1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. 6 * Copyright (c) 2004 The FreeBSD Foundation 7 * Copyright (c) 2004-2008 Robert N. M. Watson 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 35 */ 36 37 /* 38 * Comments on the socket life cycle: 39 * 40 * soalloc() sets of socket layer state for a socket, called only by 41 * socreate() and sonewconn(). Socket layer private. 42 * 43 * sodealloc() tears down socket layer state for a socket, called only by 44 * sofree() and sonewconn(). Socket layer private. 45 * 46 * pru_attach() associates protocol layer state with an allocated socket; 47 * called only once, may fail, aborting socket allocation. This is called 48 * from socreate() and sonewconn(). Socket layer private. 49 * 50 * pru_detach() disassociates protocol layer state from an attached socket, 51 * and will be called exactly once for sockets in which pru_attach() has 52 * been successfully called. If pru_attach() returned an error, 53 * pru_detach() will not be called. Socket layer private. 54 * 55 * pru_abort() and pru_close() notify the protocol layer that the last 56 * consumer of a socket is starting to tear down the socket, and that the 57 * protocol should terminate the connection. Historically, pru_abort() also 58 * detached protocol state from the socket state, but this is no longer the 59 * case. 60 * 61 * socreate() creates a socket and attaches protocol state. This is a public 62 * interface that may be used by socket layer consumers to create new 63 * sockets. 64 * 65 * sonewconn() creates a socket and attaches protocol state. This is a 66 * public interface that may be used by protocols to create new sockets when 67 * a new connection is received and will be available for accept() on a 68 * listen socket. 69 * 70 * soclose() destroys a socket after possibly waiting for it to disconnect. 71 * This is a public interface that socket consumers should use to close and 72 * release a socket when done with it. 73 * 74 * soabort() destroys a socket without waiting for it to disconnect (used 75 * only for incoming connections that are already partially or fully 76 * connected). This is used internally by the socket layer when clearing 77 * listen socket queues (due to overflow or close on the listen socket), but 78 * is also a public interface protocols may use to abort connections in 79 * their incomplete listen queues should they no longer be required. Sockets 80 * placed in completed connection listen queues should not be aborted for 81 * reasons described in the comment above the soclose() implementation. This 82 * is not a general purpose close routine, and except in the specific 83 * circumstances described here, should not be used. 84 * 85 * sofree() will free a socket and its protocol state if all references on 86 * the socket have been released, and is the public interface to attempt to 87 * free a socket when a reference is removed. This is a socket layer private 88 * interface. 89 * 90 * NOTE: In addition to socreate() and soclose(), which provide a single 91 * socket reference to the consumer to be managed as required, there are two 92 * calls to explicitly manage socket references, soref(), and sorele(). 93 * Currently, these are generally required only when transitioning a socket 94 * from a listen queue to a file descriptor, in order to prevent garbage 95 * collection of the socket at an untimely moment. For a number of reasons, 96 * these interfaces are not preferred, and should be avoided. 97 * 98 * NOTE: With regard to VNETs the general rule is that callers do not set 99 * curvnet. Exceptions to this rule include soabort(), sodisconnect(), 100 * sofree() (and with that sorele(), sotryfree()), as well as sonewconn() 101 * and sorflush(), which are usually called from a pre-set VNET context. 102 * sopoll() currently does not need a VNET context to be set. 103 */ 104 105 #include <sys/cdefs.h> 106 __FBSDID("$FreeBSD$"); 107 108 #include "opt_inet.h" 109 #include "opt_inet6.h" 110 #include "opt_sctp.h" 111 112 #include <sys/param.h> 113 #include <sys/systm.h> 114 #include <sys/fcntl.h> 115 #include <sys/limits.h> 116 #include <sys/lock.h> 117 #include <sys/mac.h> 118 #include <sys/malloc.h> 119 #include <sys/mbuf.h> 120 #include <sys/mutex.h> 121 #include <sys/domain.h> 122 #include <sys/file.h> /* for struct knote */ 123 #include <sys/hhook.h> 124 #include <sys/kernel.h> 125 #include <sys/khelp.h> 126 #include <sys/event.h> 127 #include <sys/eventhandler.h> 128 #include <sys/poll.h> 129 #include <sys/proc.h> 130 #include <sys/protosw.h> 131 #include <sys/socket.h> 132 #include <sys/socketvar.h> 133 #include <sys/resourcevar.h> 134 #include <net/route.h> 135 #include <sys/signalvar.h> 136 #include <sys/stat.h> 137 #include <sys/sx.h> 138 #include <sys/sysctl.h> 139 #include <sys/taskqueue.h> 140 #include <sys/uio.h> 141 #include <sys/jail.h> 142 #include <sys/syslog.h> 143 #include <netinet/in.h> 144 145 #include <net/vnet.h> 146 147 #include <security/mac/mac_framework.h> 148 149 #include <vm/uma.h> 150 151 #ifdef COMPAT_FREEBSD32 152 #include <sys/mount.h> 153 #include <sys/sysent.h> 154 #include <compat/freebsd32/freebsd32.h> 155 #endif 156 157 static int soreceive_rcvoob(struct socket *so, struct uio *uio, 158 int flags); 159 static void so_rdknl_lock(void *); 160 static void so_rdknl_unlock(void *); 161 static void so_rdknl_assert_locked(void *); 162 static void so_rdknl_assert_unlocked(void *); 163 static void so_wrknl_lock(void *); 164 static void so_wrknl_unlock(void *); 165 static void so_wrknl_assert_locked(void *); 166 static void so_wrknl_assert_unlocked(void *); 167 168 static void filt_sordetach(struct knote *kn); 169 static int filt_soread(struct knote *kn, long hint); 170 static void filt_sowdetach(struct knote *kn); 171 static int filt_sowrite(struct knote *kn, long hint); 172 static int filt_soempty(struct knote *kn, long hint); 173 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id); 174 fo_kqfilter_t soo_kqfilter; 175 176 static struct filterops soread_filtops = { 177 .f_isfd = 1, 178 .f_detach = filt_sordetach, 179 .f_event = filt_soread, 180 }; 181 static struct filterops sowrite_filtops = { 182 .f_isfd = 1, 183 .f_detach = filt_sowdetach, 184 .f_event = filt_sowrite, 185 }; 186 static struct filterops soempty_filtops = { 187 .f_isfd = 1, 188 .f_detach = filt_sowdetach, 189 .f_event = filt_soempty, 190 }; 191 192 so_gen_t so_gencnt; /* generation count for sockets */ 193 194 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 195 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 196 197 #define VNET_SO_ASSERT(so) \ 198 VNET_ASSERT(curvnet != NULL, \ 199 ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so))); 200 201 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]); 202 #define V_socket_hhh VNET(socket_hhh) 203 204 /* 205 * Limit on the number of connections in the listen queue waiting 206 * for accept(2). 207 * NB: The original sysctl somaxconn is still available but hidden 208 * to prevent confusion about the actual purpose of this number. 209 */ 210 static u_int somaxconn = SOMAXCONN; 211 212 static int 213 sysctl_somaxconn(SYSCTL_HANDLER_ARGS) 214 { 215 int error; 216 int val; 217 218 val = somaxconn; 219 error = sysctl_handle_int(oidp, &val, 0, req); 220 if (error || !req->newptr ) 221 return (error); 222 223 /* 224 * The purpose of the UINT_MAX / 3 limit, is so that the formula 225 * 3 * so_qlimit / 2 226 * below, will not overflow. 227 */ 228 229 if (val < 1 || val > UINT_MAX / 3) 230 return (EINVAL); 231 232 somaxconn = val; 233 return (0); 234 } 235 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue, CTLTYPE_UINT | CTLFLAG_RW, 236 0, sizeof(int), sysctl_somaxconn, "I", 237 "Maximum listen socket pending connection accept queue size"); 238 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, 239 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP, 240 0, sizeof(int), sysctl_somaxconn, "I", 241 "Maximum listen socket pending connection accept queue size (compat)"); 242 243 static int numopensockets; 244 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, 245 &numopensockets, 0, "Number of open sockets"); 246 247 /* 248 * accept_mtx locks down per-socket fields relating to accept queues. See 249 * socketvar.h for an annotation of the protected fields of struct socket. 250 */ 251 struct mtx accept_mtx; 252 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF); 253 254 /* 255 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket 256 * so_gencnt field. 257 */ 258 static struct mtx so_global_mtx; 259 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); 260 261 /* 262 * General IPC sysctl name space, used by sockets and a variety of other IPC 263 * types. 264 */ 265 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC"); 266 267 /* 268 * Initialize the socket subsystem and set up the socket 269 * memory allocator. 270 */ 271 static uma_zone_t socket_zone; 272 int maxsockets; 273 274 static void 275 socket_zone_change(void *tag) 276 { 277 278 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 279 } 280 281 static void 282 socket_hhook_register(int subtype) 283 { 284 285 if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype, 286 &V_socket_hhh[subtype], 287 HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 288 printf("%s: WARNING: unable to register hook\n", __func__); 289 } 290 291 static void 292 socket_hhook_deregister(int subtype) 293 { 294 295 if (hhook_head_deregister(V_socket_hhh[subtype]) != 0) 296 printf("%s: WARNING: unable to deregister hook\n", __func__); 297 } 298 299 static void 300 socket_init(void *tag) 301 { 302 303 socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL, 304 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 305 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 306 uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached"); 307 EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL, 308 EVENTHANDLER_PRI_FIRST); 309 } 310 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL); 311 312 static void 313 socket_vnet_init(const void *unused __unused) 314 { 315 int i; 316 317 /* We expect a contiguous range */ 318 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 319 socket_hhook_register(i); 320 } 321 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 322 socket_vnet_init, NULL); 323 324 static void 325 socket_vnet_uninit(const void *unused __unused) 326 { 327 int i; 328 329 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 330 socket_hhook_deregister(i); 331 } 332 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 333 socket_vnet_uninit, NULL); 334 335 /* 336 * Initialise maxsockets. This SYSINIT must be run after 337 * tunable_mbinit(). 338 */ 339 static void 340 init_maxsockets(void *ignored) 341 { 342 343 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 344 maxsockets = imax(maxsockets, maxfiles); 345 } 346 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 347 348 /* 349 * Sysctl to get and set the maximum global sockets limit. Notify protocols 350 * of the change so that they can update their dependent limits as required. 351 */ 352 static int 353 sysctl_maxsockets(SYSCTL_HANDLER_ARGS) 354 { 355 int error, newmaxsockets; 356 357 newmaxsockets = maxsockets; 358 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req); 359 if (error == 0 && req->newptr) { 360 if (newmaxsockets > maxsockets && 361 newmaxsockets <= maxfiles) { 362 maxsockets = newmaxsockets; 363 EVENTHANDLER_INVOKE(maxsockets_change); 364 } else 365 error = EINVAL; 366 } 367 return (error); 368 } 369 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, CTLTYPE_INT|CTLFLAG_RW, 370 &maxsockets, 0, sysctl_maxsockets, "IU", 371 "Maximum number of sockets available"); 372 373 /* 374 * Socket operation routines. These routines are called by the routines in 375 * sys_socket.c or from a system process, and implement the semantics of 376 * socket operations by switching out to the protocol specific routines. 377 */ 378 379 /* 380 * Get a socket structure from our zone, and initialize it. Note that it 381 * would probably be better to allocate socket and PCB at the same time, but 382 * I'm not convinced that all the protocols can be easily modified to do 383 * this. 384 * 385 * soalloc() returns a socket with a ref count of 0. 386 */ 387 static struct socket * 388 soalloc(struct vnet *vnet) 389 { 390 struct socket *so; 391 392 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO); 393 if (so == NULL) 394 return (NULL); 395 #ifdef MAC 396 if (mac_socket_init(so, M_NOWAIT) != 0) { 397 uma_zfree(socket_zone, so); 398 return (NULL); 399 } 400 #endif 401 if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) { 402 uma_zfree(socket_zone, so); 403 return (NULL); 404 } 405 406 /* 407 * The socket locking protocol allows to lock 2 sockets at a time, 408 * however, the first one must be a listening socket. WITNESS lacks 409 * a feature to change class of an existing lock, so we use DUPOK. 410 */ 411 mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK); 412 SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd"); 413 SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv"); 414 so->so_rcv.sb_sel = &so->so_rdsel; 415 so->so_snd.sb_sel = &so->so_wrsel; 416 sx_init(&so->so_snd.sb_sx, "so_snd_sx"); 417 sx_init(&so->so_rcv.sb_sx, "so_rcv_sx"); 418 TAILQ_INIT(&so->so_snd.sb_aiojobq); 419 TAILQ_INIT(&so->so_rcv.sb_aiojobq); 420 TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so); 421 TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so); 422 #ifdef VIMAGE 423 VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p", 424 __func__, __LINE__, so)); 425 so->so_vnet = vnet; 426 #endif 427 /* We shouldn't need the so_global_mtx */ 428 if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) { 429 /* Do we need more comprehensive error returns? */ 430 uma_zfree(socket_zone, so); 431 return (NULL); 432 } 433 mtx_lock(&so_global_mtx); 434 so->so_gencnt = ++so_gencnt; 435 ++numopensockets; 436 #ifdef VIMAGE 437 vnet->vnet_sockcnt++; 438 #endif 439 mtx_unlock(&so_global_mtx); 440 441 return (so); 442 } 443 444 /* 445 * Free the storage associated with a socket at the socket layer, tear down 446 * locks, labels, etc. All protocol state is assumed already to have been 447 * torn down (and possibly never set up) by the caller. 448 */ 449 static void 450 sodealloc(struct socket *so) 451 { 452 453 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); 454 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL")); 455 456 mtx_lock(&so_global_mtx); 457 so->so_gencnt = ++so_gencnt; 458 --numopensockets; /* Could be below, but faster here. */ 459 #ifdef VIMAGE 460 VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p", 461 __func__, __LINE__, so)); 462 so->so_vnet->vnet_sockcnt--; 463 #endif 464 mtx_unlock(&so_global_mtx); 465 #ifdef MAC 466 mac_socket_destroy(so); 467 #endif 468 hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE); 469 470 crfree(so->so_cred); 471 khelp_destroy_osd(&so->osd); 472 if (SOLISTENING(so)) { 473 if (so->sol_accept_filter != NULL) 474 accept_filt_setopt(so, NULL); 475 } else { 476 if (so->so_rcv.sb_hiwat) 477 (void)chgsbsize(so->so_cred->cr_uidinfo, 478 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 479 if (so->so_snd.sb_hiwat) 480 (void)chgsbsize(so->so_cred->cr_uidinfo, 481 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 482 sx_destroy(&so->so_snd.sb_sx); 483 sx_destroy(&so->so_rcv.sb_sx); 484 SOCKBUF_LOCK_DESTROY(&so->so_snd); 485 SOCKBUF_LOCK_DESTROY(&so->so_rcv); 486 } 487 mtx_destroy(&so->so_lock); 488 uma_zfree(socket_zone, so); 489 } 490 491 /* 492 * socreate returns a socket with a ref count of 1. The socket should be 493 * closed with soclose(). 494 */ 495 int 496 socreate(int dom, struct socket **aso, int type, int proto, 497 struct ucred *cred, struct thread *td) 498 { 499 struct protosw *prp; 500 struct socket *so; 501 int error; 502 503 if (proto) 504 prp = pffindproto(dom, proto, type); 505 else 506 prp = pffindtype(dom, type); 507 508 if (prp == NULL) { 509 /* No support for domain. */ 510 if (pffinddomain(dom) == NULL) 511 return (EAFNOSUPPORT); 512 /* No support for socket type. */ 513 if (proto == 0 && type != 0) 514 return (EPROTOTYPE); 515 return (EPROTONOSUPPORT); 516 } 517 if (prp->pr_usrreqs->pru_attach == NULL || 518 prp->pr_usrreqs->pru_attach == pru_attach_notsupp) 519 return (EPROTONOSUPPORT); 520 521 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0) 522 return (EPROTONOSUPPORT); 523 524 if (prp->pr_type != type) 525 return (EPROTOTYPE); 526 so = soalloc(CRED_TO_VNET(cred)); 527 if (so == NULL) 528 return (ENOBUFS); 529 530 so->so_type = type; 531 so->so_cred = crhold(cred); 532 if ((prp->pr_domain->dom_family == PF_INET) || 533 (prp->pr_domain->dom_family == PF_INET6) || 534 (prp->pr_domain->dom_family == PF_ROUTE)) 535 so->so_fibnum = td->td_proc->p_fibnum; 536 else 537 so->so_fibnum = 0; 538 so->so_proto = prp; 539 #ifdef MAC 540 mac_socket_create(cred, so); 541 #endif 542 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 543 so_rdknl_assert_locked, so_rdknl_assert_unlocked); 544 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 545 so_wrknl_assert_locked, so_wrknl_assert_unlocked); 546 /* 547 * Auto-sizing of socket buffers is managed by the protocols and 548 * the appropriate flags must be set in the pru_attach function. 549 */ 550 CURVNET_SET(so->so_vnet); 551 error = (*prp->pr_usrreqs->pru_attach)(so, proto, td); 552 CURVNET_RESTORE(); 553 if (error) { 554 sodealloc(so); 555 return (error); 556 } 557 soref(so); 558 *aso = so; 559 return (0); 560 } 561 562 #ifdef REGRESSION 563 static int regression_sonewconn_earlytest = 1; 564 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW, 565 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test"); 566 #endif 567 568 /* 569 * When an attempt at a new connection is noted on a socket which accepts 570 * connections, sonewconn is called. If the connection is possible (subject 571 * to space constraints, etc.) then we allocate a new structure, properly 572 * linked into the data structure of the original socket, and return this. 573 * Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED. 574 * 575 * Note: the ref count on the socket is 0 on return. 576 */ 577 struct socket * 578 sonewconn(struct socket *head, int connstatus) 579 { 580 static struct timeval lastover; 581 static struct timeval overinterval = { 60, 0 }; 582 static int overcount; 583 584 struct socket *so; 585 u_int over; 586 587 SOLISTEN_LOCK(head); 588 over = (head->sol_qlen > 3 * head->sol_qlimit / 2); 589 SOLISTEN_UNLOCK(head); 590 #ifdef REGRESSION 591 if (regression_sonewconn_earlytest && over) { 592 #else 593 if (over) { 594 #endif 595 overcount++; 596 597 if (ratecheck(&lastover, &overinterval)) { 598 log(LOG_DEBUG, "%s: pcb %p: Listen queue overflow: " 599 "%i already in queue awaiting acceptance " 600 "(%d occurrences)\n", 601 __func__, head->so_pcb, head->sol_qlen, overcount); 602 603 overcount = 0; 604 } 605 606 return (NULL); 607 } 608 VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL", 609 __func__, head)); 610 so = soalloc(head->so_vnet); 611 if (so == NULL) { 612 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 613 "limit reached or out of memory\n", 614 __func__, head->so_pcb); 615 return (NULL); 616 } 617 so->so_listen = head; 618 so->so_type = head->so_type; 619 so->so_linger = head->so_linger; 620 so->so_state = head->so_state | SS_NOFDREF; 621 so->so_fibnum = head->so_fibnum; 622 so->so_proto = head->so_proto; 623 so->so_cred = crhold(head->so_cred); 624 #ifdef MAC 625 mac_socket_newconn(head, so); 626 #endif 627 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 628 so_rdknl_assert_locked, so_rdknl_assert_unlocked); 629 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 630 so_wrknl_assert_locked, so_wrknl_assert_unlocked); 631 VNET_SO_ASSERT(head); 632 if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) { 633 sodealloc(so); 634 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 635 __func__, head->so_pcb); 636 return (NULL); 637 } 638 if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 639 sodealloc(so); 640 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", 641 __func__, head->so_pcb); 642 return (NULL); 643 } 644 so->so_rcv.sb_lowat = head->sol_sbrcv_lowat; 645 so->so_snd.sb_lowat = head->sol_sbsnd_lowat; 646 so->so_rcv.sb_timeo = head->sol_sbrcv_timeo; 647 so->so_snd.sb_timeo = head->sol_sbsnd_timeo; 648 so->so_rcv.sb_flags |= head->sol_sbrcv_flags & SB_AUTOSIZE; 649 so->so_snd.sb_flags |= head->sol_sbsnd_flags & SB_AUTOSIZE; 650 651 SOLISTEN_LOCK(head); 652 if (head->sol_accept_filter != NULL) 653 connstatus = 0; 654 so->so_state |= connstatus; 655 so->so_options = head->so_options & ~SO_ACCEPTCONN; 656 soref(head); /* A socket on (in)complete queue refs head. */ 657 if (connstatus) { 658 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 659 so->so_qstate = SQ_COMP; 660 head->sol_qlen++; 661 solisten_wakeup(head); /* unlocks */ 662 } else { 663 /* 664 * Keep removing sockets from the head until there's room for 665 * us to insert on the tail. In pre-locking revisions, this 666 * was a simple if(), but as we could be racing with other 667 * threads and soabort() requires dropping locks, we must 668 * loop waiting for the condition to be true. 669 */ 670 while (head->sol_incqlen > head->sol_qlimit) { 671 struct socket *sp; 672 673 sp = TAILQ_FIRST(&head->sol_incomp); 674 TAILQ_REMOVE(&head->sol_incomp, sp, so_list); 675 head->sol_incqlen--; 676 SOCK_LOCK(sp); 677 sp->so_qstate = SQ_NONE; 678 sp->so_listen = NULL; 679 SOCK_UNLOCK(sp); 680 sorele(head); /* does SOLISTEN_UNLOCK, head stays */ 681 soabort(sp); 682 SOLISTEN_LOCK(head); 683 } 684 TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list); 685 so->so_qstate = SQ_INCOMP; 686 head->sol_incqlen++; 687 SOLISTEN_UNLOCK(head); 688 } 689 return (so); 690 } 691 692 #ifdef SCTP 693 /* 694 * Socket part of sctp_peeloff(). Detach a new socket from an 695 * association. The new socket is returned with a reference. 696 */ 697 struct socket * 698 sopeeloff(struct socket *head) 699 { 700 struct socket *so; 701 702 VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p", 703 __func__, __LINE__, head)); 704 so = soalloc(head->so_vnet); 705 if (so == NULL) { 706 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 707 "limit reached or out of memory\n", 708 __func__, head->so_pcb); 709 return (NULL); 710 } 711 so->so_type = head->so_type; 712 so->so_options = head->so_options; 713 so->so_linger = head->so_linger; 714 so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED; 715 so->so_fibnum = head->so_fibnum; 716 so->so_proto = head->so_proto; 717 so->so_cred = crhold(head->so_cred); 718 #ifdef MAC 719 mac_socket_newconn(head, so); 720 #endif 721 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 722 so_rdknl_assert_locked, so_rdknl_assert_unlocked); 723 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 724 so_wrknl_assert_locked, so_wrknl_assert_unlocked); 725 VNET_SO_ASSERT(head); 726 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) { 727 sodealloc(so); 728 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 729 __func__, head->so_pcb); 730 return (NULL); 731 } 732 if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 733 sodealloc(so); 734 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", 735 __func__, head->so_pcb); 736 return (NULL); 737 } 738 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; 739 so->so_snd.sb_lowat = head->so_snd.sb_lowat; 740 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; 741 so->so_snd.sb_timeo = head->so_snd.sb_timeo; 742 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE; 743 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE; 744 745 soref(so); 746 747 return (so); 748 } 749 #endif /* SCTP */ 750 751 int 752 sobind(struct socket *so, struct sockaddr *nam, struct thread *td) 753 { 754 int error; 755 756 CURVNET_SET(so->so_vnet); 757 error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td); 758 CURVNET_RESTORE(); 759 return (error); 760 } 761 762 int 763 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 764 { 765 int error; 766 767 CURVNET_SET(so->so_vnet); 768 error = (*so->so_proto->pr_usrreqs->pru_bindat)(fd, so, nam, td); 769 CURVNET_RESTORE(); 770 return (error); 771 } 772 773 /* 774 * solisten() transitions a socket from a non-listening state to a listening 775 * state, but can also be used to update the listen queue depth on an 776 * existing listen socket. The protocol will call back into the sockets 777 * layer using solisten_proto_check() and solisten_proto() to check and set 778 * socket-layer listen state. Call backs are used so that the protocol can 779 * acquire both protocol and socket layer locks in whatever order is required 780 * by the protocol. 781 * 782 * Protocol implementors are advised to hold the socket lock across the 783 * socket-layer test and set to avoid races at the socket layer. 784 */ 785 int 786 solisten(struct socket *so, int backlog, struct thread *td) 787 { 788 int error; 789 790 CURVNET_SET(so->so_vnet); 791 error = (*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td); 792 CURVNET_RESTORE(); 793 return (error); 794 } 795 796 int 797 solisten_proto_check(struct socket *so) 798 { 799 800 SOCK_LOCK_ASSERT(so); 801 802 if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 803 SS_ISDISCONNECTING)) 804 return (EINVAL); 805 return (0); 806 } 807 808 void 809 solisten_proto(struct socket *so, int backlog) 810 { 811 int sbrcv_lowat, sbsnd_lowat; 812 u_int sbrcv_hiwat, sbsnd_hiwat; 813 short sbrcv_flags, sbsnd_flags; 814 sbintime_t sbrcv_timeo, sbsnd_timeo; 815 816 SOCK_LOCK_ASSERT(so); 817 818 if (SOLISTENING(so)) 819 goto listening; 820 821 /* 822 * Change this socket to listening state. 823 */ 824 sbrcv_lowat = so->so_rcv.sb_lowat; 825 sbsnd_lowat = so->so_snd.sb_lowat; 826 sbrcv_hiwat = so->so_rcv.sb_hiwat; 827 sbsnd_hiwat = so->so_snd.sb_hiwat; 828 sbrcv_flags = so->so_rcv.sb_flags; 829 sbsnd_flags = so->so_snd.sb_flags; 830 sbrcv_timeo = so->so_rcv.sb_timeo; 831 sbsnd_timeo = so->so_snd.sb_timeo; 832 833 sbdestroy(&so->so_snd, so); 834 sbdestroy(&so->so_rcv, so); 835 sx_destroy(&so->so_snd.sb_sx); 836 sx_destroy(&so->so_rcv.sb_sx); 837 SOCKBUF_LOCK_DESTROY(&so->so_snd); 838 SOCKBUF_LOCK_DESTROY(&so->so_rcv); 839 840 #ifdef INVARIANTS 841 bzero(&so->so_rcv, 842 sizeof(struct socket) - offsetof(struct socket, so_rcv)); 843 #endif 844 845 so->sol_sbrcv_lowat = sbrcv_lowat; 846 so->sol_sbsnd_lowat = sbsnd_lowat; 847 so->sol_sbrcv_hiwat = sbrcv_hiwat; 848 so->sol_sbsnd_hiwat = sbsnd_hiwat; 849 so->sol_sbrcv_flags = sbrcv_flags; 850 so->sol_sbsnd_flags = sbsnd_flags; 851 so->sol_sbrcv_timeo = sbrcv_timeo; 852 so->sol_sbsnd_timeo = sbsnd_timeo; 853 854 so->sol_qlen = so->sol_incqlen = 0; 855 TAILQ_INIT(&so->sol_incomp); 856 TAILQ_INIT(&so->sol_comp); 857 858 so->sol_accept_filter = NULL; 859 so->sol_accept_filter_arg = NULL; 860 so->sol_accept_filter_str = NULL; 861 862 so->sol_upcall = NULL; 863 so->sol_upcallarg = NULL; 864 865 so->so_options |= SO_ACCEPTCONN; 866 867 listening: 868 if (backlog < 0 || backlog > somaxconn) 869 backlog = somaxconn; 870 so->sol_qlimit = backlog; 871 } 872 873 /* 874 * Wakeup listeners/subsystems once we have a complete connection. 875 * Enters with lock, returns unlocked. 876 */ 877 void 878 solisten_wakeup(struct socket *sol) 879 { 880 881 if (sol->sol_upcall != NULL) 882 (void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT); 883 else { 884 selwakeuppri(&sol->so_rdsel, PSOCK); 885 KNOTE_LOCKED(&sol->so_rdsel.si_note, 0); 886 } 887 SOLISTEN_UNLOCK(sol); 888 wakeup_one(&sol->sol_comp); 889 } 890 891 /* 892 * Return single connection off a listening socket queue. Main consumer of 893 * the function is kern_accept4(). Some modules, that do their own accept 894 * management also use the function. 895 * 896 * Listening socket must be locked on entry and is returned unlocked on 897 * return. 898 * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT. 899 */ 900 int 901 solisten_dequeue(struct socket *head, struct socket **ret, int flags) 902 { 903 struct socket *so; 904 int error; 905 906 SOLISTEN_LOCK_ASSERT(head); 907 908 while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) && 909 head->so_error == 0) { 910 error = msleep(&head->sol_comp, &head->so_lock, PSOCK | PCATCH, 911 "accept", 0); 912 if (error != 0) { 913 SOLISTEN_UNLOCK(head); 914 return (error); 915 } 916 } 917 if (head->so_error) { 918 error = head->so_error; 919 head->so_error = 0; 920 } else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp)) 921 error = EWOULDBLOCK; 922 else 923 error = 0; 924 if (error) { 925 SOLISTEN_UNLOCK(head); 926 return (error); 927 } 928 so = TAILQ_FIRST(&head->sol_comp); 929 SOCK_LOCK(so); 930 KASSERT(so->so_qstate == SQ_COMP, 931 ("%s: so %p not SQ_COMP", __func__, so)); 932 soref(so); 933 head->sol_qlen--; 934 so->so_qstate = SQ_NONE; 935 so->so_listen = NULL; 936 TAILQ_REMOVE(&head->sol_comp, so, so_list); 937 if (flags & ACCEPT4_INHERIT) 938 so->so_state |= (head->so_state & SS_NBIO); 939 else 940 so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0; 941 SOCK_UNLOCK(so); 942 sorele(head); 943 944 *ret = so; 945 return (0); 946 } 947 948 /* 949 * Evaluate the reference count and named references on a socket; if no 950 * references remain, free it. This should be called whenever a reference is 951 * released, such as in sorele(), but also when named reference flags are 952 * cleared in socket or protocol code. 953 * 954 * sofree() will free the socket if: 955 * 956 * - There are no outstanding file descriptor references or related consumers 957 * (so_count == 0). 958 * 959 * - The socket has been closed by user space, if ever open (SS_NOFDREF). 960 * 961 * - The protocol does not have an outstanding strong reference on the socket 962 * (SS_PROTOREF). 963 * 964 * - The socket is not in a completed connection queue, so a process has been 965 * notified that it is present. If it is removed, the user process may 966 * block in accept() despite select() saying the socket was ready. 967 */ 968 void 969 sofree(struct socket *so) 970 { 971 struct protosw *pr = so->so_proto; 972 973 SOCK_LOCK_ASSERT(so); 974 975 if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 || 976 (so->so_state & SS_PROTOREF) || (so->so_qstate == SQ_COMP)) { 977 SOCK_UNLOCK(so); 978 return; 979 } 980 981 if (!SOLISTENING(so) && so->so_qstate == SQ_INCOMP) { 982 struct socket *sol; 983 984 sol = so->so_listen; 985 KASSERT(sol, ("%s: so %p on incomp of NULL", __func__, so)); 986 987 /* 988 * To solve race between close of a listening socket and 989 * a socket on its incomplete queue, we need to lock both. 990 * The order is first listening socket, then regular. 991 * Since we don't have SS_NOFDREF neither SS_PROTOREF, this 992 * function and the listening socket are the only pointers 993 * to so. To preserve so and sol, we reference both and then 994 * relock. 995 * After relock the socket may not move to so_comp since it 996 * doesn't have PCB already, but it may be removed from 997 * so_incomp. If that happens, we share responsiblity on 998 * freeing the socket, but soclose() has already removed 999 * it from queue. 1000 */ 1001 soref(sol); 1002 soref(so); 1003 SOCK_UNLOCK(so); 1004 SOLISTEN_LOCK(sol); 1005 SOCK_LOCK(so); 1006 if (so->so_qstate == SQ_INCOMP) { 1007 KASSERT(so->so_listen == sol, 1008 ("%s: so %p migrated out of sol %p", 1009 __func__, so, sol)); 1010 TAILQ_REMOVE(&sol->sol_incomp, so, so_list); 1011 sol->sol_incqlen--; 1012 /* This is guarenteed not to be the last. */ 1013 refcount_release(&sol->so_count); 1014 so->so_qstate = SQ_NONE; 1015 so->so_listen = NULL; 1016 } else 1017 KASSERT(so->so_listen == NULL, 1018 ("%s: so %p not on (in)comp with so_listen", 1019 __func__, so)); 1020 sorele(sol); 1021 KASSERT(so->so_count == 1, 1022 ("%s: so %p count %u", __func__, so, so->so_count)); 1023 so->so_count = 0; 1024 } 1025 if (SOLISTENING(so)) 1026 so->so_error = ECONNABORTED; 1027 SOCK_UNLOCK(so); 1028 1029 VNET_SO_ASSERT(so); 1030 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 1031 (*pr->pr_domain->dom_dispose)(so); 1032 if (pr->pr_usrreqs->pru_detach != NULL) 1033 (*pr->pr_usrreqs->pru_detach)(so); 1034 1035 /* 1036 * From this point on, we assume that no other references to this 1037 * socket exist anywhere else in the stack. Therefore, no locks need 1038 * to be acquired or held. 1039 * 1040 * We used to do a lot of socket buffer and socket locking here, as 1041 * well as invoke sorflush() and perform wakeups. The direct call to 1042 * dom_dispose() and sbrelease_internal() are an inlining of what was 1043 * necessary from sorflush(). 1044 * 1045 * Notice that the socket buffer and kqueue state are torn down 1046 * before calling pru_detach. This means that protocols shold not 1047 * assume they can perform socket wakeups, etc, in their detach code. 1048 */ 1049 if (!SOLISTENING(so)) { 1050 sbdestroy(&so->so_snd, so); 1051 sbdestroy(&so->so_rcv, so); 1052 } 1053 seldrain(&so->so_rdsel); 1054 seldrain(&so->so_wrsel); 1055 knlist_destroy(&so->so_rdsel.si_note); 1056 knlist_destroy(&so->so_wrsel.si_note); 1057 sodealloc(so); 1058 } 1059 1060 /* 1061 * Close a socket on last file table reference removal. Initiate disconnect 1062 * if connected. Free socket when disconnect complete. 1063 * 1064 * This function will sorele() the socket. Note that soclose() may be called 1065 * prior to the ref count reaching zero. The actual socket structure will 1066 * not be freed until the ref count reaches zero. 1067 */ 1068 int 1069 soclose(struct socket *so) 1070 { 1071 struct accept_queue lqueue; 1072 bool listening; 1073 int error = 0; 1074 1075 KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter")); 1076 1077 CURVNET_SET(so->so_vnet); 1078 funsetown(&so->so_sigio); 1079 if (so->so_state & SS_ISCONNECTED) { 1080 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 1081 error = sodisconnect(so); 1082 if (error) { 1083 if (error == ENOTCONN) 1084 error = 0; 1085 goto drop; 1086 } 1087 } 1088 if (so->so_options & SO_LINGER) { 1089 if ((so->so_state & SS_ISDISCONNECTING) && 1090 (so->so_state & SS_NBIO)) 1091 goto drop; 1092 while (so->so_state & SS_ISCONNECTED) { 1093 error = tsleep(&so->so_timeo, 1094 PSOCK | PCATCH, "soclos", 1095 so->so_linger * hz); 1096 if (error) 1097 break; 1098 } 1099 } 1100 } 1101 1102 drop: 1103 if (so->so_proto->pr_usrreqs->pru_close != NULL) 1104 (*so->so_proto->pr_usrreqs->pru_close)(so); 1105 if (so->so_dtor != NULL) 1106 so->so_dtor(so); 1107 1108 SOCK_LOCK(so); 1109 if ((listening = (so->so_options & SO_ACCEPTCONN))) { 1110 struct socket *sp; 1111 1112 TAILQ_INIT(&lqueue); 1113 TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list); 1114 TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list); 1115 1116 so->sol_qlen = so->sol_incqlen = 0; 1117 1118 TAILQ_FOREACH(sp, &lqueue, so_list) { 1119 SOCK_LOCK(sp); 1120 sp->so_qstate = SQ_NONE; 1121 sp->so_listen = NULL; 1122 SOCK_UNLOCK(sp); 1123 /* Guaranteed not to be the last. */ 1124 refcount_release(&so->so_count); 1125 } 1126 } 1127 KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF")); 1128 so->so_state |= SS_NOFDREF; 1129 sorele(so); 1130 if (listening) { 1131 struct socket *sp; 1132 1133 TAILQ_FOREACH(sp, &lqueue, so_list) { 1134 SOCK_LOCK(sp); 1135 if (sp->so_count == 0) { 1136 SOCK_UNLOCK(sp); 1137 soabort(sp); 1138 } else 1139 /* sp is now in sofree() */ 1140 SOCK_UNLOCK(sp); 1141 } 1142 } 1143 CURVNET_RESTORE(); 1144 return (error); 1145 } 1146 1147 /* 1148 * soabort() is used to abruptly tear down a connection, such as when a 1149 * resource limit is reached (listen queue depth exceeded), or if a listen 1150 * socket is closed while there are sockets waiting to be accepted. 1151 * 1152 * This interface is tricky, because it is called on an unreferenced socket, 1153 * and must be called only by a thread that has actually removed the socket 1154 * from the listen queue it was on, or races with other threads are risked. 1155 * 1156 * This interface will call into the protocol code, so must not be called 1157 * with any socket locks held. Protocols do call it while holding their own 1158 * recursible protocol mutexes, but this is something that should be subject 1159 * to review in the future. 1160 */ 1161 void 1162 soabort(struct socket *so) 1163 { 1164 1165 /* 1166 * In as much as is possible, assert that no references to this 1167 * socket are held. This is not quite the same as asserting that the 1168 * current thread is responsible for arranging for no references, but 1169 * is as close as we can get for now. 1170 */ 1171 KASSERT(so->so_count == 0, ("soabort: so_count")); 1172 KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF")); 1173 KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF")); 1174 KASSERT(so->so_qstate == SQ_NONE, ("soabort: !SQ_NONE")); 1175 VNET_SO_ASSERT(so); 1176 1177 if (so->so_proto->pr_usrreqs->pru_abort != NULL) 1178 (*so->so_proto->pr_usrreqs->pru_abort)(so); 1179 SOCK_LOCK(so); 1180 sofree(so); 1181 } 1182 1183 int 1184 soaccept(struct socket *so, struct sockaddr **nam) 1185 { 1186 int error; 1187 1188 SOCK_LOCK(so); 1189 KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF")); 1190 so->so_state &= ~SS_NOFDREF; 1191 SOCK_UNLOCK(so); 1192 1193 CURVNET_SET(so->so_vnet); 1194 error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam); 1195 CURVNET_RESTORE(); 1196 return (error); 1197 } 1198 1199 int 1200 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td) 1201 { 1202 1203 return (soconnectat(AT_FDCWD, so, nam, td)); 1204 } 1205 1206 int 1207 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 1208 { 1209 int error; 1210 1211 if (so->so_options & SO_ACCEPTCONN) 1212 return (EOPNOTSUPP); 1213 1214 CURVNET_SET(so->so_vnet); 1215 /* 1216 * If protocol is connection-based, can only connect once. 1217 * Otherwise, if connected, try to disconnect first. This allows 1218 * user to disconnect by connecting to, e.g., a null address. 1219 */ 1220 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 1221 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 1222 (error = sodisconnect(so)))) { 1223 error = EISCONN; 1224 } else { 1225 /* 1226 * Prevent accumulated error from previous connection from 1227 * biting us. 1228 */ 1229 so->so_error = 0; 1230 if (fd == AT_FDCWD) { 1231 error = (*so->so_proto->pr_usrreqs->pru_connect)(so, 1232 nam, td); 1233 } else { 1234 error = (*so->so_proto->pr_usrreqs->pru_connectat)(fd, 1235 so, nam, td); 1236 } 1237 } 1238 CURVNET_RESTORE(); 1239 1240 return (error); 1241 } 1242 1243 int 1244 soconnect2(struct socket *so1, struct socket *so2) 1245 { 1246 int error; 1247 1248 CURVNET_SET(so1->so_vnet); 1249 error = (*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2); 1250 CURVNET_RESTORE(); 1251 return (error); 1252 } 1253 1254 int 1255 sodisconnect(struct socket *so) 1256 { 1257 int error; 1258 1259 if ((so->so_state & SS_ISCONNECTED) == 0) 1260 return (ENOTCONN); 1261 if (so->so_state & SS_ISDISCONNECTING) 1262 return (EALREADY); 1263 VNET_SO_ASSERT(so); 1264 error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so); 1265 return (error); 1266 } 1267 1268 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT) 1269 1270 int 1271 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, 1272 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1273 { 1274 long space; 1275 ssize_t resid; 1276 int clen = 0, error, dontroute; 1277 1278 KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM")); 1279 KASSERT(so->so_proto->pr_flags & PR_ATOMIC, 1280 ("sosend_dgram: !PR_ATOMIC")); 1281 1282 if (uio != NULL) 1283 resid = uio->uio_resid; 1284 else 1285 resid = top->m_pkthdr.len; 1286 /* 1287 * In theory resid should be unsigned. However, space must be 1288 * signed, as it might be less than 0 if we over-committed, and we 1289 * must use a signed comparison of space and resid. On the other 1290 * hand, a negative resid causes us to loop sending 0-length 1291 * segments to the protocol. 1292 */ 1293 if (resid < 0) { 1294 error = EINVAL; 1295 goto out; 1296 } 1297 1298 dontroute = 1299 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0; 1300 if (td != NULL) 1301 td->td_ru.ru_msgsnd++; 1302 if (control != NULL) 1303 clen = control->m_len; 1304 1305 SOCKBUF_LOCK(&so->so_snd); 1306 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1307 SOCKBUF_UNLOCK(&so->so_snd); 1308 error = EPIPE; 1309 goto out; 1310 } 1311 if (so->so_error) { 1312 error = so->so_error; 1313 so->so_error = 0; 1314 SOCKBUF_UNLOCK(&so->so_snd); 1315 goto out; 1316 } 1317 if ((so->so_state & SS_ISCONNECTED) == 0) { 1318 /* 1319 * `sendto' and `sendmsg' is allowed on a connection-based 1320 * socket if it supports implied connect. Return ENOTCONN if 1321 * not connected and no address is supplied. 1322 */ 1323 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1324 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1325 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1326 !(resid == 0 && clen != 0)) { 1327 SOCKBUF_UNLOCK(&so->so_snd); 1328 error = ENOTCONN; 1329 goto out; 1330 } 1331 } else if (addr == NULL) { 1332 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1333 error = ENOTCONN; 1334 else 1335 error = EDESTADDRREQ; 1336 SOCKBUF_UNLOCK(&so->so_snd); 1337 goto out; 1338 } 1339 } 1340 1341 /* 1342 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a 1343 * problem and need fixing. 1344 */ 1345 space = sbspace(&so->so_snd); 1346 if (flags & MSG_OOB) 1347 space += 1024; 1348 space -= clen; 1349 SOCKBUF_UNLOCK(&so->so_snd); 1350 if (resid > space) { 1351 error = EMSGSIZE; 1352 goto out; 1353 } 1354 if (uio == NULL) { 1355 resid = 0; 1356 if (flags & MSG_EOR) 1357 top->m_flags |= M_EOR; 1358 } else { 1359 /* 1360 * Copy the data from userland into a mbuf chain. 1361 * If no data is to be copied in, a single empty mbuf 1362 * is returned. 1363 */ 1364 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr, 1365 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0))); 1366 if (top == NULL) { 1367 error = EFAULT; /* only possible error */ 1368 goto out; 1369 } 1370 space -= resid - uio->uio_resid; 1371 resid = uio->uio_resid; 1372 } 1373 KASSERT(resid == 0, ("sosend_dgram: resid != 0")); 1374 /* 1375 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock 1376 * than with. 1377 */ 1378 if (dontroute) { 1379 SOCK_LOCK(so); 1380 so->so_options |= SO_DONTROUTE; 1381 SOCK_UNLOCK(so); 1382 } 1383 /* 1384 * XXX all the SBS_CANTSENDMORE checks previously done could be out 1385 * of date. We could have received a reset packet in an interrupt or 1386 * maybe we slept while doing page faults in uiomove() etc. We could 1387 * probably recheck again inside the locking protection here, but 1388 * there are probably other places that this also happens. We must 1389 * rethink this. 1390 */ 1391 VNET_SO_ASSERT(so); 1392 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1393 (flags & MSG_OOB) ? PRUS_OOB : 1394 /* 1395 * If the user set MSG_EOF, the protocol understands this flag and 1396 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND. 1397 */ 1398 ((flags & MSG_EOF) && 1399 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1400 (resid <= 0)) ? 1401 PRUS_EOF : 1402 /* If there is more to send set PRUS_MORETOCOME */ 1403 (flags & MSG_MORETOCOME) || 1404 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1405 top, addr, control, td); 1406 if (dontroute) { 1407 SOCK_LOCK(so); 1408 so->so_options &= ~SO_DONTROUTE; 1409 SOCK_UNLOCK(so); 1410 } 1411 clen = 0; 1412 control = NULL; 1413 top = NULL; 1414 out: 1415 if (top != NULL) 1416 m_freem(top); 1417 if (control != NULL) 1418 m_freem(control); 1419 return (error); 1420 } 1421 1422 /* 1423 * Send on a socket. If send must go all at once and message is larger than 1424 * send buffering, then hard error. Lock against other senders. If must go 1425 * all at once and not enough room now, then inform user that this would 1426 * block and do nothing. Otherwise, if nonblocking, send as much as 1427 * possible. The data to be sent is described by "uio" if nonzero, otherwise 1428 * by the mbuf chain "top" (which must be null if uio is not). Data provided 1429 * in mbuf chain must be small enough to send all at once. 1430 * 1431 * Returns nonzero on error, timeout or signal; callers must check for short 1432 * counts if EINTR/ERESTART are returned. Data and control buffers are freed 1433 * on return. 1434 */ 1435 int 1436 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio, 1437 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1438 { 1439 long space; 1440 ssize_t resid; 1441 int clen = 0, error, dontroute; 1442 int atomic = sosendallatonce(so) || top; 1443 1444 if (uio != NULL) 1445 resid = uio->uio_resid; 1446 else 1447 resid = top->m_pkthdr.len; 1448 /* 1449 * In theory resid should be unsigned. However, space must be 1450 * signed, as it might be less than 0 if we over-committed, and we 1451 * must use a signed comparison of space and resid. On the other 1452 * hand, a negative resid causes us to loop sending 0-length 1453 * segments to the protocol. 1454 * 1455 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 1456 * type sockets since that's an error. 1457 */ 1458 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 1459 error = EINVAL; 1460 goto out; 1461 } 1462 1463 dontroute = 1464 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 1465 (so->so_proto->pr_flags & PR_ATOMIC); 1466 if (td != NULL) 1467 td->td_ru.ru_msgsnd++; 1468 if (control != NULL) 1469 clen = control->m_len; 1470 1471 error = sblock(&so->so_snd, SBLOCKWAIT(flags)); 1472 if (error) 1473 goto out; 1474 1475 restart: 1476 do { 1477 SOCKBUF_LOCK(&so->so_snd); 1478 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1479 SOCKBUF_UNLOCK(&so->so_snd); 1480 error = EPIPE; 1481 goto release; 1482 } 1483 if (so->so_error) { 1484 error = so->so_error; 1485 so->so_error = 0; 1486 SOCKBUF_UNLOCK(&so->so_snd); 1487 goto release; 1488 } 1489 if ((so->so_state & SS_ISCONNECTED) == 0) { 1490 /* 1491 * `sendto' and `sendmsg' is allowed on a connection- 1492 * based socket if it supports implied connect. 1493 * Return ENOTCONN if not connected and no address is 1494 * supplied. 1495 */ 1496 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1497 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1498 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1499 !(resid == 0 && clen != 0)) { 1500 SOCKBUF_UNLOCK(&so->so_snd); 1501 error = ENOTCONN; 1502 goto release; 1503 } 1504 } else if (addr == NULL) { 1505 SOCKBUF_UNLOCK(&so->so_snd); 1506 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1507 error = ENOTCONN; 1508 else 1509 error = EDESTADDRREQ; 1510 goto release; 1511 } 1512 } 1513 space = sbspace(&so->so_snd); 1514 if (flags & MSG_OOB) 1515 space += 1024; 1516 if ((atomic && resid > so->so_snd.sb_hiwat) || 1517 clen > so->so_snd.sb_hiwat) { 1518 SOCKBUF_UNLOCK(&so->so_snd); 1519 error = EMSGSIZE; 1520 goto release; 1521 } 1522 if (space < resid + clen && 1523 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 1524 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) { 1525 SOCKBUF_UNLOCK(&so->so_snd); 1526 error = EWOULDBLOCK; 1527 goto release; 1528 } 1529 error = sbwait(&so->so_snd); 1530 SOCKBUF_UNLOCK(&so->so_snd); 1531 if (error) 1532 goto release; 1533 goto restart; 1534 } 1535 SOCKBUF_UNLOCK(&so->so_snd); 1536 space -= clen; 1537 do { 1538 if (uio == NULL) { 1539 resid = 0; 1540 if (flags & MSG_EOR) 1541 top->m_flags |= M_EOR; 1542 } else { 1543 /* 1544 * Copy the data from userland into a mbuf 1545 * chain. If resid is 0, which can happen 1546 * only if we have control to send, then 1547 * a single empty mbuf is returned. This 1548 * is a workaround to prevent protocol send 1549 * methods to panic. 1550 */ 1551 top = m_uiotombuf(uio, M_WAITOK, space, 1552 (atomic ? max_hdr : 0), 1553 (atomic ? M_PKTHDR : 0) | 1554 ((flags & MSG_EOR) ? M_EOR : 0)); 1555 if (top == NULL) { 1556 error = EFAULT; /* only possible error */ 1557 goto release; 1558 } 1559 space -= resid - uio->uio_resid; 1560 resid = uio->uio_resid; 1561 } 1562 if (dontroute) { 1563 SOCK_LOCK(so); 1564 so->so_options |= SO_DONTROUTE; 1565 SOCK_UNLOCK(so); 1566 } 1567 /* 1568 * XXX all the SBS_CANTSENDMORE checks previously 1569 * done could be out of date. We could have received 1570 * a reset packet in an interrupt or maybe we slept 1571 * while doing page faults in uiomove() etc. We 1572 * could probably recheck again inside the locking 1573 * protection here, but there are probably other 1574 * places that this also happens. We must rethink 1575 * this. 1576 */ 1577 VNET_SO_ASSERT(so); 1578 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1579 (flags & MSG_OOB) ? PRUS_OOB : 1580 /* 1581 * If the user set MSG_EOF, the protocol understands 1582 * this flag and nothing left to send then use 1583 * PRU_SEND_EOF instead of PRU_SEND. 1584 */ 1585 ((flags & MSG_EOF) && 1586 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1587 (resid <= 0)) ? 1588 PRUS_EOF : 1589 /* If there is more to send set PRUS_MORETOCOME. */ 1590 (flags & MSG_MORETOCOME) || 1591 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1592 top, addr, control, td); 1593 if (dontroute) { 1594 SOCK_LOCK(so); 1595 so->so_options &= ~SO_DONTROUTE; 1596 SOCK_UNLOCK(so); 1597 } 1598 clen = 0; 1599 control = NULL; 1600 top = NULL; 1601 if (error) 1602 goto release; 1603 } while (resid && space > 0); 1604 } while (resid); 1605 1606 release: 1607 sbunlock(&so->so_snd); 1608 out: 1609 if (top != NULL) 1610 m_freem(top); 1611 if (control != NULL) 1612 m_freem(control); 1613 return (error); 1614 } 1615 1616 int 1617 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, 1618 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1619 { 1620 int error; 1621 1622 CURVNET_SET(so->so_vnet); 1623 if (!SOLISTENING(so)) 1624 error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, 1625 top, control, flags, td); 1626 else { 1627 m_freem(top); 1628 m_freem(control); 1629 error = ENOTCONN; 1630 } 1631 CURVNET_RESTORE(); 1632 return (error); 1633 } 1634 1635 /* 1636 * The part of soreceive() that implements reading non-inline out-of-band 1637 * data from a socket. For more complete comments, see soreceive(), from 1638 * which this code originated. 1639 * 1640 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is 1641 * unable to return an mbuf chain to the caller. 1642 */ 1643 static int 1644 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags) 1645 { 1646 struct protosw *pr = so->so_proto; 1647 struct mbuf *m; 1648 int error; 1649 1650 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); 1651 VNET_SO_ASSERT(so); 1652 1653 m = m_get(M_WAITOK, MT_DATA); 1654 error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK); 1655 if (error) 1656 goto bad; 1657 do { 1658 error = uiomove(mtod(m, void *), 1659 (int) min(uio->uio_resid, m->m_len), uio); 1660 m = m_free(m); 1661 } while (uio->uio_resid && error == 0 && m); 1662 bad: 1663 if (m != NULL) 1664 m_freem(m); 1665 return (error); 1666 } 1667 1668 /* 1669 * Following replacement or removal of the first mbuf on the first mbuf chain 1670 * of a socket buffer, push necessary state changes back into the socket 1671 * buffer so that other consumers see the values consistently. 'nextrecord' 1672 * is the callers locally stored value of the original value of 1673 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. 1674 * NOTE: 'nextrecord' may be NULL. 1675 */ 1676 static __inline void 1677 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) 1678 { 1679 1680 SOCKBUF_LOCK_ASSERT(sb); 1681 /* 1682 * First, update for the new value of nextrecord. If necessary, make 1683 * it the first record. 1684 */ 1685 if (sb->sb_mb != NULL) 1686 sb->sb_mb->m_nextpkt = nextrecord; 1687 else 1688 sb->sb_mb = nextrecord; 1689 1690 /* 1691 * Now update any dependent socket buffer fields to reflect the new 1692 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the 1693 * addition of a second clause that takes care of the case where 1694 * sb_mb has been updated, but remains the last record. 1695 */ 1696 if (sb->sb_mb == NULL) { 1697 sb->sb_mbtail = NULL; 1698 sb->sb_lastrecord = NULL; 1699 } else if (sb->sb_mb->m_nextpkt == NULL) 1700 sb->sb_lastrecord = sb->sb_mb; 1701 } 1702 1703 /* 1704 * Implement receive operations on a socket. We depend on the way that 1705 * records are added to the sockbuf by sbappend. In particular, each record 1706 * (mbufs linked through m_next) must begin with an address if the protocol 1707 * so specifies, followed by an optional mbuf or mbufs containing ancillary 1708 * data, and then zero or more mbufs of data. In order to allow parallelism 1709 * between network receive and copying to user space, as well as avoid 1710 * sleeping with a mutex held, we release the socket buffer mutex during the 1711 * user space copy. Although the sockbuf is locked, new data may still be 1712 * appended, and thus we must maintain consistency of the sockbuf during that 1713 * time. 1714 * 1715 * The caller may receive the data as a single mbuf chain by supplying an 1716 * mbuf **mp0 for use in returning the chain. The uio is then used only for 1717 * the count in uio_resid. 1718 */ 1719 int 1720 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio, 1721 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1722 { 1723 struct mbuf *m, **mp; 1724 int flags, error, offset; 1725 ssize_t len; 1726 struct protosw *pr = so->so_proto; 1727 struct mbuf *nextrecord; 1728 int moff, type = 0; 1729 ssize_t orig_resid = uio->uio_resid; 1730 1731 mp = mp0; 1732 if (psa != NULL) 1733 *psa = NULL; 1734 if (controlp != NULL) 1735 *controlp = NULL; 1736 if (flagsp != NULL) 1737 flags = *flagsp &~ MSG_EOR; 1738 else 1739 flags = 0; 1740 if (flags & MSG_OOB) 1741 return (soreceive_rcvoob(so, uio, flags)); 1742 if (mp != NULL) 1743 *mp = NULL; 1744 if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING) 1745 && uio->uio_resid) { 1746 VNET_SO_ASSERT(so); 1747 (*pr->pr_usrreqs->pru_rcvd)(so, 0); 1748 } 1749 1750 error = sblock(&so->so_rcv, SBLOCKWAIT(flags)); 1751 if (error) 1752 return (error); 1753 1754 restart: 1755 SOCKBUF_LOCK(&so->so_rcv); 1756 m = so->so_rcv.sb_mb; 1757 /* 1758 * If we have less data than requested, block awaiting more (subject 1759 * to any timeout) if: 1760 * 1. the current count is less than the low water mark, or 1761 * 2. MSG_DONTWAIT is not set 1762 */ 1763 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 1764 sbavail(&so->so_rcv) < uio->uio_resid) && 1765 sbavail(&so->so_rcv) < so->so_rcv.sb_lowat && 1766 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 1767 KASSERT(m != NULL || !sbavail(&so->so_rcv), 1768 ("receive: m == %p sbavail == %u", 1769 m, sbavail(&so->so_rcv))); 1770 if (so->so_error) { 1771 if (m != NULL) 1772 goto dontblock; 1773 error = so->so_error; 1774 if ((flags & MSG_PEEK) == 0) 1775 so->so_error = 0; 1776 SOCKBUF_UNLOCK(&so->so_rcv); 1777 goto release; 1778 } 1779 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1780 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 1781 if (m == NULL) { 1782 SOCKBUF_UNLOCK(&so->so_rcv); 1783 goto release; 1784 } else 1785 goto dontblock; 1786 } 1787 for (; m != NULL; m = m->m_next) 1788 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 1789 m = so->so_rcv.sb_mb; 1790 goto dontblock; 1791 } 1792 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 1793 (so->so_proto->pr_flags & PR_CONNREQUIRED)) { 1794 SOCKBUF_UNLOCK(&so->so_rcv); 1795 error = ENOTCONN; 1796 goto release; 1797 } 1798 if (uio->uio_resid == 0) { 1799 SOCKBUF_UNLOCK(&so->so_rcv); 1800 goto release; 1801 } 1802 if ((so->so_state & SS_NBIO) || 1803 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 1804 SOCKBUF_UNLOCK(&so->so_rcv); 1805 error = EWOULDBLOCK; 1806 goto release; 1807 } 1808 SBLASTRECORDCHK(&so->so_rcv); 1809 SBLASTMBUFCHK(&so->so_rcv); 1810 error = sbwait(&so->so_rcv); 1811 SOCKBUF_UNLOCK(&so->so_rcv); 1812 if (error) 1813 goto release; 1814 goto restart; 1815 } 1816 dontblock: 1817 /* 1818 * From this point onward, we maintain 'nextrecord' as a cache of the 1819 * pointer to the next record in the socket buffer. We must keep the 1820 * various socket buffer pointers and local stack versions of the 1821 * pointers in sync, pushing out modifications before dropping the 1822 * socket buffer mutex, and re-reading them when picking it up. 1823 * 1824 * Otherwise, we will race with the network stack appending new data 1825 * or records onto the socket buffer by using inconsistent/stale 1826 * versions of the field, possibly resulting in socket buffer 1827 * corruption. 1828 * 1829 * By holding the high-level sblock(), we prevent simultaneous 1830 * readers from pulling off the front of the socket buffer. 1831 */ 1832 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1833 if (uio->uio_td) 1834 uio->uio_td->td_ru.ru_msgrcv++; 1835 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); 1836 SBLASTRECORDCHK(&so->so_rcv); 1837 SBLASTMBUFCHK(&so->so_rcv); 1838 nextrecord = m->m_nextpkt; 1839 if (pr->pr_flags & PR_ADDR) { 1840 KASSERT(m->m_type == MT_SONAME, 1841 ("m->m_type == %d", m->m_type)); 1842 orig_resid = 0; 1843 if (psa != NULL) 1844 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 1845 M_NOWAIT); 1846 if (flags & MSG_PEEK) { 1847 m = m->m_next; 1848 } else { 1849 sbfree(&so->so_rcv, m); 1850 so->so_rcv.sb_mb = m_free(m); 1851 m = so->so_rcv.sb_mb; 1852 sockbuf_pushsync(&so->so_rcv, nextrecord); 1853 } 1854 } 1855 1856 /* 1857 * Process one or more MT_CONTROL mbufs present before any data mbufs 1858 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 1859 * just copy the data; if !MSG_PEEK, we call into the protocol to 1860 * perform externalization (or freeing if controlp == NULL). 1861 */ 1862 if (m != NULL && m->m_type == MT_CONTROL) { 1863 struct mbuf *cm = NULL, *cmn; 1864 struct mbuf **cme = &cm; 1865 1866 do { 1867 if (flags & MSG_PEEK) { 1868 if (controlp != NULL) { 1869 *controlp = m_copym(m, 0, m->m_len, 1870 M_NOWAIT); 1871 controlp = &(*controlp)->m_next; 1872 } 1873 m = m->m_next; 1874 } else { 1875 sbfree(&so->so_rcv, m); 1876 so->so_rcv.sb_mb = m->m_next; 1877 m->m_next = NULL; 1878 *cme = m; 1879 cme = &(*cme)->m_next; 1880 m = so->so_rcv.sb_mb; 1881 } 1882 } while (m != NULL && m->m_type == MT_CONTROL); 1883 if ((flags & MSG_PEEK) == 0) 1884 sockbuf_pushsync(&so->so_rcv, nextrecord); 1885 while (cm != NULL) { 1886 cmn = cm->m_next; 1887 cm->m_next = NULL; 1888 if (pr->pr_domain->dom_externalize != NULL) { 1889 SOCKBUF_UNLOCK(&so->so_rcv); 1890 VNET_SO_ASSERT(so); 1891 error = (*pr->pr_domain->dom_externalize) 1892 (cm, controlp, flags); 1893 SOCKBUF_LOCK(&so->so_rcv); 1894 } else if (controlp != NULL) 1895 *controlp = cm; 1896 else 1897 m_freem(cm); 1898 if (controlp != NULL) { 1899 orig_resid = 0; 1900 while (*controlp != NULL) 1901 controlp = &(*controlp)->m_next; 1902 } 1903 cm = cmn; 1904 } 1905 if (m != NULL) 1906 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 1907 else 1908 nextrecord = so->so_rcv.sb_mb; 1909 orig_resid = 0; 1910 } 1911 if (m != NULL) { 1912 if ((flags & MSG_PEEK) == 0) { 1913 KASSERT(m->m_nextpkt == nextrecord, 1914 ("soreceive: post-control, nextrecord !sync")); 1915 if (nextrecord == NULL) { 1916 KASSERT(so->so_rcv.sb_mb == m, 1917 ("soreceive: post-control, sb_mb!=m")); 1918 KASSERT(so->so_rcv.sb_lastrecord == m, 1919 ("soreceive: post-control, lastrecord!=m")); 1920 } 1921 } 1922 type = m->m_type; 1923 if (type == MT_OOBDATA) 1924 flags |= MSG_OOB; 1925 } else { 1926 if ((flags & MSG_PEEK) == 0) { 1927 KASSERT(so->so_rcv.sb_mb == nextrecord, 1928 ("soreceive: sb_mb != nextrecord")); 1929 if (so->so_rcv.sb_mb == NULL) { 1930 KASSERT(so->so_rcv.sb_lastrecord == NULL, 1931 ("soreceive: sb_lastercord != NULL")); 1932 } 1933 } 1934 } 1935 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1936 SBLASTRECORDCHK(&so->so_rcv); 1937 SBLASTMBUFCHK(&so->so_rcv); 1938 1939 /* 1940 * Now continue to read any data mbufs off of the head of the socket 1941 * buffer until the read request is satisfied. Note that 'type' is 1942 * used to store the type of any mbuf reads that have happened so far 1943 * such that soreceive() can stop reading if the type changes, which 1944 * causes soreceive() to return only one of regular data and inline 1945 * out-of-band data in a single socket receive operation. 1946 */ 1947 moff = 0; 1948 offset = 0; 1949 while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0 1950 && error == 0) { 1951 /* 1952 * If the type of mbuf has changed since the last mbuf 1953 * examined ('type'), end the receive operation. 1954 */ 1955 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1956 if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) { 1957 if (type != m->m_type) 1958 break; 1959 } else if (type == MT_OOBDATA) 1960 break; 1961 else 1962 KASSERT(m->m_type == MT_DATA, 1963 ("m->m_type == %d", m->m_type)); 1964 so->so_rcv.sb_state &= ~SBS_RCVATMARK; 1965 len = uio->uio_resid; 1966 if (so->so_oobmark && len > so->so_oobmark - offset) 1967 len = so->so_oobmark - offset; 1968 if (len > m->m_len - moff) 1969 len = m->m_len - moff; 1970 /* 1971 * If mp is set, just pass back the mbufs. Otherwise copy 1972 * them out via the uio, then free. Sockbuf must be 1973 * consistent here (points to current mbuf, it points to next 1974 * record) when we drop priority; we must note any additions 1975 * to the sockbuf when we block interrupts again. 1976 */ 1977 if (mp == NULL) { 1978 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1979 SBLASTRECORDCHK(&so->so_rcv); 1980 SBLASTMBUFCHK(&so->so_rcv); 1981 SOCKBUF_UNLOCK(&so->so_rcv); 1982 error = uiomove(mtod(m, char *) + moff, (int)len, uio); 1983 SOCKBUF_LOCK(&so->so_rcv); 1984 if (error) { 1985 /* 1986 * The MT_SONAME mbuf has already been removed 1987 * from the record, so it is necessary to 1988 * remove the data mbufs, if any, to preserve 1989 * the invariant in the case of PR_ADDR that 1990 * requires MT_SONAME mbufs at the head of 1991 * each record. 1992 */ 1993 if (pr->pr_flags & PR_ATOMIC && 1994 ((flags & MSG_PEEK) == 0)) 1995 (void)sbdroprecord_locked(&so->so_rcv); 1996 SOCKBUF_UNLOCK(&so->so_rcv); 1997 goto release; 1998 } 1999 } else 2000 uio->uio_resid -= len; 2001 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2002 if (len == m->m_len - moff) { 2003 if (m->m_flags & M_EOR) 2004 flags |= MSG_EOR; 2005 if (flags & MSG_PEEK) { 2006 m = m->m_next; 2007 moff = 0; 2008 } else { 2009 nextrecord = m->m_nextpkt; 2010 sbfree(&so->so_rcv, m); 2011 if (mp != NULL) { 2012 m->m_nextpkt = NULL; 2013 *mp = m; 2014 mp = &m->m_next; 2015 so->so_rcv.sb_mb = m = m->m_next; 2016 *mp = NULL; 2017 } else { 2018 so->so_rcv.sb_mb = m_free(m); 2019 m = so->so_rcv.sb_mb; 2020 } 2021 sockbuf_pushsync(&so->so_rcv, nextrecord); 2022 SBLASTRECORDCHK(&so->so_rcv); 2023 SBLASTMBUFCHK(&so->so_rcv); 2024 } 2025 } else { 2026 if (flags & MSG_PEEK) 2027 moff += len; 2028 else { 2029 if (mp != NULL) { 2030 if (flags & MSG_DONTWAIT) { 2031 *mp = m_copym(m, 0, len, 2032 M_NOWAIT); 2033 if (*mp == NULL) { 2034 /* 2035 * m_copym() couldn't 2036 * allocate an mbuf. 2037 * Adjust uio_resid back 2038 * (it was adjusted 2039 * down by len bytes, 2040 * which we didn't end 2041 * up "copying" over). 2042 */ 2043 uio->uio_resid += len; 2044 break; 2045 } 2046 } else { 2047 SOCKBUF_UNLOCK(&so->so_rcv); 2048 *mp = m_copym(m, 0, len, 2049 M_WAITOK); 2050 SOCKBUF_LOCK(&so->so_rcv); 2051 } 2052 } 2053 sbcut_locked(&so->so_rcv, len); 2054 } 2055 } 2056 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2057 if (so->so_oobmark) { 2058 if ((flags & MSG_PEEK) == 0) { 2059 so->so_oobmark -= len; 2060 if (so->so_oobmark == 0) { 2061 so->so_rcv.sb_state |= SBS_RCVATMARK; 2062 break; 2063 } 2064 } else { 2065 offset += len; 2066 if (offset == so->so_oobmark) 2067 break; 2068 } 2069 } 2070 if (flags & MSG_EOR) 2071 break; 2072 /* 2073 * If the MSG_WAITALL flag is set (for non-atomic socket), we 2074 * must not quit until "uio->uio_resid == 0" or an error 2075 * termination. If a signal/timeout occurs, return with a 2076 * short count but without error. Keep sockbuf locked 2077 * against other readers. 2078 */ 2079 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 2080 !sosendallatonce(so) && nextrecord == NULL) { 2081 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2082 if (so->so_error || 2083 so->so_rcv.sb_state & SBS_CANTRCVMORE) 2084 break; 2085 /* 2086 * Notify the protocol that some data has been 2087 * drained before blocking. 2088 */ 2089 if (pr->pr_flags & PR_WANTRCVD) { 2090 SOCKBUF_UNLOCK(&so->so_rcv); 2091 VNET_SO_ASSERT(so); 2092 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 2093 SOCKBUF_LOCK(&so->so_rcv); 2094 } 2095 SBLASTRECORDCHK(&so->so_rcv); 2096 SBLASTMBUFCHK(&so->so_rcv); 2097 /* 2098 * We could receive some data while was notifying 2099 * the protocol. Skip blocking in this case. 2100 */ 2101 if (so->so_rcv.sb_mb == NULL) { 2102 error = sbwait(&so->so_rcv); 2103 if (error) { 2104 SOCKBUF_UNLOCK(&so->so_rcv); 2105 goto release; 2106 } 2107 } 2108 m = so->so_rcv.sb_mb; 2109 if (m != NULL) 2110 nextrecord = m->m_nextpkt; 2111 } 2112 } 2113 2114 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2115 if (m != NULL && pr->pr_flags & PR_ATOMIC) { 2116 flags |= MSG_TRUNC; 2117 if ((flags & MSG_PEEK) == 0) 2118 (void) sbdroprecord_locked(&so->so_rcv); 2119 } 2120 if ((flags & MSG_PEEK) == 0) { 2121 if (m == NULL) { 2122 /* 2123 * First part is an inline SB_EMPTY_FIXUP(). Second 2124 * part makes sure sb_lastrecord is up-to-date if 2125 * there is still data in the socket buffer. 2126 */ 2127 so->so_rcv.sb_mb = nextrecord; 2128 if (so->so_rcv.sb_mb == NULL) { 2129 so->so_rcv.sb_mbtail = NULL; 2130 so->so_rcv.sb_lastrecord = NULL; 2131 } else if (nextrecord->m_nextpkt == NULL) 2132 so->so_rcv.sb_lastrecord = nextrecord; 2133 } 2134 SBLASTRECORDCHK(&so->so_rcv); 2135 SBLASTMBUFCHK(&so->so_rcv); 2136 /* 2137 * If soreceive() is being done from the socket callback, 2138 * then don't need to generate ACK to peer to update window, 2139 * since ACK will be generated on return to TCP. 2140 */ 2141 if (!(flags & MSG_SOCALLBCK) && 2142 (pr->pr_flags & PR_WANTRCVD)) { 2143 SOCKBUF_UNLOCK(&so->so_rcv); 2144 VNET_SO_ASSERT(so); 2145 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 2146 SOCKBUF_LOCK(&so->so_rcv); 2147 } 2148 } 2149 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2150 if (orig_resid == uio->uio_resid && orig_resid && 2151 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { 2152 SOCKBUF_UNLOCK(&so->so_rcv); 2153 goto restart; 2154 } 2155 SOCKBUF_UNLOCK(&so->so_rcv); 2156 2157 if (flagsp != NULL) 2158 *flagsp |= flags; 2159 release: 2160 sbunlock(&so->so_rcv); 2161 return (error); 2162 } 2163 2164 /* 2165 * Optimized version of soreceive() for stream (TCP) sockets. 2166 */ 2167 int 2168 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio, 2169 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2170 { 2171 int len = 0, error = 0, flags, oresid; 2172 struct sockbuf *sb; 2173 struct mbuf *m, *n = NULL; 2174 2175 /* We only do stream sockets. */ 2176 if (so->so_type != SOCK_STREAM) 2177 return (EINVAL); 2178 if (psa != NULL) 2179 *psa = NULL; 2180 if (flagsp != NULL) 2181 flags = *flagsp &~ MSG_EOR; 2182 else 2183 flags = 0; 2184 if (controlp != NULL) 2185 *controlp = NULL; 2186 if (flags & MSG_OOB) 2187 return (soreceive_rcvoob(so, uio, flags)); 2188 if (mp0 != NULL) 2189 *mp0 = NULL; 2190 2191 sb = &so->so_rcv; 2192 2193 /* Prevent other readers from entering the socket. */ 2194 error = sblock(sb, SBLOCKWAIT(flags)); 2195 if (error) 2196 goto out; 2197 SOCKBUF_LOCK(sb); 2198 2199 /* Easy one, no space to copyout anything. */ 2200 if (uio->uio_resid == 0) { 2201 error = EINVAL; 2202 goto out; 2203 } 2204 oresid = uio->uio_resid; 2205 2206 /* We will never ever get anything unless we are or were connected. */ 2207 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 2208 error = ENOTCONN; 2209 goto out; 2210 } 2211 2212 restart: 2213 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2214 2215 /* Abort if socket has reported problems. */ 2216 if (so->so_error) { 2217 if (sbavail(sb) > 0) 2218 goto deliver; 2219 if (oresid > uio->uio_resid) 2220 goto out; 2221 error = so->so_error; 2222 if (!(flags & MSG_PEEK)) 2223 so->so_error = 0; 2224 goto out; 2225 } 2226 2227 /* Door is closed. Deliver what is left, if any. */ 2228 if (sb->sb_state & SBS_CANTRCVMORE) { 2229 if (sbavail(sb) > 0) 2230 goto deliver; 2231 else 2232 goto out; 2233 } 2234 2235 /* Socket buffer is empty and we shall not block. */ 2236 if (sbavail(sb) == 0 && 2237 ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) { 2238 error = EAGAIN; 2239 goto out; 2240 } 2241 2242 /* Socket buffer got some data that we shall deliver now. */ 2243 if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) && 2244 ((so->so_state & SS_NBIO) || 2245 (flags & (MSG_DONTWAIT|MSG_NBIO)) || 2246 sbavail(sb) >= sb->sb_lowat || 2247 sbavail(sb) >= uio->uio_resid || 2248 sbavail(sb) >= sb->sb_hiwat) ) { 2249 goto deliver; 2250 } 2251 2252 /* On MSG_WAITALL we must wait until all data or error arrives. */ 2253 if ((flags & MSG_WAITALL) && 2254 (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat)) 2255 goto deliver; 2256 2257 /* 2258 * Wait and block until (more) data comes in. 2259 * NB: Drops the sockbuf lock during wait. 2260 */ 2261 error = sbwait(sb); 2262 if (error) 2263 goto out; 2264 goto restart; 2265 2266 deliver: 2267 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2268 KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__)); 2269 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__)); 2270 2271 /* Statistics. */ 2272 if (uio->uio_td) 2273 uio->uio_td->td_ru.ru_msgrcv++; 2274 2275 /* Fill uio until full or current end of socket buffer is reached. */ 2276 len = min(uio->uio_resid, sbavail(sb)); 2277 if (mp0 != NULL) { 2278 /* Dequeue as many mbufs as possible. */ 2279 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) { 2280 if (*mp0 == NULL) 2281 *mp0 = sb->sb_mb; 2282 else 2283 m_cat(*mp0, sb->sb_mb); 2284 for (m = sb->sb_mb; 2285 m != NULL && m->m_len <= len; 2286 m = m->m_next) { 2287 KASSERT(!(m->m_flags & M_NOTAVAIL), 2288 ("%s: m %p not available", __func__, m)); 2289 len -= m->m_len; 2290 uio->uio_resid -= m->m_len; 2291 sbfree(sb, m); 2292 n = m; 2293 } 2294 n->m_next = NULL; 2295 sb->sb_mb = m; 2296 sb->sb_lastrecord = sb->sb_mb; 2297 if (sb->sb_mb == NULL) 2298 SB_EMPTY_FIXUP(sb); 2299 } 2300 /* Copy the remainder. */ 2301 if (len > 0) { 2302 KASSERT(sb->sb_mb != NULL, 2303 ("%s: len > 0 && sb->sb_mb empty", __func__)); 2304 2305 m = m_copym(sb->sb_mb, 0, len, M_NOWAIT); 2306 if (m == NULL) 2307 len = 0; /* Don't flush data from sockbuf. */ 2308 else 2309 uio->uio_resid -= len; 2310 if (*mp0 != NULL) 2311 m_cat(*mp0, m); 2312 else 2313 *mp0 = m; 2314 if (*mp0 == NULL) { 2315 error = ENOBUFS; 2316 goto out; 2317 } 2318 } 2319 } else { 2320 /* NB: Must unlock socket buffer as uiomove may sleep. */ 2321 SOCKBUF_UNLOCK(sb); 2322 error = m_mbuftouio(uio, sb->sb_mb, len); 2323 SOCKBUF_LOCK(sb); 2324 if (error) 2325 goto out; 2326 } 2327 SBLASTRECORDCHK(sb); 2328 SBLASTMBUFCHK(sb); 2329 2330 /* 2331 * Remove the delivered data from the socket buffer unless we 2332 * were only peeking. 2333 */ 2334 if (!(flags & MSG_PEEK)) { 2335 if (len > 0) 2336 sbdrop_locked(sb, len); 2337 2338 /* Notify protocol that we drained some data. */ 2339 if ((so->so_proto->pr_flags & PR_WANTRCVD) && 2340 (((flags & MSG_WAITALL) && uio->uio_resid > 0) || 2341 !(flags & MSG_SOCALLBCK))) { 2342 SOCKBUF_UNLOCK(sb); 2343 VNET_SO_ASSERT(so); 2344 (*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags); 2345 SOCKBUF_LOCK(sb); 2346 } 2347 } 2348 2349 /* 2350 * For MSG_WAITALL we may have to loop again and wait for 2351 * more data to come in. 2352 */ 2353 if ((flags & MSG_WAITALL) && uio->uio_resid > 0) 2354 goto restart; 2355 out: 2356 SOCKBUF_LOCK_ASSERT(sb); 2357 SBLASTRECORDCHK(sb); 2358 SBLASTMBUFCHK(sb); 2359 SOCKBUF_UNLOCK(sb); 2360 sbunlock(sb); 2361 return (error); 2362 } 2363 2364 /* 2365 * Optimized version of soreceive() for simple datagram cases from userspace. 2366 * Unlike in the stream case, we're able to drop a datagram if copyout() 2367 * fails, and because we handle datagrams atomically, we don't need to use a 2368 * sleep lock to prevent I/O interlacing. 2369 */ 2370 int 2371 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio, 2372 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2373 { 2374 struct mbuf *m, *m2; 2375 int flags, error; 2376 ssize_t len; 2377 struct protosw *pr = so->so_proto; 2378 struct mbuf *nextrecord; 2379 2380 if (psa != NULL) 2381 *psa = NULL; 2382 if (controlp != NULL) 2383 *controlp = NULL; 2384 if (flagsp != NULL) 2385 flags = *flagsp &~ MSG_EOR; 2386 else 2387 flags = 0; 2388 2389 /* 2390 * For any complicated cases, fall back to the full 2391 * soreceive_generic(). 2392 */ 2393 if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB)) 2394 return (soreceive_generic(so, psa, uio, mp0, controlp, 2395 flagsp)); 2396 2397 /* 2398 * Enforce restrictions on use. 2399 */ 2400 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0, 2401 ("soreceive_dgram: wantrcvd")); 2402 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic")); 2403 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0, 2404 ("soreceive_dgram: SBS_RCVATMARK")); 2405 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0, 2406 ("soreceive_dgram: P_CONNREQUIRED")); 2407 2408 /* 2409 * Loop blocking while waiting for a datagram. 2410 */ 2411 SOCKBUF_LOCK(&so->so_rcv); 2412 while ((m = so->so_rcv.sb_mb) == NULL) { 2413 KASSERT(sbavail(&so->so_rcv) == 0, 2414 ("soreceive_dgram: sb_mb NULL but sbavail %u", 2415 sbavail(&so->so_rcv))); 2416 if (so->so_error) { 2417 error = so->so_error; 2418 so->so_error = 0; 2419 SOCKBUF_UNLOCK(&so->so_rcv); 2420 return (error); 2421 } 2422 if (so->so_rcv.sb_state & SBS_CANTRCVMORE || 2423 uio->uio_resid == 0) { 2424 SOCKBUF_UNLOCK(&so->so_rcv); 2425 return (0); 2426 } 2427 if ((so->so_state & SS_NBIO) || 2428 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2429 SOCKBUF_UNLOCK(&so->so_rcv); 2430 return (EWOULDBLOCK); 2431 } 2432 SBLASTRECORDCHK(&so->so_rcv); 2433 SBLASTMBUFCHK(&so->so_rcv); 2434 error = sbwait(&so->so_rcv); 2435 if (error) { 2436 SOCKBUF_UNLOCK(&so->so_rcv); 2437 return (error); 2438 } 2439 } 2440 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2441 2442 if (uio->uio_td) 2443 uio->uio_td->td_ru.ru_msgrcv++; 2444 SBLASTRECORDCHK(&so->so_rcv); 2445 SBLASTMBUFCHK(&so->so_rcv); 2446 nextrecord = m->m_nextpkt; 2447 if (nextrecord == NULL) { 2448 KASSERT(so->so_rcv.sb_lastrecord == m, 2449 ("soreceive_dgram: lastrecord != m")); 2450 } 2451 2452 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord, 2453 ("soreceive_dgram: m_nextpkt != nextrecord")); 2454 2455 /* 2456 * Pull 'm' and its chain off the front of the packet queue. 2457 */ 2458 so->so_rcv.sb_mb = NULL; 2459 sockbuf_pushsync(&so->so_rcv, nextrecord); 2460 2461 /* 2462 * Walk 'm's chain and free that many bytes from the socket buffer. 2463 */ 2464 for (m2 = m; m2 != NULL; m2 = m2->m_next) 2465 sbfree(&so->so_rcv, m2); 2466 2467 /* 2468 * Do a few last checks before we let go of the lock. 2469 */ 2470 SBLASTRECORDCHK(&so->so_rcv); 2471 SBLASTMBUFCHK(&so->so_rcv); 2472 SOCKBUF_UNLOCK(&so->so_rcv); 2473 2474 if (pr->pr_flags & PR_ADDR) { 2475 KASSERT(m->m_type == MT_SONAME, 2476 ("m->m_type == %d", m->m_type)); 2477 if (psa != NULL) 2478 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2479 M_NOWAIT); 2480 m = m_free(m); 2481 } 2482 if (m == NULL) { 2483 /* XXXRW: Can this happen? */ 2484 return (0); 2485 } 2486 2487 /* 2488 * Packet to copyout() is now in 'm' and it is disconnected from the 2489 * queue. 2490 * 2491 * Process one or more MT_CONTROL mbufs present before any data mbufs 2492 * in the first mbuf chain on the socket buffer. We call into the 2493 * protocol to perform externalization (or freeing if controlp == 2494 * NULL). In some cases there can be only MT_CONTROL mbufs without 2495 * MT_DATA mbufs. 2496 */ 2497 if (m->m_type == MT_CONTROL) { 2498 struct mbuf *cm = NULL, *cmn; 2499 struct mbuf **cme = &cm; 2500 2501 do { 2502 m2 = m->m_next; 2503 m->m_next = NULL; 2504 *cme = m; 2505 cme = &(*cme)->m_next; 2506 m = m2; 2507 } while (m != NULL && m->m_type == MT_CONTROL); 2508 while (cm != NULL) { 2509 cmn = cm->m_next; 2510 cm->m_next = NULL; 2511 if (pr->pr_domain->dom_externalize != NULL) { 2512 error = (*pr->pr_domain->dom_externalize) 2513 (cm, controlp, flags); 2514 } else if (controlp != NULL) 2515 *controlp = cm; 2516 else 2517 m_freem(cm); 2518 if (controlp != NULL) { 2519 while (*controlp != NULL) 2520 controlp = &(*controlp)->m_next; 2521 } 2522 cm = cmn; 2523 } 2524 } 2525 KASSERT(m == NULL || m->m_type == MT_DATA, 2526 ("soreceive_dgram: !data")); 2527 while (m != NULL && uio->uio_resid > 0) { 2528 len = uio->uio_resid; 2529 if (len > m->m_len) 2530 len = m->m_len; 2531 error = uiomove(mtod(m, char *), (int)len, uio); 2532 if (error) { 2533 m_freem(m); 2534 return (error); 2535 } 2536 if (len == m->m_len) 2537 m = m_free(m); 2538 else { 2539 m->m_data += len; 2540 m->m_len -= len; 2541 } 2542 } 2543 if (m != NULL) { 2544 flags |= MSG_TRUNC; 2545 m_freem(m); 2546 } 2547 if (flagsp != NULL) 2548 *flagsp |= flags; 2549 return (0); 2550 } 2551 2552 int 2553 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, 2554 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2555 { 2556 int error; 2557 2558 CURVNET_SET(so->so_vnet); 2559 if (!SOLISTENING(so)) 2560 error = (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, 2561 mp0, controlp, flagsp)); 2562 else 2563 error = ENOTCONN; 2564 CURVNET_RESTORE(); 2565 return (error); 2566 } 2567 2568 int 2569 soshutdown(struct socket *so, int how) 2570 { 2571 struct protosw *pr = so->so_proto; 2572 int error, soerror_enotconn; 2573 2574 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 2575 return (EINVAL); 2576 2577 soerror_enotconn = 0; 2578 if ((so->so_state & 2579 (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) { 2580 /* 2581 * POSIX mandates us to return ENOTCONN when shutdown(2) is 2582 * invoked on a datagram sockets, however historically we would 2583 * actually tear socket down. This is known to be leveraged by 2584 * some applications to unblock process waiting in recvXXX(2) 2585 * by other process that it shares that socket with. Try to meet 2586 * both backward-compatibility and POSIX requirements by forcing 2587 * ENOTCONN but still asking protocol to perform pru_shutdown(). 2588 */ 2589 if (so->so_type != SOCK_DGRAM && !SOLISTENING(so)) 2590 return (ENOTCONN); 2591 soerror_enotconn = 1; 2592 } 2593 2594 if (SOLISTENING(so)) { 2595 if (how != SHUT_WR) { 2596 SOLISTEN_LOCK(so); 2597 so->so_error = ECONNABORTED; 2598 solisten_wakeup(so); /* unlocks so */ 2599 } 2600 goto done; 2601 } 2602 2603 CURVNET_SET(so->so_vnet); 2604 if (pr->pr_usrreqs->pru_flush != NULL) 2605 (*pr->pr_usrreqs->pru_flush)(so, how); 2606 if (how != SHUT_WR) 2607 sorflush(so); 2608 if (how != SHUT_RD) { 2609 error = (*pr->pr_usrreqs->pru_shutdown)(so); 2610 wakeup(&so->so_timeo); 2611 CURVNET_RESTORE(); 2612 return ((error == 0 && soerror_enotconn) ? ENOTCONN : error); 2613 } 2614 wakeup(&so->so_timeo); 2615 CURVNET_RESTORE(); 2616 2617 done: 2618 return (soerror_enotconn ? ENOTCONN : 0); 2619 } 2620 2621 void 2622 sorflush(struct socket *so) 2623 { 2624 struct sockbuf *sb = &so->so_rcv; 2625 struct protosw *pr = so->so_proto; 2626 struct socket aso; 2627 2628 VNET_SO_ASSERT(so); 2629 2630 /* 2631 * In order to avoid calling dom_dispose with the socket buffer mutex 2632 * held, and in order to generally avoid holding the lock for a long 2633 * time, we make a copy of the socket buffer and clear the original 2634 * (except locks, state). The new socket buffer copy won't have 2635 * initialized locks so we can only call routines that won't use or 2636 * assert those locks. 2637 * 2638 * Dislodge threads currently blocked in receive and wait to acquire 2639 * a lock against other simultaneous readers before clearing the 2640 * socket buffer. Don't let our acquire be interrupted by a signal 2641 * despite any existing socket disposition on interruptable waiting. 2642 */ 2643 socantrcvmore(so); 2644 (void) sblock(sb, SBL_WAIT | SBL_NOINTR); 2645 2646 /* 2647 * Invalidate/clear most of the sockbuf structure, but leave selinfo 2648 * and mutex data unchanged. 2649 */ 2650 SOCKBUF_LOCK(sb); 2651 bzero(&aso, sizeof(aso)); 2652 aso.so_pcb = so->so_pcb; 2653 bcopy(&sb->sb_startzero, &aso.so_rcv.sb_startzero, 2654 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 2655 bzero(&sb->sb_startzero, 2656 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 2657 SOCKBUF_UNLOCK(sb); 2658 sbunlock(sb); 2659 2660 /* 2661 * Dispose of special rights and flush the copied socket. Don't call 2662 * any unsafe routines (that rely on locks being initialized) on aso. 2663 */ 2664 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 2665 (*pr->pr_domain->dom_dispose)(&aso); 2666 sbrelease_internal(&aso.so_rcv, so); 2667 } 2668 2669 /* 2670 * Wrapper for Socket established helper hook. 2671 * Parameters: socket, context of the hook point, hook id. 2672 */ 2673 static int inline 2674 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id) 2675 { 2676 struct socket_hhook_data hhook_data = { 2677 .so = so, 2678 .hctx = hctx, 2679 .m = NULL, 2680 .status = 0 2681 }; 2682 2683 CURVNET_SET(so->so_vnet); 2684 HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd); 2685 CURVNET_RESTORE(); 2686 2687 /* Ugly but needed, since hhooks return void for now */ 2688 return (hhook_data.status); 2689 } 2690 2691 /* 2692 * Perhaps this routine, and sooptcopyout(), below, ought to come in an 2693 * additional variant to handle the case where the option value needs to be 2694 * some kind of integer, but not a specific size. In addition to their use 2695 * here, these functions are also called by the protocol-level pr_ctloutput() 2696 * routines. 2697 */ 2698 int 2699 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen) 2700 { 2701 size_t valsize; 2702 2703 /* 2704 * If the user gives us more than we wanted, we ignore it, but if we 2705 * don't get the minimum length the caller wants, we return EINVAL. 2706 * On success, sopt->sopt_valsize is set to however much we actually 2707 * retrieved. 2708 */ 2709 if ((valsize = sopt->sopt_valsize) < minlen) 2710 return EINVAL; 2711 if (valsize > len) 2712 sopt->sopt_valsize = valsize = len; 2713 2714 if (sopt->sopt_td != NULL) 2715 return (copyin(sopt->sopt_val, buf, valsize)); 2716 2717 bcopy(sopt->sopt_val, buf, valsize); 2718 return (0); 2719 } 2720 2721 /* 2722 * Kernel version of setsockopt(2). 2723 * 2724 * XXX: optlen is size_t, not socklen_t 2725 */ 2726 int 2727 so_setsockopt(struct socket *so, int level, int optname, void *optval, 2728 size_t optlen) 2729 { 2730 struct sockopt sopt; 2731 2732 sopt.sopt_level = level; 2733 sopt.sopt_name = optname; 2734 sopt.sopt_dir = SOPT_SET; 2735 sopt.sopt_val = optval; 2736 sopt.sopt_valsize = optlen; 2737 sopt.sopt_td = NULL; 2738 return (sosetopt(so, &sopt)); 2739 } 2740 2741 int 2742 sosetopt(struct socket *so, struct sockopt *sopt) 2743 { 2744 int error, optval; 2745 struct linger l; 2746 struct timeval tv; 2747 sbintime_t val; 2748 uint32_t val32; 2749 #ifdef MAC 2750 struct mac extmac; 2751 #endif 2752 2753 CURVNET_SET(so->so_vnet); 2754 error = 0; 2755 if (sopt->sopt_level != SOL_SOCKET) { 2756 if (so->so_proto->pr_ctloutput != NULL) { 2757 error = (*so->so_proto->pr_ctloutput)(so, sopt); 2758 CURVNET_RESTORE(); 2759 return (error); 2760 } 2761 error = ENOPROTOOPT; 2762 } else { 2763 switch (sopt->sopt_name) { 2764 case SO_ACCEPTFILTER: 2765 error = accept_filt_setopt(so, sopt); 2766 if (error) 2767 goto bad; 2768 break; 2769 2770 case SO_LINGER: 2771 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 2772 if (error) 2773 goto bad; 2774 2775 SOCK_LOCK(so); 2776 so->so_linger = l.l_linger; 2777 if (l.l_onoff) 2778 so->so_options |= SO_LINGER; 2779 else 2780 so->so_options &= ~SO_LINGER; 2781 SOCK_UNLOCK(so); 2782 break; 2783 2784 case SO_DEBUG: 2785 case SO_KEEPALIVE: 2786 case SO_DONTROUTE: 2787 case SO_USELOOPBACK: 2788 case SO_BROADCAST: 2789 case SO_REUSEADDR: 2790 case SO_REUSEPORT: 2791 case SO_REUSEPORT_LB: 2792 case SO_OOBINLINE: 2793 case SO_TIMESTAMP: 2794 case SO_BINTIME: 2795 case SO_NOSIGPIPE: 2796 case SO_NO_DDP: 2797 case SO_NO_OFFLOAD: 2798 error = sooptcopyin(sopt, &optval, sizeof optval, 2799 sizeof optval); 2800 if (error) 2801 goto bad; 2802 SOCK_LOCK(so); 2803 if (optval) 2804 so->so_options |= sopt->sopt_name; 2805 else 2806 so->so_options &= ~sopt->sopt_name; 2807 SOCK_UNLOCK(so); 2808 break; 2809 2810 case SO_SETFIB: 2811 error = sooptcopyin(sopt, &optval, sizeof optval, 2812 sizeof optval); 2813 if (error) 2814 goto bad; 2815 2816 if (optval < 0 || optval >= rt_numfibs) { 2817 error = EINVAL; 2818 goto bad; 2819 } 2820 if (((so->so_proto->pr_domain->dom_family == PF_INET) || 2821 (so->so_proto->pr_domain->dom_family == PF_INET6) || 2822 (so->so_proto->pr_domain->dom_family == PF_ROUTE))) 2823 so->so_fibnum = optval; 2824 else 2825 so->so_fibnum = 0; 2826 break; 2827 2828 case SO_USER_COOKIE: 2829 error = sooptcopyin(sopt, &val32, sizeof val32, 2830 sizeof val32); 2831 if (error) 2832 goto bad; 2833 so->so_user_cookie = val32; 2834 break; 2835 2836 case SO_SNDBUF: 2837 case SO_RCVBUF: 2838 case SO_SNDLOWAT: 2839 case SO_RCVLOWAT: 2840 error = sooptcopyin(sopt, &optval, sizeof optval, 2841 sizeof optval); 2842 if (error) 2843 goto bad; 2844 2845 /* 2846 * Values < 1 make no sense for any of these options, 2847 * so disallow them. 2848 */ 2849 if (optval < 1) { 2850 error = EINVAL; 2851 goto bad; 2852 } 2853 2854 error = sbsetopt(so, sopt->sopt_name, optval); 2855 break; 2856 2857 case SO_SNDTIMEO: 2858 case SO_RCVTIMEO: 2859 #ifdef COMPAT_FREEBSD32 2860 if (SV_CURPROC_FLAG(SV_ILP32)) { 2861 struct timeval32 tv32; 2862 2863 error = sooptcopyin(sopt, &tv32, sizeof tv32, 2864 sizeof tv32); 2865 CP(tv32, tv, tv_sec); 2866 CP(tv32, tv, tv_usec); 2867 } else 2868 #endif 2869 error = sooptcopyin(sopt, &tv, sizeof tv, 2870 sizeof tv); 2871 if (error) 2872 goto bad; 2873 if (tv.tv_sec < 0 || tv.tv_usec < 0 || 2874 tv.tv_usec >= 1000000) { 2875 error = EDOM; 2876 goto bad; 2877 } 2878 if (tv.tv_sec > INT32_MAX) 2879 val = SBT_MAX; 2880 else 2881 val = tvtosbt(tv); 2882 switch (sopt->sopt_name) { 2883 case SO_SNDTIMEO: 2884 so->so_snd.sb_timeo = val; 2885 break; 2886 case SO_RCVTIMEO: 2887 so->so_rcv.sb_timeo = val; 2888 break; 2889 } 2890 break; 2891 2892 case SO_LABEL: 2893 #ifdef MAC 2894 error = sooptcopyin(sopt, &extmac, sizeof extmac, 2895 sizeof extmac); 2896 if (error) 2897 goto bad; 2898 error = mac_setsockopt_label(sopt->sopt_td->td_ucred, 2899 so, &extmac); 2900 #else 2901 error = EOPNOTSUPP; 2902 #endif 2903 break; 2904 2905 case SO_TS_CLOCK: 2906 error = sooptcopyin(sopt, &optval, sizeof optval, 2907 sizeof optval); 2908 if (error) 2909 goto bad; 2910 if (optval < 0 || optval > SO_TS_CLOCK_MAX) { 2911 error = EINVAL; 2912 goto bad; 2913 } 2914 so->so_ts_clock = optval; 2915 break; 2916 2917 case SO_MAX_PACING_RATE: 2918 error = sooptcopyin(sopt, &val32, sizeof(val32), 2919 sizeof(val32)); 2920 if (error) 2921 goto bad; 2922 so->so_max_pacing_rate = val32; 2923 break; 2924 2925 default: 2926 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 2927 error = hhook_run_socket(so, sopt, 2928 HHOOK_SOCKET_OPT); 2929 else 2930 error = ENOPROTOOPT; 2931 break; 2932 } 2933 if (error == 0 && so->so_proto->pr_ctloutput != NULL) 2934 (void)(*so->so_proto->pr_ctloutput)(so, sopt); 2935 } 2936 bad: 2937 CURVNET_RESTORE(); 2938 return (error); 2939 } 2940 2941 /* 2942 * Helper routine for getsockopt. 2943 */ 2944 int 2945 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 2946 { 2947 int error; 2948 size_t valsize; 2949 2950 error = 0; 2951 2952 /* 2953 * Documented get behavior is that we always return a value, possibly 2954 * truncated to fit in the user's buffer. Traditional behavior is 2955 * that we always tell the user precisely how much we copied, rather 2956 * than something useful like the total amount we had available for 2957 * her. Note that this interface is not idempotent; the entire 2958 * answer must be generated ahead of time. 2959 */ 2960 valsize = min(len, sopt->sopt_valsize); 2961 sopt->sopt_valsize = valsize; 2962 if (sopt->sopt_val != NULL) { 2963 if (sopt->sopt_td != NULL) 2964 error = copyout(buf, sopt->sopt_val, valsize); 2965 else 2966 bcopy(buf, sopt->sopt_val, valsize); 2967 } 2968 return (error); 2969 } 2970 2971 int 2972 sogetopt(struct socket *so, struct sockopt *sopt) 2973 { 2974 int error, optval; 2975 struct linger l; 2976 struct timeval tv; 2977 #ifdef MAC 2978 struct mac extmac; 2979 #endif 2980 2981 CURVNET_SET(so->so_vnet); 2982 error = 0; 2983 if (sopt->sopt_level != SOL_SOCKET) { 2984 if (so->so_proto->pr_ctloutput != NULL) 2985 error = (*so->so_proto->pr_ctloutput)(so, sopt); 2986 else 2987 error = ENOPROTOOPT; 2988 CURVNET_RESTORE(); 2989 return (error); 2990 } else { 2991 switch (sopt->sopt_name) { 2992 case SO_ACCEPTFILTER: 2993 error = accept_filt_getopt(so, sopt); 2994 break; 2995 2996 case SO_LINGER: 2997 SOCK_LOCK(so); 2998 l.l_onoff = so->so_options & SO_LINGER; 2999 l.l_linger = so->so_linger; 3000 SOCK_UNLOCK(so); 3001 error = sooptcopyout(sopt, &l, sizeof l); 3002 break; 3003 3004 case SO_USELOOPBACK: 3005 case SO_DONTROUTE: 3006 case SO_DEBUG: 3007 case SO_KEEPALIVE: 3008 case SO_REUSEADDR: 3009 case SO_REUSEPORT: 3010 case SO_REUSEPORT_LB: 3011 case SO_BROADCAST: 3012 case SO_OOBINLINE: 3013 case SO_ACCEPTCONN: 3014 case SO_TIMESTAMP: 3015 case SO_BINTIME: 3016 case SO_NOSIGPIPE: 3017 optval = so->so_options & sopt->sopt_name; 3018 integer: 3019 error = sooptcopyout(sopt, &optval, sizeof optval); 3020 break; 3021 3022 case SO_DOMAIN: 3023 optval = so->so_proto->pr_domain->dom_family; 3024 goto integer; 3025 3026 case SO_TYPE: 3027 optval = so->so_type; 3028 goto integer; 3029 3030 case SO_PROTOCOL: 3031 optval = so->so_proto->pr_protocol; 3032 goto integer; 3033 3034 case SO_ERROR: 3035 SOCK_LOCK(so); 3036 optval = so->so_error; 3037 so->so_error = 0; 3038 SOCK_UNLOCK(so); 3039 goto integer; 3040 3041 case SO_SNDBUF: 3042 optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat : 3043 so->so_snd.sb_hiwat; 3044 goto integer; 3045 3046 case SO_RCVBUF: 3047 optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat : 3048 so->so_rcv.sb_hiwat; 3049 goto integer; 3050 3051 case SO_SNDLOWAT: 3052 optval = SOLISTENING(so) ? so->sol_sbsnd_lowat : 3053 so->so_snd.sb_lowat; 3054 goto integer; 3055 3056 case SO_RCVLOWAT: 3057 optval = SOLISTENING(so) ? so->sol_sbrcv_lowat : 3058 so->so_rcv.sb_lowat; 3059 goto integer; 3060 3061 case SO_SNDTIMEO: 3062 case SO_RCVTIMEO: 3063 tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ? 3064 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 3065 #ifdef COMPAT_FREEBSD32 3066 if (SV_CURPROC_FLAG(SV_ILP32)) { 3067 struct timeval32 tv32; 3068 3069 CP(tv, tv32, tv_sec); 3070 CP(tv, tv32, tv_usec); 3071 error = sooptcopyout(sopt, &tv32, sizeof tv32); 3072 } else 3073 #endif 3074 error = sooptcopyout(sopt, &tv, sizeof tv); 3075 break; 3076 3077 case SO_LABEL: 3078 #ifdef MAC 3079 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 3080 sizeof(extmac)); 3081 if (error) 3082 goto bad; 3083 error = mac_getsockopt_label(sopt->sopt_td->td_ucred, 3084 so, &extmac); 3085 if (error) 3086 goto bad; 3087 error = sooptcopyout(sopt, &extmac, sizeof extmac); 3088 #else 3089 error = EOPNOTSUPP; 3090 #endif 3091 break; 3092 3093 case SO_PEERLABEL: 3094 #ifdef MAC 3095 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 3096 sizeof(extmac)); 3097 if (error) 3098 goto bad; 3099 error = mac_getsockopt_peerlabel( 3100 sopt->sopt_td->td_ucred, so, &extmac); 3101 if (error) 3102 goto bad; 3103 error = sooptcopyout(sopt, &extmac, sizeof extmac); 3104 #else 3105 error = EOPNOTSUPP; 3106 #endif 3107 break; 3108 3109 case SO_LISTENQLIMIT: 3110 optval = SOLISTENING(so) ? so->sol_qlimit : 0; 3111 goto integer; 3112 3113 case SO_LISTENQLEN: 3114 optval = SOLISTENING(so) ? so->sol_qlen : 0; 3115 goto integer; 3116 3117 case SO_LISTENINCQLEN: 3118 optval = SOLISTENING(so) ? so->sol_incqlen : 0; 3119 goto integer; 3120 3121 case SO_TS_CLOCK: 3122 optval = so->so_ts_clock; 3123 goto integer; 3124 3125 case SO_MAX_PACING_RATE: 3126 optval = so->so_max_pacing_rate; 3127 goto integer; 3128 3129 default: 3130 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 3131 error = hhook_run_socket(so, sopt, 3132 HHOOK_SOCKET_OPT); 3133 else 3134 error = ENOPROTOOPT; 3135 break; 3136 } 3137 } 3138 #ifdef MAC 3139 bad: 3140 #endif 3141 CURVNET_RESTORE(); 3142 return (error); 3143 } 3144 3145 int 3146 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 3147 { 3148 struct mbuf *m, *m_prev; 3149 int sopt_size = sopt->sopt_valsize; 3150 3151 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 3152 if (m == NULL) 3153 return ENOBUFS; 3154 if (sopt_size > MLEN) { 3155 MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT); 3156 if ((m->m_flags & M_EXT) == 0) { 3157 m_free(m); 3158 return ENOBUFS; 3159 } 3160 m->m_len = min(MCLBYTES, sopt_size); 3161 } else { 3162 m->m_len = min(MLEN, sopt_size); 3163 } 3164 sopt_size -= m->m_len; 3165 *mp = m; 3166 m_prev = m; 3167 3168 while (sopt_size) { 3169 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 3170 if (m == NULL) { 3171 m_freem(*mp); 3172 return ENOBUFS; 3173 } 3174 if (sopt_size > MLEN) { 3175 MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK : 3176 M_NOWAIT); 3177 if ((m->m_flags & M_EXT) == 0) { 3178 m_freem(m); 3179 m_freem(*mp); 3180 return ENOBUFS; 3181 } 3182 m->m_len = min(MCLBYTES, sopt_size); 3183 } else { 3184 m->m_len = min(MLEN, sopt_size); 3185 } 3186 sopt_size -= m->m_len; 3187 m_prev->m_next = m; 3188 m_prev = m; 3189 } 3190 return (0); 3191 } 3192 3193 int 3194 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 3195 { 3196 struct mbuf *m0 = m; 3197 3198 if (sopt->sopt_val == NULL) 3199 return (0); 3200 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 3201 if (sopt->sopt_td != NULL) { 3202 int error; 3203 3204 error = copyin(sopt->sopt_val, mtod(m, char *), 3205 m->m_len); 3206 if (error != 0) { 3207 m_freem(m0); 3208 return(error); 3209 } 3210 } else 3211 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 3212 sopt->sopt_valsize -= m->m_len; 3213 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 3214 m = m->m_next; 3215 } 3216 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 3217 panic("ip6_sooptmcopyin"); 3218 return (0); 3219 } 3220 3221 int 3222 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 3223 { 3224 struct mbuf *m0 = m; 3225 size_t valsize = 0; 3226 3227 if (sopt->sopt_val == NULL) 3228 return (0); 3229 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 3230 if (sopt->sopt_td != NULL) { 3231 int error; 3232 3233 error = copyout(mtod(m, char *), sopt->sopt_val, 3234 m->m_len); 3235 if (error != 0) { 3236 m_freem(m0); 3237 return(error); 3238 } 3239 } else 3240 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 3241 sopt->sopt_valsize -= m->m_len; 3242 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 3243 valsize += m->m_len; 3244 m = m->m_next; 3245 } 3246 if (m != NULL) { 3247 /* enough soopt buffer should be given from user-land */ 3248 m_freem(m0); 3249 return(EINVAL); 3250 } 3251 sopt->sopt_valsize = valsize; 3252 return (0); 3253 } 3254 3255 /* 3256 * sohasoutofband(): protocol notifies socket layer of the arrival of new 3257 * out-of-band data, which will then notify socket consumers. 3258 */ 3259 void 3260 sohasoutofband(struct socket *so) 3261 { 3262 3263 if (so->so_sigio != NULL) 3264 pgsigio(&so->so_sigio, SIGURG, 0); 3265 selwakeuppri(&so->so_rdsel, PSOCK); 3266 } 3267 3268 int 3269 sopoll(struct socket *so, int events, struct ucred *active_cred, 3270 struct thread *td) 3271 { 3272 3273 /* 3274 * We do not need to set or assert curvnet as long as everyone uses 3275 * sopoll_generic(). 3276 */ 3277 return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred, 3278 td)); 3279 } 3280 3281 int 3282 sopoll_generic(struct socket *so, int events, struct ucred *active_cred, 3283 struct thread *td) 3284 { 3285 int revents; 3286 3287 SOCK_LOCK(so); 3288 if (SOLISTENING(so)) { 3289 if (!(events & (POLLIN | POLLRDNORM))) 3290 revents = 0; 3291 else if (!TAILQ_EMPTY(&so->sol_comp)) 3292 revents = events & (POLLIN | POLLRDNORM); 3293 else if ((events & POLLINIGNEOF) == 0 && so->so_error) 3294 revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP; 3295 else { 3296 selrecord(td, &so->so_rdsel); 3297 revents = 0; 3298 } 3299 } else { 3300 revents = 0; 3301 SOCKBUF_LOCK(&so->so_snd); 3302 SOCKBUF_LOCK(&so->so_rcv); 3303 if (events & (POLLIN | POLLRDNORM)) 3304 if (soreadabledata(so)) 3305 revents |= events & (POLLIN | POLLRDNORM); 3306 if (events & (POLLOUT | POLLWRNORM)) 3307 if (sowriteable(so)) 3308 revents |= events & (POLLOUT | POLLWRNORM); 3309 if (events & (POLLPRI | POLLRDBAND)) 3310 if (so->so_oobmark || 3311 (so->so_rcv.sb_state & SBS_RCVATMARK)) 3312 revents |= events & (POLLPRI | POLLRDBAND); 3313 if ((events & POLLINIGNEOF) == 0) { 3314 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3315 revents |= events & (POLLIN | POLLRDNORM); 3316 if (so->so_snd.sb_state & SBS_CANTSENDMORE) 3317 revents |= POLLHUP; 3318 } 3319 } 3320 if (revents == 0) { 3321 if (events & 3322 (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) { 3323 selrecord(td, &so->so_rdsel); 3324 so->so_rcv.sb_flags |= SB_SEL; 3325 } 3326 if (events & (POLLOUT | POLLWRNORM)) { 3327 selrecord(td, &so->so_wrsel); 3328 so->so_snd.sb_flags |= SB_SEL; 3329 } 3330 } 3331 SOCKBUF_UNLOCK(&so->so_rcv); 3332 SOCKBUF_UNLOCK(&so->so_snd); 3333 } 3334 SOCK_UNLOCK(so); 3335 return (revents); 3336 } 3337 3338 int 3339 soo_kqfilter(struct file *fp, struct knote *kn) 3340 { 3341 struct socket *so = kn->kn_fp->f_data; 3342 struct sockbuf *sb; 3343 struct knlist *knl; 3344 3345 switch (kn->kn_filter) { 3346 case EVFILT_READ: 3347 kn->kn_fop = &soread_filtops; 3348 knl = &so->so_rdsel.si_note; 3349 sb = &so->so_rcv; 3350 break; 3351 case EVFILT_WRITE: 3352 kn->kn_fop = &sowrite_filtops; 3353 knl = &so->so_wrsel.si_note; 3354 sb = &so->so_snd; 3355 break; 3356 case EVFILT_EMPTY: 3357 kn->kn_fop = &soempty_filtops; 3358 knl = &so->so_wrsel.si_note; 3359 sb = &so->so_snd; 3360 break; 3361 default: 3362 return (EINVAL); 3363 } 3364 3365 SOCK_LOCK(so); 3366 if (SOLISTENING(so)) { 3367 knlist_add(knl, kn, 1); 3368 } else { 3369 SOCKBUF_LOCK(sb); 3370 knlist_add(knl, kn, 1); 3371 sb->sb_flags |= SB_KNOTE; 3372 SOCKBUF_UNLOCK(sb); 3373 } 3374 SOCK_UNLOCK(so); 3375 return (0); 3376 } 3377 3378 /* 3379 * Some routines that return EOPNOTSUPP for entry points that are not 3380 * supported by a protocol. Fill in as needed. 3381 */ 3382 int 3383 pru_accept_notsupp(struct socket *so, struct sockaddr **nam) 3384 { 3385 3386 return EOPNOTSUPP; 3387 } 3388 3389 int 3390 pru_aio_queue_notsupp(struct socket *so, struct kaiocb *job) 3391 { 3392 3393 return EOPNOTSUPP; 3394 } 3395 3396 int 3397 pru_attach_notsupp(struct socket *so, int proto, struct thread *td) 3398 { 3399 3400 return EOPNOTSUPP; 3401 } 3402 3403 int 3404 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 3405 { 3406 3407 return EOPNOTSUPP; 3408 } 3409 3410 int 3411 pru_bindat_notsupp(int fd, struct socket *so, struct sockaddr *nam, 3412 struct thread *td) 3413 { 3414 3415 return EOPNOTSUPP; 3416 } 3417 3418 int 3419 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 3420 { 3421 3422 return EOPNOTSUPP; 3423 } 3424 3425 int 3426 pru_connectat_notsupp(int fd, struct socket *so, struct sockaddr *nam, 3427 struct thread *td) 3428 { 3429 3430 return EOPNOTSUPP; 3431 } 3432 3433 int 3434 pru_connect2_notsupp(struct socket *so1, struct socket *so2) 3435 { 3436 3437 return EOPNOTSUPP; 3438 } 3439 3440 int 3441 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, 3442 struct ifnet *ifp, struct thread *td) 3443 { 3444 3445 return EOPNOTSUPP; 3446 } 3447 3448 int 3449 pru_disconnect_notsupp(struct socket *so) 3450 { 3451 3452 return EOPNOTSUPP; 3453 } 3454 3455 int 3456 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td) 3457 { 3458 3459 return EOPNOTSUPP; 3460 } 3461 3462 int 3463 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam) 3464 { 3465 3466 return EOPNOTSUPP; 3467 } 3468 3469 int 3470 pru_rcvd_notsupp(struct socket *so, int flags) 3471 { 3472 3473 return EOPNOTSUPP; 3474 } 3475 3476 int 3477 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) 3478 { 3479 3480 return EOPNOTSUPP; 3481 } 3482 3483 int 3484 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m, 3485 struct sockaddr *addr, struct mbuf *control, struct thread *td) 3486 { 3487 3488 return EOPNOTSUPP; 3489 } 3490 3491 int 3492 pru_ready_notsupp(struct socket *so, struct mbuf *m, int count) 3493 { 3494 3495 return (EOPNOTSUPP); 3496 } 3497 3498 /* 3499 * This isn't really a ``null'' operation, but it's the default one and 3500 * doesn't do anything destructive. 3501 */ 3502 int 3503 pru_sense_null(struct socket *so, struct stat *sb) 3504 { 3505 3506 sb->st_blksize = so->so_snd.sb_hiwat; 3507 return 0; 3508 } 3509 3510 int 3511 pru_shutdown_notsupp(struct socket *so) 3512 { 3513 3514 return EOPNOTSUPP; 3515 } 3516 3517 int 3518 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam) 3519 { 3520 3521 return EOPNOTSUPP; 3522 } 3523 3524 int 3525 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio, 3526 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 3527 { 3528 3529 return EOPNOTSUPP; 3530 } 3531 3532 int 3533 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr, 3534 struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 3535 { 3536 3537 return EOPNOTSUPP; 3538 } 3539 3540 int 3541 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred, 3542 struct thread *td) 3543 { 3544 3545 return EOPNOTSUPP; 3546 } 3547 3548 static void 3549 filt_sordetach(struct knote *kn) 3550 { 3551 struct socket *so = kn->kn_fp->f_data; 3552 3553 so_rdknl_lock(so); 3554 knlist_remove(&so->so_rdsel.si_note, kn, 1); 3555 if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note)) 3556 so->so_rcv.sb_flags &= ~SB_KNOTE; 3557 so_rdknl_unlock(so); 3558 } 3559 3560 /*ARGSUSED*/ 3561 static int 3562 filt_soread(struct knote *kn, long hint) 3563 { 3564 struct socket *so; 3565 3566 so = kn->kn_fp->f_data; 3567 3568 if (SOLISTENING(so)) { 3569 SOCK_LOCK_ASSERT(so); 3570 kn->kn_data = so->sol_qlen; 3571 if (so->so_error) { 3572 kn->kn_flags |= EV_EOF; 3573 kn->kn_fflags = so->so_error; 3574 return (1); 3575 } 3576 return (!TAILQ_EMPTY(&so->sol_comp)); 3577 } 3578 3579 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 3580 3581 kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl; 3582 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3583 kn->kn_flags |= EV_EOF; 3584 kn->kn_fflags = so->so_error; 3585 return (1); 3586 } else if (so->so_error) /* temporary udp error */ 3587 return (1); 3588 3589 if (kn->kn_sfflags & NOTE_LOWAT) { 3590 if (kn->kn_data >= kn->kn_sdata) 3591 return (1); 3592 } else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat) 3593 return (1); 3594 3595 /* This hook returning non-zero indicates an event, not error */ 3596 return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD)); 3597 } 3598 3599 static void 3600 filt_sowdetach(struct knote *kn) 3601 { 3602 struct socket *so = kn->kn_fp->f_data; 3603 3604 so_wrknl_lock(so); 3605 knlist_remove(&so->so_wrsel.si_note, kn, 1); 3606 if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note)) 3607 so->so_snd.sb_flags &= ~SB_KNOTE; 3608 so_wrknl_unlock(so); 3609 } 3610 3611 /*ARGSUSED*/ 3612 static int 3613 filt_sowrite(struct knote *kn, long hint) 3614 { 3615 struct socket *so; 3616 3617 so = kn->kn_fp->f_data; 3618 3619 if (SOLISTENING(so)) 3620 return (0); 3621 3622 SOCKBUF_LOCK_ASSERT(&so->so_snd); 3623 kn->kn_data = sbspace(&so->so_snd); 3624 3625 hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE); 3626 3627 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 3628 kn->kn_flags |= EV_EOF; 3629 kn->kn_fflags = so->so_error; 3630 return (1); 3631 } else if (so->so_error) /* temporary udp error */ 3632 return (1); 3633 else if (((so->so_state & SS_ISCONNECTED) == 0) && 3634 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 3635 return (0); 3636 else if (kn->kn_sfflags & NOTE_LOWAT) 3637 return (kn->kn_data >= kn->kn_sdata); 3638 else 3639 return (kn->kn_data >= so->so_snd.sb_lowat); 3640 } 3641 3642 static int 3643 filt_soempty(struct knote *kn, long hint) 3644 { 3645 struct socket *so; 3646 3647 so = kn->kn_fp->f_data; 3648 3649 if (SOLISTENING(so)) 3650 return (1); 3651 3652 SOCKBUF_LOCK_ASSERT(&so->so_snd); 3653 kn->kn_data = sbused(&so->so_snd); 3654 3655 if (kn->kn_data == 0) 3656 return (1); 3657 else 3658 return (0); 3659 } 3660 3661 int 3662 socheckuid(struct socket *so, uid_t uid) 3663 { 3664 3665 if (so == NULL) 3666 return (EPERM); 3667 if (so->so_cred->cr_uid != uid) 3668 return (EPERM); 3669 return (0); 3670 } 3671 3672 /* 3673 * These functions are used by protocols to notify the socket layer (and its 3674 * consumers) of state changes in the sockets driven by protocol-side events. 3675 */ 3676 3677 /* 3678 * Procedures to manipulate state flags of socket and do appropriate wakeups. 3679 * 3680 * Normal sequence from the active (originating) side is that 3681 * soisconnecting() is called during processing of connect() call, resulting 3682 * in an eventual call to soisconnected() if/when the connection is 3683 * established. When the connection is torn down soisdisconnecting() is 3684 * called during processing of disconnect() call, and soisdisconnected() is 3685 * called when the connection to the peer is totally severed. The semantics 3686 * of these routines are such that connectionless protocols can call 3687 * soisconnected() and soisdisconnected() only, bypassing the in-progress 3688 * calls when setting up a ``connection'' takes no time. 3689 * 3690 * From the passive side, a socket is created with two queues of sockets: 3691 * so_incomp for connections in progress and so_comp for connections already 3692 * made and awaiting user acceptance. As a protocol is preparing incoming 3693 * connections, it creates a socket structure queued on so_incomp by calling 3694 * sonewconn(). When the connection is established, soisconnected() is 3695 * called, and transfers the socket structure to so_comp, making it available 3696 * to accept(). 3697 * 3698 * If a socket is closed with sockets on either so_incomp or so_comp, these 3699 * sockets are dropped. 3700 * 3701 * If higher-level protocols are implemented in the kernel, the wakeups done 3702 * here will sometimes cause software-interrupt process scheduling. 3703 */ 3704 void 3705 soisconnecting(struct socket *so) 3706 { 3707 3708 SOCK_LOCK(so); 3709 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 3710 so->so_state |= SS_ISCONNECTING; 3711 SOCK_UNLOCK(so); 3712 } 3713 3714 void 3715 soisconnected(struct socket *so) 3716 { 3717 3718 SOCK_LOCK(so); 3719 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 3720 so->so_state |= SS_ISCONNECTED; 3721 3722 if (so->so_qstate == SQ_INCOMP) { 3723 struct socket *head = so->so_listen; 3724 int ret; 3725 3726 KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so)); 3727 /* 3728 * Promoting a socket from incomplete queue to complete, we 3729 * need to go through reverse order of locking. We first do 3730 * trylock, and if that doesn't succeed, we go the hard way 3731 * leaving a reference and rechecking consistency after proper 3732 * locking. 3733 */ 3734 if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) { 3735 soref(head); 3736 SOCK_UNLOCK(so); 3737 SOLISTEN_LOCK(head); 3738 SOCK_LOCK(so); 3739 if (__predict_false(head != so->so_listen)) { 3740 /* 3741 * The socket went off the listen queue, 3742 * should be lost race to close(2) of sol. 3743 * The socket is about to soabort(). 3744 */ 3745 SOCK_UNLOCK(so); 3746 sorele(head); 3747 return; 3748 } 3749 /* Not the last one, as so holds a ref. */ 3750 refcount_release(&head->so_count); 3751 } 3752 again: 3753 if ((so->so_options & SO_ACCEPTFILTER) == 0) { 3754 TAILQ_REMOVE(&head->sol_incomp, so, so_list); 3755 head->sol_incqlen--; 3756 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 3757 head->sol_qlen++; 3758 so->so_qstate = SQ_COMP; 3759 SOCK_UNLOCK(so); 3760 solisten_wakeup(head); /* unlocks */ 3761 } else { 3762 SOCKBUF_LOCK(&so->so_rcv); 3763 soupcall_set(so, SO_RCV, 3764 head->sol_accept_filter->accf_callback, 3765 head->sol_accept_filter_arg); 3766 so->so_options &= ~SO_ACCEPTFILTER; 3767 ret = head->sol_accept_filter->accf_callback(so, 3768 head->sol_accept_filter_arg, M_NOWAIT); 3769 if (ret == SU_ISCONNECTED) { 3770 soupcall_clear(so, SO_RCV); 3771 SOCKBUF_UNLOCK(&so->so_rcv); 3772 goto again; 3773 } 3774 SOCKBUF_UNLOCK(&so->so_rcv); 3775 SOCK_UNLOCK(so); 3776 SOLISTEN_UNLOCK(head); 3777 } 3778 return; 3779 } 3780 SOCK_UNLOCK(so); 3781 wakeup(&so->so_timeo); 3782 sorwakeup(so); 3783 sowwakeup(so); 3784 } 3785 3786 void 3787 soisdisconnecting(struct socket *so) 3788 { 3789 3790 SOCK_LOCK(so); 3791 so->so_state &= ~SS_ISCONNECTING; 3792 so->so_state |= SS_ISDISCONNECTING; 3793 3794 if (!SOLISTENING(so)) { 3795 SOCKBUF_LOCK(&so->so_rcv); 3796 socantrcvmore_locked(so); 3797 SOCKBUF_LOCK(&so->so_snd); 3798 socantsendmore_locked(so); 3799 } 3800 SOCK_UNLOCK(so); 3801 wakeup(&so->so_timeo); 3802 } 3803 3804 void 3805 soisdisconnected(struct socket *so) 3806 { 3807 3808 SOCK_LOCK(so); 3809 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 3810 so->so_state |= SS_ISDISCONNECTED; 3811 3812 if (!SOLISTENING(so)) { 3813 SOCK_UNLOCK(so); 3814 SOCKBUF_LOCK(&so->so_rcv); 3815 socantrcvmore_locked(so); 3816 SOCKBUF_LOCK(&so->so_snd); 3817 sbdrop_locked(&so->so_snd, sbused(&so->so_snd)); 3818 socantsendmore_locked(so); 3819 } else 3820 SOCK_UNLOCK(so); 3821 wakeup(&so->so_timeo); 3822 } 3823 3824 /* 3825 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 3826 */ 3827 struct sockaddr * 3828 sodupsockaddr(const struct sockaddr *sa, int mflags) 3829 { 3830 struct sockaddr *sa2; 3831 3832 sa2 = malloc(sa->sa_len, M_SONAME, mflags); 3833 if (sa2) 3834 bcopy(sa, sa2, sa->sa_len); 3835 return sa2; 3836 } 3837 3838 /* 3839 * Register per-socket destructor. 3840 */ 3841 void 3842 sodtor_set(struct socket *so, so_dtor_t *func) 3843 { 3844 3845 SOCK_LOCK_ASSERT(so); 3846 so->so_dtor = func; 3847 } 3848 3849 /* 3850 * Register per-socket buffer upcalls. 3851 */ 3852 void 3853 soupcall_set(struct socket *so, int which, so_upcall_t func, void *arg) 3854 { 3855 struct sockbuf *sb; 3856 3857 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 3858 3859 switch (which) { 3860 case SO_RCV: 3861 sb = &so->so_rcv; 3862 break; 3863 case SO_SND: 3864 sb = &so->so_snd; 3865 break; 3866 default: 3867 panic("soupcall_set: bad which"); 3868 } 3869 SOCKBUF_LOCK_ASSERT(sb); 3870 sb->sb_upcall = func; 3871 sb->sb_upcallarg = arg; 3872 sb->sb_flags |= SB_UPCALL; 3873 } 3874 3875 void 3876 soupcall_clear(struct socket *so, int which) 3877 { 3878 struct sockbuf *sb; 3879 3880 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 3881 3882 switch (which) { 3883 case SO_RCV: 3884 sb = &so->so_rcv; 3885 break; 3886 case SO_SND: 3887 sb = &so->so_snd; 3888 break; 3889 default: 3890 panic("soupcall_clear: bad which"); 3891 } 3892 SOCKBUF_LOCK_ASSERT(sb); 3893 KASSERT(sb->sb_upcall != NULL, 3894 ("%s: so %p no upcall to clear", __func__, so)); 3895 sb->sb_upcall = NULL; 3896 sb->sb_upcallarg = NULL; 3897 sb->sb_flags &= ~SB_UPCALL; 3898 } 3899 3900 void 3901 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg) 3902 { 3903 3904 SOLISTEN_LOCK_ASSERT(so); 3905 so->sol_upcall = func; 3906 so->sol_upcallarg = arg; 3907 } 3908 3909 static void 3910 so_rdknl_lock(void *arg) 3911 { 3912 struct socket *so = arg; 3913 3914 if (SOLISTENING(so)) 3915 SOCK_LOCK(so); 3916 else 3917 SOCKBUF_LOCK(&so->so_rcv); 3918 } 3919 3920 static void 3921 so_rdknl_unlock(void *arg) 3922 { 3923 struct socket *so = arg; 3924 3925 if (SOLISTENING(so)) 3926 SOCK_UNLOCK(so); 3927 else 3928 SOCKBUF_UNLOCK(&so->so_rcv); 3929 } 3930 3931 static void 3932 so_rdknl_assert_locked(void *arg) 3933 { 3934 struct socket *so = arg; 3935 3936 if (SOLISTENING(so)) 3937 SOCK_LOCK_ASSERT(so); 3938 else 3939 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 3940 } 3941 3942 static void 3943 so_rdknl_assert_unlocked(void *arg) 3944 { 3945 struct socket *so = arg; 3946 3947 if (SOLISTENING(so)) 3948 SOCK_UNLOCK_ASSERT(so); 3949 else 3950 SOCKBUF_UNLOCK_ASSERT(&so->so_rcv); 3951 } 3952 3953 static void 3954 so_wrknl_lock(void *arg) 3955 { 3956 struct socket *so = arg; 3957 3958 if (SOLISTENING(so)) 3959 SOCK_LOCK(so); 3960 else 3961 SOCKBUF_LOCK(&so->so_snd); 3962 } 3963 3964 static void 3965 so_wrknl_unlock(void *arg) 3966 { 3967 struct socket *so = arg; 3968 3969 if (SOLISTENING(so)) 3970 SOCK_UNLOCK(so); 3971 else 3972 SOCKBUF_UNLOCK(&so->so_snd); 3973 } 3974 3975 static void 3976 so_wrknl_assert_locked(void *arg) 3977 { 3978 struct socket *so = arg; 3979 3980 if (SOLISTENING(so)) 3981 SOCK_LOCK_ASSERT(so); 3982 else 3983 SOCKBUF_LOCK_ASSERT(&so->so_snd); 3984 } 3985 3986 static void 3987 so_wrknl_assert_unlocked(void *arg) 3988 { 3989 struct socket *so = arg; 3990 3991 if (SOLISTENING(so)) 3992 SOCK_UNLOCK_ASSERT(so); 3993 else 3994 SOCKBUF_UNLOCK_ASSERT(&so->so_snd); 3995 } 3996 3997 /* 3998 * Create an external-format (``xsocket'') structure using the information in 3999 * the kernel-format socket structure pointed to by so. This is done to 4000 * reduce the spew of irrelevant information over this interface, to isolate 4001 * user code from changes in the kernel structure, and potentially to provide 4002 * information-hiding if we decide that some of this information should be 4003 * hidden from users. 4004 */ 4005 void 4006 sotoxsocket(struct socket *so, struct xsocket *xso) 4007 { 4008 4009 xso->xso_len = sizeof *xso; 4010 xso->xso_so = (uintptr_t)so; 4011 xso->so_type = so->so_type; 4012 xso->so_options = so->so_options; 4013 xso->so_linger = so->so_linger; 4014 xso->so_state = so->so_state; 4015 xso->so_pcb = (uintptr_t)so->so_pcb; 4016 xso->xso_protocol = so->so_proto->pr_protocol; 4017 xso->xso_family = so->so_proto->pr_domain->dom_family; 4018 xso->so_timeo = so->so_timeo; 4019 xso->so_error = so->so_error; 4020 xso->so_uid = so->so_cred->cr_uid; 4021 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 4022 if (SOLISTENING(so)) { 4023 xso->so_qlen = so->sol_qlen; 4024 xso->so_incqlen = so->sol_incqlen; 4025 xso->so_qlimit = so->sol_qlimit; 4026 xso->so_oobmark = 0; 4027 bzero(&xso->so_snd, sizeof(xso->so_snd)); 4028 bzero(&xso->so_rcv, sizeof(xso->so_rcv)); 4029 } else { 4030 xso->so_state |= so->so_qstate; 4031 xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0; 4032 xso->so_oobmark = so->so_oobmark; 4033 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 4034 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 4035 } 4036 } 4037 4038 struct sockbuf * 4039 so_sockbuf_rcv(struct socket *so) 4040 { 4041 4042 return (&so->so_rcv); 4043 } 4044 4045 struct sockbuf * 4046 so_sockbuf_snd(struct socket *so) 4047 { 4048 4049 return (&so->so_snd); 4050 } 4051 4052 int 4053 so_state_get(const struct socket *so) 4054 { 4055 4056 return (so->so_state); 4057 } 4058 4059 void 4060 so_state_set(struct socket *so, int val) 4061 { 4062 4063 so->so_state = val; 4064 } 4065 4066 int 4067 so_options_get(const struct socket *so) 4068 { 4069 4070 return (so->so_options); 4071 } 4072 4073 void 4074 so_options_set(struct socket *so, int val) 4075 { 4076 4077 so->so_options = val; 4078 } 4079 4080 int 4081 so_error_get(const struct socket *so) 4082 { 4083 4084 return (so->so_error); 4085 } 4086 4087 void 4088 so_error_set(struct socket *so, int val) 4089 { 4090 4091 so->so_error = val; 4092 } 4093 4094 int 4095 so_linger_get(const struct socket *so) 4096 { 4097 4098 return (so->so_linger); 4099 } 4100 4101 void 4102 so_linger_set(struct socket *so, int val) 4103 { 4104 4105 so->so_linger = val; 4106 } 4107 4108 struct protosw * 4109 so_protosw_get(const struct socket *so) 4110 { 4111 4112 return (so->so_proto); 4113 } 4114 4115 void 4116 so_protosw_set(struct socket *so, struct protosw *val) 4117 { 4118 4119 so->so_proto = val; 4120 } 4121 4122 void 4123 so_sorwakeup(struct socket *so) 4124 { 4125 4126 sorwakeup(so); 4127 } 4128 4129 void 4130 so_sowwakeup(struct socket *so) 4131 { 4132 4133 sowwakeup(so); 4134 } 4135 4136 void 4137 so_sorwakeup_locked(struct socket *so) 4138 { 4139 4140 sorwakeup_locked(so); 4141 } 4142 4143 void 4144 so_sowwakeup_locked(struct socket *so) 4145 { 4146 4147 sowwakeup_locked(so); 4148 } 4149 4150 void 4151 so_lock(struct socket *so) 4152 { 4153 4154 SOCK_LOCK(so); 4155 } 4156 4157 void 4158 so_unlock(struct socket *so) 4159 { 4160 4161 SOCK_UNLOCK(so); 4162 } 4163