++; 851 SOLISTEN_UNLOCK(head); 852 return (false); 853 } 854 } 855 856 #if defined(SCTP) || defined(SCTP_SUPPORT) 857 /* 858 * Socket part of sctp_peeloff(). Detach a new socket from an 859 * association. The new socket is returned with a reference. 860 * 861 * XXXGL: reduce copy-paste with solisten_clone(). 862 */ 863 struct socket * 864 sopeeloff(struct socket *head) 865 { 866 struct socket *so; 867 868 VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p", 869 __func__, __LINE__, head)); 870 so = soalloc(head->so_vnet); 871 if (so == NULL) { 872 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 873 "limit reached or out of memory\n", 874 __func__, head->so_pcb); 875 return (NULL); 876 } 877 so->so_type = head->so_type; 878 so->so_options = head->so_options; 879 so->so_linger = head->so_linger; 880 so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED; 881 so->so_fibnum = head->so_fibnum; 882 so->so_proto = head->so_proto; 883 so->so_cred = crhold(head->so_cred); 884 #ifdef MAC 885 mac_socket_newconn(head, so); 886 #endif 887 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 888 so_rdknl_assert_lock); 889 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 890 so_wrknl_assert_lock); 891 VNET_SO_ASSERT(head); 892 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) { 893 sodealloc(so); 894 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 895 __func__, head->so_pcb); 896 return (NULL); 897 } 898 if ((*so->so_proto->pr_attach)(so, 0, NULL)) { 899 sodealloc(so); 900 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", 901 __func__, head->so_pcb); 902 return (NULL); 903 } 904 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; 905 so->so_snd.sb_lowat = head->so_snd.sb_lowat; 906 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; 907 so->so_snd.sb_timeo = head->so_snd.sb_timeo; 908 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE; 909 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE; 910 911 soref(so); 912 913 return (so); 914 } 915 #endif /* SCTP */ 916 917 int 918 sobind(struct socket *so, struct sockaddr *nam, struct thread *td) 919 { 920 int error; 921 922 CURVNET_SET(so->so_vnet); 923 error = so->so_proto->pr_bind(so, nam, td); 924 CURVNET_RESTORE(); 925 return (error); 926 } 927 928 int 929 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 930 { 931 int error; 932 933 CURVNET_SET(so->so_vnet); 934 error = so->so_proto->pr_bindat(fd, so, nam, td); 935 CURVNET_RESTORE(); 936 return (error); 937 } 938 939 /* 940 * solisten() transitions a socket from a non-listening state to a listening 941 * state, but can also be used to update the listen queue depth on an 942 * existing listen socket. The protocol will call back into the sockets 943 * layer using solisten_proto_check() and solisten_proto() to check and set 944 * socket-layer listen state. Call backs are used so that the protocol can 945 * acquire both protocol and socket layer locks in whatever order is required 946 * by the protocol. 947 * 948 * Protocol implementors are advised to hold the socket lock across the 949 * socket-layer test and set to avoid races at the socket layer. 950 */ 951 int 952 solisten(struct socket *so, int backlog, struct thread *td) 953 { 954 int error; 955 956 CURVNET_SET(so->so_vnet); 957 error = so->so_proto->pr_listen(so, backlog, td); 958 CURVNET_RESTORE(); 959 return (error); 960 } 961 962 /* 963 * Prepare for a call to solisten_proto(). Acquire all socket buffer locks in 964 * order to interlock with socket I/O. 965 */ 966 int 967 solisten_proto_check(struct socket *so) 968 { 969 SOCK_LOCK_ASSERT(so); 970 971 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 972 SS_ISDISCONNECTING)) != 0) 973 return (EINVAL); 974 975 /* 976 * Sleeping is not permitted here, so simply fail if userspace is 977 * attempting to transmit or receive on the socket. This kind of 978 * transient failure is not ideal, but it should occur only if userspace 979 * is misusing the socket interfaces. 980 */ 981 if (!sx_try_xlock(&so->so_snd_sx)) 982 return (EAGAIN); 983 if (!sx_try_xlock(&so->so_rcv_sx)) { 984 sx_xunlock(&so->so_snd_sx); 985 return (EAGAIN); 986 } 987 mtx_lock(&so->so_snd_mtx); 988 mtx_lock(&so->so_rcv_mtx); 989 990 /* Interlock with soo_aio_queue(). */ 991 if (!SOLISTENING(so) && 992 ((so->so_snd.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0 || 993 (so->so_rcv.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0)) { 994 solisten_proto_abort(so); 995 return (EINVAL); 996 } 997 return (0); 998 } 999 1000 /* 1001 * Undo the setup done by solisten_proto_check(). 1002 */ 1003 void 1004 solisten_proto_abort(struct socket *so) 1005 { 1006 mtx_unlock(&so->so_snd_mtx); 1007 mtx_unlock(&so->so_rcv_mtx); 1008 sx_xunlock(&so->so_snd_sx); 1009 sx_xunlock(&so->so_rcv_sx); 1010 } 1011 1012 void 1013 solisten_proto(struct socket *so, int backlog) 1014 { 1015 int sbrcv_lowat, sbsnd_lowat; 1016 u_int sbrcv_hiwat, sbsnd_hiwat; 1017 short sbrcv_flags, sbsnd_flags; 1018 sbintime_t sbrcv_timeo, sbsnd_timeo; 1019 1020 SOCK_LOCK_ASSERT(so); 1021 KASSERT((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 1022 SS_ISDISCONNECTING)) == 0, 1023 ("%s: bad socket state %p", __func__, so)); 1024 1025 if (SOLISTENING(so)) 1026 goto listening; 1027 1028 /* 1029 * Change this socket to listening state. 1030 */ 1031 sbrcv_lowat = so->so_rcv.sb_lowat; 1032 sbsnd_lowat = so->so_snd.sb_lowat; 1033 sbrcv_hiwat = so->so_rcv.sb_hiwat; 1034 sbsnd_hiwat = so->so_snd.sb_hiwat; 1035 sbrcv_flags = so->so_rcv.sb_flags; 1036 sbsnd_flags = so->so_snd.sb_flags; 1037 sbrcv_timeo = so->so_rcv.sb_timeo; 1038 sbsnd_timeo = so->so_snd.sb_timeo; 1039 1040 sbdestroy(so, SO_SND); 1041 sbdestroy(so, SO_RCV); 1042 1043 #ifdef INVARIANTS 1044 bzero(&so->so_rcv, 1045 sizeof(struct socket) - offsetof(struct socket, so_rcv)); 1046 #endif 1047 1048 so->sol_sbrcv_lowat = sbrcv_lowat; 1049 so->sol_sbsnd_lowat = sbsnd_lowat; 1050 so->sol_sbrcv_hiwat = sbrcv_hiwat; 1051 so->sol_sbsnd_hiwat = sbsnd_hiwat; 1052 so->sol_sbrcv_flags = sbrcv_flags; 1053 so->sol_sbsnd_flags = sbsnd_flags; 1054 so->sol_sbrcv_timeo = sbrcv_timeo; 1055 so->sol_sbsnd_timeo = sbsnd_timeo; 1056 1057 so->sol_qlen = so->sol_incqlen = 0; 1058 TAILQ_INIT(&so->sol_incomp); 1059 TAILQ_INIT(&so->sol_comp); 1060 1061 so->sol_accept_filter = NULL; 1062 so->sol_accept_filter_arg = NULL; 1063 so->sol_accept_filter_str = NULL; 1064 1065 so->sol_upcall = NULL; 1066 so->sol_upcallarg = NULL; 1067 1068 so->so_options |= SO_ACCEPTCONN; 1069 1070 listening: 1071 if (backlog < 0 || backlog > somaxconn) 1072 backlog = somaxconn; 1073 so->sol_qlimit = backlog; 1074 1075 mtx_unlock(&so->so_snd_mtx); 1076 mtx_unlock(&so->so_rcv_mtx); 1077 sx_xunlock(&so->so_snd_sx); 1078 sx_xunlock(&so->so_rcv_sx); 1079 } 1080 1081 /* 1082 * Wakeup listeners/subsystems once we have a complete connection. 1083 * Enters with lock, returns unlocked. 1084 */ 1085 void 1086 solisten_wakeup(struct socket *sol) 1087 { 1088 1089 if (sol->sol_upcall != NULL) 1090 (void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT); 1091 else { 1092 selwakeuppri(&sol->so_rdsel, PSOCK); 1093 KNOTE_LOCKED(&sol->so_rdsel.si_note, 0); 1094 } 1095 SOLISTEN_UNLOCK(sol); 1096 wakeup_one(&sol->sol_comp); 1097 if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL) 1098 pgsigio(&sol->so_sigio, SIGIO, 0); 1099 } 1100 1101 /* 1102 * Return single connection off a listening socket queue. Main consumer of 1103 * the function is kern_accept4(). Some modules, that do their own accept 1104 * management also use the function. The socket reference held by the 1105 * listen queue is handed to the caller. 1106 * 1107 * Listening socket must be locked on entry and is returned unlocked on 1108 * return. 1109 * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT. 1110 */ 1111 int 1112 solisten_dequeue(struct socket *head, struct socket **ret, int flags) 1113 { 1114 struct socket *so; 1115 int error; 1116 1117 SOLISTEN_LOCK_ASSERT(head); 1118 1119 while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) && 1120 head->so_error == 0) { 1121 error = msleep(&head->sol_comp, SOCK_MTX(head), PSOCK | PCATCH, 1122 "accept", 0); 1123 if (error != 0) { 1124 SOLISTEN_UNLOCK(head); 1125 return (error); 1126 } 1127 } 1128 if (head->so_error) { 1129 error = head->so_error; 1130 head->so_error = 0; 1131 } else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp)) 1132 error = EWOULDBLOCK; 1133 else 1134 error = 0; 1135 if (error) { 1136 SOLISTEN_UNLOCK(head); 1137 return (error); 1138 } 1139 so = TAILQ_FIRST(&head->sol_comp); 1140 SOCK_LOCK(so); 1141 KASSERT(so->so_qstate == SQ_COMP, 1142 ("%s: so %p not SQ_COMP", __func__, so)); 1143 head->sol_qlen--; 1144 so->so_qstate = SQ_NONE; 1145 so->so_listen = NULL; 1146 TAILQ_REMOVE(&head->sol_comp, so, so_list); 1147 if (flags & ACCEPT4_INHERIT) 1148 so->so_state |= (head->so_state & SS_NBIO); 1149 else 1150 so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0; 1151 SOCK_UNLOCK(so); 1152 sorele_locked(head); 1153 1154 *ret = so; 1155 return (0); 1156 } 1157 1158 /* 1159 * Free socket upon release of the very last reference. 1160 */ 1161 static void 1162 sofree(struct socket *so) 1163 { 1164 struct protosw *pr = so->so_proto; 1165 1166 SOCK_LOCK_ASSERT(so); 1167 KASSERT(refcount_load(&so->so_count) == 0, 1168 ("%s: so %p has references", __func__, so)); 1169 KASSERT(SOLISTENING(so) || so->so_qstate == SQ_NONE, 1170 ("%s: so %p is on listen queue", __func__, so)); 1171 1172 SOCK_UNLOCK(so); 1173 1174 if (so->so_dtor != NULL) 1175 so->so_dtor(so); 1176 1177 VNET_SO_ASSERT(so); 1178 if ((pr->pr_flags & PR_RIGHTS) && !SOLISTENING(so)) { 1179 MPASS(pr->pr_domain->dom_dispose != NULL); 1180 (*pr->pr_domain->dom_dispose)(so); 1181 } 1182 if (pr->pr_detach != NULL) 1183 pr->pr_detach(so); 1184 1185 /* 1186 * From this point on, we assume that no other references to this 1187 * socket exist anywhere else in the stack. Therefore, no locks need 1188 * to be acquired or held. 1189 */ 1190 if (!(pr->pr_flags & PR_SOCKBUF) && !SOLISTENING(so)) { 1191 sbdestroy(so, SO_SND); 1192 sbdestroy(so, SO_RCV); 1193 } 1194 seldrain(&so->so_rdsel); 1195 seldrain(&so->so_wrsel); 1196 knlist_destroy(&so->so_rdsel.si_note); 1197 knlist_destroy(&so->so_wrsel.si_note); 1198 sodealloc(so); 1199 } 1200 1201 /* 1202 * Release a reference on a socket while holding the socket lock. 1203 * Unlocks the socket lock before returning. 1204 */ 1205 void 1206 sorele_locked(struct socket *so) 1207 { 1208 SOCK_LOCK_ASSERT(so); 1209 if (refcount_release(&so->so_count)) 1210 sofree(so); 1211 else 1212 SOCK_UNLOCK(so); 1213 } 1214 1215 /* 1216 * Close a socket on last file table reference removal. Initiate disconnect 1217 * if connected. Free socket when disconnect complete. 1218 * 1219 * This function will sorele() the socket. Note that soclose() may be called 1220 * prior to the ref count reaching zero. The actual socket structure will 1221 * not be freed until the ref count reaches zero. 1222 */ 1223 int 1224 soclose(struct socket *so) 1225 { 1226 struct accept_queue lqueue; 1227 int error = 0; 1228 bool listening, last __diagused; 1229 1230 CURVNET_SET(so->so_vnet); 1231 funsetown(&so->so_sigio); 1232 if (so->so_state & SS_ISCONNECTED) { 1233 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 1234 error = sodisconnect(so); 1235 if (error) { 1236 if (error == ENOTCONN) 1237 error = 0; 1238 goto drop; 1239 } 1240 } 1241 1242 if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) { 1243 if ((so->so_state & SS_ISDISCONNECTING) && 1244 (so->so_state & SS_NBIO)) 1245 goto drop; 1246 while (so->so_state & SS_ISCONNECTED) { 1247 error = tsleep(&so->so_timeo, 1248 PSOCK | PCATCH, "soclos", 1249 so->so_linger * hz); 1250 if (error) 1251 break; 1252 } 1253 } 1254 } 1255 1256 drop: 1257 if (so->so_proto->pr_close != NULL) 1258 so->so_proto->pr_close(so); 1259 1260 SOCK_LOCK(so); 1261 if ((listening = SOLISTENING(so))) { 1262 struct socket *sp; 1263 1264 TAILQ_INIT(&lqueue); 1265 TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list); 1266 TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list); 1267 1268 so->sol_qlen = so->sol_incqlen = 0; 1269 1270 TAILQ_FOREACH(sp, &lqueue, so_list) { 1271 SOCK_LOCK(sp); 1272 sp->so_qstate = SQ_NONE; 1273 sp->so_listen = NULL; 1274 SOCK_UNLOCK(sp); 1275 last = refcount_release(&so->so_count); 1276 KASSERT(!last, ("%s: released last reference for %p", 1277 __func__, so)); 1278 } 1279 } 1280 sorele_locked(so); 1281 if (listening) { 1282 struct socket *sp, *tsp; 1283 1284 TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp) 1285 soabort(sp); 1286 } 1287 CURVNET_RESTORE(); 1288 return (error); 1289 } 1290 1291 /* 1292 * soabort() is used to abruptly tear down a connection, such as when a 1293 * resource limit is reached (listen queue depth exceeded), or if a listen 1294 * socket is closed while there are sockets waiting to be accepted. 1295 * 1296 * This interface is tricky, because it is called on an unreferenced socket, 1297 * and must be called only by a thread that has actually removed the socket 1298 * from the listen queue it was on. Likely this thread holds the last 1299 * reference on the socket and soabort() will proceed with sofree(). But 1300 * it might be not the last, as the sockets on the listen queues are seen 1301 * from the protocol side. 1302 * 1303 * This interface will call into the protocol code, so must not be called 1304 * with any socket locks held. Protocols do call it while holding their own 1305 * recursible protocol mutexes, but this is something that should be subject 1306 * to review in the future. 1307 * 1308 * Usually socket should have a single reference left, but this is not a 1309 * requirement. In the past, when we have had named references for file 1310 * descriptor and protocol, we asserted that none of them are being held. 1311 */ 1312 void 1313 soabort(struct socket *so) 1314 { 1315 1316 VNET_SO_ASSERT(so); 1317 1318 if (so->so_proto->pr_abort != NULL) 1319 so->so_proto->pr_abort(so); 1320 SOCK_LOCK(so); 1321 sorele_locked(so); 1322 } 1323 1324 int 1325 soaccept(struct socket *so, struct sockaddr **nam) 1326 { 1327 int error; 1328 1329 CURVNET_SET(so->so_vnet); 1330 error = so->so_proto->pr_accept(so, nam); 1331 CURVNET_RESTORE(); 1332 return (error); 1333 } 1334 1335 int 1336 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td) 1337 { 1338 1339 return (soconnectat(AT_FDCWD, so, nam, td)); 1340 } 1341 1342 int 1343 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 1344 { 1345 int error; 1346 1347 CURVNET_SET(so->so_vnet); 1348 /* 1349 * If protocol is connection-based, can only connect once. 1350 * Otherwise, if connected, try to disconnect first. This allows 1351 * user to disconnect by connecting to, e.g., a null address. 1352 */ 1353 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 1354 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 1355 (error = sodisconnect(so)))) { 1356 error = EISCONN; 1357 } else { 1358 /* 1359 * Prevent accumulated error from previous connection from 1360 * biting us. 1361 */ 1362 so->so_error = 0; 1363 if (fd == AT_FDCWD) { 1364 error = so->so_proto->pr_connect(so, nam, td); 1365 } else { 1366 error = so->so_proto->pr_connectat(fd, so, nam, td); 1367 } 1368 } 1369 CURVNET_RESTORE(); 1370 1371 return (error); 1372 } 1373 1374 int 1375 soconnect2(struct socket *so1, struct socket *so2) 1376 { 1377 int error; 1378 1379 CURVNET_SET(so1->so_vnet); 1380 error = so1->so_proto->pr_connect2(so1, so2); 1381 CURVNET_RESTORE(); 1382 return (error); 1383 } 1384 1385 int 1386 sodisconnect(struct socket *so) 1387 { 1388 int error; 1389 1390 if ((so->so_state & SS_ISCONNECTED) == 0) 1391 return (ENOTCONN); 1392 if (so->so_state & SS_ISDISCONNECTING) 1393 return (EALREADY); 1394 VNET_SO_ASSERT(so); 1395 error = so->so_proto->pr_disconnect(so); 1396 return (error); 1397 } 1398 1399 int 1400 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, 1401 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1402 { 1403 long space; 1404 ssize_t resid; 1405 int clen = 0, error, dontroute; 1406 1407 KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM")); 1408 KASSERT(so->so_proto->pr_flags & PR_ATOMIC, 1409 ("sosend_dgram: !PR_ATOMIC")); 1410 1411 if (uio != NULL) 1412 resid = uio->uio_resid; 1413 else 1414 resid = top->m_pkthdr.len; 1415 /* 1416 * In theory resid should be unsigned. However, space must be 1417 * signed, as it might be less than 0 if we over-committed, and we 1418 * must use a signed comparison of space and resid. On the other 1419 * hand, a negative resid causes us to loop sending 0-length 1420 * segments to the protocol. 1421 */ 1422 if (resid < 0) { 1423 error = EINVAL; 1424 goto out; 1425 } 1426 1427 dontroute = 1428 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0; 1429 if (td != NULL) 1430 td->td_ru.ru_msgsnd++; 1431 if (control != NULL) 1432 clen = control->m_len; 1433 1434 SOCKBUF_LOCK(&so->so_snd); 1435 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1436 SOCKBUF_UNLOCK(&so->so_snd); 1437 error = EPIPE; 1438 goto out; 1439 } 1440 if (so->so_error) { 1441 error = so->so_error; 1442 so->so_error = 0; 1443 SOCKBUF_UNLOCK(&so->so_snd); 1444 goto out; 1445 } 1446 if ((so->so_state & SS_ISCONNECTED) == 0) { 1447 /* 1448 * `sendto' and `sendmsg' is allowed on a connection-based 1449 * socket if it supports implied connect. Return ENOTCONN if 1450 * not connected and no address is supplied. 1451 */ 1452 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1453 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1454 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1455 !(resid == 0 && clen != 0)) { 1456 SOCKBUF_UNLOCK(&so->so_snd); 1457 error = ENOTCONN; 1458 goto out; 1459 } 1460 } else if (addr == NULL) { 1461 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1462 error = ENOTCONN; 1463 else 1464 error = EDESTADDRREQ; 1465 SOCKBUF_UNLOCK(&so->so_snd); 1466 goto out; 1467 } 1468 } 1469 1470 /* 1471 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a 1472 * problem and need fixing. 1473 */ 1474 space = sbspace(&so->so_snd); 1475 if (flags & MSG_OOB) 1476 space += 1024; 1477 space -= clen; 1478 SOCKBUF_UNLOCK(&so->so_snd); 1479 if (resid > space) { 1480 error = EMSGSIZE; 1481 goto out; 1482 } 1483 if (uio == NULL) { 1484 resid = 0; 1485 if (flags & MSG_EOR) 1486 top->m_flags |= M_EOR; 1487 } else { 1488 /* 1489 * Copy the data from userland into a mbuf chain. 1490 * If no data is to be copied in, a single empty mbuf 1491 * is returned. 1492 */ 1493 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr, 1494 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0))); 1495 if (top == NULL) { 1496 error = EFAULT; /* only possible error */ 1497 goto out; 1498 } 1499 space -= resid - uio->uio_resid; 1500 resid = uio->uio_resid; 1501 } 1502 KASSERT(resid == 0, ("sosend_dgram: resid != 0")); 1503 /* 1504 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock 1505 * than with. 1506 */ 1507 if (dontroute) { 1508 SOCK_LOCK(so); 1509 so->so_options |= SO_DONTROUTE; 1510 SOCK_UNLOCK(so); 1511 } 1512 /* 1513 * XXX all the SBS_CANTSENDMORE checks previously done could be out 1514 * of date. We could have received a reset packet in an interrupt or 1515 * maybe we slept while doing page faults in uiomove() etc. We could 1516 * probably recheck again inside the locking protection here, but 1517 * there are probably other places that this also happens. We must 1518 * rethink this. 1519 */ 1520 VNET_SO_ASSERT(so); 1521 error = so->so_proto->pr_send(so, (flags & MSG_OOB) ? PRUS_OOB : 1522 /* 1523 * If the user set MSG_EOF, the protocol understands this flag and 1524 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND. 1525 */ 1526 ((flags & MSG_EOF) && 1527 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1528 (resid <= 0)) ? 1529 PRUS_EOF : 1530 /* If there is more to send set PRUS_MORETOCOME */ 1531 (flags & MSG_MORETOCOME) || 1532 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1533 top, addr, control, td); 1534 if (dontroute) { 1535 SOCK_LOCK(so); 1536 so->so_options &= ~SO_DONTROUTE; 1537 SOCK_UNLOCK(so); 1538 } 1539 clen = 0; 1540 control = NULL; 1541 top = NULL; 1542 out: 1543 if (top != NULL) 1544 m_freem(top); 1545 if (control != NULL) 1546 m_freem(control); 1547 return (error); 1548 } 1549 1550 /* 1551 * Send on a socket. If send must go all at once and message is larger than 1552 * send buffering, then hard error. Lock against other senders. If must go 1553 * all at once and not enough room now, then inform user that this would 1554 * block and do nothing. Otherwise, if nonblocking, send as much as 1555 * possible. The data to be sent is described by "uio" if nonzero, otherwise 1556 * by the mbuf chain "top" (which must be null if uio is not). Data provided 1557 * in mbuf chain must be small enough to send all at once. 1558 * 1559 * Returns nonzero on error, timeout or signal; callers must check for short 1560 * counts if EINTR/ERESTART are returned. Data and control buffers are freed 1561 * on return. 1562 */ 1563 int 1564 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio, 1565 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1566 { 1567 long space; 1568 ssize_t resid; 1569 int clen = 0, error, dontroute; 1570 int atomic = sosendallatonce(so) || top; 1571 int pr_send_flag; 1572 #ifdef KERN_TLS 1573 struct ktls_session *tls; 1574 int tls_enq_cnt, tls_send_flag; 1575 uint8_t tls_rtype; 1576 1577 tls = NULL; 1578 tls_rtype = TLS_RLTYPE_APP; 1579 #endif 1580 if (uio != NULL) 1581 resid = uio->uio_resid; 1582 else if ((top->m_flags & M_PKTHDR) != 0) 1583 resid = top->m_pkthdr.len; 1584 else 1585 resid = m_length(top, NULL); 1586 /* 1587 * In theory resid should be unsigned. However, space must be 1588 * signed, as it might be less than 0 if we over-committed, and we 1589 * must use a signed comparison of space and resid. On the other 1590 * hand, a negative resid causes us to loop sending 0-length 1591 * segments to the protocol. 1592 * 1593 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 1594 * type sockets since that's an error. 1595 */ 1596 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 1597 error = EINVAL; 1598 goto out; 1599 } 1600 1601 dontroute = 1602 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 1603 (so->so_proto->pr_flags & PR_ATOMIC); 1604 if (td != NULL) 1605 td->td_ru.ru_msgsnd++; 1606 if (control != NULL) 1607 clen = control->m_len; 1608 1609 error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags)); 1610 if (error) 1611 goto out; 1612 1613 #ifdef KERN_TLS 1614 tls_send_flag = 0; 1615 tls = ktls_hold(so->so_snd.sb_tls_info); 1616 if (tls != NULL) { 1617 if (tls->mode == TCP_TLS_MODE_SW) 1618 tls_send_flag = PRUS_NOTREADY; 1619 1620 if (control != NULL) { 1621 struct cmsghdr *cm = mtod(control, struct cmsghdr *); 1622 1623 if (clen >= sizeof(*cm) && 1624 cm->cmsg_type == TLS_SET_RECORD_TYPE) { 1625 tls_rtype = *((uint8_t *)CMSG_DATA(cm)); 1626 clen = 0; 1627 m_freem(control); 1628 control = NULL; 1629 atomic = 1; 1630 } 1631 } 1632 1633 if (resid == 0 && !ktls_permit_empty_frames(tls)) { 1634 error = EINVAL; 1635 goto release; 1636 } 1637 } 1638 #endif 1639 1640 restart: 1641 do { 1642 SOCKBUF_LOCK(&so->so_snd); 1643 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1644 SOCKBUF_UNLOCK(&so->so_snd); 1645 error = EPIPE; 1646 goto release; 1647 } 1648 if (so->so_error) { 1649 error = so->so_error; 1650 so->so_error = 0; 1651 SOCKBUF_UNLOCK(&so->so_snd); 1652 goto release; 1653 } 1654 if ((so->so_state & SS_ISCONNECTED) == 0) { 1655 /* 1656 * `sendto' and `sendmsg' is allowed on a connection- 1657 * based socket if it supports implied connect. 1658 * Return ENOTCONN if not connected and no address is 1659 * supplied. 1660 */ 1661 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1662 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1663 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1664 !(resid == 0 && clen != 0)) { 1665 SOCKBUF_UNLOCK(&so->so_snd); 1666 error = ENOTCONN; 1667 goto release; 1668 } 1669 } else if (addr == NULL) { 1670 SOCKBUF_UNLOCK(&so->so_snd); 1671 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1672 error = ENOTCONN; 1673 else 1674 error = EDESTADDRREQ; 1675 goto release; 1676 } 1677 } 1678 space = sbspace(&so->so_snd); 1679 if (flags & MSG_OOB) 1680 space += 1024; 1681 if ((atomic && resid > so->so_snd.sb_hiwat) || 1682 clen > so->so_snd.sb_hiwat) { 1683 SOCKBUF_UNLOCK(&so->so_snd); 1684 error = EMSGSIZE; 1685 goto release; 1686 } 1687 if (space < resid + clen && 1688 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 1689 if ((so->so_state & SS_NBIO) || 1690 (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) { 1691 SOCKBUF_UNLOCK(&so->so_snd); 1692 error = EWOULDBLOCK; 1693 goto release; 1694 } 1695 error = sbwait(so, SO_SND); 1696 SOCKBUF_UNLOCK(&so->so_snd); 1697 if (error) 1698 goto release; 1699 goto restart; 1700 } 1701 SOCKBUF_UNLOCK(&so->so_snd); 1702 space -= clen; 1703 do { 1704 if (uio == NULL) { 1705 resid = 0; 1706 if (flags & MSG_EOR) 1707 top->m_flags |= M_EOR; 1708 #ifdef KERN_TLS 1709 if (tls != NULL) { 1710 ktls_frame(top, tls, &tls_enq_cnt, 1711 tls_rtype); 1712 tls_rtype = TLS_RLTYPE_APP; 1713 } 1714 #endif 1715 } else { 1716 /* 1717 * Copy the data from userland into a mbuf 1718 * chain. If resid is 0, which can happen 1719 * only if we have control to send, then 1720 * a single empty mbuf is returned. This 1721 * is a workaround to prevent protocol send 1722 * methods to panic. 1723 */ 1724 #ifdef KERN_TLS 1725 if (tls != NULL) { 1726 top = m_uiotombuf(uio, M_WAITOK, space, 1727 tls->params.max_frame_len, 1728 M_EXTPG | 1729 ((flags & MSG_EOR) ? M_EOR : 0)); 1730 if (top != NULL) { 1731 ktls_frame(top, tls, 1732 &tls_enq_cnt, tls_rtype); 1733 } 1734 tls_rtype = TLS_RLTYPE_APP; 1735 } else 1736 #endif 1737 top = m_uiotombuf(uio, M_WAITOK, space, 1738 (atomic ? max_hdr : 0), 1739 (atomic ? M_PKTHDR : 0) | 1740 ((flags & MSG_EOR) ? M_EOR : 0)); 1741 if (top == NULL) { 1742 error = EFAULT; /* only possible error */ 1743 goto release; 1744 } 1745 space -= resid - uio->uio_resid; 1746 resid = uio->uio_resid; 1747 } 1748 if (dontroute) { 1749 SOCK_LOCK(so); 1750 so->so_options |= SO_DONTROUTE; 1751 SOCK_UNLOCK(so); 1752 } 1753 /* 1754 * XXX all the SBS_CANTSENDMORE checks previously 1755 * done could be out of date. We could have received 1756 * a reset packet in an interrupt or maybe we slept 1757 * while doing page faults in uiomove() etc. We 1758 * could probably recheck again inside the locking 1759 * protection here, but there are probably other 1760 * places that this also happens. We must rethink 1761 * this. 1762 */ 1763 VNET_SO_ASSERT(so); 1764 1765 pr_send_flag = (flags & MSG_OOB) ? PRUS_OOB : 1766 /* 1767 * If the user set MSG_EOF, the protocol understands 1768 * this flag and nothing left to send then use 1769 * PRU_SEND_EOF instead of PRU_SEND. 1770 */ 1771 ((flags & MSG_EOF) && 1772 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1773 (resid <= 0)) ? 1774 PRUS_EOF : 1775 /* If there is more to send set PRUS_MORETOCOME. */ 1776 (flags & MSG_MORETOCOME) || 1777 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0; 1778 1779 #ifdef KERN_TLS 1780 pr_send_flag |= tls_send_flag; 1781 #endif 1782 1783 error = so->so_proto->pr_send(so, pr_send_flag, top, 1784 addr, control, td); 1785 1786 if (dontroute) { 1787 SOCK_LOCK(so); 1788 so->so_options &= ~SO_DONTROUTE; 1789 SOCK_UNLOCK(so); 1790 } 1791 1792 #ifdef KERN_TLS 1793 if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) { 1794 if (error != 0) { 1795 m_freem(top); 1796 top = NULL; 1797 } else { 1798 soref(so); 1799 ktls_enqueue(top, so, tls_enq_cnt); 1800 } 1801 } 1802 #endif 1803 clen = 0; 1804 control = NULL; 1805 top = NULL; 1806 if (error) 1807 goto release; 1808 } while (resid && space > 0); 1809 } while (resid); 1810 1811 release: 1812 SOCK_IO_SEND_UNLOCK(so); 1813 out: 1814 #ifdef KERN_TLS 1815 if (tls != NULL) 1816 ktls_free(tls); 1817 #endif 1818 if (top != NULL) 1819 m_freem(top); 1820 if (control != NULL) 1821 m_freem(control); 1822 return (error); 1823 } 1824 1825 /* 1826 * Send to a socket from a kernel thread. 1827 * 1828 * XXXGL: in almost all cases uio is NULL and the mbuf is supplied. 1829 * Exception is nfs/bootp_subr.c. It is arguable that the VNET context needs 1830 * to be set at all. This function should just boil down to a static inline 1831 * calling the protocol method. 1832 */ 1833 int 1834 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, 1835 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1836 { 1837 int error; 1838 1839 CURVNET_SET(so->so_vnet); 1840 error = so->so_proto->pr_sosend(so, addr, uio, 1841 top, control, flags, td); 1842 CURVNET_RESTORE(); 1843 return (error); 1844 } 1845 1846 /* 1847 * send(2), write(2) or aio_write(2) on a socket. 1848 */ 1849 int 1850 sousrsend(struct socket *so, struct sockaddr *addr, struct uio *uio, 1851 struct mbuf *control, int flags, struct proc *userproc) 1852 { 1853 struct thread *td; 1854 ssize_t len; 1855 int error; 1856 1857 td = uio->uio_td; 1858 len = uio->uio_resid; 1859 CURVNET_SET(so->so_vnet); 1860 error = so->so_proto->pr_sosend(so, addr, uio, NULL, control, flags, 1861 td); 1862 CURVNET_RESTORE(); 1863 if (error != 0) { 1864 if (uio->uio_resid != len && 1865 (so->so_proto->pr_flags & PR_ATOMIC) == 0 && 1866 (error == ERESTART || error == EINTR || 1867 error == EWOULDBLOCK)) 1868 error = 0; 1869 /* Generation of SIGPIPE can be controlled per socket. */ 1870 if (error == EPIPE && (so->so_options & SO_NOSIGPIPE) == 0 && 1871 (flags & MSG_NOSIGNAL) == 0) { 1872 if (userproc != NULL) { 1873 /* aio(4) job */ 1874 PROC_LOCK(userproc); 1875 kern_psignal(userproc, SIGPIPE); 1876 PROC_UNLOCK(userproc); 1877 } else { 1878 PROC_LOCK(td->td_proc); 1879 tdsignal(td, SIGPIPE); 1880 PROC_UNLOCK(td->td_proc); 1881 } 1882 } 1883 } 1884 return (error); 1885 } 1886 1887 /* 1888 * The part of soreceive() that implements reading non-inline out-of-band 1889 * data from a socket. For more complete comments, see soreceive(), from 1890 * which this code originated. 1891 * 1892 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is 1893 * unable to return an mbuf chain to the caller. 1894 */ 1895 static int 1896 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags) 1897 { 1898 struct protosw *pr = so->so_proto; 1899 struct mbuf *m; 1900 int error; 1901 1902 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); 1903 VNET_SO_ASSERT(so); 1904 1905 m = m_get(M_WAITOK, MT_DATA); 1906 error = pr->pr_rcvoob(so, m, flags & MSG_PEEK); 1907 if (error) 1908 goto bad; 1909 do { 1910 error = uiomove(mtod(m, void *), 1911 (int) min(uio->uio_resid, m->m_len), uio); 1912 m = m_free(m); 1913 } while (uio->uio_resid && error == 0 && m); 1914 bad: 1915 if (m != NULL) 1916 m_freem(m); 1917 return (error); 1918 } 1919 1920 /* 1921 * Following replacement or removal of the first mbuf on the first mbuf chain 1922 * of a socket buffer, push necessary state changes back into the socket 1923 * buffer so that other consumers see the values consistently. 'nextrecord' 1924 * is the callers locally stored value of the original value of 1925 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. 1926 * NOTE: 'nextrecord' may be NULL. 1927 */ 1928 static __inline void 1929 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) 1930 { 1931 1932 SOCKBUF_LOCK_ASSERT(sb); 1933 /* 1934 * First, update for the new value of nextrecord. If necessary, make 1935 * it the first record. 1936 */ 1937 if (sb->sb_mb != NULL) 1938 sb->sb_mb->m_nextpkt = nextrecord; 1939 else 1940 sb->sb_mb = nextrecord; 1941 1942 /* 1943 * Now update any dependent socket buffer fields to reflect the new 1944 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the 1945 * addition of a second clause that takes care of the case where 1946 * sb_mb has been updated, but remains the last record. 1947 */ 1948 if (sb->sb_mb == NULL) { 1949 sb->sb_mbtail = NULL; 1950 sb->sb_lastrecord = NULL; 1951 } else if (sb->sb_mb->m_nextpkt == NULL) 1952 sb->sb_lastrecord = sb->sb_mb; 1953 } 1954 1955 /* 1956 * Implement receive operations on a socket. We depend on the way that 1957 * records are added to the sockbuf by sbappend. In particular, each record 1958 * (mbufs linked through m_next) must begin with an address if the protocol 1959 * so specifies, followed by an optional mbuf or mbufs containing ancillary 1960 * data, and then zero or more mbufs of data. In order to allow parallelism 1961 * between network receive and copying to user space, as well as avoid 1962 * sleeping with a mutex held, we release the socket buffer mutex during the 1963 * user space copy. Although the sockbuf is locked, new data may still be 1964 * appended, and thus we must maintain consistency of the sockbuf during that 1965 * time. 1966 * 1967 * The caller may receive the data as a single mbuf chain by supplying an 1968 * mbuf **mp0 for use in returning the chain. The uio is then used only for 1969 * the count in uio_resid. 1970 */ 1971 int 1972 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio, 1973 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1974 { 1975 struct mbuf *m, **mp; 1976 int flags, error, offset; 1977 ssize_t len; 1978 struct protosw *pr = so->so_proto; 1979 struct mbuf *nextrecord; 1980 int moff, type = 0; 1981 ssize_t orig_resid = uio->uio_resid; 1982 bool report_real_len = false; 1983 1984 mp = mp0; 1985 if (psa != NULL) 1986 *psa = NULL; 1987 if (controlp != NULL) 1988 *controlp = NULL; 1989 if (flagsp != NULL) { 1990 report_real_len = *flagsp & MSG_TRUNC; 1991 *flagsp &= ~MSG_TRUNC; 1992 flags = *flagsp &~ MSG_EOR; 1993 } else 1994 flags = 0; 1995 if (flags & MSG_OOB) 1996 return (soreceive_rcvoob(so, uio, flags)); 1997 if (mp != NULL) 1998 *mp = NULL; 1999 if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING) 2000 && uio->uio_resid) { 2001 VNET_SO_ASSERT(so); 2002 pr->pr_rcvd(so, 0); 2003 } 2004 2005 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags)); 2006 if (error) 2007 return (error); 2008 2009 restart: 2010 SOCKBUF_LOCK(&so->so_rcv); 2011 m = so->so_rcv.sb_mb; 2012 /* 2013 * If we have less data than requested, block awaiting more (subject 2014 * to any timeout) if: 2015 * 1. the current count is less than the low water mark, or 2016 * 2. MSG_DONTWAIT is not set 2017 */ 2018 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 2019 sbavail(&so->so_rcv) < uio->uio_resid) && 2020 sbavail(&so->so_rcv) < so->so_rcv.sb_lowat && 2021 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 2022 KASSERT(m != NULL || !sbavail(&so->so_rcv), 2023 ("receive: m == %p sbavail == %u", 2024 m, sbavail(&so->so_rcv))); 2025 if (so->so_error || so->so_rerror) { 2026 if (m != NULL) 2027 goto dontblock; 2028 if (so->so_error) 2029 error = so->so_error; 2030 else 2031 error = so->so_rerror; 2032 if ((flags & MSG_PEEK) == 0) { 2033 if (so->so_error) 2034 so->so_error = 0; 2035 else 2036 so->so_rerror = 0; 2037 } 2038 SOCKBUF_UNLOCK(&so->so_rcv); 2039 goto release; 2040 } 2041 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2042 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 2043 if (m != NULL) 2044 goto dontblock; 2045 #ifdef KERN_TLS 2046 else if (so->so_rcv.sb_tlsdcc == 0 && 2047 so->so_rcv.sb_tlscc == 0) { 2048 #else 2049 else { 2050 #endif 2051 SOCKBUF_UNLOCK(&so->so_rcv); 2052 goto release; 2053 } 2054 } 2055 for (; m != NULL; m = m->m_next) 2056 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 2057 m = so->so_rcv.sb_mb; 2058 goto dontblock; 2059 } 2060 if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED | 2061 SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 && 2062 (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) { 2063 SOCKBUF_UNLOCK(&so->so_rcv); 2064 error = ENOTCONN; 2065 goto release; 2066 } 2067 if (uio->uio_resid == 0 && !report_real_len) { 2068 SOCKBUF_UNLOCK(&so->so_rcv); 2069 goto release; 2070 } 2071 if ((so->so_state & SS_NBIO) || 2072 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2073 SOCKBUF_UNLOCK(&so->so_rcv); 2074 error = EWOULDBLOCK; 2075 goto release; 2076 } 2077 SBLASTRECORDCHK(&so->so_rcv); 2078 SBLASTMBUFCHK(&so->so_rcv); 2079 error = sbwait(so, SO_RCV); 2080 SOCKBUF_UNLOCK(&so->so_rcv); 2081 if (error) 2082 goto release; 2083 goto restart; 2084 } 2085 dontblock: 2086 /* 2087 * From this point onward, we maintain 'nextrecord' as a cache of the 2088 * pointer to the next record in the socket buffer. We must keep the 2089 * various socket buffer pointers and local stack versions of the 2090 * pointers in sync, pushing out modifications before dropping the 2091 * socket buffer mutex, and re-reading them when picking it up. 2092 * 2093 * Otherwise, we will race with the network stack appending new data 2094 * or records onto the socket buffer by using inconsistent/stale 2095 * versions of the field, possibly resulting in socket buffer 2096 * corruption. 2097 * 2098 * By holding the high-level sblock(), we prevent simultaneous 2099 * readers from pulling off the front of the socket buffer. 2100 */ 2101 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2102 if (uio->uio_td) 2103 uio->uio_td->td_ru.ru_msgrcv++; 2104 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); 2105 SBLASTRECORDCHK(&so->so_rcv); 2106 SBLASTMBUFCHK(&so->so_rcv); 2107 nextrecord = m->m_nextpkt; 2108 if (pr->pr_flags & PR_ADDR) { 2109 KASSERT(m->m_type == MT_SONAME, 2110 ("m->m_type == %d", m->m_type)); 2111 orig_resid = 0; 2112 if (psa != NULL) 2113 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2114 M_NOWAIT); 2115 if (flags & MSG_PEEK) { 2116 m = m->m_next; 2117 } else { 2118 sbfree(&so->so_rcv, m); 2119 so->so_rcv.sb_mb = m_free(m); 2120 m = so->so_rcv.sb_mb; 2121 sockbuf_pushsync(&so->so_rcv, nextrecord); 2122 } 2123 } 2124 2125 /* 2126 * Process one or more MT_CONTROL mbufs present before any data mbufs 2127 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 2128 * just copy the data; if !MSG_PEEK, we call into the protocol to 2129 * perform externalization (or freeing if controlp == NULL). 2130 */ 2131 if (m != NULL && m->m_type == MT_CONTROL) { 2132 struct mbuf *cm = NULL, *cmn; 2133 struct mbuf **cme = &cm; 2134 #ifdef KERN_TLS 2135 struct cmsghdr *cmsg; 2136 struct tls_get_record tgr; 2137 2138 /* 2139 * For MSG_TLSAPPDATA, check for an alert record. 2140 * If found, return ENXIO without removing 2141 * it from the receive queue. This allows a subsequent 2142 * call without MSG_TLSAPPDATA to receive it. 2143 * Note that, for TLS, there should only be a single 2144 * control mbuf with the TLS_GET_RECORD message in it. 2145 */ 2146 if (flags & MSG_TLSAPPDATA) { 2147 cmsg = mtod(m, struct cmsghdr *); 2148 if (cmsg->cmsg_type == TLS_GET_RECORD && 2149 cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) { 2150 memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr)); 2151 if (__predict_false(tgr.tls_type == 2152 TLS_RLTYPE_ALERT)) { 2153 SOCKBUF_UNLOCK(&so->so_rcv); 2154 error = ENXIO; 2155 goto release; 2156 } 2157 } 2158 } 2159 #endif 2160 2161 do { 2162 if (flags & MSG_PEEK) { 2163 if (controlp != NULL) { 2164 *controlp = m_copym(m, 0, m->m_len, 2165 M_NOWAIT); 2166 controlp = &(*controlp)->m_next; 2167 } 2168 m = m->m_next; 2169 } else { 2170 sbfree(&so->so_rcv, m); 2171 so->so_rcv.sb_mb = m->m_next; 2172 m->m_next = NULL; 2173 *cme = m; 2174 cme = &(*cme)->m_next; 2175 m = so->so_rcv.sb_mb; 2176 } 2177 } while (m != NULL && m->m_type == MT_CONTROL); 2178 if ((flags & MSG_PEEK) == 0) 2179 sockbuf_pushsync(&so->so_rcv, nextrecord); 2180 while (cm != NULL) { 2181 cmn = cm->m_next; 2182 cm->m_next = NULL; 2183 if (pr->pr_domain->dom_externalize != NULL) { 2184 SOCKBUF_UNLOCK(&so->so_rcv); 2185 VNET_SO_ASSERT(so); 2186 error = (*pr->pr_domain->dom_externalize) 2187 (cm, controlp, flags); 2188 SOCKBUF_LOCK(&so->so_rcv); 2189 } else if (controlp != NULL) 2190 *controlp = cm; 2191 else 2192 m_freem(cm); 2193 if (controlp != NULL) { 2194 while (*controlp != NULL) 2195 controlp = &(*controlp)->m_next; 2196 } 2197 cm = cmn; 2198 } 2199 if (m != NULL) 2200 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 2201 else 2202 nextrecord = so->so_rcv.sb_mb; 2203 orig_resid = 0; 2204 } 2205 if (m != NULL) { 2206 if ((flags & MSG_PEEK) == 0) { 2207 KASSERT(m->m_nextpkt == nextrecord, 2208 ("soreceive: post-control, nextrecord !sync")); 2209 if (nextrecord == NULL) { 2210 KASSERT(so->so_rcv.sb_mb == m, 2211 ("soreceive: post-control, sb_mb!=m")); 2212 KASSERT(so->so_rcv.sb_lastrecord == m, 2213 ("soreceive: post-control, lastrecord!=m")); 2214 } 2215 } 2216 type = m->m_type; 2217 if (type == MT_OOBDATA) 2218 flags |= MSG_OOB; 2219 } else { 2220 if ((flags & MSG_PEEK) == 0) { 2221 KASSERT(so->so_rcv.sb_mb == nextrecord, 2222 ("soreceive: sb_mb != nextrecord")); 2223 if (so->so_rcv.sb_mb == NULL) { 2224 KASSERT(so->so_rcv.sb_lastrecord == NULL, 2225 ("soreceive: sb_lastercord != NULL")); 2226 } 2227 } 2228 } 2229 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2230 SBLASTRECORDCHK(&so->so_rcv); 2231 SBLASTMBUFCHK(&so->so_rcv); 2232 2233 /* 2234 * Now continue to read any data mbufs off of the head of the socket 2235 * buffer until the read request is satisfied. Note that 'type' is 2236 * used to store the type of any mbuf reads that have happened so far 2237 * such that soreceive() can stop reading if the type changes, which 2238 * causes soreceive() to return only one of regular data and inline 2239 * out-of-band data in a single socket receive operation. 2240 */ 2241 moff = 0; 2242 offset = 0; 2243 while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0 2244 && error == 0) { 2245 /* 2246 * If the type of mbuf has changed since the last mbuf 2247 * examined ('type'), end the receive operation. 2248 */ 2249 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2250 if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) { 2251 if (type != m->m_type) 2252 break; 2253 } else if (type == MT_OOBDATA) 2254 break; 2255 else 2256 KASSERT(m->m_type == MT_DATA, 2257 ("m->m_type == %d", m->m_type)); 2258 so->so_rcv.sb_state &= ~SBS_RCVATMARK; 2259 len = uio->uio_resid; 2260 if (so->so_oobmark && len > so->so_oobmark - offset) 2261 len = so->so_oobmark - offset; 2262 if (len > m->m_len - moff) 2263 len = m->m_len - moff; 2264 /* 2265 * If mp is set, just pass back the mbufs. Otherwise copy 2266 * them out via the uio, then free. Sockbuf must be 2267 * consistent here (points to current mbuf, it points to next 2268 * record) when we drop priority; we must note any additions 2269 * to the sockbuf when we block interrupts again. 2270 */ 2271 if (mp == NULL) { 2272 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2273 SBLASTRECORDCHK(&so->so_rcv); 2274 SBLASTMBUFCHK(&so->so_rcv); 2275 SOCKBUF_UNLOCK(&so->so_rcv); 2276 if ((m->m_flags & M_EXTPG) != 0) 2277 error = m_unmapped_uiomove(m, moff, uio, 2278 (int)len); 2279 else 2280 error = uiomove(mtod(m, char *) + moff, 2281 (int)len, uio); 2282 SOCKBUF_LOCK(&so->so_rcv); 2283 if (error) { 2284 /* 2285 * The MT_SONAME mbuf has already been removed 2286 * from the record, so it is necessary to 2287 * remove the data mbufs, if any, to preserve 2288 * the invariant in the case of PR_ADDR that 2289 * requires MT_SONAME mbufs at the head of 2290 * each record. 2291 */ 2292 if (pr->pr_flags & PR_ATOMIC && 2293 ((flags & MSG_PEEK) == 0)) 2294 (void)sbdroprecord_locked(&so->so_rcv); 2295 SOCKBUF_UNLOCK(&so->so_rcv); 2296 goto release; 2297 } 2298 } else 2299 uio->uio_resid -= len; 2300 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2301 if (len == m->m_len - moff) { 2302 if (m->m_flags & M_EOR) 2303 flags |= MSG_EOR; 2304 if (flags & MSG_PEEK) { 2305 m = m->m_next; 2306 moff = 0; 2307 } else { 2308 nextrecord = m->m_nextpkt; 2309 sbfree(&so->so_rcv, m); 2310 if (mp != NULL) { 2311 m->m_nextpkt = NULL; 2312 *mp = m; 2313 mp = &m->m_next; 2314 so->so_rcv.sb_mb = m = m->m_next; 2315 *mp = NULL; 2316 } else { 2317 so->so_rcv.sb_mb = m_free(m); 2318 m = so->so_rcv.sb_mb; 2319 } 2320 sockbuf_pushsync(&so->so_rcv, nextrecord); 2321 SBLASTRECORDCHK(&so->so_rcv); 2322 SBLASTMBUFCHK(&so->so_rcv); 2323 } 2324 } else { 2325 if (flags & MSG_PEEK) 2326 moff += len; 2327 else { 2328 if (mp != NULL) { 2329 if (flags & MSG_DONTWAIT) { 2330 *mp = m_copym(m, 0, len, 2331 M_NOWAIT); 2332 if (*mp == NULL) { 2333 /* 2334 * m_copym() couldn't 2335 * allocate an mbuf. 2336 * Adjust uio_resid back 2337 * (it was adjusted 2338 * down by len bytes, 2339 * which we didn't end 2340 * up "copying" over). 2341 */ 2342 uio->uio_resid += len; 2343 break; 2344 } 2345 } else { 2346 SOCKBUF_UNLOCK(&so->so_rcv); 2347 *mp = m_copym(m, 0, len, 2348 M_WAITOK); 2349 SOCKBUF_LOCK(&so->so_rcv); 2350 } 2351 } 2352 sbcut_locked(&so->so_rcv, len); 2353 } 2354 } 2355 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2356 if (so->so_oobmark) { 2357 if ((flags & MSG_PEEK) == 0) { 2358 so->so_oobmark -= len; 2359 if (so->so_oobmark == 0) { 2360 so->so_rcv.sb_state |= SBS_RCVATMARK; 2361 break; 2362 } 2363 } else { 2364 offset += len; 2365 if (offset == so->so_oobmark) 2366 break; 2367 } 2368 } 2369 if (flags & MSG_EOR) 2370 break; 2371 /* 2372 * If the MSG_WAITALL flag is set (for non-atomic socket), we 2373 * must not quit until "uio->uio_resid == 0" or an error 2374 * termination. If a signal/timeout occurs, return with a 2375 * short count but without error. Keep sockbuf locked 2376 * against other readers. 2377 */ 2378 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 2379 !sosendallatonce(so) && nextrecord == NULL) { 2380 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2381 if (so->so_error || so->so_rerror || 2382 so->so_rcv.sb_state & SBS_CANTRCVMORE) 2383 break; 2384 /* 2385 * Notify the protocol that some data has been 2386 * drained before blocking. 2387 */ 2388 if (pr->pr_flags & PR_WANTRCVD) { 2389 SOCKBUF_UNLOCK(&so->so_rcv); 2390 VNET_SO_ASSERT(so); 2391 pr->pr_rcvd(so, flags); 2392 SOCKBUF_LOCK(&so->so_rcv); 2393 } 2394 SBLASTRECORDCHK(&so->so_rcv); 2395 SBLASTMBUFCHK(&so->so_rcv); 2396 /* 2397 * We could receive some data while was notifying 2398 * the protocol. Skip blocking in this case. 2399 */ 2400 if (so->so_rcv.sb_mb == NULL) { 2401 error = sbwait(so, SO_RCV); 2402 if (error) { 2403 SOCKBUF_UNLOCK(&so->so_rcv); 2404 goto release; 2405 } 2406 } 2407 m = so->so_rcv.sb_mb; 2408 if (m != NULL) 2409 nextrecord = m->m_nextpkt; 2410 } 2411 } 2412 2413 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2414 if (m != NULL && pr->pr_flags & PR_ATOMIC) { 2415 if (report_real_len) 2416 uio->uio_resid -= m_length(m, NULL) - moff; 2417 flags |= MSG_TRUNC; 2418 if ((flags & MSG_PEEK) == 0) 2419 (void) sbdroprecord_locked(&so->so_rcv); 2420 } 2421 if ((flags & MSG_PEEK) == 0) { 2422 if (m == NULL) { 2423 /* 2424 * First part is an inline SB_EMPTY_FIXUP(). Second 2425 * part makes sure sb_lastrecord is up-to-date if 2426 * there is still data in the socket buffer. 2427 */ 2428 so->so_rcv.sb_mb = nextrecord; 2429 if (so->so_rcv.sb_mb == NULL) { 2430 so->so_rcv.sb_mbtail = NULL; 2431 so->so_rcv.sb_lastrecord = NULL; 2432 } else if (nextrecord->m_nextpkt == NULL) 2433 so->so_rcv.sb_lastrecord = nextrecord; 2434 } 2435 SBLASTRECORDCHK(&so->so_rcv); 2436 SBLASTMBUFCHK(&so->so_rcv); 2437 /* 2438 * If soreceive() is being done from the socket callback, 2439 * then don't need to generate ACK to peer to update window, 2440 * since ACK will be generated on return to TCP. 2441 */ 2442 if (!(flags & MSG_SOCALLBCK) && 2443 (pr->pr_flags & PR_WANTRCVD)) { 2444 SOCKBUF_UNLOCK(&so->so_rcv); 2445 VNET_SO_ASSERT(so); 2446 pr->pr_rcvd(so, flags); 2447 SOCKBUF_LOCK(&so->so_rcv); 2448 } 2449 } 2450 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2451 if (orig_resid == uio->uio_resid && orig_resid && 2452 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { 2453 SOCKBUF_UNLOCK(&so->so_rcv); 2454 goto restart; 2455 } 2456 SOCKBUF_UNLOCK(&so->so_rcv); 2457 2458 if (flagsp != NULL) 2459 *flagsp |= flags; 2460 release: 2461 SOCK_IO_RECV_UNLOCK(so); 2462 return (error); 2463 } 2464 2465 /* 2466 * Optimized version of soreceive() for stream (TCP) sockets. 2467 */ 2468 int 2469 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio, 2470 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2471 { 2472 int len = 0, error = 0, flags, oresid; 2473 struct sockbuf *sb; 2474 struct mbuf *m, *n = NULL; 2475 2476 /* We only do stream sockets. */ 2477 if (so->so_type != SOCK_STREAM) 2478 return (EINVAL); 2479 if (psa != NULL) 2480 *psa = NULL; 2481 if (flagsp != NULL) 2482 flags = *flagsp &~ MSG_EOR; 2483 else 2484 flags = 0; 2485 if (controlp != NULL) 2486 *controlp = NULL; 2487 if (flags & MSG_OOB) 2488 return (soreceive_rcvoob(so, uio, flags)); 2489 if (mp0 != NULL) 2490 *mp0 = NULL; 2491 2492 sb = &so->so_rcv; 2493 2494 #ifdef KERN_TLS 2495 /* 2496 * KTLS store TLS records as records with a control message to 2497 * describe the framing. 2498 * 2499 * We check once here before acquiring locks to optimize the 2500 * common case. 2501 */ 2502 if (sb->sb_tls_info != NULL) 2503 return (soreceive_generic(so, psa, uio, mp0, controlp, 2504 flagsp)); 2505 #endif 2506 2507 /* Prevent other readers from entering the socket. */ 2508 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags)); 2509 if (error) 2510 return (error); 2511 SOCKBUF_LOCK(sb); 2512 2513 #ifdef KERN_TLS 2514 if (sb->sb_tls_info != NULL) { 2515 SOCKBUF_UNLOCK(sb); 2516 SOCK_IO_RECV_UNLOCK(so); 2517 return (soreceive_generic(so, psa, uio, mp0, controlp, 2518 flagsp)); 2519 } 2520 #endif 2521 2522 /* Easy one, no space to copyout anything. */ 2523 if (uio->uio_resid == 0) { 2524 error = EINVAL; 2525 goto out; 2526 } 2527 oresid = uio->uio_resid; 2528 2529 /* We will never ever get anything unless we are or were connected. */ 2530 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 2531 error = ENOTCONN; 2532 goto out; 2533 } 2534 2535 restart: 2536 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2537 2538 /* Abort if socket has reported problems. */ 2539 if (so->so_error) { 2540 if (sbavail(sb) > 0) 2541 goto deliver; 2542 if (oresid > uio->uio_resid) 2543 goto out; 2544 error = so->so_error; 2545 if (!(flags & MSG_PEEK)) 2546 so->so_error = 0; 2547 goto out; 2548 } 2549 2550 /* Door is closed. Deliver what is left, if any. */ 2551 if (sb->sb_state & SBS_CANTRCVMORE) { 2552 if (sbavail(sb) > 0) 2553 goto deliver; 2554 else 2555 goto out; 2556 } 2557 2558 /* Socket buffer is empty and we shall not block. */ 2559 if (sbavail(sb) == 0 && 2560 ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) { 2561 error = EAGAIN; 2562 goto out; 2563 } 2564 2565 /* Socket buffer got some data that we shall deliver now. */ 2566 if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) && 2567 ((so->so_state & SS_NBIO) || 2568 (flags & (MSG_DONTWAIT|MSG_NBIO)) || 2569 sbavail(sb) >= sb->sb_lowat || 2570 sbavail(sb) >= uio->uio_resid || 2571 sbavail(sb) >= sb->sb_hiwat) ) { 2572 goto deliver; 2573 } 2574 2575 /* On MSG_WAITALL we must wait until all data or error arrives. */ 2576 if ((flags & MSG_WAITALL) && 2577 (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat)) 2578 goto deliver; 2579 2580 /* 2581 * Wait and block until (more) data comes in. 2582 * NB: Drops the sockbuf lock during wait. 2583 */ 2584 error = sbwait(so, SO_RCV); 2585 if (error) 2586 goto out; 2587 goto restart; 2588 2589 deliver: 2590 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2591 KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__)); 2592 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__)); 2593 2594 /* Statistics. */ 2595 if (uio->uio_td) 2596 uio->uio_td->td_ru.ru_msgrcv++; 2597 2598 /* Fill uio until full or current end of socket buffer is reached. */ 2599 len = min(uio->uio_resid, sbavail(sb)); 2600 if (mp0 != NULL) { 2601 /* Dequeue as many mbufs as possible. */ 2602 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) { 2603 if (*mp0 == NULL) 2604 *mp0 = sb->sb_mb; 2605 else 2606 m_cat(*mp0, sb->sb_mb); 2607 for (m = sb->sb_mb; 2608 m != NULL && m->m_len <= len; 2609 m = m->m_next) { 2610 KASSERT(!(m->m_flags & M_NOTAVAIL), 2611 ("%s: m %p not available", __func__, m)); 2612 len -= m->m_len; 2613 uio->uio_resid -= m->m_len; 2614 sbfree(sb, m); 2615 n = m; 2616 } 2617 n->m_next = NULL; 2618 sb->sb_mb = m; 2619 sb->sb_lastrecord = sb->sb_mb; 2620 if (sb->sb_mb == NULL) 2621 SB_EMPTY_FIXUP(sb); 2622 } 2623 /* Copy the remainder. */ 2624 if (len > 0) { 2625 KASSERT(sb->sb_mb != NULL, 2626 ("%s: len > 0 && sb->sb_mb empty", __func__)); 2627 2628 m = m_copym(sb->sb_mb, 0, len, M_NOWAIT); 2629 if (m == NULL) 2630 len = 0; /* Don't flush data from sockbuf. */ 2631 else 2632 uio->uio_resid -= len; 2633 if (*mp0 != NULL) 2634 m_cat(*mp0, m); 2635 else 2636 *mp0 = m; 2637 if (*mp0 == NULL) { 2638 error = ENOBUFS; 2639 goto out; 2640 } 2641 } 2642 } else { 2643 /* NB: Must unlock socket buffer as uiomove may sleep. */ 2644 SOCKBUF_UNLOCK(sb); 2645 error = m_mbuftouio(uio, sb->sb_mb, len); 2646 SOCKBUF_LOCK(sb); 2647 if (error) 2648 goto out; 2649 } 2650 SBLASTRECORDCHK(sb); 2651 SBLASTMBUFCHK(sb); 2652 2653 /* 2654 * Remove the delivered data from the socket buffer unless we 2655 * were only peeking. 2656 */ 2657 if (!(flags & MSG_PEEK)) { 2658 if (len > 0) 2659 sbdrop_locked(sb, len); 2660 2661 /* Notify protocol that we drained some data. */ 2662 if ((so->so_proto->pr_flags & PR_WANTRCVD) && 2663 (((flags & MSG_WAITALL) && uio->uio_resid > 0) || 2664 !(flags & MSG_SOCALLBCK))) { 2665 SOCKBUF_UNLOCK(sb); 2666 VNET_SO_ASSERT(so); 2667 so->so_proto->pr_rcvd(so, flags); 2668 SOCKBUF_LOCK(sb); 2669 } 2670 } 2671 2672 /* 2673 * For MSG_WAITALL we may have to loop again and wait for 2674 * more data to come in. 2675 */ 2676 if ((flags & MSG_WAITALL) && uio->uio_resid > 0) 2677 goto restart; 2678 out: 2679 SBLASTRECORDCHK(sb); 2680 SBLASTMBUFCHK(sb); 2681 SOCKBUF_UNLOCK(sb); 2682 SOCK_IO_RECV_UNLOCK(so); 2683 return (error); 2684 } 2685 2686 /* 2687 * Optimized version of soreceive() for simple datagram cases from userspace. 2688 * Unlike in the stream case, we're able to drop a datagram if copyout() 2689 * fails, and because we handle datagrams atomically, we don't need to use a 2690 * sleep lock to prevent I/O interlacing. 2691 */ 2692 int 2693 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio, 2694 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2695 { 2696 struct mbuf *m, *m2; 2697 int flags, error; 2698 ssize_t len; 2699 struct protosw *pr = so->so_proto; 2700 struct mbuf *nextrecord; 2701 2702 if (psa != NULL) 2703 *psa = NULL; 2704 if (controlp != NULL) 2705 *controlp = NULL; 2706 if (flagsp != NULL) 2707 flags = *flagsp &~ MSG_EOR; 2708 else 2709 flags = 0; 2710 2711 /* 2712 * For any complicated cases, fall back to the full 2713 * soreceive_generic(). 2714 */ 2715 if (mp0 != NULL || (flags & (MSG_PEEK | MSG_OOB | MSG_TRUNC))) 2716 return (soreceive_generic(so, psa, uio, mp0, controlp, 2717 flagsp)); 2718 2719 /* 2720 * Enforce restrictions on use. 2721 */ 2722 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0, 2723 ("soreceive_dgram: wantrcvd")); 2724 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic")); 2725 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0, 2726 ("soreceive_dgram: SBS_RCVATMARK")); 2727 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0, 2728 ("soreceive_dgram: P_CONNREQUIRED")); 2729 2730 /* 2731 * Loop blocking while waiting for a datagram. 2732 */ 2733 SOCKBUF_LOCK(&so->so_rcv); 2734 while ((m = so->so_rcv.sb_mb) == NULL) { 2735 KASSERT(sbavail(&so->so_rcv) == 0, 2736 ("soreceive_dgram: sb_mb NULL but sbavail %u", 2737 sbavail(&so->so_rcv))); 2738 if (so->so_error) { 2739 error = so->so_error; 2740 so->so_error = 0; 2741 SOCKBUF_UNLOCK(&so->so_rcv); 2742 return (error); 2743 } 2744 if (so->so_rcv.sb_state & SBS_CANTRCVMORE || 2745 uio->uio_resid == 0) { 2746 SOCKBUF_UNLOCK(&so->so_rcv); 2747 return (0); 2748 } 2749 if ((so->so_state & SS_NBIO) || 2750 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2751 SOCKBUF_UNLOCK(&so->so_rcv); 2752 return (EWOULDBLOCK); 2753 } 2754 SBLASTRECORDCHK(&so->so_rcv); 2755 SBLASTMBUFCHK(&so->so_rcv); 2756 error = sbwait(so, SO_RCV); 2757 if (error) { 2758 SOCKBUF_UNLOCK(&so->so_rcv); 2759 return (error); 2760 } 2761 } 2762 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2763 2764 if (uio->uio_td) 2765 uio->uio_td->td_ru.ru_msgrcv++; 2766 SBLASTRECORDCHK(&so->so_rcv); 2767 SBLASTMBUFCHK(&so->so_rcv); 2768 nextrecord = m->m_nextpkt; 2769 if (nextrecord == NULL) { 2770 KASSERT(so->so_rcv.sb_lastrecord == m, 2771 ("soreceive_dgram: lastrecord != m")); 2772 } 2773 2774 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord, 2775 ("soreceive_dgram: m_nextpkt != nextrecord")); 2776 2777 /* 2778 * Pull 'm' and its chain off the front of the packet queue. 2779 */ 2780 so->so_rcv.sb_mb = NULL; 2781 sockbuf_pushsync(&so->so_rcv, nextrecord); 2782 2783 /* 2784 * Walk 'm's chain and free that many bytes from the socket buffer. 2785 */ 2786 for (m2 = m; m2 != NULL; m2 = m2->m_next) 2787 sbfree(&so->so_rcv, m2); 2788 2789 /* 2790 * Do a few last checks before we let go of the lock. 2791 */ 2792 SBLASTRECORDCHK(&so->so_rcv); 2793 SBLASTMBUFCHK(&so->so_rcv); 2794 SOCKBUF_UNLOCK(&so->so_rcv); 2795 2796 if (pr->pr_flags & PR_ADDR) { 2797 KASSERT(m->m_type == MT_SONAME, 2798 ("m->m_type == %d", m->m_type)); 2799 if (psa != NULL) 2800 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2801 M_NOWAIT); 2802 m = m_free(m); 2803 } 2804 if (m == NULL) { 2805 /* XXXRW: Can this happen? */ 2806 return (0); 2807 } 2808 2809 /* 2810 * Packet to copyout() is now in 'm' and it is disconnected from the 2811 * queue. 2812 * 2813 * Process one or more MT_CONTROL mbufs present before any data mbufs 2814 * in the first mbuf chain on the socket buffer. We call into the 2815 * protocol to perform externalization (or freeing if controlp == 2816 * NULL). In some cases there can be only MT_CONTROL mbufs without 2817 * MT_DATA mbufs. 2818 */ 2819 if (m->m_type == MT_CONTROL) { 2820 struct mbuf *cm = NULL, *cmn; 2821 struct mbuf **cme = &cm; 2822 2823 do { 2824 m2 = m->m_next; 2825 m->m_next = NULL; 2826 *cme = m; 2827 cme = &(*cme)->m_next; 2828 m = m2; 2829 } while (m != NULL && m->m_type == MT_CONTROL); 2830 while (cm != NULL) { 2831 cmn = cm->m_next; 2832 cm->m_next = NULL; 2833 if (pr->pr_domain->dom_externalize != NULL) { 2834 error = (*pr->pr_domain->dom_externalize) 2835 (cm, controlp, flags); 2836 } else if (controlp != NULL) 2837 *controlp = cm; 2838 else 2839 m_freem(cm); 2840 if (controlp != NULL) { 2841 while (*controlp != NULL) 2842 controlp = &(*controlp)->m_next; 2843 } 2844 cm = cmn; 2845 } 2846 } 2847 KASSERT(m == NULL || m->m_type == MT_DATA, 2848 ("soreceive_dgram: !data")); 2849 while (m != NULL && uio->uio_resid > 0) { 2850 len = uio->uio_resid; 2851 if (len > m->m_len) 2852 len = m->m_len; 2853 error = uiomove(mtod(m, char *), (int)len, uio); 2854 if (error) { 2855 m_freem(m); 2856 return (error); 2857 } 2858 if (len == m->m_len) 2859 m = m_free(m); 2860 else { 2861 m->m_data += len; 2862 m->m_len -= len; 2863 } 2864 } 2865 if (m != NULL) { 2866 flags |= MSG_TRUNC; 2867 m_freem(m); 2868 } 2869 if (flagsp != NULL) 2870 *flagsp |= flags; 2871 return (0); 2872 } 2873 2874 int 2875 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, 2876 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2877 { 2878 int error; 2879 2880 CURVNET_SET(so->so_vnet); 2881 error = so->so_proto->pr_soreceive(so, psa, uio, mp0, controlp, flagsp); 2882 CURVNET_RESTORE(); 2883 return (error); 2884 } 2885 2886 int 2887 soshutdown(struct socket *so, int how) 2888 { 2889 struct protosw *pr; 2890 int error, soerror_enotconn; 2891 2892 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 2893 return (EINVAL); 2894 2895 soerror_enotconn = 0; 2896 SOCK_LOCK(so); 2897 if ((so->so_state & 2898 (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) { 2899 /* 2900 * POSIX mandates us to return ENOTCONN when shutdown(2) is 2901 * invoked on a datagram sockets, however historically we would 2902 * actually tear socket down. This is known to be leveraged by 2903 * some applications to unblock process waiting in recvXXX(2) 2904 * by other process that it shares that socket with. Try to meet 2905 * both backward-compatibility and POSIX requirements by forcing 2906 * ENOTCONN but still asking protocol to perform pru_shutdown(). 2907 */ 2908 if (so->so_type != SOCK_DGRAM && !SOLISTENING(so)) { 2909 SOCK_UNLOCK(so); 2910 return (ENOTCONN); 2911 } 2912 soerror_enotconn = 1; 2913 } 2914 2915 if (SOLISTENING(so)) { 2916 if (how != SHUT_WR) { 2917 so->so_error = ECONNABORTED; 2918 solisten_wakeup(so); /* unlocks so */ 2919 } else { 2920 SOCK_UNLOCK(so); 2921 } 2922 goto done; 2923 } 2924 SOCK_UNLOCK(so); 2925 2926 CURVNET_SET(so->so_vnet); 2927 pr = so->so_proto; 2928 if (pr->pr_flush != NULL) 2929 pr->pr_flush(so, how); 2930 if (how != SHUT_WR) 2931 sorflush(so); 2932 if (how != SHUT_RD) { 2933 error = pr->pr_shutdown(so); 2934 wakeup(&so->so_timeo); 2935 CURVNET_RESTORE(); 2936 return ((error == 0 && soerror_enotconn) ? ENOTCONN : error); 2937 } 2938 wakeup(&so->so_timeo); 2939 CURVNET_RESTORE(); 2940 2941 done: 2942 return (soerror_enotconn ? ENOTCONN : 0); 2943 } 2944 2945 void 2946 sorflush(struct socket *so) 2947 { 2948 struct protosw *pr; 2949 int error; 2950 2951 VNET_SO_ASSERT(so); 2952 2953 /* 2954 * Dislodge threads currently blocked in receive and wait to acquire 2955 * a lock against other simultaneous readers before clearing the 2956 * socket buffer. Don't let our acquire be interrupted by a signal 2957 * despite any existing socket disposition on interruptable waiting. 2958 */ 2959 socantrcvmore(so); 2960 2961 error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR); 2962 if (error != 0) { 2963 KASSERT(SOLISTENING(so), 2964 ("%s: soiolock(%p) failed", __func__, so)); 2965 return; 2966 } 2967 2968 pr = so->so_proto; 2969 if (pr->pr_flags & PR_RIGHTS) { 2970 MPASS(pr->pr_domain->dom_dispose != NULL); 2971 (*pr->pr_domain->dom_dispose)(so); 2972 } else { 2973 sbrelease(so, SO_RCV); 2974 SOCK_IO_RECV_UNLOCK(so); 2975 } 2976 2977 } 2978 2979 /* 2980 * Wrapper for Socket established helper hook. 2981 * Parameters: socket, context of the hook point, hook id. 2982 */ 2983 static int inline 2984 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id) 2985 { 2986 struct socket_hhook_data hhook_data = { 2987 .so = so, 2988 .hctx = hctx, 2989 .m = NULL, 2990 .status = 0 2991 }; 2992 2993 CURVNET_SET(so->so_vnet); 2994 HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd); 2995 CURVNET_RESTORE(); 2996 2997 /* Ugly but needed, since hhooks return void for now */ 2998 return (hhook_data.status); 2999 } 3000 3001 /* 3002 * Perhaps this routine, and sooptcopyout(), below, ought to come in an 3003 * additional variant to handle the case where the option value needs to be 3004 * some kind of integer, but not a specific size. In addition to their use 3005 * here, these functions are also called by the protocol-level pr_ctloutput() 3006 * routines. 3007 */ 3008 int 3009 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen) 3010 { 3011 size_t valsize; 3012 3013 /* 3014 * If the user gives us more than we wanted, we ignore it, but if we 3015 * don't get the minimum length the caller wants, we return EINVAL. 3016 * On success, sopt->sopt_valsize is set to however much we actually 3017 * retrieved. 3018 */ 3019 if ((valsize = sopt->sopt_valsize) < minlen) 3020 return EINVAL; 3021 if (valsize > len) 3022 sopt->sopt_valsize = valsize = len; 3023 3024 if (sopt->sopt_td != NULL) 3025 return (copyin(sopt->sopt_val, buf, valsize)); 3026 3027 bcopy(sopt->sopt_val, buf, valsize); 3028 return (0); 3029 } 3030 3031 /* 3032 * Kernel version of setsockopt(2). 3033 * 3034 * XXX: optlen is size_t, not socklen_t 3035 */ 3036 int 3037 so_setsockopt(struct socket *so, int level, int optname, void *optval, 3038 size_t optlen) 3039 { 3040 struct sockopt sopt; 3041 3042 sopt.sopt_level = level; 3043 sopt.sopt_name = optname; 3044 sopt.sopt_dir = SOPT_SET; 3045 sopt.sopt_val = optval; 3046 sopt.sopt_valsize = optlen; 3047 sopt.sopt_td = NULL; 3048 return (sosetopt(so, &sopt)); 3049 } 3050 3051 int 3052 sosetopt(struct socket *so, struct sockopt *sopt) 3053 { 3054 int error, optval; 3055 struct linger l; 3056 struct timeval tv; 3057 sbintime_t val, *valp; 3058 uint32_t val32; 3059 #ifdef MAC 3060 struct mac extmac; 3061 #endif 3062 3063 CURVNET_SET(so->so_vnet); 3064 error = 0; 3065 if (sopt->sopt_level != SOL_SOCKET) { 3066 if (so->so_proto->pr_ctloutput != NULL) 3067 error = (*so->so_proto->pr_ctloutput)(so, sopt); 3068 else 3069 error = ENOPROTOOPT; 3070 } else { 3071 switch (sopt->sopt_name) { 3072 case SO_ACCEPTFILTER: 3073 error = accept_filt_setopt(so, sopt); 3074 if (error) 3075 goto bad; 3076 break; 3077 3078 case SO_LINGER: 3079 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 3080 if (error) 3081 goto bad; 3082 if (l.l_linger < 0 || 3083 l.l_linger > USHRT_MAX || 3084 l.l_linger > (INT_MAX / hz)) { 3085 error = EDOM; 3086 goto bad; 3087 } 3088 SOCK_LOCK(so); 3089 so->so_linger = l.l_linger; 3090 if (l.l_onoff) 3091 so->so_options |= SO_LINGER; 3092 else 3093 so->so_options &= ~SO_LINGER; 3094 SOCK_UNLOCK(so); 3095 break; 3096 3097 case SO_DEBUG: 3098 case SO_KEEPALIVE: 3099 case SO_DONTROUTE: 3100 case SO_USELOOPBACK: 3101 case SO_BROADCAST: 3102 case SO_REUSEADDR: 3103 case SO_REUSEPORT: 3104 case SO_REUSEPORT_LB: 3105 case SO_OOBINLINE: 3106 case SO_TIMESTAMP: 3107 case SO_BINTIME: 3108 case SO_NOSIGPIPE: 3109 case SO_NO_DDP: 3110 case SO_NO_OFFLOAD: 3111 case SO_RERROR: 3112 error = sooptcopyin(sopt, &optval, sizeof optval, 3113 sizeof optval); 3114 if (error) 3115 goto bad; 3116 SOCK_LOCK(so); 3117 if (optval) 3118 so->so_options |= sopt->sopt_name; 3119 else 3120 so->so_options &= ~sopt->sopt_name; 3121 SOCK_UNLOCK(so); 3122 break; 3123 3124 case SO_SETFIB: 3125 error = sooptcopyin(sopt, &optval, sizeof optval, 3126 sizeof optval); 3127 if (error) 3128 goto bad; 3129 3130 if (optval < 0 || optval >= rt_numfibs) { 3131 error = EINVAL; 3132 goto bad; 3133 } 3134 if (((so->so_proto->pr_domain->dom_family == PF_INET) || 3135 (so->so_proto->pr_domain->dom_family == PF_INET6) || 3136 (so->so_proto->pr_domain->dom_family == PF_ROUTE))) 3137 so->so_fibnum = optval; 3138 else 3139 so->so_fibnum = 0; 3140 break; 3141 3142 case SO_USER_COOKIE: 3143 error = sooptcopyin(sopt, &val32, sizeof val32, 3144 sizeof val32); 3145 if (error) 3146 goto bad; 3147 so->so_user_cookie = val32; 3148 break; 3149 3150 case SO_SNDBUF: 3151 case SO_RCVBUF: 3152 case SO_SNDLOWAT: 3153 case SO_RCVLOWAT: 3154 error = so->so_proto->pr_setsbopt(so, sopt); 3155 if (error) 3156 goto bad; 3157 break; 3158 3159 case SO_SNDTIMEO: 3160 case SO_RCVTIMEO: 3161 #ifdef COMPAT_FREEBSD32 3162 if (SV_CURPROC_FLAG(SV_ILP32)) { 3163 struct timeval32 tv32; 3164 3165 error = sooptcopyin(sopt, &tv32, sizeof tv32, 3166 sizeof tv32); 3167 CP(tv32, tv, tv_sec); 3168 CP(tv32, tv, tv_usec); 3169 } else 3170 #endif 3171 error = sooptcopyin(sopt, &tv, sizeof tv, 3172 sizeof tv); 3173 if (error) 3174 goto bad; 3175 if (tv.tv_sec < 0 || tv.tv_usec < 0 || 3176 tv.tv_usec >= 1000000) { 3177 error = EDOM; 3178 goto bad; 3179 } 3180 if (tv.tv_sec > INT32_MAX) 3181 val = SBT_MAX; 3182 else 3183 val = tvtosbt(tv); 3184 SOCK_LOCK(so); 3185 valp = sopt->sopt_name == SO_SNDTIMEO ? 3186 (SOLISTENING(so) ? &so->sol_sbsnd_timeo : 3187 &so->so_snd.sb_timeo) : 3188 (SOLISTENING(so) ? &so->sol_sbrcv_timeo : 3189 &so->so_rcv.sb_timeo); 3190 *valp = val; 3191 SOCK_UNLOCK(so); 3192 break; 3193 3194 case SO_LABEL: 3195 #ifdef MAC 3196 error = sooptcopyin(sopt, &extmac, sizeof extmac, 3197 sizeof extmac); 3198 if (error) 3199 goto bad; 3200 error = mac_setsockopt_label(sopt->sopt_td->td_ucred, 3201 so, &extmac); 3202 #else 3203 error = EOPNOTSUPP; 3204 #endif 3205 break; 3206 3207 case SO_TS_CLOCK: 3208 error = sooptcopyin(sopt, &optval, sizeof optval, 3209 sizeof optval); 3210 if (error) 3211 goto bad; 3212 if (optval < 0 || optval > SO_TS_CLOCK_MAX) { 3213 error = EINVAL; 3214 goto bad; 3215 } 3216 so->so_ts_clock = optval; 3217 break; 3218 3219 case SO_MAX_PACING_RATE: 3220 error = sooptcopyin(sopt, &val32, sizeof(val32), 3221 sizeof(val32)); 3222 if (error) 3223 goto bad; 3224 so->so_max_pacing_rate = val32; 3225 break; 3226 3227 default: 3228 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 3229 error = hhook_run_socket(so, sopt, 3230 HHOOK_SOCKET_OPT); 3231 else 3232 error = ENOPROTOOPT; 3233 break; 3234 } 3235 if (error == 0 && so->so_proto->pr_ctloutput != NULL) 3236 (void)(*so->so_proto->pr_ctloutput)(so, sopt); 3237 } 3238 bad: 3239 CURVNET_RESTORE(); 3240 return (error); 3241 } 3242 3243 /* 3244 * Helper routine for getsockopt. 3245 */ 3246 int 3247 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 3248 { 3249 int error; 3250 size_t valsize; 3251 3252 error = 0; 3253 3254 /* 3255 * Documented get behavior is that we always return a value, possibly 3256 * truncated to fit in the user's buffer. Traditional behavior is 3257 * that we always tell the user precisely how much we copied, rather 3258 * than something useful like the total amount we had available for 3259 * her. Note that this interface is not idempotent; the entire 3260 * answer must be generated ahead of time. 3261 */ 3262 valsize = min(len, sopt->sopt_valsize); 3263 sopt->sopt_valsize = valsize; 3264 if (sopt->sopt_val != NULL) { 3265 if (sopt->sopt_td != NULL) 3266 error = copyout(buf, sopt->sopt_val, valsize); 3267 else 3268 bcopy(buf, sopt->sopt_val, valsize); 3269 } 3270 return (error); 3271 } 3272 3273 int 3274 sogetopt(struct socket *so, struct sockopt *sopt) 3275 { 3276 int error, optval; 3277 struct linger l; 3278 struct timeval tv; 3279 #ifdef MAC 3280 struct mac extmac; 3281 #endif 3282 3283 CURVNET_SET(so->so_vnet); 3284 error = 0; 3285 if (sopt->sopt_level != SOL_SOCKET) { 3286 if (so->so_proto->pr_ctloutput != NULL) 3287 error = (*so->so_proto->pr_ctloutput)(so, sopt); 3288 else 3289 error = ENOPROTOOPT; 3290 CURVNET_RESTORE(); 3291 return (error); 3292 } else { 3293 switch (sopt->sopt_name) { 3294 case SO_ACCEPTFILTER: 3295 error = accept_filt_getopt(so, sopt); 3296 break; 3297 3298 case SO_LINGER: 3299 SOCK_LOCK(so); 3300 l.l_onoff = so->so_options & SO_LINGER; 3301 l.l_linger = so->so_linger; 3302 SOCK_UNLOCK(so); 3303 error = sooptcopyout(sopt, &l, sizeof l); 3304 break; 3305 3306 case SO_USELOOPBACK: 3307 case SO_DONTROUTE: 3308 case SO_DEBUG: 3309 case SO_KEEPALIVE: 3310 case SO_REUSEADDR: 3311 case SO_REUSEPORT: 3312 case SO_REUSEPORT_LB: 3313 case SO_BROADCAST: 3314 case SO_OOBINLINE: 3315 case SO_ACCEPTCONN: 3316 case SO_TIMESTAMP: 3317 case SO_BINTIME: 3318 case SO_NOSIGPIPE: 3319 case SO_NO_DDP: 3320 case SO_NO_OFFLOAD: 3321 case SO_RERROR: 3322 optval = so->so_options & sopt->sopt_name; 3323 integer: 3324 error = sooptcopyout(sopt, &optval, sizeof optval); 3325 break; 3326 3327 case SO_DOMAIN: 3328 optval = so->so_proto->pr_domain->dom_family; 3329 goto integer; 3330 3331 case SO_TYPE: 3332 optval = so->so_type; 3333 goto integer; 3334 3335 case SO_PROTOCOL: 3336 optval = so->so_proto->pr_protocol; 3337 goto integer; 3338 3339 case SO_ERROR: 3340 SOCK_LOCK(so); 3341 if (so->so_error) { 3342 optval = so->so_error; 3343 so->so_error = 0; 3344 } else { 3345 optval = so->so_rerror; 3346 so->so_rerror = 0; 3347 } 3348 SOCK_UNLOCK(so); 3349 goto integer; 3350 3351 case SO_SNDBUF: 3352 optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat : 3353 so->so_snd.sb_hiwat; 3354 goto integer; 3355 3356 case SO_RCVBUF: 3357 optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat : 3358 so->so_rcv.sb_hiwat; 3359 goto integer; 3360 3361 case SO_SNDLOWAT: 3362 optval = SOLISTENING(so) ? so->sol_sbsnd_lowat : 3363 so->so_snd.sb_lowat; 3364 goto integer; 3365 3366 case SO_RCVLOWAT: 3367 optval = SOLISTENING(so) ? so->sol_sbrcv_lowat : 3368 so->so_rcv.sb_lowat; 3369 goto integer; 3370 3371 case SO_SNDTIMEO: 3372 case SO_RCVTIMEO: 3373 SOCK_LOCK(so); 3374 tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ? 3375 (SOLISTENING(so) ? so->sol_sbsnd_timeo : 3376 so->so_snd.sb_timeo) : 3377 (SOLISTENING(so) ? so->sol_sbrcv_timeo : 3378 so->so_rcv.sb_timeo)); 3379 SOCK_UNLOCK(so); 3380 #ifdef COMPAT_FREEBSD32 3381 if (SV_CURPROC_FLAG(SV_ILP32)) { 3382 struct timeval32 tv32; 3383 3384 CP(tv, tv32, tv_sec); 3385 CP(tv, tv32, tv_usec); 3386 error = sooptcopyout(sopt, &tv32, sizeof tv32); 3387 } else 3388 #endif 3389 error = sooptcopyout(sopt, &tv, sizeof tv); 3390 break; 3391 3392 case SO_LABEL: 3393 #ifdef MAC 3394 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 3395 sizeof(extmac)); 3396 if (error) 3397 goto bad; 3398 error = mac_getsockopt_label(sopt->sopt_td->td_ucred, 3399 so, &extmac); 3400 if (error) 3401 goto bad; 3402 error = sooptcopyout(sopt, &extmac, sizeof extmac); 3403 #else 3404 error = EOPNOTSUPP; 3405 #endif 3406 break; 3407 3408 case SO_PEERLABEL: 3409 #ifdef MAC 3410 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 3411 sizeof(extmac)); 3412 if (error) 3413 goto bad; 3414 error = mac_getsockopt_peerlabel( 3415 sopt->sopt_td->td_ucred, so, &extmac); 3416 if (error) 3417 goto bad; 3418 error = sooptcopyout(sopt, &extmac, sizeof extmac); 3419 #else 3420 error = EOPNOTSUPP; 3421 #endif 3422 break; 3423 3424 case SO_LISTENQLIMIT: 3425 optval = SOLISTENING(so) ? so->sol_qlimit : 0; 3426 goto integer; 3427 3428 case SO_LISTENQLEN: 3429 optval = SOLISTENING(so) ? so->sol_qlen : 0; 3430 goto integer; 3431 3432 case SO_LISTENINCQLEN: 3433 optval = SOLISTENING(so) ? so->sol_incqlen : 0; 3434 goto integer; 3435 3436 case SO_TS_CLOCK: 3437 optval = so->so_ts_clock; 3438 goto integer; 3439 3440 case SO_MAX_PACING_RATE: 3441 optval = so->so_max_pacing_rate; 3442 goto integer; 3443 3444 default: 3445 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 3446 error = hhook_run_socket(so, sopt, 3447 HHOOK_SOCKET_OPT); 3448 else 3449 error = ENOPROTOOPT; 3450 break; 3451 } 3452 } 3453 #ifdef MAC 3454 bad: 3455 #endif 3456 CURVNET_RESTORE(); 3457 return (error); 3458 } 3459 3460 int 3461 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 3462 { 3463 struct mbuf *m, *m_prev; 3464 int sopt_size = sopt->sopt_valsize; 3465 3466 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 3467 if (m == NULL) 3468 return ENOBUFS; 3469 if (sopt_size > MLEN) { 3470 MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT); 3471 if ((m->m_flags & M_EXT) == 0) { 3472 m_free(m); 3473 return ENOBUFS; 3474 } 3475 m->m_len = min(MCLBYTES, sopt_size); 3476 } else { 3477 m->m_len = min(MLEN, sopt_size); 3478 } 3479 sopt_size -= m->m_len; 3480 *mp = m; 3481 m_prev = m; 3482 3483 while (sopt_size) { 3484 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 3485 if (m == NULL) { 3486 m_freem(*mp); 3487 return ENOBUFS; 3488 } 3489 if (sopt_size > MLEN) { 3490 MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK : 3491 M_NOWAIT); 3492 if ((m->m_flags & M_EXT) == 0) { 3493 m_freem(m); 3494 m_freem(*mp); 3495 return ENOBUFS; 3496 } 3497 m->m_len = min(MCLBYTES, sopt_size); 3498 } else { 3499 m->m_len = min(MLEN, sopt_size); 3500 } 3501 sopt_size -= m->m_len; 3502 m_prev->m_next = m; 3503 m_prev = m; 3504 } 3505 return (0); 3506 } 3507 3508 int 3509 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 3510 { 3511 struct mbuf *m0 = m; 3512 3513 if (sopt->sopt_val == NULL) 3514 return (0); 3515 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 3516 if (sopt->sopt_td != NULL) { 3517 int error; 3518 3519 error = copyin(sopt->sopt_val, mtod(m, char *), 3520 m->m_len); 3521 if (error != 0) { 3522 m_freem(m0); 3523 return(error); 3524 } 3525 } else 3526 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 3527 sopt->sopt_valsize -= m->m_len; 3528 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 3529 m = m->m_next; 3530 } 3531 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 3532 panic("ip6_sooptmcopyin"); 3533 return (0); 3534 } 3535 3536 int 3537 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 3538 { 3539 struct mbuf *m0 = m; 3540 size_t valsize = 0; 3541 3542 if (sopt->sopt_val == NULL) 3543 return (0); 3544 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 3545 if (sopt->sopt_td != NULL) { 3546 int error; 3547 3548 error = copyout(mtod(m, char *), sopt->sopt_val, 3549 m->m_len); 3550 if (error != 0) { 3551 m_freem(m0); 3552 return(error); 3553 } 3554 } else 3555 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 3556 sopt->sopt_valsize -= m->m_len; 3557 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 3558 valsize += m->m_len; 3559 m = m->m_next; 3560 } 3561 if (m != NULL) { 3562 /* enough soopt buffer should be given from user-land */ 3563 m_freem(m0); 3564 return(EINVAL); 3565 } 3566 sopt->sopt_valsize = valsize; 3567 return (0); 3568 } 3569 3570 /* 3571 * sohasoutofband(): protocol notifies socket layer of the arrival of new 3572 * out-of-band data, which will then notify socket consumers. 3573 */ 3574 void 3575 sohasoutofband(struct socket *so) 3576 { 3577 3578 if (so->so_sigio != NULL) 3579 pgsigio(&so->so_sigio, SIGURG, 0); 3580 selwakeuppri(&so->so_rdsel, PSOCK); 3581 } 3582 3583 int 3584 sopoll(struct socket *so, int events, struct ucred *active_cred, 3585 struct thread *td) 3586 { 3587 3588 /* 3589 * We do not need to set or assert curvnet as long as everyone uses 3590 * sopoll_generic(). 3591 */ 3592 return (so->so_proto->pr_sopoll(so, events, active_cred, td)); 3593 } 3594 3595 int 3596 sopoll_generic(struct socket *so, int events, struct ucred *active_cred, 3597 struct thread *td) 3598 { 3599 int revents; 3600 3601 SOCK_LOCK(so); 3602 if (SOLISTENING(so)) { 3603 if (!(events & (POLLIN | POLLRDNORM))) 3604 revents = 0; 3605 else if (!TAILQ_EMPTY(&so->sol_comp)) 3606 revents = events & (POLLIN | POLLRDNORM); 3607 else if ((events & POLLINIGNEOF) == 0 && so->so_error) 3608 revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP; 3609 else { 3610 selrecord(td, &so->so_rdsel); 3611 revents = 0; 3612 } 3613 } else { 3614 revents = 0; 3615 SOCK_SENDBUF_LOCK(so); 3616 SOCK_RECVBUF_LOCK(so); 3617 if (events & (POLLIN | POLLRDNORM)) 3618 if (soreadabledata(so)) 3619 revents |= events & (POLLIN | POLLRDNORM); 3620 if (events & (POLLOUT | POLLWRNORM)) 3621 if (sowriteable(so)) 3622 revents |= events & (POLLOUT | POLLWRNORM); 3623 if (events & (POLLPRI | POLLRDBAND)) 3624 if (so->so_oobmark || 3625 (so->so_rcv.sb_state & SBS_RCVATMARK)) 3626 revents |= events & (POLLPRI | POLLRDBAND); 3627 if ((events & POLLINIGNEOF) == 0) { 3628 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3629 revents |= events & (POLLIN | POLLRDNORM); 3630 if (so->so_snd.sb_state & SBS_CANTSENDMORE) 3631 revents |= POLLHUP; 3632 } 3633 } 3634 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) 3635 revents |= events & POLLRDHUP; 3636 if (revents == 0) { 3637 if (events & 3638 (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND | POLLRDHUP)) { 3639 selrecord(td, &so->so_rdsel); 3640 so->so_rcv.sb_flags |= SB_SEL; 3641 } 3642 if (events & (POLLOUT | POLLWRNORM)) { 3643 selrecord(td, &so->so_wrsel); 3644 so->so_snd.sb_flags |= SB_SEL; 3645 } 3646 } 3647 SOCK_RECVBUF_UNLOCK(so); 3648 SOCK_SENDBUF_UNLOCK(so); 3649 } 3650 SOCK_UNLOCK(so); 3651 return (revents); 3652 } 3653 3654 int 3655 soo_kqfilter(struct file *fp, struct knote *kn) 3656 { 3657 struct socket *so = kn->kn_fp->f_data; 3658 struct sockbuf *sb; 3659 sb_which which; 3660 struct knlist *knl; 3661 3662 switch (kn->kn_filter) { 3663 case EVFILT_READ: 3664 kn->kn_fop = &soread_filtops; 3665 knl = &so->so_rdsel.si_note; 3666 sb = &so->so_rcv; 3667 which = SO_RCV; 3668 break; 3669 case EVFILT_WRITE: 3670 kn->kn_fop = &sowrite_filtops; 3671 knl = &so->so_wrsel.si_note; 3672 sb = &so->so_snd; 3673 which = SO_SND; 3674 break; 3675 case EVFILT_EMPTY: 3676 kn->kn_fop = &soempty_filtops; 3677 knl = &so->so_wrsel.si_note; 3678 sb = &so->so_snd; 3679 which = SO_SND; 3680 break; 3681 default: 3682 return (EINVAL); 3683 } 3684 3685 SOCK_LOCK(so); 3686 if (SOLISTENING(so)) { 3687 knlist_add(knl, kn, 1); 3688 } else { 3689 SOCK_BUF_LOCK(so, which); 3690 knlist_add(knl, kn, 1); 3691 sb->sb_flags |= SB_KNOTE; 3692 SOCK_BUF_UNLOCK(so, which); 3693 } 3694 SOCK_UNLOCK(so); 3695 return (0); 3696 } 3697 3698 static void 3699 filt_sordetach(struct knote *kn) 3700 { 3701 struct socket *so = kn->kn_fp->f_data; 3702 3703 so_rdknl_lock(so); 3704 knlist_remove(&so->so_rdsel.si_note, kn, 1); 3705 if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note)) 3706 so->so_rcv.sb_flags &= ~SB_KNOTE; 3707 so_rdknl_unlock(so); 3708 } 3709 3710 /*ARGSUSED*/ 3711 static int 3712 filt_soread(struct knote *kn, long hint) 3713 { 3714 struct socket *so; 3715 3716 so = kn->kn_fp->f_data; 3717 3718 if (SOLISTENING(so)) { 3719 SOCK_LOCK_ASSERT(so); 3720 kn->kn_data = so->sol_qlen; 3721 if (so->so_error) { 3722 kn->kn_flags |= EV_EOF; 3723 kn->kn_fflags = so->so_error; 3724 return (1); 3725 } 3726 return (!TAILQ_EMPTY(&so->sol_comp)); 3727 } 3728 3729 SOCK_RECVBUF_LOCK_ASSERT(so); 3730 3731 kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl; 3732 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3733 kn->kn_flags |= EV_EOF; 3734 kn->kn_fflags = so->so_error; 3735 return (1); 3736 } else if (so->so_error || so->so_rerror) 3737 return (1); 3738 3739 if (kn->kn_sfflags & NOTE_LOWAT) { 3740 if (kn->kn_data >= kn->kn_sdata) 3741 return (1); 3742 } else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat) 3743 return (1); 3744 3745 /* This hook returning non-zero indicates an event, not error */ 3746 return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD)); 3747 } 3748 3749 static void 3750 filt_sowdetach(struct knote *kn) 3751 { 3752 struct socket *so = kn->kn_fp->f_data; 3753 3754 so_wrknl_lock(so); 3755 knlist_remove(&so->so_wrsel.si_note, kn, 1); 3756 if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note)) 3757 so->so_snd.sb_flags &= ~SB_KNOTE; 3758 so_wrknl_unlock(so); 3759 } 3760 3761 /*ARGSUSED*/ 3762 static int 3763 filt_sowrite(struct knote *kn, long hint) 3764 { 3765 struct socket *so; 3766 3767 so = kn->kn_fp->f_data; 3768 3769 if (SOLISTENING(so)) 3770 return (0); 3771 3772 SOCK_SENDBUF_LOCK_ASSERT(so); 3773 kn->kn_data = sbspace(&so->so_snd); 3774 3775 hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE); 3776 3777 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 3778 kn->kn_flags |= EV_EOF; 3779 kn->kn_fflags = so->so_error; 3780 return (1); 3781 } else if (so->so_error) /* temporary udp error */ 3782 return (1); 3783 else if (((so->so_state & SS_ISCONNECTED) == 0) && 3784 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 3785 return (0); 3786 else if (kn->kn_sfflags & NOTE_LOWAT) 3787 return (kn->kn_data >= kn->kn_sdata); 3788 else 3789 return (kn->kn_data >= so->so_snd.sb_lowat); 3790 } 3791 3792 static int 3793 filt_soempty(struct knote *kn, long hint) 3794 { 3795 struct socket *so; 3796 3797 so = kn->kn_fp->f_data; 3798 3799 if (SOLISTENING(so)) 3800 return (1); 3801 3802 SOCK_SENDBUF_LOCK_ASSERT(so); 3803 kn->kn_data = sbused(&so->so_snd); 3804 3805 if (kn->kn_data == 0) 3806 return (1); 3807 else 3808 return (0); 3809 } 3810 3811 int 3812 socheckuid(struct socket *so, uid_t uid) 3813 { 3814 3815 if (so == NULL) 3816 return (EPERM); 3817 if (so->so_cred->cr_uid != uid) 3818 return (EPERM); 3819 return (0); 3820 } 3821 3822 /* 3823 * These functions are used by protocols to notify the socket layer (and its 3824 * consumers) of state changes in the sockets driven by protocol-side events. 3825 */ 3826 3827 /* 3828 * Procedures to manipulate state flags of socket and do appropriate wakeups. 3829 * 3830 * Normal sequence from the active (originating) side is that 3831 * soisconnecting() is called during processing of connect() call, resulting 3832 * in an eventual call to soisconnected() if/when the connection is 3833 * established. When the connection is torn down soisdisconnecting() is 3834 * called during processing of disconnect() call, and soisdisconnected() is 3835 * called when the connection to the peer is totally severed. The semantics 3836 * of these routines are such that connectionless protocols can call 3837 * soisconnected() and soisdisconnected() only, bypassing the in-progress 3838 * calls when setting up a ``connection'' takes no time. 3839 * 3840 * From the passive side, a socket is created with two queues of sockets: 3841 * so_incomp for connections in progress and so_comp for connections already 3842 * made and awaiting user acceptance. As a protocol is preparing incoming 3843 * connections, it creates a socket structure queued on so_incomp by calling 3844 * sonewconn(). When the connection is established, soisconnected() is 3845 * called, and transfers the socket structure to so_comp, making it available 3846 * to accept(). 3847 * 3848 * If a socket is closed with sockets on either so_incomp or so_comp, these 3849 * sockets are dropped. 3850 * 3851 * If higher-level protocols are implemented in the kernel, the wakeups done 3852 * here will sometimes cause software-interrupt process scheduling. 3853 */ 3854 void 3855 soisconnecting(struct socket *so) 3856 { 3857 3858 SOCK_LOCK(so); 3859 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 3860 so->so_state |= SS_ISCONNECTING; 3861 SOCK_UNLOCK(so); 3862 } 3863 3864 void 3865 soisconnected(struct socket *so) 3866 { 3867 bool last __diagused; 3868 3869 SOCK_LOCK(so); 3870 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 3871 so->so_state |= SS_ISCONNECTED; 3872 3873 if (so->so_qstate == SQ_INCOMP) { 3874 struct socket *head = so->so_listen; 3875 int ret; 3876 3877 KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so)); 3878 /* 3879 * Promoting a socket from incomplete queue to complete, we 3880 * need to go through reverse order of locking. We first do 3881 * trylock, and if that doesn't succeed, we go the hard way 3882 * leaving a reference and rechecking consistency after proper 3883 * locking. 3884 */ 3885 if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) { 3886 soref(head); 3887 SOCK_UNLOCK(so); 3888 SOLISTEN_LOCK(head); 3889 SOCK_LOCK(so); 3890 if (__predict_false(head != so->so_listen)) { 3891 /* 3892 * The socket went off the listen queue, 3893 * should be lost race to close(2) of sol. 3894 * The socket is about to soabort(). 3895 */ 3896 SOCK_UNLOCK(so); 3897 sorele_locked(head); 3898 return; 3899 } 3900 last = refcount_release(&head->so_count); 3901 KASSERT(!last, ("%s: released last reference for %p", 3902 __func__, head)); 3903 } 3904 again: 3905 if ((so->so_options & SO_ACCEPTFILTER) == 0) { 3906 TAILQ_REMOVE(&head->sol_incomp, so, so_list); 3907 head->sol_incqlen--; 3908 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 3909 head->sol_qlen++; 3910 so->so_qstate = SQ_COMP; 3911 SOCK_UNLOCK(so); 3912 solisten_wakeup(head); /* unlocks */ 3913 } else { 3914 SOCK_RECVBUF_LOCK(so); 3915 soupcall_set(so, SO_RCV, 3916 head->sol_accept_filter->accf_callback, 3917 head->sol_accept_filter_arg); 3918 so->so_options &= ~SO_ACCEPTFILTER; 3919 ret = head->sol_accept_filter->accf_callback(so, 3920 head->sol_accept_filter_arg, M_NOWAIT); 3921 if (ret == SU_ISCONNECTED) { 3922 soupcall_clear(so, SO_RCV); 3923 SOCK_RECVBUF_UNLOCK(so); 3924 goto again; 3925 } 3926 SOCK_RECVBUF_UNLOCK(so); 3927 SOCK_UNLOCK(so); 3928 SOLISTEN_UNLOCK(head); 3929 } 3930 return; 3931 } 3932 SOCK_UNLOCK(so); 3933 wakeup(&so->so_timeo); 3934 sorwakeup(so); 3935 sowwakeup(so); 3936 } 3937 3938 void 3939 soisdisconnecting(struct socket *so) 3940 { 3941 3942 SOCK_LOCK(so); 3943 so->so_state &= ~SS_ISCONNECTING; 3944 so->so_state |= SS_ISDISCONNECTING; 3945 3946 if (!SOLISTENING(so)) { 3947 SOCK_RECVBUF_LOCK(so); 3948 socantrcvmore_locked(so); 3949 SOCK_SENDBUF_LOCK(so); 3950 socantsendmore_locked(so); 3951 } 3952 SOCK_UNLOCK(so); 3953 wakeup(&so->so_timeo); 3954 } 3955 3956 void 3957 soisdisconnected(struct socket *so) 3958 { 3959 3960 SOCK_LOCK(so); 3961 3962 /* 3963 * There is at least one reader of so_state that does not 3964 * acquire socket lock, namely soreceive_generic(). Ensure 3965 * that it never sees all flags that track connection status 3966 * cleared, by ordering the update with a barrier semantic of 3967 * our release thread fence. 3968 */ 3969 so->so_state |= SS_ISDISCONNECTED; 3970 atomic_thread_fence_rel(); 3971 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 3972 3973 if (!SOLISTENING(so)) { 3974 SOCK_UNLOCK(so); 3975 SOCK_RECVBUF_LOCK(so); 3976 socantrcvmore_locked(so); 3977 SOCK_SENDBUF_LOCK(so); 3978 sbdrop_locked(&so->so_snd, sbused(&so->so_snd)); 3979 socantsendmore_locked(so); 3980 } else 3981 SOCK_UNLOCK(so); 3982 wakeup(&so->so_timeo); 3983 } 3984 3985 int 3986 soiolock(struct socket *so, struct sx *sx, int flags) 3987 { 3988 int error; 3989 3990 KASSERT((flags & SBL_VALID) == flags, 3991 ("soiolock: invalid flags %#x", flags)); 3992 3993 if ((flags & SBL_WAIT) != 0) { 3994 if ((flags & SBL_NOINTR) != 0) { 3995 sx_xlock(sx); 3996 } else { 3997 error = sx_xlock_sig(sx); 3998 if (error != 0) 3999 return (error); 4000 } 4001 } else if (!sx_try_xlock(sx)) { 4002 return (EWOULDBLOCK); 4003 } 4004 4005 if (__predict_false(SOLISTENING(so))) { 4006 sx_xunlock(sx); 4007 return (ENOTCONN); 4008 } 4009 return (0); 4010 } 4011 4012 void 4013 soiounlock(struct sx *sx) 4014 { 4015 sx_xunlock(sx); 4016 } 4017 4018 /* 4019 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 4020 */ 4021 struct sockaddr * 4022 sodupsockaddr(const struct sockaddr *sa, int mflags) 4023 { 4024 struct sockaddr *sa2; 4025 4026 sa2 = malloc(sa->sa_len, M_SONAME, mflags); 4027 if (sa2) 4028 bcopy(sa, sa2, sa->sa_len); 4029 return sa2; 4030 } 4031 4032 /* 4033 * Register per-socket destructor. 4034 */ 4035 void 4036 sodtor_set(struct socket *so, so_dtor_t *func) 4037 { 4038 4039 SOCK_LOCK_ASSERT(so); 4040 so->so_dtor = func; 4041 } 4042 4043 /* 4044 * Register per-socket buffer upcalls. 4045 */ 4046 void 4047 soupcall_set(struct socket *so, sb_which which, so_upcall_t func, void *arg) 4048 { 4049 struct sockbuf *sb; 4050 4051 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 4052 4053 switch (which) { 4054 case SO_RCV: 4055 sb = &so->so_rcv; 4056 break; 4057 case SO_SND: 4058 sb = &so->so_snd; 4059 break; 4060 } 4061 SOCK_BUF_LOCK_ASSERT(so, which); 4062 sb->sb_upcall = func; 4063 sb->sb_upcallarg = arg; 4064 sb->sb_flags |= SB_UPCALL; 4065 } 4066 4067 void 4068 soupcall_clear(struct socket *so, sb_which which) 4069 { 4070 struct sockbuf *sb; 4071 4072 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 4073 4074 switch (which) { 4075 case SO_RCV: 4076 sb = &so->so_rcv; 4077 break; 4078 case SO_SND: 4079 sb = &so->so_snd; 4080 break; 4081 } 4082 SOCK_BUF_LOCK_ASSERT(so, which); 4083 KASSERT(sb->sb_upcall != NULL, 4084 ("%s: so %p no upcall to clear", __func__, so)); 4085 sb->sb_upcall = NULL; 4086 sb->sb_upcallarg = NULL; 4087 sb->sb_flags &= ~SB_UPCALL; 4088 } 4089 4090 void 4091 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg) 4092 { 4093 4094 SOLISTEN_LOCK_ASSERT(so); 4095 so->sol_upcall = func; 4096 so->sol_upcallarg = arg; 4097 } 4098 4099 static void 4100 so_rdknl_lock(void *arg) 4101 { 4102 struct socket *so = arg; 4103 4104 retry: 4105 if (SOLISTENING(so)) { 4106 SOLISTEN_LOCK(so); 4107 } else { 4108 SOCK_RECVBUF_LOCK(so); 4109 if (__predict_false(SOLISTENING(so))) { 4110 SOCK_RECVBUF_UNLOCK(so); 4111 goto retry; 4112 } 4113 } 4114 } 4115 4116 static void 4117 so_rdknl_unlock(void *arg) 4118 { 4119 struct socket *so = arg; 4120 4121 if (SOLISTENING(so)) 4122 SOLISTEN_UNLOCK(so); 4123 else 4124 SOCK_RECVBUF_UNLOCK(so); 4125 } 4126 4127 static void 4128 so_rdknl_assert_lock(void *arg, int what) 4129 { 4130 struct socket *so = arg; 4131 4132 if (what == LA_LOCKED) { 4133 if (SOLISTENING(so)) 4134 SOLISTEN_LOCK_ASSERT(so); 4135 else 4136 SOCK_RECVBUF_LOCK_ASSERT(so); 4137 } else { 4138 if (SOLISTENING(so)) 4139 SOLISTEN_UNLOCK_ASSERT(so); 4140 else 4141 SOCK_RECVBUF_UNLOCK_ASSERT(so); 4142 } 4143 } 4144 4145 static void 4146 so_wrknl_lock(void *arg) 4147 { 4148 struct socket *so = arg; 4149 4150 retry: 4151 if (SOLISTENING(so)) { 4152 SOLISTEN_LOCK(so); 4153 } else { 4154 SOCK_SENDBUF_LOCK(so); 4155 if (__predict_false(SOLISTENING(so))) { 4156 SOCK_SENDBUF_UNLOCK(so); 4157 goto retry; 4158 } 4159 } 4160 } 4161 4162 static void 4163 so_wrknl_unlock(void *arg) 4164 { 4165 struct socket *so = arg; 4166 4167 if (SOLISTENING(so)) 4168 SOLISTEN_UNLOCK(so); 4169 else 4170 SOCK_SENDBUF_UNLOCK(so); 4171 } 4172 4173 static void 4174 so_wrknl_assert_lock(void *arg, int what) 4175 { 4176 struct socket *so = arg; 4177 4178 if (what == LA_LOCKED) { 4179 if (SOLISTENING(so)) 4180 SOLISTEN_LOCK_ASSERT(so); 4181 else 4182 SOCK_SENDBUF_LOCK_ASSERT(so); 4183 } else { 4184 if (SOLISTENING(so)) 4185 SOLISTEN_UNLOCK_ASSERT(so); 4186 else 4187 SOCK_SENDBUF_UNLOCK_ASSERT(so); 4188 } 4189 } 4190 4191 /* 4192 * Create an external-format (``xsocket'') structure using the information in 4193 * the kernel-format socket structure pointed to by so. This is done to 4194 * reduce the spew of irrelevant information over this interface, to isolate 4195 * user code from changes in the kernel structure, and potentially to provide 4196 * information-hiding if we decide that some of this information should be 4197 * hidden from users. 4198 */ 4199 void 4200 sotoxsocket(struct socket *so, struct xsocket *xso) 4201 { 4202 4203 bzero(xso, sizeof(*xso)); 4204 xso->xso_len = sizeof *xso; 4205 xso->xso_so = (uintptr_t)so; 4206 xso->so_type = so->so_type; 4207 xso->so_options = so->so_options; 4208 xso->so_linger = so->so_linger; 4209 xso->so_state = so->so_state; 4210 xso->so_pcb = (uintptr_t)so->so_pcb; 4211 xso->xso_protocol = so->so_proto->pr_protocol; 4212 xso->xso_family = so->so_proto->pr_domain->dom_family; 4213 xso->so_timeo = so->so_timeo; 4214 xso->so_error = so->so_error; 4215 xso->so_uid = so->so_cred->cr_uid; 4216 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 4217 if (SOLISTENING(so)) { 4218 xso->so_qlen = so->sol_qlen; 4219 xso->so_incqlen = so->sol_incqlen; 4220 xso->so_qlimit = so->sol_qlimit; 4221 xso->so_oobmark = 0; 4222 } else { 4223 xso->so_state |= so->so_qstate; 4224 xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0; 4225 xso->so_oobmark = so->so_oobmark; 4226 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 4227 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 4228 } 4229 } 4230 4231 struct sockbuf * 4232 so_sockbuf_rcv(struct socket *so) 4233 { 4234 4235 return (&so->so_rcv); 4236 } 4237 4238 struct sockbuf * 4239 so_sockbuf_snd(struct socket *so) 4240 { 4241 4242 return (&so->so_snd); 4243 } 4244 4245 int 4246 so_state_get(const struct socket *so) 4247 { 4248 4249 return (so->so_state); 4250 } 4251 4252 void 4253 so_state_set(struct socket *so, int val) 4254 { 4255 4256 so->so_state = val; 4257 } 4258 4259 int 4260 so_options_get(const struct socket *so) 4261 { 4262 4263 return (so->so_options); 4264 } 4265 4266 void 4267 so_options_set(struct socket *so, int val) 4268 { 4269 4270 so->so_options = val; 4271 } 4272 4273 int 4274 so_error_get(const struct socket *so) 4275 { 4276 4277 return (so->so_error); 4278 } 4279 4280 void 4281 so_error_set(struct socket *so, int val) 4282 { 4283 4284 so->so_error = val; 4285 } 4286 4287 int 4288 so_linger_get(const struct socket *so) 4289 { 4290 4291 return (so->so_linger); 4292 } 4293 4294 void 4295 so_linger_set(struct socket *so, int val) 4296 { 4297 4298 KASSERT(val >= 0 && val <= USHRT_MAX && val <= (INT_MAX / hz), 4299 ("%s: val %d out of range", __func__, val)); 4300 4301 so->so_linger = val; 4302 } 4303 4304 struct protosw * 4305 so_protosw_get(const struct socket *so) 4306 { 4307 4308 return (so->so_proto); 4309 } 4310 4311 void 4312 so_protosw_set(struct socket *so, struct protosw *val) 4313 { 4314 4315 so->so_proto = val; 4316 } 4317 4318 void 4319 so_sorwakeup(struct socket *so) 4320 { 4321 4322 sorwakeup(so); 4323 } 4324 4325 void 4326 so_sowwakeup(struct socket *so) 4327 { 4328 4329 sowwakeup(so); 4330 } 4331 4332 void 4333 so_sorwakeup_locked(struct socket *so) 4334 { 4335 4336 sorwakeup_locked(so); 4337 } 4338 4339 void 4340 so_sowwakeup_locked(struct socket *so) 4341 { 4342 4343 sowwakeup_locked(so); 4344 } 4345 4346 void 4347 so_lock(struct socket *so) 4348 { 4349 4350 SOCK_LOCK(so); 4351 } 4352 4353 void 4354 so_unlock(struct socket *so) 4355 { 4356 4357 SOCK_UNLOCK(so); 4358 } 4359