1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. 6 * Copyright (c) 2004 The FreeBSD Foundation 7 * Copyright (c) 2004-2008 Robert N. M. Watson 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 35 */ 36 37 /* 38 * Comments on the socket life cycle: 39 * 40 * soalloc() sets of socket layer state for a socket, called only by 41 * socreate() and sonewconn(). Socket layer private. 42 * 43 * sodealloc() tears down socket layer state for a socket, called only by 44 * sofree() and sonewconn(). Socket layer private. 45 * 46 * pru_attach() associates protocol layer state with an allocated socket; 47 * called only once, may fail, aborting socket allocation. This is called 48 * from socreate() and sonewconn(). Socket layer private. 49 * 50 * pru_detach() disassociates protocol layer state from an attached socket, 51 * and will be called exactly once for sockets in which pru_attach() has 52 * been successfully called. If pru_attach() returned an error, 53 * pru_detach() will not be called. Socket layer private. 54 * 55 * pru_abort() and pru_close() notify the protocol layer that the last 56 * consumer of a socket is starting to tear down the socket, and that the 57 * protocol should terminate the connection. Historically, pru_abort() also 58 * detached protocol state from the socket state, but this is no longer the 59 * case. 60 * 61 * socreate() creates a socket and attaches protocol state. This is a public 62 * interface that may be used by socket layer consumers to create new 63 * sockets. 64 * 65 * sonewconn() creates a socket and attaches protocol state. This is a 66 * public interface that may be used by protocols to create new sockets when 67 * a new connection is received and will be available for accept() on a 68 * listen socket. 69 * 70 * soclose() destroys a socket after possibly waiting for it to disconnect. 71 * This is a public interface that socket consumers should use to close and 72 * release a socket when done with it. 73 * 74 * soabort() destroys a socket without waiting for it to disconnect (used 75 * only for incoming connections that are already partially or fully 76 * connected). This is used internally by the socket layer when clearing 77 * listen socket queues (due to overflow or close on the listen socket), but 78 * is also a public interface protocols may use to abort connections in 79 * their incomplete listen queues should they no longer be required. Sockets 80 * placed in completed connection listen queues should not be aborted for 81 * reasons described in the comment above the soclose() implementation. This 82 * is not a general purpose close routine, and except in the specific 83 * circumstances described here, should not be used. 84 * 85 * sofree() will free a socket and its protocol state if all references on 86 * the socket have been released, and is the public interface to attempt to 87 * free a socket when a reference is removed. This is a socket layer private 88 * interface. 89 * 90 * NOTE: In addition to socreate() and soclose(), which provide a single 91 * socket reference to the consumer to be managed as required, there are two 92 * calls to explicitly manage socket references, soref(), and sorele(). 93 * Currently, these are generally required only when transitioning a socket 94 * from a listen queue to a file descriptor, in order to prevent garbage 95 * collection of the socket at an untimely moment. For a number of reasons, 96 * these interfaces are not preferred, and should be avoided. 97 * 98 * NOTE: With regard to VNETs the general rule is that callers do not set 99 * curvnet. Exceptions to this rule include soabort(), sodisconnect(), 100 * sofree() (and with that sorele(), sotryfree()), as well as sonewconn() 101 * and sorflush(), which are usually called from a pre-set VNET context. 102 * sopoll() currently does not need a VNET context to be set. 103 */ 104 105 #include <sys/cdefs.h> 106 __FBSDID("$FreeBSD$"); 107 108 #include "opt_inet.h" 109 #include "opt_inet6.h" 110 #include "opt_kern_tls.h" 111 #include "opt_sctp.h" 112 113 #include <sys/param.h> 114 #include <sys/systm.h> 115 #include <sys/capsicum.h> 116 #include <sys/fcntl.h> 117 #include <sys/limits.h> 118 #include <sys/lock.h> 119 #include <sys/mac.h> 120 #include <sys/malloc.h> 121 #include <sys/mbuf.h> 122 #include <sys/mutex.h> 123 #include <sys/domain.h> 124 #include <sys/file.h> /* for struct knote */ 125 #include <sys/hhook.h> 126 #include <sys/kernel.h> 127 #include <sys/khelp.h> 128 #include <sys/ktls.h> 129 #include <sys/event.h> 130 #include <sys/eventhandler.h> 131 #include <sys/poll.h> 132 #include <sys/proc.h> 133 #include <sys/protosw.h> 134 #include <sys/sbuf.h> 135 #include <sys/socket.h> 136 #include <sys/socketvar.h> 137 #include <sys/resourcevar.h> 138 #include <net/route.h> 139 #include <sys/signalvar.h> 140 #include <sys/stat.h> 141 #include <sys/sx.h> 142 #include <sys/sysctl.h> 143 #include <sys/taskqueue.h> 144 #include <sys/uio.h> 145 #include <sys/un.h> 146 #include <sys/unpcb.h> 147 #include <sys/jail.h> 148 #include <sys/syslog.h> 149 #include <netinet/in.h> 150 #include <netinet/in_pcb.h> 151 #include <netinet/tcp.h> 152 153 #include <net/vnet.h> 154 155 #include <security/mac/mac_framework.h> 156 157 #include <vm/uma.h> 158 159 #ifdef COMPAT_FREEBSD32 160 #include <sys/mount.h> 161 #include <sys/sysent.h> 162 #include <compat/freebsd32/freebsd32.h> 163 #endif 164 165 static int soreceive_rcvoob(struct socket *so, struct uio *uio, 166 int flags); 167 static void so_rdknl_lock(void *); 168 static void so_rdknl_unlock(void *); 169 static void so_rdknl_assert_lock(void *, int); 170 static void so_wrknl_lock(void *); 171 static void so_wrknl_unlock(void *); 172 static void so_wrknl_assert_lock(void *, int); 173 174 static void filt_sordetach(struct knote *kn); 175 static int filt_soread(struct knote *kn, long hint); 176 static void filt_sowdetach(struct knote *kn); 177 static int filt_sowrite(struct knote *kn, long hint); 178 static int filt_soempty(struct knote *kn, long hint); 179 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id); 180 fo_kqfilter_t soo_kqfilter; 181 182 static struct filterops soread_filtops = { 183 .f_isfd = 1, 184 .f_detach = filt_sordetach, 185 .f_event = filt_soread, 186 }; 187 static struct filterops sowrite_filtops = { 188 .f_isfd = 1, 189 .f_detach = filt_sowdetach, 190 .f_event = filt_sowrite, 191 }; 192 static struct filterops soempty_filtops = { 193 .f_isfd = 1, 194 .f_detach = filt_sowdetach, 195 .f_event = filt_soempty, 196 }; 197 198 so_gen_t so_gencnt; /* generation count for sockets */ 199 200 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 201 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 202 203 #define VNET_SO_ASSERT(so) \ 204 VNET_ASSERT(curvnet != NULL, \ 205 ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so))); 206 207 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]); 208 #define V_socket_hhh VNET(socket_hhh) 209 210 /* 211 * Limit on the number of connections in the listen queue waiting 212 * for accept(2). 213 * NB: The original sysctl somaxconn is still available but hidden 214 * to prevent confusion about the actual purpose of this number. 215 */ 216 static u_int somaxconn = SOMAXCONN; 217 218 static int 219 sysctl_somaxconn(SYSCTL_HANDLER_ARGS) 220 { 221 int error; 222 int val; 223 224 val = somaxconn; 225 error = sysctl_handle_int(oidp, &val, 0, req); 226 if (error || !req->newptr ) 227 return (error); 228 229 /* 230 * The purpose of the UINT_MAX / 3 limit, is so that the formula 231 * 3 * so_qlimit / 2 232 * below, will not overflow. 233 */ 234 235 if (val < 1 || val > UINT_MAX / 3) 236 return (EINVAL); 237 238 somaxconn = val; 239 return (0); 240 } 241 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue, 242 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, sizeof(int), 243 sysctl_somaxconn, "I", 244 "Maximum listen socket pending connection accept queue size"); 245 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, 246 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE, 0, 247 sizeof(int), sysctl_somaxconn, "I", 248 "Maximum listen socket pending connection accept queue size (compat)"); 249 250 static int numopensockets; 251 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, 252 &numopensockets, 0, "Number of open sockets"); 253 254 /* 255 * accept_mtx locks down per-socket fields relating to accept queues. See 256 * socketvar.h for an annotation of the protected fields of struct socket. 257 */ 258 struct mtx accept_mtx; 259 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF); 260 261 /* 262 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket 263 * so_gencnt field. 264 */ 265 static struct mtx so_global_mtx; 266 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); 267 268 /* 269 * General IPC sysctl name space, used by sockets and a variety of other IPC 270 * types. 271 */ 272 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 273 "IPC"); 274 275 /* 276 * Initialize the socket subsystem and set up the socket 277 * memory allocator. 278 */ 279 static uma_zone_t socket_zone; 280 int maxsockets; 281 282 static void 283 socket_zone_change(void *tag) 284 { 285 286 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 287 } 288 289 static void 290 socket_hhook_register(int subtype) 291 { 292 293 if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype, 294 &V_socket_hhh[subtype], 295 HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 296 printf("%s: WARNING: unable to register hook\n", __func__); 297 } 298 299 static void 300 socket_hhook_deregister(int subtype) 301 { 302 303 if (hhook_head_deregister(V_socket_hhh[subtype]) != 0) 304 printf("%s: WARNING: unable to deregister hook\n", __func__); 305 } 306 307 static void 308 socket_init(void *tag) 309 { 310 311 socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL, 312 NULL, NULL, UMA_ALIGN_PTR, 0); 313 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 314 uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached"); 315 EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL, 316 EVENTHANDLER_PRI_FIRST); 317 } 318 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL); 319 320 static void 321 socket_vnet_init(const void *unused __unused) 322 { 323 int i; 324 325 /* We expect a contiguous range */ 326 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 327 socket_hhook_register(i); 328 } 329 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 330 socket_vnet_init, NULL); 331 332 static void 333 socket_vnet_uninit(const void *unused __unused) 334 { 335 int i; 336 337 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 338 socket_hhook_deregister(i); 339 } 340 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 341 socket_vnet_uninit, NULL); 342 343 /* 344 * Initialise maxsockets. This SYSINIT must be run after 345 * tunable_mbinit(). 346 */ 347 static void 348 init_maxsockets(void *ignored) 349 { 350 351 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 352 maxsockets = imax(maxsockets, maxfiles); 353 } 354 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 355 356 /* 357 * Sysctl to get and set the maximum global sockets limit. Notify protocols 358 * of the change so that they can update their dependent limits as required. 359 */ 360 static int 361 sysctl_maxsockets(SYSCTL_HANDLER_ARGS) 362 { 363 int error, newmaxsockets; 364 365 newmaxsockets = maxsockets; 366 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req); 367 if (error == 0 && req->newptr && newmaxsockets != maxsockets) { 368 if (newmaxsockets > maxsockets && 369 newmaxsockets <= maxfiles) { 370 maxsockets = newmaxsockets; 371 EVENTHANDLER_INVOKE(maxsockets_change); 372 } else 373 error = EINVAL; 374 } 375 return (error); 376 } 377 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, 378 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, &maxsockets, 0, 379 sysctl_maxsockets, "IU", 380 "Maximum number of sockets available"); 381 382 /* 383 * Socket operation routines. These routines are called by the routines in 384 * sys_socket.c or from a system process, and implement the semantics of 385 * socket operations by switching out to the protocol specific routines. 386 */ 387 388 /* 389 * Get a socket structure from our zone, and initialize it. Note that it 390 * would probably be better to allocate socket and PCB at the same time, but 391 * I'm not convinced that all the protocols can be easily modified to do 392 * this. 393 * 394 * soalloc() returns a socket with a ref count of 0. 395 */ 396 static struct socket * 397 soalloc(struct vnet *vnet) 398 { 399 struct socket *so; 400 401 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO); 402 if (so == NULL) 403 return (NULL); 404 #ifdef MAC 405 if (mac_socket_init(so, M_NOWAIT) != 0) { 406 uma_zfree(socket_zone, so); 407 return (NULL); 408 } 409 #endif 410 if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) { 411 uma_zfree(socket_zone, so); 412 return (NULL); 413 } 414 415 /* 416 * The socket locking protocol allows to lock 2 sockets at a time, 417 * however, the first one must be a listening socket. WITNESS lacks 418 * a feature to change class of an existing lock, so we use DUPOK. 419 */ 420 mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK); 421 so->so_snd.sb_mtx = &so->so_snd_mtx; 422 so->so_rcv.sb_mtx = &so->so_rcv_mtx; 423 SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd"); 424 SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv"); 425 so->so_rcv.sb_sel = &so->so_rdsel; 426 so->so_snd.sb_sel = &so->so_wrsel; 427 sx_init(&so->so_snd_sx, "so_snd_sx"); 428 sx_init(&so->so_rcv_sx, "so_rcv_sx"); 429 TAILQ_INIT(&so->so_snd.sb_aiojobq); 430 TAILQ_INIT(&so->so_rcv.sb_aiojobq); 431 TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so); 432 TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so); 433 #ifdef VIMAGE 434 VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p", 435 __func__, __LINE__, so)); 436 so->so_vnet = vnet; 437 #endif 438 /* We shouldn't need the so_global_mtx */ 439 if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) { 440 /* Do we need more comprehensive error returns? */ 441 uma_zfree(socket_zone, so); 442 return (NULL); 443 } 444 mtx_lock(&so_global_mtx); 445 so->so_gencnt = ++so_gencnt; 446 ++numopensockets; 447 #ifdef VIMAGE 448 vnet->vnet_sockcnt++; 449 #endif 450 mtx_unlock(&so_global_mtx); 451 452 return (so); 453 } 454 455 /* 456 * Free the storage associated with a socket at the socket layer, tear down 457 * locks, labels, etc. All protocol state is assumed already to have been 458 * torn down (and possibly never set up) by the caller. 459 */ 460 static void 461 sodealloc(struct socket *so) 462 { 463 464 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); 465 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL")); 466 467 mtx_lock(&so_global_mtx); 468 so->so_gencnt = ++so_gencnt; 469 --numopensockets; /* Could be below, but faster here. */ 470 #ifdef VIMAGE 471 VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p", 472 __func__, __LINE__, so)); 473 so->so_vnet->vnet_sockcnt--; 474 #endif 475 mtx_unlock(&so_global_mtx); 476 #ifdef MAC 477 mac_socket_destroy(so); 478 #endif 479 hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE); 480 481 khelp_destroy_osd(&so->osd); 482 if (SOLISTENING(so)) { 483 if (so->sol_accept_filter != NULL) 484 accept_filt_setopt(so, NULL); 485 } else { 486 if (so->so_rcv.sb_hiwat) 487 (void)chgsbsize(so->so_cred->cr_uidinfo, 488 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 489 if (so->so_snd.sb_hiwat) 490 (void)chgsbsize(so->so_cred->cr_uidinfo, 491 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 492 sx_destroy(&so->so_snd_sx); 493 sx_destroy(&so->so_rcv_sx); 494 SOCKBUF_LOCK_DESTROY(&so->so_snd); 495 SOCKBUF_LOCK_DESTROY(&so->so_rcv); 496 } 497 crfree(so->so_cred); 498 mtx_destroy(&so->so_lock); 499 uma_zfree(socket_zone, so); 500 } 501 502 /* 503 * socreate returns a socket with a ref count of 1. The socket should be 504 * closed with soclose(). 505 */ 506 int 507 socreate(int dom, struct socket **aso, int type, int proto, 508 struct ucred *cred, struct thread *td) 509 { 510 struct protosw *prp; 511 struct socket *so; 512 int error; 513 514 if (proto) 515 prp = pffindproto(dom, proto, type); 516 else 517 prp = pffindtype(dom, type); 518 519 if (prp == NULL) { 520 /* No support for domain. */ 521 if (pffinddomain(dom) == NULL) 522 return (EAFNOSUPPORT); 523 /* No support for socket type. */ 524 if (proto == 0 && type != 0) 525 return (EPROTOTYPE); 526 return (EPROTONOSUPPORT); 527 } 528 if (prp->pr_usrreqs->pru_attach == NULL || 529 prp->pr_usrreqs->pru_attach == pru_attach_notsupp) 530 return (EPROTONOSUPPORT); 531 532 if (IN_CAPABILITY_MODE(td) && (prp->pr_flags & PR_CAPATTACH) == 0) 533 return (ECAPMODE); 534 535 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0) 536 return (EPROTONOSUPPORT); 537 538 if (prp->pr_type != type) 539 return (EPROTOTYPE); 540 so = soalloc(CRED_TO_VNET(cred)); 541 if (so == NULL) 542 return (ENOBUFS); 543 544 so->so_type = type; 545 so->so_cred = crhold(cred); 546 if ((prp->pr_domain->dom_family == PF_INET) || 547 (prp->pr_domain->dom_family == PF_INET6) || 548 (prp->pr_domain->dom_family == PF_ROUTE)) 549 so->so_fibnum = td->td_proc->p_fibnum; 550 else 551 so->so_fibnum = 0; 552 so->so_proto = prp; 553 #ifdef MAC 554 mac_socket_create(cred, so); 555 #endif 556 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 557 so_rdknl_assert_lock); 558 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 559 so_wrknl_assert_lock); 560 /* 561 * Auto-sizing of socket buffers is managed by the protocols and 562 * the appropriate flags must be set in the pru_attach function. 563 */ 564 CURVNET_SET(so->so_vnet); 565 error = (*prp->pr_usrreqs->pru_attach)(so, proto, td); 566 CURVNET_RESTORE(); 567 if (error) { 568 sodealloc(so); 569 return (error); 570 } 571 soref(so); 572 *aso = so; 573 return (0); 574 } 575 576 #ifdef REGRESSION 577 static int regression_sonewconn_earlytest = 1; 578 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW, 579 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test"); 580 #endif 581 582 static struct timeval overinterval = { 60, 0 }; 583 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW, 584 &overinterval, 585 "Delay in seconds between warnings for listen socket overflows"); 586 587 /* 588 * When an attempt at a new connection is noted on a socket which accepts 589 * connections, sonewconn is called. If the connection is possible (subject 590 * to space constraints, etc.) then we allocate a new structure, properly 591 * linked into the data structure of the original socket, and return this. 592 * Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED. 593 * 594 * Note: the ref count on the socket is 0 on return. 595 */ 596 struct socket * 597 sonewconn(struct socket *head, int connstatus) 598 { 599 struct sbuf descrsb; 600 struct socket *so; 601 int len, overcount; 602 u_int qlen; 603 const char localprefix[] = "local:"; 604 char descrbuf[SUNPATHLEN + sizeof(localprefix)]; 605 #if defined(INET6) 606 char addrbuf[INET6_ADDRSTRLEN]; 607 #elif defined(INET) 608 char addrbuf[INET_ADDRSTRLEN]; 609 #endif 610 bool dolog, over; 611 612 SOLISTEN_LOCK(head); 613 over = (head->sol_qlen > 3 * head->sol_qlimit / 2); 614 #ifdef REGRESSION 615 if (regression_sonewconn_earlytest && over) { 616 #else 617 if (over) { 618 #endif 619 head->sol_overcount++; 620 dolog = !!ratecheck(&head->sol_lastover, &overinterval); 621 622 /* 623 * If we're going to log, copy the overflow count and queue 624 * length from the listen socket before dropping the lock. 625 * Also, reset the overflow count. 626 */ 627 if (dolog) { 628 overcount = head->sol_overcount; 629 head->sol_overcount = 0; 630 qlen = head->sol_qlen; 631 } 632 SOLISTEN_UNLOCK(head); 633 634 if (dolog) { 635 /* 636 * Try to print something descriptive about the 637 * socket for the error message. 638 */ 639 sbuf_new(&descrsb, descrbuf, sizeof(descrbuf), 640 SBUF_FIXEDLEN); 641 switch (head->so_proto->pr_domain->dom_family) { 642 #if defined(INET) || defined(INET6) 643 #ifdef INET 644 case AF_INET: 645 #endif 646 #ifdef INET6 647 case AF_INET6: 648 if (head->so_proto->pr_domain->dom_family == 649 AF_INET6 || 650 (sotoinpcb(head)->inp_inc.inc_flags & 651 INC_ISIPV6)) { 652 ip6_sprintf(addrbuf, 653 &sotoinpcb(head)->inp_inc.inc6_laddr); 654 sbuf_printf(&descrsb, "[%s]", addrbuf); 655 } else 656 #endif 657 { 658 #ifdef INET 659 inet_ntoa_r( 660 sotoinpcb(head)->inp_inc.inc_laddr, 661 addrbuf); 662 sbuf_cat(&descrsb, addrbuf); 663 #endif 664 } 665 sbuf_printf(&descrsb, ":%hu (proto %u)", 666 ntohs(sotoinpcb(head)->inp_inc.inc_lport), 667 head->so_proto->pr_protocol); 668 break; 669 #endif /* INET || INET6 */ 670 case AF_UNIX: 671 sbuf_cat(&descrsb, localprefix); 672 if (sotounpcb(head)->unp_addr != NULL) 673 len = 674 sotounpcb(head)->unp_addr->sun_len - 675 offsetof(struct sockaddr_un, 676 sun_path); 677 else 678 len = 0; 679 if (len > 0) 680 sbuf_bcat(&descrsb, 681 sotounpcb(head)->unp_addr->sun_path, 682 len); 683 else 684 sbuf_cat(&descrsb, "(unknown)"); 685 break; 686 } 687 688 /* 689 * If we can't print something more specific, at least 690 * print the domain name. 691 */ 692 if (sbuf_finish(&descrsb) != 0 || 693 sbuf_len(&descrsb) <= 0) { 694 sbuf_clear(&descrsb); 695 sbuf_cat(&descrsb, 696 head->so_proto->pr_domain->dom_name ?: 697 "unknown"); 698 sbuf_finish(&descrsb); 699 } 700 KASSERT(sbuf_len(&descrsb) > 0, 701 ("%s: sbuf creation failed", __func__)); 702 if (head->so_cred == 0) { 703 log(LOG_DEBUG, 704 "%s: pcb %p (%s): Listen queue overflow: " 705 "%i already in queue awaiting acceptance " 706 "(%d occurrences)\n", 707 __func__, head->so_pcb, sbuf_data(&descrsb), 708 qlen, overcount); 709 } else { 710 log(LOG_DEBUG, "%s: pcb %p (%s): Listen queue overflow: " 711 "%i already in queue awaiting acceptance " 712 "(%d occurrences), euid %d, rgid %d, jail %s\n", 713 __func__, head->so_pcb, sbuf_data(&descrsb), 714 qlen, overcount, 715 head->so_cred->cr_uid, head->so_cred->cr_rgid, 716 head->so_cred->cr_prison ? 717 head->so_cred->cr_prison->pr_name : 718 "not_jailed"); 719 } 720 sbuf_delete(&descrsb); 721 722 overcount = 0; 723 } 724 725 return (NULL); 726 } 727 SOLISTEN_UNLOCK(head); 728 VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL", 729 __func__, head)); 730 so = soalloc(head->so_vnet); 731 if (so == NULL) { 732 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 733 "limit reached or out of memory\n", 734 __func__, head->so_pcb); 735 return (NULL); 736 } 737 so->so_listen = head; 738 so->so_type = head->so_type; 739 so->so_options = head->so_options & ~SO_ACCEPTCONN; 740 so->so_linger = head->so_linger; 741 so->so_state = head->so_state | SS_NOFDREF; 742 so->so_fibnum = head->so_fibnum; 743 so->so_proto = head->so_proto; 744 so->so_cred = crhold(head->so_cred); 745 #ifdef MAC 746 mac_socket_newconn(head, so); 747 #endif 748 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 749 so_rdknl_assert_lock); 750 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 751 so_wrknl_assert_lock); 752 VNET_SO_ASSERT(head); 753 if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) { 754 sodealloc(so); 755 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 756 __func__, head->so_pcb); 757 return (NULL); 758 } 759 if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 760 sodealloc(so); 761 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", 762 __func__, head->so_pcb); 763 return (NULL); 764 } 765 so->so_rcv.sb_lowat = head->sol_sbrcv_lowat; 766 so->so_snd.sb_lowat = head->sol_sbsnd_lowat; 767 so->so_rcv.sb_timeo = head->sol_sbrcv_timeo; 768 so->so_snd.sb_timeo = head->sol_sbsnd_timeo; 769 so->so_rcv.sb_flags |= head->sol_sbrcv_flags & SB_AUTOSIZE; 770 so->so_snd.sb_flags |= head->sol_sbsnd_flags & SB_AUTOSIZE; 771 772 SOLISTEN_LOCK(head); 773 if (head->sol_accept_filter != NULL) 774 connstatus = 0; 775 so->so_state |= connstatus; 776 soref(head); /* A socket on (in)complete queue refs head. */ 777 if (connstatus) { 778 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 779 so->so_qstate = SQ_COMP; 780 head->sol_qlen++; 781 solisten_wakeup(head); /* unlocks */ 782 } else { 783 /* 784 * Keep removing sockets from the head until there's room for 785 * us to insert on the tail. In pre-locking revisions, this 786 * was a simple if(), but as we could be racing with other 787 * threads and soabort() requires dropping locks, we must 788 * loop waiting for the condition to be true. 789 */ 790 while (head->sol_incqlen > head->sol_qlimit) { 791 struct socket *sp; 792 793 sp = TAILQ_FIRST(&head->sol_incomp); 794 TAILQ_REMOVE(&head->sol_incomp, sp, so_list); 795 head->sol_incqlen--; 796 SOCK_LOCK(sp); 797 sp->so_qstate = SQ_NONE; 798 sp->so_listen = NULL; 799 SOCK_UNLOCK(sp); 800 sorele_locked(head); /* does SOLISTEN_UNLOCK, head stays */ 801 soabort(sp); 802 SOLISTEN_LOCK(head); 803 } 804 TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list); 805 so->so_qstate = SQ_INCOMP; 806 head->sol_incqlen++; 807 SOLISTEN_UNLOCK(head); 808 } 809 return (so); 810 } 811 812 #if defined(SCTP) || defined(SCTP_SUPPORT) 813 /* 814 * Socket part of sctp_peeloff(). Detach a new socket from an 815 * association. The new socket is returned with a reference. 816 */ 817 struct socket * 818 sopeeloff(struct socket *head) 819 { 820 struct socket *so; 821 822 VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p", 823 __func__, __LINE__, head)); 824 so = soalloc(head->so_vnet); 825 if (so == NULL) { 826 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 827 "limit reached or out of memory\n", 828 __func__, head->so_pcb); 829 return (NULL); 830 } 831 so->so_type = head->so_type; 832 so->so_options = head->so_options; 833 so->so_linger = head->so_linger; 834 so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED; 835 so->so_fibnum = head->so_fibnum; 836 so->so_proto = head->so_proto; 837 so->so_cred = crhold(head->so_cred); 838 #ifdef MAC 839 mac_socket_newconn(head, so); 840 #endif 841 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 842 so_rdknl_assert_lock); 843 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 844 so_wrknl_assert_lock); 845 VNET_SO_ASSERT(head); 846 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) { 847 sodealloc(so); 848 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 849 __func__, head->so_pcb); 850 return (NULL); 851 } 852 if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 853 sodealloc(so); 854 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", 855 __func__, head->so_pcb); 856 return (NULL); 857 } 858 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; 859 so->so_snd.sb_lowat = head->so_snd.sb_lowat; 860 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; 861 so->so_snd.sb_timeo = head->so_snd.sb_timeo; 862 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE; 863 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE; 864 865 soref(so); 866 867 return (so); 868 } 869 #endif /* SCTP */ 870 871 int 872 sobind(struct socket *so, struct sockaddr *nam, struct thread *td) 873 { 874 int error; 875 876 CURVNET_SET(so->so_vnet); 877 error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td); 878 CURVNET_RESTORE(); 879 return (error); 880 } 881 882 int 883 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 884 { 885 int error; 886 887 CURVNET_SET(so->so_vnet); 888 error = (*so->so_proto->pr_usrreqs->pru_bindat)(fd, so, nam, td); 889 CURVNET_RESTORE(); 890 return (error); 891 } 892 893 /* 894 * solisten() transitions a socket from a non-listening state to a listening 895 * state, but can also be used to update the listen queue depth on an 896 * existing listen socket. The protocol will call back into the sockets 897 * layer using solisten_proto_check() and solisten_proto() to check and set 898 * socket-layer listen state. Call backs are used so that the protocol can 899 * acquire both protocol and socket layer locks in whatever order is required 900 * by the protocol. 901 * 902 * Protocol implementors are advised to hold the socket lock across the 903 * socket-layer test and set to avoid races at the socket layer. 904 */ 905 int 906 solisten(struct socket *so, int backlog, struct thread *td) 907 { 908 int error; 909 910 CURVNET_SET(so->so_vnet); 911 error = (*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td); 912 CURVNET_RESTORE(); 913 return (error); 914 } 915 916 /* 917 * Prepare for a call to solisten_proto(). Acquire all socket buffer locks in 918 * order to interlock with socket I/O. 919 */ 920 int 921 solisten_proto_check(struct socket *so) 922 { 923 SOCK_LOCK_ASSERT(so); 924 925 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 926 SS_ISDISCONNECTING)) != 0) 927 return (EINVAL); 928 929 /* 930 * Sleeping is not permitted here, so simply fail if userspace is 931 * attempting to transmit or receive on the socket. This kind of 932 * transient failure is not ideal, but it should occur only if userspace 933 * is misusing the socket interfaces. 934 */ 935 if (!sx_try_xlock(&so->so_snd_sx)) 936 return (EAGAIN); 937 if (!sx_try_xlock(&so->so_rcv_sx)) { 938 sx_xunlock(&so->so_snd_sx); 939 return (EAGAIN); 940 } 941 mtx_lock(&so->so_snd_mtx); 942 mtx_lock(&so->so_rcv_mtx); 943 944 /* Interlock with soo_aio_queue(). */ 945 if ((so->so_snd.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0 || 946 (so->so_rcv.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0) { 947 solisten_proto_abort(so); 948 return (EINVAL); 949 } 950 return (0); 951 } 952 953 /* 954 * Undo the setup done by solisten_proto_check(). 955 */ 956 void 957 solisten_proto_abort(struct socket *so) 958 { 959 mtx_unlock(&so->so_snd_mtx); 960 mtx_unlock(&so->so_rcv_mtx); 961 sx_xunlock(&so->so_snd_sx); 962 sx_xunlock(&so->so_rcv_sx); 963 } 964 965 void 966 solisten_proto(struct socket *so, int backlog) 967 { 968 int sbrcv_lowat, sbsnd_lowat; 969 u_int sbrcv_hiwat, sbsnd_hiwat; 970 short sbrcv_flags, sbsnd_flags; 971 sbintime_t sbrcv_timeo, sbsnd_timeo; 972 973 SOCK_LOCK_ASSERT(so); 974 KASSERT((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 975 SS_ISDISCONNECTING)) == 0, 976 ("%s: bad socket state %p", __func__, so)); 977 978 if (SOLISTENING(so)) 979 goto listening; 980 981 /* 982 * Change this socket to listening state. 983 */ 984 sbrcv_lowat = so->so_rcv.sb_lowat; 985 sbsnd_lowat = so->so_snd.sb_lowat; 986 sbrcv_hiwat = so->so_rcv.sb_hiwat; 987 sbsnd_hiwat = so->so_snd.sb_hiwat; 988 sbrcv_flags = so->so_rcv.sb_flags; 989 sbsnd_flags = so->so_snd.sb_flags; 990 sbrcv_timeo = so->so_rcv.sb_timeo; 991 sbsnd_timeo = so->so_snd.sb_timeo; 992 993 sbdestroy(&so->so_snd, so); 994 sbdestroy(&so->so_rcv, so); 995 996 #ifdef INVARIANTS 997 bzero(&so->so_rcv, 998 sizeof(struct socket) - offsetof(struct socket, so_rcv)); 999 #endif 1000 1001 so->sol_sbrcv_lowat = sbrcv_lowat; 1002 so->sol_sbsnd_lowat = sbsnd_lowat; 1003 so->sol_sbrcv_hiwat = sbrcv_hiwat; 1004 so->sol_sbsnd_hiwat = sbsnd_hiwat; 1005 so->sol_sbrcv_flags = sbrcv_flags; 1006 so->sol_sbsnd_flags = sbsnd_flags; 1007 so->sol_sbrcv_timeo = sbrcv_timeo; 1008 so->sol_sbsnd_timeo = sbsnd_timeo; 1009 1010 so->sol_qlen = so->sol_incqlen = 0; 1011 TAILQ_INIT(&so->sol_incomp); 1012 TAILQ_INIT(&so->sol_comp); 1013 1014 so->sol_accept_filter = NULL; 1015 so->sol_accept_filter_arg = NULL; 1016 so->sol_accept_filter_str = NULL; 1017 1018 so->sol_upcall = NULL; 1019 so->sol_upcallarg = NULL; 1020 1021 so->so_options |= SO_ACCEPTCONN; 1022 1023 listening: 1024 if (backlog < 0 || backlog > somaxconn) 1025 backlog = somaxconn; 1026 so->sol_qlimit = backlog; 1027 1028 mtx_unlock(&so->so_snd_mtx); 1029 mtx_unlock(&so->so_rcv_mtx); 1030 sx_xunlock(&so->so_snd_sx); 1031 sx_xunlock(&so->so_rcv_sx); 1032 } 1033 1034 /* 1035 * Wakeup listeners/subsystems once we have a complete connection. 1036 * Enters with lock, returns unlocked. 1037 */ 1038 void 1039 solisten_wakeup(struct socket *sol) 1040 { 1041 1042 if (sol->sol_upcall != NULL) 1043 (void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT); 1044 else { 1045 selwakeuppri(&sol->so_rdsel, PSOCK); 1046 KNOTE_LOCKED(&sol->so_rdsel.si_note, 0); 1047 } 1048 SOLISTEN_UNLOCK(sol); 1049 wakeup_one(&sol->sol_comp); 1050 if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL) 1051 pgsigio(&sol->so_sigio, SIGIO, 0); 1052 } 1053 1054 /* 1055 * Return single connection off a listening socket queue. Main consumer of 1056 * the function is kern_accept4(). Some modules, that do their own accept 1057 * management also use the function. 1058 * 1059 * Listening socket must be locked on entry and is returned unlocked on 1060 * return. 1061 * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT. 1062 */ 1063 int 1064 solisten_dequeue(struct socket *head, struct socket **ret, int flags) 1065 { 1066 struct socket *so; 1067 int error; 1068 1069 SOLISTEN_LOCK_ASSERT(head); 1070 1071 while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) && 1072 head->so_error == 0) { 1073 error = msleep(&head->sol_comp, SOCK_MTX(head), PSOCK | PCATCH, 1074 "accept", 0); 1075 if (error != 0) { 1076 SOLISTEN_UNLOCK(head); 1077 return (error); 1078 } 1079 } 1080 if (head->so_error) { 1081 error = head->so_error; 1082 head->so_error = 0; 1083 } else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp)) 1084 error = EWOULDBLOCK; 1085 else 1086 error = 0; 1087 if (error) { 1088 SOLISTEN_UNLOCK(head); 1089 return (error); 1090 } 1091 so = TAILQ_FIRST(&head->sol_comp); 1092 SOCK_LOCK(so); 1093 KASSERT(so->so_qstate == SQ_COMP, 1094 ("%s: so %p not SQ_COMP", __func__, so)); 1095 soref(so); 1096 head->sol_qlen--; 1097 so->so_qstate = SQ_NONE; 1098 so->so_listen = NULL; 1099 TAILQ_REMOVE(&head->sol_comp, so, so_list); 1100 if (flags & ACCEPT4_INHERIT) 1101 so->so_state |= (head->so_state & SS_NBIO); 1102 else 1103 so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0; 1104 SOCK_UNLOCK(so); 1105 sorele_locked(head); 1106 1107 *ret = so; 1108 return (0); 1109 } 1110 1111 /* 1112 * Evaluate the reference count and named references on a socket; if no 1113 * references remain, free it. This should be called whenever a reference is 1114 * released, such as in sorele(), but also when named reference flags are 1115 * cleared in socket or protocol code. 1116 * 1117 * sofree() will free the socket if: 1118 * 1119 * - There are no outstanding file descriptor references or related consumers 1120 * (so_count == 0). 1121 * 1122 * - The socket has been closed by user space, if ever open (SS_NOFDREF). 1123 * 1124 * - The protocol does not have an outstanding strong reference on the socket 1125 * (SS_PROTOREF). 1126 * 1127 * - The socket is not in a completed connection queue, so a process has been 1128 * notified that it is present. If it is removed, the user process may 1129 * block in accept() despite select() saying the socket was ready. 1130 */ 1131 void 1132 sofree(struct socket *so) 1133 { 1134 struct protosw *pr = so->so_proto; 1135 bool last __diagused; 1136 1137 SOCK_LOCK_ASSERT(so); 1138 1139 if ((so->so_state & (SS_NOFDREF | SS_PROTOREF)) != SS_NOFDREF || 1140 refcount_load(&so->so_count) != 0 || so->so_qstate == SQ_COMP) { 1141 SOCK_UNLOCK(so); 1142 return; 1143 } 1144 1145 if (!SOLISTENING(so) && so->so_qstate == SQ_INCOMP) { 1146 struct socket *sol; 1147 1148 sol = so->so_listen; 1149 KASSERT(sol, ("%s: so %p on incomp of NULL", __func__, so)); 1150 1151 /* 1152 * To solve race between close of a listening socket and 1153 * a socket on its incomplete queue, we need to lock both. 1154 * The order is first listening socket, then regular. 1155 * Since we don't have SS_NOFDREF neither SS_PROTOREF, this 1156 * function and the listening socket are the only pointers 1157 * to so. To preserve so and sol, we reference both and then 1158 * relock. 1159 * After relock the socket may not move to so_comp since it 1160 * doesn't have PCB already, but it may be removed from 1161 * so_incomp. If that happens, we share responsiblity on 1162 * freeing the socket, but soclose() has already removed 1163 * it from queue. 1164 */ 1165 soref(sol); 1166 soref(so); 1167 SOCK_UNLOCK(so); 1168 SOLISTEN_LOCK(sol); 1169 SOCK_LOCK(so); 1170 if (so->so_qstate == SQ_INCOMP) { 1171 KASSERT(so->so_listen == sol, 1172 ("%s: so %p migrated out of sol %p", 1173 __func__, so, sol)); 1174 TAILQ_REMOVE(&sol->sol_incomp, so, so_list); 1175 sol->sol_incqlen--; 1176 last = refcount_release(&sol->so_count); 1177 KASSERT(!last, ("%s: released last reference for %p", 1178 __func__, sol)); 1179 so->so_qstate = SQ_NONE; 1180 so->so_listen = NULL; 1181 } else 1182 KASSERT(so->so_listen == NULL, 1183 ("%s: so %p not on (in)comp with so_listen", 1184 __func__, so)); 1185 sorele_locked(sol); 1186 KASSERT(refcount_load(&so->so_count) == 1, 1187 ("%s: so %p count %u", __func__, so, so->so_count)); 1188 so->so_count = 0; 1189 } 1190 if (SOLISTENING(so)) 1191 so->so_error = ECONNABORTED; 1192 SOCK_UNLOCK(so); 1193 1194 if (so->so_dtor != NULL) 1195 so->so_dtor(so); 1196 1197 VNET_SO_ASSERT(so); 1198 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 1199 (*pr->pr_domain->dom_dispose)(so); 1200 if (pr->pr_usrreqs->pru_detach != NULL) 1201 (*pr->pr_usrreqs->pru_detach)(so); 1202 1203 /* 1204 * From this point on, we assume that no other references to this 1205 * socket exist anywhere else in the stack. Therefore, no locks need 1206 * to be acquired or held. 1207 * 1208 * We used to do a lot of socket buffer and socket locking here, as 1209 * well as invoke sorflush() and perform wakeups. The direct call to 1210 * dom_dispose() and sbdestroy() are an inlining of what was 1211 * necessary from sorflush(). 1212 * 1213 * Notice that the socket buffer and kqueue state are torn down 1214 * before calling pru_detach. This means that protocols shold not 1215 * assume they can perform socket wakeups, etc, in their detach code. 1216 */ 1217 if (!SOLISTENING(so)) { 1218 sbdestroy(&so->so_snd, so); 1219 sbdestroy(&so->so_rcv, so); 1220 } 1221 seldrain(&so->so_rdsel); 1222 seldrain(&so->so_wrsel); 1223 knlist_destroy(&so->so_rdsel.si_note); 1224 knlist_destroy(&so->so_wrsel.si_note); 1225 sodealloc(so); 1226 } 1227 1228 /* 1229 * Release a reference on a socket while holding the socket lock. 1230 * Unlocks the socket lock before returning. 1231 */ 1232 void 1233 sorele_locked(struct socket *so) 1234 { 1235 SOCK_LOCK_ASSERT(so); 1236 if (refcount_release(&so->so_count)) 1237 sofree(so); 1238 else 1239 SOCK_UNLOCK(so); 1240 } 1241 1242 /* 1243 * Close a socket on last file table reference removal. Initiate disconnect 1244 * if connected. Free socket when disconnect complete. 1245 * 1246 * This function will sorele() the socket. Note that soclose() may be called 1247 * prior to the ref count reaching zero. The actual socket structure will 1248 * not be freed until the ref count reaches zero. 1249 */ 1250 int 1251 soclose(struct socket *so) 1252 { 1253 struct accept_queue lqueue; 1254 int error = 0; 1255 bool listening, last __diagused; 1256 1257 KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter")); 1258 1259 CURVNET_SET(so->so_vnet); 1260 funsetown(&so->so_sigio); 1261 if (so->so_state & SS_ISCONNECTED) { 1262 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 1263 error = sodisconnect(so); 1264 if (error) { 1265 if (error == ENOTCONN) 1266 error = 0; 1267 goto drop; 1268 } 1269 } 1270 1271 if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) { 1272 if ((so->so_state & SS_ISDISCONNECTING) && 1273 (so->so_state & SS_NBIO)) 1274 goto drop; 1275 while (so->so_state & SS_ISCONNECTED) { 1276 error = tsleep(&so->so_timeo, 1277 PSOCK | PCATCH, "soclos", 1278 so->so_linger * hz); 1279 if (error) 1280 break; 1281 } 1282 } 1283 } 1284 1285 drop: 1286 if (so->so_proto->pr_usrreqs->pru_close != NULL) 1287 (*so->so_proto->pr_usrreqs->pru_close)(so); 1288 1289 SOCK_LOCK(so); 1290 if ((listening = SOLISTENING(so))) { 1291 struct socket *sp; 1292 1293 TAILQ_INIT(&lqueue); 1294 TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list); 1295 TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list); 1296 1297 so->sol_qlen = so->sol_incqlen = 0; 1298 1299 TAILQ_FOREACH(sp, &lqueue, so_list) { 1300 SOCK_LOCK(sp); 1301 sp->so_qstate = SQ_NONE; 1302 sp->so_listen = NULL; 1303 SOCK_UNLOCK(sp); 1304 last = refcount_release(&so->so_count); 1305 KASSERT(!last, ("%s: released last reference for %p", 1306 __func__, so)); 1307 } 1308 } 1309 KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF")); 1310 so->so_state |= SS_NOFDREF; 1311 sorele_locked(so); 1312 if (listening) { 1313 struct socket *sp, *tsp; 1314 1315 TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp) { 1316 SOCK_LOCK(sp); 1317 if (refcount_load(&sp->so_count) == 0) { 1318 SOCK_UNLOCK(sp); 1319 soabort(sp); 1320 } else { 1321 /* See the handling of queued sockets 1322 in sofree(). */ 1323 SOCK_UNLOCK(sp); 1324 } 1325 } 1326 } 1327 CURVNET_RESTORE(); 1328 return (error); 1329 } 1330 1331 /* 1332 * soabort() is used to abruptly tear down a connection, such as when a 1333 * resource limit is reached (listen queue depth exceeded), or if a listen 1334 * socket is closed while there are sockets waiting to be accepted. 1335 * 1336 * This interface is tricky, because it is called on an unreferenced socket, 1337 * and must be called only by a thread that has actually removed the socket 1338 * from the listen queue it was on, or races with other threads are risked. 1339 * 1340 * This interface will call into the protocol code, so must not be called 1341 * with any socket locks held. Protocols do call it while holding their own 1342 * recursible protocol mutexes, but this is something that should be subject 1343 * to review in the future. 1344 */ 1345 void 1346 soabort(struct socket *so) 1347 { 1348 1349 /* 1350 * In as much as is possible, assert that no references to this 1351 * socket are held. This is not quite the same as asserting that the 1352 * current thread is responsible for arranging for no references, but 1353 * is as close as we can get for now. 1354 */ 1355 KASSERT(so->so_count == 0, ("soabort: so_count")); 1356 KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF")); 1357 KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF")); 1358 VNET_SO_ASSERT(so); 1359 1360 if (so->so_proto->pr_usrreqs->pru_abort != NULL) 1361 (*so->so_proto->pr_usrreqs->pru_abort)(so); 1362 SOCK_LOCK(so); 1363 sofree(so); 1364 } 1365 1366 int 1367 soaccept(struct socket *so, struct sockaddr **nam) 1368 { 1369 int error; 1370 1371 SOCK_LOCK(so); 1372 KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF")); 1373 so->so_state &= ~SS_NOFDREF; 1374 SOCK_UNLOCK(so); 1375 1376 CURVNET_SET(so->so_vnet); 1377 error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam); 1378 CURVNET_RESTORE(); 1379 return (error); 1380 } 1381 1382 int 1383 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td) 1384 { 1385 1386 return (soconnectat(AT_FDCWD, so, nam, td)); 1387 } 1388 1389 int 1390 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 1391 { 1392 int error; 1393 1394 CURVNET_SET(so->so_vnet); 1395 /* 1396 * If protocol is connection-based, can only connect once. 1397 * Otherwise, if connected, try to disconnect first. This allows 1398 * user to disconnect by connecting to, e.g., a null address. 1399 */ 1400 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 1401 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 1402 (error = sodisconnect(so)))) { 1403 error = EISCONN; 1404 } else { 1405 /* 1406 * Prevent accumulated error from previous connection from 1407 * biting us. 1408 */ 1409 so->so_error = 0; 1410 if (fd == AT_FDCWD) { 1411 error = (*so->so_proto->pr_usrreqs->pru_connect)(so, 1412 nam, td); 1413 } else { 1414 error = (*so->so_proto->pr_usrreqs->pru_connectat)(fd, 1415 so, nam, td); 1416 } 1417 } 1418 CURVNET_RESTORE(); 1419 1420 return (error); 1421 } 1422 1423 int 1424 soconnect2(struct socket *so1, struct socket *so2) 1425 { 1426 int error; 1427 1428 CURVNET_SET(so1->so_vnet); 1429 error = (*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2); 1430 CURVNET_RESTORE(); 1431 return (error); 1432 } 1433 1434 int 1435 sodisconnect(struct socket *so) 1436 { 1437 int error; 1438 1439 if ((so->so_state & SS_ISCONNECTED) == 0) 1440 return (ENOTCONN); 1441 if (so->so_state & SS_ISDISCONNECTING) 1442 return (EALREADY); 1443 VNET_SO_ASSERT(so); 1444 error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so); 1445 return (error); 1446 } 1447 1448 int 1449 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, 1450 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1451 { 1452 long space; 1453 ssize_t resid; 1454 int clen = 0, error, dontroute; 1455 1456 KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM")); 1457 KASSERT(so->so_proto->pr_flags & PR_ATOMIC, 1458 ("sosend_dgram: !PR_ATOMIC")); 1459 1460 if (uio != NULL) 1461 resid = uio->uio_resid; 1462 else 1463 resid = top->m_pkthdr.len; 1464 /* 1465 * In theory resid should be unsigned. However, space must be 1466 * signed, as it might be less than 0 if we over-committed, and we 1467 * must use a signed comparison of space and resid. On the other 1468 * hand, a negative resid causes us to loop sending 0-length 1469 * segments to the protocol. 1470 */ 1471 if (resid < 0) { 1472 error = EINVAL; 1473 goto out; 1474 } 1475 1476 dontroute = 1477 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0; 1478 if (td != NULL) 1479 td->td_ru.ru_msgsnd++; 1480 if (control != NULL) 1481 clen = control->m_len; 1482 1483 SOCKBUF_LOCK(&so->so_snd); 1484 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1485 SOCKBUF_UNLOCK(&so->so_snd); 1486 error = EPIPE; 1487 goto out; 1488 } 1489 if (so->so_error) { 1490 error = so->so_error; 1491 so->so_error = 0; 1492 SOCKBUF_UNLOCK(&so->so_snd); 1493 goto out; 1494 } 1495 if ((so->so_state & SS_ISCONNECTED) == 0) { 1496 /* 1497 * `sendto' and `sendmsg' is allowed on a connection-based 1498 * socket if it supports implied connect. Return ENOTCONN if 1499 * not connected and no address is supplied. 1500 */ 1501 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1502 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1503 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1504 !(resid == 0 && clen != 0)) { 1505 SOCKBUF_UNLOCK(&so->so_snd); 1506 error = ENOTCONN; 1507 goto out; 1508 } 1509 } else if (addr == NULL) { 1510 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1511 error = ENOTCONN; 1512 else 1513 error = EDESTADDRREQ; 1514 SOCKBUF_UNLOCK(&so->so_snd); 1515 goto out; 1516 } 1517 } 1518 1519 /* 1520 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a 1521 * problem and need fixing. 1522 */ 1523 space = sbspace(&so->so_snd); 1524 if (flags & MSG_OOB) 1525 space += 1024; 1526 space -= clen; 1527 SOCKBUF_UNLOCK(&so->so_snd); 1528 if (resid > space) { 1529 error = EMSGSIZE; 1530 goto out; 1531 } 1532 if (uio == NULL) { 1533 resid = 0; 1534 if (flags & MSG_EOR) 1535 top->m_flags |= M_EOR; 1536 } else { 1537 /* 1538 * Copy the data from userland into a mbuf chain. 1539 * If no data is to be copied in, a single empty mbuf 1540 * is returned. 1541 */ 1542 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr, 1543 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0))); 1544 if (top == NULL) { 1545 error = EFAULT; /* only possible error */ 1546 goto out; 1547 } 1548 space -= resid - uio->uio_resid; 1549 resid = uio->uio_resid; 1550 } 1551 KASSERT(resid == 0, ("sosend_dgram: resid != 0")); 1552 /* 1553 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock 1554 * than with. 1555 */ 1556 if (dontroute) { 1557 SOCK_LOCK(so); 1558 so->so_options |= SO_DONTROUTE; 1559 SOCK_UNLOCK(so); 1560 } 1561 /* 1562 * XXX all the SBS_CANTSENDMORE checks previously done could be out 1563 * of date. We could have received a reset packet in an interrupt or 1564 * maybe we slept while doing page faults in uiomove() etc. We could 1565 * probably recheck again inside the locking protection here, but 1566 * there are probably other places that this also happens. We must 1567 * rethink this. 1568 */ 1569 VNET_SO_ASSERT(so); 1570 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1571 (flags & MSG_OOB) ? PRUS_OOB : 1572 /* 1573 * If the user set MSG_EOF, the protocol understands this flag and 1574 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND. 1575 */ 1576 ((flags & MSG_EOF) && 1577 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1578 (resid <= 0)) ? 1579 PRUS_EOF : 1580 /* If there is more to send set PRUS_MORETOCOME */ 1581 (flags & MSG_MORETOCOME) || 1582 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1583 top, addr, control, td); 1584 if (dontroute) { 1585 SOCK_LOCK(so); 1586 so->so_options &= ~SO_DONTROUTE; 1587 SOCK_UNLOCK(so); 1588 } 1589 clen = 0; 1590 control = NULL; 1591 top = NULL; 1592 out: 1593 if (top != NULL) 1594 m_freem(top); 1595 if (control != NULL) 1596 m_freem(control); 1597 return (error); 1598 } 1599 1600 /* 1601 * Send on a socket. If send must go all at once and message is larger than 1602 * send buffering, then hard error. Lock against other senders. If must go 1603 * all at once and not enough room now, then inform user that this would 1604 * block and do nothing. Otherwise, if nonblocking, send as much as 1605 * possible. The data to be sent is described by "uio" if nonzero, otherwise 1606 * by the mbuf chain "top" (which must be null if uio is not). Data provided 1607 * in mbuf chain must be small enough to send all at once. 1608 * 1609 * Returns nonzero on error, timeout or signal; callers must check for short 1610 * counts if EINTR/ERESTART are returned. Data and control buffers are freed 1611 * on return. 1612 */ 1613 int 1614 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio, 1615 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1616 { 1617 long space; 1618 ssize_t resid; 1619 int clen = 0, error, dontroute; 1620 int atomic = sosendallatonce(so) || top; 1621 int pru_flag; 1622 #ifdef KERN_TLS 1623 struct ktls_session *tls; 1624 int tls_enq_cnt, tls_pruflag; 1625 uint8_t tls_rtype; 1626 1627 tls = NULL; 1628 tls_rtype = TLS_RLTYPE_APP; 1629 #endif 1630 if (uio != NULL) 1631 resid = uio->uio_resid; 1632 else if ((top->m_flags & M_PKTHDR) != 0) 1633 resid = top->m_pkthdr.len; 1634 else 1635 resid = m_length(top, NULL); 1636 /* 1637 * In theory resid should be unsigned. However, space must be 1638 * signed, as it might be less than 0 if we over-committed, and we 1639 * must use a signed comparison of space and resid. On the other 1640 * hand, a negative resid causes us to loop sending 0-length 1641 * segments to the protocol. 1642 * 1643 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 1644 * type sockets since that's an error. 1645 */ 1646 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 1647 error = EINVAL; 1648 goto out; 1649 } 1650 1651 dontroute = 1652 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 1653 (so->so_proto->pr_flags & PR_ATOMIC); 1654 if (td != NULL) 1655 td->td_ru.ru_msgsnd++; 1656 if (control != NULL) 1657 clen = control->m_len; 1658 1659 error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags)); 1660 if (error) 1661 goto out; 1662 1663 #ifdef KERN_TLS 1664 tls_pruflag = 0; 1665 tls = ktls_hold(so->so_snd.sb_tls_info); 1666 if (tls != NULL) { 1667 if (tls->mode == TCP_TLS_MODE_SW) 1668 tls_pruflag = PRUS_NOTREADY; 1669 1670 if (control != NULL) { 1671 struct cmsghdr *cm = mtod(control, struct cmsghdr *); 1672 1673 if (clen >= sizeof(*cm) && 1674 cm->cmsg_type == TLS_SET_RECORD_TYPE) { 1675 tls_rtype = *((uint8_t *)CMSG_DATA(cm)); 1676 clen = 0; 1677 m_freem(control); 1678 control = NULL; 1679 atomic = 1; 1680 } 1681 } 1682 1683 if (resid == 0 && !ktls_permit_empty_frames(tls)) { 1684 error = EINVAL; 1685 goto release; 1686 } 1687 } 1688 #endif 1689 1690 restart: 1691 do { 1692 SOCKBUF_LOCK(&so->so_snd); 1693 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1694 SOCKBUF_UNLOCK(&so->so_snd); 1695 error = EPIPE; 1696 goto release; 1697 } 1698 if (so->so_error) { 1699 error = so->so_error; 1700 so->so_error = 0; 1701 SOCKBUF_UNLOCK(&so->so_snd); 1702 goto release; 1703 } 1704 if ((so->so_state & SS_ISCONNECTED) == 0) { 1705 /* 1706 * `sendto' and `sendmsg' is allowed on a connection- 1707 * based socket if it supports implied connect. 1708 * Return ENOTCONN if not connected and no address is 1709 * supplied. 1710 */ 1711 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1712 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1713 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1714 !(resid == 0 && clen != 0)) { 1715 SOCKBUF_UNLOCK(&so->so_snd); 1716 error = ENOTCONN; 1717 goto release; 1718 } 1719 } else if (addr == NULL) { 1720 SOCKBUF_UNLOCK(&so->so_snd); 1721 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1722 error = ENOTCONN; 1723 else 1724 error = EDESTADDRREQ; 1725 goto release; 1726 } 1727 } 1728 space = sbspace(&so->so_snd); 1729 if (flags & MSG_OOB) 1730 space += 1024; 1731 if ((atomic && resid > so->so_snd.sb_hiwat) || 1732 clen > so->so_snd.sb_hiwat) { 1733 SOCKBUF_UNLOCK(&so->so_snd); 1734 error = EMSGSIZE; 1735 goto release; 1736 } 1737 if (space < resid + clen && 1738 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 1739 if ((so->so_state & SS_NBIO) || 1740 (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) { 1741 SOCKBUF_UNLOCK(&so->so_snd); 1742 error = EWOULDBLOCK; 1743 goto release; 1744 } 1745 error = sbwait(&so->so_snd); 1746 SOCKBUF_UNLOCK(&so->so_snd); 1747 if (error) 1748 goto release; 1749 goto restart; 1750 } 1751 SOCKBUF_UNLOCK(&so->so_snd); 1752 space -= clen; 1753 do { 1754 if (uio == NULL) { 1755 resid = 0; 1756 if (flags & MSG_EOR) 1757 top->m_flags |= M_EOR; 1758 #ifdef KERN_TLS 1759 if (tls != NULL) { 1760 ktls_frame(top, tls, &tls_enq_cnt, 1761 tls_rtype); 1762 tls_rtype = TLS_RLTYPE_APP; 1763 } 1764 #endif 1765 } else { 1766 /* 1767 * Copy the data from userland into a mbuf 1768 * chain. If resid is 0, which can happen 1769 * only if we have control to send, then 1770 * a single empty mbuf is returned. This 1771 * is a workaround to prevent protocol send 1772 * methods to panic. 1773 */ 1774 #ifdef KERN_TLS 1775 if (tls != NULL) { 1776 top = m_uiotombuf(uio, M_WAITOK, space, 1777 tls->params.max_frame_len, 1778 M_EXTPG | 1779 ((flags & MSG_EOR) ? M_EOR : 0)); 1780 if (top != NULL) { 1781 ktls_frame(top, tls, 1782 &tls_enq_cnt, tls_rtype); 1783 } 1784 tls_rtype = TLS_RLTYPE_APP; 1785 } else 1786 #endif 1787 top = m_uiotombuf(uio, M_WAITOK, space, 1788 (atomic ? max_hdr : 0), 1789 (atomic ? M_PKTHDR : 0) | 1790 ((flags & MSG_EOR) ? M_EOR : 0)); 1791 if (top == NULL) { 1792 error = EFAULT; /* only possible error */ 1793 goto release; 1794 } 1795 space -= resid - uio->uio_resid; 1796 resid = uio->uio_resid; 1797 } 1798 if (dontroute) { 1799 SOCK_LOCK(so); 1800 so->so_options |= SO_DONTROUTE; 1801 SOCK_UNLOCK(so); 1802 } 1803 /* 1804 * XXX all the SBS_CANTSENDMORE checks previously 1805 * done could be out of date. We could have received 1806 * a reset packet in an interrupt or maybe we slept 1807 * while doing page faults in uiomove() etc. We 1808 * could probably recheck again inside the locking 1809 * protection here, but there are probably other 1810 * places that this also happens. We must rethink 1811 * this. 1812 */ 1813 VNET_SO_ASSERT(so); 1814 1815 pru_flag = (flags & MSG_OOB) ? PRUS_OOB : 1816 /* 1817 * If the user set MSG_EOF, the protocol understands 1818 * this flag and nothing left to send then use 1819 * PRU_SEND_EOF instead of PRU_SEND. 1820 */ 1821 ((flags & MSG_EOF) && 1822 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1823 (resid <= 0)) ? 1824 PRUS_EOF : 1825 /* If there is more to send set PRUS_MORETOCOME. */ 1826 (flags & MSG_MORETOCOME) || 1827 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0; 1828 1829 #ifdef KERN_TLS 1830 pru_flag |= tls_pruflag; 1831 #endif 1832 1833 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1834 pru_flag, top, addr, control, td); 1835 1836 if (dontroute) { 1837 SOCK_LOCK(so); 1838 so->so_options &= ~SO_DONTROUTE; 1839 SOCK_UNLOCK(so); 1840 } 1841 1842 #ifdef KERN_TLS 1843 if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) { 1844 if (error != 0) { 1845 m_freem(top); 1846 top = NULL; 1847 } else { 1848 soref(so); 1849 ktls_enqueue(top, so, tls_enq_cnt); 1850 } 1851 } 1852 #endif 1853 clen = 0; 1854 control = NULL; 1855 top = NULL; 1856 if (error) 1857 goto release; 1858 } while (resid && space > 0); 1859 } while (resid); 1860 1861 release: 1862 SOCK_IO_SEND_UNLOCK(so); 1863 out: 1864 #ifdef KERN_TLS 1865 if (tls != NULL) 1866 ktls_free(tls); 1867 #endif 1868 if (top != NULL) 1869 m_freem(top); 1870 if (control != NULL) 1871 m_freem(control); 1872 return (error); 1873 } 1874 1875 int 1876 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, 1877 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1878 { 1879 int error; 1880 1881 CURVNET_SET(so->so_vnet); 1882 error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, 1883 top, control, flags, td); 1884 CURVNET_RESTORE(); 1885 return (error); 1886 } 1887 1888 /* 1889 * The part of soreceive() that implements reading non-inline out-of-band 1890 * data from a socket. For more complete comments, see soreceive(), from 1891 * which this code originated. 1892 * 1893 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is 1894 * unable to return an mbuf chain to the caller. 1895 */ 1896 static int 1897 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags) 1898 { 1899 struct protosw *pr = so->so_proto; 1900 struct mbuf *m; 1901 int error; 1902 1903 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); 1904 VNET_SO_ASSERT(so); 1905 1906 m = m_get(M_WAITOK, MT_DATA); 1907 error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK); 1908 if (error) 1909 goto bad; 1910 do { 1911 error = uiomove(mtod(m, void *), 1912 (int) min(uio->uio_resid, m->m_len), uio); 1913 m = m_free(m); 1914 } while (uio->uio_resid && error == 0 && m); 1915 bad: 1916 if (m != NULL) 1917 m_freem(m); 1918 return (error); 1919 } 1920 1921 /* 1922 * Following replacement or removal of the first mbuf on the first mbuf chain 1923 * of a socket buffer, push necessary state changes back into the socket 1924 * buffer so that other consumers see the values consistently. 'nextrecord' 1925 * is the callers locally stored value of the original value of 1926 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. 1927 * NOTE: 'nextrecord' may be NULL. 1928 */ 1929 static __inline void 1930 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) 1931 { 1932 1933 SOCKBUF_LOCK_ASSERT(sb); 1934 /* 1935 * First, update for the new value of nextrecord. If necessary, make 1936 * it the first record. 1937 */ 1938 if (sb->sb_mb != NULL) 1939 sb->sb_mb->m_nextpkt = nextrecord; 1940 else 1941 sb->sb_mb = nextrecord; 1942 1943 /* 1944 * Now update any dependent socket buffer fields to reflect the new 1945 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the 1946 * addition of a second clause that takes care of the case where 1947 * sb_mb has been updated, but remains the last record. 1948 */ 1949 if (sb->sb_mb == NULL) { 1950 sb->sb_mbtail = NULL; 1951 sb->sb_lastrecord = NULL; 1952 } else if (sb->sb_mb->m_nextpkt == NULL) 1953 sb->sb_lastrecord = sb->sb_mb; 1954 } 1955 1956 /* 1957 * Implement receive operations on a socket. We depend on the way that 1958 * records are added to the sockbuf by sbappend. In particular, each record 1959 * (mbufs linked through m_next) must begin with an address if the protocol 1960 * so specifies, followed by an optional mbuf or mbufs containing ancillary 1961 * data, and then zero or more mbufs of data. In order to allow parallelism 1962 * between network receive and copying to user space, as well as avoid 1963 * sleeping with a mutex held, we release the socket buffer mutex during the 1964 * user space copy. Although the sockbuf is locked, new data may still be 1965 * appended, and thus we must maintain consistency of the sockbuf during that 1966 * time. 1967 * 1968 * The caller may receive the data as a single mbuf chain by supplying an 1969 * mbuf **mp0 for use in returning the chain. The uio is then used only for 1970 * the count in uio_resid. 1971 */ 1972 int 1973 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio, 1974 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1975 { 1976 struct mbuf *m, **mp; 1977 int flags, error, offset; 1978 ssize_t len; 1979 struct protosw *pr = so->so_proto; 1980 struct mbuf *nextrecord; 1981 int moff, type = 0; 1982 ssize_t orig_resid = uio->uio_resid; 1983 1984 mp = mp0; 1985 if (psa != NULL) 1986 *psa = NULL; 1987 if (controlp != NULL) 1988 *controlp = NULL; 1989 if (flagsp != NULL) 1990 flags = *flagsp &~ MSG_EOR; 1991 else 1992 flags = 0; 1993 if (flags & MSG_OOB) 1994 return (soreceive_rcvoob(so, uio, flags)); 1995 if (mp != NULL) 1996 *mp = NULL; 1997 if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING) 1998 && uio->uio_resid) { 1999 VNET_SO_ASSERT(so); 2000 (*pr->pr_usrreqs->pru_rcvd)(so, 0); 2001 } 2002 2003 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags)); 2004 if (error) 2005 return (error); 2006 2007 restart: 2008 SOCKBUF_LOCK(&so->so_rcv); 2009 m = so->so_rcv.sb_mb; 2010 /* 2011 * If we have less data than requested, block awaiting more (subject 2012 * to any timeout) if: 2013 * 1. the current count is less than the low water mark, or 2014 * 2. MSG_DONTWAIT is not set 2015 */ 2016 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 2017 sbavail(&so->so_rcv) < uio->uio_resid) && 2018 sbavail(&so->so_rcv) < so->so_rcv.sb_lowat && 2019 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 2020 KASSERT(m != NULL || !sbavail(&so->so_rcv), 2021 ("receive: m == %p sbavail == %u", 2022 m, sbavail(&so->so_rcv))); 2023 if (so->so_error || so->so_rerror) { 2024 if (m != NULL) 2025 goto dontblock; 2026 if (so->so_error) 2027 error = so->so_error; 2028 else 2029 error = so->so_rerror; 2030 if ((flags & MSG_PEEK) == 0) { 2031 if (so->so_error) 2032 so->so_error = 0; 2033 else 2034 so->so_rerror = 0; 2035 } 2036 SOCKBUF_UNLOCK(&so->so_rcv); 2037 goto release; 2038 } 2039 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2040 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 2041 if (m != NULL) 2042 goto dontblock; 2043 #ifdef KERN_TLS 2044 else if (so->so_rcv.sb_tlsdcc == 0 && 2045 so->so_rcv.sb_tlscc == 0) { 2046 #else 2047 else { 2048 #endif 2049 SOCKBUF_UNLOCK(&so->so_rcv); 2050 goto release; 2051 } 2052 } 2053 for (; m != NULL; m = m->m_next) 2054 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 2055 m = so->so_rcv.sb_mb; 2056 goto dontblock; 2057 } 2058 if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED | 2059 SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 && 2060 (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) { 2061 SOCKBUF_UNLOCK(&so->so_rcv); 2062 error = ENOTCONN; 2063 goto release; 2064 } 2065 if (uio->uio_resid == 0) { 2066 SOCKBUF_UNLOCK(&so->so_rcv); 2067 goto release; 2068 } 2069 if ((so->so_state & SS_NBIO) || 2070 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2071 SOCKBUF_UNLOCK(&so->so_rcv); 2072 error = EWOULDBLOCK; 2073 goto release; 2074 } 2075 SBLASTRECORDCHK(&so->so_rcv); 2076 SBLASTMBUFCHK(&so->so_rcv); 2077 error = sbwait(&so->so_rcv); 2078 SOCKBUF_UNLOCK(&so->so_rcv); 2079 if (error) 2080 goto release; 2081 goto restart; 2082 } 2083 dontblock: 2084 /* 2085 * From this point onward, we maintain 'nextrecord' as a cache of the 2086 * pointer to the next record in the socket buffer. We must keep the 2087 * various socket buffer pointers and local stack versions of the 2088 * pointers in sync, pushing out modifications before dropping the 2089 * socket buffer mutex, and re-reading them when picking it up. 2090 * 2091 * Otherwise, we will race with the network stack appending new data 2092 * or records onto the socket buffer by using inconsistent/stale 2093 * versions of the field, possibly resulting in socket buffer 2094 * corruption. 2095 * 2096 * By holding the high-level sblock(), we prevent simultaneous 2097 * readers from pulling off the front of the socket buffer. 2098 */ 2099 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2100 if (uio->uio_td) 2101 uio->uio_td->td_ru.ru_msgrcv++; 2102 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); 2103 SBLASTRECORDCHK(&so->so_rcv); 2104 SBLASTMBUFCHK(&so->so_rcv); 2105 nextrecord = m->m_nextpkt; 2106 if (pr->pr_flags & PR_ADDR) { 2107 KASSERT(m->m_type == MT_SONAME, 2108 ("m->m_type == %d", m->m_type)); 2109 orig_resid = 0; 2110 if (psa != NULL) 2111 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2112 M_NOWAIT); 2113 if (flags & MSG_PEEK) { 2114 m = m->m_next; 2115 } else { 2116 sbfree(&so->so_rcv, m); 2117 so->so_rcv.sb_mb = m_free(m); 2118 m = so->so_rcv.sb_mb; 2119 sockbuf_pushsync(&so->so_rcv, nextrecord); 2120 } 2121 } 2122 2123 /* 2124 * Process one or more MT_CONTROL mbufs present before any data mbufs 2125 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 2126 * just copy the data; if !MSG_PEEK, we call into the protocol to 2127 * perform externalization (or freeing if controlp == NULL). 2128 */ 2129 if (m != NULL && m->m_type == MT_CONTROL) { 2130 struct mbuf *cm = NULL, *cmn; 2131 struct mbuf **cme = &cm; 2132 #ifdef KERN_TLS 2133 struct cmsghdr *cmsg; 2134 struct tls_get_record tgr; 2135 2136 /* 2137 * For MSG_TLSAPPDATA, check for a non-application data 2138 * record. If found, return ENXIO without removing 2139 * it from the receive queue. This allows a subsequent 2140 * call without MSG_TLSAPPDATA to receive it. 2141 * Note that, for TLS, there should only be a single 2142 * control mbuf with the TLS_GET_RECORD message in it. 2143 */ 2144 if (flags & MSG_TLSAPPDATA) { 2145 cmsg = mtod(m, struct cmsghdr *); 2146 if (cmsg->cmsg_type == TLS_GET_RECORD && 2147 cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) { 2148 memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr)); 2149 /* This will need to change for TLS 1.3. */ 2150 if (tgr.tls_type != TLS_RLTYPE_APP) { 2151 SOCKBUF_UNLOCK(&so->so_rcv); 2152 error = ENXIO; 2153 goto release; 2154 } 2155 } 2156 } 2157 #endif 2158 2159 do { 2160 if (flags & MSG_PEEK) { 2161 if (controlp != NULL) { 2162 *controlp = m_copym(m, 0, m->m_len, 2163 M_NOWAIT); 2164 controlp = &(*controlp)->m_next; 2165 } 2166 m = m->m_next; 2167 } else { 2168 sbfree(&so->so_rcv, m); 2169 so->so_rcv.sb_mb = m->m_next; 2170 m->m_next = NULL; 2171 *cme = m; 2172 cme = &(*cme)->m_next; 2173 m = so->so_rcv.sb_mb; 2174 } 2175 } while (m != NULL && m->m_type == MT_CONTROL); 2176 if ((flags & MSG_PEEK) == 0) 2177 sockbuf_pushsync(&so->so_rcv, nextrecord); 2178 while (cm != NULL) { 2179 cmn = cm->m_next; 2180 cm->m_next = NULL; 2181 if (pr->pr_domain->dom_externalize != NULL) { 2182 SOCKBUF_UNLOCK(&so->so_rcv); 2183 VNET_SO_ASSERT(so); 2184 error = (*pr->pr_domain->dom_externalize) 2185 (cm, controlp, flags); 2186 SOCKBUF_LOCK(&so->so_rcv); 2187 } else if (controlp != NULL) 2188 *controlp = cm; 2189 else 2190 m_freem(cm); 2191 if (controlp != NULL) { 2192 while (*controlp != NULL) 2193 controlp = &(*controlp)->m_next; 2194 } 2195 cm = cmn; 2196 } 2197 if (m != NULL) 2198 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 2199 else 2200 nextrecord = so->so_rcv.sb_mb; 2201 orig_resid = 0; 2202 } 2203 if (m != NULL) { 2204 if ((flags & MSG_PEEK) == 0) { 2205 KASSERT(m->m_nextpkt == nextrecord, 2206 ("soreceive: post-control, nextrecord !sync")); 2207 if (nextrecord == NULL) { 2208 KASSERT(so->so_rcv.sb_mb == m, 2209 ("soreceive: post-control, sb_mb!=m")); 2210 KASSERT(so->so_rcv.sb_lastrecord == m, 2211 ("soreceive: post-control, lastrecord!=m")); 2212 } 2213 } 2214 type = m->m_type; 2215 if (type == MT_OOBDATA) 2216 flags |= MSG_OOB; 2217 } else { 2218 if ((flags & MSG_PEEK) == 0) { 2219 KASSERT(so->so_rcv.sb_mb == nextrecord, 2220 ("soreceive: sb_mb != nextrecord")); 2221 if (so->so_rcv.sb_mb == NULL) { 2222 KASSERT(so->so_rcv.sb_lastrecord == NULL, 2223 ("soreceive: sb_lastercord != NULL")); 2224 } 2225 } 2226 } 2227 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2228 SBLASTRECORDCHK(&so->so_rcv); 2229 SBLASTMBUFCHK(&so->so_rcv); 2230 2231 /* 2232 * Now continue to read any data mbufs off of the head of the socket 2233 * buffer until the read request is satisfied. Note that 'type' is 2234 * used to store the type of any mbuf reads that have happened so far 2235 * such that soreceive() can stop reading if the type changes, which 2236 * causes soreceive() to return only one of regular data and inline 2237 * out-of-band data in a single socket receive operation. 2238 */ 2239 moff = 0; 2240 offset = 0; 2241 while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0 2242 && error == 0) { 2243 /* 2244 * If the type of mbuf has changed since the last mbuf 2245 * examined ('type'), end the receive operation. 2246 */ 2247 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2248 if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) { 2249 if (type != m->m_type) 2250 break; 2251 } else if (type == MT_OOBDATA) 2252 break; 2253 else 2254 KASSERT(m->m_type == MT_DATA, 2255 ("m->m_type == %d", m->m_type)); 2256 so->so_rcv.sb_state &= ~SBS_RCVATMARK; 2257 len = uio->uio_resid; 2258 if (so->so_oobmark && len > so->so_oobmark - offset) 2259 len = so->so_oobmark - offset; 2260 if (len > m->m_len - moff) 2261 len = m->m_len - moff; 2262 /* 2263 * If mp is set, just pass back the mbufs. Otherwise copy 2264 * them out via the uio, then free. Sockbuf must be 2265 * consistent here (points to current mbuf, it points to next 2266 * record) when we drop priority; we must note any additions 2267 * to the sockbuf when we block interrupts again. 2268 */ 2269 if (mp == NULL) { 2270 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2271 SBLASTRECORDCHK(&so->so_rcv); 2272 SBLASTMBUFCHK(&so->so_rcv); 2273 SOCKBUF_UNLOCK(&so->so_rcv); 2274 if ((m->m_flags & M_EXTPG) != 0) 2275 error = m_unmapped_uiomove(m, moff, uio, 2276 (int)len); 2277 else 2278 error = uiomove(mtod(m, char *) + moff, 2279 (int)len, uio); 2280 SOCKBUF_LOCK(&so->so_rcv); 2281 if (error) { 2282 /* 2283 * The MT_SONAME mbuf has already been removed 2284 * from the record, so it is necessary to 2285 * remove the data mbufs, if any, to preserve 2286 * the invariant in the case of PR_ADDR that 2287 * requires MT_SONAME mbufs at the head of 2288 * each record. 2289 */ 2290 if (pr->pr_flags & PR_ATOMIC && 2291 ((flags & MSG_PEEK) == 0)) 2292 (void)sbdroprecord_locked(&so->so_rcv); 2293 SOCKBUF_UNLOCK(&so->so_rcv); 2294 goto release; 2295 } 2296 } else 2297 uio->uio_resid -= len; 2298 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2299 if (len == m->m_len - moff) { 2300 if (m->m_flags & M_EOR) 2301 flags |= MSG_EOR; 2302 if (flags & MSG_PEEK) { 2303 m = m->m_next; 2304 moff = 0; 2305 } else { 2306 nextrecord = m->m_nextpkt; 2307 sbfree(&so->so_rcv, m); 2308 if (mp != NULL) { 2309 m->m_nextpkt = NULL; 2310 *mp = m; 2311 mp = &m->m_next; 2312 so->so_rcv.sb_mb = m = m->m_next; 2313 *mp = NULL; 2314 } else { 2315 so->so_rcv.sb_mb = m_free(m); 2316 m = so->so_rcv.sb_mb; 2317 } 2318 sockbuf_pushsync(&so->so_rcv, nextrecord); 2319 SBLASTRECORDCHK(&so->so_rcv); 2320 SBLASTMBUFCHK(&so->so_rcv); 2321 } 2322 } else { 2323 if (flags & MSG_PEEK) 2324 moff += len; 2325 else { 2326 if (mp != NULL) { 2327 if (flags & MSG_DONTWAIT) { 2328 *mp = m_copym(m, 0, len, 2329 M_NOWAIT); 2330 if (*mp == NULL) { 2331 /* 2332 * m_copym() couldn't 2333 * allocate an mbuf. 2334 * Adjust uio_resid back 2335 * (it was adjusted 2336 * down by len bytes, 2337 * which we didn't end 2338 * up "copying" over). 2339 */ 2340 uio->uio_resid += len; 2341 break; 2342 } 2343 } else { 2344 SOCKBUF_UNLOCK(&so->so_rcv); 2345 *mp = m_copym(m, 0, len, 2346 M_WAITOK); 2347 SOCKBUF_LOCK(&so->so_rcv); 2348 } 2349 } 2350 sbcut_locked(&so->so_rcv, len); 2351 } 2352 } 2353 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2354 if (so->so_oobmark) { 2355 if ((flags & MSG_PEEK) == 0) { 2356 so->so_oobmark -= len; 2357 if (so->so_oobmark == 0) { 2358 so->so_rcv.sb_state |= SBS_RCVATMARK; 2359 break; 2360 } 2361 } else { 2362 offset += len; 2363 if (offset == so->so_oobmark) 2364 break; 2365 } 2366 } 2367 if (flags & MSG_EOR) 2368 break; 2369 /* 2370 * If the MSG_WAITALL flag is set (for non-atomic socket), we 2371 * must not quit until "uio->uio_resid == 0" or an error 2372 * termination. If a signal/timeout occurs, return with a 2373 * short count but without error. Keep sockbuf locked 2374 * against other readers. 2375 */ 2376 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 2377 !sosendallatonce(so) && nextrecord == NULL) { 2378 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2379 if (so->so_error || so->so_rerror || 2380 so->so_rcv.sb_state & SBS_CANTRCVMORE) 2381 break; 2382 /* 2383 * Notify the protocol that some data has been 2384 * drained before blocking. 2385 */ 2386 if (pr->pr_flags & PR_WANTRCVD) { 2387 SOCKBUF_UNLOCK(&so->so_rcv); 2388 VNET_SO_ASSERT(so); 2389 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 2390 SOCKBUF_LOCK(&so->so_rcv); 2391 } 2392 SBLASTRECORDCHK(&so->so_rcv); 2393 SBLASTMBUFCHK(&so->so_rcv); 2394 /* 2395 * We could receive some data while was notifying 2396 * the protocol. Skip blocking in this case. 2397 */ 2398 if (so->so_rcv.sb_mb == NULL) { 2399 error = sbwait(&so->so_rcv); 2400 if (error) { 2401 SOCKBUF_UNLOCK(&so->so_rcv); 2402 goto release; 2403 } 2404 } 2405 m = so->so_rcv.sb_mb; 2406 if (m != NULL) 2407 nextrecord = m->m_nextpkt; 2408 } 2409 } 2410 2411 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2412 if (m != NULL && pr->pr_flags & PR_ATOMIC) { 2413 flags |= MSG_TRUNC; 2414 if ((flags & MSG_PEEK) == 0) 2415 (void) sbdroprecord_locked(&so->so_rcv); 2416 } 2417 if ((flags & MSG_PEEK) == 0) { 2418 if (m == NULL) { 2419 /* 2420 * First part is an inline SB_EMPTY_FIXUP(). Second 2421 * part makes sure sb_lastrecord is up-to-date if 2422 * there is still data in the socket buffer. 2423 */ 2424 so->so_rcv.sb_mb = nextrecord; 2425 if (so->so_rcv.sb_mb == NULL) { 2426 so->so_rcv.sb_mbtail = NULL; 2427 so->so_rcv.sb_lastrecord = NULL; 2428 } else if (nextrecord->m_nextpkt == NULL) 2429 so->so_rcv.sb_lastrecord = nextrecord; 2430 } 2431 SBLASTRECORDCHK(&so->so_rcv); 2432 SBLASTMBUFCHK(&so->so_rcv); 2433 /* 2434 * If soreceive() is being done from the socket callback, 2435 * then don't need to generate ACK to peer to update window, 2436 * since ACK will be generated on return to TCP. 2437 */ 2438 if (!(flags & MSG_SOCALLBCK) && 2439 (pr->pr_flags & PR_WANTRCVD)) { 2440 SOCKBUF_UNLOCK(&so->so_rcv); 2441 VNET_SO_ASSERT(so); 2442 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 2443 SOCKBUF_LOCK(&so->so_rcv); 2444 } 2445 } 2446 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2447 if (orig_resid == uio->uio_resid && orig_resid && 2448 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { 2449 SOCKBUF_UNLOCK(&so->so_rcv); 2450 goto restart; 2451 } 2452 SOCKBUF_UNLOCK(&so->so_rcv); 2453 2454 if (flagsp != NULL) 2455 *flagsp |= flags; 2456 release: 2457 SOCK_IO_RECV_UNLOCK(so); 2458 return (error); 2459 } 2460 2461 /* 2462 * Optimized version of soreceive() for stream (TCP) sockets. 2463 */ 2464 int 2465 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio, 2466 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2467 { 2468 int len = 0, error = 0, flags, oresid; 2469 struct sockbuf *sb; 2470 struct mbuf *m, *n = NULL; 2471 2472 /* We only do stream sockets. */ 2473 if (so->so_type != SOCK_STREAM) 2474 return (EINVAL); 2475 if (psa != NULL) 2476 *psa = NULL; 2477 if (flagsp != NULL) 2478 flags = *flagsp &~ MSG_EOR; 2479 else 2480 flags = 0; 2481 if (controlp != NULL) 2482 *controlp = NULL; 2483 if (flags & MSG_OOB) 2484 return (soreceive_rcvoob(so, uio, flags)); 2485 if (mp0 != NULL) 2486 *mp0 = NULL; 2487 2488 sb = &so->so_rcv; 2489 2490 #ifdef KERN_TLS 2491 /* 2492 * KTLS store TLS records as records with a control message to 2493 * describe the framing. 2494 * 2495 * We check once here before acquiring locks to optimize the 2496 * common case. 2497 */ 2498 if (sb->sb_tls_info != NULL) 2499 return (soreceive_generic(so, psa, uio, mp0, controlp, 2500 flagsp)); 2501 #endif 2502 2503 /* Prevent other readers from entering the socket. */ 2504 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags)); 2505 if (error) 2506 return (error); 2507 SOCKBUF_LOCK(sb); 2508 2509 #ifdef KERN_TLS 2510 if (sb->sb_tls_info != NULL) { 2511 SOCKBUF_UNLOCK(sb); 2512 SOCK_IO_RECV_UNLOCK(so); 2513 return (soreceive_generic(so, psa, uio, mp0, controlp, 2514 flagsp)); 2515 } 2516 #endif 2517 2518 /* Easy one, no space to copyout anything. */ 2519 if (uio->uio_resid == 0) { 2520 error = EINVAL; 2521 goto out; 2522 } 2523 oresid = uio->uio_resid; 2524 2525 /* We will never ever get anything unless we are or were connected. */ 2526 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 2527 error = ENOTCONN; 2528 goto out; 2529 } 2530 2531 restart: 2532 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2533 2534 /* Abort if socket has reported problems. */ 2535 if (so->so_error) { 2536 if (sbavail(sb) > 0) 2537 goto deliver; 2538 if (oresid > uio->uio_resid) 2539 goto out; 2540 error = so->so_error; 2541 if (!(flags & MSG_PEEK)) 2542 so->so_error = 0; 2543 goto out; 2544 } 2545 2546 /* Door is closed. Deliver what is left, if any. */ 2547 if (sb->sb_state & SBS_CANTRCVMORE) { 2548 if (sbavail(sb) > 0) 2549 goto deliver; 2550 else 2551 goto out; 2552 } 2553 2554 /* Socket buffer is empty and we shall not block. */ 2555 if (sbavail(sb) == 0 && 2556 ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) { 2557 error = EAGAIN; 2558 goto out; 2559 } 2560 2561 /* Socket buffer got some data that we shall deliver now. */ 2562 if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) && 2563 ((so->so_state & SS_NBIO) || 2564 (flags & (MSG_DONTWAIT|MSG_NBIO)) || 2565 sbavail(sb) >= sb->sb_lowat || 2566 sbavail(sb) >= uio->uio_resid || 2567 sbavail(sb) >= sb->sb_hiwat) ) { 2568 goto deliver; 2569 } 2570 2571 /* On MSG_WAITALL we must wait until all data or error arrives. */ 2572 if ((flags & MSG_WAITALL) && 2573 (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat)) 2574 goto deliver; 2575 2576 /* 2577 * Wait and block until (more) data comes in. 2578 * NB: Drops the sockbuf lock during wait. 2579 */ 2580 error = sbwait(sb); 2581 if (error) 2582 goto out; 2583 goto restart; 2584 2585 deliver: 2586 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2587 KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__)); 2588 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__)); 2589 2590 /* Statistics. */ 2591 if (uio->uio_td) 2592 uio->uio_td->td_ru.ru_msgrcv++; 2593 2594 /* Fill uio until full or current end of socket buffer is reached. */ 2595 len = min(uio->uio_resid, sbavail(sb)); 2596 if (mp0 != NULL) { 2597 /* Dequeue as many mbufs as possible. */ 2598 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) { 2599 if (*mp0 == NULL) 2600 *mp0 = sb->sb_mb; 2601 else 2602 m_cat(*mp0, sb->sb_mb); 2603 for (m = sb->sb_mb; 2604 m != NULL && m->m_len <= len; 2605 m = m->m_next) { 2606 KASSERT(!(m->m_flags & M_NOTAVAIL), 2607 ("%s: m %p not available", __func__, m)); 2608 len -= m->m_len; 2609 uio->uio_resid -= m->m_len; 2610 sbfree(sb, m); 2611 n = m; 2612 } 2613 n->m_next = NULL; 2614 sb->sb_mb = m; 2615 sb->sb_lastrecord = sb->sb_mb; 2616 if (sb->sb_mb == NULL) 2617 SB_EMPTY_FIXUP(sb); 2618 } 2619 /* Copy the remainder. */ 2620 if (len > 0) { 2621 KASSERT(sb->sb_mb != NULL, 2622 ("%s: len > 0 && sb->sb_mb empty", __func__)); 2623 2624 m = m_copym(sb->sb_mb, 0, len, M_NOWAIT); 2625 if (m == NULL) 2626 len = 0; /* Don't flush data from sockbuf. */ 2627 else 2628 uio->uio_resid -= len; 2629 if (*mp0 != NULL) 2630 m_cat(*mp0, m); 2631 else 2632 *mp0 = m; 2633 if (*mp0 == NULL) { 2634 error = ENOBUFS; 2635 goto out; 2636 } 2637 } 2638 } else { 2639 /* NB: Must unlock socket buffer as uiomove may sleep. */ 2640 SOCKBUF_UNLOCK(sb); 2641 error = m_mbuftouio(uio, sb->sb_mb, len); 2642 SOCKBUF_LOCK(sb); 2643 if (error) 2644 goto out; 2645 } 2646 SBLASTRECORDCHK(sb); 2647 SBLASTMBUFCHK(sb); 2648 2649 /* 2650 * Remove the delivered data from the socket buffer unless we 2651 * were only peeking. 2652 */ 2653 if (!(flags & MSG_PEEK)) { 2654 if (len > 0) 2655 sbdrop_locked(sb, len); 2656 2657 /* Notify protocol that we drained some data. */ 2658 if ((so->so_proto->pr_flags & PR_WANTRCVD) && 2659 (((flags & MSG_WAITALL) && uio->uio_resid > 0) || 2660 !(flags & MSG_SOCALLBCK))) { 2661 SOCKBUF_UNLOCK(sb); 2662 VNET_SO_ASSERT(so); 2663 (*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags); 2664 SOCKBUF_LOCK(sb); 2665 } 2666 } 2667 2668 /* 2669 * For MSG_WAITALL we may have to loop again and wait for 2670 * more data to come in. 2671 */ 2672 if ((flags & MSG_WAITALL) && uio->uio_resid > 0) 2673 goto restart; 2674 out: 2675 SBLASTRECORDCHK(sb); 2676 SBLASTMBUFCHK(sb); 2677 SOCKBUF_UNLOCK(sb); 2678 SOCK_IO_RECV_UNLOCK(so); 2679 return (error); 2680 } 2681 2682 /* 2683 * Optimized version of soreceive() for simple datagram cases from userspace. 2684 * Unlike in the stream case, we're able to drop a datagram if copyout() 2685 * fails, and because we handle datagrams atomically, we don't need to use a 2686 * sleep lock to prevent I/O interlacing. 2687 */ 2688 int 2689 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio, 2690 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2691 { 2692 struct mbuf *m, *m2; 2693 int flags, error; 2694 ssize_t len; 2695 struct protosw *pr = so->so_proto; 2696 struct mbuf *nextrecord; 2697 2698 if (psa != NULL) 2699 *psa = NULL; 2700 if (controlp != NULL) 2701 *controlp = NULL; 2702 if (flagsp != NULL) 2703 flags = *flagsp &~ MSG_EOR; 2704 else 2705 flags = 0; 2706 2707 /* 2708 * For any complicated cases, fall back to the full 2709 * soreceive_generic(). 2710 */ 2711 if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB)) 2712 return (soreceive_generic(so, psa, uio, mp0, controlp, 2713 flagsp)); 2714 2715 /* 2716 * Enforce restrictions on use. 2717 */ 2718 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0, 2719 ("soreceive_dgram: wantrcvd")); 2720 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic")); 2721 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0, 2722 ("soreceive_dgram: SBS_RCVATMARK")); 2723 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0, 2724 ("soreceive_dgram: P_CONNREQUIRED")); 2725 2726 /* 2727 * Loop blocking while waiting for a datagram. 2728 */ 2729 SOCKBUF_LOCK(&so->so_rcv); 2730 while ((m = so->so_rcv.sb_mb) == NULL) { 2731 KASSERT(sbavail(&so->so_rcv) == 0, 2732 ("soreceive_dgram: sb_mb NULL but sbavail %u", 2733 sbavail(&so->so_rcv))); 2734 if (so->so_error) { 2735 error = so->so_error; 2736 so->so_error = 0; 2737 SOCKBUF_UNLOCK(&so->so_rcv); 2738 return (error); 2739 } 2740 if (so->so_rcv.sb_state & SBS_CANTRCVMORE || 2741 uio->uio_resid == 0) { 2742 SOCKBUF_UNLOCK(&so->so_rcv); 2743 return (0); 2744 } 2745 if ((so->so_state & SS_NBIO) || 2746 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2747 SOCKBUF_UNLOCK(&so->so_rcv); 2748 return (EWOULDBLOCK); 2749 } 2750 SBLASTRECORDCHK(&so->so_rcv); 2751 SBLASTMBUFCHK(&so->so_rcv); 2752 error = sbwait(&so->so_rcv); 2753 if (error) { 2754 SOCKBUF_UNLOCK(&so->so_rcv); 2755 return (error); 2756 } 2757 } 2758 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2759 2760 if (uio->uio_td) 2761 uio->uio_td->td_ru.ru_msgrcv++; 2762 SBLASTRECORDCHK(&so->so_rcv); 2763 SBLASTMBUFCHK(&so->so_rcv); 2764 nextrecord = m->m_nextpkt; 2765 if (nextrecord == NULL) { 2766 KASSERT(so->so_rcv.sb_lastrecord == m, 2767 ("soreceive_dgram: lastrecord != m")); 2768 } 2769 2770 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord, 2771 ("soreceive_dgram: m_nextpkt != nextrecord")); 2772 2773 /* 2774 * Pull 'm' and its chain off the front of the packet queue. 2775 */ 2776 so->so_rcv.sb_mb = NULL; 2777 sockbuf_pushsync(&so->so_rcv, nextrecord); 2778 2779 /* 2780 * Walk 'm's chain and free that many bytes from the socket buffer. 2781 */ 2782 for (m2 = m; m2 != NULL; m2 = m2->m_next) 2783 sbfree(&so->so_rcv, m2); 2784 2785 /* 2786 * Do a few last checks before we let go of the lock. 2787 */ 2788 SBLASTRECORDCHK(&so->so_rcv); 2789 SBLASTMBUFCHK(&so->so_rcv); 2790 SOCKBUF_UNLOCK(&so->so_rcv); 2791 2792 if (pr->pr_flags & PR_ADDR) { 2793 KASSERT(m->m_type == MT_SONAME, 2794 ("m->m_type == %d", m->m_type)); 2795 if (psa != NULL) 2796 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2797 M_NOWAIT); 2798 m = m_free(m); 2799 } 2800 if (m == NULL) { 2801 /* XXXRW: Can this happen? */ 2802 return (0); 2803 } 2804 2805 /* 2806 * Packet to copyout() is now in 'm' and it is disconnected from the 2807 * queue. 2808 * 2809 * Process one or more MT_CONTROL mbufs present before any data mbufs 2810 * in the first mbuf chain on the socket buffer. We call into the 2811 * protocol to perform externalization (or freeing if controlp == 2812 * NULL). In some cases there can be only MT_CONTROL mbufs without 2813 * MT_DATA mbufs. 2814 */ 2815 if (m->m_type == MT_CONTROL) { 2816 struct mbuf *cm = NULL, *cmn; 2817 struct mbuf **cme = &cm; 2818 2819 do { 2820 m2 = m->m_next; 2821 m->m_next = NULL; 2822 *cme = m; 2823 cme = &(*cme)->m_next; 2824 m = m2; 2825 } while (m != NULL && m->m_type == MT_CONTROL); 2826 while (cm != NULL) { 2827 cmn = cm->m_next; 2828 cm->m_next = NULL; 2829 if (pr->pr_domain->dom_externalize != NULL) { 2830 error = (*pr->pr_domain->dom_externalize) 2831 (cm, controlp, flags); 2832 } else if (controlp != NULL) 2833 *controlp = cm; 2834 else 2835 m_freem(cm); 2836 if (controlp != NULL) { 2837 while (*controlp != NULL) 2838 controlp = &(*controlp)->m_next; 2839 } 2840 cm = cmn; 2841 } 2842 } 2843 KASSERT(m == NULL || m->m_type == MT_DATA, 2844 ("soreceive_dgram: !data")); 2845 while (m != NULL && uio->uio_resid > 0) { 2846 len = uio->uio_resid; 2847 if (len > m->m_len) 2848 len = m->m_len; 2849 error = uiomove(mtod(m, char *), (int)len, uio); 2850 if (error) { 2851 m_freem(m); 2852 return (error); 2853 } 2854 if (len == m->m_len) 2855 m = m_free(m); 2856 else { 2857 m->m_data += len; 2858 m->m_len -= len; 2859 } 2860 } 2861 if (m != NULL) { 2862 flags |= MSG_TRUNC; 2863 m_freem(m); 2864 } 2865 if (flagsp != NULL) 2866 *flagsp |= flags; 2867 return (0); 2868 } 2869 2870 int 2871 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, 2872 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2873 { 2874 int error; 2875 2876 CURVNET_SET(so->so_vnet); 2877 error = (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, 2878 mp0, controlp, flagsp)); 2879 CURVNET_RESTORE(); 2880 return (error); 2881 } 2882 2883 int 2884 soshutdown(struct socket *so, int how) 2885 { 2886 struct protosw *pr; 2887 int error, soerror_enotconn; 2888 2889 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 2890 return (EINVAL); 2891 2892 soerror_enotconn = 0; 2893 SOCK_LOCK(so); 2894 if ((so->so_state & 2895 (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) { 2896 /* 2897 * POSIX mandates us to return ENOTCONN when shutdown(2) is 2898 * invoked on a datagram sockets, however historically we would 2899 * actually tear socket down. This is known to be leveraged by 2900 * some applications to unblock process waiting in recvXXX(2) 2901 * by other process that it shares that socket with. Try to meet 2902 * both backward-compatibility and POSIX requirements by forcing 2903 * ENOTCONN but still asking protocol to perform pru_shutdown(). 2904 */ 2905 if (so->so_type != SOCK_DGRAM && !SOLISTENING(so)) { 2906 SOCK_UNLOCK(so); 2907 return (ENOTCONN); 2908 } 2909 soerror_enotconn = 1; 2910 } 2911 2912 if (SOLISTENING(so)) { 2913 if (how != SHUT_WR) { 2914 so->so_error = ECONNABORTED; 2915 solisten_wakeup(so); /* unlocks so */ 2916 } else { 2917 SOCK_UNLOCK(so); 2918 } 2919 goto done; 2920 } 2921 SOCK_UNLOCK(so); 2922 2923 CURVNET_SET(so->so_vnet); 2924 pr = so->so_proto; 2925 if (pr->pr_usrreqs->pru_flush != NULL) 2926 (*pr->pr_usrreqs->pru_flush)(so, how); 2927 if (how != SHUT_WR) 2928 sorflush(so); 2929 if (how != SHUT_RD) { 2930 error = (*pr->pr_usrreqs->pru_shutdown)(so); 2931 wakeup(&so->so_timeo); 2932 CURVNET_RESTORE(); 2933 return ((error == 0 && soerror_enotconn) ? ENOTCONN : error); 2934 } 2935 wakeup(&so->so_timeo); 2936 CURVNET_RESTORE(); 2937 2938 done: 2939 return (soerror_enotconn ? ENOTCONN : 0); 2940 } 2941 2942 void 2943 sorflush(struct socket *so) 2944 { 2945 struct socket aso; 2946 struct protosw *pr; 2947 int error; 2948 2949 VNET_SO_ASSERT(so); 2950 2951 /* 2952 * In order to avoid calling dom_dispose with the socket buffer mutex 2953 * held, we make a partial copy of the socket buffer and clear the 2954 * original. The new socket buffer copy won't have initialized locks so 2955 * we can only call routines that won't use or assert those locks. 2956 * Ideally calling socantrcvmore() would prevent data from being added 2957 * to the buffer, but currently it merely prevents buffered data from 2958 * being read by userspace. We make this effort to free buffered data 2959 * nonetheless. 2960 * 2961 * Dislodge threads currently blocked in receive and wait to acquire 2962 * a lock against other simultaneous readers before clearing the 2963 * socket buffer. Don't let our acquire be interrupted by a signal 2964 * despite any existing socket disposition on interruptable waiting. 2965 */ 2966 socantrcvmore(so); 2967 2968 error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR); 2969 if (error != 0) { 2970 KASSERT(SOLISTENING(so), 2971 ("%s: soiolock(%p) failed", __func__, so)); 2972 return; 2973 } 2974 2975 SOCK_RECVBUF_LOCK(so); 2976 bzero(&aso, sizeof(aso)); 2977 aso.so_pcb = so->so_pcb; 2978 bcopy(&so->so_rcv.sb_startzero, &aso.so_rcv.sb_startzero, 2979 offsetof(struct sockbuf, sb_endzero) - 2980 offsetof(struct sockbuf, sb_startzero)); 2981 bzero(&so->so_rcv.sb_startzero, 2982 offsetof(struct sockbuf, sb_endzero) - 2983 offsetof(struct sockbuf, sb_startzero)); 2984 SOCK_RECVBUF_UNLOCK(so); 2985 SOCK_IO_RECV_UNLOCK(so); 2986 2987 /* 2988 * Dispose of special rights and flush the copied socket. Don't call 2989 * any unsafe routines (that rely on locks being initialized) on aso. 2990 */ 2991 pr = so->so_proto; 2992 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 2993 (*pr->pr_domain->dom_dispose)(&aso); 2994 sbrelease_internal(&aso.so_rcv, so); 2995 } 2996 2997 /* 2998 * Wrapper for Socket established helper hook. 2999 * Parameters: socket, context of the hook point, hook id. 3000 */ 3001 static int inline 3002 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id) 3003 { 3004 struct socket_hhook_data hhook_data = { 3005 .so = so, 3006 .hctx = hctx, 3007 .m = NULL, 3008 .status = 0 3009 }; 3010 3011 CURVNET_SET(so->so_vnet); 3012 HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd); 3013 CURVNET_RESTORE(); 3014 3015 /* Ugly but needed, since hhooks return void for now */ 3016 return (hhook_data.status); 3017 } 3018 3019 /* 3020 * Perhaps this routine, and sooptcopyout(), below, ought to come in an 3021 * additional variant to handle the case where the option value needs to be 3022 * some kind of integer, but not a specific size. In addition to their use 3023 * here, these functions are also called by the protocol-level pr_ctloutput() 3024 * routines. 3025 */ 3026 int 3027 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen) 3028 { 3029 size_t valsize; 3030 3031 /* 3032 * If the user gives us more than we wanted, we ignore it, but if we 3033 * don't get the minimum length the caller wants, we return EINVAL. 3034 * On success, sopt->sopt_valsize is set to however much we actually 3035 * retrieved. 3036 */ 3037 if ((valsize = sopt->sopt_valsize) < minlen) 3038 return EINVAL; 3039 if (valsize > len) 3040 sopt->sopt_valsize = valsize = len; 3041 3042 if (sopt->sopt_td != NULL) 3043 return (copyin(sopt->sopt_val, buf, valsize)); 3044 3045 bcopy(sopt->sopt_val, buf, valsize); 3046 return (0); 3047 } 3048 3049 /* 3050 * Kernel version of setsockopt(2). 3051 * 3052 * XXX: optlen is size_t, not socklen_t 3053 */ 3054 int 3055 so_setsockopt(struct socket *so, int level, int optname, void *optval, 3056 size_t optlen) 3057 { 3058 struct sockopt sopt; 3059 3060 sopt.sopt_level = level; 3061 sopt.sopt_name = optname; 3062 sopt.sopt_dir = SOPT_SET; 3063 sopt.sopt_val = optval; 3064 sopt.sopt_valsize = optlen; 3065 sopt.sopt_td = NULL; 3066 return (sosetopt(so, &sopt)); 3067 } 3068 3069 int 3070 sosetopt(struct socket *so, struct sockopt *sopt) 3071 { 3072 int error, optval; 3073 struct linger l; 3074 struct timeval tv; 3075 sbintime_t val; 3076 uint32_t val32; 3077 #ifdef MAC 3078 struct mac extmac; 3079 #endif 3080 3081 CURVNET_SET(so->so_vnet); 3082 error = 0; 3083 if (sopt->sopt_level != SOL_SOCKET) { 3084 if (so->so_proto->pr_ctloutput != NULL) 3085 error = (*so->so_proto->pr_ctloutput)(so, sopt); 3086 else 3087 error = ENOPROTOOPT; 3088 } else { 3089 switch (sopt->sopt_name) { 3090 case SO_ACCEPTFILTER: 3091 error = accept_filt_setopt(so, sopt); 3092 if (error) 3093 goto bad; 3094 break; 3095 3096 case SO_LINGER: 3097 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 3098 if (error) 3099 goto bad; 3100 if (l.l_linger < 0 || 3101 l.l_linger > USHRT_MAX || 3102 l.l_linger > (INT_MAX / hz)) { 3103 error = EDOM; 3104 goto bad; 3105 } 3106 SOCK_LOCK(so); 3107 so->so_linger = l.l_linger; 3108 if (l.l_onoff) 3109 so->so_options |= SO_LINGER; 3110 else 3111 so->so_options &= ~SO_LINGER; 3112 SOCK_UNLOCK(so); 3113 break; 3114 3115 case SO_DEBUG: 3116 case SO_KEEPALIVE: 3117 case SO_DONTROUTE: 3118 case SO_USELOOPBACK: 3119 case SO_BROADCAST: 3120 case SO_REUSEADDR: 3121 case SO_REUSEPORT: 3122 case SO_REUSEPORT_LB: 3123 case SO_OOBINLINE: 3124 case SO_TIMESTAMP: 3125 case SO_BINTIME: 3126 case SO_NOSIGPIPE: 3127 case SO_NO_DDP: 3128 case SO_NO_OFFLOAD: 3129 case SO_RERROR: 3130 error = sooptcopyin(sopt, &optval, sizeof optval, 3131 sizeof optval); 3132 if (error) 3133 goto bad; 3134 SOCK_LOCK(so); 3135 if (optval) 3136 so->so_options |= sopt->sopt_name; 3137 else 3138 so->so_options &= ~sopt->sopt_name; 3139 SOCK_UNLOCK(so); 3140 break; 3141 3142 case SO_SETFIB: 3143 error = sooptcopyin(sopt, &optval, sizeof optval, 3144 sizeof optval); 3145 if (error) 3146 goto bad; 3147 3148 if (optval < 0 || optval >= rt_numfibs) { 3149 error = EINVAL; 3150 goto bad; 3151 } 3152 if (((so->so_proto->pr_domain->dom_family == PF_INET) || 3153 (so->so_proto->pr_domain->dom_family == PF_INET6) || 3154 (so->so_proto->pr_domain->dom_family == PF_ROUTE))) 3155 so->so_fibnum = optval; 3156 else 3157 so->so_fibnum = 0; 3158 break; 3159 3160 case SO_USER_COOKIE: 3161 error = sooptcopyin(sopt, &val32, sizeof val32, 3162 sizeof val32); 3163 if (error) 3164 goto bad; 3165 so->so_user_cookie = val32; 3166 break; 3167 3168 case SO_SNDBUF: 3169 case SO_RCVBUF: 3170 case SO_SNDLOWAT: 3171 case SO_RCVLOWAT: 3172 error = sooptcopyin(sopt, &optval, sizeof optval, 3173 sizeof optval); 3174 if (error) 3175 goto bad; 3176 3177 /* 3178 * Values < 1 make no sense for any of these options, 3179 * so disallow them. 3180 */ 3181 if (optval < 1) { 3182 error = EINVAL; 3183 goto bad; 3184 } 3185 3186 error = sbsetopt(so, sopt->sopt_name, optval); 3187 break; 3188 3189 case SO_SNDTIMEO: 3190 case SO_RCVTIMEO: 3191 #ifdef COMPAT_FREEBSD32 3192 if (SV_CURPROC_FLAG(SV_ILP32)) { 3193 struct timeval32 tv32; 3194 3195 error = sooptcopyin(sopt, &tv32, sizeof tv32, 3196 sizeof tv32); 3197 CP(tv32, tv, tv_sec); 3198 CP(tv32, tv, tv_usec); 3199 } else 3200 #endif 3201 error = sooptcopyin(sopt, &tv, sizeof tv, 3202 sizeof tv); 3203 if (error) 3204 goto bad; 3205 if (tv.tv_sec < 0 || tv.tv_usec < 0 || 3206 tv.tv_usec >= 1000000) { 3207 error = EDOM; 3208 goto bad; 3209 } 3210 if (tv.tv_sec > INT32_MAX) 3211 val = SBT_MAX; 3212 else 3213 val = tvtosbt(tv); 3214 switch (sopt->sopt_name) { 3215 case SO_SNDTIMEO: 3216 so->so_snd.sb_timeo = val; 3217 break; 3218 case SO_RCVTIMEO: 3219 so->so_rcv.sb_timeo = val; 3220 break; 3221 } 3222 break; 3223 3224 case SO_LABEL: 3225 #ifdef MAC 3226 error = sooptcopyin(sopt, &extmac, sizeof extmac, 3227 sizeof extmac); 3228 if (error) 3229 goto bad; 3230 error = mac_setsockopt_label(sopt->sopt_td->td_ucred, 3231 so, &extmac); 3232 #else 3233 error = EOPNOTSUPP; 3234 #endif 3235 break; 3236 3237 case SO_TS_CLOCK: 3238 error = sooptcopyin(sopt, &optval, sizeof optval, 3239 sizeof optval); 3240 if (error) 3241 goto bad; 3242 if (optval < 0 || optval > SO_TS_CLOCK_MAX) { 3243 error = EINVAL; 3244 goto bad; 3245 } 3246 so->so_ts_clock = optval; 3247 break; 3248 3249 case SO_MAX_PACING_RATE: 3250 error = sooptcopyin(sopt, &val32, sizeof(val32), 3251 sizeof(val32)); 3252 if (error) 3253 goto bad; 3254 so->so_max_pacing_rate = val32; 3255 break; 3256 3257 default: 3258 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 3259 error = hhook_run_socket(so, sopt, 3260 HHOOK_SOCKET_OPT); 3261 else 3262 error = ENOPROTOOPT; 3263 break; 3264 } 3265 if (error == 0 && so->so_proto->pr_ctloutput != NULL) 3266 (void)(*so->so_proto->pr_ctloutput)(so, sopt); 3267 } 3268 bad: 3269 CURVNET_RESTORE(); 3270 return (error); 3271 } 3272 3273 /* 3274 * Helper routine for getsockopt. 3275 */ 3276 int 3277 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 3278 { 3279 int error; 3280 size_t valsize; 3281 3282 error = 0; 3283 3284 /* 3285 * Documented get behavior is that we always return a value, possibly 3286 * truncated to fit in the user's buffer. Traditional behavior is 3287 * that we always tell the user precisely how much we copied, rather 3288 * than something useful like the total amount we had available for 3289 * her. Note that this interface is not idempotent; the entire 3290 * answer must be generated ahead of time. 3291 */ 3292 valsize = min(len, sopt->sopt_valsize); 3293 sopt->sopt_valsize = valsize; 3294 if (sopt->sopt_val != NULL) { 3295 if (sopt->sopt_td != NULL) 3296 error = copyout(buf, sopt->sopt_val, valsize); 3297 else 3298 bcopy(buf, sopt->sopt_val, valsize); 3299 } 3300 return (error); 3301 } 3302 3303 int 3304 sogetopt(struct socket *so, struct sockopt *sopt) 3305 { 3306 int error, optval; 3307 struct linger l; 3308 struct timeval tv; 3309 #ifdef MAC 3310 struct mac extmac; 3311 #endif 3312 3313 CURVNET_SET(so->so_vnet); 3314 error = 0; 3315 if (sopt->sopt_level != SOL_SOCKET) { 3316 if (so->so_proto->pr_ctloutput != NULL) 3317 error = (*so->so_proto->pr_ctloutput)(so, sopt); 3318 else 3319 error = ENOPROTOOPT; 3320 CURVNET_RESTORE(); 3321 return (error); 3322 } else { 3323 switch (sopt->sopt_name) { 3324 case SO_ACCEPTFILTER: 3325 error = accept_filt_getopt(so, sopt); 3326 break; 3327 3328 case SO_LINGER: 3329 SOCK_LOCK(so); 3330 l.l_onoff = so->so_options & SO_LINGER; 3331 l.l_linger = so->so_linger; 3332 SOCK_UNLOCK(so); 3333 error = sooptcopyout(sopt, &l, sizeof l); 3334 break; 3335 3336 case SO_USELOOPBACK: 3337 case SO_DONTROUTE: 3338 case SO_DEBUG: 3339 case SO_KEEPALIVE: 3340 case SO_REUSEADDR: 3341 case SO_REUSEPORT: 3342 case SO_REUSEPORT_LB: 3343 case SO_BROADCAST: 3344 case SO_OOBINLINE: 3345 case SO_ACCEPTCONN: 3346 case SO_TIMESTAMP: 3347 case SO_BINTIME: 3348 case SO_NOSIGPIPE: 3349 case SO_NO_DDP: 3350 case SO_NO_OFFLOAD: 3351 case SO_RERROR: 3352 optval = so->so_options & sopt->sopt_name; 3353 integer: 3354 error = sooptcopyout(sopt, &optval, sizeof optval); 3355 break; 3356 3357 case SO_DOMAIN: 3358 optval = so->so_proto->pr_domain->dom_family; 3359 goto integer; 3360 3361 case SO_TYPE: 3362 optval = so->so_type; 3363 goto integer; 3364 3365 case SO_PROTOCOL: 3366 optval = so->so_proto->pr_protocol; 3367 goto integer; 3368 3369 case SO_ERROR: 3370 SOCK_LOCK(so); 3371 if (so->so_error) { 3372 optval = so->so_error; 3373 so->so_error = 0; 3374 } else { 3375 optval = so->so_rerror; 3376 so->so_rerror = 0; 3377 } 3378 SOCK_UNLOCK(so); 3379 goto integer; 3380 3381 case SO_SNDBUF: 3382 optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat : 3383 so->so_snd.sb_hiwat; 3384 goto integer; 3385 3386 case SO_RCVBUF: 3387 optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat : 3388 so->so_rcv.sb_hiwat; 3389 goto integer; 3390 3391 case SO_SNDLOWAT: 3392 optval = SOLISTENING(so) ? so->sol_sbsnd_lowat : 3393 so->so_snd.sb_lowat; 3394 goto integer; 3395 3396 case SO_RCVLOWAT: 3397 optval = SOLISTENING(so) ? so->sol_sbrcv_lowat : 3398 so->so_rcv.sb_lowat; 3399 goto integer; 3400 3401 case SO_SNDTIMEO: 3402 case SO_RCVTIMEO: 3403 tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ? 3404 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 3405 #ifdef COMPAT_FREEBSD32 3406 if (SV_CURPROC_FLAG(SV_ILP32)) { 3407 struct timeval32 tv32; 3408 3409 CP(tv, tv32, tv_sec); 3410 CP(tv, tv32, tv_usec); 3411 error = sooptcopyout(sopt, &tv32, sizeof tv32); 3412 } else 3413 #endif 3414 error = sooptcopyout(sopt, &tv, sizeof tv); 3415 break; 3416 3417 case SO_LABEL: 3418 #ifdef MAC 3419 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 3420 sizeof(extmac)); 3421 if (error) 3422 goto bad; 3423 error = mac_getsockopt_label(sopt->sopt_td->td_ucred, 3424 so, &extmac); 3425 if (error) 3426 goto bad; 3427 error = sooptcopyout(sopt, &extmac, sizeof extmac); 3428 #else 3429 error = EOPNOTSUPP; 3430 #endif 3431 break; 3432 3433 case SO_PEERLABEL: 3434 #ifdef MAC 3435 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 3436 sizeof(extmac)); 3437 if (error) 3438 goto bad; 3439 error = mac_getsockopt_peerlabel( 3440 sopt->sopt_td->td_ucred, so, &extmac); 3441 if (error) 3442 goto bad; 3443 error = sooptcopyout(sopt, &extmac, sizeof extmac); 3444 #else 3445 error = EOPNOTSUPP; 3446 #endif 3447 break; 3448 3449 case SO_LISTENQLIMIT: 3450 optval = SOLISTENING(so) ? so->sol_qlimit : 0; 3451 goto integer; 3452 3453 case SO_LISTENQLEN: 3454 optval = SOLISTENING(so) ? so->sol_qlen : 0; 3455 goto integer; 3456 3457 case SO_LISTENINCQLEN: 3458 optval = SOLISTENING(so) ? so->sol_incqlen : 0; 3459 goto integer; 3460 3461 case SO_TS_CLOCK: 3462 optval = so->so_ts_clock; 3463 goto integer; 3464 3465 case SO_MAX_PACING_RATE: 3466 optval = so->so_max_pacing_rate; 3467 goto integer; 3468 3469 default: 3470 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 3471 error = hhook_run_socket(so, sopt, 3472 HHOOK_SOCKET_OPT); 3473 else 3474 error = ENOPROTOOPT; 3475 break; 3476 } 3477 } 3478 #ifdef MAC 3479 bad: 3480 #endif 3481 CURVNET_RESTORE(); 3482 return (error); 3483 } 3484 3485 int 3486 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 3487 { 3488 struct mbuf *m, *m_prev; 3489 int sopt_size = sopt->sopt_valsize; 3490 3491 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 3492 if (m == NULL) 3493 return ENOBUFS; 3494 if (sopt_size > MLEN) { 3495 MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT); 3496 if ((m->m_flags & M_EXT) == 0) { 3497 m_free(m); 3498 return ENOBUFS; 3499 } 3500 m->m_len = min(MCLBYTES, sopt_size); 3501 } else { 3502 m->m_len = min(MLEN, sopt_size); 3503 } 3504 sopt_size -= m->m_len; 3505 *mp = m; 3506 m_prev = m; 3507 3508 while (sopt_size) { 3509 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 3510 if (m == NULL) { 3511 m_freem(*mp); 3512 return ENOBUFS; 3513 } 3514 if (sopt_size > MLEN) { 3515 MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK : 3516 M_NOWAIT); 3517 if ((m->m_flags & M_EXT) == 0) { 3518 m_freem(m); 3519 m_freem(*mp); 3520 return ENOBUFS; 3521 } 3522 m->m_len = min(MCLBYTES, sopt_size); 3523 } else { 3524 m->m_len = min(MLEN, sopt_size); 3525 } 3526 sopt_size -= m->m_len; 3527 m_prev->m_next = m; 3528 m_prev = m; 3529 } 3530 return (0); 3531 } 3532 3533 int 3534 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 3535 { 3536 struct mbuf *m0 = m; 3537 3538 if (sopt->sopt_val == NULL) 3539 return (0); 3540 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 3541 if (sopt->sopt_td != NULL) { 3542 int error; 3543 3544 error = copyin(sopt->sopt_val, mtod(m, char *), 3545 m->m_len); 3546 if (error != 0) { 3547 m_freem(m0); 3548 return(error); 3549 } 3550 } else 3551 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 3552 sopt->sopt_valsize -= m->m_len; 3553 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 3554 m = m->m_next; 3555 } 3556 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 3557 panic("ip6_sooptmcopyin"); 3558 return (0); 3559 } 3560 3561 int 3562 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 3563 { 3564 struct mbuf *m0 = m; 3565 size_t valsize = 0; 3566 3567 if (sopt->sopt_val == NULL) 3568 return (0); 3569 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 3570 if (sopt->sopt_td != NULL) { 3571 int error; 3572 3573 error = copyout(mtod(m, char *), sopt->sopt_val, 3574 m->m_len); 3575 if (error != 0) { 3576 m_freem(m0); 3577 return(error); 3578 } 3579 } else 3580 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 3581 sopt->sopt_valsize -= m->m_len; 3582 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 3583 valsize += m->m_len; 3584 m = m->m_next; 3585 } 3586 if (m != NULL) { 3587 /* enough soopt buffer should be given from user-land */ 3588 m_freem(m0); 3589 return(EINVAL); 3590 } 3591 sopt->sopt_valsize = valsize; 3592 return (0); 3593 } 3594 3595 /* 3596 * sohasoutofband(): protocol notifies socket layer of the arrival of new 3597 * out-of-band data, which will then notify socket consumers. 3598 */ 3599 void 3600 sohasoutofband(struct socket *so) 3601 { 3602 3603 if (so->so_sigio != NULL) 3604 pgsigio(&so->so_sigio, SIGURG, 0); 3605 selwakeuppri(&so->so_rdsel, PSOCK); 3606 } 3607 3608 int 3609 sopoll(struct socket *so, int events, struct ucred *active_cred, 3610 struct thread *td) 3611 { 3612 3613 /* 3614 * We do not need to set or assert curvnet as long as everyone uses 3615 * sopoll_generic(). 3616 */ 3617 return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred, 3618 td)); 3619 } 3620 3621 int 3622 sopoll_generic(struct socket *so, int events, struct ucred *active_cred, 3623 struct thread *td) 3624 { 3625 int revents; 3626 3627 SOCK_LOCK(so); 3628 if (SOLISTENING(so)) { 3629 if (!(events & (POLLIN | POLLRDNORM))) 3630 revents = 0; 3631 else if (!TAILQ_EMPTY(&so->sol_comp)) 3632 revents = events & (POLLIN | POLLRDNORM); 3633 else if ((events & POLLINIGNEOF) == 0 && so->so_error) 3634 revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP; 3635 else { 3636 selrecord(td, &so->so_rdsel); 3637 revents = 0; 3638 } 3639 } else { 3640 revents = 0; 3641 SOCKBUF_LOCK(&so->so_snd); 3642 SOCKBUF_LOCK(&so->so_rcv); 3643 if (events & (POLLIN | POLLRDNORM)) 3644 if (soreadabledata(so)) 3645 revents |= events & (POLLIN | POLLRDNORM); 3646 if (events & (POLLOUT | POLLWRNORM)) 3647 if (sowriteable(so)) 3648 revents |= events & (POLLOUT | POLLWRNORM); 3649 if (events & (POLLPRI | POLLRDBAND)) 3650 if (so->so_oobmark || 3651 (so->so_rcv.sb_state & SBS_RCVATMARK)) 3652 revents |= events & (POLLPRI | POLLRDBAND); 3653 if ((events & POLLINIGNEOF) == 0) { 3654 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3655 revents |= events & (POLLIN | POLLRDNORM); 3656 if (so->so_snd.sb_state & SBS_CANTSENDMORE) 3657 revents |= POLLHUP; 3658 } 3659 } 3660 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) 3661 revents |= events & POLLRDHUP; 3662 if (revents == 0) { 3663 if (events & 3664 (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND | POLLRDHUP)) { 3665 selrecord(td, &so->so_rdsel); 3666 so->so_rcv.sb_flags |= SB_SEL; 3667 } 3668 if (events & (POLLOUT | POLLWRNORM)) { 3669 selrecord(td, &so->so_wrsel); 3670 so->so_snd.sb_flags |= SB_SEL; 3671 } 3672 } 3673 SOCKBUF_UNLOCK(&so->so_rcv); 3674 SOCKBUF_UNLOCK(&so->so_snd); 3675 } 3676 SOCK_UNLOCK(so); 3677 return (revents); 3678 } 3679 3680 int 3681 soo_kqfilter(struct file *fp, struct knote *kn) 3682 { 3683 struct socket *so = kn->kn_fp->f_data; 3684 struct sockbuf *sb; 3685 struct knlist *knl; 3686 3687 switch (kn->kn_filter) { 3688 case EVFILT_READ: 3689 kn->kn_fop = &soread_filtops; 3690 knl = &so->so_rdsel.si_note; 3691 sb = &so->so_rcv; 3692 break; 3693 case EVFILT_WRITE: 3694 kn->kn_fop = &sowrite_filtops; 3695 knl = &so->so_wrsel.si_note; 3696 sb = &so->so_snd; 3697 break; 3698 case EVFILT_EMPTY: 3699 kn->kn_fop = &soempty_filtops; 3700 knl = &so->so_wrsel.si_note; 3701 sb = &so->so_snd; 3702 break; 3703 default: 3704 return (EINVAL); 3705 } 3706 3707 SOCK_LOCK(so); 3708 if (SOLISTENING(so)) { 3709 knlist_add(knl, kn, 1); 3710 } else { 3711 SOCKBUF_LOCK(sb); 3712 knlist_add(knl, kn, 1); 3713 sb->sb_flags |= SB_KNOTE; 3714 SOCKBUF_UNLOCK(sb); 3715 } 3716 SOCK_UNLOCK(so); 3717 return (0); 3718 } 3719 3720 /* 3721 * Some routines that return EOPNOTSUPP for entry points that are not 3722 * supported by a protocol. Fill in as needed. 3723 */ 3724 int 3725 pru_accept_notsupp(struct socket *so, struct sockaddr **nam) 3726 { 3727 3728 return EOPNOTSUPP; 3729 } 3730 3731 int 3732 pru_aio_queue_notsupp(struct socket *so, struct kaiocb *job) 3733 { 3734 3735 return EOPNOTSUPP; 3736 } 3737 3738 int 3739 pru_attach_notsupp(struct socket *so, int proto, struct thread *td) 3740 { 3741 3742 return EOPNOTSUPP; 3743 } 3744 3745 int 3746 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 3747 { 3748 3749 return EOPNOTSUPP; 3750 } 3751 3752 int 3753 pru_bindat_notsupp(int fd, struct socket *so, struct sockaddr *nam, 3754 struct thread *td) 3755 { 3756 3757 return EOPNOTSUPP; 3758 } 3759 3760 int 3761 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 3762 { 3763 3764 return EOPNOTSUPP; 3765 } 3766 3767 int 3768 pru_connectat_notsupp(int fd, struct socket *so, struct sockaddr *nam, 3769 struct thread *td) 3770 { 3771 3772 return EOPNOTSUPP; 3773 } 3774 3775 int 3776 pru_connect2_notsupp(struct socket *so1, struct socket *so2) 3777 { 3778 3779 return EOPNOTSUPP; 3780 } 3781 3782 int 3783 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, 3784 struct ifnet *ifp, struct thread *td) 3785 { 3786 3787 return EOPNOTSUPP; 3788 } 3789 3790 int 3791 pru_disconnect_notsupp(struct socket *so) 3792 { 3793 3794 return EOPNOTSUPP; 3795 } 3796 3797 int 3798 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td) 3799 { 3800 3801 return EOPNOTSUPP; 3802 } 3803 3804 int 3805 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam) 3806 { 3807 3808 return EOPNOTSUPP; 3809 } 3810 3811 int 3812 pru_rcvd_notsupp(struct socket *so, int flags) 3813 { 3814 3815 return EOPNOTSUPP; 3816 } 3817 3818 int 3819 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) 3820 { 3821 3822 return EOPNOTSUPP; 3823 } 3824 3825 int 3826 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m, 3827 struct sockaddr *addr, struct mbuf *control, struct thread *td) 3828 { 3829 3830 if (control != NULL) 3831 m_freem(control); 3832 if ((flags & PRUS_NOTREADY) == 0) 3833 m_freem(m); 3834 return (EOPNOTSUPP); 3835 } 3836 3837 int 3838 pru_ready_notsupp(struct socket *so, struct mbuf *m, int count) 3839 { 3840 3841 return (EOPNOTSUPP); 3842 } 3843 3844 /* 3845 * This isn't really a ``null'' operation, but it's the default one and 3846 * doesn't do anything destructive. 3847 */ 3848 int 3849 pru_sense_null(struct socket *so, struct stat *sb) 3850 { 3851 3852 sb->st_blksize = so->so_snd.sb_hiwat; 3853 return 0; 3854 } 3855 3856 int 3857 pru_shutdown_notsupp(struct socket *so) 3858 { 3859 3860 return EOPNOTSUPP; 3861 } 3862 3863 int 3864 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam) 3865 { 3866 3867 return EOPNOTSUPP; 3868 } 3869 3870 int 3871 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio, 3872 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 3873 { 3874 3875 return EOPNOTSUPP; 3876 } 3877 3878 int 3879 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr, 3880 struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 3881 { 3882 3883 return EOPNOTSUPP; 3884 } 3885 3886 int 3887 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred, 3888 struct thread *td) 3889 { 3890 3891 return EOPNOTSUPP; 3892 } 3893 3894 static void 3895 filt_sordetach(struct knote *kn) 3896 { 3897 struct socket *so = kn->kn_fp->f_data; 3898 3899 so_rdknl_lock(so); 3900 knlist_remove(&so->so_rdsel.si_note, kn, 1); 3901 if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note)) 3902 so->so_rcv.sb_flags &= ~SB_KNOTE; 3903 so_rdknl_unlock(so); 3904 } 3905 3906 /*ARGSUSED*/ 3907 static int 3908 filt_soread(struct knote *kn, long hint) 3909 { 3910 struct socket *so; 3911 3912 so = kn->kn_fp->f_data; 3913 3914 if (SOLISTENING(so)) { 3915 SOCK_LOCK_ASSERT(so); 3916 kn->kn_data = so->sol_qlen; 3917 if (so->so_error) { 3918 kn->kn_flags |= EV_EOF; 3919 kn->kn_fflags = so->so_error; 3920 return (1); 3921 } 3922 return (!TAILQ_EMPTY(&so->sol_comp)); 3923 } 3924 3925 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 3926 3927 kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl; 3928 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3929 kn->kn_flags |= EV_EOF; 3930 kn->kn_fflags = so->so_error; 3931 return (1); 3932 } else if (so->so_error || so->so_rerror) 3933 return (1); 3934 3935 if (kn->kn_sfflags & NOTE_LOWAT) { 3936 if (kn->kn_data >= kn->kn_sdata) 3937 return (1); 3938 } else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat) 3939 return (1); 3940 3941 /* This hook returning non-zero indicates an event, not error */ 3942 return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD)); 3943 } 3944 3945 static void 3946 filt_sowdetach(struct knote *kn) 3947 { 3948 struct socket *so = kn->kn_fp->f_data; 3949 3950 so_wrknl_lock(so); 3951 knlist_remove(&so->so_wrsel.si_note, kn, 1); 3952 if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note)) 3953 so->so_snd.sb_flags &= ~SB_KNOTE; 3954 so_wrknl_unlock(so); 3955 } 3956 3957 /*ARGSUSED*/ 3958 static int 3959 filt_sowrite(struct knote *kn, long hint) 3960 { 3961 struct socket *so; 3962 3963 so = kn->kn_fp->f_data; 3964 3965 if (SOLISTENING(so)) 3966 return (0); 3967 3968 SOCKBUF_LOCK_ASSERT(&so->so_snd); 3969 kn->kn_data = sbspace(&so->so_snd); 3970 3971 hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE); 3972 3973 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 3974 kn->kn_flags |= EV_EOF; 3975 kn->kn_fflags = so->so_error; 3976 return (1); 3977 } else if (so->so_error) /* temporary udp error */ 3978 return (1); 3979 else if (((so->so_state & SS_ISCONNECTED) == 0) && 3980 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 3981 return (0); 3982 else if (kn->kn_sfflags & NOTE_LOWAT) 3983 return (kn->kn_data >= kn->kn_sdata); 3984 else 3985 return (kn->kn_data >= so->so_snd.sb_lowat); 3986 } 3987 3988 static int 3989 filt_soempty(struct knote *kn, long hint) 3990 { 3991 struct socket *so; 3992 3993 so = kn->kn_fp->f_data; 3994 3995 if (SOLISTENING(so)) 3996 return (1); 3997 3998 SOCKBUF_LOCK_ASSERT(&so->so_snd); 3999 kn->kn_data = sbused(&so->so_snd); 4000 4001 if (kn->kn_data == 0) 4002 return (1); 4003 else 4004 return (0); 4005 } 4006 4007 int 4008 socheckuid(struct socket *so, uid_t uid) 4009 { 4010 4011 if (so == NULL) 4012 return (EPERM); 4013 if (so->so_cred->cr_uid != uid) 4014 return (EPERM); 4015 return (0); 4016 } 4017 4018 /* 4019 * These functions are used by protocols to notify the socket layer (and its 4020 * consumers) of state changes in the sockets driven by protocol-side events. 4021 */ 4022 4023 /* 4024 * Procedures to manipulate state flags of socket and do appropriate wakeups. 4025 * 4026 * Normal sequence from the active (originating) side is that 4027 * soisconnecting() is called during processing of connect() call, resulting 4028 * in an eventual call to soisconnected() if/when the connection is 4029 * established. When the connection is torn down soisdisconnecting() is 4030 * called during processing of disconnect() call, and soisdisconnected() is 4031 * called when the connection to the peer is totally severed. The semantics 4032 * of these routines are such that connectionless protocols can call 4033 * soisconnected() and soisdisconnected() only, bypassing the in-progress 4034 * calls when setting up a ``connection'' takes no time. 4035 * 4036 * From the passive side, a socket is created with two queues of sockets: 4037 * so_incomp for connections in progress and so_comp for connections already 4038 * made and awaiting user acceptance. As a protocol is preparing incoming 4039 * connections, it creates a socket structure queued on so_incomp by calling 4040 * sonewconn(). When the connection is established, soisconnected() is 4041 * called, and transfers the socket structure to so_comp, making it available 4042 * to accept(). 4043 * 4044 * If a socket is closed with sockets on either so_incomp or so_comp, these 4045 * sockets are dropped. 4046 * 4047 * If higher-level protocols are implemented in the kernel, the wakeups done 4048 * here will sometimes cause software-interrupt process scheduling. 4049 */ 4050 void 4051 soisconnecting(struct socket *so) 4052 { 4053 4054 SOCK_LOCK(so); 4055 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 4056 so->so_state |= SS_ISCONNECTING; 4057 SOCK_UNLOCK(so); 4058 } 4059 4060 void 4061 soisconnected(struct socket *so) 4062 { 4063 bool last __diagused; 4064 4065 SOCK_LOCK(so); 4066 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 4067 so->so_state |= SS_ISCONNECTED; 4068 4069 if (so->so_qstate == SQ_INCOMP) { 4070 struct socket *head = so->so_listen; 4071 int ret; 4072 4073 KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so)); 4074 /* 4075 * Promoting a socket from incomplete queue to complete, we 4076 * need to go through reverse order of locking. We first do 4077 * trylock, and if that doesn't succeed, we go the hard way 4078 * leaving a reference and rechecking consistency after proper 4079 * locking. 4080 */ 4081 if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) { 4082 soref(head); 4083 SOCK_UNLOCK(so); 4084 SOLISTEN_LOCK(head); 4085 SOCK_LOCK(so); 4086 if (__predict_false(head != so->so_listen)) { 4087 /* 4088 * The socket went off the listen queue, 4089 * should be lost race to close(2) of sol. 4090 * The socket is about to soabort(). 4091 */ 4092 SOCK_UNLOCK(so); 4093 sorele_locked(head); 4094 return; 4095 } 4096 last = refcount_release(&head->so_count); 4097 KASSERT(!last, ("%s: released last reference for %p", 4098 __func__, head)); 4099 } 4100 again: 4101 if ((so->so_options & SO_ACCEPTFILTER) == 0) { 4102 TAILQ_REMOVE(&head->sol_incomp, so, so_list); 4103 head->sol_incqlen--; 4104 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 4105 head->sol_qlen++; 4106 so->so_qstate = SQ_COMP; 4107 SOCK_UNLOCK(so); 4108 solisten_wakeup(head); /* unlocks */ 4109 } else { 4110 SOCKBUF_LOCK(&so->so_rcv); 4111 soupcall_set(so, SO_RCV, 4112 head->sol_accept_filter->accf_callback, 4113 head->sol_accept_filter_arg); 4114 so->so_options &= ~SO_ACCEPTFILTER; 4115 ret = head->sol_accept_filter->accf_callback(so, 4116 head->sol_accept_filter_arg, M_NOWAIT); 4117 if (ret == SU_ISCONNECTED) { 4118 soupcall_clear(so, SO_RCV); 4119 SOCKBUF_UNLOCK(&so->so_rcv); 4120 goto again; 4121 } 4122 SOCKBUF_UNLOCK(&so->so_rcv); 4123 SOCK_UNLOCK(so); 4124 SOLISTEN_UNLOCK(head); 4125 } 4126 return; 4127 } 4128 SOCK_UNLOCK(so); 4129 wakeup(&so->so_timeo); 4130 sorwakeup(so); 4131 sowwakeup(so); 4132 } 4133 4134 void 4135 soisdisconnecting(struct socket *so) 4136 { 4137 4138 SOCK_LOCK(so); 4139 so->so_state &= ~SS_ISCONNECTING; 4140 so->so_state |= SS_ISDISCONNECTING; 4141 4142 if (!SOLISTENING(so)) { 4143 SOCKBUF_LOCK(&so->so_rcv); 4144 socantrcvmore_locked(so); 4145 SOCKBUF_LOCK(&so->so_snd); 4146 socantsendmore_locked(so); 4147 } 4148 SOCK_UNLOCK(so); 4149 wakeup(&so->so_timeo); 4150 } 4151 4152 void 4153 soisdisconnected(struct socket *so) 4154 { 4155 4156 SOCK_LOCK(so); 4157 4158 /* 4159 * There is at least one reader of so_state that does not 4160 * acquire socket lock, namely soreceive_generic(). Ensure 4161 * that it never sees all flags that track connection status 4162 * cleared, by ordering the update with a barrier semantic of 4163 * our release thread fence. 4164 */ 4165 so->so_state |= SS_ISDISCONNECTED; 4166 atomic_thread_fence_rel(); 4167 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 4168 4169 if (!SOLISTENING(so)) { 4170 SOCK_UNLOCK(so); 4171 SOCKBUF_LOCK(&so->so_rcv); 4172 socantrcvmore_locked(so); 4173 SOCKBUF_LOCK(&so->so_snd); 4174 sbdrop_locked(&so->so_snd, sbused(&so->so_snd)); 4175 socantsendmore_locked(so); 4176 } else 4177 SOCK_UNLOCK(so); 4178 wakeup(&so->so_timeo); 4179 } 4180 4181 int 4182 soiolock(struct socket *so, struct sx *sx, int flags) 4183 { 4184 int error; 4185 4186 KASSERT((flags & SBL_VALID) == flags, 4187 ("soiolock: invalid flags %#x", flags)); 4188 4189 if ((flags & SBL_WAIT) != 0) { 4190 if ((flags & SBL_NOINTR) != 0) { 4191 sx_xlock(sx); 4192 } else { 4193 error = sx_xlock_sig(sx); 4194 if (error != 0) 4195 return (error); 4196 } 4197 } else if (!sx_try_xlock(sx)) { 4198 return (EWOULDBLOCK); 4199 } 4200 4201 if (__predict_false(SOLISTENING(so))) { 4202 sx_xunlock(sx); 4203 return (ENOTCONN); 4204 } 4205 return (0); 4206 } 4207 4208 void 4209 soiounlock(struct sx *sx) 4210 { 4211 sx_xunlock(sx); 4212 } 4213 4214 /* 4215 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 4216 */ 4217 struct sockaddr * 4218 sodupsockaddr(const struct sockaddr *sa, int mflags) 4219 { 4220 struct sockaddr *sa2; 4221 4222 sa2 = malloc(sa->sa_len, M_SONAME, mflags); 4223 if (sa2) 4224 bcopy(sa, sa2, sa->sa_len); 4225 return sa2; 4226 } 4227 4228 /* 4229 * Register per-socket destructor. 4230 */ 4231 void 4232 sodtor_set(struct socket *so, so_dtor_t *func) 4233 { 4234 4235 SOCK_LOCK_ASSERT(so); 4236 so->so_dtor = func; 4237 } 4238 4239 /* 4240 * Register per-socket buffer upcalls. 4241 */ 4242 void 4243 soupcall_set(struct socket *so, int which, so_upcall_t func, void *arg) 4244 { 4245 struct sockbuf *sb; 4246 4247 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 4248 4249 switch (which) { 4250 case SO_RCV: 4251 sb = &so->so_rcv; 4252 break; 4253 case SO_SND: 4254 sb = &so->so_snd; 4255 break; 4256 default: 4257 panic("soupcall_set: bad which"); 4258 } 4259 SOCKBUF_LOCK_ASSERT(sb); 4260 sb->sb_upcall = func; 4261 sb->sb_upcallarg = arg; 4262 sb->sb_flags |= SB_UPCALL; 4263 } 4264 4265 void 4266 soupcall_clear(struct socket *so, int which) 4267 { 4268 struct sockbuf *sb; 4269 4270 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 4271 4272 switch (which) { 4273 case SO_RCV: 4274 sb = &so->so_rcv; 4275 break; 4276 case SO_SND: 4277 sb = &so->so_snd; 4278 break; 4279 default: 4280 panic("soupcall_clear: bad which"); 4281 } 4282 SOCKBUF_LOCK_ASSERT(sb); 4283 KASSERT(sb->sb_upcall != NULL, 4284 ("%s: so %p no upcall to clear", __func__, so)); 4285 sb->sb_upcall = NULL; 4286 sb->sb_upcallarg = NULL; 4287 sb->sb_flags &= ~SB_UPCALL; 4288 } 4289 4290 void 4291 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg) 4292 { 4293 4294 SOLISTEN_LOCK_ASSERT(so); 4295 so->sol_upcall = func; 4296 so->sol_upcallarg = arg; 4297 } 4298 4299 static void 4300 so_rdknl_lock(void *arg) 4301 { 4302 struct socket *so = arg; 4303 4304 if (SOLISTENING(so)) 4305 SOCK_LOCK(so); 4306 else 4307 SOCKBUF_LOCK(&so->so_rcv); 4308 } 4309 4310 static void 4311 so_rdknl_unlock(void *arg) 4312 { 4313 struct socket *so = arg; 4314 4315 if (SOLISTENING(so)) 4316 SOCK_UNLOCK(so); 4317 else 4318 SOCKBUF_UNLOCK(&so->so_rcv); 4319 } 4320 4321 static void 4322 so_rdknl_assert_lock(void *arg, int what) 4323 { 4324 struct socket *so = arg; 4325 4326 if (what == LA_LOCKED) { 4327 if (SOLISTENING(so)) 4328 SOCK_LOCK_ASSERT(so); 4329 else 4330 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 4331 } else { 4332 if (SOLISTENING(so)) 4333 SOCK_UNLOCK_ASSERT(so); 4334 else 4335 SOCKBUF_UNLOCK_ASSERT(&so->so_rcv); 4336 } 4337 } 4338 4339 static void 4340 so_wrknl_lock(void *arg) 4341 { 4342 struct socket *so = arg; 4343 4344 if (SOLISTENING(so)) 4345 SOCK_LOCK(so); 4346 else 4347 SOCKBUF_LOCK(&so->so_snd); 4348 } 4349 4350 static void 4351 so_wrknl_unlock(void *arg) 4352 { 4353 struct socket *so = arg; 4354 4355 if (SOLISTENING(so)) 4356 SOCK_UNLOCK(so); 4357 else 4358 SOCKBUF_UNLOCK(&so->so_snd); 4359 } 4360 4361 static void 4362 so_wrknl_assert_lock(void *arg, int what) 4363 { 4364 struct socket *so = arg; 4365 4366 if (what == LA_LOCKED) { 4367 if (SOLISTENING(so)) 4368 SOCK_LOCK_ASSERT(so); 4369 else 4370 SOCKBUF_LOCK_ASSERT(&so->so_snd); 4371 } else { 4372 if (SOLISTENING(so)) 4373 SOCK_UNLOCK_ASSERT(so); 4374 else 4375 SOCKBUF_UNLOCK_ASSERT(&so->so_snd); 4376 } 4377 } 4378 4379 /* 4380 * Create an external-format (``xsocket'') structure using the information in 4381 * the kernel-format socket structure pointed to by so. This is done to 4382 * reduce the spew of irrelevant information over this interface, to isolate 4383 * user code from changes in the kernel structure, and potentially to provide 4384 * information-hiding if we decide that some of this information should be 4385 * hidden from users. 4386 */ 4387 void 4388 sotoxsocket(struct socket *so, struct xsocket *xso) 4389 { 4390 4391 bzero(xso, sizeof(*xso)); 4392 xso->xso_len = sizeof *xso; 4393 xso->xso_so = (uintptr_t)so; 4394 xso->so_type = so->so_type; 4395 xso->so_options = so->so_options; 4396 xso->so_linger = so->so_linger; 4397 xso->so_state = so->so_state; 4398 xso->so_pcb = (uintptr_t)so->so_pcb; 4399 xso->xso_protocol = so->so_proto->pr_protocol; 4400 xso->xso_family = so->so_proto->pr_domain->dom_family; 4401 xso->so_timeo = so->so_timeo; 4402 xso->so_error = so->so_error; 4403 xso->so_uid = so->so_cred->cr_uid; 4404 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 4405 if (SOLISTENING(so)) { 4406 xso->so_qlen = so->sol_qlen; 4407 xso->so_incqlen = so->sol_incqlen; 4408 xso->so_qlimit = so->sol_qlimit; 4409 xso->so_oobmark = 0; 4410 } else { 4411 xso->so_state |= so->so_qstate; 4412 xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0; 4413 xso->so_oobmark = so->so_oobmark; 4414 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 4415 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 4416 } 4417 } 4418 4419 struct sockbuf * 4420 so_sockbuf_rcv(struct socket *so) 4421 { 4422 4423 return (&so->so_rcv); 4424 } 4425 4426 struct sockbuf * 4427 so_sockbuf_snd(struct socket *so) 4428 { 4429 4430 return (&so->so_snd); 4431 } 4432 4433 int 4434 so_state_get(const struct socket *so) 4435 { 4436 4437 return (so->so_state); 4438 } 4439 4440 void 4441 so_state_set(struct socket *so, int val) 4442 { 4443 4444 so->so_state = val; 4445 } 4446 4447 int 4448 so_options_get(const struct socket *so) 4449 { 4450 4451 return (so->so_options); 4452 } 4453 4454 void 4455 so_options_set(struct socket *so, int val) 4456 { 4457 4458 so->so_options = val; 4459 } 4460 4461 int 4462 so_error_get(const struct socket *so) 4463 { 4464 4465 return (so->so_error); 4466 } 4467 4468 void 4469 so_error_set(struct socket *so, int val) 4470 { 4471 4472 so->so_error = val; 4473 } 4474 4475 int 4476 so_linger_get(const struct socket *so) 4477 { 4478 4479 return (so->so_linger); 4480 } 4481 4482 void 4483 so_linger_set(struct socket *so, int val) 4484 { 4485 4486 KASSERT(val >= 0 && val <= USHRT_MAX && val <= (INT_MAX / hz), 4487 ("%s: val %d out of range", __func__, val)); 4488 4489 so->so_linger = val; 4490 } 4491 4492 struct protosw * 4493 so_protosw_get(const struct socket *so) 4494 { 4495 4496 return (so->so_proto); 4497 } 4498 4499 void 4500 so_protosw_set(struct socket *so, struct protosw *val) 4501 { 4502 4503 so->so_proto = val; 4504 } 4505 4506 void 4507 so_sorwakeup(struct socket *so) 4508 { 4509 4510 sorwakeup(so); 4511 } 4512 4513 void 4514 so_sowwakeup(struct socket *so) 4515 { 4516 4517 sowwakeup(so); 4518 } 4519 4520 void 4521 so_sorwakeup_locked(struct socket *so) 4522 { 4523 4524 sorwakeup_locked(so); 4525 } 4526 4527 void 4528 so_sowwakeup_locked(struct socket *so) 4529 { 4530 4531 sowwakeup_locked(so); 4532 } 4533 4534 void 4535 so_lock(struct socket *so) 4536 { 4537 4538 SOCK_LOCK(so); 4539 } 4540 4541 void 4542 so_unlock(struct socket *so) 4543 { 4544 4545 SOCK_UNLOCK(so); 4546 } 4547