1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. 6 * Copyright (c) 2004 The FreeBSD Foundation 7 * Copyright (c) 2004-2008 Robert N. M. Watson 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 35 */ 36 37 /* 38 * Comments on the socket life cycle: 39 * 40 * soalloc() sets of socket layer state for a socket, called only by 41 * socreate() and sonewconn(). Socket layer private. 42 * 43 * sodealloc() tears down socket layer state for a socket, called only by 44 * sofree() and sonewconn(). Socket layer private. 45 * 46 * pru_attach() associates protocol layer state with an allocated socket; 47 * called only once, may fail, aborting socket allocation. This is called 48 * from socreate() and sonewconn(). Socket layer private. 49 * 50 * pru_detach() disassociates protocol layer state from an attached socket, 51 * and will be called exactly once for sockets in which pru_attach() has 52 * been successfully called. If pru_attach() returned an error, 53 * pru_detach() will not be called. Socket layer private. 54 * 55 * pru_abort() and pru_close() notify the protocol layer that the last 56 * consumer of a socket is starting to tear down the socket, and that the 57 * protocol should terminate the connection. Historically, pru_abort() also 58 * detached protocol state from the socket state, but this is no longer the 59 * case. 60 * 61 * socreate() creates a socket and attaches protocol state. This is a public 62 * interface that may be used by socket layer consumers to create new 63 * sockets. 64 * 65 * sonewconn() creates a socket and attaches protocol state. This is a 66 * public interface that may be used by protocols to create new sockets when 67 * a new connection is received and will be available for accept() on a 68 * listen socket. 69 * 70 * soclose() destroys a socket after possibly waiting for it to disconnect. 71 * This is a public interface that socket consumers should use to close and 72 * release a socket when done with it. 73 * 74 * soabort() destroys a socket without waiting for it to disconnect (used 75 * only for incoming connections that are already partially or fully 76 * connected). This is used internally by the socket layer when clearing 77 * listen socket queues (due to overflow or close on the listen socket), but 78 * is also a public interface protocols may use to abort connections in 79 * their incomplete listen queues should they no longer be required. Sockets 80 * placed in completed connection listen queues should not be aborted for 81 * reasons described in the comment above the soclose() implementation. This 82 * is not a general purpose close routine, and except in the specific 83 * circumstances described here, should not be used. 84 * 85 * sofree() will free a socket and its protocol state if all references on 86 * the socket have been released, and is the public interface to attempt to 87 * free a socket when a reference is removed. This is a socket layer private 88 * interface. 89 * 90 * NOTE: In addition to socreate() and soclose(), which provide a single 91 * socket reference to the consumer to be managed as required, there are two 92 * calls to explicitly manage socket references, soref(), and sorele(). 93 * Currently, these are generally required only when transitioning a socket 94 * from a listen queue to a file descriptor, in order to prevent garbage 95 * collection of the socket at an untimely moment. For a number of reasons, 96 * these interfaces are not preferred, and should be avoided. 97 * 98 * NOTE: With regard to VNETs the general rule is that callers do not set 99 * curvnet. Exceptions to this rule include soabort(), sodisconnect(), 100 * sofree() (and with that sorele(), sotryfree()), as well as sonewconn() 101 * and sorflush(), which are usually called from a pre-set VNET context. 102 * sopoll() currently does not need a VNET context to be set. 103 */ 104 105 #include <sys/cdefs.h> 106 __FBSDID("$FreeBSD$"); 107 108 #include "opt_inet.h" 109 #include "opt_inet6.h" 110 #include "opt_kern_tls.h" 111 #include "opt_sctp.h" 112 113 #include <sys/param.h> 114 #include <sys/systm.h> 115 #include <sys/capsicum.h> 116 #include <sys/fcntl.h> 117 #include <sys/limits.h> 118 #include <sys/lock.h> 119 #include <sys/mac.h> 120 #include <sys/malloc.h> 121 #include <sys/mbuf.h> 122 #include <sys/mutex.h> 123 #include <sys/domain.h> 124 #include <sys/file.h> /* for struct knote */ 125 #include <sys/hhook.h> 126 #include <sys/kernel.h> 127 #include <sys/khelp.h> 128 #include <sys/ktls.h> 129 #include <sys/event.h> 130 #include <sys/eventhandler.h> 131 #include <sys/poll.h> 132 #include <sys/proc.h> 133 #include <sys/protosw.h> 134 #include <sys/sbuf.h> 135 #include <sys/socket.h> 136 #include <sys/socketvar.h> 137 #include <sys/resourcevar.h> 138 #include <net/route.h> 139 #include <sys/signalvar.h> 140 #include <sys/stat.h> 141 #include <sys/sx.h> 142 #include <sys/sysctl.h> 143 #include <sys/taskqueue.h> 144 #include <sys/uio.h> 145 #include <sys/un.h> 146 #include <sys/unpcb.h> 147 #include <sys/jail.h> 148 #include <sys/syslog.h> 149 #include <netinet/in.h> 150 #include <netinet/in_pcb.h> 151 #include <netinet/tcp.h> 152 153 #include <net/vnet.h> 154 155 #include <security/mac/mac_framework.h> 156 157 #include <vm/uma.h> 158 159 #ifdef COMPAT_FREEBSD32 160 #include <sys/mount.h> 161 #include <sys/sysent.h> 162 #include <compat/freebsd32/freebsd32.h> 163 #endif 164 165 static int soreceive_rcvoob(struct socket *so, struct uio *uio, 166 int flags); 167 static void so_rdknl_lock(void *); 168 static void so_rdknl_unlock(void *); 169 static void so_rdknl_assert_lock(void *, int); 170 static void so_wrknl_lock(void *); 171 static void so_wrknl_unlock(void *); 172 static void so_wrknl_assert_lock(void *, int); 173 174 static void filt_sordetach(struct knote *kn); 175 static int filt_soread(struct knote *kn, long hint); 176 static void filt_sowdetach(struct knote *kn); 177 static int filt_sowrite(struct knote *kn, long hint); 178 static int filt_soempty(struct knote *kn, long hint); 179 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id); 180 fo_kqfilter_t soo_kqfilter; 181 182 static struct filterops soread_filtops = { 183 .f_isfd = 1, 184 .f_detach = filt_sordetach, 185 .f_event = filt_soread, 186 }; 187 static struct filterops sowrite_filtops = { 188 .f_isfd = 1, 189 .f_detach = filt_sowdetach, 190 .f_event = filt_sowrite, 191 }; 192 static struct filterops soempty_filtops = { 193 .f_isfd = 1, 194 .f_detach = filt_sowdetach, 195 .f_event = filt_soempty, 196 }; 197 198 so_gen_t so_gencnt; /* generation count for sockets */ 199 200 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 201 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 202 203 #define VNET_SO_ASSERT(so) \ 204 VNET_ASSERT(curvnet != NULL, \ 205 ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so))); 206 207 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]); 208 #define V_socket_hhh VNET(socket_hhh) 209 210 /* 211 * Limit on the number of connections in the listen queue waiting 212 * for accept(2). 213 * NB: The original sysctl somaxconn is still available but hidden 214 * to prevent confusion about the actual purpose of this number. 215 */ 216 static u_int somaxconn = SOMAXCONN; 217 218 static int 219 sysctl_somaxconn(SYSCTL_HANDLER_ARGS) 220 { 221 int error; 222 int val; 223 224 val = somaxconn; 225 error = sysctl_handle_int(oidp, &val, 0, req); 226 if (error || !req->newptr ) 227 return (error); 228 229 /* 230 * The purpose of the UINT_MAX / 3 limit, is so that the formula 231 * 3 * so_qlimit / 2 232 * below, will not overflow. 233 */ 234 235 if (val < 1 || val > UINT_MAX / 3) 236 return (EINVAL); 237 238 somaxconn = val; 239 return (0); 240 } 241 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue, 242 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 0, sizeof(int), 243 sysctl_somaxconn, "I", 244 "Maximum listen socket pending connection accept queue size"); 245 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, 246 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_NEEDGIANT, 0, 247 sizeof(int), sysctl_somaxconn, "I", 248 "Maximum listen socket pending connection accept queue size (compat)"); 249 250 static int numopensockets; 251 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, 252 &numopensockets, 0, "Number of open sockets"); 253 254 /* 255 * accept_mtx locks down per-socket fields relating to accept queues. See 256 * socketvar.h for an annotation of the protected fields of struct socket. 257 */ 258 struct mtx accept_mtx; 259 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF); 260 261 /* 262 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket 263 * so_gencnt field. 264 */ 265 static struct mtx so_global_mtx; 266 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); 267 268 /* 269 * General IPC sysctl name space, used by sockets and a variety of other IPC 270 * types. 271 */ 272 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 273 "IPC"); 274 275 /* 276 * Initialize the socket subsystem and set up the socket 277 * memory allocator. 278 */ 279 static uma_zone_t socket_zone; 280 int maxsockets; 281 282 static void 283 socket_zone_change(void *tag) 284 { 285 286 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 287 } 288 289 static void 290 socket_hhook_register(int subtype) 291 { 292 293 if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype, 294 &V_socket_hhh[subtype], 295 HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 296 printf("%s: WARNING: unable to register hook\n", __func__); 297 } 298 299 static void 300 socket_hhook_deregister(int subtype) 301 { 302 303 if (hhook_head_deregister(V_socket_hhh[subtype]) != 0) 304 printf("%s: WARNING: unable to deregister hook\n", __func__); 305 } 306 307 static void 308 socket_init(void *tag) 309 { 310 311 socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL, 312 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 313 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 314 uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached"); 315 EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL, 316 EVENTHANDLER_PRI_FIRST); 317 } 318 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL); 319 320 static void 321 socket_vnet_init(const void *unused __unused) 322 { 323 int i; 324 325 /* We expect a contiguous range */ 326 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 327 socket_hhook_register(i); 328 } 329 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 330 socket_vnet_init, NULL); 331 332 static void 333 socket_vnet_uninit(const void *unused __unused) 334 { 335 int i; 336 337 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 338 socket_hhook_deregister(i); 339 } 340 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 341 socket_vnet_uninit, NULL); 342 343 /* 344 * Initialise maxsockets. This SYSINIT must be run after 345 * tunable_mbinit(). 346 */ 347 static void 348 init_maxsockets(void *ignored) 349 { 350 351 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 352 maxsockets = imax(maxsockets, maxfiles); 353 } 354 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 355 356 /* 357 * Sysctl to get and set the maximum global sockets limit. Notify protocols 358 * of the change so that they can update their dependent limits as required. 359 */ 360 static int 361 sysctl_maxsockets(SYSCTL_HANDLER_ARGS) 362 { 363 int error, newmaxsockets; 364 365 newmaxsockets = maxsockets; 366 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req); 367 if (error == 0 && req->newptr) { 368 if (newmaxsockets > maxsockets && 369 newmaxsockets <= maxfiles) { 370 maxsockets = newmaxsockets; 371 EVENTHANDLER_INVOKE(maxsockets_change); 372 } else 373 error = EINVAL; 374 } 375 return (error); 376 } 377 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, 378 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &maxsockets, 0, 379 sysctl_maxsockets, "IU", 380 "Maximum number of sockets available"); 381 382 /* 383 * Socket operation routines. These routines are called by the routines in 384 * sys_socket.c or from a system process, and implement the semantics of 385 * socket operations by switching out to the protocol specific routines. 386 */ 387 388 /* 389 * Get a socket structure from our zone, and initialize it. Note that it 390 * would probably be better to allocate socket and PCB at the same time, but 391 * I'm not convinced that all the protocols can be easily modified to do 392 * this. 393 * 394 * soalloc() returns a socket with a ref count of 0. 395 */ 396 static struct socket * 397 soalloc(struct vnet *vnet) 398 { 399 struct socket *so; 400 401 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO); 402 if (so == NULL) 403 return (NULL); 404 #ifdef MAC 405 if (mac_socket_init(so, M_NOWAIT) != 0) { 406 uma_zfree(socket_zone, so); 407 return (NULL); 408 } 409 #endif 410 if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) { 411 uma_zfree(socket_zone, so); 412 return (NULL); 413 } 414 415 /* 416 * The socket locking protocol allows to lock 2 sockets at a time, 417 * however, the first one must be a listening socket. WITNESS lacks 418 * a feature to change class of an existing lock, so we use DUPOK. 419 */ 420 mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK); 421 so->so_snd.sb_mtx = &so->so_snd_mtx; 422 so->so_rcv.sb_mtx = &so->so_rcv_mtx; 423 SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd"); 424 SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv"); 425 so->so_rcv.sb_sel = &so->so_rdsel; 426 so->so_snd.sb_sel = &so->so_wrsel; 427 sx_init(&so->so_snd_sx, "so_snd_sx"); 428 sx_init(&so->so_rcv_sx, "so_rcv_sx"); 429 TAILQ_INIT(&so->so_snd.sb_aiojobq); 430 TAILQ_INIT(&so->so_rcv.sb_aiojobq); 431 TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so); 432 TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so); 433 #ifdef VIMAGE 434 VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p", 435 __func__, __LINE__, so)); 436 so->so_vnet = vnet; 437 #endif 438 /* We shouldn't need the so_global_mtx */ 439 if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) { 440 /* Do we need more comprehensive error returns? */ 441 uma_zfree(socket_zone, so); 442 return (NULL); 443 } 444 mtx_lock(&so_global_mtx); 445 so->so_gencnt = ++so_gencnt; 446 ++numopensockets; 447 #ifdef VIMAGE 448 vnet->vnet_sockcnt++; 449 #endif 450 mtx_unlock(&so_global_mtx); 451 452 return (so); 453 } 454 455 /* 456 * Free the storage associated with a socket at the socket layer, tear down 457 * locks, labels, etc. All protocol state is assumed already to have been 458 * torn down (and possibly never set up) by the caller. 459 */ 460 static void 461 sodealloc(struct socket *so) 462 { 463 464 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); 465 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL")); 466 467 mtx_lock(&so_global_mtx); 468 so->so_gencnt = ++so_gencnt; 469 --numopensockets; /* Could be below, but faster here. */ 470 #ifdef VIMAGE 471 VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p", 472 __func__, __LINE__, so)); 473 so->so_vnet->vnet_sockcnt--; 474 #endif 475 mtx_unlock(&so_global_mtx); 476 #ifdef MAC 477 mac_socket_destroy(so); 478 #endif 479 hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE); 480 481 khelp_destroy_osd(&so->osd); 482 if (SOLISTENING(so)) { 483 if (so->sol_accept_filter != NULL) 484 accept_filt_setopt(so, NULL); 485 } else { 486 if (so->so_rcv.sb_hiwat) 487 (void)chgsbsize(so->so_cred->cr_uidinfo, 488 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 489 if (so->so_snd.sb_hiwat) 490 (void)chgsbsize(so->so_cred->cr_uidinfo, 491 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 492 sx_destroy(&so->so_snd_sx); 493 sx_destroy(&so->so_rcv_sx); 494 SOCKBUF_LOCK_DESTROY(&so->so_snd); 495 SOCKBUF_LOCK_DESTROY(&so->so_rcv); 496 } 497 crfree(so->so_cred); 498 mtx_destroy(&so->so_lock); 499 uma_zfree(socket_zone, so); 500 } 501 502 /* 503 * socreate returns a socket with a ref count of 1. The socket should be 504 * closed with soclose(). 505 */ 506 int 507 socreate(int dom, struct socket **aso, int type, int proto, 508 struct ucred *cred, struct thread *td) 509 { 510 struct protosw *prp; 511 struct socket *so; 512 int error; 513 514 if (proto) 515 prp = pffindproto(dom, proto, type); 516 else 517 prp = pffindtype(dom, type); 518 519 if (prp == NULL) { 520 /* No support for domain. */ 521 if (pffinddomain(dom) == NULL) 522 return (EAFNOSUPPORT); 523 /* No support for socket type. */ 524 if (proto == 0 && type != 0) 525 return (EPROTOTYPE); 526 return (EPROTONOSUPPORT); 527 } 528 if (prp->pr_usrreqs->pru_attach == NULL || 529 prp->pr_usrreqs->pru_attach == pru_attach_notsupp) 530 return (EPROTONOSUPPORT); 531 532 if (IN_CAPABILITY_MODE(td) && (prp->pr_flags & PR_CAPATTACH) == 0) 533 return (ECAPMODE); 534 535 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0) 536 return (EPROTONOSUPPORT); 537 538 if (prp->pr_type != type) 539 return (EPROTOTYPE); 540 so = soalloc(CRED_TO_VNET(cred)); 541 if (so == NULL) 542 return (ENOBUFS); 543 544 so->so_type = type; 545 so->so_cred = crhold(cred); 546 if ((prp->pr_domain->dom_family == PF_INET) || 547 (prp->pr_domain->dom_family == PF_INET6) || 548 (prp->pr_domain->dom_family == PF_ROUTE)) 549 so->so_fibnum = td->td_proc->p_fibnum; 550 else 551 so->so_fibnum = 0; 552 so->so_proto = prp; 553 #ifdef MAC 554 mac_socket_create(cred, so); 555 #endif 556 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 557 so_rdknl_assert_lock); 558 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 559 so_wrknl_assert_lock); 560 /* 561 * Auto-sizing of socket buffers is managed by the protocols and 562 * the appropriate flags must be set in the pru_attach function. 563 */ 564 CURVNET_SET(so->so_vnet); 565 error = (*prp->pr_usrreqs->pru_attach)(so, proto, td); 566 CURVNET_RESTORE(); 567 if (error) { 568 sodealloc(so); 569 return (error); 570 } 571 soref(so); 572 *aso = so; 573 return (0); 574 } 575 576 #ifdef REGRESSION 577 static int regression_sonewconn_earlytest = 1; 578 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW, 579 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test"); 580 #endif 581 582 static struct timeval overinterval = { 60, 0 }; 583 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW, 584 &overinterval, 585 "Delay in seconds between warnings for listen socket overflows"); 586 587 /* 588 * When an attempt at a new connection is noted on a socket which accepts 589 * connections, sonewconn is called. If the connection is possible (subject 590 * to space constraints, etc.) then we allocate a new structure, properly 591 * linked into the data structure of the original socket, and return this. 592 * Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED. 593 * 594 * Note: the ref count on the socket is 0 on return. 595 */ 596 struct socket * 597 sonewconn(struct socket *head, int connstatus) 598 { 599 struct sbuf descrsb; 600 struct socket *so; 601 int len, overcount; 602 u_int qlen; 603 const char localprefix[] = "local:"; 604 char descrbuf[SUNPATHLEN + sizeof(localprefix)]; 605 #if defined(INET6) 606 char addrbuf[INET6_ADDRSTRLEN]; 607 #elif defined(INET) 608 char addrbuf[INET_ADDRSTRLEN]; 609 #endif 610 bool dolog, over; 611 612 SOLISTEN_LOCK(head); 613 over = (head->sol_qlen > 3 * head->sol_qlimit / 2); 614 #ifdef REGRESSION 615 if (regression_sonewconn_earlytest && over) { 616 #else 617 if (over) { 618 #endif 619 head->sol_overcount++; 620 dolog = !!ratecheck(&head->sol_lastover, &overinterval); 621 622 /* 623 * If we're going to log, copy the overflow count and queue 624 * length from the listen socket before dropping the lock. 625 * Also, reset the overflow count. 626 */ 627 if (dolog) { 628 overcount = head->sol_overcount; 629 head->sol_overcount = 0; 630 qlen = head->sol_qlen; 631 } 632 SOLISTEN_UNLOCK(head); 633 634 if (dolog) { 635 /* 636 * Try to print something descriptive about the 637 * socket for the error message. 638 */ 639 sbuf_new(&descrsb, descrbuf, sizeof(descrbuf), 640 SBUF_FIXEDLEN); 641 switch (head->so_proto->pr_domain->dom_family) { 642 #if defined(INET) || defined(INET6) 643 #ifdef INET 644 case AF_INET: 645 #endif 646 #ifdef INET6 647 case AF_INET6: 648 if (head->so_proto->pr_domain->dom_family == 649 AF_INET6 || 650 (sotoinpcb(head)->inp_inc.inc_flags & 651 INC_ISIPV6)) { 652 ip6_sprintf(addrbuf, 653 &sotoinpcb(head)->inp_inc.inc6_laddr); 654 sbuf_printf(&descrsb, "[%s]", addrbuf); 655 } else 656 #endif 657 { 658 #ifdef INET 659 inet_ntoa_r( 660 sotoinpcb(head)->inp_inc.inc_laddr, 661 addrbuf); 662 sbuf_cat(&descrsb, addrbuf); 663 #endif 664 } 665 sbuf_printf(&descrsb, ":%hu (proto %u)", 666 ntohs(sotoinpcb(head)->inp_inc.inc_lport), 667 head->so_proto->pr_protocol); 668 break; 669 #endif /* INET || INET6 */ 670 case AF_UNIX: 671 sbuf_cat(&descrsb, localprefix); 672 if (sotounpcb(head)->unp_addr != NULL) 673 len = 674 sotounpcb(head)->unp_addr->sun_len - 675 offsetof(struct sockaddr_un, 676 sun_path); 677 else 678 len = 0; 679 if (len > 0) 680 sbuf_bcat(&descrsb, 681 sotounpcb(head)->unp_addr->sun_path, 682 len); 683 else 684 sbuf_cat(&descrsb, "(unknown)"); 685 break; 686 } 687 688 /* 689 * If we can't print something more specific, at least 690 * print the domain name. 691 */ 692 if (sbuf_finish(&descrsb) != 0 || 693 sbuf_len(&descrsb) <= 0) { 694 sbuf_clear(&descrsb); 695 sbuf_cat(&descrsb, 696 head->so_proto->pr_domain->dom_name ?: 697 "unknown"); 698 sbuf_finish(&descrsb); 699 } 700 KASSERT(sbuf_len(&descrsb) > 0, 701 ("%s: sbuf creation failed", __func__)); 702 log(LOG_DEBUG, 703 "%s: pcb %p (%s): Listen queue overflow: " 704 "%i already in queue awaiting acceptance " 705 "(%d occurrences)\n", 706 __func__, head->so_pcb, sbuf_data(&descrsb), 707 qlen, overcount); 708 sbuf_delete(&descrsb); 709 710 overcount = 0; 711 } 712 713 return (NULL); 714 } 715 SOLISTEN_UNLOCK(head); 716 VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL", 717 __func__, head)); 718 so = soalloc(head->so_vnet); 719 if (so == NULL) { 720 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 721 "limit reached or out of memory\n", 722 __func__, head->so_pcb); 723 return (NULL); 724 } 725 so->so_listen = head; 726 so->so_type = head->so_type; 727 so->so_options = head->so_options & ~SO_ACCEPTCONN; 728 so->so_linger = head->so_linger; 729 so->so_state = head->so_state | SS_NOFDREF; 730 so->so_fibnum = head->so_fibnum; 731 so->so_proto = head->so_proto; 732 so->so_cred = crhold(head->so_cred); 733 #ifdef MAC 734 mac_socket_newconn(head, so); 735 #endif 736 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 737 so_rdknl_assert_lock); 738 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 739 so_wrknl_assert_lock); 740 VNET_SO_ASSERT(head); 741 if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) { 742 sodealloc(so); 743 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 744 __func__, head->so_pcb); 745 return (NULL); 746 } 747 if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 748 sodealloc(so); 749 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", 750 __func__, head->so_pcb); 751 return (NULL); 752 } 753 so->so_rcv.sb_lowat = head->sol_sbrcv_lowat; 754 so->so_snd.sb_lowat = head->sol_sbsnd_lowat; 755 so->so_rcv.sb_timeo = head->sol_sbrcv_timeo; 756 so->so_snd.sb_timeo = head->sol_sbsnd_timeo; 757 so->so_rcv.sb_flags |= head->sol_sbrcv_flags & SB_AUTOSIZE; 758 so->so_snd.sb_flags |= head->sol_sbsnd_flags & SB_AUTOSIZE; 759 760 SOLISTEN_LOCK(head); 761 if (head->sol_accept_filter != NULL) 762 connstatus = 0; 763 so->so_state |= connstatus; 764 soref(head); /* A socket on (in)complete queue refs head. */ 765 if (connstatus) { 766 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 767 so->so_qstate = SQ_COMP; 768 head->sol_qlen++; 769 solisten_wakeup(head); /* unlocks */ 770 } else { 771 /* 772 * Keep removing sockets from the head until there's room for 773 * us to insert on the tail. In pre-locking revisions, this 774 * was a simple if(), but as we could be racing with other 775 * threads and soabort() requires dropping locks, we must 776 * loop waiting for the condition to be true. 777 */ 778 while (head->sol_incqlen > head->sol_qlimit) { 779 struct socket *sp; 780 781 sp = TAILQ_FIRST(&head->sol_incomp); 782 TAILQ_REMOVE(&head->sol_incomp, sp, so_list); 783 head->sol_incqlen--; 784 SOCK_LOCK(sp); 785 sp->so_qstate = SQ_NONE; 786 sp->so_listen = NULL; 787 SOCK_UNLOCK(sp); 788 sorele(head); /* does SOLISTEN_UNLOCK, head stays */ 789 soabort(sp); 790 SOLISTEN_LOCK(head); 791 } 792 TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list); 793 so->so_qstate = SQ_INCOMP; 794 head->sol_incqlen++; 795 SOLISTEN_UNLOCK(head); 796 } 797 return (so); 798 } 799 800 #if defined(SCTP) || defined(SCTP_SUPPORT) 801 /* 802 * Socket part of sctp_peeloff(). Detach a new socket from an 803 * association. The new socket is returned with a reference. 804 */ 805 struct socket * 806 sopeeloff(struct socket *head) 807 { 808 struct socket *so; 809 810 VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p", 811 __func__, __LINE__, head)); 812 so = soalloc(head->so_vnet); 813 if (so == NULL) { 814 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 815 "limit reached or out of memory\n", 816 __func__, head->so_pcb); 817 return (NULL); 818 } 819 so->so_type = head->so_type; 820 so->so_options = head->so_options; 821 so->so_linger = head->so_linger; 822 so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED; 823 so->so_fibnum = head->so_fibnum; 824 so->so_proto = head->so_proto; 825 so->so_cred = crhold(head->so_cred); 826 #ifdef MAC 827 mac_socket_newconn(head, so); 828 #endif 829 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 830 so_rdknl_assert_lock); 831 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 832 so_wrknl_assert_lock); 833 VNET_SO_ASSERT(head); 834 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) { 835 sodealloc(so); 836 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 837 __func__, head->so_pcb); 838 return (NULL); 839 } 840 if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 841 sodealloc(so); 842 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", 843 __func__, head->so_pcb); 844 return (NULL); 845 } 846 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; 847 so->so_snd.sb_lowat = head->so_snd.sb_lowat; 848 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; 849 so->so_snd.sb_timeo = head->so_snd.sb_timeo; 850 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE; 851 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE; 852 853 soref(so); 854 855 return (so); 856 } 857 #endif /* SCTP */ 858 859 int 860 sobind(struct socket *so, struct sockaddr *nam, struct thread *td) 861 { 862 int error; 863 864 CURVNET_SET(so->so_vnet); 865 error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td); 866 CURVNET_RESTORE(); 867 return (error); 868 } 869 870 int 871 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 872 { 873 int error; 874 875 CURVNET_SET(so->so_vnet); 876 error = (*so->so_proto->pr_usrreqs->pru_bindat)(fd, so, nam, td); 877 CURVNET_RESTORE(); 878 return (error); 879 } 880 881 /* 882 * solisten() transitions a socket from a non-listening state to a listening 883 * state, but can also be used to update the listen queue depth on an 884 * existing listen socket. The protocol will call back into the sockets 885 * layer using solisten_proto_check() and solisten_proto() to check and set 886 * socket-layer listen state. Call backs are used so that the protocol can 887 * acquire both protocol and socket layer locks in whatever order is required 888 * by the protocol. 889 * 890 * Protocol implementors are advised to hold the socket lock across the 891 * socket-layer test and set to avoid races at the socket layer. 892 */ 893 int 894 solisten(struct socket *so, int backlog, struct thread *td) 895 { 896 int error; 897 898 CURVNET_SET(so->so_vnet); 899 error = (*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td); 900 CURVNET_RESTORE(); 901 return (error); 902 } 903 904 /* 905 * Prepare for a call to solisten_proto(). Acquire all socket buffer locks in 906 * order to interlock with socket I/O. 907 */ 908 int 909 solisten_proto_check(struct socket *so) 910 { 911 SOCK_LOCK_ASSERT(so); 912 913 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 914 SS_ISDISCONNECTING)) != 0) 915 return (EINVAL); 916 917 /* 918 * Sleeping is not permitted here, so simply fail if userspace is 919 * attempting to transmit or receive on the socket. This kind of 920 * transient failure is not ideal, but it should occur only if userspace 921 * is misusing the socket interfaces. 922 */ 923 if (!sx_try_xlock(&so->so_snd_sx)) 924 return (EAGAIN); 925 if (!sx_try_xlock(&so->so_rcv_sx)) { 926 sx_xunlock(&so->so_snd_sx); 927 return (EAGAIN); 928 } 929 mtx_lock(&so->so_snd_mtx); 930 mtx_lock(&so->so_rcv_mtx); 931 932 /* Interlock with soo_aio_queue(). */ 933 if ((so->so_snd.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0 || 934 (so->so_rcv.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0) { 935 solisten_proto_abort(so); 936 return (EINVAL); 937 } 938 return (0); 939 } 940 941 /* 942 * Undo the setup done by solisten_proto_check(). 943 */ 944 void 945 solisten_proto_abort(struct socket *so) 946 { 947 mtx_unlock(&so->so_snd_mtx); 948 mtx_unlock(&so->so_rcv_mtx); 949 sx_xunlock(&so->so_snd_sx); 950 sx_xunlock(&so->so_rcv_sx); 951 } 952 953 void 954 solisten_proto(struct socket *so, int backlog) 955 { 956 int sbrcv_lowat, sbsnd_lowat; 957 u_int sbrcv_hiwat, sbsnd_hiwat; 958 short sbrcv_flags, sbsnd_flags; 959 sbintime_t sbrcv_timeo, sbsnd_timeo; 960 961 SOCK_LOCK_ASSERT(so); 962 KASSERT((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 963 SS_ISDISCONNECTING)) == 0, 964 ("%s: bad socket state %p", __func__, so)); 965 966 if (SOLISTENING(so)) 967 goto listening; 968 969 /* 970 * Change this socket to listening state. 971 */ 972 sbrcv_lowat = so->so_rcv.sb_lowat; 973 sbsnd_lowat = so->so_snd.sb_lowat; 974 sbrcv_hiwat = so->so_rcv.sb_hiwat; 975 sbsnd_hiwat = so->so_snd.sb_hiwat; 976 sbrcv_flags = so->so_rcv.sb_flags; 977 sbsnd_flags = so->so_snd.sb_flags; 978 sbrcv_timeo = so->so_rcv.sb_timeo; 979 sbsnd_timeo = so->so_snd.sb_timeo; 980 981 sbdestroy(&so->so_snd, so); 982 sbdestroy(&so->so_rcv, so); 983 984 #ifdef INVARIANTS 985 bzero(&so->so_rcv, 986 sizeof(struct socket) - offsetof(struct socket, so_rcv)); 987 #endif 988 989 so->sol_sbrcv_lowat = sbrcv_lowat; 990 so->sol_sbsnd_lowat = sbsnd_lowat; 991 so->sol_sbrcv_hiwat = sbrcv_hiwat; 992 so->sol_sbsnd_hiwat = sbsnd_hiwat; 993 so->sol_sbrcv_flags = sbrcv_flags; 994 so->sol_sbsnd_flags = sbsnd_flags; 995 so->sol_sbrcv_timeo = sbrcv_timeo; 996 so->sol_sbsnd_timeo = sbsnd_timeo; 997 998 so->sol_qlen = so->sol_incqlen = 0; 999 TAILQ_INIT(&so->sol_incomp); 1000 TAILQ_INIT(&so->sol_comp); 1001 1002 so->sol_accept_filter = NULL; 1003 so->sol_accept_filter_arg = NULL; 1004 so->sol_accept_filter_str = NULL; 1005 1006 so->sol_upcall = NULL; 1007 so->sol_upcallarg = NULL; 1008 1009 so->so_options |= SO_ACCEPTCONN; 1010 1011 listening: 1012 if (backlog < 0 || backlog > somaxconn) 1013 backlog = somaxconn; 1014 so->sol_qlimit = backlog; 1015 1016 mtx_unlock(&so->so_snd_mtx); 1017 mtx_unlock(&so->so_rcv_mtx); 1018 sx_xunlock(&so->so_snd_sx); 1019 sx_xunlock(&so->so_rcv_sx); 1020 } 1021 1022 /* 1023 * Wakeup listeners/subsystems once we have a complete connection. 1024 * Enters with lock, returns unlocked. 1025 */ 1026 void 1027 solisten_wakeup(struct socket *sol) 1028 { 1029 1030 if (sol->sol_upcall != NULL) 1031 (void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT); 1032 else { 1033 selwakeuppri(&sol->so_rdsel, PSOCK); 1034 KNOTE_LOCKED(&sol->so_rdsel.si_note, 0); 1035 } 1036 SOLISTEN_UNLOCK(sol); 1037 wakeup_one(&sol->sol_comp); 1038 if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL) 1039 pgsigio(&sol->so_sigio, SIGIO, 0); 1040 } 1041 1042 /* 1043 * Return single connection off a listening socket queue. Main consumer of 1044 * the function is kern_accept4(). Some modules, that do their own accept 1045 * management also use the function. 1046 * 1047 * Listening socket must be locked on entry and is returned unlocked on 1048 * return. 1049 * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT. 1050 */ 1051 int 1052 solisten_dequeue(struct socket *head, struct socket **ret, int flags) 1053 { 1054 struct socket *so; 1055 int error; 1056 1057 SOLISTEN_LOCK_ASSERT(head); 1058 1059 while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) && 1060 head->so_error == 0) { 1061 error = msleep(&head->sol_comp, SOCK_MTX(head), PSOCK | PCATCH, 1062 "accept", 0); 1063 if (error != 0) { 1064 SOLISTEN_UNLOCK(head); 1065 return (error); 1066 } 1067 } 1068 if (head->so_error) { 1069 error = head->so_error; 1070 head->so_error = 0; 1071 } else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp)) 1072 error = EWOULDBLOCK; 1073 else 1074 error = 0; 1075 if (error) { 1076 SOLISTEN_UNLOCK(head); 1077 return (error); 1078 } 1079 so = TAILQ_FIRST(&head->sol_comp); 1080 SOCK_LOCK(so); 1081 KASSERT(so->so_qstate == SQ_COMP, 1082 ("%s: so %p not SQ_COMP", __func__, so)); 1083 soref(so); 1084 head->sol_qlen--; 1085 so->so_qstate = SQ_NONE; 1086 so->so_listen = NULL; 1087 TAILQ_REMOVE(&head->sol_comp, so, so_list); 1088 if (flags & ACCEPT4_INHERIT) 1089 so->so_state |= (head->so_state & SS_NBIO); 1090 else 1091 so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0; 1092 SOCK_UNLOCK(so); 1093 sorele(head); 1094 1095 *ret = so; 1096 return (0); 1097 } 1098 1099 /* 1100 * Evaluate the reference count and named references on a socket; if no 1101 * references remain, free it. This should be called whenever a reference is 1102 * released, such as in sorele(), but also when named reference flags are 1103 * cleared in socket or protocol code. 1104 * 1105 * sofree() will free the socket if: 1106 * 1107 * - There are no outstanding file descriptor references or related consumers 1108 * (so_count == 0). 1109 * 1110 * - The socket has been closed by user space, if ever open (SS_NOFDREF). 1111 * 1112 * - The protocol does not have an outstanding strong reference on the socket 1113 * (SS_PROTOREF). 1114 * 1115 * - The socket is not in a completed connection queue, so a process has been 1116 * notified that it is present. If it is removed, the user process may 1117 * block in accept() despite select() saying the socket was ready. 1118 */ 1119 void 1120 sofree(struct socket *so) 1121 { 1122 struct protosw *pr = so->so_proto; 1123 1124 SOCK_LOCK_ASSERT(so); 1125 1126 if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 || 1127 (so->so_state & SS_PROTOREF) || (so->so_qstate == SQ_COMP)) { 1128 SOCK_UNLOCK(so); 1129 return; 1130 } 1131 1132 if (!SOLISTENING(so) && so->so_qstate == SQ_INCOMP) { 1133 struct socket *sol; 1134 1135 sol = so->so_listen; 1136 KASSERT(sol, ("%s: so %p on incomp of NULL", __func__, so)); 1137 1138 /* 1139 * To solve race between close of a listening socket and 1140 * a socket on its incomplete queue, we need to lock both. 1141 * The order is first listening socket, then regular. 1142 * Since we don't have SS_NOFDREF neither SS_PROTOREF, this 1143 * function and the listening socket are the only pointers 1144 * to so. To preserve so and sol, we reference both and then 1145 * relock. 1146 * After relock the socket may not move to so_comp since it 1147 * doesn't have PCB already, but it may be removed from 1148 * so_incomp. If that happens, we share responsiblity on 1149 * freeing the socket, but soclose() has already removed 1150 * it from queue. 1151 */ 1152 soref(sol); 1153 soref(so); 1154 SOCK_UNLOCK(so); 1155 SOLISTEN_LOCK(sol); 1156 SOCK_LOCK(so); 1157 if (so->so_qstate == SQ_INCOMP) { 1158 KASSERT(so->so_listen == sol, 1159 ("%s: so %p migrated out of sol %p", 1160 __func__, so, sol)); 1161 TAILQ_REMOVE(&sol->sol_incomp, so, so_list); 1162 sol->sol_incqlen--; 1163 /* This is guarenteed not to be the last. */ 1164 refcount_release(&sol->so_count); 1165 so->so_qstate = SQ_NONE; 1166 so->so_listen = NULL; 1167 } else 1168 KASSERT(so->so_listen == NULL, 1169 ("%s: so %p not on (in)comp with so_listen", 1170 __func__, so)); 1171 sorele(sol); 1172 KASSERT(so->so_count == 1, 1173 ("%s: so %p count %u", __func__, so, so->so_count)); 1174 so->so_count = 0; 1175 } 1176 if (SOLISTENING(so)) 1177 so->so_error = ECONNABORTED; 1178 SOCK_UNLOCK(so); 1179 1180 if (so->so_dtor != NULL) 1181 so->so_dtor(so); 1182 1183 VNET_SO_ASSERT(so); 1184 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 1185 (*pr->pr_domain->dom_dispose)(so); 1186 if (pr->pr_usrreqs->pru_detach != NULL) 1187 (*pr->pr_usrreqs->pru_detach)(so); 1188 1189 /* 1190 * From this point on, we assume that no other references to this 1191 * socket exist anywhere else in the stack. Therefore, no locks need 1192 * to be acquired or held. 1193 * 1194 * We used to do a lot of socket buffer and socket locking here, as 1195 * well as invoke sorflush() and perform wakeups. The direct call to 1196 * dom_dispose() and sbdestroy() are an inlining of what was 1197 * necessary from sorflush(). 1198 * 1199 * Notice that the socket buffer and kqueue state are torn down 1200 * before calling pru_detach. This means that protocols shold not 1201 * assume they can perform socket wakeups, etc, in their detach code. 1202 */ 1203 if (!SOLISTENING(so)) { 1204 sbdestroy(&so->so_snd, so); 1205 sbdestroy(&so->so_rcv, so); 1206 } 1207 seldrain(&so->so_rdsel); 1208 seldrain(&so->so_wrsel); 1209 knlist_destroy(&so->so_rdsel.si_note); 1210 knlist_destroy(&so->so_wrsel.si_note); 1211 sodealloc(so); 1212 } 1213 1214 /* 1215 * Close a socket on last file table reference removal. Initiate disconnect 1216 * if connected. Free socket when disconnect complete. 1217 * 1218 * This function will sorele() the socket. Note that soclose() may be called 1219 * prior to the ref count reaching zero. The actual socket structure will 1220 * not be freed until the ref count reaches zero. 1221 */ 1222 int 1223 soclose(struct socket *so) 1224 { 1225 struct accept_queue lqueue; 1226 int error = 0; 1227 1228 KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter")); 1229 1230 CURVNET_SET(so->so_vnet); 1231 funsetown(&so->so_sigio); 1232 if (so->so_state & SS_ISCONNECTED) { 1233 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 1234 error = sodisconnect(so); 1235 if (error) { 1236 if (error == ENOTCONN) 1237 error = 0; 1238 goto drop; 1239 } 1240 } 1241 1242 if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) { 1243 if ((so->so_state & SS_ISDISCONNECTING) && 1244 (so->so_state & SS_NBIO)) 1245 goto drop; 1246 while (so->so_state & SS_ISCONNECTED) { 1247 error = tsleep(&so->so_timeo, 1248 PSOCK | PCATCH, "soclos", 1249 so->so_linger * hz); 1250 if (error) 1251 break; 1252 } 1253 } 1254 } 1255 1256 drop: 1257 if (so->so_proto->pr_usrreqs->pru_close != NULL) 1258 (*so->so_proto->pr_usrreqs->pru_close)(so); 1259 1260 SOCK_LOCK(so); 1261 if (SOLISTENING(so)) { 1262 struct socket *sp; 1263 1264 TAILQ_INIT(&lqueue); 1265 TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list); 1266 TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list); 1267 1268 so->sol_qlen = so->sol_incqlen = 0; 1269 1270 TAILQ_FOREACH(sp, &lqueue, so_list) { 1271 SOCK_LOCK(sp); 1272 sp->so_qstate = SQ_NONE; 1273 sp->so_listen = NULL; 1274 SOCK_UNLOCK(sp); 1275 /* Guaranteed not to be the last. */ 1276 refcount_release(&so->so_count); 1277 } 1278 } 1279 KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF")); 1280 so->so_state |= SS_NOFDREF; 1281 sorele(so); 1282 if (SOLISTENING(so)) { 1283 struct socket *sp, *tsp; 1284 1285 TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp) { 1286 SOCK_LOCK(sp); 1287 if (sp->so_count == 0) { 1288 SOCK_UNLOCK(sp); 1289 soabort(sp); 1290 } else 1291 /* sp is now in sofree() */ 1292 SOCK_UNLOCK(sp); 1293 } 1294 } 1295 CURVNET_RESTORE(); 1296 return (error); 1297 } 1298 1299 /* 1300 * soabort() is used to abruptly tear down a connection, such as when a 1301 * resource limit is reached (listen queue depth exceeded), or if a listen 1302 * socket is closed while there are sockets waiting to be accepted. 1303 * 1304 * This interface is tricky, because it is called on an unreferenced socket, 1305 * and must be called only by a thread that has actually removed the socket 1306 * from the listen queue it was on, or races with other threads are risked. 1307 * 1308 * This interface will call into the protocol code, so must not be called 1309 * with any socket locks held. Protocols do call it while holding their own 1310 * recursible protocol mutexes, but this is something that should be subject 1311 * to review in the future. 1312 */ 1313 void 1314 soabort(struct socket *so) 1315 { 1316 1317 /* 1318 * In as much as is possible, assert that no references to this 1319 * socket are held. This is not quite the same as asserting that the 1320 * current thread is responsible for arranging for no references, but 1321 * is as close as we can get for now. 1322 */ 1323 KASSERT(so->so_count == 0, ("soabort: so_count")); 1324 KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF")); 1325 KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF")); 1326 VNET_SO_ASSERT(so); 1327 1328 if (so->so_proto->pr_usrreqs->pru_abort != NULL) 1329 (*so->so_proto->pr_usrreqs->pru_abort)(so); 1330 SOCK_LOCK(so); 1331 sofree(so); 1332 } 1333 1334 int 1335 soaccept(struct socket *so, struct sockaddr **nam) 1336 { 1337 int error; 1338 1339 SOCK_LOCK(so); 1340 KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF")); 1341 so->so_state &= ~SS_NOFDREF; 1342 SOCK_UNLOCK(so); 1343 1344 CURVNET_SET(so->so_vnet); 1345 error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam); 1346 CURVNET_RESTORE(); 1347 return (error); 1348 } 1349 1350 int 1351 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td) 1352 { 1353 1354 return (soconnectat(AT_FDCWD, so, nam, td)); 1355 } 1356 1357 int 1358 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 1359 { 1360 int error; 1361 1362 CURVNET_SET(so->so_vnet); 1363 /* 1364 * If protocol is connection-based, can only connect once. 1365 * Otherwise, if connected, try to disconnect first. This allows 1366 * user to disconnect by connecting to, e.g., a null address. 1367 */ 1368 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 1369 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 1370 (error = sodisconnect(so)))) { 1371 error = EISCONN; 1372 } else { 1373 /* 1374 * Prevent accumulated error from previous connection from 1375 * biting us. 1376 */ 1377 so->so_error = 0; 1378 if (fd == AT_FDCWD) { 1379 error = (*so->so_proto->pr_usrreqs->pru_connect)(so, 1380 nam, td); 1381 } else { 1382 error = (*so->so_proto->pr_usrreqs->pru_connectat)(fd, 1383 so, nam, td); 1384 } 1385 } 1386 CURVNET_RESTORE(); 1387 1388 return (error); 1389 } 1390 1391 int 1392 soconnect2(struct socket *so1, struct socket *so2) 1393 { 1394 int error; 1395 1396 CURVNET_SET(so1->so_vnet); 1397 error = (*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2); 1398 CURVNET_RESTORE(); 1399 return (error); 1400 } 1401 1402 int 1403 sodisconnect(struct socket *so) 1404 { 1405 int error; 1406 1407 if ((so->so_state & SS_ISCONNECTED) == 0) 1408 return (ENOTCONN); 1409 if (so->so_state & SS_ISDISCONNECTING) 1410 return (EALREADY); 1411 VNET_SO_ASSERT(so); 1412 error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so); 1413 return (error); 1414 } 1415 1416 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT) 1417 1418 int 1419 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, 1420 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1421 { 1422 long space; 1423 ssize_t resid; 1424 int clen = 0, error, dontroute; 1425 1426 KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM")); 1427 KASSERT(so->so_proto->pr_flags & PR_ATOMIC, 1428 ("sosend_dgram: !PR_ATOMIC")); 1429 1430 if (uio != NULL) 1431 resid = uio->uio_resid; 1432 else 1433 resid = top->m_pkthdr.len; 1434 /* 1435 * In theory resid should be unsigned. However, space must be 1436 * signed, as it might be less than 0 if we over-committed, and we 1437 * must use a signed comparison of space and resid. On the other 1438 * hand, a negative resid causes us to loop sending 0-length 1439 * segments to the protocol. 1440 */ 1441 if (resid < 0) { 1442 error = EINVAL; 1443 goto out; 1444 } 1445 1446 dontroute = 1447 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0; 1448 if (td != NULL) 1449 td->td_ru.ru_msgsnd++; 1450 if (control != NULL) 1451 clen = control->m_len; 1452 1453 SOCKBUF_LOCK(&so->so_snd); 1454 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1455 SOCKBUF_UNLOCK(&so->so_snd); 1456 error = EPIPE; 1457 goto out; 1458 } 1459 if (so->so_error) { 1460 error = so->so_error; 1461 so->so_error = 0; 1462 SOCKBUF_UNLOCK(&so->so_snd); 1463 goto out; 1464 } 1465 if ((so->so_state & SS_ISCONNECTED) == 0) { 1466 /* 1467 * `sendto' and `sendmsg' is allowed on a connection-based 1468 * socket if it supports implied connect. Return ENOTCONN if 1469 * not connected and no address is supplied. 1470 */ 1471 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1472 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1473 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1474 !(resid == 0 && clen != 0)) { 1475 SOCKBUF_UNLOCK(&so->so_snd); 1476 error = ENOTCONN; 1477 goto out; 1478 } 1479 } else if (addr == NULL) { 1480 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1481 error = ENOTCONN; 1482 else 1483 error = EDESTADDRREQ; 1484 SOCKBUF_UNLOCK(&so->so_snd); 1485 goto out; 1486 } 1487 } 1488 1489 /* 1490 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a 1491 * problem and need fixing. 1492 */ 1493 space = sbspace(&so->so_snd); 1494 if (flags & MSG_OOB) 1495 space += 1024; 1496 space -= clen; 1497 SOCKBUF_UNLOCK(&so->so_snd); 1498 if (resid > space) { 1499 error = EMSGSIZE; 1500 goto out; 1501 } 1502 if (uio == NULL) { 1503 resid = 0; 1504 if (flags & MSG_EOR) 1505 top->m_flags |= M_EOR; 1506 } else { 1507 /* 1508 * Copy the data from userland into a mbuf chain. 1509 * If no data is to be copied in, a single empty mbuf 1510 * is returned. 1511 */ 1512 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr, 1513 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0))); 1514 if (top == NULL) { 1515 error = EFAULT; /* only possible error */ 1516 goto out; 1517 } 1518 space -= resid - uio->uio_resid; 1519 resid = uio->uio_resid; 1520 } 1521 KASSERT(resid == 0, ("sosend_dgram: resid != 0")); 1522 /* 1523 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock 1524 * than with. 1525 */ 1526 if (dontroute) { 1527 SOCK_LOCK(so); 1528 so->so_options |= SO_DONTROUTE; 1529 SOCK_UNLOCK(so); 1530 } 1531 /* 1532 * XXX all the SBS_CANTSENDMORE checks previously done could be out 1533 * of date. We could have received a reset packet in an interrupt or 1534 * maybe we slept while doing page faults in uiomove() etc. We could 1535 * probably recheck again inside the locking protection here, but 1536 * there are probably other places that this also happens. We must 1537 * rethink this. 1538 */ 1539 VNET_SO_ASSERT(so); 1540 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1541 (flags & MSG_OOB) ? PRUS_OOB : 1542 /* 1543 * If the user set MSG_EOF, the protocol understands this flag and 1544 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND. 1545 */ 1546 ((flags & MSG_EOF) && 1547 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1548 (resid <= 0)) ? 1549 PRUS_EOF : 1550 /* If there is more to send set PRUS_MORETOCOME */ 1551 (flags & MSG_MORETOCOME) || 1552 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1553 top, addr, control, td); 1554 if (dontroute) { 1555 SOCK_LOCK(so); 1556 so->so_options &= ~SO_DONTROUTE; 1557 SOCK_UNLOCK(so); 1558 } 1559 clen = 0; 1560 control = NULL; 1561 top = NULL; 1562 out: 1563 if (top != NULL) 1564 m_freem(top); 1565 if (control != NULL) 1566 m_freem(control); 1567 return (error); 1568 } 1569 1570 /* 1571 * Send on a socket. If send must go all at once and message is larger than 1572 * send buffering, then hard error. Lock against other senders. If must go 1573 * all at once and not enough room now, then inform user that this would 1574 * block and do nothing. Otherwise, if nonblocking, send as much as 1575 * possible. The data to be sent is described by "uio" if nonzero, otherwise 1576 * by the mbuf chain "top" (which must be null if uio is not). Data provided 1577 * in mbuf chain must be small enough to send all at once. 1578 * 1579 * Returns nonzero on error, timeout or signal; callers must check for short 1580 * counts if EINTR/ERESTART are returned. Data and control buffers are freed 1581 * on return. 1582 */ 1583 int 1584 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio, 1585 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1586 { 1587 long space; 1588 ssize_t resid; 1589 int clen = 0, error, dontroute; 1590 int atomic = sosendallatonce(so) || top; 1591 int pru_flag; 1592 #ifdef KERN_TLS 1593 struct ktls_session *tls; 1594 int tls_enq_cnt, tls_pruflag; 1595 uint8_t tls_rtype; 1596 1597 tls = NULL; 1598 tls_rtype = TLS_RLTYPE_APP; 1599 #endif 1600 if (uio != NULL) 1601 resid = uio->uio_resid; 1602 else if ((top->m_flags & M_PKTHDR) != 0) 1603 resid = top->m_pkthdr.len; 1604 else 1605 resid = m_length(top, NULL); 1606 /* 1607 * In theory resid should be unsigned. However, space must be 1608 * signed, as it might be less than 0 if we over-committed, and we 1609 * must use a signed comparison of space and resid. On the other 1610 * hand, a negative resid causes us to loop sending 0-length 1611 * segments to the protocol. 1612 * 1613 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 1614 * type sockets since that's an error. 1615 */ 1616 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 1617 error = EINVAL; 1618 goto out; 1619 } 1620 1621 dontroute = 1622 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 1623 (so->so_proto->pr_flags & PR_ATOMIC); 1624 if (td != NULL) 1625 td->td_ru.ru_msgsnd++; 1626 if (control != NULL) 1627 clen = control->m_len; 1628 1629 error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags)); 1630 if (error) 1631 goto out; 1632 1633 #ifdef KERN_TLS 1634 tls_pruflag = 0; 1635 tls = ktls_hold(so->so_snd.sb_tls_info); 1636 if (tls != NULL) { 1637 if (tls->mode == TCP_TLS_MODE_SW) 1638 tls_pruflag = PRUS_NOTREADY; 1639 1640 if (control != NULL) { 1641 struct cmsghdr *cm = mtod(control, struct cmsghdr *); 1642 1643 if (clen >= sizeof(*cm) && 1644 cm->cmsg_type == TLS_SET_RECORD_TYPE) { 1645 tls_rtype = *((uint8_t *)CMSG_DATA(cm)); 1646 clen = 0; 1647 m_freem(control); 1648 control = NULL; 1649 atomic = 1; 1650 } 1651 } 1652 } 1653 #endif 1654 1655 restart: 1656 do { 1657 SOCKBUF_LOCK(&so->so_snd); 1658 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1659 SOCKBUF_UNLOCK(&so->so_snd); 1660 error = EPIPE; 1661 goto release; 1662 } 1663 if (so->so_error) { 1664 error = so->so_error; 1665 so->so_error = 0; 1666 SOCKBUF_UNLOCK(&so->so_snd); 1667 goto release; 1668 } 1669 if ((so->so_state & SS_ISCONNECTED) == 0) { 1670 /* 1671 * `sendto' and `sendmsg' is allowed on a connection- 1672 * based socket if it supports implied connect. 1673 * Return ENOTCONN if not connected and no address is 1674 * supplied. 1675 */ 1676 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1677 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1678 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1679 !(resid == 0 && clen != 0)) { 1680 SOCKBUF_UNLOCK(&so->so_snd); 1681 error = ENOTCONN; 1682 goto release; 1683 } 1684 } else if (addr == NULL) { 1685 SOCKBUF_UNLOCK(&so->so_snd); 1686 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1687 error = ENOTCONN; 1688 else 1689 error = EDESTADDRREQ; 1690 goto release; 1691 } 1692 } 1693 space = sbspace(&so->so_snd); 1694 if (flags & MSG_OOB) 1695 space += 1024; 1696 if ((atomic && resid > so->so_snd.sb_hiwat) || 1697 clen > so->so_snd.sb_hiwat) { 1698 SOCKBUF_UNLOCK(&so->so_snd); 1699 error = EMSGSIZE; 1700 goto release; 1701 } 1702 if (space < resid + clen && 1703 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 1704 if ((so->so_state & SS_NBIO) || 1705 (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) { 1706 SOCKBUF_UNLOCK(&so->so_snd); 1707 error = EWOULDBLOCK; 1708 goto release; 1709 } 1710 error = sbwait(&so->so_snd); 1711 SOCKBUF_UNLOCK(&so->so_snd); 1712 if (error) 1713 goto release; 1714 goto restart; 1715 } 1716 SOCKBUF_UNLOCK(&so->so_snd); 1717 space -= clen; 1718 do { 1719 if (uio == NULL) { 1720 resid = 0; 1721 if (flags & MSG_EOR) 1722 top->m_flags |= M_EOR; 1723 #ifdef KERN_TLS 1724 if (tls != NULL) { 1725 ktls_frame(top, tls, &tls_enq_cnt, 1726 tls_rtype); 1727 tls_rtype = TLS_RLTYPE_APP; 1728 } 1729 #endif 1730 } else { 1731 /* 1732 * Copy the data from userland into a mbuf 1733 * chain. If resid is 0, which can happen 1734 * only if we have control to send, then 1735 * a single empty mbuf is returned. This 1736 * is a workaround to prevent protocol send 1737 * methods to panic. 1738 */ 1739 #ifdef KERN_TLS 1740 if (tls != NULL) { 1741 top = m_uiotombuf(uio, M_WAITOK, space, 1742 tls->params.max_frame_len, 1743 M_EXTPG | 1744 ((flags & MSG_EOR) ? M_EOR : 0)); 1745 if (top != NULL) { 1746 ktls_frame(top, tls, 1747 &tls_enq_cnt, tls_rtype); 1748 } 1749 tls_rtype = TLS_RLTYPE_APP; 1750 } else 1751 #endif 1752 top = m_uiotombuf(uio, M_WAITOK, space, 1753 (atomic ? max_hdr : 0), 1754 (atomic ? M_PKTHDR : 0) | 1755 ((flags & MSG_EOR) ? M_EOR : 0)); 1756 if (top == NULL) { 1757 error = EFAULT; /* only possible error */ 1758 goto release; 1759 } 1760 space -= resid - uio->uio_resid; 1761 resid = uio->uio_resid; 1762 } 1763 if (dontroute) { 1764 SOCK_LOCK(so); 1765 so->so_options |= SO_DONTROUTE; 1766 SOCK_UNLOCK(so); 1767 } 1768 /* 1769 * XXX all the SBS_CANTSENDMORE checks previously 1770 * done could be out of date. We could have received 1771 * a reset packet in an interrupt or maybe we slept 1772 * while doing page faults in uiomove() etc. We 1773 * could probably recheck again inside the locking 1774 * protection here, but there are probably other 1775 * places that this also happens. We must rethink 1776 * this. 1777 */ 1778 VNET_SO_ASSERT(so); 1779 1780 pru_flag = (flags & MSG_OOB) ? PRUS_OOB : 1781 /* 1782 * If the user set MSG_EOF, the protocol understands 1783 * this flag and nothing left to send then use 1784 * PRU_SEND_EOF instead of PRU_SEND. 1785 */ 1786 ((flags & MSG_EOF) && 1787 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1788 (resid <= 0)) ? 1789 PRUS_EOF : 1790 /* If there is more to send set PRUS_MORETOCOME. */ 1791 (flags & MSG_MORETOCOME) || 1792 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0; 1793 1794 #ifdef KERN_TLS 1795 pru_flag |= tls_pruflag; 1796 #endif 1797 1798 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1799 pru_flag, top, addr, control, td); 1800 1801 if (dontroute) { 1802 SOCK_LOCK(so); 1803 so->so_options &= ~SO_DONTROUTE; 1804 SOCK_UNLOCK(so); 1805 } 1806 1807 #ifdef KERN_TLS 1808 if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) { 1809 if (error != 0) { 1810 m_freem(top); 1811 top = NULL; 1812 } else { 1813 soref(so); 1814 ktls_enqueue(top, so, tls_enq_cnt); 1815 } 1816 } 1817 #endif 1818 clen = 0; 1819 control = NULL; 1820 top = NULL; 1821 if (error) 1822 goto release; 1823 } while (resid && space > 0); 1824 } while (resid); 1825 1826 release: 1827 SOCK_IO_SEND_UNLOCK(so); 1828 out: 1829 #ifdef KERN_TLS 1830 if (tls != NULL) 1831 ktls_free(tls); 1832 #endif 1833 if (top != NULL) 1834 m_freem(top); 1835 if (control != NULL) 1836 m_freem(control); 1837 return (error); 1838 } 1839 1840 int 1841 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, 1842 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1843 { 1844 int error; 1845 1846 CURVNET_SET(so->so_vnet); 1847 error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, 1848 top, control, flags, td); 1849 CURVNET_RESTORE(); 1850 return (error); 1851 } 1852 1853 /* 1854 * The part of soreceive() that implements reading non-inline out-of-band 1855 * data from a socket. For more complete comments, see soreceive(), from 1856 * which this code originated. 1857 * 1858 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is 1859 * unable to return an mbuf chain to the caller. 1860 */ 1861 static int 1862 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags) 1863 { 1864 struct protosw *pr = so->so_proto; 1865 struct mbuf *m; 1866 int error; 1867 1868 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); 1869 VNET_SO_ASSERT(so); 1870 1871 m = m_get(M_WAITOK, MT_DATA); 1872 error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK); 1873 if (error) 1874 goto bad; 1875 do { 1876 error = uiomove(mtod(m, void *), 1877 (int) min(uio->uio_resid, m->m_len), uio); 1878 m = m_free(m); 1879 } while (uio->uio_resid && error == 0 && m); 1880 bad: 1881 if (m != NULL) 1882 m_freem(m); 1883 return (error); 1884 } 1885 1886 /* 1887 * Following replacement or removal of the first mbuf on the first mbuf chain 1888 * of a socket buffer, push necessary state changes back into the socket 1889 * buffer so that other consumers see the values consistently. 'nextrecord' 1890 * is the callers locally stored value of the original value of 1891 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. 1892 * NOTE: 'nextrecord' may be NULL. 1893 */ 1894 static __inline void 1895 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) 1896 { 1897 1898 SOCKBUF_LOCK_ASSERT(sb); 1899 /* 1900 * First, update for the new value of nextrecord. If necessary, make 1901 * it the first record. 1902 */ 1903 if (sb->sb_mb != NULL) 1904 sb->sb_mb->m_nextpkt = nextrecord; 1905 else 1906 sb->sb_mb = nextrecord; 1907 1908 /* 1909 * Now update any dependent socket buffer fields to reflect the new 1910 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the 1911 * addition of a second clause that takes care of the case where 1912 * sb_mb has been updated, but remains the last record. 1913 */ 1914 if (sb->sb_mb == NULL) { 1915 sb->sb_mbtail = NULL; 1916 sb->sb_lastrecord = NULL; 1917 } else if (sb->sb_mb->m_nextpkt == NULL) 1918 sb->sb_lastrecord = sb->sb_mb; 1919 } 1920 1921 /* 1922 * Implement receive operations on a socket. We depend on the way that 1923 * records are added to the sockbuf by sbappend. In particular, each record 1924 * (mbufs linked through m_next) must begin with an address if the protocol 1925 * so specifies, followed by an optional mbuf or mbufs containing ancillary 1926 * data, and then zero or more mbufs of data. In order to allow parallelism 1927 * between network receive and copying to user space, as well as avoid 1928 * sleeping with a mutex held, we release the socket buffer mutex during the 1929 * user space copy. Although the sockbuf is locked, new data may still be 1930 * appended, and thus we must maintain consistency of the sockbuf during that 1931 * time. 1932 * 1933 * The caller may receive the data as a single mbuf chain by supplying an 1934 * mbuf **mp0 for use in returning the chain. The uio is then used only for 1935 * the count in uio_resid. 1936 */ 1937 int 1938 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio, 1939 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1940 { 1941 struct mbuf *m, **mp; 1942 int flags, error, offset; 1943 ssize_t len; 1944 struct protosw *pr = so->so_proto; 1945 struct mbuf *nextrecord; 1946 int moff, type = 0; 1947 ssize_t orig_resid = uio->uio_resid; 1948 1949 mp = mp0; 1950 if (psa != NULL) 1951 *psa = NULL; 1952 if (controlp != NULL) 1953 *controlp = NULL; 1954 if (flagsp != NULL) 1955 flags = *flagsp &~ MSG_EOR; 1956 else 1957 flags = 0; 1958 if (flags & MSG_OOB) 1959 return (soreceive_rcvoob(so, uio, flags)); 1960 if (mp != NULL) 1961 *mp = NULL; 1962 if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING) 1963 && uio->uio_resid) { 1964 VNET_SO_ASSERT(so); 1965 (*pr->pr_usrreqs->pru_rcvd)(so, 0); 1966 } 1967 1968 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags)); 1969 if (error) 1970 return (error); 1971 1972 restart: 1973 SOCKBUF_LOCK(&so->so_rcv); 1974 m = so->so_rcv.sb_mb; 1975 /* 1976 * If we have less data than requested, block awaiting more (subject 1977 * to any timeout) if: 1978 * 1. the current count is less than the low water mark, or 1979 * 2. MSG_DONTWAIT is not set 1980 */ 1981 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 1982 sbavail(&so->so_rcv) < uio->uio_resid) && 1983 sbavail(&so->so_rcv) < so->so_rcv.sb_lowat && 1984 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 1985 KASSERT(m != NULL || !sbavail(&so->so_rcv), 1986 ("receive: m == %p sbavail == %u", 1987 m, sbavail(&so->so_rcv))); 1988 if (so->so_error || so->so_rerror) { 1989 if (m != NULL) 1990 goto dontblock; 1991 if (so->so_error) 1992 error = so->so_error; 1993 else 1994 error = so->so_rerror; 1995 if ((flags & MSG_PEEK) == 0) { 1996 if (so->so_error) 1997 so->so_error = 0; 1998 else 1999 so->so_rerror = 0; 2000 } 2001 SOCKBUF_UNLOCK(&so->so_rcv); 2002 goto release; 2003 } 2004 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2005 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 2006 if (m != NULL) 2007 goto dontblock; 2008 #ifdef KERN_TLS 2009 else if (so->so_rcv.sb_tlsdcc == 0 && 2010 so->so_rcv.sb_tlscc == 0) { 2011 #else 2012 else { 2013 #endif 2014 SOCKBUF_UNLOCK(&so->so_rcv); 2015 goto release; 2016 } 2017 } 2018 for (; m != NULL; m = m->m_next) 2019 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 2020 m = so->so_rcv.sb_mb; 2021 goto dontblock; 2022 } 2023 if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED | 2024 SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 && 2025 (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) { 2026 SOCKBUF_UNLOCK(&so->so_rcv); 2027 error = ENOTCONN; 2028 goto release; 2029 } 2030 if (uio->uio_resid == 0) { 2031 SOCKBUF_UNLOCK(&so->so_rcv); 2032 goto release; 2033 } 2034 if ((so->so_state & SS_NBIO) || 2035 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2036 SOCKBUF_UNLOCK(&so->so_rcv); 2037 error = EWOULDBLOCK; 2038 goto release; 2039 } 2040 SBLASTRECORDCHK(&so->so_rcv); 2041 SBLASTMBUFCHK(&so->so_rcv); 2042 error = sbwait(&so->so_rcv); 2043 SOCKBUF_UNLOCK(&so->so_rcv); 2044 if (error) 2045 goto release; 2046 goto restart; 2047 } 2048 dontblock: 2049 /* 2050 * From this point onward, we maintain 'nextrecord' as a cache of the 2051 * pointer to the next record in the socket buffer. We must keep the 2052 * various socket buffer pointers and local stack versions of the 2053 * pointers in sync, pushing out modifications before dropping the 2054 * socket buffer mutex, and re-reading them when picking it up. 2055 * 2056 * Otherwise, we will race with the network stack appending new data 2057 * or records onto the socket buffer by using inconsistent/stale 2058 * versions of the field, possibly resulting in socket buffer 2059 * corruption. 2060 * 2061 * By holding the high-level sblock(), we prevent simultaneous 2062 * readers from pulling off the front of the socket buffer. 2063 */ 2064 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2065 if (uio->uio_td) 2066 uio->uio_td->td_ru.ru_msgrcv++; 2067 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); 2068 SBLASTRECORDCHK(&so->so_rcv); 2069 SBLASTMBUFCHK(&so->so_rcv); 2070 nextrecord = m->m_nextpkt; 2071 if (pr->pr_flags & PR_ADDR) { 2072 KASSERT(m->m_type == MT_SONAME, 2073 ("m->m_type == %d", m->m_type)); 2074 orig_resid = 0; 2075 if (psa != NULL) 2076 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2077 M_NOWAIT); 2078 if (flags & MSG_PEEK) { 2079 m = m->m_next; 2080 } else { 2081 sbfree(&so->so_rcv, m); 2082 so->so_rcv.sb_mb = m_free(m); 2083 m = so->so_rcv.sb_mb; 2084 sockbuf_pushsync(&so->so_rcv, nextrecord); 2085 } 2086 } 2087 2088 /* 2089 * Process one or more MT_CONTROL mbufs present before any data mbufs 2090 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 2091 * just copy the data; if !MSG_PEEK, we call into the protocol to 2092 * perform externalization (or freeing if controlp == NULL). 2093 */ 2094 if (m != NULL && m->m_type == MT_CONTROL) { 2095 struct mbuf *cm = NULL, *cmn; 2096 struct mbuf **cme = &cm; 2097 #ifdef KERN_TLS 2098 struct cmsghdr *cmsg; 2099 struct tls_get_record tgr; 2100 2101 /* 2102 * For MSG_TLSAPPDATA, check for a non-application data 2103 * record. If found, return ENXIO without removing 2104 * it from the receive queue. This allows a subsequent 2105 * call without MSG_TLSAPPDATA to receive it. 2106 * Note that, for TLS, there should only be a single 2107 * control mbuf with the TLS_GET_RECORD message in it. 2108 */ 2109 if (flags & MSG_TLSAPPDATA) { 2110 cmsg = mtod(m, struct cmsghdr *); 2111 if (cmsg->cmsg_type == TLS_GET_RECORD && 2112 cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) { 2113 memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr)); 2114 /* This will need to change for TLS 1.3. */ 2115 if (tgr.tls_type != TLS_RLTYPE_APP) { 2116 SOCKBUF_UNLOCK(&so->so_rcv); 2117 error = ENXIO; 2118 goto release; 2119 } 2120 } 2121 } 2122 #endif 2123 2124 do { 2125 if (flags & MSG_PEEK) { 2126 if (controlp != NULL) { 2127 *controlp = m_copym(m, 0, m->m_len, 2128 M_NOWAIT); 2129 controlp = &(*controlp)->m_next; 2130 } 2131 m = m->m_next; 2132 } else { 2133 sbfree(&so->so_rcv, m); 2134 so->so_rcv.sb_mb = m->m_next; 2135 m->m_next = NULL; 2136 *cme = m; 2137 cme = &(*cme)->m_next; 2138 m = so->so_rcv.sb_mb; 2139 } 2140 } while (m != NULL && m->m_type == MT_CONTROL); 2141 if ((flags & MSG_PEEK) == 0) 2142 sockbuf_pushsync(&so->so_rcv, nextrecord); 2143 while (cm != NULL) { 2144 cmn = cm->m_next; 2145 cm->m_next = NULL; 2146 if (pr->pr_domain->dom_externalize != NULL) { 2147 SOCKBUF_UNLOCK(&so->so_rcv); 2148 VNET_SO_ASSERT(so); 2149 error = (*pr->pr_domain->dom_externalize) 2150 (cm, controlp, flags); 2151 SOCKBUF_LOCK(&so->so_rcv); 2152 } else if (controlp != NULL) 2153 *controlp = cm; 2154 else 2155 m_freem(cm); 2156 if (controlp != NULL) { 2157 orig_resid = 0; 2158 while (*controlp != NULL) 2159 controlp = &(*controlp)->m_next; 2160 } 2161 cm = cmn; 2162 } 2163 if (m != NULL) 2164 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 2165 else 2166 nextrecord = so->so_rcv.sb_mb; 2167 orig_resid = 0; 2168 } 2169 if (m != NULL) { 2170 if ((flags & MSG_PEEK) == 0) { 2171 KASSERT(m->m_nextpkt == nextrecord, 2172 ("soreceive: post-control, nextrecord !sync")); 2173 if (nextrecord == NULL) { 2174 KASSERT(so->so_rcv.sb_mb == m, 2175 ("soreceive: post-control, sb_mb!=m")); 2176 KASSERT(so->so_rcv.sb_lastrecord == m, 2177 ("soreceive: post-control, lastrecord!=m")); 2178 } 2179 } 2180 type = m->m_type; 2181 if (type == MT_OOBDATA) 2182 flags |= MSG_OOB; 2183 } else { 2184 if ((flags & MSG_PEEK) == 0) { 2185 KASSERT(so->so_rcv.sb_mb == nextrecord, 2186 ("soreceive: sb_mb != nextrecord")); 2187 if (so->so_rcv.sb_mb == NULL) { 2188 KASSERT(so->so_rcv.sb_lastrecord == NULL, 2189 ("soreceive: sb_lastercord != NULL")); 2190 } 2191 } 2192 } 2193 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2194 SBLASTRECORDCHK(&so->so_rcv); 2195 SBLASTMBUFCHK(&so->so_rcv); 2196 2197 /* 2198 * Now continue to read any data mbufs off of the head of the socket 2199 * buffer until the read request is satisfied. Note that 'type' is 2200 * used to store the type of any mbuf reads that have happened so far 2201 * such that soreceive() can stop reading if the type changes, which 2202 * causes soreceive() to return only one of regular data and inline 2203 * out-of-band data in a single socket receive operation. 2204 */ 2205 moff = 0; 2206 offset = 0; 2207 while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0 2208 && error == 0) { 2209 /* 2210 * If the type of mbuf has changed since the last mbuf 2211 * examined ('type'), end the receive operation. 2212 */ 2213 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2214 if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) { 2215 if (type != m->m_type) 2216 break; 2217 } else if (type == MT_OOBDATA) 2218 break; 2219 else 2220 KASSERT(m->m_type == MT_DATA, 2221 ("m->m_type == %d", m->m_type)); 2222 so->so_rcv.sb_state &= ~SBS_RCVATMARK; 2223 len = uio->uio_resid; 2224 if (so->so_oobmark && len > so->so_oobmark - offset) 2225 len = so->so_oobmark - offset; 2226 if (len > m->m_len - moff) 2227 len = m->m_len - moff; 2228 /* 2229 * If mp is set, just pass back the mbufs. Otherwise copy 2230 * them out via the uio, then free. Sockbuf must be 2231 * consistent here (points to current mbuf, it points to next 2232 * record) when we drop priority; we must note any additions 2233 * to the sockbuf when we block interrupts again. 2234 */ 2235 if (mp == NULL) { 2236 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2237 SBLASTRECORDCHK(&so->so_rcv); 2238 SBLASTMBUFCHK(&so->so_rcv); 2239 SOCKBUF_UNLOCK(&so->so_rcv); 2240 if ((m->m_flags & M_EXTPG) != 0) 2241 error = m_unmapped_uiomove(m, moff, uio, 2242 (int)len); 2243 else 2244 error = uiomove(mtod(m, char *) + moff, 2245 (int)len, uio); 2246 SOCKBUF_LOCK(&so->so_rcv); 2247 if (error) { 2248 /* 2249 * The MT_SONAME mbuf has already been removed 2250 * from the record, so it is necessary to 2251 * remove the data mbufs, if any, to preserve 2252 * the invariant in the case of PR_ADDR that 2253 * requires MT_SONAME mbufs at the head of 2254 * each record. 2255 */ 2256 if (pr->pr_flags & PR_ATOMIC && 2257 ((flags & MSG_PEEK) == 0)) 2258 (void)sbdroprecord_locked(&so->so_rcv); 2259 SOCKBUF_UNLOCK(&so->so_rcv); 2260 goto release; 2261 } 2262 } else 2263 uio->uio_resid -= len; 2264 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2265 if (len == m->m_len - moff) { 2266 if (m->m_flags & M_EOR) 2267 flags |= MSG_EOR; 2268 if (flags & MSG_PEEK) { 2269 m = m->m_next; 2270 moff = 0; 2271 } else { 2272 nextrecord = m->m_nextpkt; 2273 sbfree(&so->so_rcv, m); 2274 if (mp != NULL) { 2275 m->m_nextpkt = NULL; 2276 *mp = m; 2277 mp = &m->m_next; 2278 so->so_rcv.sb_mb = m = m->m_next; 2279 *mp = NULL; 2280 } else { 2281 so->so_rcv.sb_mb = m_free(m); 2282 m = so->so_rcv.sb_mb; 2283 } 2284 sockbuf_pushsync(&so->so_rcv, nextrecord); 2285 SBLASTRECORDCHK(&so->so_rcv); 2286 SBLASTMBUFCHK(&so->so_rcv); 2287 } 2288 } else { 2289 if (flags & MSG_PEEK) 2290 moff += len; 2291 else { 2292 if (mp != NULL) { 2293 if (flags & MSG_DONTWAIT) { 2294 *mp = m_copym(m, 0, len, 2295 M_NOWAIT); 2296 if (*mp == NULL) { 2297 /* 2298 * m_copym() couldn't 2299 * allocate an mbuf. 2300 * Adjust uio_resid back 2301 * (it was adjusted 2302 * down by len bytes, 2303 * which we didn't end 2304 * up "copying" over). 2305 */ 2306 uio->uio_resid += len; 2307 break; 2308 } 2309 } else { 2310 SOCKBUF_UNLOCK(&so->so_rcv); 2311 *mp = m_copym(m, 0, len, 2312 M_WAITOK); 2313 SOCKBUF_LOCK(&so->so_rcv); 2314 } 2315 } 2316 sbcut_locked(&so->so_rcv, len); 2317 } 2318 } 2319 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2320 if (so->so_oobmark) { 2321 if ((flags & MSG_PEEK) == 0) { 2322 so->so_oobmark -= len; 2323 if (so->so_oobmark == 0) { 2324 so->so_rcv.sb_state |= SBS_RCVATMARK; 2325 break; 2326 } 2327 } else { 2328 offset += len; 2329 if (offset == so->so_oobmark) 2330 break; 2331 } 2332 } 2333 if (flags & MSG_EOR) 2334 break; 2335 /* 2336 * If the MSG_WAITALL flag is set (for non-atomic socket), we 2337 * must not quit until "uio->uio_resid == 0" or an error 2338 * termination. If a signal/timeout occurs, return with a 2339 * short count but without error. Keep sockbuf locked 2340 * against other readers. 2341 */ 2342 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 2343 !sosendallatonce(so) && nextrecord == NULL) { 2344 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2345 if (so->so_error || so->so_rerror || 2346 so->so_rcv.sb_state & SBS_CANTRCVMORE) 2347 break; 2348 /* 2349 * Notify the protocol that some data has been 2350 * drained before blocking. 2351 */ 2352 if (pr->pr_flags & PR_WANTRCVD) { 2353 SOCKBUF_UNLOCK(&so->so_rcv); 2354 VNET_SO_ASSERT(so); 2355 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 2356 SOCKBUF_LOCK(&so->so_rcv); 2357 } 2358 SBLASTRECORDCHK(&so->so_rcv); 2359 SBLASTMBUFCHK(&so->so_rcv); 2360 /* 2361 * We could receive some data while was notifying 2362 * the protocol. Skip blocking in this case. 2363 */ 2364 if (so->so_rcv.sb_mb == NULL) { 2365 error = sbwait(&so->so_rcv); 2366 if (error) { 2367 SOCKBUF_UNLOCK(&so->so_rcv); 2368 goto release; 2369 } 2370 } 2371 m = so->so_rcv.sb_mb; 2372 if (m != NULL) 2373 nextrecord = m->m_nextpkt; 2374 } 2375 } 2376 2377 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2378 if (m != NULL && pr->pr_flags & PR_ATOMIC) { 2379 flags |= MSG_TRUNC; 2380 if ((flags & MSG_PEEK) == 0) 2381 (void) sbdroprecord_locked(&so->so_rcv); 2382 } 2383 if ((flags & MSG_PEEK) == 0) { 2384 if (m == NULL) { 2385 /* 2386 * First part is an inline SB_EMPTY_FIXUP(). Second 2387 * part makes sure sb_lastrecord is up-to-date if 2388 * there is still data in the socket buffer. 2389 */ 2390 so->so_rcv.sb_mb = nextrecord; 2391 if (so->so_rcv.sb_mb == NULL) { 2392 so->so_rcv.sb_mbtail = NULL; 2393 so->so_rcv.sb_lastrecord = NULL; 2394 } else if (nextrecord->m_nextpkt == NULL) 2395 so->so_rcv.sb_lastrecord = nextrecord; 2396 } 2397 SBLASTRECORDCHK(&so->so_rcv); 2398 SBLASTMBUFCHK(&so->so_rcv); 2399 /* 2400 * If soreceive() is being done from the socket callback, 2401 * then don't need to generate ACK to peer to update window, 2402 * since ACK will be generated on return to TCP. 2403 */ 2404 if (!(flags & MSG_SOCALLBCK) && 2405 (pr->pr_flags & PR_WANTRCVD)) { 2406 SOCKBUF_UNLOCK(&so->so_rcv); 2407 VNET_SO_ASSERT(so); 2408 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 2409 SOCKBUF_LOCK(&so->so_rcv); 2410 } 2411 } 2412 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2413 if (orig_resid == uio->uio_resid && orig_resid && 2414 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { 2415 SOCKBUF_UNLOCK(&so->so_rcv); 2416 goto restart; 2417 } 2418 SOCKBUF_UNLOCK(&so->so_rcv); 2419 2420 if (flagsp != NULL) 2421 *flagsp |= flags; 2422 release: 2423 SOCK_IO_RECV_UNLOCK(so); 2424 return (error); 2425 } 2426 2427 /* 2428 * Optimized version of soreceive() for stream (TCP) sockets. 2429 */ 2430 int 2431 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio, 2432 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2433 { 2434 int len = 0, error = 0, flags, oresid; 2435 struct sockbuf *sb; 2436 struct mbuf *m, *n = NULL; 2437 2438 /* We only do stream sockets. */ 2439 if (so->so_type != SOCK_STREAM) 2440 return (EINVAL); 2441 if (psa != NULL) 2442 *psa = NULL; 2443 if (flagsp != NULL) 2444 flags = *flagsp &~ MSG_EOR; 2445 else 2446 flags = 0; 2447 if (controlp != NULL) 2448 *controlp = NULL; 2449 if (flags & MSG_OOB) 2450 return (soreceive_rcvoob(so, uio, flags)); 2451 if (mp0 != NULL) 2452 *mp0 = NULL; 2453 2454 sb = &so->so_rcv; 2455 2456 #ifdef KERN_TLS 2457 /* 2458 * KTLS store TLS records as records with a control message to 2459 * describe the framing. 2460 * 2461 * We check once here before acquiring locks to optimize the 2462 * common case. 2463 */ 2464 if (sb->sb_tls_info != NULL) 2465 return (soreceive_generic(so, psa, uio, mp0, controlp, 2466 flagsp)); 2467 #endif 2468 2469 /* Prevent other readers from entering the socket. */ 2470 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags)); 2471 if (error) 2472 return (error); 2473 SOCKBUF_LOCK(sb); 2474 2475 #ifdef KERN_TLS 2476 if (sb->sb_tls_info != NULL) { 2477 SOCKBUF_UNLOCK(sb); 2478 SOCK_IO_RECV_UNLOCK(so); 2479 return (soreceive_generic(so, psa, uio, mp0, controlp, 2480 flagsp)); 2481 } 2482 #endif 2483 2484 /* Easy one, no space to copyout anything. */ 2485 if (uio->uio_resid == 0) { 2486 error = EINVAL; 2487 goto out; 2488 } 2489 oresid = uio->uio_resid; 2490 2491 /* We will never ever get anything unless we are or were connected. */ 2492 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 2493 error = ENOTCONN; 2494 goto out; 2495 } 2496 2497 restart: 2498 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2499 2500 /* Abort if socket has reported problems. */ 2501 if (so->so_error) { 2502 if (sbavail(sb) > 0) 2503 goto deliver; 2504 if (oresid > uio->uio_resid) 2505 goto out; 2506 error = so->so_error; 2507 if (!(flags & MSG_PEEK)) 2508 so->so_error = 0; 2509 goto out; 2510 } 2511 2512 /* Door is closed. Deliver what is left, if any. */ 2513 if (sb->sb_state & SBS_CANTRCVMORE) { 2514 if (sbavail(sb) > 0) 2515 goto deliver; 2516 else 2517 goto out; 2518 } 2519 2520 /* Socket buffer is empty and we shall not block. */ 2521 if (sbavail(sb) == 0 && 2522 ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) { 2523 error = EAGAIN; 2524 goto out; 2525 } 2526 2527 /* Socket buffer got some data that we shall deliver now. */ 2528 if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) && 2529 ((so->so_state & SS_NBIO) || 2530 (flags & (MSG_DONTWAIT|MSG_NBIO)) || 2531 sbavail(sb) >= sb->sb_lowat || 2532 sbavail(sb) >= uio->uio_resid || 2533 sbavail(sb) >= sb->sb_hiwat) ) { 2534 goto deliver; 2535 } 2536 2537 /* On MSG_WAITALL we must wait until all data or error arrives. */ 2538 if ((flags & MSG_WAITALL) && 2539 (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat)) 2540 goto deliver; 2541 2542 /* 2543 * Wait and block until (more) data comes in. 2544 * NB: Drops the sockbuf lock during wait. 2545 */ 2546 error = sbwait(sb); 2547 if (error) 2548 goto out; 2549 goto restart; 2550 2551 deliver: 2552 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2553 KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__)); 2554 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__)); 2555 2556 /* Statistics. */ 2557 if (uio->uio_td) 2558 uio->uio_td->td_ru.ru_msgrcv++; 2559 2560 /* Fill uio until full or current end of socket buffer is reached. */ 2561 len = min(uio->uio_resid, sbavail(sb)); 2562 if (mp0 != NULL) { 2563 /* Dequeue as many mbufs as possible. */ 2564 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) { 2565 if (*mp0 == NULL) 2566 *mp0 = sb->sb_mb; 2567 else 2568 m_cat(*mp0, sb->sb_mb); 2569 for (m = sb->sb_mb; 2570 m != NULL && m->m_len <= len; 2571 m = m->m_next) { 2572 KASSERT(!(m->m_flags & M_NOTAVAIL), 2573 ("%s: m %p not available", __func__, m)); 2574 len -= m->m_len; 2575 uio->uio_resid -= m->m_len; 2576 sbfree(sb, m); 2577 n = m; 2578 } 2579 n->m_next = NULL; 2580 sb->sb_mb = m; 2581 sb->sb_lastrecord = sb->sb_mb; 2582 if (sb->sb_mb == NULL) 2583 SB_EMPTY_FIXUP(sb); 2584 } 2585 /* Copy the remainder. */ 2586 if (len > 0) { 2587 KASSERT(sb->sb_mb != NULL, 2588 ("%s: len > 0 && sb->sb_mb empty", __func__)); 2589 2590 m = m_copym(sb->sb_mb, 0, len, M_NOWAIT); 2591 if (m == NULL) 2592 len = 0; /* Don't flush data from sockbuf. */ 2593 else 2594 uio->uio_resid -= len; 2595 if (*mp0 != NULL) 2596 m_cat(*mp0, m); 2597 else 2598 *mp0 = m; 2599 if (*mp0 == NULL) { 2600 error = ENOBUFS; 2601 goto out; 2602 } 2603 } 2604 } else { 2605 /* NB: Must unlock socket buffer as uiomove may sleep. */ 2606 SOCKBUF_UNLOCK(sb); 2607 error = m_mbuftouio(uio, sb->sb_mb, len); 2608 SOCKBUF_LOCK(sb); 2609 if (error) 2610 goto out; 2611 } 2612 SBLASTRECORDCHK(sb); 2613 SBLASTMBUFCHK(sb); 2614 2615 /* 2616 * Remove the delivered data from the socket buffer unless we 2617 * were only peeking. 2618 */ 2619 if (!(flags & MSG_PEEK)) { 2620 if (len > 0) 2621 sbdrop_locked(sb, len); 2622 2623 /* Notify protocol that we drained some data. */ 2624 if ((so->so_proto->pr_flags & PR_WANTRCVD) && 2625 (((flags & MSG_WAITALL) && uio->uio_resid > 0) || 2626 !(flags & MSG_SOCALLBCK))) { 2627 SOCKBUF_UNLOCK(sb); 2628 VNET_SO_ASSERT(so); 2629 (*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags); 2630 SOCKBUF_LOCK(sb); 2631 } 2632 } 2633 2634 /* 2635 * For MSG_WAITALL we may have to loop again and wait for 2636 * more data to come in. 2637 */ 2638 if ((flags & MSG_WAITALL) && uio->uio_resid > 0) 2639 goto restart; 2640 out: 2641 SBLASTRECORDCHK(sb); 2642 SBLASTMBUFCHK(sb); 2643 SOCKBUF_UNLOCK(sb); 2644 SOCK_IO_RECV_UNLOCK(so); 2645 return (error); 2646 } 2647 2648 /* 2649 * Optimized version of soreceive() for simple datagram cases from userspace. 2650 * Unlike in the stream case, we're able to drop a datagram if copyout() 2651 * fails, and because we handle datagrams atomically, we don't need to use a 2652 * sleep lock to prevent I/O interlacing. 2653 */ 2654 int 2655 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio, 2656 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2657 { 2658 struct mbuf *m, *m2; 2659 int flags, error; 2660 ssize_t len; 2661 struct protosw *pr = so->so_proto; 2662 struct mbuf *nextrecord; 2663 2664 if (psa != NULL) 2665 *psa = NULL; 2666 if (controlp != NULL) 2667 *controlp = NULL; 2668 if (flagsp != NULL) 2669 flags = *flagsp &~ MSG_EOR; 2670 else 2671 flags = 0; 2672 2673 /* 2674 * For any complicated cases, fall back to the full 2675 * soreceive_generic(). 2676 */ 2677 if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB)) 2678 return (soreceive_generic(so, psa, uio, mp0, controlp, 2679 flagsp)); 2680 2681 /* 2682 * Enforce restrictions on use. 2683 */ 2684 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0, 2685 ("soreceive_dgram: wantrcvd")); 2686 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic")); 2687 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0, 2688 ("soreceive_dgram: SBS_RCVATMARK")); 2689 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0, 2690 ("soreceive_dgram: P_CONNREQUIRED")); 2691 2692 /* 2693 * Loop blocking while waiting for a datagram. 2694 */ 2695 SOCKBUF_LOCK(&so->so_rcv); 2696 while ((m = so->so_rcv.sb_mb) == NULL) { 2697 KASSERT(sbavail(&so->so_rcv) == 0, 2698 ("soreceive_dgram: sb_mb NULL but sbavail %u", 2699 sbavail(&so->so_rcv))); 2700 if (so->so_error) { 2701 error = so->so_error; 2702 so->so_error = 0; 2703 SOCKBUF_UNLOCK(&so->so_rcv); 2704 return (error); 2705 } 2706 if (so->so_rcv.sb_state & SBS_CANTRCVMORE || 2707 uio->uio_resid == 0) { 2708 SOCKBUF_UNLOCK(&so->so_rcv); 2709 return (0); 2710 } 2711 if ((so->so_state & SS_NBIO) || 2712 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2713 SOCKBUF_UNLOCK(&so->so_rcv); 2714 return (EWOULDBLOCK); 2715 } 2716 SBLASTRECORDCHK(&so->so_rcv); 2717 SBLASTMBUFCHK(&so->so_rcv); 2718 error = sbwait(&so->so_rcv); 2719 if (error) { 2720 SOCKBUF_UNLOCK(&so->so_rcv); 2721 return (error); 2722 } 2723 } 2724 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2725 2726 if (uio->uio_td) 2727 uio->uio_td->td_ru.ru_msgrcv++; 2728 SBLASTRECORDCHK(&so->so_rcv); 2729 SBLASTMBUFCHK(&so->so_rcv); 2730 nextrecord = m->m_nextpkt; 2731 if (nextrecord == NULL) { 2732 KASSERT(so->so_rcv.sb_lastrecord == m, 2733 ("soreceive_dgram: lastrecord != m")); 2734 } 2735 2736 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord, 2737 ("soreceive_dgram: m_nextpkt != nextrecord")); 2738 2739 /* 2740 * Pull 'm' and its chain off the front of the packet queue. 2741 */ 2742 so->so_rcv.sb_mb = NULL; 2743 sockbuf_pushsync(&so->so_rcv, nextrecord); 2744 2745 /* 2746 * Walk 'm's chain and free that many bytes from the socket buffer. 2747 */ 2748 for (m2 = m; m2 != NULL; m2 = m2->m_next) 2749 sbfree(&so->so_rcv, m2); 2750 2751 /* 2752 * Do a few last checks before we let go of the lock. 2753 */ 2754 SBLASTRECORDCHK(&so->so_rcv); 2755 SBLASTMBUFCHK(&so->so_rcv); 2756 SOCKBUF_UNLOCK(&so->so_rcv); 2757 2758 if (pr->pr_flags & PR_ADDR) { 2759 KASSERT(m->m_type == MT_SONAME, 2760 ("m->m_type == %d", m->m_type)); 2761 if (psa != NULL) 2762 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2763 M_NOWAIT); 2764 m = m_free(m); 2765 } 2766 if (m == NULL) { 2767 /* XXXRW: Can this happen? */ 2768 return (0); 2769 } 2770 2771 /* 2772 * Packet to copyout() is now in 'm' and it is disconnected from the 2773 * queue. 2774 * 2775 * Process one or more MT_CONTROL mbufs present before any data mbufs 2776 * in the first mbuf chain on the socket buffer. We call into the 2777 * protocol to perform externalization (or freeing if controlp == 2778 * NULL). In some cases there can be only MT_CONTROL mbufs without 2779 * MT_DATA mbufs. 2780 */ 2781 if (m->m_type == MT_CONTROL) { 2782 struct mbuf *cm = NULL, *cmn; 2783 struct mbuf **cme = &cm; 2784 2785 do { 2786 m2 = m->m_next; 2787 m->m_next = NULL; 2788 *cme = m; 2789 cme = &(*cme)->m_next; 2790 m = m2; 2791 } while (m != NULL && m->m_type == MT_CONTROL); 2792 while (cm != NULL) { 2793 cmn = cm->m_next; 2794 cm->m_next = NULL; 2795 if (pr->pr_domain->dom_externalize != NULL) { 2796 error = (*pr->pr_domain->dom_externalize) 2797 (cm, controlp, flags); 2798 } else if (controlp != NULL) 2799 *controlp = cm; 2800 else 2801 m_freem(cm); 2802 if (controlp != NULL) { 2803 while (*controlp != NULL) 2804 controlp = &(*controlp)->m_next; 2805 } 2806 cm = cmn; 2807 } 2808 } 2809 KASSERT(m == NULL || m->m_type == MT_DATA, 2810 ("soreceive_dgram: !data")); 2811 while (m != NULL && uio->uio_resid > 0) { 2812 len = uio->uio_resid; 2813 if (len > m->m_len) 2814 len = m->m_len; 2815 error = uiomove(mtod(m, char *), (int)len, uio); 2816 if (error) { 2817 m_freem(m); 2818 return (error); 2819 } 2820 if (len == m->m_len) 2821 m = m_free(m); 2822 else { 2823 m->m_data += len; 2824 m->m_len -= len; 2825 } 2826 } 2827 if (m != NULL) { 2828 flags |= MSG_TRUNC; 2829 m_freem(m); 2830 } 2831 if (flagsp != NULL) 2832 *flagsp |= flags; 2833 return (0); 2834 } 2835 2836 int 2837 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, 2838 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2839 { 2840 int error; 2841 2842 CURVNET_SET(so->so_vnet); 2843 error = (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, 2844 mp0, controlp, flagsp)); 2845 CURVNET_RESTORE(); 2846 return (error); 2847 } 2848 2849 int 2850 soshutdown(struct socket *so, int how) 2851 { 2852 struct protosw *pr = so->so_proto; 2853 int error, soerror_enotconn; 2854 2855 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 2856 return (EINVAL); 2857 2858 soerror_enotconn = 0; 2859 if ((so->so_state & 2860 (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) { 2861 /* 2862 * POSIX mandates us to return ENOTCONN when shutdown(2) is 2863 * invoked on a datagram sockets, however historically we would 2864 * actually tear socket down. This is known to be leveraged by 2865 * some applications to unblock process waiting in recvXXX(2) 2866 * by other process that it shares that socket with. Try to meet 2867 * both backward-compatibility and POSIX requirements by forcing 2868 * ENOTCONN but still asking protocol to perform pru_shutdown(). 2869 */ 2870 if (so->so_type != SOCK_DGRAM && !SOLISTENING(so)) 2871 return (ENOTCONN); 2872 soerror_enotconn = 1; 2873 } 2874 2875 if (SOLISTENING(so)) { 2876 if (how != SHUT_WR) { 2877 SOLISTEN_LOCK(so); 2878 so->so_error = ECONNABORTED; 2879 solisten_wakeup(so); /* unlocks so */ 2880 } 2881 goto done; 2882 } 2883 2884 CURVNET_SET(so->so_vnet); 2885 if (pr->pr_usrreqs->pru_flush != NULL) 2886 (*pr->pr_usrreqs->pru_flush)(so, how); 2887 if (how != SHUT_WR) 2888 sorflush(so); 2889 if (how != SHUT_RD) { 2890 error = (*pr->pr_usrreqs->pru_shutdown)(so); 2891 wakeup(&so->so_timeo); 2892 CURVNET_RESTORE(); 2893 return ((error == 0 && soerror_enotconn) ? ENOTCONN : error); 2894 } 2895 wakeup(&so->so_timeo); 2896 CURVNET_RESTORE(); 2897 2898 done: 2899 return (soerror_enotconn ? ENOTCONN : 0); 2900 } 2901 2902 void 2903 sorflush(struct socket *so) 2904 { 2905 struct sockbuf *sb = &so->so_rcv; 2906 struct protosw *pr = so->so_proto; 2907 struct socket aso; 2908 int error; 2909 2910 VNET_SO_ASSERT(so); 2911 2912 /* 2913 * In order to avoid calling dom_dispose with the socket buffer mutex 2914 * held, and in order to generally avoid holding the lock for a long 2915 * time, we make a copy of the socket buffer and clear the original 2916 * (except locks, state). The new socket buffer copy won't have 2917 * initialized locks so we can only call routines that won't use or 2918 * assert those locks. 2919 * 2920 * Dislodge threads currently blocked in receive and wait to acquire 2921 * a lock against other simultaneous readers before clearing the 2922 * socket buffer. Don't let our acquire be interrupted by a signal 2923 * despite any existing socket disposition on interruptable waiting. 2924 */ 2925 socantrcvmore(so); 2926 error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR); 2927 KASSERT(error == 0, ("%s: cannot lock sock %p recv buffer", 2928 __func__, so)); 2929 2930 /* 2931 * Invalidate/clear most of the sockbuf structure, but leave selinfo 2932 * and mutex data unchanged. 2933 */ 2934 SOCKBUF_LOCK(sb); 2935 bzero(&aso, sizeof(aso)); 2936 aso.so_pcb = so->so_pcb; 2937 bcopy(&sb->sb_startzero, &aso.so_rcv.sb_startzero, 2938 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 2939 bzero(&sb->sb_startzero, 2940 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 2941 SOCKBUF_UNLOCK(sb); 2942 SOCK_IO_RECV_UNLOCK(so); 2943 2944 /* 2945 * Dispose of special rights and flush the copied socket. Don't call 2946 * any unsafe routines (that rely on locks being initialized) on aso. 2947 */ 2948 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 2949 (*pr->pr_domain->dom_dispose)(&aso); 2950 sbrelease_internal(&aso.so_rcv, so); 2951 } 2952 2953 /* 2954 * Wrapper for Socket established helper hook. 2955 * Parameters: socket, context of the hook point, hook id. 2956 */ 2957 static int inline 2958 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id) 2959 { 2960 struct socket_hhook_data hhook_data = { 2961 .so = so, 2962 .hctx = hctx, 2963 .m = NULL, 2964 .status = 0 2965 }; 2966 2967 CURVNET_SET(so->so_vnet); 2968 HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd); 2969 CURVNET_RESTORE(); 2970 2971 /* Ugly but needed, since hhooks return void for now */ 2972 return (hhook_data.status); 2973 } 2974 2975 /* 2976 * Perhaps this routine, and sooptcopyout(), below, ought to come in an 2977 * additional variant to handle the case where the option value needs to be 2978 * some kind of integer, but not a specific size. In addition to their use 2979 * here, these functions are also called by the protocol-level pr_ctloutput() 2980 * routines. 2981 */ 2982 int 2983 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen) 2984 { 2985 size_t valsize; 2986 2987 /* 2988 * If the user gives us more than we wanted, we ignore it, but if we 2989 * don't get the minimum length the caller wants, we return EINVAL. 2990 * On success, sopt->sopt_valsize is set to however much we actually 2991 * retrieved. 2992 */ 2993 if ((valsize = sopt->sopt_valsize) < minlen) 2994 return EINVAL; 2995 if (valsize > len) 2996 sopt->sopt_valsize = valsize = len; 2997 2998 if (sopt->sopt_td != NULL) 2999 return (copyin(sopt->sopt_val, buf, valsize)); 3000 3001 bcopy(sopt->sopt_val, buf, valsize); 3002 return (0); 3003 } 3004 3005 /* 3006 * Kernel version of setsockopt(2). 3007 * 3008 * XXX: optlen is size_t, not socklen_t 3009 */ 3010 int 3011 so_setsockopt(struct socket *so, int level, int optname, void *optval, 3012 size_t optlen) 3013 { 3014 struct sockopt sopt; 3015 3016 sopt.sopt_level = level; 3017 sopt.sopt_name = optname; 3018 sopt.sopt_dir = SOPT_SET; 3019 sopt.sopt_val = optval; 3020 sopt.sopt_valsize = optlen; 3021 sopt.sopt_td = NULL; 3022 return (sosetopt(so, &sopt)); 3023 } 3024 3025 int 3026 sosetopt(struct socket *so, struct sockopt *sopt) 3027 { 3028 int error, optval; 3029 struct linger l; 3030 struct timeval tv; 3031 sbintime_t val; 3032 uint32_t val32; 3033 #ifdef MAC 3034 struct mac extmac; 3035 #endif 3036 3037 CURVNET_SET(so->so_vnet); 3038 error = 0; 3039 if (sopt->sopt_level != SOL_SOCKET) { 3040 if (so->so_proto->pr_ctloutput != NULL) 3041 error = (*so->so_proto->pr_ctloutput)(so, sopt); 3042 else 3043 error = ENOPROTOOPT; 3044 } else { 3045 switch (sopt->sopt_name) { 3046 case SO_ACCEPTFILTER: 3047 error = accept_filt_setopt(so, sopt); 3048 if (error) 3049 goto bad; 3050 break; 3051 3052 case SO_LINGER: 3053 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 3054 if (error) 3055 goto bad; 3056 if (l.l_linger < 0 || 3057 l.l_linger > USHRT_MAX || 3058 l.l_linger > (INT_MAX / hz)) { 3059 error = EDOM; 3060 goto bad; 3061 } 3062 SOCK_LOCK(so); 3063 so->so_linger = l.l_linger; 3064 if (l.l_onoff) 3065 so->so_options |= SO_LINGER; 3066 else 3067 so->so_options &= ~SO_LINGER; 3068 SOCK_UNLOCK(so); 3069 break; 3070 3071 case SO_DEBUG: 3072 case SO_KEEPALIVE: 3073 case SO_DONTROUTE: 3074 case SO_USELOOPBACK: 3075 case SO_BROADCAST: 3076 case SO_REUSEADDR: 3077 case SO_REUSEPORT: 3078 case SO_REUSEPORT_LB: 3079 case SO_OOBINLINE: 3080 case SO_TIMESTAMP: 3081 case SO_BINTIME: 3082 case SO_NOSIGPIPE: 3083 case SO_NO_DDP: 3084 case SO_NO_OFFLOAD: 3085 case SO_RERROR: 3086 error = sooptcopyin(sopt, &optval, sizeof optval, 3087 sizeof optval); 3088 if (error) 3089 goto bad; 3090 SOCK_LOCK(so); 3091 if (optval) 3092 so->so_options |= sopt->sopt_name; 3093 else 3094 so->so_options &= ~sopt->sopt_name; 3095 SOCK_UNLOCK(so); 3096 break; 3097 3098 case SO_SETFIB: 3099 error = sooptcopyin(sopt, &optval, sizeof optval, 3100 sizeof optval); 3101 if (error) 3102 goto bad; 3103 3104 if (optval < 0 || optval >= rt_numfibs) { 3105 error = EINVAL; 3106 goto bad; 3107 } 3108 if (((so->so_proto->pr_domain->dom_family == PF_INET) || 3109 (so->so_proto->pr_domain->dom_family == PF_INET6) || 3110 (so->so_proto->pr_domain->dom_family == PF_ROUTE))) 3111 so->so_fibnum = optval; 3112 else 3113 so->so_fibnum = 0; 3114 break; 3115 3116 case SO_USER_COOKIE: 3117 error = sooptcopyin(sopt, &val32, sizeof val32, 3118 sizeof val32); 3119 if (error) 3120 goto bad; 3121 so->so_user_cookie = val32; 3122 break; 3123 3124 case SO_SNDBUF: 3125 case SO_RCVBUF: 3126 case SO_SNDLOWAT: 3127 case SO_RCVLOWAT: 3128 error = sooptcopyin(sopt, &optval, sizeof optval, 3129 sizeof optval); 3130 if (error) 3131 goto bad; 3132 3133 /* 3134 * Values < 1 make no sense for any of these options, 3135 * so disallow them. 3136 */ 3137 if (optval < 1) { 3138 error = EINVAL; 3139 goto bad; 3140 } 3141 3142 error = sbsetopt(so, sopt->sopt_name, optval); 3143 break; 3144 3145 case SO_SNDTIMEO: 3146 case SO_RCVTIMEO: 3147 #ifdef COMPAT_FREEBSD32 3148 if (SV_CURPROC_FLAG(SV_ILP32)) { 3149 struct timeval32 tv32; 3150 3151 error = sooptcopyin(sopt, &tv32, sizeof tv32, 3152 sizeof tv32); 3153 CP(tv32, tv, tv_sec); 3154 CP(tv32, tv, tv_usec); 3155 } else 3156 #endif 3157 error = sooptcopyin(sopt, &tv, sizeof tv, 3158 sizeof tv); 3159 if (error) 3160 goto bad; 3161 if (tv.tv_sec < 0 || tv.tv_usec < 0 || 3162 tv.tv_usec >= 1000000) { 3163 error = EDOM; 3164 goto bad; 3165 } 3166 if (tv.tv_sec > INT32_MAX) 3167 val = SBT_MAX; 3168 else 3169 val = tvtosbt(tv); 3170 switch (sopt->sopt_name) { 3171 case SO_SNDTIMEO: 3172 so->so_snd.sb_timeo = val; 3173 break; 3174 case SO_RCVTIMEO: 3175 so->so_rcv.sb_timeo = val; 3176 break; 3177 } 3178 break; 3179 3180 case SO_LABEL: 3181 #ifdef MAC 3182 error = sooptcopyin(sopt, &extmac, sizeof extmac, 3183 sizeof extmac); 3184 if (error) 3185 goto bad; 3186 error = mac_setsockopt_label(sopt->sopt_td->td_ucred, 3187 so, &extmac); 3188 #else 3189 error = EOPNOTSUPP; 3190 #endif 3191 break; 3192 3193 case SO_TS_CLOCK: 3194 error = sooptcopyin(sopt, &optval, sizeof optval, 3195 sizeof optval); 3196 if (error) 3197 goto bad; 3198 if (optval < 0 || optval > SO_TS_CLOCK_MAX) { 3199 error = EINVAL; 3200 goto bad; 3201 } 3202 so->so_ts_clock = optval; 3203 break; 3204 3205 case SO_MAX_PACING_RATE: 3206 error = sooptcopyin(sopt, &val32, sizeof(val32), 3207 sizeof(val32)); 3208 if (error) 3209 goto bad; 3210 so->so_max_pacing_rate = val32; 3211 break; 3212 3213 default: 3214 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 3215 error = hhook_run_socket(so, sopt, 3216 HHOOK_SOCKET_OPT); 3217 else 3218 error = ENOPROTOOPT; 3219 break; 3220 } 3221 if (error == 0 && so->so_proto->pr_ctloutput != NULL) 3222 (void)(*so->so_proto->pr_ctloutput)(so, sopt); 3223 } 3224 bad: 3225 CURVNET_RESTORE(); 3226 return (error); 3227 } 3228 3229 /* 3230 * Helper routine for getsockopt. 3231 */ 3232 int 3233 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 3234 { 3235 int error; 3236 size_t valsize; 3237 3238 error = 0; 3239 3240 /* 3241 * Documented get behavior is that we always return a value, possibly 3242 * truncated to fit in the user's buffer. Traditional behavior is 3243 * that we always tell the user precisely how much we copied, rather 3244 * than something useful like the total amount we had available for 3245 * her. Note that this interface is not idempotent; the entire 3246 * answer must be generated ahead of time. 3247 */ 3248 valsize = min(len, sopt->sopt_valsize); 3249 sopt->sopt_valsize = valsize; 3250 if (sopt->sopt_val != NULL) { 3251 if (sopt->sopt_td != NULL) 3252 error = copyout(buf, sopt->sopt_val, valsize); 3253 else 3254 bcopy(buf, sopt->sopt_val, valsize); 3255 } 3256 return (error); 3257 } 3258 3259 int 3260 sogetopt(struct socket *so, struct sockopt *sopt) 3261 { 3262 int error, optval; 3263 struct linger l; 3264 struct timeval tv; 3265 #ifdef MAC 3266 struct mac extmac; 3267 #endif 3268 3269 CURVNET_SET(so->so_vnet); 3270 error = 0; 3271 if (sopt->sopt_level != SOL_SOCKET) { 3272 if (so->so_proto->pr_ctloutput != NULL) 3273 error = (*so->so_proto->pr_ctloutput)(so, sopt); 3274 else 3275 error = ENOPROTOOPT; 3276 CURVNET_RESTORE(); 3277 return (error); 3278 } else { 3279 switch (sopt->sopt_name) { 3280 case SO_ACCEPTFILTER: 3281 error = accept_filt_getopt(so, sopt); 3282 break; 3283 3284 case SO_LINGER: 3285 SOCK_LOCK(so); 3286 l.l_onoff = so->so_options & SO_LINGER; 3287 l.l_linger = so->so_linger; 3288 SOCK_UNLOCK(so); 3289 error = sooptcopyout(sopt, &l, sizeof l); 3290 break; 3291 3292 case SO_USELOOPBACK: 3293 case SO_DONTROUTE: 3294 case SO_DEBUG: 3295 case SO_KEEPALIVE: 3296 case SO_REUSEADDR: 3297 case SO_REUSEPORT: 3298 case SO_REUSEPORT_LB: 3299 case SO_BROADCAST: 3300 case SO_OOBINLINE: 3301 case SO_ACCEPTCONN: 3302 case SO_TIMESTAMP: 3303 case SO_BINTIME: 3304 case SO_NOSIGPIPE: 3305 case SO_NO_DDP: 3306 case SO_NO_OFFLOAD: 3307 case SO_RERROR: 3308 optval = so->so_options & sopt->sopt_name; 3309 integer: 3310 error = sooptcopyout(sopt, &optval, sizeof optval); 3311 break; 3312 3313 case SO_DOMAIN: 3314 optval = so->so_proto->pr_domain->dom_family; 3315 goto integer; 3316 3317 case SO_TYPE: 3318 optval = so->so_type; 3319 goto integer; 3320 3321 case SO_PROTOCOL: 3322 optval = so->so_proto->pr_protocol; 3323 goto integer; 3324 3325 case SO_ERROR: 3326 SOCK_LOCK(so); 3327 if (so->so_error) { 3328 optval = so->so_error; 3329 so->so_error = 0; 3330 } else { 3331 optval = so->so_rerror; 3332 so->so_rerror = 0; 3333 } 3334 SOCK_UNLOCK(so); 3335 goto integer; 3336 3337 case SO_SNDBUF: 3338 optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat : 3339 so->so_snd.sb_hiwat; 3340 goto integer; 3341 3342 case SO_RCVBUF: 3343 optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat : 3344 so->so_rcv.sb_hiwat; 3345 goto integer; 3346 3347 case SO_SNDLOWAT: 3348 optval = SOLISTENING(so) ? so->sol_sbsnd_lowat : 3349 so->so_snd.sb_lowat; 3350 goto integer; 3351 3352 case SO_RCVLOWAT: 3353 optval = SOLISTENING(so) ? so->sol_sbrcv_lowat : 3354 so->so_rcv.sb_lowat; 3355 goto integer; 3356 3357 case SO_SNDTIMEO: 3358 case SO_RCVTIMEO: 3359 tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ? 3360 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 3361 #ifdef COMPAT_FREEBSD32 3362 if (SV_CURPROC_FLAG(SV_ILP32)) { 3363 struct timeval32 tv32; 3364 3365 CP(tv, tv32, tv_sec); 3366 CP(tv, tv32, tv_usec); 3367 error = sooptcopyout(sopt, &tv32, sizeof tv32); 3368 } else 3369 #endif 3370 error = sooptcopyout(sopt, &tv, sizeof tv); 3371 break; 3372 3373 case SO_LABEL: 3374 #ifdef MAC 3375 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 3376 sizeof(extmac)); 3377 if (error) 3378 goto bad; 3379 error = mac_getsockopt_label(sopt->sopt_td->td_ucred, 3380 so, &extmac); 3381 if (error) 3382 goto bad; 3383 error = sooptcopyout(sopt, &extmac, sizeof extmac); 3384 #else 3385 error = EOPNOTSUPP; 3386 #endif 3387 break; 3388 3389 case SO_PEERLABEL: 3390 #ifdef MAC 3391 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 3392 sizeof(extmac)); 3393 if (error) 3394 goto bad; 3395 error = mac_getsockopt_peerlabel( 3396 sopt->sopt_td->td_ucred, so, &extmac); 3397 if (error) 3398 goto bad; 3399 error = sooptcopyout(sopt, &extmac, sizeof extmac); 3400 #else 3401 error = EOPNOTSUPP; 3402 #endif 3403 break; 3404 3405 case SO_LISTENQLIMIT: 3406 optval = SOLISTENING(so) ? so->sol_qlimit : 0; 3407 goto integer; 3408 3409 case SO_LISTENQLEN: 3410 optval = SOLISTENING(so) ? so->sol_qlen : 0; 3411 goto integer; 3412 3413 case SO_LISTENINCQLEN: 3414 optval = SOLISTENING(so) ? so->sol_incqlen : 0; 3415 goto integer; 3416 3417 case SO_TS_CLOCK: 3418 optval = so->so_ts_clock; 3419 goto integer; 3420 3421 case SO_MAX_PACING_RATE: 3422 optval = so->so_max_pacing_rate; 3423 goto integer; 3424 3425 default: 3426 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 3427 error = hhook_run_socket(so, sopt, 3428 HHOOK_SOCKET_OPT); 3429 else 3430 error = ENOPROTOOPT; 3431 break; 3432 } 3433 } 3434 #ifdef MAC 3435 bad: 3436 #endif 3437 CURVNET_RESTORE(); 3438 return (error); 3439 } 3440 3441 int 3442 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 3443 { 3444 struct mbuf *m, *m_prev; 3445 int sopt_size = sopt->sopt_valsize; 3446 3447 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 3448 if (m == NULL) 3449 return ENOBUFS; 3450 if (sopt_size > MLEN) { 3451 MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT); 3452 if ((m->m_flags & M_EXT) == 0) { 3453 m_free(m); 3454 return ENOBUFS; 3455 } 3456 m->m_len = min(MCLBYTES, sopt_size); 3457 } else { 3458 m->m_len = min(MLEN, sopt_size); 3459 } 3460 sopt_size -= m->m_len; 3461 *mp = m; 3462 m_prev = m; 3463 3464 while (sopt_size) { 3465 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 3466 if (m == NULL) { 3467 m_freem(*mp); 3468 return ENOBUFS; 3469 } 3470 if (sopt_size > MLEN) { 3471 MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK : 3472 M_NOWAIT); 3473 if ((m->m_flags & M_EXT) == 0) { 3474 m_freem(m); 3475 m_freem(*mp); 3476 return ENOBUFS; 3477 } 3478 m->m_len = min(MCLBYTES, sopt_size); 3479 } else { 3480 m->m_len = min(MLEN, sopt_size); 3481 } 3482 sopt_size -= m->m_len; 3483 m_prev->m_next = m; 3484 m_prev = m; 3485 } 3486 return (0); 3487 } 3488 3489 int 3490 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 3491 { 3492 struct mbuf *m0 = m; 3493 3494 if (sopt->sopt_val == NULL) 3495 return (0); 3496 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 3497 if (sopt->sopt_td != NULL) { 3498 int error; 3499 3500 error = copyin(sopt->sopt_val, mtod(m, char *), 3501 m->m_len); 3502 if (error != 0) { 3503 m_freem(m0); 3504 return(error); 3505 } 3506 } else 3507 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 3508 sopt->sopt_valsize -= m->m_len; 3509 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 3510 m = m->m_next; 3511 } 3512 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 3513 panic("ip6_sooptmcopyin"); 3514 return (0); 3515 } 3516 3517 int 3518 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 3519 { 3520 struct mbuf *m0 = m; 3521 size_t valsize = 0; 3522 3523 if (sopt->sopt_val == NULL) 3524 return (0); 3525 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 3526 if (sopt->sopt_td != NULL) { 3527 int error; 3528 3529 error = copyout(mtod(m, char *), sopt->sopt_val, 3530 m->m_len); 3531 if (error != 0) { 3532 m_freem(m0); 3533 return(error); 3534 } 3535 } else 3536 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 3537 sopt->sopt_valsize -= m->m_len; 3538 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 3539 valsize += m->m_len; 3540 m = m->m_next; 3541 } 3542 if (m != NULL) { 3543 /* enough soopt buffer should be given from user-land */ 3544 m_freem(m0); 3545 return(EINVAL); 3546 } 3547 sopt->sopt_valsize = valsize; 3548 return (0); 3549 } 3550 3551 /* 3552 * sohasoutofband(): protocol notifies socket layer of the arrival of new 3553 * out-of-band data, which will then notify socket consumers. 3554 */ 3555 void 3556 sohasoutofband(struct socket *so) 3557 { 3558 3559 if (so->so_sigio != NULL) 3560 pgsigio(&so->so_sigio, SIGURG, 0); 3561 selwakeuppri(&so->so_rdsel, PSOCK); 3562 } 3563 3564 int 3565 sopoll(struct socket *so, int events, struct ucred *active_cred, 3566 struct thread *td) 3567 { 3568 3569 /* 3570 * We do not need to set or assert curvnet as long as everyone uses 3571 * sopoll_generic(). 3572 */ 3573 return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred, 3574 td)); 3575 } 3576 3577 int 3578 sopoll_generic(struct socket *so, int events, struct ucred *active_cred, 3579 struct thread *td) 3580 { 3581 int revents; 3582 3583 SOCK_LOCK(so); 3584 if (SOLISTENING(so)) { 3585 if (!(events & (POLLIN | POLLRDNORM))) 3586 revents = 0; 3587 else if (!TAILQ_EMPTY(&so->sol_comp)) 3588 revents = events & (POLLIN | POLLRDNORM); 3589 else if ((events & POLLINIGNEOF) == 0 && so->so_error) 3590 revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP; 3591 else { 3592 selrecord(td, &so->so_rdsel); 3593 revents = 0; 3594 } 3595 } else { 3596 revents = 0; 3597 SOCKBUF_LOCK(&so->so_snd); 3598 SOCKBUF_LOCK(&so->so_rcv); 3599 if (events & (POLLIN | POLLRDNORM)) 3600 if (soreadabledata(so)) 3601 revents |= events & (POLLIN | POLLRDNORM); 3602 if (events & (POLLOUT | POLLWRNORM)) 3603 if (sowriteable(so)) 3604 revents |= events & (POLLOUT | POLLWRNORM); 3605 if (events & (POLLPRI | POLLRDBAND)) 3606 if (so->so_oobmark || 3607 (so->so_rcv.sb_state & SBS_RCVATMARK)) 3608 revents |= events & (POLLPRI | POLLRDBAND); 3609 if ((events & POLLINIGNEOF) == 0) { 3610 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3611 revents |= events & (POLLIN | POLLRDNORM); 3612 if (so->so_snd.sb_state & SBS_CANTSENDMORE) 3613 revents |= POLLHUP; 3614 } 3615 } 3616 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) 3617 revents |= events & POLLRDHUP; 3618 if (revents == 0) { 3619 if (events & 3620 (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND | POLLRDHUP)) { 3621 selrecord(td, &so->so_rdsel); 3622 so->so_rcv.sb_flags |= SB_SEL; 3623 } 3624 if (events & (POLLOUT | POLLWRNORM)) { 3625 selrecord(td, &so->so_wrsel); 3626 so->so_snd.sb_flags |= SB_SEL; 3627 } 3628 } 3629 SOCKBUF_UNLOCK(&so->so_rcv); 3630 SOCKBUF_UNLOCK(&so->so_snd); 3631 } 3632 SOCK_UNLOCK(so); 3633 return (revents); 3634 } 3635 3636 int 3637 soo_kqfilter(struct file *fp, struct knote *kn) 3638 { 3639 struct socket *so = kn->kn_fp->f_data; 3640 struct sockbuf *sb; 3641 struct knlist *knl; 3642 3643 switch (kn->kn_filter) { 3644 case EVFILT_READ: 3645 kn->kn_fop = &soread_filtops; 3646 knl = &so->so_rdsel.si_note; 3647 sb = &so->so_rcv; 3648 break; 3649 case EVFILT_WRITE: 3650 kn->kn_fop = &sowrite_filtops; 3651 knl = &so->so_wrsel.si_note; 3652 sb = &so->so_snd; 3653 break; 3654 case EVFILT_EMPTY: 3655 kn->kn_fop = &soempty_filtops; 3656 knl = &so->so_wrsel.si_note; 3657 sb = &so->so_snd; 3658 break; 3659 default: 3660 return (EINVAL); 3661 } 3662 3663 SOCK_LOCK(so); 3664 if (SOLISTENING(so)) { 3665 knlist_add(knl, kn, 1); 3666 } else { 3667 SOCKBUF_LOCK(sb); 3668 knlist_add(knl, kn, 1); 3669 sb->sb_flags |= SB_KNOTE; 3670 SOCKBUF_UNLOCK(sb); 3671 } 3672 SOCK_UNLOCK(so); 3673 return (0); 3674 } 3675 3676 /* 3677 * Some routines that return EOPNOTSUPP for entry points that are not 3678 * supported by a protocol. Fill in as needed. 3679 */ 3680 int 3681 pru_accept_notsupp(struct socket *so, struct sockaddr **nam) 3682 { 3683 3684 return EOPNOTSUPP; 3685 } 3686 3687 int 3688 pru_aio_queue_notsupp(struct socket *so, struct kaiocb *job) 3689 { 3690 3691 return EOPNOTSUPP; 3692 } 3693 3694 int 3695 pru_attach_notsupp(struct socket *so, int proto, struct thread *td) 3696 { 3697 3698 return EOPNOTSUPP; 3699 } 3700 3701 int 3702 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 3703 { 3704 3705 return EOPNOTSUPP; 3706 } 3707 3708 int 3709 pru_bindat_notsupp(int fd, struct socket *so, struct sockaddr *nam, 3710 struct thread *td) 3711 { 3712 3713 return EOPNOTSUPP; 3714 } 3715 3716 int 3717 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 3718 { 3719 3720 return EOPNOTSUPP; 3721 } 3722 3723 int 3724 pru_connectat_notsupp(int fd, struct socket *so, struct sockaddr *nam, 3725 struct thread *td) 3726 { 3727 3728 return EOPNOTSUPP; 3729 } 3730 3731 int 3732 pru_connect2_notsupp(struct socket *so1, struct socket *so2) 3733 { 3734 3735 return EOPNOTSUPP; 3736 } 3737 3738 int 3739 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, 3740 struct ifnet *ifp, struct thread *td) 3741 { 3742 3743 return EOPNOTSUPP; 3744 } 3745 3746 int 3747 pru_disconnect_notsupp(struct socket *so) 3748 { 3749 3750 return EOPNOTSUPP; 3751 } 3752 3753 int 3754 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td) 3755 { 3756 3757 return EOPNOTSUPP; 3758 } 3759 3760 int 3761 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam) 3762 { 3763 3764 return EOPNOTSUPP; 3765 } 3766 3767 int 3768 pru_rcvd_notsupp(struct socket *so, int flags) 3769 { 3770 3771 return EOPNOTSUPP; 3772 } 3773 3774 int 3775 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) 3776 { 3777 3778 return EOPNOTSUPP; 3779 } 3780 3781 int 3782 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m, 3783 struct sockaddr *addr, struct mbuf *control, struct thread *td) 3784 { 3785 3786 if (control != NULL) 3787 m_freem(control); 3788 if ((flags & PRUS_NOTREADY) == 0) 3789 m_freem(m); 3790 return (EOPNOTSUPP); 3791 } 3792 3793 int 3794 pru_ready_notsupp(struct socket *so, struct mbuf *m, int count) 3795 { 3796 3797 return (EOPNOTSUPP); 3798 } 3799 3800 /* 3801 * This isn't really a ``null'' operation, but it's the default one and 3802 * doesn't do anything destructive. 3803 */ 3804 int 3805 pru_sense_null(struct socket *so, struct stat *sb) 3806 { 3807 3808 sb->st_blksize = so->so_snd.sb_hiwat; 3809 return 0; 3810 } 3811 3812 int 3813 pru_shutdown_notsupp(struct socket *so) 3814 { 3815 3816 return EOPNOTSUPP; 3817 } 3818 3819 int 3820 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam) 3821 { 3822 3823 return EOPNOTSUPP; 3824 } 3825 3826 int 3827 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio, 3828 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 3829 { 3830 3831 return EOPNOTSUPP; 3832 } 3833 3834 int 3835 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr, 3836 struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 3837 { 3838 3839 return EOPNOTSUPP; 3840 } 3841 3842 int 3843 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred, 3844 struct thread *td) 3845 { 3846 3847 return EOPNOTSUPP; 3848 } 3849 3850 static void 3851 filt_sordetach(struct knote *kn) 3852 { 3853 struct socket *so = kn->kn_fp->f_data; 3854 3855 so_rdknl_lock(so); 3856 knlist_remove(&so->so_rdsel.si_note, kn, 1); 3857 if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note)) 3858 so->so_rcv.sb_flags &= ~SB_KNOTE; 3859 so_rdknl_unlock(so); 3860 } 3861 3862 /*ARGSUSED*/ 3863 static int 3864 filt_soread(struct knote *kn, long hint) 3865 { 3866 struct socket *so; 3867 3868 so = kn->kn_fp->f_data; 3869 3870 if (SOLISTENING(so)) { 3871 SOCK_LOCK_ASSERT(so); 3872 kn->kn_data = so->sol_qlen; 3873 if (so->so_error) { 3874 kn->kn_flags |= EV_EOF; 3875 kn->kn_fflags = so->so_error; 3876 return (1); 3877 } 3878 return (!TAILQ_EMPTY(&so->sol_comp)); 3879 } 3880 3881 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 3882 3883 kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl; 3884 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3885 kn->kn_flags |= EV_EOF; 3886 kn->kn_fflags = so->so_error; 3887 return (1); 3888 } else if (so->so_error || so->so_rerror) 3889 return (1); 3890 3891 if (kn->kn_sfflags & NOTE_LOWAT) { 3892 if (kn->kn_data >= kn->kn_sdata) 3893 return (1); 3894 } else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat) 3895 return (1); 3896 3897 /* This hook returning non-zero indicates an event, not error */ 3898 return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD)); 3899 } 3900 3901 static void 3902 filt_sowdetach(struct knote *kn) 3903 { 3904 struct socket *so = kn->kn_fp->f_data; 3905 3906 so_wrknl_lock(so); 3907 knlist_remove(&so->so_wrsel.si_note, kn, 1); 3908 if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note)) 3909 so->so_snd.sb_flags &= ~SB_KNOTE; 3910 so_wrknl_unlock(so); 3911 } 3912 3913 /*ARGSUSED*/ 3914 static int 3915 filt_sowrite(struct knote *kn, long hint) 3916 { 3917 struct socket *so; 3918 3919 so = kn->kn_fp->f_data; 3920 3921 if (SOLISTENING(so)) 3922 return (0); 3923 3924 SOCKBUF_LOCK_ASSERT(&so->so_snd); 3925 kn->kn_data = sbspace(&so->so_snd); 3926 3927 hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE); 3928 3929 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 3930 kn->kn_flags |= EV_EOF; 3931 kn->kn_fflags = so->so_error; 3932 return (1); 3933 } else if (so->so_error) /* temporary udp error */ 3934 return (1); 3935 else if (((so->so_state & SS_ISCONNECTED) == 0) && 3936 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 3937 return (0); 3938 else if (kn->kn_sfflags & NOTE_LOWAT) 3939 return (kn->kn_data >= kn->kn_sdata); 3940 else 3941 return (kn->kn_data >= so->so_snd.sb_lowat); 3942 } 3943 3944 static int 3945 filt_soempty(struct knote *kn, long hint) 3946 { 3947 struct socket *so; 3948 3949 so = kn->kn_fp->f_data; 3950 3951 if (SOLISTENING(so)) 3952 return (1); 3953 3954 SOCKBUF_LOCK_ASSERT(&so->so_snd); 3955 kn->kn_data = sbused(&so->so_snd); 3956 3957 if (kn->kn_data == 0) 3958 return (1); 3959 else 3960 return (0); 3961 } 3962 3963 int 3964 socheckuid(struct socket *so, uid_t uid) 3965 { 3966 3967 if (so == NULL) 3968 return (EPERM); 3969 if (so->so_cred->cr_uid != uid) 3970 return (EPERM); 3971 return (0); 3972 } 3973 3974 /* 3975 * These functions are used by protocols to notify the socket layer (and its 3976 * consumers) of state changes in the sockets driven by protocol-side events. 3977 */ 3978 3979 /* 3980 * Procedures to manipulate state flags of socket and do appropriate wakeups. 3981 * 3982 * Normal sequence from the active (originating) side is that 3983 * soisconnecting() is called during processing of connect() call, resulting 3984 * in an eventual call to soisconnected() if/when the connection is 3985 * established. When the connection is torn down soisdisconnecting() is 3986 * called during processing of disconnect() call, and soisdisconnected() is 3987 * called when the connection to the peer is totally severed. The semantics 3988 * of these routines are such that connectionless protocols can call 3989 * soisconnected() and soisdisconnected() only, bypassing the in-progress 3990 * calls when setting up a ``connection'' takes no time. 3991 * 3992 * From the passive side, a socket is created with two queues of sockets: 3993 * so_incomp for connections in progress and so_comp for connections already 3994 * made and awaiting user acceptance. As a protocol is preparing incoming 3995 * connections, it creates a socket structure queued on so_incomp by calling 3996 * sonewconn(). When the connection is established, soisconnected() is 3997 * called, and transfers the socket structure to so_comp, making it available 3998 * to accept(). 3999 * 4000 * If a socket is closed with sockets on either so_incomp or so_comp, these 4001 * sockets are dropped. 4002 * 4003 * If higher-level protocols are implemented in the kernel, the wakeups done 4004 * here will sometimes cause software-interrupt process scheduling. 4005 */ 4006 void 4007 soisconnecting(struct socket *so) 4008 { 4009 4010 SOCK_LOCK(so); 4011 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 4012 so->so_state |= SS_ISCONNECTING; 4013 SOCK_UNLOCK(so); 4014 } 4015 4016 void 4017 soisconnected(struct socket *so) 4018 { 4019 4020 SOCK_LOCK(so); 4021 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 4022 so->so_state |= SS_ISCONNECTED; 4023 4024 if (so->so_qstate == SQ_INCOMP) { 4025 struct socket *head = so->so_listen; 4026 int ret; 4027 4028 KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so)); 4029 /* 4030 * Promoting a socket from incomplete queue to complete, we 4031 * need to go through reverse order of locking. We first do 4032 * trylock, and if that doesn't succeed, we go the hard way 4033 * leaving a reference and rechecking consistency after proper 4034 * locking. 4035 */ 4036 if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) { 4037 soref(head); 4038 SOCK_UNLOCK(so); 4039 SOLISTEN_LOCK(head); 4040 SOCK_LOCK(so); 4041 if (__predict_false(head != so->so_listen)) { 4042 /* 4043 * The socket went off the listen queue, 4044 * should be lost race to close(2) of sol. 4045 * The socket is about to soabort(). 4046 */ 4047 SOCK_UNLOCK(so); 4048 sorele(head); 4049 return; 4050 } 4051 /* Not the last one, as so holds a ref. */ 4052 refcount_release(&head->so_count); 4053 } 4054 again: 4055 if ((so->so_options & SO_ACCEPTFILTER) == 0) { 4056 TAILQ_REMOVE(&head->sol_incomp, so, so_list); 4057 head->sol_incqlen--; 4058 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 4059 head->sol_qlen++; 4060 so->so_qstate = SQ_COMP; 4061 SOCK_UNLOCK(so); 4062 solisten_wakeup(head); /* unlocks */ 4063 } else { 4064 SOCKBUF_LOCK(&so->so_rcv); 4065 soupcall_set(so, SO_RCV, 4066 head->sol_accept_filter->accf_callback, 4067 head->sol_accept_filter_arg); 4068 so->so_options &= ~SO_ACCEPTFILTER; 4069 ret = head->sol_accept_filter->accf_callback(so, 4070 head->sol_accept_filter_arg, M_NOWAIT); 4071 if (ret == SU_ISCONNECTED) { 4072 soupcall_clear(so, SO_RCV); 4073 SOCKBUF_UNLOCK(&so->so_rcv); 4074 goto again; 4075 } 4076 SOCKBUF_UNLOCK(&so->so_rcv); 4077 SOCK_UNLOCK(so); 4078 SOLISTEN_UNLOCK(head); 4079 } 4080 return; 4081 } 4082 SOCK_UNLOCK(so); 4083 wakeup(&so->so_timeo); 4084 sorwakeup(so); 4085 sowwakeup(so); 4086 } 4087 4088 void 4089 soisdisconnecting(struct socket *so) 4090 { 4091 4092 SOCK_LOCK(so); 4093 so->so_state &= ~SS_ISCONNECTING; 4094 so->so_state |= SS_ISDISCONNECTING; 4095 4096 if (!SOLISTENING(so)) { 4097 SOCKBUF_LOCK(&so->so_rcv); 4098 socantrcvmore_locked(so); 4099 SOCKBUF_LOCK(&so->so_snd); 4100 socantsendmore_locked(so); 4101 } 4102 SOCK_UNLOCK(so); 4103 wakeup(&so->so_timeo); 4104 } 4105 4106 void 4107 soisdisconnected(struct socket *so) 4108 { 4109 4110 SOCK_LOCK(so); 4111 4112 /* 4113 * There is at least one reader of so_state that does not 4114 * acquire socket lock, namely soreceive_generic(). Ensure 4115 * that it never sees all flags that track connection status 4116 * cleared, by ordering the update with a barrier semantic of 4117 * our release thread fence. 4118 */ 4119 so->so_state |= SS_ISDISCONNECTED; 4120 atomic_thread_fence_rel(); 4121 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 4122 4123 if (!SOLISTENING(so)) { 4124 SOCK_UNLOCK(so); 4125 SOCKBUF_LOCK(&so->so_rcv); 4126 socantrcvmore_locked(so); 4127 SOCKBUF_LOCK(&so->so_snd); 4128 sbdrop_locked(&so->so_snd, sbused(&so->so_snd)); 4129 socantsendmore_locked(so); 4130 } else 4131 SOCK_UNLOCK(so); 4132 wakeup(&so->so_timeo); 4133 } 4134 4135 int 4136 soiolock(struct socket *so, struct sx *sx, int flags) 4137 { 4138 int error; 4139 4140 KASSERT((flags & SBL_VALID) == flags, 4141 ("soiolock: invalid flags %#x", flags)); 4142 4143 if ((flags & SBL_WAIT) != 0) { 4144 if ((flags & SBL_NOINTR) != 0) { 4145 sx_xlock(sx); 4146 } else { 4147 error = sx_xlock_sig(sx); 4148 if (error != 0) 4149 return (error); 4150 } 4151 } else if (!sx_try_xlock(sx)) { 4152 return (EWOULDBLOCK); 4153 } 4154 4155 if (__predict_false(SOLISTENING(so))) { 4156 sx_xunlock(sx); 4157 return (ENOTCONN); 4158 } 4159 return (0); 4160 } 4161 4162 void 4163 soiounlock(struct sx *sx) 4164 { 4165 sx_xunlock(sx); 4166 } 4167 4168 /* 4169 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 4170 */ 4171 struct sockaddr * 4172 sodupsockaddr(const struct sockaddr *sa, int mflags) 4173 { 4174 struct sockaddr *sa2; 4175 4176 sa2 = malloc(sa->sa_len, M_SONAME, mflags); 4177 if (sa2) 4178 bcopy(sa, sa2, sa->sa_len); 4179 return sa2; 4180 } 4181 4182 /* 4183 * Register per-socket destructor. 4184 */ 4185 void 4186 sodtor_set(struct socket *so, so_dtor_t *func) 4187 { 4188 4189 SOCK_LOCK_ASSERT(so); 4190 so->so_dtor = func; 4191 } 4192 4193 /* 4194 * Register per-socket buffer upcalls. 4195 */ 4196 void 4197 soupcall_set(struct socket *so, int which, so_upcall_t func, void *arg) 4198 { 4199 struct sockbuf *sb; 4200 4201 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 4202 4203 switch (which) { 4204 case SO_RCV: 4205 sb = &so->so_rcv; 4206 break; 4207 case SO_SND: 4208 sb = &so->so_snd; 4209 break; 4210 default: 4211 panic("soupcall_set: bad which"); 4212 } 4213 SOCKBUF_LOCK_ASSERT(sb); 4214 sb->sb_upcall = func; 4215 sb->sb_upcallarg = arg; 4216 sb->sb_flags |= SB_UPCALL; 4217 } 4218 4219 void 4220 soupcall_clear(struct socket *so, int which) 4221 { 4222 struct sockbuf *sb; 4223 4224 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 4225 4226 switch (which) { 4227 case SO_RCV: 4228 sb = &so->so_rcv; 4229 break; 4230 case SO_SND: 4231 sb = &so->so_snd; 4232 break; 4233 default: 4234 panic("soupcall_clear: bad which"); 4235 } 4236 SOCKBUF_LOCK_ASSERT(sb); 4237 KASSERT(sb->sb_upcall != NULL, 4238 ("%s: so %p no upcall to clear", __func__, so)); 4239 sb->sb_upcall = NULL; 4240 sb->sb_upcallarg = NULL; 4241 sb->sb_flags &= ~SB_UPCALL; 4242 } 4243 4244 void 4245 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg) 4246 { 4247 4248 SOLISTEN_LOCK_ASSERT(so); 4249 so->sol_upcall = func; 4250 so->sol_upcallarg = arg; 4251 } 4252 4253 static void 4254 so_rdknl_lock(void *arg) 4255 { 4256 struct socket *so = arg; 4257 4258 if (SOLISTENING(so)) 4259 SOCK_LOCK(so); 4260 else 4261 SOCKBUF_LOCK(&so->so_rcv); 4262 } 4263 4264 static void 4265 so_rdknl_unlock(void *arg) 4266 { 4267 struct socket *so = arg; 4268 4269 if (SOLISTENING(so)) 4270 SOCK_UNLOCK(so); 4271 else 4272 SOCKBUF_UNLOCK(&so->so_rcv); 4273 } 4274 4275 static void 4276 so_rdknl_assert_lock(void *arg, int what) 4277 { 4278 struct socket *so = arg; 4279 4280 if (what == LA_LOCKED) { 4281 if (SOLISTENING(so)) 4282 SOCK_LOCK_ASSERT(so); 4283 else 4284 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 4285 } else { 4286 if (SOLISTENING(so)) 4287 SOCK_UNLOCK_ASSERT(so); 4288 else 4289 SOCKBUF_UNLOCK_ASSERT(&so->so_rcv); 4290 } 4291 } 4292 4293 static void 4294 so_wrknl_lock(void *arg) 4295 { 4296 struct socket *so = arg; 4297 4298 if (SOLISTENING(so)) 4299 SOCK_LOCK(so); 4300 else 4301 SOCKBUF_LOCK(&so->so_snd); 4302 } 4303 4304 static void 4305 so_wrknl_unlock(void *arg) 4306 { 4307 struct socket *so = arg; 4308 4309 if (SOLISTENING(so)) 4310 SOCK_UNLOCK(so); 4311 else 4312 SOCKBUF_UNLOCK(&so->so_snd); 4313 } 4314 4315 static void 4316 so_wrknl_assert_lock(void *arg, int what) 4317 { 4318 struct socket *so = arg; 4319 4320 if (what == LA_LOCKED) { 4321 if (SOLISTENING(so)) 4322 SOCK_LOCK_ASSERT(so); 4323 else 4324 SOCKBUF_LOCK_ASSERT(&so->so_snd); 4325 } else { 4326 if (SOLISTENING(so)) 4327 SOCK_UNLOCK_ASSERT(so); 4328 else 4329 SOCKBUF_UNLOCK_ASSERT(&so->so_snd); 4330 } 4331 } 4332 4333 /* 4334 * Create an external-format (``xsocket'') structure using the information in 4335 * the kernel-format socket structure pointed to by so. This is done to 4336 * reduce the spew of irrelevant information over this interface, to isolate 4337 * user code from changes in the kernel structure, and potentially to provide 4338 * information-hiding if we decide that some of this information should be 4339 * hidden from users. 4340 */ 4341 void 4342 sotoxsocket(struct socket *so, struct xsocket *xso) 4343 { 4344 4345 bzero(xso, sizeof(*xso)); 4346 xso->xso_len = sizeof *xso; 4347 xso->xso_so = (uintptr_t)so; 4348 xso->so_type = so->so_type; 4349 xso->so_options = so->so_options; 4350 xso->so_linger = so->so_linger; 4351 xso->so_state = so->so_state; 4352 xso->so_pcb = (uintptr_t)so->so_pcb; 4353 xso->xso_protocol = so->so_proto->pr_protocol; 4354 xso->xso_family = so->so_proto->pr_domain->dom_family; 4355 xso->so_timeo = so->so_timeo; 4356 xso->so_error = so->so_error; 4357 xso->so_uid = so->so_cred->cr_uid; 4358 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 4359 if (SOLISTENING(so)) { 4360 xso->so_qlen = so->sol_qlen; 4361 xso->so_incqlen = so->sol_incqlen; 4362 xso->so_qlimit = so->sol_qlimit; 4363 xso->so_oobmark = 0; 4364 } else { 4365 xso->so_state |= so->so_qstate; 4366 xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0; 4367 xso->so_oobmark = so->so_oobmark; 4368 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 4369 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 4370 } 4371 } 4372 4373 struct sockbuf * 4374 so_sockbuf_rcv(struct socket *so) 4375 { 4376 4377 return (&so->so_rcv); 4378 } 4379 4380 struct sockbuf * 4381 so_sockbuf_snd(struct socket *so) 4382 { 4383 4384 return (&so->so_snd); 4385 } 4386 4387 int 4388 so_state_get(const struct socket *so) 4389 { 4390 4391 return (so->so_state); 4392 } 4393 4394 void 4395 so_state_set(struct socket *so, int val) 4396 { 4397 4398 so->so_state = val; 4399 } 4400 4401 int 4402 so_options_get(const struct socket *so) 4403 { 4404 4405 return (so->so_options); 4406 } 4407 4408 void 4409 so_options_set(struct socket *so, int val) 4410 { 4411 4412 so->so_options = val; 4413 } 4414 4415 int 4416 so_error_get(const struct socket *so) 4417 { 4418 4419 return (so->so_error); 4420 } 4421 4422 void 4423 so_error_set(struct socket *so, int val) 4424 { 4425 4426 so->so_error = val; 4427 } 4428 4429 int 4430 so_linger_get(const struct socket *so) 4431 { 4432 4433 return (so->so_linger); 4434 } 4435 4436 void 4437 so_linger_set(struct socket *so, int val) 4438 { 4439 4440 KASSERT(val >= 0 && val <= USHRT_MAX && val <= (INT_MAX / hz), 4441 ("%s: val %d out of range", __func__, val)); 4442 4443 so->so_linger = val; 4444 } 4445 4446 struct protosw * 4447 so_protosw_get(const struct socket *so) 4448 { 4449 4450 return (so->so_proto); 4451 } 4452 4453 void 4454 so_protosw_set(struct socket *so, struct protosw *val) 4455 { 4456 4457 so->so_proto = val; 4458 } 4459 4460 void 4461 so_sorwakeup(struct socket *so) 4462 { 4463 4464 sorwakeup(so); 4465 } 4466 4467 void 4468 so_sowwakeup(struct socket *so) 4469 { 4470 4471 sowwakeup(so); 4472 } 4473 4474 void 4475 so_sorwakeup_locked(struct socket *so) 4476 { 4477 4478 sorwakeup_locked(so); 4479 } 4480 4481 void 4482 so_sowwakeup_locked(struct socket *so) 4483 { 4484 4485 sowwakeup_locked(so); 4486 } 4487 4488 void 4489 so_lock(struct socket *so) 4490 { 4491 4492 SOCK_LOCK(so); 4493 } 4494 4495 void 4496 so_unlock(struct socket *so) 4497 { 4498 4499 SOCK_UNLOCK(so); 4500 } 4501