1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. 6 * Copyright (c) 2004 The FreeBSD Foundation 7 * Copyright (c) 2004-2008 Robert N. M. Watson 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 /* 36 * Comments on the socket life cycle: 37 * 38 * soalloc() sets of socket layer state for a socket, called only by 39 * socreate() and sonewconn(). Socket layer private. 40 * 41 * sodealloc() tears down socket layer state for a socket, called only by 42 * sofree() and sonewconn(). Socket layer private. 43 * 44 * pr_attach() associates protocol layer state with an allocated socket; 45 * called only once, may fail, aborting socket allocation. This is called 46 * from socreate() and sonewconn(). Socket layer private. 47 * 48 * pr_detach() disassociates protocol layer state from an attached socket, 49 * and will be called exactly once for sockets in which pr_attach() has 50 * been successfully called. If pr_attach() returned an error, 51 * pr_detach() will not be called. Socket layer private. 52 * 53 * pr_abort() and pr_close() notify the protocol layer that the last 54 * consumer of a socket is starting to tear down the socket, and that the 55 * protocol should terminate the connection. Historically, pr_abort() also 56 * detached protocol state from the socket state, but this is no longer the 57 * case. 58 * 59 * socreate() creates a socket and attaches protocol state. This is a public 60 * interface that may be used by socket layer consumers to create new 61 * sockets. 62 * 63 * sonewconn() creates a socket and attaches protocol state. This is a 64 * public interface that may be used by protocols to create new sockets when 65 * a new connection is received and will be available for accept() on a 66 * listen socket. 67 * 68 * soclose() destroys a socket after possibly waiting for it to disconnect. 69 * This is a public interface that socket consumers should use to close and 70 * release a socket when done with it. 71 * 72 * soabort() destroys a socket without waiting for it to disconnect (used 73 * only for incoming connections that are already partially or fully 74 * connected). This is used internally by the socket layer when clearing 75 * listen socket queues (due to overflow or close on the listen socket), but 76 * is also a public interface protocols may use to abort connections in 77 * their incomplete listen queues should they no longer be required. Sockets 78 * placed in completed connection listen queues should not be aborted for 79 * reasons described in the comment above the soclose() implementation. This 80 * is not a general purpose close routine, and except in the specific 81 * circumstances described here, should not be used. 82 * 83 * sofree() will free a socket and its protocol state if all references on 84 * the socket have been released, and is the public interface to attempt to 85 * free a socket when a reference is removed. This is a socket layer private 86 * interface. 87 * 88 * NOTE: In addition to socreate() and soclose(), which provide a single 89 * socket reference to the consumer to be managed as required, there are two 90 * calls to explicitly manage socket references, soref(), and sorele(). 91 * Currently, these are generally required only when transitioning a socket 92 * from a listen queue to a file descriptor, in order to prevent garbage 93 * collection of the socket at an untimely moment. For a number of reasons, 94 * these interfaces are not preferred, and should be avoided. 95 * 96 * NOTE: With regard to VNETs the general rule is that callers do not set 97 * curvnet. Exceptions to this rule include soabort(), sodisconnect(), 98 * sofree(), sorele(), sonewconn() and sorflush(), which are usually called 99 * from a pre-set VNET context. sopoll_generic() currently does not need a 100 * VNET context to be set. 101 */ 102 103 #include <sys/cdefs.h> 104 #include "opt_inet.h" 105 #include "opt_inet6.h" 106 #include "opt_kern_tls.h" 107 #include "opt_ktrace.h" 108 #include "opt_sctp.h" 109 110 #include <sys/param.h> 111 #include <sys/systm.h> 112 #include <sys/capsicum.h> 113 #include <sys/fcntl.h> 114 #include <sys/limits.h> 115 #include <sys/lock.h> 116 #include <sys/mac.h> 117 #include <sys/malloc.h> 118 #include <sys/mbuf.h> 119 #include <sys/mutex.h> 120 #include <sys/domain.h> 121 #include <sys/file.h> /* for struct knote */ 122 #include <sys/hhook.h> 123 #include <sys/kernel.h> 124 #include <sys/khelp.h> 125 #include <sys/kthread.h> 126 #include <sys/ktls.h> 127 #include <sys/event.h> 128 #include <sys/eventhandler.h> 129 #include <sys/poll.h> 130 #include <sys/proc.h> 131 #include <sys/protosw.h> 132 #include <sys/sbuf.h> 133 #include <sys/socket.h> 134 #include <sys/socketvar.h> 135 #include <sys/resourcevar.h> 136 #include <net/route.h> 137 #include <sys/sched.h> 138 #include <sys/signalvar.h> 139 #include <sys/smp.h> 140 #include <sys/stat.h> 141 #include <sys/sx.h> 142 #include <sys/sysctl.h> 143 #include <sys/taskqueue.h> 144 #include <sys/uio.h> 145 #include <sys/un.h> 146 #include <sys/unpcb.h> 147 #include <sys/jail.h> 148 #include <sys/syslog.h> 149 #include <netinet/in.h> 150 #include <netinet/in_pcb.h> 151 #include <netinet/tcp.h> 152 153 #include <net/vnet.h> 154 155 #include <security/mac/mac_framework.h> 156 #include <security/mac/mac_internal.h> 157 158 #include <vm/uma.h> 159 160 #ifdef COMPAT_FREEBSD32 161 #include <sys/mount.h> 162 #include <sys/sysent.h> 163 #include <compat/freebsd32/freebsd32.h> 164 #endif 165 166 static int soreceive_generic_locked(struct socket *so, 167 struct sockaddr **psa, struct uio *uio, struct mbuf **mp, 168 struct mbuf **controlp, int *flagsp); 169 static int soreceive_rcvoob(struct socket *so, struct uio *uio, 170 int flags); 171 static int soreceive_stream_locked(struct socket *so, struct sockbuf *sb, 172 struct sockaddr **psa, struct uio *uio, struct mbuf **mp, 173 struct mbuf **controlp, int flags); 174 static int sosend_generic_locked(struct socket *so, struct sockaddr *addr, 175 struct uio *uio, struct mbuf *top, struct mbuf *control, 176 int flags, struct thread *td); 177 static void so_rdknl_lock(void *); 178 static void so_rdknl_unlock(void *); 179 static void so_rdknl_assert_lock(void *, int); 180 static void so_wrknl_lock(void *); 181 static void so_wrknl_unlock(void *); 182 static void so_wrknl_assert_lock(void *, int); 183 184 static void filt_sordetach(struct knote *kn); 185 static int filt_soread(struct knote *kn, long hint); 186 static void filt_sowdetach(struct knote *kn); 187 static int filt_sowrite(struct knote *kn, long hint); 188 static int filt_soempty(struct knote *kn, long hint); 189 190 static const struct filterops soread_filtops = { 191 .f_isfd = 1, 192 .f_detach = filt_sordetach, 193 .f_event = filt_soread, 194 }; 195 static const struct filterops sowrite_filtops = { 196 .f_isfd = 1, 197 .f_detach = filt_sowdetach, 198 .f_event = filt_sowrite, 199 }; 200 static const struct filterops soempty_filtops = { 201 .f_isfd = 1, 202 .f_detach = filt_sowdetach, 203 .f_event = filt_soempty, 204 }; 205 206 so_gen_t so_gencnt; /* generation count for sockets */ 207 208 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 209 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 210 211 #define VNET_SO_ASSERT(so) \ 212 VNET_ASSERT(curvnet != NULL, \ 213 ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so))); 214 215 #ifdef SOCKET_HHOOK 216 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]); 217 #define V_socket_hhh VNET(socket_hhh) 218 static inline int hhook_run_socket(struct socket *, void *, int32_t); 219 #endif 220 221 #ifdef COMPAT_FREEBSD32 222 #ifdef __amd64__ 223 /* off_t has 4-byte alignment on i386 but not on other 32-bit platforms. */ 224 #define __splice32_packed __packed 225 #else 226 #define __splice32_packed 227 #endif 228 struct splice32 { 229 int32_t sp_fd; 230 int64_t sp_max; 231 struct timeval32 sp_idle; 232 } __splice32_packed; 233 #undef __splice32_packed 234 #endif 235 236 /* 237 * Limit on the number of connections in the listen queue waiting 238 * for accept(2). 239 * NB: The original sysctl somaxconn is still available but hidden 240 * to prevent confusion about the actual purpose of this number. 241 */ 242 VNET_DEFINE_STATIC(u_int, somaxconn) = SOMAXCONN; 243 #define V_somaxconn VNET(somaxconn) 244 245 static int 246 sysctl_somaxconn(SYSCTL_HANDLER_ARGS) 247 { 248 int error; 249 u_int val; 250 251 val = V_somaxconn; 252 error = sysctl_handle_int(oidp, &val, 0, req); 253 if (error || !req->newptr ) 254 return (error); 255 256 /* 257 * The purpose of the UINT_MAX / 3 limit, is so that the formula 258 * 3 * sol_qlimit / 2 259 * below, will not overflow. 260 */ 261 262 if (val < 1 || val > UINT_MAX / 3) 263 return (EINVAL); 264 265 V_somaxconn = val; 266 return (0); 267 } 268 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue, 269 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE | CTLFLAG_VNET, 0, sizeof(u_int), 270 sysctl_somaxconn, "IU", 271 "Maximum listen socket pending connection accept queue size"); 272 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, 273 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE | CTLFLAG_VNET, 0, 274 sizeof(u_int), sysctl_somaxconn, "IU", 275 "Maximum listen socket pending connection accept queue size (compat)"); 276 277 static u_int numopensockets; 278 static int 279 sysctl_numopensockets(SYSCTL_HANDLER_ARGS) 280 { 281 u_int val; 282 283 #ifdef VIMAGE 284 if(!IS_DEFAULT_VNET(curvnet)) 285 val = curvnet->vnet_sockcnt; 286 else 287 #endif 288 val = numopensockets; 289 return (sysctl_handle_int(oidp, &val, 0, req)); 290 } 291 SYSCTL_PROC(_kern_ipc, OID_AUTO, numopensockets, 292 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_VNET, 0, sizeof(u_int), 293 sysctl_numopensockets, "IU", "Number of open sockets"); 294 295 /* 296 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket 297 * so_gencnt field. 298 */ 299 static struct mtx so_global_mtx; 300 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); 301 302 /* 303 * General IPC sysctl name space, used by sockets and a variety of other IPC 304 * types. 305 */ 306 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 307 "IPC"); 308 309 /* 310 * Initialize the socket subsystem and set up the socket 311 * memory allocator. 312 */ 313 static uma_zone_t socket_zone; 314 int maxsockets; 315 316 static void 317 socket_zone_change(void *tag) 318 { 319 320 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 321 } 322 323 static int splice_init_state; 324 static struct sx splice_init_lock; 325 SX_SYSINIT(splice_init_lock, &splice_init_lock, "splice_init"); 326 327 static SYSCTL_NODE(_kern_ipc, OID_AUTO, splice, CTLFLAG_RW, 0, 328 "Settings relating to the SO_SPLICE socket option"); 329 330 static bool splice_receive_stream = true; 331 SYSCTL_BOOL(_kern_ipc_splice, OID_AUTO, receive_stream, CTLFLAG_RWTUN, 332 &splice_receive_stream, 0, 333 "Use soreceive_stream() for stream splices"); 334 335 static uma_zone_t splice_zone; 336 static struct proc *splice_proc; 337 struct splice_wq { 338 struct mtx mtx; 339 STAILQ_HEAD(, so_splice) head; 340 bool running; 341 } __aligned(CACHE_LINE_SIZE); 342 static struct splice_wq *splice_wq; 343 static uint32_t splice_index = 0; 344 345 static void so_splice_timeout(void *arg, int pending); 346 static void so_splice_xfer(struct so_splice *s); 347 static int so_unsplice(struct socket *so, bool timeout); 348 349 static void 350 splice_work_thread(void *ctx) 351 { 352 struct splice_wq *wq = ctx; 353 struct so_splice *s, *s_temp; 354 STAILQ_HEAD(, so_splice) local_head; 355 int cpu; 356 357 cpu = wq - splice_wq; 358 if (bootverbose) 359 printf("starting so_splice worker thread for CPU %d\n", cpu); 360 361 for (;;) { 362 mtx_lock(&wq->mtx); 363 while (STAILQ_EMPTY(&wq->head)) { 364 wq->running = false; 365 mtx_sleep(wq, &wq->mtx, 0, "-", 0); 366 wq->running = true; 367 } 368 STAILQ_INIT(&local_head); 369 STAILQ_CONCAT(&local_head, &wq->head); 370 STAILQ_INIT(&wq->head); 371 mtx_unlock(&wq->mtx); 372 STAILQ_FOREACH_SAFE(s, &local_head, next, s_temp) { 373 mtx_lock(&s->mtx); 374 CURVNET_SET(s->src->so_vnet); 375 so_splice_xfer(s); 376 CURVNET_RESTORE(); 377 } 378 } 379 } 380 381 static void 382 so_splice_dispatch_async(struct so_splice *sp) 383 { 384 struct splice_wq *wq; 385 bool running; 386 387 wq = &splice_wq[sp->wq_index]; 388 mtx_lock(&wq->mtx); 389 STAILQ_INSERT_TAIL(&wq->head, sp, next); 390 running = wq->running; 391 mtx_unlock(&wq->mtx); 392 if (!running) 393 wakeup(wq); 394 } 395 396 void 397 so_splice_dispatch(struct so_splice *sp) 398 { 399 mtx_assert(&sp->mtx, MA_OWNED); 400 401 if (sp->state != SPLICE_IDLE) { 402 mtx_unlock(&sp->mtx); 403 } else { 404 sp->state = SPLICE_QUEUED; 405 mtx_unlock(&sp->mtx); 406 so_splice_dispatch_async(sp); 407 } 408 } 409 410 static int 411 splice_zinit(void *mem, int size __unused, int flags __unused) 412 { 413 struct so_splice *s; 414 415 s = (struct so_splice *)mem; 416 mtx_init(&s->mtx, "so_splice", NULL, MTX_DEF); 417 return (0); 418 } 419 420 static void 421 splice_zfini(void *mem, int size) 422 { 423 struct so_splice *s; 424 425 s = (struct so_splice *)mem; 426 mtx_destroy(&s->mtx); 427 } 428 429 static int 430 splice_init(void) 431 { 432 struct thread *td; 433 int error, i, state; 434 435 state = atomic_load_acq_int(&splice_init_state); 436 if (__predict_true(state > 0)) 437 return (0); 438 if (state < 0) 439 return (ENXIO); 440 sx_xlock(&splice_init_lock); 441 if (splice_init_state != 0) { 442 sx_xunlock(&splice_init_lock); 443 return (0); 444 } 445 446 splice_zone = uma_zcreate("splice", sizeof(struct so_splice), NULL, 447 NULL, splice_zinit, splice_zfini, UMA_ALIGN_CACHE, 0); 448 449 splice_wq = mallocarray(mp_maxid + 1, sizeof(*splice_wq), M_TEMP, 450 M_WAITOK | M_ZERO); 451 452 /* 453 * Initialize the workqueues to run the splice work. We create a 454 * work queue for each CPU. 455 */ 456 CPU_FOREACH(i) { 457 STAILQ_INIT(&splice_wq[i].head); 458 mtx_init(&splice_wq[i].mtx, "splice work queue", NULL, MTX_DEF); 459 } 460 461 /* Start kthreads for each workqueue. */ 462 error = 0; 463 CPU_FOREACH(i) { 464 error = kproc_kthread_add(splice_work_thread, &splice_wq[i], 465 &splice_proc, &td, 0, 0, "so_splice", "thr_%d", i); 466 if (error) { 467 printf("Can't add so_splice thread %d error %d\n", 468 i, error); 469 break; 470 } 471 472 /* 473 * It's possible to create loops with SO_SPLICE; ensure that 474 * worker threads aren't able to starve the system too easily. 475 */ 476 thread_lock(td); 477 sched_prio(td, PUSER); 478 thread_unlock(td); 479 } 480 481 splice_init_state = error != 0 ? -1 : 1; 482 sx_xunlock(&splice_init_lock); 483 484 return (error); 485 } 486 487 /* 488 * Lock a pair of socket's I/O locks for splicing. Avoid blocking while holding 489 * one lock in order to avoid potential deadlocks in case there is some other 490 * code path which acquires more than one I/O lock at a time. 491 */ 492 static void 493 splice_lock_pair(struct socket *so_src, struct socket *so_dst) 494 { 495 int error; 496 497 for (;;) { 498 error = SOCK_IO_SEND_LOCK(so_dst, SBL_WAIT | SBL_NOINTR); 499 KASSERT(error == 0, 500 ("%s: failed to lock send I/O lock: %d", __func__, error)); 501 error = SOCK_IO_RECV_LOCK(so_src, 0); 502 KASSERT(error == 0 || error == EWOULDBLOCK, 503 ("%s: failed to lock recv I/O lock: %d", __func__, error)); 504 if (error == 0) 505 break; 506 SOCK_IO_SEND_UNLOCK(so_dst); 507 508 error = SOCK_IO_RECV_LOCK(so_src, SBL_WAIT | SBL_NOINTR); 509 KASSERT(error == 0, 510 ("%s: failed to lock recv I/O lock: %d", __func__, error)); 511 error = SOCK_IO_SEND_LOCK(so_dst, 0); 512 KASSERT(error == 0 || error == EWOULDBLOCK, 513 ("%s: failed to lock send I/O lock: %d", __func__, error)); 514 if (error == 0) 515 break; 516 SOCK_IO_RECV_UNLOCK(so_src); 517 } 518 } 519 520 static void 521 splice_unlock_pair(struct socket *so_src, struct socket *so_dst) 522 { 523 SOCK_IO_RECV_UNLOCK(so_src); 524 SOCK_IO_SEND_UNLOCK(so_dst); 525 } 526 527 /* 528 * Move data from the source to the sink. Assumes that both of the relevant 529 * socket I/O locks are held. 530 */ 531 static int 532 so_splice_xfer_data(struct socket *so_src, struct socket *so_dst, off_t max, 533 ssize_t *lenp) 534 { 535 struct uio uio; 536 struct mbuf *m; 537 struct sockbuf *sb_src, *sb_dst; 538 ssize_t len; 539 long space; 540 int error, flags; 541 542 SOCK_IO_RECV_ASSERT_LOCKED(so_src); 543 SOCK_IO_SEND_ASSERT_LOCKED(so_dst); 544 545 error = 0; 546 m = NULL; 547 memset(&uio, 0, sizeof(uio)); 548 549 sb_src = &so_src->so_rcv; 550 sb_dst = &so_dst->so_snd; 551 552 space = sbspace(sb_dst); 553 if (space < 0) 554 space = 0; 555 len = MIN(max, MIN(space, sbavail(sb_src))); 556 if (len == 0) { 557 SOCK_RECVBUF_LOCK(so_src); 558 if ((sb_src->sb_state & SBS_CANTRCVMORE) != 0) 559 error = EPIPE; 560 SOCK_RECVBUF_UNLOCK(so_src); 561 } else { 562 flags = MSG_DONTWAIT; 563 uio.uio_resid = len; 564 if (splice_receive_stream && sb_src->sb_tls_info == NULL) { 565 error = soreceive_stream_locked(so_src, sb_src, NULL, 566 &uio, &m, NULL, flags); 567 } else { 568 error = soreceive_generic_locked(so_src, NULL, 569 &uio, &m, NULL, &flags); 570 } 571 if (error != 0 && m != NULL) { 572 m_freem(m); 573 m = NULL; 574 } 575 } 576 if (m != NULL) { 577 len -= uio.uio_resid; 578 error = sosend_generic_locked(so_dst, NULL, NULL, m, NULL, 579 MSG_DONTWAIT, curthread); 580 } else if (error == 0) { 581 len = 0; 582 SOCK_SENDBUF_LOCK(so_dst); 583 if ((sb_dst->sb_state & SBS_CANTSENDMORE) != 0) 584 error = EPIPE; 585 SOCK_SENDBUF_UNLOCK(so_dst); 586 } 587 if (error == 0) 588 *lenp = len; 589 return (error); 590 } 591 592 /* 593 * Transfer data from the source to the sink. 594 */ 595 static void 596 so_splice_xfer(struct so_splice *sp) 597 { 598 struct socket *so_src, *so_dst; 599 off_t max; 600 ssize_t len; 601 int error; 602 603 mtx_assert(&sp->mtx, MA_OWNED); 604 KASSERT(sp->state == SPLICE_QUEUED || sp->state == SPLICE_CLOSING, 605 ("so_splice_xfer: invalid state %d", sp->state)); 606 KASSERT(sp->max != 0, ("so_splice_xfer: max == 0")); 607 608 if (sp->state == SPLICE_CLOSING) { 609 /* Userspace asked us to close the splice. */ 610 goto closing; 611 } 612 613 sp->state = SPLICE_RUNNING; 614 so_src = sp->src; 615 so_dst = sp->dst; 616 max = sp->max > 0 ? sp->max - so_src->so_splice_sent : OFF_MAX; 617 if (max < 0) 618 max = 0; 619 620 /* 621 * Lock the sockets in order to block userspace from doing anything 622 * sneaky. If an error occurs or one of the sockets can no longer 623 * transfer data, we will automatically unsplice. 624 */ 625 mtx_unlock(&sp->mtx); 626 splice_lock_pair(so_src, so_dst); 627 628 error = so_splice_xfer_data(so_src, so_dst, max, &len); 629 630 mtx_lock(&sp->mtx); 631 632 /* 633 * Update our stats while still holding the socket locks. This 634 * synchronizes with getsockopt(SO_SPLICE), see the comment there. 635 */ 636 if (error == 0) { 637 KASSERT(len >= 0, ("%s: len %zd < 0", __func__, len)); 638 so_src->so_splice_sent += len; 639 } 640 splice_unlock_pair(so_src, so_dst); 641 642 switch (sp->state) { 643 case SPLICE_CLOSING: 644 closing: 645 sp->state = SPLICE_CLOSED; 646 wakeup(sp); 647 mtx_unlock(&sp->mtx); 648 break; 649 case SPLICE_RUNNING: 650 if (error != 0 || 651 (sp->max > 0 && so_src->so_splice_sent >= sp->max)) { 652 sp->state = SPLICE_EXCEPTION; 653 soref(so_src); 654 mtx_unlock(&sp->mtx); 655 (void)so_unsplice(so_src, false); 656 sorele(so_src); 657 } else { 658 /* 659 * Locklessly check for additional bytes in the source's 660 * receive buffer and queue more work if possible. We 661 * may end up queuing needless work, but that's ok, and 662 * if we race with a thread inserting more data into the 663 * buffer and observe sbavail() == 0, the splice mutex 664 * ensures that splice_push() will queue more work for 665 * us. 666 */ 667 if (sbavail(&so_src->so_rcv) > 0 && 668 sbspace(&so_dst->so_snd) > 0) { 669 sp->state = SPLICE_QUEUED; 670 mtx_unlock(&sp->mtx); 671 so_splice_dispatch_async(sp); 672 } else { 673 sp->state = SPLICE_IDLE; 674 mtx_unlock(&sp->mtx); 675 } 676 } 677 break; 678 default: 679 __assert_unreachable(); 680 } 681 } 682 683 static void 684 socket_init(void *tag) 685 { 686 687 socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL, 688 NULL, NULL, UMA_ALIGN_PTR, 0); 689 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 690 uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached"); 691 EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL, 692 EVENTHANDLER_PRI_FIRST); 693 } 694 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL); 695 696 #ifdef SOCKET_HHOOK 697 static void 698 socket_hhook_register(int subtype) 699 { 700 701 if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype, 702 &V_socket_hhh[subtype], 703 HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 704 printf("%s: WARNING: unable to register hook\n", __func__); 705 } 706 707 static void 708 socket_hhook_deregister(int subtype) 709 { 710 711 if (hhook_head_deregister(V_socket_hhh[subtype]) != 0) 712 printf("%s: WARNING: unable to deregister hook\n", __func__); 713 } 714 715 static void 716 socket_vnet_init(const void *unused __unused) 717 { 718 int i; 719 720 /* We expect a contiguous range */ 721 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 722 socket_hhook_register(i); 723 } 724 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 725 socket_vnet_init, NULL); 726 727 static void 728 socket_vnet_uninit(const void *unused __unused) 729 { 730 int i; 731 732 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 733 socket_hhook_deregister(i); 734 } 735 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 736 socket_vnet_uninit, NULL); 737 #endif /* SOCKET_HHOOK */ 738 739 /* 740 * Initialise maxsockets. This SYSINIT must be run after 741 * tunable_mbinit(). 742 */ 743 static void 744 init_maxsockets(void *ignored) 745 { 746 747 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 748 maxsockets = imax(maxsockets, maxfiles); 749 } 750 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 751 752 /* 753 * Sysctl to get and set the maximum global sockets limit. Notify protocols 754 * of the change so that they can update their dependent limits as required. 755 */ 756 static int 757 sysctl_maxsockets(SYSCTL_HANDLER_ARGS) 758 { 759 int error, newmaxsockets; 760 761 newmaxsockets = maxsockets; 762 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req); 763 if (error == 0 && req->newptr && newmaxsockets != maxsockets) { 764 if (newmaxsockets > maxsockets && 765 newmaxsockets <= maxfiles) { 766 maxsockets = newmaxsockets; 767 EVENTHANDLER_INVOKE(maxsockets_change); 768 } else 769 error = EINVAL; 770 } 771 return (error); 772 } 773 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, 774 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE, 775 &maxsockets, 0, sysctl_maxsockets, "IU", 776 "Maximum number of sockets available"); 777 778 /* 779 * Socket operation routines. These routines are called by the routines in 780 * sys_socket.c or from a system process, and implement the semantics of 781 * socket operations by switching out to the protocol specific routines. 782 */ 783 784 /* 785 * Get a socket structure from our zone, and initialize it. Note that it 786 * would probably be better to allocate socket and PCB at the same time, but 787 * I'm not convinced that all the protocols can be easily modified to do 788 * this. 789 * 790 * soalloc() returns a socket with a ref count of 0. 791 */ 792 static struct socket * 793 soalloc(struct vnet *vnet) 794 { 795 struct socket *so; 796 797 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO); 798 if (so == NULL) 799 return (NULL); 800 #ifdef MAC 801 if (mac_socket_init(so, M_NOWAIT) != 0) { 802 uma_zfree(socket_zone, so); 803 return (NULL); 804 } 805 #endif 806 if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) { 807 uma_zfree(socket_zone, so); 808 return (NULL); 809 } 810 811 /* 812 * The socket locking protocol allows to lock 2 sockets at a time, 813 * however, the first one must be a listening socket. WITNESS lacks 814 * a feature to change class of an existing lock, so we use DUPOK. 815 */ 816 mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK); 817 mtx_init(&so->so_snd_mtx, "so_snd", NULL, MTX_DEF); 818 mtx_init(&so->so_rcv_mtx, "so_rcv", NULL, MTX_DEF); 819 so->so_rcv.sb_sel = &so->so_rdsel; 820 so->so_snd.sb_sel = &so->so_wrsel; 821 sx_init(&so->so_snd_sx, "so_snd_sx"); 822 sx_init(&so->so_rcv_sx, "so_rcv_sx"); 823 TAILQ_INIT(&so->so_snd.sb_aiojobq); 824 TAILQ_INIT(&so->so_rcv.sb_aiojobq); 825 TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so); 826 TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so); 827 #ifdef VIMAGE 828 VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p", 829 __func__, __LINE__, so)); 830 so->so_vnet = vnet; 831 #endif 832 #ifdef SOCKET_HHOOK 833 /* We shouldn't need the so_global_mtx */ 834 if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) { 835 /* Do we need more comprehensive error returns? */ 836 uma_zfree(socket_zone, so); 837 return (NULL); 838 } 839 #endif 840 mtx_lock(&so_global_mtx); 841 so->so_gencnt = ++so_gencnt; 842 ++numopensockets; 843 #ifdef VIMAGE 844 vnet->vnet_sockcnt++; 845 #endif 846 mtx_unlock(&so_global_mtx); 847 848 return (so); 849 } 850 851 /* 852 * Free the storage associated with a socket at the socket layer, tear down 853 * locks, labels, etc. All protocol state is assumed already to have been 854 * torn down (and possibly never set up) by the caller. 855 */ 856 void 857 sodealloc(struct socket *so) 858 { 859 860 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); 861 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL")); 862 863 mtx_lock(&so_global_mtx); 864 so->so_gencnt = ++so_gencnt; 865 --numopensockets; /* Could be below, but faster here. */ 866 #ifdef VIMAGE 867 VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p", 868 __func__, __LINE__, so)); 869 so->so_vnet->vnet_sockcnt--; 870 #endif 871 mtx_unlock(&so_global_mtx); 872 #ifdef MAC 873 mac_socket_destroy(so); 874 #endif 875 #ifdef SOCKET_HHOOK 876 hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE); 877 #endif 878 879 khelp_destroy_osd(&so->osd); 880 if (SOLISTENING(so)) { 881 if (so->sol_accept_filter != NULL) 882 accept_filt_setopt(so, NULL); 883 } else { 884 if (so->so_rcv.sb_hiwat) 885 (void)chgsbsize(so->so_cred->cr_uidinfo, 886 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 887 if (so->so_snd.sb_hiwat) 888 (void)chgsbsize(so->so_cred->cr_uidinfo, 889 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 890 sx_destroy(&so->so_snd_sx); 891 sx_destroy(&so->so_rcv_sx); 892 mtx_destroy(&so->so_snd_mtx); 893 mtx_destroy(&so->so_rcv_mtx); 894 } 895 crfree(so->so_cred); 896 mtx_destroy(&so->so_lock); 897 uma_zfree(socket_zone, so); 898 } 899 900 /* 901 * socreate returns a socket with a ref count of 1 and a file descriptor 902 * reference. The socket should be closed with soclose(). 903 */ 904 int 905 socreate(int dom, struct socket **aso, int type, int proto, 906 struct ucred *cred, struct thread *td) 907 { 908 struct protosw *prp; 909 struct socket *so; 910 int error; 911 912 /* 913 * XXX: divert(4) historically abused PF_INET. Keep this compatibility 914 * shim until all applications have been updated. 915 */ 916 if (__predict_false(dom == PF_INET && type == SOCK_RAW && 917 proto == IPPROTO_DIVERT)) { 918 dom = PF_DIVERT; 919 printf("%s uses obsolete way to create divert(4) socket\n", 920 td->td_proc->p_comm); 921 } 922 923 prp = pffindproto(dom, type, proto); 924 if (prp == NULL) { 925 /* No support for domain. */ 926 if (pffinddomain(dom) == NULL) 927 return (EAFNOSUPPORT); 928 /* No support for socket type. */ 929 if (proto == 0 && type != 0) 930 return (EPROTOTYPE); 931 return (EPROTONOSUPPORT); 932 } 933 934 MPASS(prp->pr_attach); 935 936 if ((prp->pr_flags & PR_CAPATTACH) == 0) { 937 if (CAP_TRACING(td)) 938 ktrcapfail(CAPFAIL_PROTO, &proto); 939 if (IN_CAPABILITY_MODE(td)) 940 return (ECAPMODE); 941 } 942 943 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0) 944 return (EPROTONOSUPPORT); 945 946 so = soalloc(CRED_TO_VNET(cred)); 947 if (so == NULL) 948 return (ENOBUFS); 949 950 so->so_type = type; 951 so->so_cred = crhold(cred); 952 if ((prp->pr_domain->dom_family == PF_INET) || 953 (prp->pr_domain->dom_family == PF_INET6) || 954 (prp->pr_domain->dom_family == PF_ROUTE)) 955 so->so_fibnum = td->td_proc->p_fibnum; 956 else 957 so->so_fibnum = 0; 958 so->so_proto = prp; 959 #ifdef MAC 960 mac_socket_create(cred, so); 961 #endif 962 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 963 so_rdknl_assert_lock); 964 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 965 so_wrknl_assert_lock); 966 if ((prp->pr_flags & PR_SOCKBUF) == 0) { 967 so->so_snd.sb_mtx = &so->so_snd_mtx; 968 so->so_rcv.sb_mtx = &so->so_rcv_mtx; 969 } 970 /* 971 * Auto-sizing of socket buffers is managed by the protocols and 972 * the appropriate flags must be set in the pr_attach() method. 973 */ 974 CURVNET_SET(so->so_vnet); 975 error = prp->pr_attach(so, proto, td); 976 CURVNET_RESTORE(); 977 if (error) { 978 sodealloc(so); 979 return (error); 980 } 981 soref(so); 982 *aso = so; 983 return (0); 984 } 985 986 #ifdef REGRESSION 987 static int regression_sonewconn_earlytest = 1; 988 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW, 989 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test"); 990 #endif 991 992 static int sooverprio = LOG_DEBUG; 993 SYSCTL_INT(_kern_ipc, OID_AUTO, sooverprio, CTLFLAG_RW, 994 &sooverprio, 0, "Log priority for listen socket overflows: 0..7 or -1 to disable"); 995 996 static struct timeval overinterval = { 60, 0 }; 997 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW, 998 &overinterval, 999 "Delay in seconds between warnings for listen socket overflows"); 1000 1001 /* 1002 * When an attempt at a new connection is noted on a socket which supports 1003 * accept(2), the protocol has two options: 1004 * 1) Call legacy sonewconn() function, which would call protocol attach 1005 * method, same as used for socket(2). 1006 * 2) Call solisten_clone(), do attach that is specific to a cloned connection, 1007 * and then call solisten_enqueue(). 1008 * 1009 * Note: the ref count on the socket is 0 on return. 1010 */ 1011 struct socket * 1012 solisten_clone(struct socket *head) 1013 { 1014 struct sbuf descrsb; 1015 struct socket *so; 1016 int len, overcount; 1017 u_int qlen; 1018 const char localprefix[] = "local:"; 1019 char descrbuf[SUNPATHLEN + sizeof(localprefix)]; 1020 #if defined(INET6) 1021 char addrbuf[INET6_ADDRSTRLEN]; 1022 #elif defined(INET) 1023 char addrbuf[INET_ADDRSTRLEN]; 1024 #endif 1025 bool dolog, over; 1026 1027 SOLISTEN_LOCK(head); 1028 over = (head->sol_qlen > 3 * head->sol_qlimit / 2); 1029 #ifdef REGRESSION 1030 if (regression_sonewconn_earlytest && over) { 1031 #else 1032 if (over) { 1033 #endif 1034 head->sol_overcount++; 1035 dolog = (sooverprio >= 0) && 1036 !!ratecheck(&head->sol_lastover, &overinterval); 1037 1038 /* 1039 * If we're going to log, copy the overflow count and queue 1040 * length from the listen socket before dropping the lock. 1041 * Also, reset the overflow count. 1042 */ 1043 if (dolog) { 1044 overcount = head->sol_overcount; 1045 head->sol_overcount = 0; 1046 qlen = head->sol_qlen; 1047 } 1048 SOLISTEN_UNLOCK(head); 1049 1050 if (dolog) { 1051 /* 1052 * Try to print something descriptive about the 1053 * socket for the error message. 1054 */ 1055 sbuf_new(&descrsb, descrbuf, sizeof(descrbuf), 1056 SBUF_FIXEDLEN); 1057 switch (head->so_proto->pr_domain->dom_family) { 1058 #if defined(INET) || defined(INET6) 1059 #ifdef INET 1060 case AF_INET: 1061 #endif 1062 #ifdef INET6 1063 case AF_INET6: 1064 if (head->so_proto->pr_domain->dom_family == 1065 AF_INET6 || 1066 (sotoinpcb(head)->inp_inc.inc_flags & 1067 INC_ISIPV6)) { 1068 ip6_sprintf(addrbuf, 1069 &sotoinpcb(head)->inp_inc.inc6_laddr); 1070 sbuf_printf(&descrsb, "[%s]", addrbuf); 1071 } else 1072 #endif 1073 { 1074 #ifdef INET 1075 inet_ntoa_r( 1076 sotoinpcb(head)->inp_inc.inc_laddr, 1077 addrbuf); 1078 sbuf_cat(&descrsb, addrbuf); 1079 #endif 1080 } 1081 sbuf_printf(&descrsb, ":%hu (proto %u)", 1082 ntohs(sotoinpcb(head)->inp_inc.inc_lport), 1083 head->so_proto->pr_protocol); 1084 break; 1085 #endif /* INET || INET6 */ 1086 case AF_UNIX: 1087 sbuf_cat(&descrsb, localprefix); 1088 if (sotounpcb(head)->unp_addr != NULL) 1089 len = 1090 sotounpcb(head)->unp_addr->sun_len - 1091 offsetof(struct sockaddr_un, 1092 sun_path); 1093 else 1094 len = 0; 1095 if (len > 0) 1096 sbuf_bcat(&descrsb, 1097 sotounpcb(head)->unp_addr->sun_path, 1098 len); 1099 else 1100 sbuf_cat(&descrsb, "(unknown)"); 1101 break; 1102 } 1103 1104 /* 1105 * If we can't print something more specific, at least 1106 * print the domain name. 1107 */ 1108 if (sbuf_finish(&descrsb) != 0 || 1109 sbuf_len(&descrsb) <= 0) { 1110 sbuf_clear(&descrsb); 1111 sbuf_cat(&descrsb, 1112 head->so_proto->pr_domain->dom_name ?: 1113 "unknown"); 1114 sbuf_finish(&descrsb); 1115 } 1116 KASSERT(sbuf_len(&descrsb) > 0, 1117 ("%s: sbuf creation failed", __func__)); 1118 /* 1119 * Preserve the historic listen queue overflow log 1120 * message, that starts with "sonewconn:". It has 1121 * been known to sysadmins for years and also test 1122 * sys/kern/sonewconn_overflow checks for it. 1123 */ 1124 if (head->so_cred == 0) { 1125 log(LOG_PRI(sooverprio), 1126 "sonewconn: pcb %p (%s): " 1127 "Listen queue overflow: %i already in " 1128 "queue awaiting acceptance (%d " 1129 "occurrences)\n", head->so_pcb, 1130 sbuf_data(&descrsb), 1131 qlen, overcount); 1132 } else { 1133 log(LOG_PRI(sooverprio), 1134 "sonewconn: pcb %p (%s): " 1135 "Listen queue overflow: " 1136 "%i already in queue awaiting acceptance " 1137 "(%d occurrences), euid %d, rgid %d, jail %s\n", 1138 head->so_pcb, sbuf_data(&descrsb), qlen, 1139 overcount, head->so_cred->cr_uid, 1140 head->so_cred->cr_rgid, 1141 head->so_cred->cr_prison ? 1142 head->so_cred->cr_prison->pr_name : 1143 "not_jailed"); 1144 } 1145 sbuf_delete(&descrsb); 1146 1147 overcount = 0; 1148 } 1149 1150 return (NULL); 1151 } 1152 SOLISTEN_UNLOCK(head); 1153 VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL", 1154 __func__, head)); 1155 so = soalloc(head->so_vnet); 1156 if (so == NULL) { 1157 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 1158 "limit reached or out of memory\n", 1159 __func__, head->so_pcb); 1160 return (NULL); 1161 } 1162 so->so_listen = head; 1163 so->so_type = head->so_type; 1164 /* 1165 * POSIX is ambiguous on what options an accept(2)ed socket should 1166 * inherit from the listener. Words "create a new socket" may be 1167 * interpreted as not inheriting anything. Best programming practice 1168 * for application developers is to not rely on such inheritance. 1169 * FreeBSD had historically inherited all so_options excluding 1170 * SO_ACCEPTCONN, which virtually means all SOL_SOCKET level options, 1171 * including those completely irrelevant to a new born socket. For 1172 * compatibility with older versions we will inherit a list of 1173 * meaningful options. 1174 * The crucial bit to inherit is SO_ACCEPTFILTER. We need it present 1175 * in the child socket for soisconnected() promoting socket from the 1176 * incomplete queue to complete. It will be cleared before the child 1177 * gets available to accept(2). 1178 */ 1179 so->so_options = head->so_options & (SO_ACCEPTFILTER | SO_KEEPALIVE | 1180 SO_DONTROUTE | SO_LINGER | SO_OOBINLINE | SO_NOSIGPIPE); 1181 so->so_linger = head->so_linger; 1182 so->so_state = head->so_state; 1183 so->so_fibnum = head->so_fibnum; 1184 so->so_proto = head->so_proto; 1185 so->so_cred = crhold(head->so_cred); 1186 #ifdef SOCKET_HHOOK 1187 if (V_socket_hhh[HHOOK_SOCKET_NEWCONN]->hhh_nhooks > 0) { 1188 if (hhook_run_socket(so, head, HHOOK_SOCKET_NEWCONN)) { 1189 sodealloc(so); 1190 log(LOG_DEBUG, "%s: hhook run failed\n", __func__); 1191 return (NULL); 1192 } 1193 } 1194 #endif 1195 #ifdef MAC 1196 mac_socket_newconn(head, so); 1197 #endif 1198 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 1199 so_rdknl_assert_lock); 1200 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 1201 so_wrknl_assert_lock); 1202 VNET_SO_ASSERT(head); 1203 if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) { 1204 sodealloc(so); 1205 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 1206 __func__, head->so_pcb); 1207 return (NULL); 1208 } 1209 so->so_rcv.sb_lowat = head->sol_sbrcv_lowat; 1210 so->so_snd.sb_lowat = head->sol_sbsnd_lowat; 1211 so->so_rcv.sb_timeo = head->sol_sbrcv_timeo; 1212 so->so_snd.sb_timeo = head->sol_sbsnd_timeo; 1213 so->so_rcv.sb_flags = head->sol_sbrcv_flags & SB_AUTOSIZE; 1214 so->so_snd.sb_flags = head->sol_sbsnd_flags & SB_AUTOSIZE; 1215 if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) { 1216 so->so_snd.sb_mtx = &so->so_snd_mtx; 1217 so->so_rcv.sb_mtx = &so->so_rcv_mtx; 1218 } 1219 1220 return (so); 1221 } 1222 1223 /* Connstatus may be 0 or SS_ISCONNECTED. */ 1224 struct socket * 1225 sonewconn(struct socket *head, int connstatus) 1226 { 1227 struct socket *so; 1228 1229 if ((so = solisten_clone(head)) == NULL) 1230 return (NULL); 1231 1232 if (so->so_proto->pr_attach(so, 0, NULL) != 0) { 1233 sodealloc(so); 1234 log(LOG_DEBUG, "%s: pcb %p: pr_attach() failed\n", 1235 __func__, head->so_pcb); 1236 return (NULL); 1237 } 1238 1239 (void)solisten_enqueue(so, connstatus); 1240 1241 return (so); 1242 } 1243 1244 /* 1245 * Enqueue socket cloned by solisten_clone() to the listen queue of the 1246 * listener it has been cloned from. 1247 * 1248 * Return 'true' if socket landed on complete queue, otherwise 'false'. 1249 */ 1250 bool 1251 solisten_enqueue(struct socket *so, int connstatus) 1252 { 1253 struct socket *head = so->so_listen; 1254 1255 MPASS(refcount_load(&so->so_count) == 0); 1256 refcount_init(&so->so_count, 1); 1257 1258 SOLISTEN_LOCK(head); 1259 if (head->sol_accept_filter != NULL) 1260 connstatus = 0; 1261 so->so_state |= connstatus; 1262 soref(head); /* A socket on (in)complete queue refs head. */ 1263 if (connstatus) { 1264 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 1265 so->so_qstate = SQ_COMP; 1266 head->sol_qlen++; 1267 solisten_wakeup(head); /* unlocks */ 1268 return (true); 1269 } else { 1270 /* 1271 * Keep removing sockets from the head until there's room for 1272 * us to insert on the tail. In pre-locking revisions, this 1273 * was a simple if(), but as we could be racing with other 1274 * threads and soabort() requires dropping locks, we must 1275 * loop waiting for the condition to be true. 1276 */ 1277 while (head->sol_incqlen > head->sol_qlimit) { 1278 struct socket *sp; 1279 1280 sp = TAILQ_FIRST(&head->sol_incomp); 1281 TAILQ_REMOVE(&head->sol_incomp, sp, so_list); 1282 head->sol_incqlen--; 1283 SOCK_LOCK(sp); 1284 sp->so_qstate = SQ_NONE; 1285 sp->so_listen = NULL; 1286 SOCK_UNLOCK(sp); 1287 sorele_locked(head); /* does SOLISTEN_UNLOCK, head stays */ 1288 soabort(sp); 1289 SOLISTEN_LOCK(head); 1290 } 1291 TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list); 1292 so->so_qstate = SQ_INCOMP; 1293 head->sol_incqlen++; 1294 SOLISTEN_UNLOCK(head); 1295 return (false); 1296 } 1297 } 1298 1299 #if defined(SCTP) || defined(SCTP_SUPPORT) 1300 /* 1301 * Socket part of sctp_peeloff(). Detach a new socket from an 1302 * association. The new socket is returned with a reference. 1303 * 1304 * XXXGL: reduce copy-paste with solisten_clone(). 1305 */ 1306 struct socket * 1307 sopeeloff(struct socket *head) 1308 { 1309 struct socket *so; 1310 1311 VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p", 1312 __func__, __LINE__, head)); 1313 so = soalloc(head->so_vnet); 1314 if (so == NULL) { 1315 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 1316 "limit reached or out of memory\n", 1317 __func__, head->so_pcb); 1318 return (NULL); 1319 } 1320 so->so_type = head->so_type; 1321 so->so_options = head->so_options; 1322 so->so_linger = head->so_linger; 1323 so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED; 1324 so->so_fibnum = head->so_fibnum; 1325 so->so_proto = head->so_proto; 1326 so->so_cred = crhold(head->so_cred); 1327 #ifdef MAC 1328 mac_socket_newconn(head, so); 1329 #endif 1330 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 1331 so_rdknl_assert_lock); 1332 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 1333 so_wrknl_assert_lock); 1334 VNET_SO_ASSERT(head); 1335 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) { 1336 sodealloc(so); 1337 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 1338 __func__, head->so_pcb); 1339 return (NULL); 1340 } 1341 if (so->so_proto->pr_attach(so, 0, NULL)) { 1342 sodealloc(so); 1343 log(LOG_DEBUG, "%s: pcb %p: pr_attach() failed\n", 1344 __func__, head->so_pcb); 1345 return (NULL); 1346 } 1347 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; 1348 so->so_snd.sb_lowat = head->so_snd.sb_lowat; 1349 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; 1350 so->so_snd.sb_timeo = head->so_snd.sb_timeo; 1351 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE; 1352 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE; 1353 if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) { 1354 so->so_snd.sb_mtx = &so->so_snd_mtx; 1355 so->so_rcv.sb_mtx = &so->so_rcv_mtx; 1356 } 1357 1358 soref(so); 1359 1360 return (so); 1361 } 1362 #endif /* SCTP */ 1363 1364 int 1365 sobind(struct socket *so, struct sockaddr *nam, struct thread *td) 1366 { 1367 int error; 1368 1369 CURVNET_SET(so->so_vnet); 1370 error = so->so_proto->pr_bind(so, nam, td); 1371 CURVNET_RESTORE(); 1372 return (error); 1373 } 1374 1375 int 1376 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 1377 { 1378 int error; 1379 1380 CURVNET_SET(so->so_vnet); 1381 error = so->so_proto->pr_bindat(fd, so, nam, td); 1382 CURVNET_RESTORE(); 1383 return (error); 1384 } 1385 1386 /* 1387 * solisten() transitions a socket from a non-listening state to a listening 1388 * state, but can also be used to update the listen queue depth on an 1389 * existing listen socket. The protocol will call back into the sockets 1390 * layer using solisten_proto_check() and solisten_proto() to check and set 1391 * socket-layer listen state. Call backs are used so that the protocol can 1392 * acquire both protocol and socket layer locks in whatever order is required 1393 * by the protocol. 1394 * 1395 * Protocol implementors are advised to hold the socket lock across the 1396 * socket-layer test and set to avoid races at the socket layer. 1397 */ 1398 int 1399 solisten(struct socket *so, int backlog, struct thread *td) 1400 { 1401 int error; 1402 1403 CURVNET_SET(so->so_vnet); 1404 error = so->so_proto->pr_listen(so, backlog, td); 1405 CURVNET_RESTORE(); 1406 return (error); 1407 } 1408 1409 /* 1410 * Prepare for a call to solisten_proto(). Acquire all socket buffer locks in 1411 * order to interlock with socket I/O. 1412 */ 1413 int 1414 solisten_proto_check(struct socket *so) 1415 { 1416 SOCK_LOCK_ASSERT(so); 1417 1418 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 1419 SS_ISDISCONNECTING)) != 0) 1420 return (EINVAL); 1421 1422 /* 1423 * Sleeping is not permitted here, so simply fail if userspace is 1424 * attempting to transmit or receive on the socket. This kind of 1425 * transient failure is not ideal, but it should occur only if userspace 1426 * is misusing the socket interfaces. 1427 */ 1428 if (!sx_try_xlock(&so->so_snd_sx)) 1429 return (EAGAIN); 1430 if (!sx_try_xlock(&so->so_rcv_sx)) { 1431 sx_xunlock(&so->so_snd_sx); 1432 return (EAGAIN); 1433 } 1434 mtx_lock(&so->so_snd_mtx); 1435 mtx_lock(&so->so_rcv_mtx); 1436 1437 /* Interlock with soo_aio_queue() and KTLS. */ 1438 if (!SOLISTENING(so)) { 1439 bool ktls; 1440 1441 #ifdef KERN_TLS 1442 ktls = so->so_snd.sb_tls_info != NULL || 1443 so->so_rcv.sb_tls_info != NULL; 1444 #else 1445 ktls = false; 1446 #endif 1447 if (ktls || 1448 (so->so_snd.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0 || 1449 (so->so_rcv.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0) { 1450 solisten_proto_abort(so); 1451 return (EINVAL); 1452 } 1453 } 1454 1455 return (0); 1456 } 1457 1458 /* 1459 * Undo the setup done by solisten_proto_check(). 1460 */ 1461 void 1462 solisten_proto_abort(struct socket *so) 1463 { 1464 mtx_unlock(&so->so_snd_mtx); 1465 mtx_unlock(&so->so_rcv_mtx); 1466 sx_xunlock(&so->so_snd_sx); 1467 sx_xunlock(&so->so_rcv_sx); 1468 } 1469 1470 void 1471 solisten_proto(struct socket *so, int backlog) 1472 { 1473 int sbrcv_lowat, sbsnd_lowat; 1474 u_int sbrcv_hiwat, sbsnd_hiwat; 1475 short sbrcv_flags, sbsnd_flags; 1476 sbintime_t sbrcv_timeo, sbsnd_timeo; 1477 1478 SOCK_LOCK_ASSERT(so); 1479 KASSERT((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 1480 SS_ISDISCONNECTING)) == 0, 1481 ("%s: bad socket state %p", __func__, so)); 1482 1483 if (SOLISTENING(so)) 1484 goto listening; 1485 1486 /* 1487 * Change this socket to listening state. 1488 */ 1489 sbrcv_lowat = so->so_rcv.sb_lowat; 1490 sbsnd_lowat = so->so_snd.sb_lowat; 1491 sbrcv_hiwat = so->so_rcv.sb_hiwat; 1492 sbsnd_hiwat = so->so_snd.sb_hiwat; 1493 sbrcv_flags = so->so_rcv.sb_flags; 1494 sbsnd_flags = so->so_snd.sb_flags; 1495 sbrcv_timeo = so->so_rcv.sb_timeo; 1496 sbsnd_timeo = so->so_snd.sb_timeo; 1497 1498 #ifdef MAC 1499 mac_socketpeer_label_free(so->so_peerlabel); 1500 #endif 1501 1502 if (!(so->so_proto->pr_flags & PR_SOCKBUF)) { 1503 sbdestroy(so, SO_SND); 1504 sbdestroy(so, SO_RCV); 1505 } 1506 1507 #ifdef INVARIANTS 1508 bzero(&so->so_rcv, 1509 sizeof(struct socket) - offsetof(struct socket, so_rcv)); 1510 #endif 1511 1512 so->sol_sbrcv_lowat = sbrcv_lowat; 1513 so->sol_sbsnd_lowat = sbsnd_lowat; 1514 so->sol_sbrcv_hiwat = sbrcv_hiwat; 1515 so->sol_sbsnd_hiwat = sbsnd_hiwat; 1516 so->sol_sbrcv_flags = sbrcv_flags; 1517 so->sol_sbsnd_flags = sbsnd_flags; 1518 so->sol_sbrcv_timeo = sbrcv_timeo; 1519 so->sol_sbsnd_timeo = sbsnd_timeo; 1520 1521 so->sol_qlen = so->sol_incqlen = 0; 1522 TAILQ_INIT(&so->sol_incomp); 1523 TAILQ_INIT(&so->sol_comp); 1524 1525 so->sol_accept_filter = NULL; 1526 so->sol_accept_filter_arg = NULL; 1527 so->sol_accept_filter_str = NULL; 1528 1529 so->sol_upcall = NULL; 1530 so->sol_upcallarg = NULL; 1531 1532 so->so_options |= SO_ACCEPTCONN; 1533 1534 listening: 1535 if (backlog < 0 || backlog > V_somaxconn) 1536 backlog = V_somaxconn; 1537 so->sol_qlimit = backlog; 1538 1539 mtx_unlock(&so->so_snd_mtx); 1540 mtx_unlock(&so->so_rcv_mtx); 1541 sx_xunlock(&so->so_snd_sx); 1542 sx_xunlock(&so->so_rcv_sx); 1543 } 1544 1545 /* 1546 * Wakeup listeners/subsystems once we have a complete connection. 1547 * Enters with lock, returns unlocked. 1548 */ 1549 void 1550 solisten_wakeup(struct socket *sol) 1551 { 1552 1553 if (sol->sol_upcall != NULL) 1554 (void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT); 1555 else { 1556 selwakeuppri(&sol->so_rdsel, PSOCK); 1557 KNOTE_LOCKED(&sol->so_rdsel.si_note, 0); 1558 } 1559 SOLISTEN_UNLOCK(sol); 1560 wakeup_one(&sol->sol_comp); 1561 if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL) 1562 pgsigio(&sol->so_sigio, SIGIO, 0); 1563 } 1564 1565 /* 1566 * Return single connection off a listening socket queue. Main consumer of 1567 * the function is kern_accept4(). Some modules, that do their own accept 1568 * management also use the function. The socket reference held by the 1569 * listen queue is handed to the caller. 1570 * 1571 * Listening socket must be locked on entry and is returned unlocked on 1572 * return. 1573 * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT. 1574 */ 1575 int 1576 solisten_dequeue(struct socket *head, struct socket **ret, int flags) 1577 { 1578 struct socket *so; 1579 int error; 1580 1581 SOLISTEN_LOCK_ASSERT(head); 1582 1583 while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) && 1584 head->so_error == 0) { 1585 error = msleep(&head->sol_comp, SOCK_MTX(head), PSOCK | PCATCH, 1586 "accept", 0); 1587 if (error != 0) { 1588 SOLISTEN_UNLOCK(head); 1589 return (error); 1590 } 1591 } 1592 if (head->so_error) { 1593 error = head->so_error; 1594 head->so_error = 0; 1595 } else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp)) 1596 error = EWOULDBLOCK; 1597 else 1598 error = 0; 1599 if (error) { 1600 SOLISTEN_UNLOCK(head); 1601 return (error); 1602 } 1603 so = TAILQ_FIRST(&head->sol_comp); 1604 SOCK_LOCK(so); 1605 KASSERT(so->so_qstate == SQ_COMP, 1606 ("%s: so %p not SQ_COMP", __func__, so)); 1607 head->sol_qlen--; 1608 so->so_qstate = SQ_NONE; 1609 so->so_listen = NULL; 1610 TAILQ_REMOVE(&head->sol_comp, so, so_list); 1611 if (flags & ACCEPT4_INHERIT) 1612 so->so_state |= (head->so_state & SS_NBIO); 1613 else 1614 so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0; 1615 SOCK_UNLOCK(so); 1616 sorele_locked(head); 1617 1618 *ret = so; 1619 return (0); 1620 } 1621 1622 static struct so_splice * 1623 so_splice_alloc(off_t max) 1624 { 1625 struct so_splice *sp; 1626 1627 sp = uma_zalloc(splice_zone, M_WAITOK); 1628 sp->src = NULL; 1629 sp->dst = NULL; 1630 sp->max = max > 0 ? max : -1; 1631 do { 1632 sp->wq_index = atomic_fetchadd_32(&splice_index, 1) % 1633 (mp_maxid + 1); 1634 } while (CPU_ABSENT(sp->wq_index)); 1635 sp->state = SPLICE_INIT; 1636 TIMEOUT_TASK_INIT(taskqueue_thread, &sp->timeout, 0, so_splice_timeout, 1637 sp); 1638 return (sp); 1639 } 1640 1641 static void 1642 so_splice_free(struct so_splice *sp) 1643 { 1644 KASSERT(sp->state == SPLICE_CLOSED, 1645 ("so_splice_free: sp %p not closed", sp)); 1646 uma_zfree(splice_zone, sp); 1647 } 1648 1649 static void 1650 so_splice_timeout(void *arg, int pending __unused) 1651 { 1652 struct so_splice *sp; 1653 1654 sp = arg; 1655 (void)so_unsplice(sp->src, true); 1656 } 1657 1658 /* 1659 * Splice the output from so to the input of so2. 1660 */ 1661 static int 1662 so_splice(struct socket *so, struct socket *so2, struct splice *splice) 1663 { 1664 struct so_splice *sp; 1665 int error; 1666 1667 if (splice->sp_max < 0) 1668 return (EINVAL); 1669 /* Handle only TCP for now; TODO: other streaming protos */ 1670 if (so->so_proto->pr_protocol != IPPROTO_TCP || 1671 so2->so_proto->pr_protocol != IPPROTO_TCP) 1672 return (EPROTONOSUPPORT); 1673 if (so->so_vnet != so2->so_vnet) 1674 return (EINVAL); 1675 1676 /* so_splice_xfer() assumes that we're using these implementations. */ 1677 KASSERT(so->so_proto->pr_sosend == sosend_generic, 1678 ("so_splice: sosend not sosend_generic")); 1679 KASSERT(so2->so_proto->pr_soreceive == soreceive_generic || 1680 so2->so_proto->pr_soreceive == soreceive_stream, 1681 ("so_splice: soreceive not soreceive_generic/stream")); 1682 1683 sp = so_splice_alloc(splice->sp_max); 1684 so->so_splice_sent = 0; 1685 sp->src = so; 1686 sp->dst = so2; 1687 1688 error = 0; 1689 SOCK_LOCK(so); 1690 if (SOLISTENING(so)) 1691 error = EINVAL; 1692 else if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING)) == 0) 1693 error = ENOTCONN; 1694 else if (so->so_splice != NULL) 1695 error = EBUSY; 1696 if (error != 0) { 1697 SOCK_UNLOCK(so); 1698 uma_zfree(splice_zone, sp); 1699 return (error); 1700 } 1701 SOCK_RECVBUF_LOCK(so); 1702 if (so->so_rcv.sb_tls_info != NULL) { 1703 SOCK_RECVBUF_UNLOCK(so); 1704 SOCK_UNLOCK(so); 1705 uma_zfree(splice_zone, sp); 1706 return (EINVAL); 1707 } 1708 so->so_rcv.sb_flags |= SB_SPLICED; 1709 so->so_splice = sp; 1710 soref(so); 1711 SOCK_RECVBUF_UNLOCK(so); 1712 SOCK_UNLOCK(so); 1713 1714 error = 0; 1715 SOCK_LOCK(so2); 1716 if (SOLISTENING(so2)) 1717 error = EINVAL; 1718 else if ((so2->so_state & (SS_ISCONNECTED | SS_ISCONNECTING)) == 0) 1719 error = ENOTCONN; 1720 else if (so2->so_splice_back != NULL) 1721 error = EBUSY; 1722 if (error != 0) { 1723 SOCK_UNLOCK(so2); 1724 so_unsplice(so, false); 1725 return (error); 1726 } 1727 SOCK_SENDBUF_LOCK(so2); 1728 if (so->so_snd.sb_tls_info != NULL) { 1729 SOCK_SENDBUF_UNLOCK(so2); 1730 SOCK_UNLOCK(so2); 1731 so_unsplice(so, false); 1732 return (EINVAL); 1733 } 1734 so2->so_snd.sb_flags |= SB_SPLICED; 1735 so2->so_splice_back = sp; 1736 soref(so2); 1737 mtx_lock(&sp->mtx); 1738 SOCK_SENDBUF_UNLOCK(so2); 1739 SOCK_UNLOCK(so2); 1740 1741 if (splice->sp_idle.tv_sec != 0 || splice->sp_idle.tv_usec != 0) { 1742 taskqueue_enqueue_timeout_sbt(taskqueue_thread, &sp->timeout, 1743 tvtosbt(splice->sp_idle), 0, C_PREL(4)); 1744 } 1745 1746 /* 1747 * Transfer any data already present in the socket buffer. 1748 */ 1749 KASSERT(sp->state == SPLICE_INIT, 1750 ("so_splice: splice %p state %d", sp, sp->state)); 1751 sp->state = SPLICE_QUEUED; 1752 so_splice_xfer(sp); 1753 return (0); 1754 } 1755 1756 static int 1757 so_unsplice(struct socket *so, bool timeout) 1758 { 1759 struct socket *so2; 1760 struct so_splice *sp; 1761 bool drain, so2rele; 1762 1763 /* 1764 * First unset SB_SPLICED and hide the splice structure so that 1765 * wakeup routines will stop enqueuing work. This also ensures that 1766 * a only a single thread will proceed with the unsplice. 1767 */ 1768 SOCK_LOCK(so); 1769 if (SOLISTENING(so)) { 1770 SOCK_UNLOCK(so); 1771 return (EINVAL); 1772 } 1773 SOCK_RECVBUF_LOCK(so); 1774 if ((so->so_rcv.sb_flags & SB_SPLICED) == 0) { 1775 SOCK_RECVBUF_UNLOCK(so); 1776 SOCK_UNLOCK(so); 1777 return (ENOTCONN); 1778 } 1779 sp = so->so_splice; 1780 mtx_lock(&sp->mtx); 1781 if (sp->state == SPLICE_INIT) { 1782 /* 1783 * A splice is in the middle of being set up. 1784 */ 1785 mtx_unlock(&sp->mtx); 1786 SOCK_RECVBUF_UNLOCK(so); 1787 SOCK_UNLOCK(so); 1788 return (ENOTCONN); 1789 } 1790 mtx_unlock(&sp->mtx); 1791 so->so_rcv.sb_flags &= ~SB_SPLICED; 1792 so->so_splice = NULL; 1793 SOCK_RECVBUF_UNLOCK(so); 1794 SOCK_UNLOCK(so); 1795 1796 so2 = sp->dst; 1797 SOCK_LOCK(so2); 1798 KASSERT(!SOLISTENING(so2), ("%s: so2 is listening", __func__)); 1799 SOCK_SENDBUF_LOCK(so2); 1800 KASSERT(sp->state == SPLICE_INIT || 1801 (so2->so_snd.sb_flags & SB_SPLICED) != 0, 1802 ("%s: so2 is not spliced", __func__)); 1803 KASSERT(sp->state == SPLICE_INIT || 1804 so2->so_splice_back == sp, 1805 ("%s: so_splice_back != sp", __func__)); 1806 so2->so_snd.sb_flags &= ~SB_SPLICED; 1807 so2rele = so2->so_splice_back != NULL; 1808 so2->so_splice_back = NULL; 1809 SOCK_SENDBUF_UNLOCK(so2); 1810 SOCK_UNLOCK(so2); 1811 1812 /* 1813 * No new work is being enqueued. The worker thread might be 1814 * splicing data right now, in which case we want to wait for it to 1815 * finish before proceeding. 1816 */ 1817 mtx_lock(&sp->mtx); 1818 switch (sp->state) { 1819 case SPLICE_QUEUED: 1820 case SPLICE_RUNNING: 1821 sp->state = SPLICE_CLOSING; 1822 while (sp->state == SPLICE_CLOSING) 1823 msleep(sp, &sp->mtx, PSOCK, "unsplice", 0); 1824 break; 1825 case SPLICE_INIT: 1826 case SPLICE_IDLE: 1827 case SPLICE_EXCEPTION: 1828 sp->state = SPLICE_CLOSED; 1829 break; 1830 default: 1831 __assert_unreachable(); 1832 } 1833 if (!timeout) { 1834 drain = taskqueue_cancel_timeout(taskqueue_thread, &sp->timeout, 1835 NULL) != 0; 1836 } else { 1837 drain = false; 1838 } 1839 mtx_unlock(&sp->mtx); 1840 if (drain) 1841 taskqueue_drain_timeout(taskqueue_thread, &sp->timeout); 1842 1843 /* 1844 * Now we hold the sole reference to the splice structure. 1845 * Clean up: signal userspace and release socket references. 1846 */ 1847 sorwakeup(so); 1848 CURVNET_SET(so->so_vnet); 1849 sorele(so); 1850 sowwakeup(so2); 1851 if (so2rele) 1852 sorele(so2); 1853 CURVNET_RESTORE(); 1854 so_splice_free(sp); 1855 return (0); 1856 } 1857 1858 /* 1859 * Free socket upon release of the very last reference. 1860 */ 1861 static void 1862 sofree(struct socket *so) 1863 { 1864 struct protosw *pr = so->so_proto; 1865 1866 SOCK_LOCK_ASSERT(so); 1867 KASSERT(refcount_load(&so->so_count) == 0, 1868 ("%s: so %p has references", __func__, so)); 1869 KASSERT(SOLISTENING(so) || so->so_qstate == SQ_NONE, 1870 ("%s: so %p is on listen queue", __func__, so)); 1871 KASSERT(SOLISTENING(so) || (so->so_rcv.sb_flags & SB_SPLICED) == 0, 1872 ("%s: so %p rcvbuf is spliced", __func__, so)); 1873 KASSERT(SOLISTENING(so) || (so->so_snd.sb_flags & SB_SPLICED) == 0, 1874 ("%s: so %p sndbuf is spliced", __func__, so)); 1875 KASSERT(so->so_splice == NULL && so->so_splice_back == NULL, 1876 ("%s: so %p has spliced data", __func__, so)); 1877 1878 SOCK_UNLOCK(so); 1879 1880 if (so->so_dtor != NULL) 1881 so->so_dtor(so); 1882 1883 VNET_SO_ASSERT(so); 1884 if (pr->pr_detach != NULL) 1885 pr->pr_detach(so); 1886 1887 if (!(pr->pr_flags & PR_SOCKBUF) && !SOLISTENING(so)) { 1888 /* 1889 * From this point on, we assume that no other references to 1890 * this socket exist anywhere else in the stack. Therefore, 1891 * no locks need to be acquired or held. 1892 */ 1893 #ifdef INVARIANTS 1894 SOCK_SENDBUF_LOCK(so); 1895 SOCK_RECVBUF_LOCK(so); 1896 #endif 1897 sbdestroy(so, SO_SND); 1898 sbdestroy(so, SO_RCV); 1899 #ifdef INVARIANTS 1900 SOCK_SENDBUF_UNLOCK(so); 1901 SOCK_RECVBUF_UNLOCK(so); 1902 #endif 1903 } 1904 seldrain(&so->so_rdsel); 1905 seldrain(&so->so_wrsel); 1906 knlist_destroy(&so->so_rdsel.si_note); 1907 knlist_destroy(&so->so_wrsel.si_note); 1908 sodealloc(so); 1909 } 1910 1911 /* 1912 * Release a reference on a socket while holding the socket lock. 1913 * Unlocks the socket lock before returning. 1914 */ 1915 void 1916 sorele_locked(struct socket *so) 1917 { 1918 SOCK_LOCK_ASSERT(so); 1919 if (refcount_release(&so->so_count)) 1920 sofree(so); 1921 else 1922 SOCK_UNLOCK(so); 1923 } 1924 1925 /* 1926 * Close a socket on last file table reference removal. Initiate disconnect 1927 * if connected. Free socket when disconnect complete. 1928 * 1929 * This function will sorele() the socket. Note that soclose() may be called 1930 * prior to the ref count reaching zero. The actual socket structure will 1931 * not be freed until the ref count reaches zero. 1932 */ 1933 int 1934 soclose(struct socket *so) 1935 { 1936 struct accept_queue lqueue; 1937 int error = 0; 1938 bool listening, last __diagused; 1939 1940 CURVNET_SET(so->so_vnet); 1941 funsetown(&so->so_sigio); 1942 if (so->so_state & SS_ISCONNECTED) { 1943 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 1944 error = sodisconnect(so); 1945 if (error) { 1946 if (error == ENOTCONN) 1947 error = 0; 1948 goto drop; 1949 } 1950 } 1951 1952 if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) { 1953 if ((so->so_state & SS_ISDISCONNECTING) && 1954 (so->so_state & SS_NBIO)) 1955 goto drop; 1956 while (so->so_state & SS_ISCONNECTED) { 1957 error = tsleep(&so->so_timeo, 1958 PSOCK | PCATCH, "soclos", 1959 so->so_linger * hz); 1960 if (error) 1961 break; 1962 } 1963 } 1964 } 1965 1966 drop: 1967 if (so->so_proto->pr_close != NULL) 1968 so->so_proto->pr_close(so); 1969 1970 SOCK_LOCK(so); 1971 if ((listening = SOLISTENING(so))) { 1972 struct socket *sp; 1973 1974 TAILQ_INIT(&lqueue); 1975 TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list); 1976 TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list); 1977 1978 so->sol_qlen = so->sol_incqlen = 0; 1979 1980 TAILQ_FOREACH(sp, &lqueue, so_list) { 1981 SOCK_LOCK(sp); 1982 sp->so_qstate = SQ_NONE; 1983 sp->so_listen = NULL; 1984 SOCK_UNLOCK(sp); 1985 last = refcount_release(&so->so_count); 1986 KASSERT(!last, ("%s: released last reference for %p", 1987 __func__, so)); 1988 } 1989 } 1990 sorele_locked(so); 1991 if (listening) { 1992 struct socket *sp, *tsp; 1993 1994 TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp) 1995 soabort(sp); 1996 } 1997 CURVNET_RESTORE(); 1998 return (error); 1999 } 2000 2001 /* 2002 * soabort() is used to abruptly tear down a connection, such as when a 2003 * resource limit is reached (listen queue depth exceeded), or if a listen 2004 * socket is closed while there are sockets waiting to be accepted. 2005 * 2006 * This interface is tricky, because it is called on an unreferenced socket, 2007 * and must be called only by a thread that has actually removed the socket 2008 * from the listen queue it was on. Likely this thread holds the last 2009 * reference on the socket and soabort() will proceed with sofree(). But 2010 * it might be not the last, as the sockets on the listen queues are seen 2011 * from the protocol side. 2012 * 2013 * This interface will call into the protocol code, so must not be called 2014 * with any socket locks held. Protocols do call it while holding their own 2015 * recursible protocol mutexes, but this is something that should be subject 2016 * to review in the future. 2017 * 2018 * Usually socket should have a single reference left, but this is not a 2019 * requirement. In the past, when we have had named references for file 2020 * descriptor and protocol, we asserted that none of them are being held. 2021 */ 2022 void 2023 soabort(struct socket *so) 2024 { 2025 2026 VNET_SO_ASSERT(so); 2027 2028 if (so->so_proto->pr_abort != NULL) 2029 so->so_proto->pr_abort(so); 2030 SOCK_LOCK(so); 2031 sorele_locked(so); 2032 } 2033 2034 int 2035 soaccept(struct socket *so, struct sockaddr *sa) 2036 { 2037 #ifdef INVARIANTS 2038 u_char len = sa->sa_len; 2039 #endif 2040 int error; 2041 2042 CURVNET_SET(so->so_vnet); 2043 error = so->so_proto->pr_accept(so, sa); 2044 KASSERT(sa->sa_len <= len, 2045 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto)); 2046 CURVNET_RESTORE(); 2047 return (error); 2048 } 2049 2050 int 2051 sopeeraddr(struct socket *so, struct sockaddr *sa) 2052 { 2053 #ifdef INVARIANTS 2054 u_char len = sa->sa_len; 2055 #endif 2056 int error; 2057 2058 CURVNET_ASSERT_SET(); 2059 2060 error = so->so_proto->pr_peeraddr(so, sa); 2061 KASSERT(sa->sa_len <= len, 2062 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto)); 2063 2064 return (error); 2065 } 2066 2067 int 2068 sosockaddr(struct socket *so, struct sockaddr *sa) 2069 { 2070 #ifdef INVARIANTS 2071 u_char len = sa->sa_len; 2072 #endif 2073 int error; 2074 2075 CURVNET_SET(so->so_vnet); 2076 error = so->so_proto->pr_sockaddr(so, sa); 2077 KASSERT(sa->sa_len <= len, 2078 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto)); 2079 CURVNET_RESTORE(); 2080 2081 return (error); 2082 } 2083 2084 int 2085 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td) 2086 { 2087 2088 return (soconnectat(AT_FDCWD, so, nam, td)); 2089 } 2090 2091 int 2092 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 2093 { 2094 int error; 2095 2096 CURVNET_SET(so->so_vnet); 2097 2098 /* 2099 * If protocol is connection-based, can only connect once. 2100 * Otherwise, if connected, try to disconnect first. This allows 2101 * user to disconnect by connecting to, e.g., a null address. 2102 * 2103 * Note, this check is racy and may need to be re-evaluated at the 2104 * protocol layer. 2105 */ 2106 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 2107 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 2108 (error = sodisconnect(so)))) { 2109 error = EISCONN; 2110 } else { 2111 /* 2112 * Prevent accumulated error from previous connection from 2113 * biting us. 2114 */ 2115 so->so_error = 0; 2116 if (fd == AT_FDCWD) { 2117 error = so->so_proto->pr_connect(so, nam, td); 2118 } else { 2119 error = so->so_proto->pr_connectat(fd, so, nam, td); 2120 } 2121 } 2122 CURVNET_RESTORE(); 2123 2124 return (error); 2125 } 2126 2127 int 2128 soconnect2(struct socket *so1, struct socket *so2) 2129 { 2130 int error; 2131 2132 CURVNET_SET(so1->so_vnet); 2133 error = so1->so_proto->pr_connect2(so1, so2); 2134 CURVNET_RESTORE(); 2135 return (error); 2136 } 2137 2138 int 2139 sodisconnect(struct socket *so) 2140 { 2141 int error; 2142 2143 if ((so->so_state & SS_ISCONNECTED) == 0) 2144 return (ENOTCONN); 2145 if (so->so_state & SS_ISDISCONNECTING) 2146 return (EALREADY); 2147 VNET_SO_ASSERT(so); 2148 error = so->so_proto->pr_disconnect(so); 2149 return (error); 2150 } 2151 2152 int 2153 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, 2154 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 2155 { 2156 long space; 2157 ssize_t resid; 2158 int clen = 0, error, dontroute; 2159 2160 KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM")); 2161 KASSERT(so->so_proto->pr_flags & PR_ATOMIC, 2162 ("sosend_dgram: !PR_ATOMIC")); 2163 2164 if (uio != NULL) 2165 resid = uio->uio_resid; 2166 else 2167 resid = top->m_pkthdr.len; 2168 /* 2169 * In theory resid should be unsigned. However, space must be 2170 * signed, as it might be less than 0 if we over-committed, and we 2171 * must use a signed comparison of space and resid. On the other 2172 * hand, a negative resid causes us to loop sending 0-length 2173 * segments to the protocol. 2174 */ 2175 if (resid < 0) { 2176 error = EINVAL; 2177 goto out; 2178 } 2179 2180 dontroute = 2181 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0; 2182 if (td != NULL) 2183 td->td_ru.ru_msgsnd++; 2184 if (control != NULL) 2185 clen = control->m_len; 2186 2187 SOCKBUF_LOCK(&so->so_snd); 2188 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 2189 SOCKBUF_UNLOCK(&so->so_snd); 2190 error = EPIPE; 2191 goto out; 2192 } 2193 if (so->so_error) { 2194 error = so->so_error; 2195 so->so_error = 0; 2196 SOCKBUF_UNLOCK(&so->so_snd); 2197 goto out; 2198 } 2199 if ((so->so_state & SS_ISCONNECTED) == 0) { 2200 /* 2201 * `sendto' and `sendmsg' is allowed on a connection-based 2202 * socket if it supports implied connect. Return ENOTCONN if 2203 * not connected and no address is supplied. 2204 */ 2205 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 2206 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 2207 if (!(resid == 0 && clen != 0)) { 2208 SOCKBUF_UNLOCK(&so->so_snd); 2209 error = ENOTCONN; 2210 goto out; 2211 } 2212 } else if (addr == NULL) { 2213 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 2214 error = ENOTCONN; 2215 else 2216 error = EDESTADDRREQ; 2217 SOCKBUF_UNLOCK(&so->so_snd); 2218 goto out; 2219 } 2220 } 2221 2222 /* 2223 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a 2224 * problem and need fixing. 2225 */ 2226 space = sbspace(&so->so_snd); 2227 if (flags & MSG_OOB) 2228 space += 1024; 2229 space -= clen; 2230 SOCKBUF_UNLOCK(&so->so_snd); 2231 if (resid > space) { 2232 error = EMSGSIZE; 2233 goto out; 2234 } 2235 if (uio == NULL) { 2236 resid = 0; 2237 if (flags & MSG_EOR) 2238 top->m_flags |= M_EOR; 2239 } else { 2240 /* 2241 * Copy the data from userland into a mbuf chain. 2242 * If no data is to be copied in, a single empty mbuf 2243 * is returned. 2244 */ 2245 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr, 2246 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0))); 2247 if (top == NULL) { 2248 error = EFAULT; /* only possible error */ 2249 goto out; 2250 } 2251 space -= resid - uio->uio_resid; 2252 resid = uio->uio_resid; 2253 } 2254 KASSERT(resid == 0, ("sosend_dgram: resid != 0")); 2255 /* 2256 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock 2257 * than with. 2258 */ 2259 if (dontroute) { 2260 SOCK_LOCK(so); 2261 so->so_options |= SO_DONTROUTE; 2262 SOCK_UNLOCK(so); 2263 } 2264 /* 2265 * XXX all the SBS_CANTSENDMORE checks previously done could be out 2266 * of date. We could have received a reset packet in an interrupt or 2267 * maybe we slept while doing page faults in uiomove() etc. We could 2268 * probably recheck again inside the locking protection here, but 2269 * there are probably other places that this also happens. We must 2270 * rethink this. 2271 */ 2272 VNET_SO_ASSERT(so); 2273 error = so->so_proto->pr_send(so, (flags & MSG_OOB) ? PRUS_OOB : 2274 /* 2275 * If the user set MSG_EOF, the protocol understands this flag and 2276 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND. 2277 */ 2278 ((flags & MSG_EOF) && 2279 (so->so_proto->pr_flags & PR_IMPLOPCL) && 2280 (resid <= 0)) ? 2281 PRUS_EOF : 2282 /* If there is more to send set PRUS_MORETOCOME */ 2283 (flags & MSG_MORETOCOME) || 2284 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 2285 top, addr, control, td); 2286 if (dontroute) { 2287 SOCK_LOCK(so); 2288 so->so_options &= ~SO_DONTROUTE; 2289 SOCK_UNLOCK(so); 2290 } 2291 clen = 0; 2292 control = NULL; 2293 top = NULL; 2294 out: 2295 if (top != NULL) 2296 m_freem(top); 2297 if (control != NULL) 2298 m_freem(control); 2299 return (error); 2300 } 2301 2302 /* 2303 * Send on a socket. If send must go all at once and message is larger than 2304 * send buffering, then hard error. Lock against other senders. If must go 2305 * all at once and not enough room now, then inform user that this would 2306 * block and do nothing. Otherwise, if nonblocking, send as much as 2307 * possible. The data to be sent is described by "uio" if nonzero, otherwise 2308 * by the mbuf chain "top" (which must be null if uio is not). Data provided 2309 * in mbuf chain must be small enough to send all at once. 2310 * 2311 * Returns nonzero on error, timeout or signal; callers must check for short 2312 * counts if EINTR/ERESTART are returned. Data and control buffers are freed 2313 * on return. 2314 */ 2315 static int 2316 sosend_generic_locked(struct socket *so, struct sockaddr *addr, struct uio *uio, 2317 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 2318 { 2319 long space; 2320 ssize_t resid; 2321 int clen = 0, error, dontroute; 2322 int atomic = sosendallatonce(so) || top; 2323 int pr_send_flag; 2324 #ifdef KERN_TLS 2325 struct ktls_session *tls; 2326 int tls_enq_cnt, tls_send_flag; 2327 uint8_t tls_rtype; 2328 2329 tls = NULL; 2330 tls_rtype = TLS_RLTYPE_APP; 2331 #endif 2332 2333 SOCK_IO_SEND_ASSERT_LOCKED(so); 2334 2335 if (uio != NULL) 2336 resid = uio->uio_resid; 2337 else if ((top->m_flags & M_PKTHDR) != 0) 2338 resid = top->m_pkthdr.len; 2339 else 2340 resid = m_length(top, NULL); 2341 /* 2342 * In theory resid should be unsigned. However, space must be 2343 * signed, as it might be less than 0 if we over-committed, and we 2344 * must use a signed comparison of space and resid. On the other 2345 * hand, a negative resid causes us to loop sending 0-length 2346 * segments to the protocol. 2347 * 2348 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 2349 * type sockets since that's an error. 2350 */ 2351 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 2352 error = EINVAL; 2353 goto out; 2354 } 2355 2356 dontroute = 2357 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 2358 (so->so_proto->pr_flags & PR_ATOMIC); 2359 if (td != NULL) 2360 td->td_ru.ru_msgsnd++; 2361 if (control != NULL) 2362 clen = control->m_len; 2363 2364 #ifdef KERN_TLS 2365 tls_send_flag = 0; 2366 tls = ktls_hold(so->so_snd.sb_tls_info); 2367 if (tls != NULL) { 2368 if (tls->mode == TCP_TLS_MODE_SW) 2369 tls_send_flag = PRUS_NOTREADY; 2370 2371 if (control != NULL) { 2372 struct cmsghdr *cm = mtod(control, struct cmsghdr *); 2373 2374 if (clen >= sizeof(*cm) && 2375 cm->cmsg_type == TLS_SET_RECORD_TYPE) { 2376 tls_rtype = *((uint8_t *)CMSG_DATA(cm)); 2377 clen = 0; 2378 m_freem(control); 2379 control = NULL; 2380 atomic = 1; 2381 } 2382 } 2383 2384 if (resid == 0 && !ktls_permit_empty_frames(tls)) { 2385 error = EINVAL; 2386 goto out; 2387 } 2388 } 2389 #endif 2390 2391 restart: 2392 do { 2393 SOCKBUF_LOCK(&so->so_snd); 2394 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 2395 SOCKBUF_UNLOCK(&so->so_snd); 2396 error = EPIPE; 2397 goto out; 2398 } 2399 if (so->so_error) { 2400 error = so->so_error; 2401 so->so_error = 0; 2402 SOCKBUF_UNLOCK(&so->so_snd); 2403 goto out; 2404 } 2405 if ((so->so_state & SS_ISCONNECTED) == 0) { 2406 /* 2407 * `sendto' and `sendmsg' is allowed on a connection- 2408 * based socket if it supports implied connect. 2409 * Return ENOTCONN if not connected and no address is 2410 * supplied. 2411 */ 2412 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 2413 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 2414 if (!(resid == 0 && clen != 0)) { 2415 SOCKBUF_UNLOCK(&so->so_snd); 2416 error = ENOTCONN; 2417 goto out; 2418 } 2419 } else if (addr == NULL) { 2420 SOCKBUF_UNLOCK(&so->so_snd); 2421 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 2422 error = ENOTCONN; 2423 else 2424 error = EDESTADDRREQ; 2425 goto out; 2426 } 2427 } 2428 space = sbspace(&so->so_snd); 2429 if (flags & MSG_OOB) 2430 space += 1024; 2431 if ((atomic && resid > so->so_snd.sb_hiwat) || 2432 clen > so->so_snd.sb_hiwat) { 2433 SOCKBUF_UNLOCK(&so->so_snd); 2434 error = EMSGSIZE; 2435 goto out; 2436 } 2437 if (space < resid + clen && 2438 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 2439 if ((so->so_state & SS_NBIO) || 2440 (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) { 2441 SOCKBUF_UNLOCK(&so->so_snd); 2442 error = EWOULDBLOCK; 2443 goto out; 2444 } 2445 error = sbwait(so, SO_SND); 2446 SOCKBUF_UNLOCK(&so->so_snd); 2447 if (error) 2448 goto out; 2449 goto restart; 2450 } 2451 SOCKBUF_UNLOCK(&so->so_snd); 2452 space -= clen; 2453 do { 2454 if (uio == NULL) { 2455 resid = 0; 2456 if (flags & MSG_EOR) 2457 top->m_flags |= M_EOR; 2458 #ifdef KERN_TLS 2459 if (tls != NULL) { 2460 ktls_frame(top, tls, &tls_enq_cnt, 2461 tls_rtype); 2462 tls_rtype = TLS_RLTYPE_APP; 2463 } 2464 #endif 2465 } else { 2466 /* 2467 * Copy the data from userland into a mbuf 2468 * chain. If resid is 0, which can happen 2469 * only if we have control to send, then 2470 * a single empty mbuf is returned. This 2471 * is a workaround to prevent protocol send 2472 * methods to panic. 2473 */ 2474 #ifdef KERN_TLS 2475 if (tls != NULL) { 2476 top = m_uiotombuf(uio, M_WAITOK, space, 2477 tls->params.max_frame_len, 2478 M_EXTPG | 2479 ((flags & MSG_EOR) ? M_EOR : 0)); 2480 if (top != NULL) { 2481 ktls_frame(top, tls, 2482 &tls_enq_cnt, tls_rtype); 2483 } 2484 tls_rtype = TLS_RLTYPE_APP; 2485 } else 2486 #endif 2487 top = m_uiotombuf(uio, M_WAITOK, space, 2488 (atomic ? max_hdr : 0), 2489 (atomic ? M_PKTHDR : 0) | 2490 ((flags & MSG_EOR) ? M_EOR : 0)); 2491 if (top == NULL) { 2492 error = EFAULT; /* only possible error */ 2493 goto out; 2494 } 2495 space -= resid - uio->uio_resid; 2496 resid = uio->uio_resid; 2497 } 2498 if (dontroute) { 2499 SOCK_LOCK(so); 2500 so->so_options |= SO_DONTROUTE; 2501 SOCK_UNLOCK(so); 2502 } 2503 /* 2504 * XXX all the SBS_CANTSENDMORE checks previously 2505 * done could be out of date. We could have received 2506 * a reset packet in an interrupt or maybe we slept 2507 * while doing page faults in uiomove() etc. We 2508 * could probably recheck again inside the locking 2509 * protection here, but there are probably other 2510 * places that this also happens. We must rethink 2511 * this. 2512 */ 2513 VNET_SO_ASSERT(so); 2514 2515 pr_send_flag = (flags & MSG_OOB) ? PRUS_OOB : 2516 /* 2517 * If the user set MSG_EOF, the protocol understands 2518 * this flag and nothing left to send then use 2519 * PRU_SEND_EOF instead of PRU_SEND. 2520 */ 2521 ((flags & MSG_EOF) && 2522 (so->so_proto->pr_flags & PR_IMPLOPCL) && 2523 (resid <= 0)) ? 2524 PRUS_EOF : 2525 /* If there is more to send set PRUS_MORETOCOME. */ 2526 (flags & MSG_MORETOCOME) || 2527 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0; 2528 2529 #ifdef KERN_TLS 2530 pr_send_flag |= tls_send_flag; 2531 #endif 2532 2533 error = so->so_proto->pr_send(so, pr_send_flag, top, 2534 addr, control, td); 2535 2536 if (dontroute) { 2537 SOCK_LOCK(so); 2538 so->so_options &= ~SO_DONTROUTE; 2539 SOCK_UNLOCK(so); 2540 } 2541 2542 #ifdef KERN_TLS 2543 if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) { 2544 if (error != 0) { 2545 m_freem(top); 2546 top = NULL; 2547 } else { 2548 soref(so); 2549 ktls_enqueue(top, so, tls_enq_cnt); 2550 } 2551 } 2552 #endif 2553 clen = 0; 2554 control = NULL; 2555 top = NULL; 2556 if (error) 2557 goto out; 2558 } while (resid && space > 0); 2559 } while (resid); 2560 2561 out: 2562 #ifdef KERN_TLS 2563 if (tls != NULL) 2564 ktls_free(tls); 2565 #endif 2566 if (top != NULL) 2567 m_freem(top); 2568 if (control != NULL) 2569 m_freem(control); 2570 return (error); 2571 } 2572 2573 int 2574 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio, 2575 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 2576 { 2577 int error; 2578 2579 error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags)); 2580 if (error) 2581 return (error); 2582 error = sosend_generic_locked(so, addr, uio, top, control, flags, td); 2583 SOCK_IO_SEND_UNLOCK(so); 2584 return (error); 2585 } 2586 2587 /* 2588 * Send to a socket from a kernel thread. 2589 * 2590 * XXXGL: in almost all cases uio is NULL and the mbuf is supplied. 2591 * Exception is nfs/bootp_subr.c. It is arguable that the VNET context needs 2592 * to be set at all. This function should just boil down to a static inline 2593 * calling the protocol method. 2594 */ 2595 int 2596 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, 2597 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 2598 { 2599 int error; 2600 2601 CURVNET_SET(so->so_vnet); 2602 error = so->so_proto->pr_sosend(so, addr, uio, 2603 top, control, flags, td); 2604 CURVNET_RESTORE(); 2605 return (error); 2606 } 2607 2608 /* 2609 * send(2), write(2) or aio_write(2) on a socket. 2610 */ 2611 int 2612 sousrsend(struct socket *so, struct sockaddr *addr, struct uio *uio, 2613 struct mbuf *control, int flags, struct proc *userproc) 2614 { 2615 struct thread *td; 2616 ssize_t len; 2617 int error; 2618 2619 td = uio->uio_td; 2620 len = uio->uio_resid; 2621 CURVNET_SET(so->so_vnet); 2622 error = so->so_proto->pr_sosend(so, addr, uio, NULL, control, flags, 2623 td); 2624 CURVNET_RESTORE(); 2625 if (error != 0) { 2626 /* 2627 * Clear transient errors for stream protocols if they made 2628 * some progress. Make exclusion for aio(4) that would 2629 * schedule a new write in case of EWOULDBLOCK and clear 2630 * error itself. See soaio_process_job(). 2631 */ 2632 if (uio->uio_resid != len && 2633 (so->so_proto->pr_flags & PR_ATOMIC) == 0 && 2634 userproc == NULL && 2635 (error == ERESTART || error == EINTR || 2636 error == EWOULDBLOCK)) 2637 error = 0; 2638 /* Generation of SIGPIPE can be controlled per socket. */ 2639 if (error == EPIPE && (so->so_options & SO_NOSIGPIPE) == 0 && 2640 (flags & MSG_NOSIGNAL) == 0) { 2641 if (userproc != NULL) { 2642 /* aio(4) job */ 2643 PROC_LOCK(userproc); 2644 kern_psignal(userproc, SIGPIPE); 2645 PROC_UNLOCK(userproc); 2646 } else { 2647 PROC_LOCK(td->td_proc); 2648 tdsignal(td, SIGPIPE); 2649 PROC_UNLOCK(td->td_proc); 2650 } 2651 } 2652 } 2653 return (error); 2654 } 2655 2656 /* 2657 * The part of soreceive() that implements reading non-inline out-of-band 2658 * data from a socket. For more complete comments, see soreceive(), from 2659 * which this code originated. 2660 * 2661 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is 2662 * unable to return an mbuf chain to the caller. 2663 */ 2664 static int 2665 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags) 2666 { 2667 struct protosw *pr = so->so_proto; 2668 struct mbuf *m; 2669 int error; 2670 2671 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); 2672 VNET_SO_ASSERT(so); 2673 2674 m = m_get(M_WAITOK, MT_DATA); 2675 error = pr->pr_rcvoob(so, m, flags & MSG_PEEK); 2676 if (error) 2677 goto bad; 2678 do { 2679 error = uiomove(mtod(m, void *), 2680 (int) min(uio->uio_resid, m->m_len), uio); 2681 m = m_free(m); 2682 } while (uio->uio_resid && error == 0 && m); 2683 bad: 2684 if (m != NULL) 2685 m_freem(m); 2686 return (error); 2687 } 2688 2689 /* 2690 * Following replacement or removal of the first mbuf on the first mbuf chain 2691 * of a socket buffer, push necessary state changes back into the socket 2692 * buffer so that other consumers see the values consistently. 'nextrecord' 2693 * is the callers locally stored value of the original value of 2694 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. 2695 * NOTE: 'nextrecord' may be NULL. 2696 */ 2697 static __inline void 2698 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) 2699 { 2700 2701 SOCKBUF_LOCK_ASSERT(sb); 2702 /* 2703 * First, update for the new value of nextrecord. If necessary, make 2704 * it the first record. 2705 */ 2706 if (sb->sb_mb != NULL) 2707 sb->sb_mb->m_nextpkt = nextrecord; 2708 else 2709 sb->sb_mb = nextrecord; 2710 2711 /* 2712 * Now update any dependent socket buffer fields to reflect the new 2713 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the 2714 * addition of a second clause that takes care of the case where 2715 * sb_mb has been updated, but remains the last record. 2716 */ 2717 if (sb->sb_mb == NULL) { 2718 sb->sb_mbtail = NULL; 2719 sb->sb_lastrecord = NULL; 2720 } else if (sb->sb_mb->m_nextpkt == NULL) 2721 sb->sb_lastrecord = sb->sb_mb; 2722 } 2723 2724 /* 2725 * Implement receive operations on a socket. We depend on the way that 2726 * records are added to the sockbuf by sbappend. In particular, each record 2727 * (mbufs linked through m_next) must begin with an address if the protocol 2728 * so specifies, followed by an optional mbuf or mbufs containing ancillary 2729 * data, and then zero or more mbufs of data. In order to allow parallelism 2730 * between network receive and copying to user space, as well as avoid 2731 * sleeping with a mutex held, we release the socket buffer mutex during the 2732 * user space copy. Although the sockbuf is locked, new data may still be 2733 * appended, and thus we must maintain consistency of the sockbuf during that 2734 * time. 2735 * 2736 * The caller may receive the data as a single mbuf chain by supplying an 2737 * mbuf **mp0 for use in returning the chain. The uio is then used only for 2738 * the count in uio_resid. 2739 */ 2740 static int 2741 soreceive_generic_locked(struct socket *so, struct sockaddr **psa, 2742 struct uio *uio, struct mbuf **mp, struct mbuf **controlp, int *flagsp) 2743 { 2744 struct mbuf *m; 2745 int flags, error, offset; 2746 ssize_t len; 2747 struct protosw *pr = so->so_proto; 2748 struct mbuf *nextrecord; 2749 int moff, type = 0; 2750 ssize_t orig_resid = uio->uio_resid; 2751 bool report_real_len = false; 2752 2753 SOCK_IO_RECV_ASSERT_LOCKED(so); 2754 2755 error = 0; 2756 if (flagsp != NULL) { 2757 report_real_len = *flagsp & MSG_TRUNC; 2758 *flagsp &= ~MSG_TRUNC; 2759 flags = *flagsp &~ MSG_EOR; 2760 } else 2761 flags = 0; 2762 2763 restart: 2764 SOCKBUF_LOCK(&so->so_rcv); 2765 m = so->so_rcv.sb_mb; 2766 /* 2767 * If we have less data than requested, block awaiting more (subject 2768 * to any timeout) if: 2769 * 1. the current count is less than the low water mark, or 2770 * 2. MSG_DONTWAIT is not set 2771 */ 2772 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 2773 sbavail(&so->so_rcv) < uio->uio_resid) && 2774 sbavail(&so->so_rcv) < so->so_rcv.sb_lowat && 2775 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 2776 KASSERT(m != NULL || !sbavail(&so->so_rcv), 2777 ("receive: m == %p sbavail == %u", 2778 m, sbavail(&so->so_rcv))); 2779 if (so->so_error || so->so_rerror) { 2780 if (m != NULL) 2781 goto dontblock; 2782 if (so->so_error) 2783 error = so->so_error; 2784 else 2785 error = so->so_rerror; 2786 if ((flags & MSG_PEEK) == 0) { 2787 if (so->so_error) 2788 so->so_error = 0; 2789 else 2790 so->so_rerror = 0; 2791 } 2792 SOCKBUF_UNLOCK(&so->so_rcv); 2793 goto release; 2794 } 2795 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2796 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 2797 if (m != NULL) 2798 goto dontblock; 2799 #ifdef KERN_TLS 2800 else if (so->so_rcv.sb_tlsdcc == 0 && 2801 so->so_rcv.sb_tlscc == 0) { 2802 #else 2803 else { 2804 #endif 2805 SOCKBUF_UNLOCK(&so->so_rcv); 2806 goto release; 2807 } 2808 } 2809 for (; m != NULL; m = m->m_next) 2810 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 2811 m = so->so_rcv.sb_mb; 2812 goto dontblock; 2813 } 2814 if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED | 2815 SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 && 2816 (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) { 2817 SOCKBUF_UNLOCK(&so->so_rcv); 2818 error = ENOTCONN; 2819 goto release; 2820 } 2821 if (uio->uio_resid == 0 && !report_real_len) { 2822 SOCKBUF_UNLOCK(&so->so_rcv); 2823 goto release; 2824 } 2825 if ((so->so_state & SS_NBIO) || 2826 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2827 SOCKBUF_UNLOCK(&so->so_rcv); 2828 error = EWOULDBLOCK; 2829 goto release; 2830 } 2831 SBLASTRECORDCHK(&so->so_rcv); 2832 SBLASTMBUFCHK(&so->so_rcv); 2833 error = sbwait(so, SO_RCV); 2834 SOCKBUF_UNLOCK(&so->so_rcv); 2835 if (error) 2836 goto release; 2837 goto restart; 2838 } 2839 dontblock: 2840 /* 2841 * From this point onward, we maintain 'nextrecord' as a cache of the 2842 * pointer to the next record in the socket buffer. We must keep the 2843 * various socket buffer pointers and local stack versions of the 2844 * pointers in sync, pushing out modifications before dropping the 2845 * socket buffer mutex, and re-reading them when picking it up. 2846 * 2847 * Otherwise, we will race with the network stack appending new data 2848 * or records onto the socket buffer by using inconsistent/stale 2849 * versions of the field, possibly resulting in socket buffer 2850 * corruption. 2851 * 2852 * By holding the high-level sblock(), we prevent simultaneous 2853 * readers from pulling off the front of the socket buffer. 2854 */ 2855 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2856 if (uio->uio_td) 2857 uio->uio_td->td_ru.ru_msgrcv++; 2858 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); 2859 SBLASTRECORDCHK(&so->so_rcv); 2860 SBLASTMBUFCHK(&so->so_rcv); 2861 nextrecord = m->m_nextpkt; 2862 if (pr->pr_flags & PR_ADDR) { 2863 KASSERT(m->m_type == MT_SONAME, 2864 ("m->m_type == %d", m->m_type)); 2865 orig_resid = 0; 2866 if (psa != NULL) 2867 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2868 M_NOWAIT); 2869 if (flags & MSG_PEEK) { 2870 m = m->m_next; 2871 } else { 2872 sbfree(&so->so_rcv, m); 2873 so->so_rcv.sb_mb = m_free(m); 2874 m = so->so_rcv.sb_mb; 2875 sockbuf_pushsync(&so->so_rcv, nextrecord); 2876 } 2877 } 2878 2879 /* 2880 * Process one or more MT_CONTROL mbufs present before any data mbufs 2881 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 2882 * just copy the data; if !MSG_PEEK, we call into the protocol to 2883 * perform externalization (or freeing if controlp == NULL). 2884 */ 2885 if (m != NULL && m->m_type == MT_CONTROL) { 2886 struct mbuf *cm = NULL, *cmn; 2887 struct mbuf **cme = &cm; 2888 #ifdef KERN_TLS 2889 struct cmsghdr *cmsg; 2890 struct tls_get_record tgr; 2891 2892 /* 2893 * For MSG_TLSAPPDATA, check for an alert record. 2894 * If found, return ENXIO without removing 2895 * it from the receive queue. This allows a subsequent 2896 * call without MSG_TLSAPPDATA to receive it. 2897 * Note that, for TLS, there should only be a single 2898 * control mbuf with the TLS_GET_RECORD message in it. 2899 */ 2900 if (flags & MSG_TLSAPPDATA) { 2901 cmsg = mtod(m, struct cmsghdr *); 2902 if (cmsg->cmsg_type == TLS_GET_RECORD && 2903 cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) { 2904 memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr)); 2905 if (__predict_false(tgr.tls_type == 2906 TLS_RLTYPE_ALERT)) { 2907 SOCKBUF_UNLOCK(&so->so_rcv); 2908 error = ENXIO; 2909 goto release; 2910 } 2911 } 2912 } 2913 #endif 2914 2915 do { 2916 if (flags & MSG_PEEK) { 2917 if (controlp != NULL) { 2918 *controlp = m_copym(m, 0, m->m_len, 2919 M_NOWAIT); 2920 controlp = &(*controlp)->m_next; 2921 } 2922 m = m->m_next; 2923 } else { 2924 sbfree(&so->so_rcv, m); 2925 so->so_rcv.sb_mb = m->m_next; 2926 m->m_next = NULL; 2927 *cme = m; 2928 cme = &(*cme)->m_next; 2929 m = so->so_rcv.sb_mb; 2930 } 2931 } while (m != NULL && m->m_type == MT_CONTROL); 2932 if ((flags & MSG_PEEK) == 0) 2933 sockbuf_pushsync(&so->so_rcv, nextrecord); 2934 while (cm != NULL) { 2935 cmn = cm->m_next; 2936 cm->m_next = NULL; 2937 if (controlp != NULL) 2938 *controlp = cm; 2939 else 2940 m_freem(cm); 2941 if (controlp != NULL) { 2942 while (*controlp != NULL) 2943 controlp = &(*controlp)->m_next; 2944 } 2945 cm = cmn; 2946 } 2947 if (m != NULL) 2948 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 2949 else 2950 nextrecord = so->so_rcv.sb_mb; 2951 orig_resid = 0; 2952 } 2953 if (m != NULL) { 2954 if ((flags & MSG_PEEK) == 0) { 2955 KASSERT(m->m_nextpkt == nextrecord, 2956 ("soreceive: post-control, nextrecord !sync")); 2957 if (nextrecord == NULL) { 2958 KASSERT(so->so_rcv.sb_mb == m, 2959 ("soreceive: post-control, sb_mb!=m")); 2960 KASSERT(so->so_rcv.sb_lastrecord == m, 2961 ("soreceive: post-control, lastrecord!=m")); 2962 } 2963 } 2964 type = m->m_type; 2965 if (type == MT_OOBDATA) 2966 flags |= MSG_OOB; 2967 } else { 2968 if ((flags & MSG_PEEK) == 0) { 2969 KASSERT(so->so_rcv.sb_mb == nextrecord, 2970 ("soreceive: sb_mb != nextrecord")); 2971 if (so->so_rcv.sb_mb == NULL) { 2972 KASSERT(so->so_rcv.sb_lastrecord == NULL, 2973 ("soreceive: sb_lastercord != NULL")); 2974 } 2975 } 2976 } 2977 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2978 SBLASTRECORDCHK(&so->so_rcv); 2979 SBLASTMBUFCHK(&so->so_rcv); 2980 2981 /* 2982 * Now continue to read any data mbufs off of the head of the socket 2983 * buffer until the read request is satisfied. Note that 'type' is 2984 * used to store the type of any mbuf reads that have happened so far 2985 * such that soreceive() can stop reading if the type changes, which 2986 * causes soreceive() to return only one of regular data and inline 2987 * out-of-band data in a single socket receive operation. 2988 */ 2989 moff = 0; 2990 offset = 0; 2991 while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0 2992 && error == 0) { 2993 /* 2994 * If the type of mbuf has changed since the last mbuf 2995 * examined ('type'), end the receive operation. 2996 */ 2997 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2998 if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) { 2999 if (type != m->m_type) 3000 break; 3001 } else if (type == MT_OOBDATA) 3002 break; 3003 else 3004 KASSERT(m->m_type == MT_DATA, 3005 ("m->m_type == %d", m->m_type)); 3006 so->so_rcv.sb_state &= ~SBS_RCVATMARK; 3007 len = uio->uio_resid; 3008 if (so->so_oobmark && len > so->so_oobmark - offset) 3009 len = so->so_oobmark - offset; 3010 if (len > m->m_len - moff) 3011 len = m->m_len - moff; 3012 /* 3013 * If mp is set, just pass back the mbufs. Otherwise copy 3014 * them out via the uio, then free. Sockbuf must be 3015 * consistent here (points to current mbuf, it points to next 3016 * record) when we drop priority; we must note any additions 3017 * to the sockbuf when we block interrupts again. 3018 */ 3019 if (mp == NULL) { 3020 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 3021 SBLASTRECORDCHK(&so->so_rcv); 3022 SBLASTMBUFCHK(&so->so_rcv); 3023 SOCKBUF_UNLOCK(&so->so_rcv); 3024 if ((m->m_flags & M_EXTPG) != 0) 3025 error = m_unmapped_uiomove(m, moff, uio, 3026 (int)len); 3027 else 3028 error = uiomove(mtod(m, char *) + moff, 3029 (int)len, uio); 3030 SOCKBUF_LOCK(&so->so_rcv); 3031 if (error) { 3032 /* 3033 * The MT_SONAME mbuf has already been removed 3034 * from the record, so it is necessary to 3035 * remove the data mbufs, if any, to preserve 3036 * the invariant in the case of PR_ADDR that 3037 * requires MT_SONAME mbufs at the head of 3038 * each record. 3039 */ 3040 if (pr->pr_flags & PR_ATOMIC && 3041 ((flags & MSG_PEEK) == 0)) 3042 (void)sbdroprecord_locked(&so->so_rcv); 3043 SOCKBUF_UNLOCK(&so->so_rcv); 3044 goto release; 3045 } 3046 } else 3047 uio->uio_resid -= len; 3048 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 3049 if (len == m->m_len - moff) { 3050 if (m->m_flags & M_EOR) 3051 flags |= MSG_EOR; 3052 if (flags & MSG_PEEK) { 3053 m = m->m_next; 3054 moff = 0; 3055 } else { 3056 nextrecord = m->m_nextpkt; 3057 sbfree(&so->so_rcv, m); 3058 if (mp != NULL) { 3059 m->m_nextpkt = NULL; 3060 *mp = m; 3061 mp = &m->m_next; 3062 so->so_rcv.sb_mb = m = m->m_next; 3063 *mp = NULL; 3064 } else { 3065 so->so_rcv.sb_mb = m_free(m); 3066 m = so->so_rcv.sb_mb; 3067 } 3068 sockbuf_pushsync(&so->so_rcv, nextrecord); 3069 SBLASTRECORDCHK(&so->so_rcv); 3070 SBLASTMBUFCHK(&so->so_rcv); 3071 } 3072 } else { 3073 if (flags & MSG_PEEK) 3074 moff += len; 3075 else { 3076 if (mp != NULL) { 3077 if (flags & MSG_DONTWAIT) { 3078 *mp = m_copym(m, 0, len, 3079 M_NOWAIT); 3080 if (*mp == NULL) { 3081 /* 3082 * m_copym() couldn't 3083 * allocate an mbuf. 3084 * Adjust uio_resid back 3085 * (it was adjusted 3086 * down by len bytes, 3087 * which we didn't end 3088 * up "copying" over). 3089 */ 3090 uio->uio_resid += len; 3091 break; 3092 } 3093 } else { 3094 SOCKBUF_UNLOCK(&so->so_rcv); 3095 *mp = m_copym(m, 0, len, 3096 M_WAITOK); 3097 SOCKBUF_LOCK(&so->so_rcv); 3098 } 3099 } 3100 sbcut_locked(&so->so_rcv, len); 3101 } 3102 } 3103 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 3104 if (so->so_oobmark) { 3105 if ((flags & MSG_PEEK) == 0) { 3106 so->so_oobmark -= len; 3107 if (so->so_oobmark == 0) { 3108 so->so_rcv.sb_state |= SBS_RCVATMARK; 3109 break; 3110 } 3111 } else { 3112 offset += len; 3113 if (offset == so->so_oobmark) 3114 break; 3115 } 3116 } 3117 if (flags & MSG_EOR) 3118 break; 3119 /* 3120 * If the MSG_WAITALL flag is set (for non-atomic socket), we 3121 * must not quit until "uio->uio_resid == 0" or an error 3122 * termination. If a signal/timeout occurs, return with a 3123 * short count but without error. Keep sockbuf locked 3124 * against other readers. 3125 */ 3126 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 3127 !sosendallatonce(so) && nextrecord == NULL) { 3128 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 3129 if (so->so_error || so->so_rerror || 3130 so->so_rcv.sb_state & SBS_CANTRCVMORE) 3131 break; 3132 /* 3133 * Notify the protocol that some data has been 3134 * drained before blocking. 3135 */ 3136 if (pr->pr_flags & PR_WANTRCVD) { 3137 SOCKBUF_UNLOCK(&so->so_rcv); 3138 VNET_SO_ASSERT(so); 3139 pr->pr_rcvd(so, flags); 3140 SOCKBUF_LOCK(&so->so_rcv); 3141 if (__predict_false(so->so_rcv.sb_mb == NULL && 3142 (so->so_error || so->so_rerror || 3143 so->so_rcv.sb_state & SBS_CANTRCVMORE))) 3144 break; 3145 } 3146 SBLASTRECORDCHK(&so->so_rcv); 3147 SBLASTMBUFCHK(&so->so_rcv); 3148 /* 3149 * We could receive some data while was notifying 3150 * the protocol. Skip blocking in this case. 3151 */ 3152 if (so->so_rcv.sb_mb == NULL) { 3153 error = sbwait(so, SO_RCV); 3154 if (error) { 3155 SOCKBUF_UNLOCK(&so->so_rcv); 3156 goto release; 3157 } 3158 } 3159 m = so->so_rcv.sb_mb; 3160 if (m != NULL) 3161 nextrecord = m->m_nextpkt; 3162 } 3163 } 3164 3165 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 3166 if (m != NULL && pr->pr_flags & PR_ATOMIC) { 3167 if (report_real_len) 3168 uio->uio_resid -= m_length(m, NULL) - moff; 3169 flags |= MSG_TRUNC; 3170 if ((flags & MSG_PEEK) == 0) 3171 (void) sbdroprecord_locked(&so->so_rcv); 3172 } 3173 if ((flags & MSG_PEEK) == 0) { 3174 if (m == NULL) { 3175 /* 3176 * First part is an inline SB_EMPTY_FIXUP(). Second 3177 * part makes sure sb_lastrecord is up-to-date if 3178 * there is still data in the socket buffer. 3179 */ 3180 so->so_rcv.sb_mb = nextrecord; 3181 if (so->so_rcv.sb_mb == NULL) { 3182 so->so_rcv.sb_mbtail = NULL; 3183 so->so_rcv.sb_lastrecord = NULL; 3184 } else if (nextrecord->m_nextpkt == NULL) 3185 so->so_rcv.sb_lastrecord = nextrecord; 3186 } 3187 SBLASTRECORDCHK(&so->so_rcv); 3188 SBLASTMBUFCHK(&so->so_rcv); 3189 /* 3190 * If soreceive() is being done from the socket callback, 3191 * then don't need to generate ACK to peer to update window, 3192 * since ACK will be generated on return to TCP. 3193 */ 3194 if (!(flags & MSG_SOCALLBCK) && 3195 (pr->pr_flags & PR_WANTRCVD)) { 3196 SOCKBUF_UNLOCK(&so->so_rcv); 3197 VNET_SO_ASSERT(so); 3198 pr->pr_rcvd(so, flags); 3199 SOCKBUF_LOCK(&so->so_rcv); 3200 } 3201 } 3202 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 3203 if (orig_resid == uio->uio_resid && orig_resid && 3204 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { 3205 SOCKBUF_UNLOCK(&so->so_rcv); 3206 goto restart; 3207 } 3208 SOCKBUF_UNLOCK(&so->so_rcv); 3209 3210 if (flagsp != NULL) 3211 *flagsp |= flags; 3212 release: 3213 return (error); 3214 } 3215 3216 int 3217 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio, 3218 struct mbuf **mp, struct mbuf **controlp, int *flagsp) 3219 { 3220 int error, flags; 3221 3222 if (psa != NULL) 3223 *psa = NULL; 3224 if (controlp != NULL) 3225 *controlp = NULL; 3226 if (flagsp != NULL) { 3227 flags = *flagsp; 3228 if ((flags & MSG_OOB) != 0) 3229 return (soreceive_rcvoob(so, uio, flags)); 3230 } else { 3231 flags = 0; 3232 } 3233 if (mp != NULL) 3234 *mp = NULL; 3235 3236 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags)); 3237 if (error) 3238 return (error); 3239 error = soreceive_generic_locked(so, psa, uio, mp, controlp, flagsp); 3240 SOCK_IO_RECV_UNLOCK(so); 3241 return (error); 3242 } 3243 3244 /* 3245 * Optimized version of soreceive() for stream (TCP) sockets. 3246 */ 3247 static int 3248 soreceive_stream_locked(struct socket *so, struct sockbuf *sb, 3249 struct sockaddr **psa, struct uio *uio, struct mbuf **mp0, 3250 struct mbuf **controlp, int flags) 3251 { 3252 int len = 0, error = 0, oresid; 3253 struct mbuf *m, *n = NULL; 3254 3255 SOCK_IO_RECV_ASSERT_LOCKED(so); 3256 3257 /* Easy one, no space to copyout anything. */ 3258 if (uio->uio_resid == 0) 3259 return (EINVAL); 3260 oresid = uio->uio_resid; 3261 3262 SOCKBUF_LOCK(sb); 3263 /* We will never ever get anything unless we are or were connected. */ 3264 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 3265 error = ENOTCONN; 3266 goto out; 3267 } 3268 3269 restart: 3270 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 3271 3272 /* Abort if socket has reported problems. */ 3273 if (so->so_error) { 3274 if (sbavail(sb) > 0) 3275 goto deliver; 3276 if (oresid > uio->uio_resid) 3277 goto out; 3278 error = so->so_error; 3279 if (!(flags & MSG_PEEK)) 3280 so->so_error = 0; 3281 goto out; 3282 } 3283 3284 /* Door is closed. Deliver what is left, if any. */ 3285 if (sb->sb_state & SBS_CANTRCVMORE) { 3286 if (sbavail(sb) > 0) 3287 goto deliver; 3288 else 3289 goto out; 3290 } 3291 3292 /* Socket buffer is empty and we shall not block. */ 3293 if (sbavail(sb) == 0 && 3294 ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) { 3295 error = EAGAIN; 3296 goto out; 3297 } 3298 3299 /* Socket buffer got some data that we shall deliver now. */ 3300 if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) && 3301 ((so->so_state & SS_NBIO) || 3302 (flags & (MSG_DONTWAIT|MSG_NBIO)) || 3303 sbavail(sb) >= sb->sb_lowat || 3304 sbavail(sb) >= uio->uio_resid || 3305 sbavail(sb) >= sb->sb_hiwat) ) { 3306 goto deliver; 3307 } 3308 3309 /* On MSG_WAITALL we must wait until all data or error arrives. */ 3310 if ((flags & MSG_WAITALL) && 3311 (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat)) 3312 goto deliver; 3313 3314 /* 3315 * Wait and block until (more) data comes in. 3316 * NB: Drops the sockbuf lock during wait. 3317 */ 3318 error = sbwait(so, SO_RCV); 3319 if (error) 3320 goto out; 3321 goto restart; 3322 3323 deliver: 3324 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 3325 KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__)); 3326 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__)); 3327 3328 /* Statistics. */ 3329 if (uio->uio_td) 3330 uio->uio_td->td_ru.ru_msgrcv++; 3331 3332 /* Fill uio until full or current end of socket buffer is reached. */ 3333 len = min(uio->uio_resid, sbavail(sb)); 3334 if (mp0 != NULL) { 3335 /* Dequeue as many mbufs as possible. */ 3336 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) { 3337 if (*mp0 == NULL) 3338 *mp0 = sb->sb_mb; 3339 else 3340 m_cat(*mp0, sb->sb_mb); 3341 for (m = sb->sb_mb; 3342 m != NULL && m->m_len <= len; 3343 m = m->m_next) { 3344 KASSERT(!(m->m_flags & M_NOTAVAIL), 3345 ("%s: m %p not available", __func__, m)); 3346 len -= m->m_len; 3347 uio->uio_resid -= m->m_len; 3348 sbfree(sb, m); 3349 n = m; 3350 } 3351 n->m_next = NULL; 3352 sb->sb_mb = m; 3353 sb->sb_lastrecord = sb->sb_mb; 3354 if (sb->sb_mb == NULL) 3355 SB_EMPTY_FIXUP(sb); 3356 } 3357 /* Copy the remainder. */ 3358 if (len > 0) { 3359 KASSERT(sb->sb_mb != NULL, 3360 ("%s: len > 0 && sb->sb_mb empty", __func__)); 3361 3362 m = m_copym(sb->sb_mb, 0, len, M_NOWAIT); 3363 if (m == NULL) 3364 len = 0; /* Don't flush data from sockbuf. */ 3365 else 3366 uio->uio_resid -= len; 3367 if (*mp0 != NULL) 3368 m_cat(*mp0, m); 3369 else 3370 *mp0 = m; 3371 if (*mp0 == NULL) { 3372 error = ENOBUFS; 3373 goto out; 3374 } 3375 } 3376 } else { 3377 /* NB: Must unlock socket buffer as uiomove may sleep. */ 3378 SOCKBUF_UNLOCK(sb); 3379 error = m_mbuftouio(uio, sb->sb_mb, len); 3380 SOCKBUF_LOCK(sb); 3381 if (error) 3382 goto out; 3383 } 3384 SBLASTRECORDCHK(sb); 3385 SBLASTMBUFCHK(sb); 3386 3387 /* 3388 * Remove the delivered data from the socket buffer unless we 3389 * were only peeking. 3390 */ 3391 if (!(flags & MSG_PEEK)) { 3392 if (len > 0) 3393 sbdrop_locked(sb, len); 3394 3395 /* Notify protocol that we drained some data. */ 3396 if ((so->so_proto->pr_flags & PR_WANTRCVD) && 3397 (((flags & MSG_WAITALL) && uio->uio_resid > 0) || 3398 !(flags & MSG_SOCALLBCK))) { 3399 SOCKBUF_UNLOCK(sb); 3400 VNET_SO_ASSERT(so); 3401 so->so_proto->pr_rcvd(so, flags); 3402 SOCKBUF_LOCK(sb); 3403 } 3404 } 3405 3406 /* 3407 * For MSG_WAITALL we may have to loop again and wait for 3408 * more data to come in. 3409 */ 3410 if ((flags & MSG_WAITALL) && uio->uio_resid > 0) 3411 goto restart; 3412 out: 3413 SBLASTRECORDCHK(sb); 3414 SBLASTMBUFCHK(sb); 3415 SOCKBUF_UNLOCK(sb); 3416 return (error); 3417 } 3418 3419 int 3420 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio, 3421 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 3422 { 3423 struct sockbuf *sb; 3424 int error, flags; 3425 3426 sb = &so->so_rcv; 3427 3428 /* We only do stream sockets. */ 3429 if (so->so_type != SOCK_STREAM) 3430 return (EINVAL); 3431 if (psa != NULL) 3432 *psa = NULL; 3433 if (flagsp != NULL) 3434 flags = *flagsp & ~MSG_EOR; 3435 else 3436 flags = 0; 3437 if (controlp != NULL) 3438 *controlp = NULL; 3439 if (flags & MSG_OOB) 3440 return (soreceive_rcvoob(so, uio, flags)); 3441 if (mp0 != NULL) 3442 *mp0 = NULL; 3443 3444 #ifdef KERN_TLS 3445 /* 3446 * KTLS store TLS records as records with a control message to 3447 * describe the framing. 3448 * 3449 * We check once here before acquiring locks to optimize the 3450 * common case. 3451 */ 3452 if (sb->sb_tls_info != NULL) 3453 return (soreceive_generic(so, psa, uio, mp0, controlp, 3454 flagsp)); 3455 #endif 3456 3457 /* 3458 * Prevent other threads from reading from the socket. This lock may be 3459 * dropped in order to sleep waiting for data to arrive. 3460 */ 3461 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags)); 3462 if (error) 3463 return (error); 3464 #ifdef KERN_TLS 3465 if (__predict_false(sb->sb_tls_info != NULL)) { 3466 SOCK_IO_RECV_UNLOCK(so); 3467 return (soreceive_generic(so, psa, uio, mp0, controlp, 3468 flagsp)); 3469 } 3470 #endif 3471 error = soreceive_stream_locked(so, sb, psa, uio, mp0, controlp, flags); 3472 SOCK_IO_RECV_UNLOCK(so); 3473 return (error); 3474 } 3475 3476 /* 3477 * Optimized version of soreceive() for simple datagram cases from userspace. 3478 * Unlike in the stream case, we're able to drop a datagram if copyout() 3479 * fails, and because we handle datagrams atomically, we don't need to use a 3480 * sleep lock to prevent I/O interlacing. 3481 */ 3482 int 3483 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio, 3484 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 3485 { 3486 struct mbuf *m, *m2; 3487 int flags, error; 3488 ssize_t len; 3489 struct protosw *pr = so->so_proto; 3490 struct mbuf *nextrecord; 3491 3492 if (psa != NULL) 3493 *psa = NULL; 3494 if (controlp != NULL) 3495 *controlp = NULL; 3496 if (flagsp != NULL) 3497 flags = *flagsp &~ MSG_EOR; 3498 else 3499 flags = 0; 3500 3501 /* 3502 * For any complicated cases, fall back to the full 3503 * soreceive_generic(). 3504 */ 3505 if (mp0 != NULL || (flags & (MSG_PEEK | MSG_OOB | MSG_TRUNC))) 3506 return (soreceive_generic(so, psa, uio, mp0, controlp, 3507 flagsp)); 3508 3509 /* 3510 * Enforce restrictions on use. 3511 */ 3512 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0, 3513 ("soreceive_dgram: wantrcvd")); 3514 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic")); 3515 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0, 3516 ("soreceive_dgram: SBS_RCVATMARK")); 3517 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0, 3518 ("soreceive_dgram: P_CONNREQUIRED")); 3519 3520 /* 3521 * Loop blocking while waiting for a datagram. 3522 */ 3523 SOCKBUF_LOCK(&so->so_rcv); 3524 while ((m = so->so_rcv.sb_mb) == NULL) { 3525 KASSERT(sbavail(&so->so_rcv) == 0, 3526 ("soreceive_dgram: sb_mb NULL but sbavail %u", 3527 sbavail(&so->so_rcv))); 3528 if (so->so_error) { 3529 error = so->so_error; 3530 so->so_error = 0; 3531 SOCKBUF_UNLOCK(&so->so_rcv); 3532 return (error); 3533 } 3534 if (so->so_rcv.sb_state & SBS_CANTRCVMORE || 3535 uio->uio_resid == 0) { 3536 SOCKBUF_UNLOCK(&so->so_rcv); 3537 return (0); 3538 } 3539 if ((so->so_state & SS_NBIO) || 3540 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 3541 SOCKBUF_UNLOCK(&so->so_rcv); 3542 return (EWOULDBLOCK); 3543 } 3544 SBLASTRECORDCHK(&so->so_rcv); 3545 SBLASTMBUFCHK(&so->so_rcv); 3546 error = sbwait(so, SO_RCV); 3547 if (error) { 3548 SOCKBUF_UNLOCK(&so->so_rcv); 3549 return (error); 3550 } 3551 } 3552 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 3553 3554 if (uio->uio_td) 3555 uio->uio_td->td_ru.ru_msgrcv++; 3556 SBLASTRECORDCHK(&so->so_rcv); 3557 SBLASTMBUFCHK(&so->so_rcv); 3558 nextrecord = m->m_nextpkt; 3559 if (nextrecord == NULL) { 3560 KASSERT(so->so_rcv.sb_lastrecord == m, 3561 ("soreceive_dgram: lastrecord != m")); 3562 } 3563 3564 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord, 3565 ("soreceive_dgram: m_nextpkt != nextrecord")); 3566 3567 /* 3568 * Pull 'm' and its chain off the front of the packet queue. 3569 */ 3570 so->so_rcv.sb_mb = NULL; 3571 sockbuf_pushsync(&so->so_rcv, nextrecord); 3572 3573 /* 3574 * Walk 'm's chain and free that many bytes from the socket buffer. 3575 */ 3576 for (m2 = m; m2 != NULL; m2 = m2->m_next) 3577 sbfree(&so->so_rcv, m2); 3578 3579 /* 3580 * Do a few last checks before we let go of the lock. 3581 */ 3582 SBLASTRECORDCHK(&so->so_rcv); 3583 SBLASTMBUFCHK(&so->so_rcv); 3584 SOCKBUF_UNLOCK(&so->so_rcv); 3585 3586 if (pr->pr_flags & PR_ADDR) { 3587 KASSERT(m->m_type == MT_SONAME, 3588 ("m->m_type == %d", m->m_type)); 3589 if (psa != NULL) 3590 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 3591 M_WAITOK); 3592 m = m_free(m); 3593 } 3594 KASSERT(m, ("%s: no data or control after soname", __func__)); 3595 3596 /* 3597 * Packet to copyout() is now in 'm' and it is disconnected from the 3598 * queue. 3599 * 3600 * Process one or more MT_CONTROL mbufs present before any data mbufs 3601 * in the first mbuf chain on the socket buffer. We call into the 3602 * protocol to perform externalization (or freeing if controlp == 3603 * NULL). In some cases there can be only MT_CONTROL mbufs without 3604 * MT_DATA mbufs. 3605 */ 3606 if (m->m_type == MT_CONTROL) { 3607 struct mbuf *cm = NULL, *cmn; 3608 struct mbuf **cme = &cm; 3609 3610 do { 3611 m2 = m->m_next; 3612 m->m_next = NULL; 3613 *cme = m; 3614 cme = &(*cme)->m_next; 3615 m = m2; 3616 } while (m != NULL && m->m_type == MT_CONTROL); 3617 while (cm != NULL) { 3618 cmn = cm->m_next; 3619 cm->m_next = NULL; 3620 if (controlp != NULL) 3621 *controlp = cm; 3622 else 3623 m_freem(cm); 3624 if (controlp != NULL) { 3625 while (*controlp != NULL) 3626 controlp = &(*controlp)->m_next; 3627 } 3628 cm = cmn; 3629 } 3630 } 3631 KASSERT(m == NULL || m->m_type == MT_DATA, 3632 ("soreceive_dgram: !data")); 3633 while (m != NULL && uio->uio_resid > 0) { 3634 len = uio->uio_resid; 3635 if (len > m->m_len) 3636 len = m->m_len; 3637 error = uiomove(mtod(m, char *), (int)len, uio); 3638 if (error) { 3639 m_freem(m); 3640 return (error); 3641 } 3642 if (len == m->m_len) 3643 m = m_free(m); 3644 else { 3645 m->m_data += len; 3646 m->m_len -= len; 3647 } 3648 } 3649 if (m != NULL) { 3650 flags |= MSG_TRUNC; 3651 m_freem(m); 3652 } 3653 if (flagsp != NULL) 3654 *flagsp |= flags; 3655 return (0); 3656 } 3657 3658 int 3659 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, 3660 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 3661 { 3662 int error; 3663 3664 CURVNET_SET(so->so_vnet); 3665 error = so->so_proto->pr_soreceive(so, psa, uio, mp0, controlp, flagsp); 3666 CURVNET_RESTORE(); 3667 return (error); 3668 } 3669 3670 int 3671 soshutdown(struct socket *so, enum shutdown_how how) 3672 { 3673 int error; 3674 3675 CURVNET_SET(so->so_vnet); 3676 error = so->so_proto->pr_shutdown(so, how); 3677 CURVNET_RESTORE(); 3678 3679 return (error); 3680 } 3681 3682 /* 3683 * Used by several pr_shutdown implementations that use generic socket buffers. 3684 */ 3685 void 3686 sorflush(struct socket *so) 3687 { 3688 int error; 3689 3690 VNET_SO_ASSERT(so); 3691 3692 /* 3693 * Dislodge threads currently blocked in receive and wait to acquire 3694 * a lock against other simultaneous readers before clearing the 3695 * socket buffer. Don't let our acquire be interrupted by a signal 3696 * despite any existing socket disposition on interruptable waiting. 3697 * 3698 * The SOCK_IO_RECV_LOCK() is important here as there some pr_soreceive 3699 * methods that read the top of the socket buffer without acquisition 3700 * of the socket buffer mutex, assuming that top of the buffer 3701 * exclusively belongs to the read(2) syscall. This is handy when 3702 * performing MSG_PEEK. 3703 */ 3704 socantrcvmore(so); 3705 3706 error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR); 3707 if (error != 0) { 3708 KASSERT(SOLISTENING(so), 3709 ("%s: soiolock(%p) failed", __func__, so)); 3710 return; 3711 } 3712 3713 sbrelease(so, SO_RCV); 3714 SOCK_IO_RECV_UNLOCK(so); 3715 3716 } 3717 3718 int 3719 sosetfib(struct socket *so, int fibnum) 3720 { 3721 if (fibnum < 0 || fibnum >= rt_numfibs) 3722 return (EINVAL); 3723 3724 SOCK_LOCK(so); 3725 so->so_fibnum = fibnum; 3726 SOCK_UNLOCK(so); 3727 3728 return (0); 3729 } 3730 3731 #ifdef SOCKET_HHOOK 3732 /* 3733 * Wrapper for Socket established helper hook. 3734 * Parameters: socket, context of the hook point, hook id. 3735 */ 3736 static inline int 3737 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id) 3738 { 3739 struct socket_hhook_data hhook_data = { 3740 .so = so, 3741 .hctx = hctx, 3742 .m = NULL, 3743 .status = 0 3744 }; 3745 3746 CURVNET_SET(so->so_vnet); 3747 HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd); 3748 CURVNET_RESTORE(); 3749 3750 /* Ugly but needed, since hhooks return void for now */ 3751 return (hhook_data.status); 3752 } 3753 #endif 3754 3755 /* 3756 * Perhaps this routine, and sooptcopyout(), below, ought to come in an 3757 * additional variant to handle the case where the option value needs to be 3758 * some kind of integer, but not a specific size. In addition to their use 3759 * here, these functions are also called by the protocol-level pr_ctloutput() 3760 * routines. 3761 */ 3762 int 3763 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen) 3764 { 3765 size_t valsize; 3766 3767 /* 3768 * If the user gives us more than we wanted, we ignore it, but if we 3769 * don't get the minimum length the caller wants, we return EINVAL. 3770 * On success, sopt->sopt_valsize is set to however much we actually 3771 * retrieved. 3772 */ 3773 if ((valsize = sopt->sopt_valsize) < minlen) 3774 return EINVAL; 3775 if (valsize > len) 3776 sopt->sopt_valsize = valsize = len; 3777 3778 if (sopt->sopt_td != NULL) 3779 return (copyin(sopt->sopt_val, buf, valsize)); 3780 3781 bcopy(sopt->sopt_val, buf, valsize); 3782 return (0); 3783 } 3784 3785 /* 3786 * Kernel version of setsockopt(2). 3787 * 3788 * XXX: optlen is size_t, not socklen_t 3789 */ 3790 int 3791 so_setsockopt(struct socket *so, int level, int optname, void *optval, 3792 size_t optlen) 3793 { 3794 struct sockopt sopt; 3795 3796 sopt.sopt_level = level; 3797 sopt.sopt_name = optname; 3798 sopt.sopt_dir = SOPT_SET; 3799 sopt.sopt_val = optval; 3800 sopt.sopt_valsize = optlen; 3801 sopt.sopt_td = NULL; 3802 return (sosetopt(so, &sopt)); 3803 } 3804 3805 int 3806 sosetopt(struct socket *so, struct sockopt *sopt) 3807 { 3808 int error, optval; 3809 struct linger l; 3810 struct timeval tv; 3811 sbintime_t val, *valp; 3812 uint32_t val32; 3813 #ifdef MAC 3814 struct mac extmac; 3815 #endif 3816 3817 CURVNET_SET(so->so_vnet); 3818 error = 0; 3819 if (sopt->sopt_level != SOL_SOCKET) { 3820 error = so->so_proto->pr_ctloutput(so, sopt); 3821 } else { 3822 switch (sopt->sopt_name) { 3823 case SO_ACCEPTFILTER: 3824 error = accept_filt_setopt(so, sopt); 3825 if (error) 3826 goto bad; 3827 break; 3828 3829 case SO_LINGER: 3830 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 3831 if (error) 3832 goto bad; 3833 if (l.l_linger < 0 || 3834 l.l_linger > USHRT_MAX || 3835 l.l_linger > (INT_MAX / hz)) { 3836 error = EDOM; 3837 goto bad; 3838 } 3839 SOCK_LOCK(so); 3840 so->so_linger = l.l_linger; 3841 if (l.l_onoff) 3842 so->so_options |= SO_LINGER; 3843 else 3844 so->so_options &= ~SO_LINGER; 3845 SOCK_UNLOCK(so); 3846 break; 3847 3848 case SO_DEBUG: 3849 case SO_KEEPALIVE: 3850 case SO_DONTROUTE: 3851 case SO_USELOOPBACK: 3852 case SO_BROADCAST: 3853 case SO_REUSEADDR: 3854 case SO_REUSEPORT: 3855 case SO_REUSEPORT_LB: 3856 case SO_OOBINLINE: 3857 case SO_TIMESTAMP: 3858 case SO_BINTIME: 3859 case SO_NOSIGPIPE: 3860 case SO_NO_DDP: 3861 case SO_NO_OFFLOAD: 3862 case SO_RERROR: 3863 error = sooptcopyin(sopt, &optval, sizeof optval, 3864 sizeof optval); 3865 if (error) 3866 goto bad; 3867 SOCK_LOCK(so); 3868 if (optval) 3869 so->so_options |= sopt->sopt_name; 3870 else 3871 so->so_options &= ~sopt->sopt_name; 3872 SOCK_UNLOCK(so); 3873 break; 3874 3875 case SO_SETFIB: 3876 error = so->so_proto->pr_ctloutput(so, sopt); 3877 break; 3878 3879 case SO_USER_COOKIE: 3880 error = sooptcopyin(sopt, &val32, sizeof val32, 3881 sizeof val32); 3882 if (error) 3883 goto bad; 3884 so->so_user_cookie = val32; 3885 break; 3886 3887 case SO_SNDBUF: 3888 case SO_RCVBUF: 3889 case SO_SNDLOWAT: 3890 case SO_RCVLOWAT: 3891 error = so->so_proto->pr_setsbopt(so, sopt); 3892 if (error) 3893 goto bad; 3894 break; 3895 3896 case SO_SNDTIMEO: 3897 case SO_RCVTIMEO: 3898 #ifdef COMPAT_FREEBSD32 3899 if (SV_CURPROC_FLAG(SV_ILP32)) { 3900 struct timeval32 tv32; 3901 3902 error = sooptcopyin(sopt, &tv32, sizeof tv32, 3903 sizeof tv32); 3904 CP(tv32, tv, tv_sec); 3905 CP(tv32, tv, tv_usec); 3906 } else 3907 #endif 3908 error = sooptcopyin(sopt, &tv, sizeof tv, 3909 sizeof tv); 3910 if (error) 3911 goto bad; 3912 if (tv.tv_sec < 0 || tv.tv_usec < 0 || 3913 tv.tv_usec >= 1000000) { 3914 error = EDOM; 3915 goto bad; 3916 } 3917 if (tv.tv_sec > INT32_MAX) 3918 val = SBT_MAX; 3919 else 3920 val = tvtosbt(tv); 3921 SOCK_LOCK(so); 3922 valp = sopt->sopt_name == SO_SNDTIMEO ? 3923 (SOLISTENING(so) ? &so->sol_sbsnd_timeo : 3924 &so->so_snd.sb_timeo) : 3925 (SOLISTENING(so) ? &so->sol_sbrcv_timeo : 3926 &so->so_rcv.sb_timeo); 3927 *valp = val; 3928 SOCK_UNLOCK(so); 3929 break; 3930 3931 case SO_LABEL: 3932 #ifdef MAC 3933 error = sooptcopyin(sopt, &extmac, sizeof extmac, 3934 sizeof extmac); 3935 if (error) 3936 goto bad; 3937 error = mac_setsockopt_label(sopt->sopt_td->td_ucred, 3938 so, &extmac); 3939 #else 3940 error = EOPNOTSUPP; 3941 #endif 3942 break; 3943 3944 case SO_TS_CLOCK: 3945 error = sooptcopyin(sopt, &optval, sizeof optval, 3946 sizeof optval); 3947 if (error) 3948 goto bad; 3949 if (optval < 0 || optval > SO_TS_CLOCK_MAX) { 3950 error = EINVAL; 3951 goto bad; 3952 } 3953 so->so_ts_clock = optval; 3954 break; 3955 3956 case SO_MAX_PACING_RATE: 3957 error = sooptcopyin(sopt, &val32, sizeof(val32), 3958 sizeof(val32)); 3959 if (error) 3960 goto bad; 3961 so->so_max_pacing_rate = val32; 3962 break; 3963 3964 case SO_SPLICE: { 3965 struct splice splice; 3966 3967 #ifdef COMPAT_FREEBSD32 3968 if (SV_CURPROC_FLAG(SV_ILP32)) { 3969 struct splice32 splice32; 3970 3971 error = sooptcopyin(sopt, &splice32, 3972 sizeof(splice32), sizeof(splice32)); 3973 if (error == 0) { 3974 splice.sp_fd = splice32.sp_fd; 3975 splice.sp_max = splice32.sp_max; 3976 CP(splice32.sp_idle, splice.sp_idle, 3977 tv_sec); 3978 CP(splice32.sp_idle, splice.sp_idle, 3979 tv_usec); 3980 } 3981 } else 3982 #endif 3983 { 3984 error = sooptcopyin(sopt, &splice, 3985 sizeof(splice), sizeof(splice)); 3986 } 3987 if (error) 3988 goto bad; 3989 #ifdef KTRACE 3990 if (KTRPOINT(curthread, KTR_STRUCT)) 3991 ktrsplice(&splice); 3992 #endif 3993 3994 error = splice_init(); 3995 if (error != 0) 3996 goto bad; 3997 3998 if (splice.sp_fd >= 0) { 3999 struct file *fp; 4000 struct socket *so2; 4001 4002 if (!cap_rights_contains(sopt->sopt_rights, 4003 &cap_recv_rights)) { 4004 error = ENOTCAPABLE; 4005 goto bad; 4006 } 4007 error = getsock(sopt->sopt_td, splice.sp_fd, 4008 &cap_send_rights, &fp); 4009 if (error != 0) 4010 goto bad; 4011 so2 = fp->f_data; 4012 4013 error = so_splice(so, so2, &splice); 4014 fdrop(fp, sopt->sopt_td); 4015 } else { 4016 error = so_unsplice(so, false); 4017 } 4018 break; 4019 } 4020 default: 4021 #ifdef SOCKET_HHOOK 4022 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 4023 error = hhook_run_socket(so, sopt, 4024 HHOOK_SOCKET_OPT); 4025 else 4026 #endif 4027 error = ENOPROTOOPT; 4028 break; 4029 } 4030 if (error == 0) 4031 (void)so->so_proto->pr_ctloutput(so, sopt); 4032 } 4033 bad: 4034 CURVNET_RESTORE(); 4035 return (error); 4036 } 4037 4038 /* 4039 * Helper routine for getsockopt. 4040 */ 4041 int 4042 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 4043 { 4044 int error; 4045 size_t valsize; 4046 4047 error = 0; 4048 4049 /* 4050 * Documented get behavior is that we always return a value, possibly 4051 * truncated to fit in the user's buffer. Traditional behavior is 4052 * that we always tell the user precisely how much we copied, rather 4053 * than something useful like the total amount we had available for 4054 * her. Note that this interface is not idempotent; the entire 4055 * answer must be generated ahead of time. 4056 */ 4057 valsize = min(len, sopt->sopt_valsize); 4058 sopt->sopt_valsize = valsize; 4059 if (sopt->sopt_val != NULL) { 4060 if (sopt->sopt_td != NULL) 4061 error = copyout(buf, sopt->sopt_val, valsize); 4062 else 4063 bcopy(buf, sopt->sopt_val, valsize); 4064 } 4065 return (error); 4066 } 4067 4068 int 4069 sogetopt(struct socket *so, struct sockopt *sopt) 4070 { 4071 int error, optval; 4072 struct linger l; 4073 struct timeval tv; 4074 #ifdef MAC 4075 struct mac extmac; 4076 #endif 4077 4078 CURVNET_SET(so->so_vnet); 4079 error = 0; 4080 if (sopt->sopt_level != SOL_SOCKET) { 4081 error = so->so_proto->pr_ctloutput(so, sopt); 4082 CURVNET_RESTORE(); 4083 return (error); 4084 } else { 4085 switch (sopt->sopt_name) { 4086 case SO_ACCEPTFILTER: 4087 error = accept_filt_getopt(so, sopt); 4088 break; 4089 4090 case SO_LINGER: 4091 SOCK_LOCK(so); 4092 l.l_onoff = so->so_options & SO_LINGER; 4093 l.l_linger = so->so_linger; 4094 SOCK_UNLOCK(so); 4095 error = sooptcopyout(sopt, &l, sizeof l); 4096 break; 4097 4098 case SO_USELOOPBACK: 4099 case SO_DONTROUTE: 4100 case SO_DEBUG: 4101 case SO_KEEPALIVE: 4102 case SO_REUSEADDR: 4103 case SO_REUSEPORT: 4104 case SO_REUSEPORT_LB: 4105 case SO_BROADCAST: 4106 case SO_OOBINLINE: 4107 case SO_ACCEPTCONN: 4108 case SO_TIMESTAMP: 4109 case SO_BINTIME: 4110 case SO_NOSIGPIPE: 4111 case SO_NO_DDP: 4112 case SO_NO_OFFLOAD: 4113 case SO_RERROR: 4114 optval = so->so_options & sopt->sopt_name; 4115 integer: 4116 error = sooptcopyout(sopt, &optval, sizeof optval); 4117 break; 4118 4119 case SO_FIB: 4120 SOCK_LOCK(so); 4121 optval = so->so_fibnum; 4122 SOCK_UNLOCK(so); 4123 goto integer; 4124 4125 case SO_DOMAIN: 4126 optval = so->so_proto->pr_domain->dom_family; 4127 goto integer; 4128 4129 case SO_TYPE: 4130 optval = so->so_type; 4131 goto integer; 4132 4133 case SO_PROTOCOL: 4134 optval = so->so_proto->pr_protocol; 4135 goto integer; 4136 4137 case SO_ERROR: 4138 SOCK_LOCK(so); 4139 if (so->so_error) { 4140 optval = so->so_error; 4141 so->so_error = 0; 4142 } else { 4143 optval = so->so_rerror; 4144 so->so_rerror = 0; 4145 } 4146 SOCK_UNLOCK(so); 4147 goto integer; 4148 4149 case SO_SNDBUF: 4150 SOCK_LOCK(so); 4151 optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat : 4152 so->so_snd.sb_hiwat; 4153 SOCK_UNLOCK(so); 4154 goto integer; 4155 4156 case SO_RCVBUF: 4157 SOCK_LOCK(so); 4158 optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat : 4159 so->so_rcv.sb_hiwat; 4160 SOCK_UNLOCK(so); 4161 goto integer; 4162 4163 case SO_SNDLOWAT: 4164 SOCK_LOCK(so); 4165 optval = SOLISTENING(so) ? so->sol_sbsnd_lowat : 4166 so->so_snd.sb_lowat; 4167 SOCK_UNLOCK(so); 4168 goto integer; 4169 4170 case SO_RCVLOWAT: 4171 SOCK_LOCK(so); 4172 optval = SOLISTENING(so) ? so->sol_sbrcv_lowat : 4173 so->so_rcv.sb_lowat; 4174 SOCK_UNLOCK(so); 4175 goto integer; 4176 4177 case SO_SNDTIMEO: 4178 case SO_RCVTIMEO: 4179 SOCK_LOCK(so); 4180 tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ? 4181 (SOLISTENING(so) ? so->sol_sbsnd_timeo : 4182 so->so_snd.sb_timeo) : 4183 (SOLISTENING(so) ? so->sol_sbrcv_timeo : 4184 so->so_rcv.sb_timeo)); 4185 SOCK_UNLOCK(so); 4186 #ifdef COMPAT_FREEBSD32 4187 if (SV_CURPROC_FLAG(SV_ILP32)) { 4188 struct timeval32 tv32; 4189 4190 CP(tv, tv32, tv_sec); 4191 CP(tv, tv32, tv_usec); 4192 error = sooptcopyout(sopt, &tv32, sizeof tv32); 4193 } else 4194 #endif 4195 error = sooptcopyout(sopt, &tv, sizeof tv); 4196 break; 4197 4198 case SO_LABEL: 4199 #ifdef MAC 4200 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 4201 sizeof(extmac)); 4202 if (error) 4203 goto bad; 4204 error = mac_getsockopt_label(sopt->sopt_td->td_ucred, 4205 so, &extmac); 4206 if (error) 4207 goto bad; 4208 /* Don't copy out extmac, it is unchanged. */ 4209 #else 4210 error = EOPNOTSUPP; 4211 #endif 4212 break; 4213 4214 case SO_PEERLABEL: 4215 #ifdef MAC 4216 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 4217 sizeof(extmac)); 4218 if (error) 4219 goto bad; 4220 error = mac_getsockopt_peerlabel( 4221 sopt->sopt_td->td_ucred, so, &extmac); 4222 if (error) 4223 goto bad; 4224 /* Don't copy out extmac, it is unchanged. */ 4225 #else 4226 error = EOPNOTSUPP; 4227 #endif 4228 break; 4229 4230 case SO_LISTENQLIMIT: 4231 SOCK_LOCK(so); 4232 optval = SOLISTENING(so) ? so->sol_qlimit : 0; 4233 SOCK_UNLOCK(so); 4234 goto integer; 4235 4236 case SO_LISTENQLEN: 4237 SOCK_LOCK(so); 4238 optval = SOLISTENING(so) ? so->sol_qlen : 0; 4239 SOCK_UNLOCK(so); 4240 goto integer; 4241 4242 case SO_LISTENINCQLEN: 4243 SOCK_LOCK(so); 4244 optval = SOLISTENING(so) ? so->sol_incqlen : 0; 4245 SOCK_UNLOCK(so); 4246 goto integer; 4247 4248 case SO_TS_CLOCK: 4249 optval = so->so_ts_clock; 4250 goto integer; 4251 4252 case SO_MAX_PACING_RATE: 4253 optval = so->so_max_pacing_rate; 4254 goto integer; 4255 4256 case SO_SPLICE: { 4257 off_t n; 4258 4259 /* 4260 * Acquire the I/O lock to serialize with 4261 * so_splice_xfer(). This is not required for 4262 * correctness, but makes testing simpler: once a byte 4263 * has been transmitted to the sink and observed (e.g., 4264 * by reading from the socket to which the sink is 4265 * connected), a subsequent getsockopt(SO_SPLICE) will 4266 * return an up-to-date value. 4267 */ 4268 error = SOCK_IO_RECV_LOCK(so, SBL_WAIT); 4269 if (error != 0) 4270 goto bad; 4271 SOCK_LOCK(so); 4272 if (SOLISTENING(so)) { 4273 n = 0; 4274 } else { 4275 n = so->so_splice_sent; 4276 } 4277 SOCK_UNLOCK(so); 4278 SOCK_IO_RECV_UNLOCK(so); 4279 error = sooptcopyout(sopt, &n, sizeof(n)); 4280 break; 4281 } 4282 4283 default: 4284 #ifdef SOCKET_HHOOK 4285 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 4286 error = hhook_run_socket(so, sopt, 4287 HHOOK_SOCKET_OPT); 4288 else 4289 #endif 4290 error = ENOPROTOOPT; 4291 break; 4292 } 4293 } 4294 bad: 4295 CURVNET_RESTORE(); 4296 return (error); 4297 } 4298 4299 int 4300 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 4301 { 4302 struct mbuf *m, *m_prev; 4303 int sopt_size = sopt->sopt_valsize; 4304 4305 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 4306 if (m == NULL) 4307 return ENOBUFS; 4308 if (sopt_size > MLEN) { 4309 MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT); 4310 if ((m->m_flags & M_EXT) == 0) { 4311 m_free(m); 4312 return ENOBUFS; 4313 } 4314 m->m_len = min(MCLBYTES, sopt_size); 4315 } else { 4316 m->m_len = min(MLEN, sopt_size); 4317 } 4318 sopt_size -= m->m_len; 4319 *mp = m; 4320 m_prev = m; 4321 4322 while (sopt_size) { 4323 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 4324 if (m == NULL) { 4325 m_freem(*mp); 4326 return ENOBUFS; 4327 } 4328 if (sopt_size > MLEN) { 4329 MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK : 4330 M_NOWAIT); 4331 if ((m->m_flags & M_EXT) == 0) { 4332 m_freem(m); 4333 m_freem(*mp); 4334 return ENOBUFS; 4335 } 4336 m->m_len = min(MCLBYTES, sopt_size); 4337 } else { 4338 m->m_len = min(MLEN, sopt_size); 4339 } 4340 sopt_size -= m->m_len; 4341 m_prev->m_next = m; 4342 m_prev = m; 4343 } 4344 return (0); 4345 } 4346 4347 int 4348 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 4349 { 4350 struct mbuf *m0 = m; 4351 4352 if (sopt->sopt_val == NULL) 4353 return (0); 4354 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 4355 if (sopt->sopt_td != NULL) { 4356 int error; 4357 4358 error = copyin(sopt->sopt_val, mtod(m, char *), 4359 m->m_len); 4360 if (error != 0) { 4361 m_freem(m0); 4362 return(error); 4363 } 4364 } else 4365 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 4366 sopt->sopt_valsize -= m->m_len; 4367 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 4368 m = m->m_next; 4369 } 4370 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 4371 panic("ip6_sooptmcopyin"); 4372 return (0); 4373 } 4374 4375 int 4376 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 4377 { 4378 struct mbuf *m0 = m; 4379 size_t valsize = 0; 4380 4381 if (sopt->sopt_val == NULL) 4382 return (0); 4383 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 4384 if (sopt->sopt_td != NULL) { 4385 int error; 4386 4387 error = copyout(mtod(m, char *), sopt->sopt_val, 4388 m->m_len); 4389 if (error != 0) { 4390 m_freem(m0); 4391 return(error); 4392 } 4393 } else 4394 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 4395 sopt->sopt_valsize -= m->m_len; 4396 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 4397 valsize += m->m_len; 4398 m = m->m_next; 4399 } 4400 if (m != NULL) { 4401 /* enough soopt buffer should be given from user-land */ 4402 m_freem(m0); 4403 return(EINVAL); 4404 } 4405 sopt->sopt_valsize = valsize; 4406 return (0); 4407 } 4408 4409 /* 4410 * sohasoutofband(): protocol notifies socket layer of the arrival of new 4411 * out-of-band data, which will then notify socket consumers. 4412 */ 4413 void 4414 sohasoutofband(struct socket *so) 4415 { 4416 4417 if (so->so_sigio != NULL) 4418 pgsigio(&so->so_sigio, SIGURG, 0); 4419 selwakeuppri(&so->so_rdsel, PSOCK); 4420 } 4421 4422 int 4423 sopoll_generic(struct socket *so, int events, struct thread *td) 4424 { 4425 int revents; 4426 4427 SOCK_LOCK(so); 4428 if (SOLISTENING(so)) { 4429 if (!(events & (POLLIN | POLLRDNORM))) 4430 revents = 0; 4431 else if (!TAILQ_EMPTY(&so->sol_comp)) 4432 revents = events & (POLLIN | POLLRDNORM); 4433 else if ((events & POLLINIGNEOF) == 0 && so->so_error) 4434 revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP; 4435 else { 4436 selrecord(td, &so->so_rdsel); 4437 revents = 0; 4438 } 4439 } else { 4440 revents = 0; 4441 SOCK_SENDBUF_LOCK(so); 4442 SOCK_RECVBUF_LOCK(so); 4443 if (events & (POLLIN | POLLRDNORM)) 4444 if (soreadabledata(so) && !isspliced(so)) 4445 revents |= events & (POLLIN | POLLRDNORM); 4446 if (events & (POLLOUT | POLLWRNORM)) 4447 if (sowriteable(so) && !issplicedback(so)) 4448 revents |= events & (POLLOUT | POLLWRNORM); 4449 if (events & (POLLPRI | POLLRDBAND)) 4450 if (so->so_oobmark || 4451 (so->so_rcv.sb_state & SBS_RCVATMARK)) 4452 revents |= events & (POLLPRI | POLLRDBAND); 4453 if ((events & POLLINIGNEOF) == 0) { 4454 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 4455 revents |= events & (POLLIN | POLLRDNORM); 4456 if (so->so_snd.sb_state & SBS_CANTSENDMORE) 4457 revents |= POLLHUP; 4458 } 4459 } 4460 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) 4461 revents |= events & POLLRDHUP; 4462 if (revents == 0) { 4463 if (events & 4464 (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND | POLLRDHUP)) { 4465 selrecord(td, &so->so_rdsel); 4466 so->so_rcv.sb_flags |= SB_SEL; 4467 } 4468 if (events & (POLLOUT | POLLWRNORM)) { 4469 selrecord(td, &so->so_wrsel); 4470 so->so_snd.sb_flags |= SB_SEL; 4471 } 4472 } 4473 SOCK_RECVBUF_UNLOCK(so); 4474 SOCK_SENDBUF_UNLOCK(so); 4475 } 4476 SOCK_UNLOCK(so); 4477 return (revents); 4478 } 4479 4480 int 4481 sokqfilter_generic(struct socket *so, struct knote *kn) 4482 { 4483 struct sockbuf *sb; 4484 sb_which which; 4485 struct knlist *knl; 4486 4487 switch (kn->kn_filter) { 4488 case EVFILT_READ: 4489 kn->kn_fop = &soread_filtops; 4490 knl = &so->so_rdsel.si_note; 4491 sb = &so->so_rcv; 4492 which = SO_RCV; 4493 break; 4494 case EVFILT_WRITE: 4495 kn->kn_fop = &sowrite_filtops; 4496 knl = &so->so_wrsel.si_note; 4497 sb = &so->so_snd; 4498 which = SO_SND; 4499 break; 4500 case EVFILT_EMPTY: 4501 kn->kn_fop = &soempty_filtops; 4502 knl = &so->so_wrsel.si_note; 4503 sb = &so->so_snd; 4504 which = SO_SND; 4505 break; 4506 default: 4507 return (EINVAL); 4508 } 4509 4510 SOCK_LOCK(so); 4511 if (SOLISTENING(so)) { 4512 knlist_add(knl, kn, 1); 4513 } else { 4514 SOCK_BUF_LOCK(so, which); 4515 knlist_add(knl, kn, 1); 4516 sb->sb_flags |= SB_KNOTE; 4517 SOCK_BUF_UNLOCK(so, which); 4518 } 4519 SOCK_UNLOCK(so); 4520 return (0); 4521 } 4522 4523 static void 4524 filt_sordetach(struct knote *kn) 4525 { 4526 struct socket *so = kn->kn_fp->f_data; 4527 4528 so_rdknl_lock(so); 4529 knlist_remove(&so->so_rdsel.si_note, kn, 1); 4530 if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note)) 4531 so->so_rcv.sb_flags &= ~SB_KNOTE; 4532 so_rdknl_unlock(so); 4533 } 4534 4535 /*ARGSUSED*/ 4536 static int 4537 filt_soread(struct knote *kn, long hint) 4538 { 4539 struct socket *so; 4540 4541 so = kn->kn_fp->f_data; 4542 4543 if (SOLISTENING(so)) { 4544 SOCK_LOCK_ASSERT(so); 4545 kn->kn_data = so->sol_qlen; 4546 if (so->so_error) { 4547 kn->kn_flags |= EV_EOF; 4548 kn->kn_fflags = so->so_error; 4549 return (1); 4550 } 4551 return (!TAILQ_EMPTY(&so->sol_comp)); 4552 } 4553 4554 if ((so->so_rcv.sb_flags & SB_SPLICED) != 0) 4555 return (0); 4556 4557 SOCK_RECVBUF_LOCK_ASSERT(so); 4558 4559 kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl; 4560 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 4561 kn->kn_flags |= EV_EOF; 4562 kn->kn_fflags = so->so_error; 4563 return (1); 4564 } else if (so->so_error || so->so_rerror) 4565 return (1); 4566 4567 if (kn->kn_sfflags & NOTE_LOWAT) { 4568 if (kn->kn_data >= kn->kn_sdata) 4569 return (1); 4570 } else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat) 4571 return (1); 4572 4573 #ifdef SOCKET_HHOOK 4574 /* This hook returning non-zero indicates an event, not error */ 4575 return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD)); 4576 #else 4577 return (0); 4578 #endif 4579 } 4580 4581 static void 4582 filt_sowdetach(struct knote *kn) 4583 { 4584 struct socket *so = kn->kn_fp->f_data; 4585 4586 so_wrknl_lock(so); 4587 knlist_remove(&so->so_wrsel.si_note, kn, 1); 4588 if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note)) 4589 so->so_snd.sb_flags &= ~SB_KNOTE; 4590 so_wrknl_unlock(so); 4591 } 4592 4593 /*ARGSUSED*/ 4594 static int 4595 filt_sowrite(struct knote *kn, long hint) 4596 { 4597 struct socket *so; 4598 4599 so = kn->kn_fp->f_data; 4600 4601 if (SOLISTENING(so)) 4602 return (0); 4603 4604 SOCK_SENDBUF_LOCK_ASSERT(so); 4605 kn->kn_data = sbspace(&so->so_snd); 4606 4607 #ifdef SOCKET_HHOOK 4608 hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE); 4609 #endif 4610 4611 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 4612 kn->kn_flags |= EV_EOF; 4613 kn->kn_fflags = so->so_error; 4614 return (1); 4615 } else if (so->so_error) /* temporary udp error */ 4616 return (1); 4617 else if (((so->so_state & SS_ISCONNECTED) == 0) && 4618 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 4619 return (0); 4620 else if (kn->kn_sfflags & NOTE_LOWAT) 4621 return (kn->kn_data >= kn->kn_sdata); 4622 else 4623 return (kn->kn_data >= so->so_snd.sb_lowat); 4624 } 4625 4626 static int 4627 filt_soempty(struct knote *kn, long hint) 4628 { 4629 struct socket *so; 4630 4631 so = kn->kn_fp->f_data; 4632 4633 if (SOLISTENING(so)) 4634 return (1); 4635 4636 SOCK_SENDBUF_LOCK_ASSERT(so); 4637 kn->kn_data = sbused(&so->so_snd); 4638 4639 if (kn->kn_data == 0) 4640 return (1); 4641 else 4642 return (0); 4643 } 4644 4645 int 4646 socheckuid(struct socket *so, uid_t uid) 4647 { 4648 4649 if (so == NULL) 4650 return (EPERM); 4651 if (so->so_cred->cr_uid != uid) 4652 return (EPERM); 4653 return (0); 4654 } 4655 4656 /* 4657 * These functions are used by protocols to notify the socket layer (and its 4658 * consumers) of state changes in the sockets driven by protocol-side events. 4659 */ 4660 4661 /* 4662 * Procedures to manipulate state flags of socket and do appropriate wakeups. 4663 * 4664 * Normal sequence from the active (originating) side is that 4665 * soisconnecting() is called during processing of connect() call, resulting 4666 * in an eventual call to soisconnected() if/when the connection is 4667 * established. When the connection is torn down soisdisconnecting() is 4668 * called during processing of disconnect() call, and soisdisconnected() is 4669 * called when the connection to the peer is totally severed. The semantics 4670 * of these routines are such that connectionless protocols can call 4671 * soisconnected() and soisdisconnected() only, bypassing the in-progress 4672 * calls when setting up a ``connection'' takes no time. 4673 * 4674 * From the passive side, a socket is created with two queues of sockets: 4675 * so_incomp for connections in progress and so_comp for connections already 4676 * made and awaiting user acceptance. As a protocol is preparing incoming 4677 * connections, it creates a socket structure queued on so_incomp by calling 4678 * sonewconn(). When the connection is established, soisconnected() is 4679 * called, and transfers the socket structure to so_comp, making it available 4680 * to accept(). 4681 * 4682 * If a socket is closed with sockets on either so_incomp or so_comp, these 4683 * sockets are dropped. 4684 * 4685 * If higher-level protocols are implemented in the kernel, the wakeups done 4686 * here will sometimes cause software-interrupt process scheduling. 4687 */ 4688 void 4689 soisconnecting(struct socket *so) 4690 { 4691 4692 SOCK_LOCK(so); 4693 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 4694 so->so_state |= SS_ISCONNECTING; 4695 SOCK_UNLOCK(so); 4696 } 4697 4698 void 4699 soisconnected(struct socket *so) 4700 { 4701 bool last __diagused; 4702 4703 SOCK_LOCK(so); 4704 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING); 4705 so->so_state |= SS_ISCONNECTED; 4706 4707 if (so->so_qstate == SQ_INCOMP) { 4708 struct socket *head = so->so_listen; 4709 int ret; 4710 4711 KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so)); 4712 /* 4713 * Promoting a socket from incomplete queue to complete, we 4714 * need to go through reverse order of locking. We first do 4715 * trylock, and if that doesn't succeed, we go the hard way 4716 * leaving a reference and rechecking consistency after proper 4717 * locking. 4718 */ 4719 if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) { 4720 soref(head); 4721 SOCK_UNLOCK(so); 4722 SOLISTEN_LOCK(head); 4723 SOCK_LOCK(so); 4724 if (__predict_false(head != so->so_listen)) { 4725 /* 4726 * The socket went off the listen queue, 4727 * should be lost race to close(2) of sol. 4728 * The socket is about to soabort(). 4729 */ 4730 SOCK_UNLOCK(so); 4731 sorele_locked(head); 4732 return; 4733 } 4734 last = refcount_release(&head->so_count); 4735 KASSERT(!last, ("%s: released last reference for %p", 4736 __func__, head)); 4737 } 4738 again: 4739 if ((so->so_options & SO_ACCEPTFILTER) == 0) { 4740 TAILQ_REMOVE(&head->sol_incomp, so, so_list); 4741 head->sol_incqlen--; 4742 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 4743 head->sol_qlen++; 4744 so->so_qstate = SQ_COMP; 4745 SOCK_UNLOCK(so); 4746 solisten_wakeup(head); /* unlocks */ 4747 } else { 4748 SOCK_RECVBUF_LOCK(so); 4749 soupcall_set(so, SO_RCV, 4750 head->sol_accept_filter->accf_callback, 4751 head->sol_accept_filter_arg); 4752 so->so_options &= ~SO_ACCEPTFILTER; 4753 ret = head->sol_accept_filter->accf_callback(so, 4754 head->sol_accept_filter_arg, M_NOWAIT); 4755 if (ret == SU_ISCONNECTED) { 4756 soupcall_clear(so, SO_RCV); 4757 SOCK_RECVBUF_UNLOCK(so); 4758 goto again; 4759 } 4760 SOCK_RECVBUF_UNLOCK(so); 4761 SOCK_UNLOCK(so); 4762 SOLISTEN_UNLOCK(head); 4763 } 4764 return; 4765 } 4766 SOCK_UNLOCK(so); 4767 wakeup(&so->so_timeo); 4768 sorwakeup(so); 4769 sowwakeup(so); 4770 } 4771 4772 void 4773 soisdisconnecting(struct socket *so) 4774 { 4775 4776 SOCK_LOCK(so); 4777 so->so_state &= ~SS_ISCONNECTING; 4778 so->so_state |= SS_ISDISCONNECTING; 4779 4780 if (!SOLISTENING(so)) { 4781 SOCK_RECVBUF_LOCK(so); 4782 socantrcvmore_locked(so); 4783 SOCK_SENDBUF_LOCK(so); 4784 socantsendmore_locked(so); 4785 } 4786 SOCK_UNLOCK(so); 4787 wakeup(&so->so_timeo); 4788 } 4789 4790 void 4791 soisdisconnected(struct socket *so) 4792 { 4793 4794 SOCK_LOCK(so); 4795 4796 /* 4797 * There is at least one reader of so_state that does not 4798 * acquire socket lock, namely soreceive_generic(). Ensure 4799 * that it never sees all flags that track connection status 4800 * cleared, by ordering the update with a barrier semantic of 4801 * our release thread fence. 4802 */ 4803 so->so_state |= SS_ISDISCONNECTED; 4804 atomic_thread_fence_rel(); 4805 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 4806 4807 if (!SOLISTENING(so)) { 4808 SOCK_UNLOCK(so); 4809 SOCK_RECVBUF_LOCK(so); 4810 socantrcvmore_locked(so); 4811 SOCK_SENDBUF_LOCK(so); 4812 sbdrop_locked(&so->so_snd, sbused(&so->so_snd)); 4813 socantsendmore_locked(so); 4814 } else 4815 SOCK_UNLOCK(so); 4816 wakeup(&so->so_timeo); 4817 } 4818 4819 int 4820 soiolock(struct socket *so, struct sx *sx, int flags) 4821 { 4822 int error; 4823 4824 KASSERT((flags & SBL_VALID) == flags, 4825 ("soiolock: invalid flags %#x", flags)); 4826 4827 if ((flags & SBL_WAIT) != 0) { 4828 if ((flags & SBL_NOINTR) != 0) { 4829 sx_xlock(sx); 4830 } else { 4831 error = sx_xlock_sig(sx); 4832 if (error != 0) 4833 return (error); 4834 } 4835 } else if (!sx_try_xlock(sx)) { 4836 return (EWOULDBLOCK); 4837 } 4838 4839 if (__predict_false(SOLISTENING(so))) { 4840 sx_xunlock(sx); 4841 return (ENOTCONN); 4842 } 4843 return (0); 4844 } 4845 4846 void 4847 soiounlock(struct sx *sx) 4848 { 4849 sx_xunlock(sx); 4850 } 4851 4852 /* 4853 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 4854 */ 4855 struct sockaddr * 4856 sodupsockaddr(const struct sockaddr *sa, int mflags) 4857 { 4858 struct sockaddr *sa2; 4859 4860 sa2 = malloc(sa->sa_len, M_SONAME, mflags); 4861 if (sa2) 4862 bcopy(sa, sa2, sa->sa_len); 4863 return sa2; 4864 } 4865 4866 /* 4867 * Register per-socket destructor. 4868 */ 4869 void 4870 sodtor_set(struct socket *so, so_dtor_t *func) 4871 { 4872 4873 SOCK_LOCK_ASSERT(so); 4874 so->so_dtor = func; 4875 } 4876 4877 /* 4878 * Register per-socket buffer upcalls. 4879 */ 4880 void 4881 soupcall_set(struct socket *so, sb_which which, so_upcall_t func, void *arg) 4882 { 4883 struct sockbuf *sb; 4884 4885 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 4886 4887 switch (which) { 4888 case SO_RCV: 4889 sb = &so->so_rcv; 4890 break; 4891 case SO_SND: 4892 sb = &so->so_snd; 4893 break; 4894 } 4895 SOCK_BUF_LOCK_ASSERT(so, which); 4896 sb->sb_upcall = func; 4897 sb->sb_upcallarg = arg; 4898 sb->sb_flags |= SB_UPCALL; 4899 } 4900 4901 void 4902 soupcall_clear(struct socket *so, sb_which which) 4903 { 4904 struct sockbuf *sb; 4905 4906 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 4907 4908 switch (which) { 4909 case SO_RCV: 4910 sb = &so->so_rcv; 4911 break; 4912 case SO_SND: 4913 sb = &so->so_snd; 4914 break; 4915 } 4916 SOCK_BUF_LOCK_ASSERT(so, which); 4917 KASSERT(sb->sb_upcall != NULL, 4918 ("%s: so %p no upcall to clear", __func__, so)); 4919 sb->sb_upcall = NULL; 4920 sb->sb_upcallarg = NULL; 4921 sb->sb_flags &= ~SB_UPCALL; 4922 } 4923 4924 void 4925 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg) 4926 { 4927 4928 SOLISTEN_LOCK_ASSERT(so); 4929 so->sol_upcall = func; 4930 so->sol_upcallarg = arg; 4931 } 4932 4933 static void 4934 so_rdknl_lock(void *arg) 4935 { 4936 struct socket *so = arg; 4937 4938 retry: 4939 if (SOLISTENING(so)) { 4940 SOLISTEN_LOCK(so); 4941 } else { 4942 SOCK_RECVBUF_LOCK(so); 4943 if (__predict_false(SOLISTENING(so))) { 4944 SOCK_RECVBUF_UNLOCK(so); 4945 goto retry; 4946 } 4947 } 4948 } 4949 4950 static void 4951 so_rdknl_unlock(void *arg) 4952 { 4953 struct socket *so = arg; 4954 4955 if (SOLISTENING(so)) 4956 SOLISTEN_UNLOCK(so); 4957 else 4958 SOCK_RECVBUF_UNLOCK(so); 4959 } 4960 4961 static void 4962 so_rdknl_assert_lock(void *arg, int what) 4963 { 4964 struct socket *so = arg; 4965 4966 if (what == LA_LOCKED) { 4967 if (SOLISTENING(so)) 4968 SOLISTEN_LOCK_ASSERT(so); 4969 else 4970 SOCK_RECVBUF_LOCK_ASSERT(so); 4971 } else { 4972 if (SOLISTENING(so)) 4973 SOLISTEN_UNLOCK_ASSERT(so); 4974 else 4975 SOCK_RECVBUF_UNLOCK_ASSERT(so); 4976 } 4977 } 4978 4979 static void 4980 so_wrknl_lock(void *arg) 4981 { 4982 struct socket *so = arg; 4983 4984 retry: 4985 if (SOLISTENING(so)) { 4986 SOLISTEN_LOCK(so); 4987 } else { 4988 SOCK_SENDBUF_LOCK(so); 4989 if (__predict_false(SOLISTENING(so))) { 4990 SOCK_SENDBUF_UNLOCK(so); 4991 goto retry; 4992 } 4993 } 4994 } 4995 4996 static void 4997 so_wrknl_unlock(void *arg) 4998 { 4999 struct socket *so = arg; 5000 5001 if (SOLISTENING(so)) 5002 SOLISTEN_UNLOCK(so); 5003 else 5004 SOCK_SENDBUF_UNLOCK(so); 5005 } 5006 5007 static void 5008 so_wrknl_assert_lock(void *arg, int what) 5009 { 5010 struct socket *so = arg; 5011 5012 if (what == LA_LOCKED) { 5013 if (SOLISTENING(so)) 5014 SOLISTEN_LOCK_ASSERT(so); 5015 else 5016 SOCK_SENDBUF_LOCK_ASSERT(so); 5017 } else { 5018 if (SOLISTENING(so)) 5019 SOLISTEN_UNLOCK_ASSERT(so); 5020 else 5021 SOCK_SENDBUF_UNLOCK_ASSERT(so); 5022 } 5023 } 5024 5025 /* 5026 * Create an external-format (``xsocket'') structure using the information in 5027 * the kernel-format socket structure pointed to by so. This is done to 5028 * reduce the spew of irrelevant information over this interface, to isolate 5029 * user code from changes in the kernel structure, and potentially to provide 5030 * information-hiding if we decide that some of this information should be 5031 * hidden from users. 5032 */ 5033 void 5034 sotoxsocket(struct socket *so, struct xsocket *xso) 5035 { 5036 5037 bzero(xso, sizeof(*xso)); 5038 xso->xso_len = sizeof *xso; 5039 xso->xso_so = (uintptr_t)so; 5040 xso->so_type = so->so_type; 5041 xso->so_options = so->so_options; 5042 xso->so_linger = so->so_linger; 5043 xso->so_state = so->so_state; 5044 xso->so_pcb = (uintptr_t)so->so_pcb; 5045 xso->xso_protocol = so->so_proto->pr_protocol; 5046 xso->xso_family = so->so_proto->pr_domain->dom_family; 5047 xso->so_timeo = so->so_timeo; 5048 xso->so_error = so->so_error; 5049 xso->so_uid = so->so_cred->cr_uid; 5050 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 5051 SOCK_LOCK(so); 5052 xso->so_fibnum = so->so_fibnum; 5053 if (SOLISTENING(so)) { 5054 xso->so_qlen = so->sol_qlen; 5055 xso->so_incqlen = so->sol_incqlen; 5056 xso->so_qlimit = so->sol_qlimit; 5057 xso->so_oobmark = 0; 5058 } else { 5059 xso->so_state |= so->so_qstate; 5060 xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0; 5061 xso->so_oobmark = so->so_oobmark; 5062 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 5063 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 5064 if ((so->so_rcv.sb_flags & SB_SPLICED) != 0) 5065 xso->so_splice_so = (uintptr_t)so->so_splice->dst; 5066 } 5067 SOCK_UNLOCK(so); 5068 } 5069 5070 int 5071 so_options_get(const struct socket *so) 5072 { 5073 5074 return (so->so_options); 5075 } 5076 5077 void 5078 so_options_set(struct socket *so, int val) 5079 { 5080 5081 so->so_options = val; 5082 } 5083 5084 int 5085 so_error_get(const struct socket *so) 5086 { 5087 5088 return (so->so_error); 5089 } 5090 5091 void 5092 so_error_set(struct socket *so, int val) 5093 { 5094 5095 so->so_error = val; 5096 } 5097