1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. 6 * Copyright (c) 2004 The FreeBSD Foundation 7 * Copyright (c) 2004-2008 Robert N. M. Watson 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 35 */ 36 37 /* 38 * Comments on the socket life cycle: 39 * 40 * soalloc() sets of socket layer state for a socket, called only by 41 * socreate() and sonewconn(). Socket layer private. 42 * 43 * sodealloc() tears down socket layer state for a socket, called only by 44 * sofree() and sonewconn(). Socket layer private. 45 * 46 * pru_attach() associates protocol layer state with an allocated socket; 47 * called only once, may fail, aborting socket allocation. This is called 48 * from socreate() and sonewconn(). Socket layer private. 49 * 50 * pru_detach() disassociates protocol layer state from an attached socket, 51 * and will be called exactly once for sockets in which pru_attach() has 52 * been successfully called. If pru_attach() returned an error, 53 * pru_detach() will not be called. Socket layer private. 54 * 55 * pru_abort() and pru_close() notify the protocol layer that the last 56 * consumer of a socket is starting to tear down the socket, and that the 57 * protocol should terminate the connection. Historically, pru_abort() also 58 * detached protocol state from the socket state, but this is no longer the 59 * case. 60 * 61 * socreate() creates a socket and attaches protocol state. This is a public 62 * interface that may be used by socket layer consumers to create new 63 * sockets. 64 * 65 * sonewconn() creates a socket and attaches protocol state. This is a 66 * public interface that may be used by protocols to create new sockets when 67 * a new connection is received and will be available for accept() on a 68 * listen socket. 69 * 70 * soclose() destroys a socket after possibly waiting for it to disconnect. 71 * This is a public interface that socket consumers should use to close and 72 * release a socket when done with it. 73 * 74 * soabort() destroys a socket without waiting for it to disconnect (used 75 * only for incoming connections that are already partially or fully 76 * connected). This is used internally by the socket layer when clearing 77 * listen socket queues (due to overflow or close on the listen socket), but 78 * is also a public interface protocols may use to abort connections in 79 * their incomplete listen queues should they no longer be required. Sockets 80 * placed in completed connection listen queues should not be aborted for 81 * reasons described in the comment above the soclose() implementation. This 82 * is not a general purpose close routine, and except in the specific 83 * circumstances described here, should not be used. 84 * 85 * sofree() will free a socket and its protocol state if all references on 86 * the socket have been released, and is the public interface to attempt to 87 * free a socket when a reference is removed. This is a socket layer private 88 * interface. 89 * 90 * NOTE: In addition to socreate() and soclose(), which provide a single 91 * socket reference to the consumer to be managed as required, there are two 92 * calls to explicitly manage socket references, soref(), and sorele(). 93 * Currently, these are generally required only when transitioning a socket 94 * from a listen queue to a file descriptor, in order to prevent garbage 95 * collection of the socket at an untimely moment. For a number of reasons, 96 * these interfaces are not preferred, and should be avoided. 97 * 98 * NOTE: With regard to VNETs the general rule is that callers do not set 99 * curvnet. Exceptions to this rule include soabort(), sodisconnect(), 100 * sofree() (and with that sorele(), sotryfree()), as well as sonewconn() 101 * and sorflush(), which are usually called from a pre-set VNET context. 102 * sopoll() currently does not need a VNET context to be set. 103 */ 104 105 #include <sys/cdefs.h> 106 __FBSDID("$FreeBSD$"); 107 108 #include "opt_inet.h" 109 #include "opt_inet6.h" 110 #include "opt_kern_tls.h" 111 #include "opt_sctp.h" 112 113 #include <sys/param.h> 114 #include <sys/systm.h> 115 #include <sys/capsicum.h> 116 #include <sys/fcntl.h> 117 #include <sys/limits.h> 118 #include <sys/lock.h> 119 #include <sys/mac.h> 120 #include <sys/malloc.h> 121 #include <sys/mbuf.h> 122 #include <sys/mutex.h> 123 #include <sys/domain.h> 124 #include <sys/file.h> /* for struct knote */ 125 #include <sys/hhook.h> 126 #include <sys/kernel.h> 127 #include <sys/khelp.h> 128 #include <sys/ktls.h> 129 #include <sys/event.h> 130 #include <sys/eventhandler.h> 131 #include <sys/poll.h> 132 #include <sys/proc.h> 133 #include <sys/protosw.h> 134 #include <sys/sbuf.h> 135 #include <sys/socket.h> 136 #include <sys/socketvar.h> 137 #include <sys/resourcevar.h> 138 #include <net/route.h> 139 #include <sys/signalvar.h> 140 #include <sys/stat.h> 141 #include <sys/sx.h> 142 #include <sys/sysctl.h> 143 #include <sys/taskqueue.h> 144 #include <sys/uio.h> 145 #include <sys/un.h> 146 #include <sys/unpcb.h> 147 #include <sys/jail.h> 148 #include <sys/syslog.h> 149 #include <netinet/in.h> 150 #include <netinet/in_pcb.h> 151 #include <netinet/tcp.h> 152 153 #include <net/vnet.h> 154 155 #include <security/mac/mac_framework.h> 156 157 #include <vm/uma.h> 158 159 #ifdef COMPAT_FREEBSD32 160 #include <sys/mount.h> 161 #include <sys/sysent.h> 162 #include <compat/freebsd32/freebsd32.h> 163 #endif 164 165 static int soreceive_rcvoob(struct socket *so, struct uio *uio, 166 int flags); 167 static void so_rdknl_lock(void *); 168 static void so_rdknl_unlock(void *); 169 static void so_rdknl_assert_lock(void *, int); 170 static void so_wrknl_lock(void *); 171 static void so_wrknl_unlock(void *); 172 static void so_wrknl_assert_lock(void *, int); 173 174 static void filt_sordetach(struct knote *kn); 175 static int filt_soread(struct knote *kn, long hint); 176 static void filt_sowdetach(struct knote *kn); 177 static int filt_sowrite(struct knote *kn, long hint); 178 static int filt_soempty(struct knote *kn, long hint); 179 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id); 180 fo_kqfilter_t soo_kqfilter; 181 182 static struct filterops soread_filtops = { 183 .f_isfd = 1, 184 .f_detach = filt_sordetach, 185 .f_event = filt_soread, 186 }; 187 static struct filterops sowrite_filtops = { 188 .f_isfd = 1, 189 .f_detach = filt_sowdetach, 190 .f_event = filt_sowrite, 191 }; 192 static struct filterops soempty_filtops = { 193 .f_isfd = 1, 194 .f_detach = filt_sowdetach, 195 .f_event = filt_soempty, 196 }; 197 198 so_gen_t so_gencnt; /* generation count for sockets */ 199 200 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 201 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 202 203 #define VNET_SO_ASSERT(so) \ 204 VNET_ASSERT(curvnet != NULL, \ 205 ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so))); 206 207 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]); 208 #define V_socket_hhh VNET(socket_hhh) 209 210 /* 211 * Limit on the number of connections in the listen queue waiting 212 * for accept(2). 213 * NB: The original sysctl somaxconn is still available but hidden 214 * to prevent confusion about the actual purpose of this number. 215 */ 216 static u_int somaxconn = SOMAXCONN; 217 218 static int 219 sysctl_somaxconn(SYSCTL_HANDLER_ARGS) 220 { 221 int error; 222 int val; 223 224 val = somaxconn; 225 error = sysctl_handle_int(oidp, &val, 0, req); 226 if (error || !req->newptr ) 227 return (error); 228 229 /* 230 * The purpose of the UINT_MAX / 3 limit, is so that the formula 231 * 3 * so_qlimit / 2 232 * below, will not overflow. 233 */ 234 235 if (val < 1 || val > UINT_MAX / 3) 236 return (EINVAL); 237 238 somaxconn = val; 239 return (0); 240 } 241 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue, 242 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 0, sizeof(int), 243 sysctl_somaxconn, "I", 244 "Maximum listen socket pending connection accept queue size"); 245 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, 246 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_NEEDGIANT, 0, 247 sizeof(int), sysctl_somaxconn, "I", 248 "Maximum listen socket pending connection accept queue size (compat)"); 249 250 static int numopensockets; 251 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, 252 &numopensockets, 0, "Number of open sockets"); 253 254 /* 255 * accept_mtx locks down per-socket fields relating to accept queues. See 256 * socketvar.h for an annotation of the protected fields of struct socket. 257 */ 258 struct mtx accept_mtx; 259 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF); 260 261 /* 262 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket 263 * so_gencnt field. 264 */ 265 static struct mtx so_global_mtx; 266 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); 267 268 /* 269 * General IPC sysctl name space, used by sockets and a variety of other IPC 270 * types. 271 */ 272 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 273 "IPC"); 274 275 /* 276 * Initialize the socket subsystem and set up the socket 277 * memory allocator. 278 */ 279 static uma_zone_t socket_zone; 280 int maxsockets; 281 282 static void 283 socket_zone_change(void *tag) 284 { 285 286 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 287 } 288 289 static void 290 socket_hhook_register(int subtype) 291 { 292 293 if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype, 294 &V_socket_hhh[subtype], 295 HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 296 printf("%s: WARNING: unable to register hook\n", __func__); 297 } 298 299 static void 300 socket_hhook_deregister(int subtype) 301 { 302 303 if (hhook_head_deregister(V_socket_hhh[subtype]) != 0) 304 printf("%s: WARNING: unable to deregister hook\n", __func__); 305 } 306 307 static void 308 socket_init(void *tag) 309 { 310 311 socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL, 312 NULL, NULL, UMA_ALIGN_PTR, 0); 313 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 314 uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached"); 315 EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL, 316 EVENTHANDLER_PRI_FIRST); 317 } 318 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL); 319 320 static void 321 socket_vnet_init(const void *unused __unused) 322 { 323 int i; 324 325 /* We expect a contiguous range */ 326 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 327 socket_hhook_register(i); 328 } 329 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 330 socket_vnet_init, NULL); 331 332 static void 333 socket_vnet_uninit(const void *unused __unused) 334 { 335 int i; 336 337 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 338 socket_hhook_deregister(i); 339 } 340 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 341 socket_vnet_uninit, NULL); 342 343 /* 344 * Initialise maxsockets. This SYSINIT must be run after 345 * tunable_mbinit(). 346 */ 347 static void 348 init_maxsockets(void *ignored) 349 { 350 351 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 352 maxsockets = imax(maxsockets, maxfiles); 353 } 354 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 355 356 /* 357 * Sysctl to get and set the maximum global sockets limit. Notify protocols 358 * of the change so that they can update their dependent limits as required. 359 */ 360 static int 361 sysctl_maxsockets(SYSCTL_HANDLER_ARGS) 362 { 363 int error, newmaxsockets; 364 365 newmaxsockets = maxsockets; 366 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req); 367 if (error == 0 && req->newptr) { 368 if (newmaxsockets > maxsockets && 369 newmaxsockets <= maxfiles) { 370 maxsockets = newmaxsockets; 371 EVENTHANDLER_INVOKE(maxsockets_change); 372 } else 373 error = EINVAL; 374 } 375 return (error); 376 } 377 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, 378 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &maxsockets, 0, 379 sysctl_maxsockets, "IU", 380 "Maximum number of sockets available"); 381 382 /* 383 * Socket operation routines. These routines are called by the routines in 384 * sys_socket.c or from a system process, and implement the semantics of 385 * socket operations by switching out to the protocol specific routines. 386 */ 387 388 /* 389 * Get a socket structure from our zone, and initialize it. Note that it 390 * would probably be better to allocate socket and PCB at the same time, but 391 * I'm not convinced that all the protocols can be easily modified to do 392 * this. 393 * 394 * soalloc() returns a socket with a ref count of 0. 395 */ 396 static struct socket * 397 soalloc(struct vnet *vnet) 398 { 399 struct socket *so; 400 401 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO); 402 if (so == NULL) 403 return (NULL); 404 #ifdef MAC 405 if (mac_socket_init(so, M_NOWAIT) != 0) { 406 uma_zfree(socket_zone, so); 407 return (NULL); 408 } 409 #endif 410 if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) { 411 uma_zfree(socket_zone, so); 412 return (NULL); 413 } 414 415 /* 416 * The socket locking protocol allows to lock 2 sockets at a time, 417 * however, the first one must be a listening socket. WITNESS lacks 418 * a feature to change class of an existing lock, so we use DUPOK. 419 */ 420 mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK); 421 so->so_snd.sb_mtx = &so->so_snd_mtx; 422 so->so_rcv.sb_mtx = &so->so_rcv_mtx; 423 SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd"); 424 SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv"); 425 so->so_rcv.sb_sel = &so->so_rdsel; 426 so->so_snd.sb_sel = &so->so_wrsel; 427 sx_init(&so->so_snd_sx, "so_snd_sx"); 428 sx_init(&so->so_rcv_sx, "so_rcv_sx"); 429 TAILQ_INIT(&so->so_snd.sb_aiojobq); 430 TAILQ_INIT(&so->so_rcv.sb_aiojobq); 431 TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so); 432 TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so); 433 #ifdef VIMAGE 434 VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p", 435 __func__, __LINE__, so)); 436 so->so_vnet = vnet; 437 #endif 438 /* We shouldn't need the so_global_mtx */ 439 if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) { 440 /* Do we need more comprehensive error returns? */ 441 uma_zfree(socket_zone, so); 442 return (NULL); 443 } 444 mtx_lock(&so_global_mtx); 445 so->so_gencnt = ++so_gencnt; 446 ++numopensockets; 447 #ifdef VIMAGE 448 vnet->vnet_sockcnt++; 449 #endif 450 mtx_unlock(&so_global_mtx); 451 452 return (so); 453 } 454 455 /* 456 * Free the storage associated with a socket at the socket layer, tear down 457 * locks, labels, etc. All protocol state is assumed already to have been 458 * torn down (and possibly never set up) by the caller. 459 */ 460 static void 461 sodealloc(struct socket *so) 462 { 463 464 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); 465 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL")); 466 467 mtx_lock(&so_global_mtx); 468 so->so_gencnt = ++so_gencnt; 469 --numopensockets; /* Could be below, but faster here. */ 470 #ifdef VIMAGE 471 VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p", 472 __func__, __LINE__, so)); 473 so->so_vnet->vnet_sockcnt--; 474 #endif 475 mtx_unlock(&so_global_mtx); 476 #ifdef MAC 477 mac_socket_destroy(so); 478 #endif 479 hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE); 480 481 khelp_destroy_osd(&so->osd); 482 if (SOLISTENING(so)) { 483 if (so->sol_accept_filter != NULL) 484 accept_filt_setopt(so, NULL); 485 } else { 486 if (so->so_rcv.sb_hiwat) 487 (void)chgsbsize(so->so_cred->cr_uidinfo, 488 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 489 if (so->so_snd.sb_hiwat) 490 (void)chgsbsize(so->so_cred->cr_uidinfo, 491 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 492 sx_destroy(&so->so_snd_sx); 493 sx_destroy(&so->so_rcv_sx); 494 SOCKBUF_LOCK_DESTROY(&so->so_snd); 495 SOCKBUF_LOCK_DESTROY(&so->so_rcv); 496 } 497 crfree(so->so_cred); 498 mtx_destroy(&so->so_lock); 499 uma_zfree(socket_zone, so); 500 } 501 502 /* 503 * socreate returns a socket with a ref count of 1. The socket should be 504 * closed with soclose(). 505 */ 506 int 507 socreate(int dom, struct socket **aso, int type, int proto, 508 struct ucred *cred, struct thread *td) 509 { 510 struct protosw *prp; 511 struct socket *so; 512 int error; 513 514 if (proto) 515 prp = pffindproto(dom, proto, type); 516 else 517 prp = pffindtype(dom, type); 518 519 if (prp == NULL) { 520 /* No support for domain. */ 521 if (pffinddomain(dom) == NULL) 522 return (EAFNOSUPPORT); 523 /* No support for socket type. */ 524 if (proto == 0 && type != 0) 525 return (EPROTOTYPE); 526 return (EPROTONOSUPPORT); 527 } 528 if (prp->pr_usrreqs->pru_attach == NULL || 529 prp->pr_usrreqs->pru_attach == pru_attach_notsupp) 530 return (EPROTONOSUPPORT); 531 532 if (IN_CAPABILITY_MODE(td) && (prp->pr_flags & PR_CAPATTACH) == 0) 533 return (ECAPMODE); 534 535 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0) 536 return (EPROTONOSUPPORT); 537 538 if (prp->pr_type != type) 539 return (EPROTOTYPE); 540 so = soalloc(CRED_TO_VNET(cred)); 541 if (so == NULL) 542 return (ENOBUFS); 543 544 so->so_type = type; 545 so->so_cred = crhold(cred); 546 if ((prp->pr_domain->dom_family == PF_INET) || 547 (prp->pr_domain->dom_family == PF_INET6) || 548 (prp->pr_domain->dom_family == PF_ROUTE)) 549 so->so_fibnum = td->td_proc->p_fibnum; 550 else 551 so->so_fibnum = 0; 552 so->so_proto = prp; 553 #ifdef MAC 554 mac_socket_create(cred, so); 555 #endif 556 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 557 so_rdknl_assert_lock); 558 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 559 so_wrknl_assert_lock); 560 /* 561 * Auto-sizing of socket buffers is managed by the protocols and 562 * the appropriate flags must be set in the pru_attach function. 563 */ 564 CURVNET_SET(so->so_vnet); 565 error = (*prp->pr_usrreqs->pru_attach)(so, proto, td); 566 CURVNET_RESTORE(); 567 if (error) { 568 sodealloc(so); 569 return (error); 570 } 571 soref(so); 572 *aso = so; 573 return (0); 574 } 575 576 #ifdef REGRESSION 577 static int regression_sonewconn_earlytest = 1; 578 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW, 579 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test"); 580 #endif 581 582 static struct timeval overinterval = { 60, 0 }; 583 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW, 584 &overinterval, 585 "Delay in seconds between warnings for listen socket overflows"); 586 587 /* 588 * When an attempt at a new connection is noted on a socket which accepts 589 * connections, sonewconn is called. If the connection is possible (subject 590 * to space constraints, etc.) then we allocate a new structure, properly 591 * linked into the data structure of the original socket, and return this. 592 * Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED. 593 * 594 * Note: the ref count on the socket is 0 on return. 595 */ 596 struct socket * 597 sonewconn(struct socket *head, int connstatus) 598 { 599 struct sbuf descrsb; 600 struct socket *so; 601 int len, overcount; 602 u_int qlen; 603 const char localprefix[] = "local:"; 604 char descrbuf[SUNPATHLEN + sizeof(localprefix)]; 605 #if defined(INET6) 606 char addrbuf[INET6_ADDRSTRLEN]; 607 #elif defined(INET) 608 char addrbuf[INET_ADDRSTRLEN]; 609 #endif 610 bool dolog, over; 611 612 SOLISTEN_LOCK(head); 613 over = (head->sol_qlen > 3 * head->sol_qlimit / 2); 614 #ifdef REGRESSION 615 if (regression_sonewconn_earlytest && over) { 616 #else 617 if (over) { 618 #endif 619 head->sol_overcount++; 620 dolog = !!ratecheck(&head->sol_lastover, &overinterval); 621 622 /* 623 * If we're going to log, copy the overflow count and queue 624 * length from the listen socket before dropping the lock. 625 * Also, reset the overflow count. 626 */ 627 if (dolog) { 628 overcount = head->sol_overcount; 629 head->sol_overcount = 0; 630 qlen = head->sol_qlen; 631 } 632 SOLISTEN_UNLOCK(head); 633 634 if (dolog) { 635 /* 636 * Try to print something descriptive about the 637 * socket for the error message. 638 */ 639 sbuf_new(&descrsb, descrbuf, sizeof(descrbuf), 640 SBUF_FIXEDLEN); 641 switch (head->so_proto->pr_domain->dom_family) { 642 #if defined(INET) || defined(INET6) 643 #ifdef INET 644 case AF_INET: 645 #endif 646 #ifdef INET6 647 case AF_INET6: 648 if (head->so_proto->pr_domain->dom_family == 649 AF_INET6 || 650 (sotoinpcb(head)->inp_inc.inc_flags & 651 INC_ISIPV6)) { 652 ip6_sprintf(addrbuf, 653 &sotoinpcb(head)->inp_inc.inc6_laddr); 654 sbuf_printf(&descrsb, "[%s]", addrbuf); 655 } else 656 #endif 657 { 658 #ifdef INET 659 inet_ntoa_r( 660 sotoinpcb(head)->inp_inc.inc_laddr, 661 addrbuf); 662 sbuf_cat(&descrsb, addrbuf); 663 #endif 664 } 665 sbuf_printf(&descrsb, ":%hu (proto %u)", 666 ntohs(sotoinpcb(head)->inp_inc.inc_lport), 667 head->so_proto->pr_protocol); 668 break; 669 #endif /* INET || INET6 */ 670 case AF_UNIX: 671 sbuf_cat(&descrsb, localprefix); 672 if (sotounpcb(head)->unp_addr != NULL) 673 len = 674 sotounpcb(head)->unp_addr->sun_len - 675 offsetof(struct sockaddr_un, 676 sun_path); 677 else 678 len = 0; 679 if (len > 0) 680 sbuf_bcat(&descrsb, 681 sotounpcb(head)->unp_addr->sun_path, 682 len); 683 else 684 sbuf_cat(&descrsb, "(unknown)"); 685 break; 686 } 687 688 /* 689 * If we can't print something more specific, at least 690 * print the domain name. 691 */ 692 if (sbuf_finish(&descrsb) != 0 || 693 sbuf_len(&descrsb) <= 0) { 694 sbuf_clear(&descrsb); 695 sbuf_cat(&descrsb, 696 head->so_proto->pr_domain->dom_name ?: 697 "unknown"); 698 sbuf_finish(&descrsb); 699 } 700 KASSERT(sbuf_len(&descrsb) > 0, 701 ("%s: sbuf creation failed", __func__)); 702 log(LOG_DEBUG, 703 "%s: pcb %p (%s): Listen queue overflow: " 704 "%i already in queue awaiting acceptance " 705 "(%d occurrences)\n", 706 __func__, head->so_pcb, sbuf_data(&descrsb), 707 qlen, overcount); 708 sbuf_delete(&descrsb); 709 710 overcount = 0; 711 } 712 713 return (NULL); 714 } 715 SOLISTEN_UNLOCK(head); 716 VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL", 717 __func__, head)); 718 so = soalloc(head->so_vnet); 719 if (so == NULL) { 720 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 721 "limit reached or out of memory\n", 722 __func__, head->so_pcb); 723 return (NULL); 724 } 725 so->so_listen = head; 726 so->so_type = head->so_type; 727 so->so_options = head->so_options & ~SO_ACCEPTCONN; 728 so->so_linger = head->so_linger; 729 so->so_state = head->so_state | SS_NOFDREF; 730 so->so_fibnum = head->so_fibnum; 731 so->so_proto = head->so_proto; 732 so->so_cred = crhold(head->so_cred); 733 #ifdef MAC 734 mac_socket_newconn(head, so); 735 #endif 736 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 737 so_rdknl_assert_lock); 738 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 739 so_wrknl_assert_lock); 740 VNET_SO_ASSERT(head); 741 if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) { 742 sodealloc(so); 743 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 744 __func__, head->so_pcb); 745 return (NULL); 746 } 747 if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 748 sodealloc(so); 749 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", 750 __func__, head->so_pcb); 751 return (NULL); 752 } 753 so->so_rcv.sb_lowat = head->sol_sbrcv_lowat; 754 so->so_snd.sb_lowat = head->sol_sbsnd_lowat; 755 so->so_rcv.sb_timeo = head->sol_sbrcv_timeo; 756 so->so_snd.sb_timeo = head->sol_sbsnd_timeo; 757 so->so_rcv.sb_flags |= head->sol_sbrcv_flags & SB_AUTOSIZE; 758 so->so_snd.sb_flags |= head->sol_sbsnd_flags & SB_AUTOSIZE; 759 760 SOLISTEN_LOCK(head); 761 if (head->sol_accept_filter != NULL) 762 connstatus = 0; 763 so->so_state |= connstatus; 764 soref(head); /* A socket on (in)complete queue refs head. */ 765 if (connstatus) { 766 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 767 so->so_qstate = SQ_COMP; 768 head->sol_qlen++; 769 solisten_wakeup(head); /* unlocks */ 770 } else { 771 /* 772 * Keep removing sockets from the head until there's room for 773 * us to insert on the tail. In pre-locking revisions, this 774 * was a simple if(), but as we could be racing with other 775 * threads and soabort() requires dropping locks, we must 776 * loop waiting for the condition to be true. 777 */ 778 while (head->sol_incqlen > head->sol_qlimit) { 779 struct socket *sp; 780 781 sp = TAILQ_FIRST(&head->sol_incomp); 782 TAILQ_REMOVE(&head->sol_incomp, sp, so_list); 783 head->sol_incqlen--; 784 SOCK_LOCK(sp); 785 sp->so_qstate = SQ_NONE; 786 sp->so_listen = NULL; 787 SOCK_UNLOCK(sp); 788 sorele(head); /* does SOLISTEN_UNLOCK, head stays */ 789 soabort(sp); 790 SOLISTEN_LOCK(head); 791 } 792 TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list); 793 so->so_qstate = SQ_INCOMP; 794 head->sol_incqlen++; 795 SOLISTEN_UNLOCK(head); 796 } 797 return (so); 798 } 799 800 #if defined(SCTP) || defined(SCTP_SUPPORT) 801 /* 802 * Socket part of sctp_peeloff(). Detach a new socket from an 803 * association. The new socket is returned with a reference. 804 */ 805 struct socket * 806 sopeeloff(struct socket *head) 807 { 808 struct socket *so; 809 810 VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p", 811 __func__, __LINE__, head)); 812 so = soalloc(head->so_vnet); 813 if (so == NULL) { 814 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 815 "limit reached or out of memory\n", 816 __func__, head->so_pcb); 817 return (NULL); 818 } 819 so->so_type = head->so_type; 820 so->so_options = head->so_options; 821 so->so_linger = head->so_linger; 822 so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED; 823 so->so_fibnum = head->so_fibnum; 824 so->so_proto = head->so_proto; 825 so->so_cred = crhold(head->so_cred); 826 #ifdef MAC 827 mac_socket_newconn(head, so); 828 #endif 829 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 830 so_rdknl_assert_lock); 831 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 832 so_wrknl_assert_lock); 833 VNET_SO_ASSERT(head); 834 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) { 835 sodealloc(so); 836 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 837 __func__, head->so_pcb); 838 return (NULL); 839 } 840 if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 841 sodealloc(so); 842 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", 843 __func__, head->so_pcb); 844 return (NULL); 845 } 846 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; 847 so->so_snd.sb_lowat = head->so_snd.sb_lowat; 848 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; 849 so->so_snd.sb_timeo = head->so_snd.sb_timeo; 850 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE; 851 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE; 852 853 soref(so); 854 855 return (so); 856 } 857 #endif /* SCTP */ 858 859 int 860 sobind(struct socket *so, struct sockaddr *nam, struct thread *td) 861 { 862 int error; 863 864 CURVNET_SET(so->so_vnet); 865 error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td); 866 CURVNET_RESTORE(); 867 return (error); 868 } 869 870 int 871 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 872 { 873 int error; 874 875 CURVNET_SET(so->so_vnet); 876 error = (*so->so_proto->pr_usrreqs->pru_bindat)(fd, so, nam, td); 877 CURVNET_RESTORE(); 878 return (error); 879 } 880 881 /* 882 * solisten() transitions a socket from a non-listening state to a listening 883 * state, but can also be used to update the listen queue depth on an 884 * existing listen socket. The protocol will call back into the sockets 885 * layer using solisten_proto_check() and solisten_proto() to check and set 886 * socket-layer listen state. Call backs are used so that the protocol can 887 * acquire both protocol and socket layer locks in whatever order is required 888 * by the protocol. 889 * 890 * Protocol implementors are advised to hold the socket lock across the 891 * socket-layer test and set to avoid races at the socket layer. 892 */ 893 int 894 solisten(struct socket *so, int backlog, struct thread *td) 895 { 896 int error; 897 898 CURVNET_SET(so->so_vnet); 899 error = (*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td); 900 CURVNET_RESTORE(); 901 return (error); 902 } 903 904 /* 905 * Prepare for a call to solisten_proto(). Acquire all socket buffer locks in 906 * order to interlock with socket I/O. 907 */ 908 int 909 solisten_proto_check(struct socket *so) 910 { 911 SOCK_LOCK_ASSERT(so); 912 913 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 914 SS_ISDISCONNECTING)) != 0) 915 return (EINVAL); 916 917 /* 918 * Sleeping is not permitted here, so simply fail if userspace is 919 * attempting to transmit or receive on the socket. This kind of 920 * transient failure is not ideal, but it should occur only if userspace 921 * is misusing the socket interfaces. 922 */ 923 if (!sx_try_xlock(&so->so_snd_sx)) 924 return (EAGAIN); 925 if (!sx_try_xlock(&so->so_rcv_sx)) { 926 sx_xunlock(&so->so_snd_sx); 927 return (EAGAIN); 928 } 929 mtx_lock(&so->so_snd_mtx); 930 mtx_lock(&so->so_rcv_mtx); 931 932 /* Interlock with soo_aio_queue(). */ 933 if ((so->so_snd.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0 || 934 (so->so_rcv.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0) { 935 solisten_proto_abort(so); 936 return (EINVAL); 937 } 938 return (0); 939 } 940 941 /* 942 * Undo the setup done by solisten_proto_check(). 943 */ 944 void 945 solisten_proto_abort(struct socket *so) 946 { 947 mtx_unlock(&so->so_snd_mtx); 948 mtx_unlock(&so->so_rcv_mtx); 949 sx_xunlock(&so->so_snd_sx); 950 sx_xunlock(&so->so_rcv_sx); 951 } 952 953 void 954 solisten_proto(struct socket *so, int backlog) 955 { 956 int sbrcv_lowat, sbsnd_lowat; 957 u_int sbrcv_hiwat, sbsnd_hiwat; 958 short sbrcv_flags, sbsnd_flags; 959 sbintime_t sbrcv_timeo, sbsnd_timeo; 960 961 SOCK_LOCK_ASSERT(so); 962 KASSERT((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 963 SS_ISDISCONNECTING)) == 0, 964 ("%s: bad socket state %p", __func__, so)); 965 966 if (SOLISTENING(so)) 967 goto listening; 968 969 /* 970 * Change this socket to listening state. 971 */ 972 sbrcv_lowat = so->so_rcv.sb_lowat; 973 sbsnd_lowat = so->so_snd.sb_lowat; 974 sbrcv_hiwat = so->so_rcv.sb_hiwat; 975 sbsnd_hiwat = so->so_snd.sb_hiwat; 976 sbrcv_flags = so->so_rcv.sb_flags; 977 sbsnd_flags = so->so_snd.sb_flags; 978 sbrcv_timeo = so->so_rcv.sb_timeo; 979 sbsnd_timeo = so->so_snd.sb_timeo; 980 981 sbdestroy(&so->so_snd, so); 982 sbdestroy(&so->so_rcv, so); 983 984 #ifdef INVARIANTS 985 bzero(&so->so_rcv, 986 sizeof(struct socket) - offsetof(struct socket, so_rcv)); 987 #endif 988 989 so->sol_sbrcv_lowat = sbrcv_lowat; 990 so->sol_sbsnd_lowat = sbsnd_lowat; 991 so->sol_sbrcv_hiwat = sbrcv_hiwat; 992 so->sol_sbsnd_hiwat = sbsnd_hiwat; 993 so->sol_sbrcv_flags = sbrcv_flags; 994 so->sol_sbsnd_flags = sbsnd_flags; 995 so->sol_sbrcv_timeo = sbrcv_timeo; 996 so->sol_sbsnd_timeo = sbsnd_timeo; 997 998 so->sol_qlen = so->sol_incqlen = 0; 999 TAILQ_INIT(&so->sol_incomp); 1000 TAILQ_INIT(&so->sol_comp); 1001 1002 so->sol_accept_filter = NULL; 1003 so->sol_accept_filter_arg = NULL; 1004 so->sol_accept_filter_str = NULL; 1005 1006 so->sol_upcall = NULL; 1007 so->sol_upcallarg = NULL; 1008 1009 so->so_options |= SO_ACCEPTCONN; 1010 1011 listening: 1012 if (backlog < 0 || backlog > somaxconn) 1013 backlog = somaxconn; 1014 so->sol_qlimit = backlog; 1015 1016 mtx_unlock(&so->so_snd_mtx); 1017 mtx_unlock(&so->so_rcv_mtx); 1018 sx_xunlock(&so->so_snd_sx); 1019 sx_xunlock(&so->so_rcv_sx); 1020 } 1021 1022 /* 1023 * Wakeup listeners/subsystems once we have a complete connection. 1024 * Enters with lock, returns unlocked. 1025 */ 1026 void 1027 solisten_wakeup(struct socket *sol) 1028 { 1029 1030 if (sol->sol_upcall != NULL) 1031 (void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT); 1032 else { 1033 selwakeuppri(&sol->so_rdsel, PSOCK); 1034 KNOTE_LOCKED(&sol->so_rdsel.si_note, 0); 1035 } 1036 SOLISTEN_UNLOCK(sol); 1037 wakeup_one(&sol->sol_comp); 1038 if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL) 1039 pgsigio(&sol->so_sigio, SIGIO, 0); 1040 } 1041 1042 /* 1043 * Return single connection off a listening socket queue. Main consumer of 1044 * the function is kern_accept4(). Some modules, that do their own accept 1045 * management also use the function. 1046 * 1047 * Listening socket must be locked on entry and is returned unlocked on 1048 * return. 1049 * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT. 1050 */ 1051 int 1052 solisten_dequeue(struct socket *head, struct socket **ret, int flags) 1053 { 1054 struct socket *so; 1055 int error; 1056 1057 SOLISTEN_LOCK_ASSERT(head); 1058 1059 while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) && 1060 head->so_error == 0) { 1061 error = msleep(&head->sol_comp, SOCK_MTX(head), PSOCK | PCATCH, 1062 "accept", 0); 1063 if (error != 0) { 1064 SOLISTEN_UNLOCK(head); 1065 return (error); 1066 } 1067 } 1068 if (head->so_error) { 1069 error = head->so_error; 1070 head->so_error = 0; 1071 } else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp)) 1072 error = EWOULDBLOCK; 1073 else 1074 error = 0; 1075 if (error) { 1076 SOLISTEN_UNLOCK(head); 1077 return (error); 1078 } 1079 so = TAILQ_FIRST(&head->sol_comp); 1080 SOCK_LOCK(so); 1081 KASSERT(so->so_qstate == SQ_COMP, 1082 ("%s: so %p not SQ_COMP", __func__, so)); 1083 soref(so); 1084 head->sol_qlen--; 1085 so->so_qstate = SQ_NONE; 1086 so->so_listen = NULL; 1087 TAILQ_REMOVE(&head->sol_comp, so, so_list); 1088 if (flags & ACCEPT4_INHERIT) 1089 so->so_state |= (head->so_state & SS_NBIO); 1090 else 1091 so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0; 1092 SOCK_UNLOCK(so); 1093 sorele(head); 1094 1095 *ret = so; 1096 return (0); 1097 } 1098 1099 /* 1100 * Evaluate the reference count and named references on a socket; if no 1101 * references remain, free it. This should be called whenever a reference is 1102 * released, such as in sorele(), but also when named reference flags are 1103 * cleared in socket or protocol code. 1104 * 1105 * sofree() will free the socket if: 1106 * 1107 * - There are no outstanding file descriptor references or related consumers 1108 * (so_count == 0). 1109 * 1110 * - The socket has been closed by user space, if ever open (SS_NOFDREF). 1111 * 1112 * - The protocol does not have an outstanding strong reference on the socket 1113 * (SS_PROTOREF). 1114 * 1115 * - The socket is not in a completed connection queue, so a process has been 1116 * notified that it is present. If it is removed, the user process may 1117 * block in accept() despite select() saying the socket was ready. 1118 */ 1119 void 1120 sofree(struct socket *so) 1121 { 1122 struct protosw *pr = so->so_proto; 1123 bool last __diagused; 1124 1125 SOCK_LOCK_ASSERT(so); 1126 1127 if ((so->so_state & (SS_NOFDREF | SS_PROTOREF)) != SS_NOFDREF || 1128 refcount_load(&so->so_count) != 0 || so->so_qstate == SQ_COMP) { 1129 SOCK_UNLOCK(so); 1130 return; 1131 } 1132 1133 if (!SOLISTENING(so) && so->so_qstate == SQ_INCOMP) { 1134 struct socket *sol; 1135 1136 sol = so->so_listen; 1137 KASSERT(sol, ("%s: so %p on incomp of NULL", __func__, so)); 1138 1139 /* 1140 * To solve race between close of a listening socket and 1141 * a socket on its incomplete queue, we need to lock both. 1142 * The order is first listening socket, then regular. 1143 * Since we don't have SS_NOFDREF neither SS_PROTOREF, this 1144 * function and the listening socket are the only pointers 1145 * to so. To preserve so and sol, we reference both and then 1146 * relock. 1147 * After relock the socket may not move to so_comp since it 1148 * doesn't have PCB already, but it may be removed from 1149 * so_incomp. If that happens, we share responsiblity on 1150 * freeing the socket, but soclose() has already removed 1151 * it from queue. 1152 */ 1153 soref(sol); 1154 soref(so); 1155 SOCK_UNLOCK(so); 1156 SOLISTEN_LOCK(sol); 1157 SOCK_LOCK(so); 1158 if (so->so_qstate == SQ_INCOMP) { 1159 KASSERT(so->so_listen == sol, 1160 ("%s: so %p migrated out of sol %p", 1161 __func__, so, sol)); 1162 TAILQ_REMOVE(&sol->sol_incomp, so, so_list); 1163 sol->sol_incqlen--; 1164 last = refcount_release(&sol->so_count); 1165 KASSERT(!last, ("%s: released last reference for %p", 1166 __func__, sol)); 1167 so->so_qstate = SQ_NONE; 1168 so->so_listen = NULL; 1169 } else 1170 KASSERT(so->so_listen == NULL, 1171 ("%s: so %p not on (in)comp with so_listen", 1172 __func__, so)); 1173 sorele(sol); 1174 KASSERT(refcount_load(&so->so_count) == 1, 1175 ("%s: so %p count %u", __func__, so, so->so_count)); 1176 so->so_count = 0; 1177 } 1178 if (SOLISTENING(so)) 1179 so->so_error = ECONNABORTED; 1180 SOCK_UNLOCK(so); 1181 1182 if (so->so_dtor != NULL) 1183 so->so_dtor(so); 1184 1185 VNET_SO_ASSERT(so); 1186 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 1187 (*pr->pr_domain->dom_dispose)(so); 1188 if (pr->pr_usrreqs->pru_detach != NULL) 1189 (*pr->pr_usrreqs->pru_detach)(so); 1190 1191 /* 1192 * From this point on, we assume that no other references to this 1193 * socket exist anywhere else in the stack. Therefore, no locks need 1194 * to be acquired or held. 1195 * 1196 * We used to do a lot of socket buffer and socket locking here, as 1197 * well as invoke sorflush() and perform wakeups. The direct call to 1198 * dom_dispose() and sbdestroy() are an inlining of what was 1199 * necessary from sorflush(). 1200 * 1201 * Notice that the socket buffer and kqueue state are torn down 1202 * before calling pru_detach. This means that protocols shold not 1203 * assume they can perform socket wakeups, etc, in their detach code. 1204 */ 1205 if (!SOLISTENING(so)) { 1206 sbdestroy(&so->so_snd, so); 1207 sbdestroy(&so->so_rcv, so); 1208 } 1209 seldrain(&so->so_rdsel); 1210 seldrain(&so->so_wrsel); 1211 knlist_destroy(&so->so_rdsel.si_note); 1212 knlist_destroy(&so->so_wrsel.si_note); 1213 sodealloc(so); 1214 } 1215 1216 /* 1217 * Close a socket on last file table reference removal. Initiate disconnect 1218 * if connected. Free socket when disconnect complete. 1219 * 1220 * This function will sorele() the socket. Note that soclose() may be called 1221 * prior to the ref count reaching zero. The actual socket structure will 1222 * not be freed until the ref count reaches zero. 1223 */ 1224 int 1225 soclose(struct socket *so) 1226 { 1227 struct accept_queue lqueue; 1228 int error = 0; 1229 bool listening, last __diagused; 1230 1231 KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter")); 1232 1233 CURVNET_SET(so->so_vnet); 1234 funsetown(&so->so_sigio); 1235 if (so->so_state & SS_ISCONNECTED) { 1236 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 1237 error = sodisconnect(so); 1238 if (error) { 1239 if (error == ENOTCONN) 1240 error = 0; 1241 goto drop; 1242 } 1243 } 1244 1245 if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) { 1246 if ((so->so_state & SS_ISDISCONNECTING) && 1247 (so->so_state & SS_NBIO)) 1248 goto drop; 1249 while (so->so_state & SS_ISCONNECTED) { 1250 error = tsleep(&so->so_timeo, 1251 PSOCK | PCATCH, "soclos", 1252 so->so_linger * hz); 1253 if (error) 1254 break; 1255 } 1256 } 1257 } 1258 1259 drop: 1260 if (so->so_proto->pr_usrreqs->pru_close != NULL) 1261 (*so->so_proto->pr_usrreqs->pru_close)(so); 1262 1263 SOCK_LOCK(so); 1264 if ((listening = SOLISTENING(so))) { 1265 struct socket *sp; 1266 1267 TAILQ_INIT(&lqueue); 1268 TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list); 1269 TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list); 1270 1271 so->sol_qlen = so->sol_incqlen = 0; 1272 1273 TAILQ_FOREACH(sp, &lqueue, so_list) { 1274 SOCK_LOCK(sp); 1275 sp->so_qstate = SQ_NONE; 1276 sp->so_listen = NULL; 1277 SOCK_UNLOCK(sp); 1278 last = refcount_release(&so->so_count); 1279 KASSERT(!last, ("%s: released last reference for %p", 1280 __func__, so)); 1281 } 1282 } 1283 KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF")); 1284 so->so_state |= SS_NOFDREF; 1285 sorele(so); 1286 if (listening) { 1287 struct socket *sp, *tsp; 1288 1289 TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp) { 1290 SOCK_LOCK(sp); 1291 if (refcount_load(&sp->so_count) == 0) { 1292 SOCK_UNLOCK(sp); 1293 soabort(sp); 1294 } else { 1295 /* See the handling of queued sockets 1296 in sofree(). */ 1297 SOCK_UNLOCK(sp); 1298 } 1299 } 1300 } 1301 CURVNET_RESTORE(); 1302 return (error); 1303 } 1304 1305 /* 1306 * soabort() is used to abruptly tear down a connection, such as when a 1307 * resource limit is reached (listen queue depth exceeded), or if a listen 1308 * socket is closed while there are sockets waiting to be accepted. 1309 * 1310 * This interface is tricky, because it is called on an unreferenced socket, 1311 * and must be called only by a thread that has actually removed the socket 1312 * from the listen queue it was on, or races with other threads are risked. 1313 * 1314 * This interface will call into the protocol code, so must not be called 1315 * with any socket locks held. Protocols do call it while holding their own 1316 * recursible protocol mutexes, but this is something that should be subject 1317 * to review in the future. 1318 */ 1319 void 1320 soabort(struct socket *so) 1321 { 1322 1323 /* 1324 * In as much as is possible, assert that no references to this 1325 * socket are held. This is not quite the same as asserting that the 1326 * current thread is responsible for arranging for no references, but 1327 * is as close as we can get for now. 1328 */ 1329 KASSERT(so->so_count == 0, ("soabort: so_count")); 1330 KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF")); 1331 KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF")); 1332 VNET_SO_ASSERT(so); 1333 1334 if (so->so_proto->pr_usrreqs->pru_abort != NULL) 1335 (*so->so_proto->pr_usrreqs->pru_abort)(so); 1336 SOCK_LOCK(so); 1337 sofree(so); 1338 } 1339 1340 int 1341 soaccept(struct socket *so, struct sockaddr **nam) 1342 { 1343 int error; 1344 1345 SOCK_LOCK(so); 1346 KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF")); 1347 so->so_state &= ~SS_NOFDREF; 1348 SOCK_UNLOCK(so); 1349 1350 CURVNET_SET(so->so_vnet); 1351 error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam); 1352 CURVNET_RESTORE(); 1353 return (error); 1354 } 1355 1356 int 1357 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td) 1358 { 1359 1360 return (soconnectat(AT_FDCWD, so, nam, td)); 1361 } 1362 1363 int 1364 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 1365 { 1366 int error; 1367 1368 CURVNET_SET(so->so_vnet); 1369 /* 1370 * If protocol is connection-based, can only connect once. 1371 * Otherwise, if connected, try to disconnect first. This allows 1372 * user to disconnect by connecting to, e.g., a null address. 1373 */ 1374 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 1375 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 1376 (error = sodisconnect(so)))) { 1377 error = EISCONN; 1378 } else { 1379 /* 1380 * Prevent accumulated error from previous connection from 1381 * biting us. 1382 */ 1383 so->so_error = 0; 1384 if (fd == AT_FDCWD) { 1385 error = (*so->so_proto->pr_usrreqs->pru_connect)(so, 1386 nam, td); 1387 } else { 1388 error = (*so->so_proto->pr_usrreqs->pru_connectat)(fd, 1389 so, nam, td); 1390 } 1391 } 1392 CURVNET_RESTORE(); 1393 1394 return (error); 1395 } 1396 1397 int 1398 soconnect2(struct socket *so1, struct socket *so2) 1399 { 1400 int error; 1401 1402 CURVNET_SET(so1->so_vnet); 1403 error = (*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2); 1404 CURVNET_RESTORE(); 1405 return (error); 1406 } 1407 1408 int 1409 sodisconnect(struct socket *so) 1410 { 1411 int error; 1412 1413 if ((so->so_state & SS_ISCONNECTED) == 0) 1414 return (ENOTCONN); 1415 if (so->so_state & SS_ISDISCONNECTING) 1416 return (EALREADY); 1417 VNET_SO_ASSERT(so); 1418 error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so); 1419 return (error); 1420 } 1421 1422 int 1423 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, 1424 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1425 { 1426 long space; 1427 ssize_t resid; 1428 int clen = 0, error, dontroute; 1429 1430 KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM")); 1431 KASSERT(so->so_proto->pr_flags & PR_ATOMIC, 1432 ("sosend_dgram: !PR_ATOMIC")); 1433 1434 if (uio != NULL) 1435 resid = uio->uio_resid; 1436 else 1437 resid = top->m_pkthdr.len; 1438 /* 1439 * In theory resid should be unsigned. However, space must be 1440 * signed, as it might be less than 0 if we over-committed, and we 1441 * must use a signed comparison of space and resid. On the other 1442 * hand, a negative resid causes us to loop sending 0-length 1443 * segments to the protocol. 1444 */ 1445 if (resid < 0) { 1446 error = EINVAL; 1447 goto out; 1448 } 1449 1450 dontroute = 1451 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0; 1452 if (td != NULL) 1453 td->td_ru.ru_msgsnd++; 1454 if (control != NULL) 1455 clen = control->m_len; 1456 1457 SOCKBUF_LOCK(&so->so_snd); 1458 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1459 SOCKBUF_UNLOCK(&so->so_snd); 1460 error = EPIPE; 1461 goto out; 1462 } 1463 if (so->so_error) { 1464 error = so->so_error; 1465 so->so_error = 0; 1466 SOCKBUF_UNLOCK(&so->so_snd); 1467 goto out; 1468 } 1469 if ((so->so_state & SS_ISCONNECTED) == 0) { 1470 /* 1471 * `sendto' and `sendmsg' is allowed on a connection-based 1472 * socket if it supports implied connect. Return ENOTCONN if 1473 * not connected and no address is supplied. 1474 */ 1475 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1476 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1477 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1478 !(resid == 0 && clen != 0)) { 1479 SOCKBUF_UNLOCK(&so->so_snd); 1480 error = ENOTCONN; 1481 goto out; 1482 } 1483 } else if (addr == NULL) { 1484 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1485 error = ENOTCONN; 1486 else 1487 error = EDESTADDRREQ; 1488 SOCKBUF_UNLOCK(&so->so_snd); 1489 goto out; 1490 } 1491 } 1492 1493 /* 1494 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a 1495 * problem and need fixing. 1496 */ 1497 space = sbspace(&so->so_snd); 1498 if (flags & MSG_OOB) 1499 space += 1024; 1500 space -= clen; 1501 SOCKBUF_UNLOCK(&so->so_snd); 1502 if (resid > space) { 1503 error = EMSGSIZE; 1504 goto out; 1505 } 1506 if (uio == NULL) { 1507 resid = 0; 1508 if (flags & MSG_EOR) 1509 top->m_flags |= M_EOR; 1510 } else { 1511 /* 1512 * Copy the data from userland into a mbuf chain. 1513 * If no data is to be copied in, a single empty mbuf 1514 * is returned. 1515 */ 1516 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr, 1517 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0))); 1518 if (top == NULL) { 1519 error = EFAULT; /* only possible error */ 1520 goto out; 1521 } 1522 space -= resid - uio->uio_resid; 1523 resid = uio->uio_resid; 1524 } 1525 KASSERT(resid == 0, ("sosend_dgram: resid != 0")); 1526 /* 1527 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock 1528 * than with. 1529 */ 1530 if (dontroute) { 1531 SOCK_LOCK(so); 1532 so->so_options |= SO_DONTROUTE; 1533 SOCK_UNLOCK(so); 1534 } 1535 /* 1536 * XXX all the SBS_CANTSENDMORE checks previously done could be out 1537 * of date. We could have received a reset packet in an interrupt or 1538 * maybe we slept while doing page faults in uiomove() etc. We could 1539 * probably recheck again inside the locking protection here, but 1540 * there are probably other places that this also happens. We must 1541 * rethink this. 1542 */ 1543 VNET_SO_ASSERT(so); 1544 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1545 (flags & MSG_OOB) ? PRUS_OOB : 1546 /* 1547 * If the user set MSG_EOF, the protocol understands this flag and 1548 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND. 1549 */ 1550 ((flags & MSG_EOF) && 1551 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1552 (resid <= 0)) ? 1553 PRUS_EOF : 1554 /* If there is more to send set PRUS_MORETOCOME */ 1555 (flags & MSG_MORETOCOME) || 1556 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1557 top, addr, control, td); 1558 if (dontroute) { 1559 SOCK_LOCK(so); 1560 so->so_options &= ~SO_DONTROUTE; 1561 SOCK_UNLOCK(so); 1562 } 1563 clen = 0; 1564 control = NULL; 1565 top = NULL; 1566 out: 1567 if (top != NULL) 1568 m_freem(top); 1569 if (control != NULL) 1570 m_freem(control); 1571 return (error); 1572 } 1573 1574 /* 1575 * Send on a socket. If send must go all at once and message is larger than 1576 * send buffering, then hard error. Lock against other senders. If must go 1577 * all at once and not enough room now, then inform user that this would 1578 * block and do nothing. Otherwise, if nonblocking, send as much as 1579 * possible. The data to be sent is described by "uio" if nonzero, otherwise 1580 * by the mbuf chain "top" (which must be null if uio is not). Data provided 1581 * in mbuf chain must be small enough to send all at once. 1582 * 1583 * Returns nonzero on error, timeout or signal; callers must check for short 1584 * counts if EINTR/ERESTART are returned. Data and control buffers are freed 1585 * on return. 1586 */ 1587 int 1588 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio, 1589 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1590 { 1591 long space; 1592 ssize_t resid; 1593 int clen = 0, error, dontroute; 1594 int atomic = sosendallatonce(so) || top; 1595 int pru_flag; 1596 #ifdef KERN_TLS 1597 struct ktls_session *tls; 1598 int tls_enq_cnt, tls_pruflag; 1599 uint8_t tls_rtype; 1600 1601 tls = NULL; 1602 tls_rtype = TLS_RLTYPE_APP; 1603 #endif 1604 if (uio != NULL) 1605 resid = uio->uio_resid; 1606 else if ((top->m_flags & M_PKTHDR) != 0) 1607 resid = top->m_pkthdr.len; 1608 else 1609 resid = m_length(top, NULL); 1610 /* 1611 * In theory resid should be unsigned. However, space must be 1612 * signed, as it might be less than 0 if we over-committed, and we 1613 * must use a signed comparison of space and resid. On the other 1614 * hand, a negative resid causes us to loop sending 0-length 1615 * segments to the protocol. 1616 * 1617 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 1618 * type sockets since that's an error. 1619 */ 1620 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 1621 error = EINVAL; 1622 goto out; 1623 } 1624 1625 dontroute = 1626 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 1627 (so->so_proto->pr_flags & PR_ATOMIC); 1628 if (td != NULL) 1629 td->td_ru.ru_msgsnd++; 1630 if (control != NULL) 1631 clen = control->m_len; 1632 1633 error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags)); 1634 if (error) 1635 goto out; 1636 1637 #ifdef KERN_TLS 1638 tls_pruflag = 0; 1639 tls = ktls_hold(so->so_snd.sb_tls_info); 1640 if (tls != NULL) { 1641 if (tls->mode == TCP_TLS_MODE_SW) 1642 tls_pruflag = PRUS_NOTREADY; 1643 1644 if (control != NULL) { 1645 struct cmsghdr *cm = mtod(control, struct cmsghdr *); 1646 1647 if (clen >= sizeof(*cm) && 1648 cm->cmsg_type == TLS_SET_RECORD_TYPE) { 1649 tls_rtype = *((uint8_t *)CMSG_DATA(cm)); 1650 clen = 0; 1651 m_freem(control); 1652 control = NULL; 1653 atomic = 1; 1654 } 1655 } 1656 } 1657 #endif 1658 1659 restart: 1660 do { 1661 SOCKBUF_LOCK(&so->so_snd); 1662 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1663 SOCKBUF_UNLOCK(&so->so_snd); 1664 error = EPIPE; 1665 goto release; 1666 } 1667 if (so->so_error) { 1668 error = so->so_error; 1669 so->so_error = 0; 1670 SOCKBUF_UNLOCK(&so->so_snd); 1671 goto release; 1672 } 1673 if ((so->so_state & SS_ISCONNECTED) == 0) { 1674 /* 1675 * `sendto' and `sendmsg' is allowed on a connection- 1676 * based socket if it supports implied connect. 1677 * Return ENOTCONN if not connected and no address is 1678 * supplied. 1679 */ 1680 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1681 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1682 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1683 !(resid == 0 && clen != 0)) { 1684 SOCKBUF_UNLOCK(&so->so_snd); 1685 error = ENOTCONN; 1686 goto release; 1687 } 1688 } else if (addr == NULL) { 1689 SOCKBUF_UNLOCK(&so->so_snd); 1690 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1691 error = ENOTCONN; 1692 else 1693 error = EDESTADDRREQ; 1694 goto release; 1695 } 1696 } 1697 space = sbspace(&so->so_snd); 1698 if (flags & MSG_OOB) 1699 space += 1024; 1700 if ((atomic && resid > so->so_snd.sb_hiwat) || 1701 clen > so->so_snd.sb_hiwat) { 1702 SOCKBUF_UNLOCK(&so->so_snd); 1703 error = EMSGSIZE; 1704 goto release; 1705 } 1706 if (space < resid + clen && 1707 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 1708 if ((so->so_state & SS_NBIO) || 1709 (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) { 1710 SOCKBUF_UNLOCK(&so->so_snd); 1711 error = EWOULDBLOCK; 1712 goto release; 1713 } 1714 error = sbwait(&so->so_snd); 1715 SOCKBUF_UNLOCK(&so->so_snd); 1716 if (error) 1717 goto release; 1718 goto restart; 1719 } 1720 SOCKBUF_UNLOCK(&so->so_snd); 1721 space -= clen; 1722 do { 1723 if (uio == NULL) { 1724 resid = 0; 1725 if (flags & MSG_EOR) 1726 top->m_flags |= M_EOR; 1727 #ifdef KERN_TLS 1728 if (tls != NULL) { 1729 ktls_frame(top, tls, &tls_enq_cnt, 1730 tls_rtype); 1731 tls_rtype = TLS_RLTYPE_APP; 1732 } 1733 #endif 1734 } else { 1735 /* 1736 * Copy the data from userland into a mbuf 1737 * chain. If resid is 0, which can happen 1738 * only if we have control to send, then 1739 * a single empty mbuf is returned. This 1740 * is a workaround to prevent protocol send 1741 * methods to panic. 1742 */ 1743 #ifdef KERN_TLS 1744 if (tls != NULL) { 1745 top = m_uiotombuf(uio, M_WAITOK, space, 1746 tls->params.max_frame_len, 1747 M_EXTPG | 1748 ((flags & MSG_EOR) ? M_EOR : 0)); 1749 if (top != NULL) { 1750 ktls_frame(top, tls, 1751 &tls_enq_cnt, tls_rtype); 1752 } 1753 tls_rtype = TLS_RLTYPE_APP; 1754 } else 1755 #endif 1756 top = m_uiotombuf(uio, M_WAITOK, space, 1757 (atomic ? max_hdr : 0), 1758 (atomic ? M_PKTHDR : 0) | 1759 ((flags & MSG_EOR) ? M_EOR : 0)); 1760 if (top == NULL) { 1761 error = EFAULT; /* only possible error */ 1762 goto release; 1763 } 1764 space -= resid - uio->uio_resid; 1765 resid = uio->uio_resid; 1766 } 1767 if (dontroute) { 1768 SOCK_LOCK(so); 1769 so->so_options |= SO_DONTROUTE; 1770 SOCK_UNLOCK(so); 1771 } 1772 /* 1773 * XXX all the SBS_CANTSENDMORE checks previously 1774 * done could be out of date. We could have received 1775 * a reset packet in an interrupt or maybe we slept 1776 * while doing page faults in uiomove() etc. We 1777 * could probably recheck again inside the locking 1778 * protection here, but there are probably other 1779 * places that this also happens. We must rethink 1780 * this. 1781 */ 1782 VNET_SO_ASSERT(so); 1783 1784 pru_flag = (flags & MSG_OOB) ? PRUS_OOB : 1785 /* 1786 * If the user set MSG_EOF, the protocol understands 1787 * this flag and nothing left to send then use 1788 * PRU_SEND_EOF instead of PRU_SEND. 1789 */ 1790 ((flags & MSG_EOF) && 1791 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1792 (resid <= 0)) ? 1793 PRUS_EOF : 1794 /* If there is more to send set PRUS_MORETOCOME. */ 1795 (flags & MSG_MORETOCOME) || 1796 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0; 1797 1798 #ifdef KERN_TLS 1799 pru_flag |= tls_pruflag; 1800 #endif 1801 1802 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1803 pru_flag, top, addr, control, td); 1804 1805 if (dontroute) { 1806 SOCK_LOCK(so); 1807 so->so_options &= ~SO_DONTROUTE; 1808 SOCK_UNLOCK(so); 1809 } 1810 1811 #ifdef KERN_TLS 1812 if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) { 1813 if (error != 0) { 1814 m_freem(top); 1815 top = NULL; 1816 } else { 1817 soref(so); 1818 ktls_enqueue(top, so, tls_enq_cnt); 1819 } 1820 } 1821 #endif 1822 clen = 0; 1823 control = NULL; 1824 top = NULL; 1825 if (error) 1826 goto release; 1827 } while (resid && space > 0); 1828 } while (resid); 1829 1830 release: 1831 SOCK_IO_SEND_UNLOCK(so); 1832 out: 1833 #ifdef KERN_TLS 1834 if (tls != NULL) 1835 ktls_free(tls); 1836 #endif 1837 if (top != NULL) 1838 m_freem(top); 1839 if (control != NULL) 1840 m_freem(control); 1841 return (error); 1842 } 1843 1844 int 1845 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, 1846 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1847 { 1848 int error; 1849 1850 CURVNET_SET(so->so_vnet); 1851 error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, 1852 top, control, flags, td); 1853 CURVNET_RESTORE(); 1854 return (error); 1855 } 1856 1857 /* 1858 * The part of soreceive() that implements reading non-inline out-of-band 1859 * data from a socket. For more complete comments, see soreceive(), from 1860 * which this code originated. 1861 * 1862 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is 1863 * unable to return an mbuf chain to the caller. 1864 */ 1865 static int 1866 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags) 1867 { 1868 struct protosw *pr = so->so_proto; 1869 struct mbuf *m; 1870 int error; 1871 1872 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); 1873 VNET_SO_ASSERT(so); 1874 1875 m = m_get(M_WAITOK, MT_DATA); 1876 error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK); 1877 if (error) 1878 goto bad; 1879 do { 1880 error = uiomove(mtod(m, void *), 1881 (int) min(uio->uio_resid, m->m_len), uio); 1882 m = m_free(m); 1883 } while (uio->uio_resid && error == 0 && m); 1884 bad: 1885 if (m != NULL) 1886 m_freem(m); 1887 return (error); 1888 } 1889 1890 /* 1891 * Following replacement or removal of the first mbuf on the first mbuf chain 1892 * of a socket buffer, push necessary state changes back into the socket 1893 * buffer so that other consumers see the values consistently. 'nextrecord' 1894 * is the callers locally stored value of the original value of 1895 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. 1896 * NOTE: 'nextrecord' may be NULL. 1897 */ 1898 static __inline void 1899 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) 1900 { 1901 1902 SOCKBUF_LOCK_ASSERT(sb); 1903 /* 1904 * First, update for the new value of nextrecord. If necessary, make 1905 * it the first record. 1906 */ 1907 if (sb->sb_mb != NULL) 1908 sb->sb_mb->m_nextpkt = nextrecord; 1909 else 1910 sb->sb_mb = nextrecord; 1911 1912 /* 1913 * Now update any dependent socket buffer fields to reflect the new 1914 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the 1915 * addition of a second clause that takes care of the case where 1916 * sb_mb has been updated, but remains the last record. 1917 */ 1918 if (sb->sb_mb == NULL) { 1919 sb->sb_mbtail = NULL; 1920 sb->sb_lastrecord = NULL; 1921 } else if (sb->sb_mb->m_nextpkt == NULL) 1922 sb->sb_lastrecord = sb->sb_mb; 1923 } 1924 1925 /* 1926 * Implement receive operations on a socket. We depend on the way that 1927 * records are added to the sockbuf by sbappend. In particular, each record 1928 * (mbufs linked through m_next) must begin with an address if the protocol 1929 * so specifies, followed by an optional mbuf or mbufs containing ancillary 1930 * data, and then zero or more mbufs of data. In order to allow parallelism 1931 * between network receive and copying to user space, as well as avoid 1932 * sleeping with a mutex held, we release the socket buffer mutex during the 1933 * user space copy. Although the sockbuf is locked, new data may still be 1934 * appended, and thus we must maintain consistency of the sockbuf during that 1935 * time. 1936 * 1937 * The caller may receive the data as a single mbuf chain by supplying an 1938 * mbuf **mp0 for use in returning the chain. The uio is then used only for 1939 * the count in uio_resid. 1940 */ 1941 int 1942 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio, 1943 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1944 { 1945 struct mbuf *m, **mp; 1946 int flags, error, offset; 1947 ssize_t len; 1948 struct protosw *pr = so->so_proto; 1949 struct mbuf *nextrecord; 1950 int moff, type = 0; 1951 ssize_t orig_resid = uio->uio_resid; 1952 1953 mp = mp0; 1954 if (psa != NULL) 1955 *psa = NULL; 1956 if (controlp != NULL) 1957 *controlp = NULL; 1958 if (flagsp != NULL) 1959 flags = *flagsp &~ MSG_EOR; 1960 else 1961 flags = 0; 1962 if (flags & MSG_OOB) 1963 return (soreceive_rcvoob(so, uio, flags)); 1964 if (mp != NULL) 1965 *mp = NULL; 1966 if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING) 1967 && uio->uio_resid) { 1968 VNET_SO_ASSERT(so); 1969 (*pr->pr_usrreqs->pru_rcvd)(so, 0); 1970 } 1971 1972 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags)); 1973 if (error) 1974 return (error); 1975 1976 restart: 1977 SOCKBUF_LOCK(&so->so_rcv); 1978 m = so->so_rcv.sb_mb; 1979 /* 1980 * If we have less data than requested, block awaiting more (subject 1981 * to any timeout) if: 1982 * 1. the current count is less than the low water mark, or 1983 * 2. MSG_DONTWAIT is not set 1984 */ 1985 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 1986 sbavail(&so->so_rcv) < uio->uio_resid) && 1987 sbavail(&so->so_rcv) < so->so_rcv.sb_lowat && 1988 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 1989 KASSERT(m != NULL || !sbavail(&so->so_rcv), 1990 ("receive: m == %p sbavail == %u", 1991 m, sbavail(&so->so_rcv))); 1992 if (so->so_error || so->so_rerror) { 1993 if (m != NULL) 1994 goto dontblock; 1995 if (so->so_error) 1996 error = so->so_error; 1997 else 1998 error = so->so_rerror; 1999 if ((flags & MSG_PEEK) == 0) { 2000 if (so->so_error) 2001 so->so_error = 0; 2002 else 2003 so->so_rerror = 0; 2004 } 2005 SOCKBUF_UNLOCK(&so->so_rcv); 2006 goto release; 2007 } 2008 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2009 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 2010 if (m != NULL) 2011 goto dontblock; 2012 #ifdef KERN_TLS 2013 else if (so->so_rcv.sb_tlsdcc == 0 && 2014 so->so_rcv.sb_tlscc == 0) { 2015 #else 2016 else { 2017 #endif 2018 SOCKBUF_UNLOCK(&so->so_rcv); 2019 goto release; 2020 } 2021 } 2022 for (; m != NULL; m = m->m_next) 2023 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 2024 m = so->so_rcv.sb_mb; 2025 goto dontblock; 2026 } 2027 if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED | 2028 SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 && 2029 (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) { 2030 SOCKBUF_UNLOCK(&so->so_rcv); 2031 error = ENOTCONN; 2032 goto release; 2033 } 2034 if (uio->uio_resid == 0) { 2035 SOCKBUF_UNLOCK(&so->so_rcv); 2036 goto release; 2037 } 2038 if ((so->so_state & SS_NBIO) || 2039 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2040 SOCKBUF_UNLOCK(&so->so_rcv); 2041 error = EWOULDBLOCK; 2042 goto release; 2043 } 2044 SBLASTRECORDCHK(&so->so_rcv); 2045 SBLASTMBUFCHK(&so->so_rcv); 2046 error = sbwait(&so->so_rcv); 2047 SOCKBUF_UNLOCK(&so->so_rcv); 2048 if (error) 2049 goto release; 2050 goto restart; 2051 } 2052 dontblock: 2053 /* 2054 * From this point onward, we maintain 'nextrecord' as a cache of the 2055 * pointer to the next record in the socket buffer. We must keep the 2056 * various socket buffer pointers and local stack versions of the 2057 * pointers in sync, pushing out modifications before dropping the 2058 * socket buffer mutex, and re-reading them when picking it up. 2059 * 2060 * Otherwise, we will race with the network stack appending new data 2061 * or records onto the socket buffer by using inconsistent/stale 2062 * versions of the field, possibly resulting in socket buffer 2063 * corruption. 2064 * 2065 * By holding the high-level sblock(), we prevent simultaneous 2066 * readers from pulling off the front of the socket buffer. 2067 */ 2068 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2069 if (uio->uio_td) 2070 uio->uio_td->td_ru.ru_msgrcv++; 2071 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); 2072 SBLASTRECORDCHK(&so->so_rcv); 2073 SBLASTMBUFCHK(&so->so_rcv); 2074 nextrecord = m->m_nextpkt; 2075 if (pr->pr_flags & PR_ADDR) { 2076 KASSERT(m->m_type == MT_SONAME, 2077 ("m->m_type == %d", m->m_type)); 2078 orig_resid = 0; 2079 if (psa != NULL) 2080 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2081 M_NOWAIT); 2082 if (flags & MSG_PEEK) { 2083 m = m->m_next; 2084 } else { 2085 sbfree(&so->so_rcv, m); 2086 so->so_rcv.sb_mb = m_free(m); 2087 m = so->so_rcv.sb_mb; 2088 sockbuf_pushsync(&so->so_rcv, nextrecord); 2089 } 2090 } 2091 2092 /* 2093 * Process one or more MT_CONTROL mbufs present before any data mbufs 2094 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 2095 * just copy the data; if !MSG_PEEK, we call into the protocol to 2096 * perform externalization (or freeing if controlp == NULL). 2097 */ 2098 if (m != NULL && m->m_type == MT_CONTROL) { 2099 struct mbuf *cm = NULL, *cmn; 2100 struct mbuf **cme = &cm; 2101 #ifdef KERN_TLS 2102 struct cmsghdr *cmsg; 2103 struct tls_get_record tgr; 2104 2105 /* 2106 * For MSG_TLSAPPDATA, check for a non-application data 2107 * record. If found, return ENXIO without removing 2108 * it from the receive queue. This allows a subsequent 2109 * call without MSG_TLSAPPDATA to receive it. 2110 * Note that, for TLS, there should only be a single 2111 * control mbuf with the TLS_GET_RECORD message in it. 2112 */ 2113 if (flags & MSG_TLSAPPDATA) { 2114 cmsg = mtod(m, struct cmsghdr *); 2115 if (cmsg->cmsg_type == TLS_GET_RECORD && 2116 cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) { 2117 memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr)); 2118 /* This will need to change for TLS 1.3. */ 2119 if (tgr.tls_type != TLS_RLTYPE_APP) { 2120 SOCKBUF_UNLOCK(&so->so_rcv); 2121 error = ENXIO; 2122 goto release; 2123 } 2124 } 2125 } 2126 #endif 2127 2128 do { 2129 if (flags & MSG_PEEK) { 2130 if (controlp != NULL) { 2131 *controlp = m_copym(m, 0, m->m_len, 2132 M_NOWAIT); 2133 controlp = &(*controlp)->m_next; 2134 } 2135 m = m->m_next; 2136 } else { 2137 sbfree(&so->so_rcv, m); 2138 so->so_rcv.sb_mb = m->m_next; 2139 m->m_next = NULL; 2140 *cme = m; 2141 cme = &(*cme)->m_next; 2142 m = so->so_rcv.sb_mb; 2143 } 2144 } while (m != NULL && m->m_type == MT_CONTROL); 2145 if ((flags & MSG_PEEK) == 0) 2146 sockbuf_pushsync(&so->so_rcv, nextrecord); 2147 while (cm != NULL) { 2148 cmn = cm->m_next; 2149 cm->m_next = NULL; 2150 if (pr->pr_domain->dom_externalize != NULL) { 2151 SOCKBUF_UNLOCK(&so->so_rcv); 2152 VNET_SO_ASSERT(so); 2153 error = (*pr->pr_domain->dom_externalize) 2154 (cm, controlp, flags); 2155 SOCKBUF_LOCK(&so->so_rcv); 2156 } else if (controlp != NULL) 2157 *controlp = cm; 2158 else 2159 m_freem(cm); 2160 if (controlp != NULL) { 2161 orig_resid = 0; 2162 while (*controlp != NULL) 2163 controlp = &(*controlp)->m_next; 2164 } 2165 cm = cmn; 2166 } 2167 if (m != NULL) 2168 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 2169 else 2170 nextrecord = so->so_rcv.sb_mb; 2171 orig_resid = 0; 2172 } 2173 if (m != NULL) { 2174 if ((flags & MSG_PEEK) == 0) { 2175 KASSERT(m->m_nextpkt == nextrecord, 2176 ("soreceive: post-control, nextrecord !sync")); 2177 if (nextrecord == NULL) { 2178 KASSERT(so->so_rcv.sb_mb == m, 2179 ("soreceive: post-control, sb_mb!=m")); 2180 KASSERT(so->so_rcv.sb_lastrecord == m, 2181 ("soreceive: post-control, lastrecord!=m")); 2182 } 2183 } 2184 type = m->m_type; 2185 if (type == MT_OOBDATA) 2186 flags |= MSG_OOB; 2187 } else { 2188 if ((flags & MSG_PEEK) == 0) { 2189 KASSERT(so->so_rcv.sb_mb == nextrecord, 2190 ("soreceive: sb_mb != nextrecord")); 2191 if (so->so_rcv.sb_mb == NULL) { 2192 KASSERT(so->so_rcv.sb_lastrecord == NULL, 2193 ("soreceive: sb_lastercord != NULL")); 2194 } 2195 } 2196 } 2197 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2198 SBLASTRECORDCHK(&so->so_rcv); 2199 SBLASTMBUFCHK(&so->so_rcv); 2200 2201 /* 2202 * Now continue to read any data mbufs off of the head of the socket 2203 * buffer until the read request is satisfied. Note that 'type' is 2204 * used to store the type of any mbuf reads that have happened so far 2205 * such that soreceive() can stop reading if the type changes, which 2206 * causes soreceive() to return only one of regular data and inline 2207 * out-of-band data in a single socket receive operation. 2208 */ 2209 moff = 0; 2210 offset = 0; 2211 while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0 2212 && error == 0) { 2213 /* 2214 * If the type of mbuf has changed since the last mbuf 2215 * examined ('type'), end the receive operation. 2216 */ 2217 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2218 if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) { 2219 if (type != m->m_type) 2220 break; 2221 } else if (type == MT_OOBDATA) 2222 break; 2223 else 2224 KASSERT(m->m_type == MT_DATA, 2225 ("m->m_type == %d", m->m_type)); 2226 so->so_rcv.sb_state &= ~SBS_RCVATMARK; 2227 len = uio->uio_resid; 2228 if (so->so_oobmark && len > so->so_oobmark - offset) 2229 len = so->so_oobmark - offset; 2230 if (len > m->m_len - moff) 2231 len = m->m_len - moff; 2232 /* 2233 * If mp is set, just pass back the mbufs. Otherwise copy 2234 * them out via the uio, then free. Sockbuf must be 2235 * consistent here (points to current mbuf, it points to next 2236 * record) when we drop priority; we must note any additions 2237 * to the sockbuf when we block interrupts again. 2238 */ 2239 if (mp == NULL) { 2240 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2241 SBLASTRECORDCHK(&so->so_rcv); 2242 SBLASTMBUFCHK(&so->so_rcv); 2243 SOCKBUF_UNLOCK(&so->so_rcv); 2244 if ((m->m_flags & M_EXTPG) != 0) 2245 error = m_unmapped_uiomove(m, moff, uio, 2246 (int)len); 2247 else 2248 error = uiomove(mtod(m, char *) + moff, 2249 (int)len, uio); 2250 SOCKBUF_LOCK(&so->so_rcv); 2251 if (error) { 2252 /* 2253 * The MT_SONAME mbuf has already been removed 2254 * from the record, so it is necessary to 2255 * remove the data mbufs, if any, to preserve 2256 * the invariant in the case of PR_ADDR that 2257 * requires MT_SONAME mbufs at the head of 2258 * each record. 2259 */ 2260 if (pr->pr_flags & PR_ATOMIC && 2261 ((flags & MSG_PEEK) == 0)) 2262 (void)sbdroprecord_locked(&so->so_rcv); 2263 SOCKBUF_UNLOCK(&so->so_rcv); 2264 goto release; 2265 } 2266 } else 2267 uio->uio_resid -= len; 2268 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2269 if (len == m->m_len - moff) { 2270 if (m->m_flags & M_EOR) 2271 flags |= MSG_EOR; 2272 if (flags & MSG_PEEK) { 2273 m = m->m_next; 2274 moff = 0; 2275 } else { 2276 nextrecord = m->m_nextpkt; 2277 sbfree(&so->so_rcv, m); 2278 if (mp != NULL) { 2279 m->m_nextpkt = NULL; 2280 *mp = m; 2281 mp = &m->m_next; 2282 so->so_rcv.sb_mb = m = m->m_next; 2283 *mp = NULL; 2284 } else { 2285 so->so_rcv.sb_mb = m_free(m); 2286 m = so->so_rcv.sb_mb; 2287 } 2288 sockbuf_pushsync(&so->so_rcv, nextrecord); 2289 SBLASTRECORDCHK(&so->so_rcv); 2290 SBLASTMBUFCHK(&so->so_rcv); 2291 } 2292 } else { 2293 if (flags & MSG_PEEK) 2294 moff += len; 2295 else { 2296 if (mp != NULL) { 2297 if (flags & MSG_DONTWAIT) { 2298 *mp = m_copym(m, 0, len, 2299 M_NOWAIT); 2300 if (*mp == NULL) { 2301 /* 2302 * m_copym() couldn't 2303 * allocate an mbuf. 2304 * Adjust uio_resid back 2305 * (it was adjusted 2306 * down by len bytes, 2307 * which we didn't end 2308 * up "copying" over). 2309 */ 2310 uio->uio_resid += len; 2311 break; 2312 } 2313 } else { 2314 SOCKBUF_UNLOCK(&so->so_rcv); 2315 *mp = m_copym(m, 0, len, 2316 M_WAITOK); 2317 SOCKBUF_LOCK(&so->so_rcv); 2318 } 2319 } 2320 sbcut_locked(&so->so_rcv, len); 2321 } 2322 } 2323 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2324 if (so->so_oobmark) { 2325 if ((flags & MSG_PEEK) == 0) { 2326 so->so_oobmark -= len; 2327 if (so->so_oobmark == 0) { 2328 so->so_rcv.sb_state |= SBS_RCVATMARK; 2329 break; 2330 } 2331 } else { 2332 offset += len; 2333 if (offset == so->so_oobmark) 2334 break; 2335 } 2336 } 2337 if (flags & MSG_EOR) 2338 break; 2339 /* 2340 * If the MSG_WAITALL flag is set (for non-atomic socket), we 2341 * must not quit until "uio->uio_resid == 0" or an error 2342 * termination. If a signal/timeout occurs, return with a 2343 * short count but without error. Keep sockbuf locked 2344 * against other readers. 2345 */ 2346 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 2347 !sosendallatonce(so) && nextrecord == NULL) { 2348 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2349 if (so->so_error || so->so_rerror || 2350 so->so_rcv.sb_state & SBS_CANTRCVMORE) 2351 break; 2352 /* 2353 * Notify the protocol that some data has been 2354 * drained before blocking. 2355 */ 2356 if (pr->pr_flags & PR_WANTRCVD) { 2357 SOCKBUF_UNLOCK(&so->so_rcv); 2358 VNET_SO_ASSERT(so); 2359 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 2360 SOCKBUF_LOCK(&so->so_rcv); 2361 } 2362 SBLASTRECORDCHK(&so->so_rcv); 2363 SBLASTMBUFCHK(&so->so_rcv); 2364 /* 2365 * We could receive some data while was notifying 2366 * the protocol. Skip blocking in this case. 2367 */ 2368 if (so->so_rcv.sb_mb == NULL) { 2369 error = sbwait(&so->so_rcv); 2370 if (error) { 2371 SOCKBUF_UNLOCK(&so->so_rcv); 2372 goto release; 2373 } 2374 } 2375 m = so->so_rcv.sb_mb; 2376 if (m != NULL) 2377 nextrecord = m->m_nextpkt; 2378 } 2379 } 2380 2381 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2382 if (m != NULL && pr->pr_flags & PR_ATOMIC) { 2383 flags |= MSG_TRUNC; 2384 if ((flags & MSG_PEEK) == 0) 2385 (void) sbdroprecord_locked(&so->so_rcv); 2386 } 2387 if ((flags & MSG_PEEK) == 0) { 2388 if (m == NULL) { 2389 /* 2390 * First part is an inline SB_EMPTY_FIXUP(). Second 2391 * part makes sure sb_lastrecord is up-to-date if 2392 * there is still data in the socket buffer. 2393 */ 2394 so->so_rcv.sb_mb = nextrecord; 2395 if (so->so_rcv.sb_mb == NULL) { 2396 so->so_rcv.sb_mbtail = NULL; 2397 so->so_rcv.sb_lastrecord = NULL; 2398 } else if (nextrecord->m_nextpkt == NULL) 2399 so->so_rcv.sb_lastrecord = nextrecord; 2400 } 2401 SBLASTRECORDCHK(&so->so_rcv); 2402 SBLASTMBUFCHK(&so->so_rcv); 2403 /* 2404 * If soreceive() is being done from the socket callback, 2405 * then don't need to generate ACK to peer to update window, 2406 * since ACK will be generated on return to TCP. 2407 */ 2408 if (!(flags & MSG_SOCALLBCK) && 2409 (pr->pr_flags & PR_WANTRCVD)) { 2410 SOCKBUF_UNLOCK(&so->so_rcv); 2411 VNET_SO_ASSERT(so); 2412 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 2413 SOCKBUF_LOCK(&so->so_rcv); 2414 } 2415 } 2416 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2417 if (orig_resid == uio->uio_resid && orig_resid && 2418 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { 2419 SOCKBUF_UNLOCK(&so->so_rcv); 2420 goto restart; 2421 } 2422 SOCKBUF_UNLOCK(&so->so_rcv); 2423 2424 if (flagsp != NULL) 2425 *flagsp |= flags; 2426 release: 2427 SOCK_IO_RECV_UNLOCK(so); 2428 return (error); 2429 } 2430 2431 /* 2432 * Optimized version of soreceive() for stream (TCP) sockets. 2433 */ 2434 int 2435 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio, 2436 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2437 { 2438 int len = 0, error = 0, flags, oresid; 2439 struct sockbuf *sb; 2440 struct mbuf *m, *n = NULL; 2441 2442 /* We only do stream sockets. */ 2443 if (so->so_type != SOCK_STREAM) 2444 return (EINVAL); 2445 if (psa != NULL) 2446 *psa = NULL; 2447 if (flagsp != NULL) 2448 flags = *flagsp &~ MSG_EOR; 2449 else 2450 flags = 0; 2451 if (controlp != NULL) 2452 *controlp = NULL; 2453 if (flags & MSG_OOB) 2454 return (soreceive_rcvoob(so, uio, flags)); 2455 if (mp0 != NULL) 2456 *mp0 = NULL; 2457 2458 sb = &so->so_rcv; 2459 2460 #ifdef KERN_TLS 2461 /* 2462 * KTLS store TLS records as records with a control message to 2463 * describe the framing. 2464 * 2465 * We check once here before acquiring locks to optimize the 2466 * common case. 2467 */ 2468 if (sb->sb_tls_info != NULL) 2469 return (soreceive_generic(so, psa, uio, mp0, controlp, 2470 flagsp)); 2471 #endif 2472 2473 /* Prevent other readers from entering the socket. */ 2474 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags)); 2475 if (error) 2476 return (error); 2477 SOCKBUF_LOCK(sb); 2478 2479 #ifdef KERN_TLS 2480 if (sb->sb_tls_info != NULL) { 2481 SOCKBUF_UNLOCK(sb); 2482 SOCK_IO_RECV_UNLOCK(so); 2483 return (soreceive_generic(so, psa, uio, mp0, controlp, 2484 flagsp)); 2485 } 2486 #endif 2487 2488 /* Easy one, no space to copyout anything. */ 2489 if (uio->uio_resid == 0) { 2490 error = EINVAL; 2491 goto out; 2492 } 2493 oresid = uio->uio_resid; 2494 2495 /* We will never ever get anything unless we are or were connected. */ 2496 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 2497 error = ENOTCONN; 2498 goto out; 2499 } 2500 2501 restart: 2502 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2503 2504 /* Abort if socket has reported problems. */ 2505 if (so->so_error) { 2506 if (sbavail(sb) > 0) 2507 goto deliver; 2508 if (oresid > uio->uio_resid) 2509 goto out; 2510 error = so->so_error; 2511 if (!(flags & MSG_PEEK)) 2512 so->so_error = 0; 2513 goto out; 2514 } 2515 2516 /* Door is closed. Deliver what is left, if any. */ 2517 if (sb->sb_state & SBS_CANTRCVMORE) { 2518 if (sbavail(sb) > 0) 2519 goto deliver; 2520 else 2521 goto out; 2522 } 2523 2524 /* Socket buffer is empty and we shall not block. */ 2525 if (sbavail(sb) == 0 && 2526 ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) { 2527 error = EAGAIN; 2528 goto out; 2529 } 2530 2531 /* Socket buffer got some data that we shall deliver now. */ 2532 if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) && 2533 ((so->so_state & SS_NBIO) || 2534 (flags & (MSG_DONTWAIT|MSG_NBIO)) || 2535 sbavail(sb) >= sb->sb_lowat || 2536 sbavail(sb) >= uio->uio_resid || 2537 sbavail(sb) >= sb->sb_hiwat) ) { 2538 goto deliver; 2539 } 2540 2541 /* On MSG_WAITALL we must wait until all data or error arrives. */ 2542 if ((flags & MSG_WAITALL) && 2543 (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat)) 2544 goto deliver; 2545 2546 /* 2547 * Wait and block until (more) data comes in. 2548 * NB: Drops the sockbuf lock during wait. 2549 */ 2550 error = sbwait(sb); 2551 if (error) 2552 goto out; 2553 goto restart; 2554 2555 deliver: 2556 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2557 KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__)); 2558 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__)); 2559 2560 /* Statistics. */ 2561 if (uio->uio_td) 2562 uio->uio_td->td_ru.ru_msgrcv++; 2563 2564 /* Fill uio until full or current end of socket buffer is reached. */ 2565 len = min(uio->uio_resid, sbavail(sb)); 2566 if (mp0 != NULL) { 2567 /* Dequeue as many mbufs as possible. */ 2568 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) { 2569 if (*mp0 == NULL) 2570 *mp0 = sb->sb_mb; 2571 else 2572 m_cat(*mp0, sb->sb_mb); 2573 for (m = sb->sb_mb; 2574 m != NULL && m->m_len <= len; 2575 m = m->m_next) { 2576 KASSERT(!(m->m_flags & M_NOTAVAIL), 2577 ("%s: m %p not available", __func__, m)); 2578 len -= m->m_len; 2579 uio->uio_resid -= m->m_len; 2580 sbfree(sb, m); 2581 n = m; 2582 } 2583 n->m_next = NULL; 2584 sb->sb_mb = m; 2585 sb->sb_lastrecord = sb->sb_mb; 2586 if (sb->sb_mb == NULL) 2587 SB_EMPTY_FIXUP(sb); 2588 } 2589 /* Copy the remainder. */ 2590 if (len > 0) { 2591 KASSERT(sb->sb_mb != NULL, 2592 ("%s: len > 0 && sb->sb_mb empty", __func__)); 2593 2594 m = m_copym(sb->sb_mb, 0, len, M_NOWAIT); 2595 if (m == NULL) 2596 len = 0; /* Don't flush data from sockbuf. */ 2597 else 2598 uio->uio_resid -= len; 2599 if (*mp0 != NULL) 2600 m_cat(*mp0, m); 2601 else 2602 *mp0 = m; 2603 if (*mp0 == NULL) { 2604 error = ENOBUFS; 2605 goto out; 2606 } 2607 } 2608 } else { 2609 /* NB: Must unlock socket buffer as uiomove may sleep. */ 2610 SOCKBUF_UNLOCK(sb); 2611 error = m_mbuftouio(uio, sb->sb_mb, len); 2612 SOCKBUF_LOCK(sb); 2613 if (error) 2614 goto out; 2615 } 2616 SBLASTRECORDCHK(sb); 2617 SBLASTMBUFCHK(sb); 2618 2619 /* 2620 * Remove the delivered data from the socket buffer unless we 2621 * were only peeking. 2622 */ 2623 if (!(flags & MSG_PEEK)) { 2624 if (len > 0) 2625 sbdrop_locked(sb, len); 2626 2627 /* Notify protocol that we drained some data. */ 2628 if ((so->so_proto->pr_flags & PR_WANTRCVD) && 2629 (((flags & MSG_WAITALL) && uio->uio_resid > 0) || 2630 !(flags & MSG_SOCALLBCK))) { 2631 SOCKBUF_UNLOCK(sb); 2632 VNET_SO_ASSERT(so); 2633 (*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags); 2634 SOCKBUF_LOCK(sb); 2635 } 2636 } 2637 2638 /* 2639 * For MSG_WAITALL we may have to loop again and wait for 2640 * more data to come in. 2641 */ 2642 if ((flags & MSG_WAITALL) && uio->uio_resid > 0) 2643 goto restart; 2644 out: 2645 SBLASTRECORDCHK(sb); 2646 SBLASTMBUFCHK(sb); 2647 SOCKBUF_UNLOCK(sb); 2648 SOCK_IO_RECV_UNLOCK(so); 2649 return (error); 2650 } 2651 2652 /* 2653 * Optimized version of soreceive() for simple datagram cases from userspace. 2654 * Unlike in the stream case, we're able to drop a datagram if copyout() 2655 * fails, and because we handle datagrams atomically, we don't need to use a 2656 * sleep lock to prevent I/O interlacing. 2657 */ 2658 int 2659 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio, 2660 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2661 { 2662 struct mbuf *m, *m2; 2663 int flags, error; 2664 ssize_t len; 2665 struct protosw *pr = so->so_proto; 2666 struct mbuf *nextrecord; 2667 2668 if (psa != NULL) 2669 *psa = NULL; 2670 if (controlp != NULL) 2671 *controlp = NULL; 2672 if (flagsp != NULL) 2673 flags = *flagsp &~ MSG_EOR; 2674 else 2675 flags = 0; 2676 2677 /* 2678 * For any complicated cases, fall back to the full 2679 * soreceive_generic(). 2680 */ 2681 if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB)) 2682 return (soreceive_generic(so, psa, uio, mp0, controlp, 2683 flagsp)); 2684 2685 /* 2686 * Enforce restrictions on use. 2687 */ 2688 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0, 2689 ("soreceive_dgram: wantrcvd")); 2690 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic")); 2691 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0, 2692 ("soreceive_dgram: SBS_RCVATMARK")); 2693 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0, 2694 ("soreceive_dgram: P_CONNREQUIRED")); 2695 2696 /* 2697 * Loop blocking while waiting for a datagram. 2698 */ 2699 SOCKBUF_LOCK(&so->so_rcv); 2700 while ((m = so->so_rcv.sb_mb) == NULL) { 2701 KASSERT(sbavail(&so->so_rcv) == 0, 2702 ("soreceive_dgram: sb_mb NULL but sbavail %u", 2703 sbavail(&so->so_rcv))); 2704 if (so->so_error) { 2705 error = so->so_error; 2706 so->so_error = 0; 2707 SOCKBUF_UNLOCK(&so->so_rcv); 2708 return (error); 2709 } 2710 if (so->so_rcv.sb_state & SBS_CANTRCVMORE || 2711 uio->uio_resid == 0) { 2712 SOCKBUF_UNLOCK(&so->so_rcv); 2713 return (0); 2714 } 2715 if ((so->so_state & SS_NBIO) || 2716 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2717 SOCKBUF_UNLOCK(&so->so_rcv); 2718 return (EWOULDBLOCK); 2719 } 2720 SBLASTRECORDCHK(&so->so_rcv); 2721 SBLASTMBUFCHK(&so->so_rcv); 2722 error = sbwait(&so->so_rcv); 2723 if (error) { 2724 SOCKBUF_UNLOCK(&so->so_rcv); 2725 return (error); 2726 } 2727 } 2728 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2729 2730 if (uio->uio_td) 2731 uio->uio_td->td_ru.ru_msgrcv++; 2732 SBLASTRECORDCHK(&so->so_rcv); 2733 SBLASTMBUFCHK(&so->so_rcv); 2734 nextrecord = m->m_nextpkt; 2735 if (nextrecord == NULL) { 2736 KASSERT(so->so_rcv.sb_lastrecord == m, 2737 ("soreceive_dgram: lastrecord != m")); 2738 } 2739 2740 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord, 2741 ("soreceive_dgram: m_nextpkt != nextrecord")); 2742 2743 /* 2744 * Pull 'm' and its chain off the front of the packet queue. 2745 */ 2746 so->so_rcv.sb_mb = NULL; 2747 sockbuf_pushsync(&so->so_rcv, nextrecord); 2748 2749 /* 2750 * Walk 'm's chain and free that many bytes from the socket buffer. 2751 */ 2752 for (m2 = m; m2 != NULL; m2 = m2->m_next) 2753 sbfree(&so->so_rcv, m2); 2754 2755 /* 2756 * Do a few last checks before we let go of the lock. 2757 */ 2758 SBLASTRECORDCHK(&so->so_rcv); 2759 SBLASTMBUFCHK(&so->so_rcv); 2760 SOCKBUF_UNLOCK(&so->so_rcv); 2761 2762 if (pr->pr_flags & PR_ADDR) { 2763 KASSERT(m->m_type == MT_SONAME, 2764 ("m->m_type == %d", m->m_type)); 2765 if (psa != NULL) 2766 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2767 M_NOWAIT); 2768 m = m_free(m); 2769 } 2770 if (m == NULL) { 2771 /* XXXRW: Can this happen? */ 2772 return (0); 2773 } 2774 2775 /* 2776 * Packet to copyout() is now in 'm' and it is disconnected from the 2777 * queue. 2778 * 2779 * Process one or more MT_CONTROL mbufs present before any data mbufs 2780 * in the first mbuf chain on the socket buffer. We call into the 2781 * protocol to perform externalization (or freeing if controlp == 2782 * NULL). In some cases there can be only MT_CONTROL mbufs without 2783 * MT_DATA mbufs. 2784 */ 2785 if (m->m_type == MT_CONTROL) { 2786 struct mbuf *cm = NULL, *cmn; 2787 struct mbuf **cme = &cm; 2788 2789 do { 2790 m2 = m->m_next; 2791 m->m_next = NULL; 2792 *cme = m; 2793 cme = &(*cme)->m_next; 2794 m = m2; 2795 } while (m != NULL && m->m_type == MT_CONTROL); 2796 while (cm != NULL) { 2797 cmn = cm->m_next; 2798 cm->m_next = NULL; 2799 if (pr->pr_domain->dom_externalize != NULL) { 2800 error = (*pr->pr_domain->dom_externalize) 2801 (cm, controlp, flags); 2802 } else if (controlp != NULL) 2803 *controlp = cm; 2804 else 2805 m_freem(cm); 2806 if (controlp != NULL) { 2807 while (*controlp != NULL) 2808 controlp = &(*controlp)->m_next; 2809 } 2810 cm = cmn; 2811 } 2812 } 2813 KASSERT(m == NULL || m->m_type == MT_DATA, 2814 ("soreceive_dgram: !data")); 2815 while (m != NULL && uio->uio_resid > 0) { 2816 len = uio->uio_resid; 2817 if (len > m->m_len) 2818 len = m->m_len; 2819 error = uiomove(mtod(m, char *), (int)len, uio); 2820 if (error) { 2821 m_freem(m); 2822 return (error); 2823 } 2824 if (len == m->m_len) 2825 m = m_free(m); 2826 else { 2827 m->m_data += len; 2828 m->m_len -= len; 2829 } 2830 } 2831 if (m != NULL) { 2832 flags |= MSG_TRUNC; 2833 m_freem(m); 2834 } 2835 if (flagsp != NULL) 2836 *flagsp |= flags; 2837 return (0); 2838 } 2839 2840 int 2841 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, 2842 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2843 { 2844 int error; 2845 2846 CURVNET_SET(so->so_vnet); 2847 error = (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, 2848 mp0, controlp, flagsp)); 2849 CURVNET_RESTORE(); 2850 return (error); 2851 } 2852 2853 int 2854 soshutdown(struct socket *so, int how) 2855 { 2856 struct protosw *pr; 2857 int error, soerror_enotconn; 2858 2859 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 2860 return (EINVAL); 2861 2862 soerror_enotconn = 0; 2863 SOCK_LOCK(so); 2864 if ((so->so_state & 2865 (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) { 2866 /* 2867 * POSIX mandates us to return ENOTCONN when shutdown(2) is 2868 * invoked on a datagram sockets, however historically we would 2869 * actually tear socket down. This is known to be leveraged by 2870 * some applications to unblock process waiting in recvXXX(2) 2871 * by other process that it shares that socket with. Try to meet 2872 * both backward-compatibility and POSIX requirements by forcing 2873 * ENOTCONN but still asking protocol to perform pru_shutdown(). 2874 */ 2875 if (so->so_type != SOCK_DGRAM && !SOLISTENING(so)) { 2876 SOCK_UNLOCK(so); 2877 return (ENOTCONN); 2878 } 2879 soerror_enotconn = 1; 2880 } 2881 2882 if (SOLISTENING(so)) { 2883 if (how != SHUT_WR) { 2884 so->so_error = ECONNABORTED; 2885 solisten_wakeup(so); /* unlocks so */ 2886 } else { 2887 SOCK_UNLOCK(so); 2888 } 2889 goto done; 2890 } 2891 SOCK_UNLOCK(so); 2892 2893 CURVNET_SET(so->so_vnet); 2894 pr = so->so_proto; 2895 if (pr->pr_usrreqs->pru_flush != NULL) 2896 (*pr->pr_usrreqs->pru_flush)(so, how); 2897 if (how != SHUT_WR) 2898 sorflush(so); 2899 if (how != SHUT_RD) { 2900 error = (*pr->pr_usrreqs->pru_shutdown)(so); 2901 wakeup(&so->so_timeo); 2902 CURVNET_RESTORE(); 2903 return ((error == 0 && soerror_enotconn) ? ENOTCONN : error); 2904 } 2905 wakeup(&so->so_timeo); 2906 CURVNET_RESTORE(); 2907 2908 done: 2909 return (soerror_enotconn ? ENOTCONN : 0); 2910 } 2911 2912 void 2913 sorflush(struct socket *so) 2914 { 2915 struct socket aso; 2916 struct protosw *pr; 2917 int error; 2918 2919 VNET_SO_ASSERT(so); 2920 2921 /* 2922 * In order to avoid calling dom_dispose with the socket buffer mutex 2923 * held, we make a partial copy of the socket buffer and clear the 2924 * original. The new socket buffer copy won't have initialized locks so 2925 * we can only call routines that won't use or assert those locks. 2926 * Ideally calling socantrcvmore() would prevent data from being added 2927 * to the buffer, but currently it merely prevents buffered data from 2928 * being read by userspace. We make this effort to free buffered data 2929 * nonetheless. 2930 * 2931 * Dislodge threads currently blocked in receive and wait to acquire 2932 * a lock against other simultaneous readers before clearing the 2933 * socket buffer. Don't let our acquire be interrupted by a signal 2934 * despite any existing socket disposition on interruptable waiting. 2935 */ 2936 socantrcvmore(so); 2937 2938 error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR); 2939 if (error != 0) { 2940 KASSERT(SOLISTENING(so), 2941 ("%s: soiolock(%p) failed", __func__, so)); 2942 return; 2943 } 2944 2945 SOCK_RECVBUF_LOCK(so); 2946 bzero(&aso, sizeof(aso)); 2947 aso.so_pcb = so->so_pcb; 2948 bcopy(&so->so_rcv.sb_startzero, &aso.so_rcv.sb_startzero, 2949 offsetof(struct sockbuf, sb_endzero) - 2950 offsetof(struct sockbuf, sb_startzero)); 2951 bzero(&so->so_rcv.sb_startzero, 2952 offsetof(struct sockbuf, sb_endzero) - 2953 offsetof(struct sockbuf, sb_startzero)); 2954 SOCK_RECVBUF_UNLOCK(so); 2955 SOCK_IO_RECV_UNLOCK(so); 2956 2957 /* 2958 * Dispose of special rights and flush the copied socket. Don't call 2959 * any unsafe routines (that rely on locks being initialized) on aso. 2960 */ 2961 pr = so->so_proto; 2962 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 2963 (*pr->pr_domain->dom_dispose)(&aso); 2964 sbrelease_internal(&aso.so_rcv, so); 2965 } 2966 2967 /* 2968 * Wrapper for Socket established helper hook. 2969 * Parameters: socket, context of the hook point, hook id. 2970 */ 2971 static int inline 2972 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id) 2973 { 2974 struct socket_hhook_data hhook_data = { 2975 .so = so, 2976 .hctx = hctx, 2977 .m = NULL, 2978 .status = 0 2979 }; 2980 2981 CURVNET_SET(so->so_vnet); 2982 HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd); 2983 CURVNET_RESTORE(); 2984 2985 /* Ugly but needed, since hhooks return void for now */ 2986 return (hhook_data.status); 2987 } 2988 2989 /* 2990 * Perhaps this routine, and sooptcopyout(), below, ought to come in an 2991 * additional variant to handle the case where the option value needs to be 2992 * some kind of integer, but not a specific size. In addition to their use 2993 * here, these functions are also called by the protocol-level pr_ctloutput() 2994 * routines. 2995 */ 2996 int 2997 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen) 2998 { 2999 size_t valsize; 3000 3001 /* 3002 * If the user gives us more than we wanted, we ignore it, but if we 3003 * don't get the minimum length the caller wants, we return EINVAL. 3004 * On success, sopt->sopt_valsize is set to however much we actually 3005 * retrieved. 3006 */ 3007 if ((valsize = sopt->sopt_valsize) < minlen) 3008 return EINVAL; 3009 if (valsize > len) 3010 sopt->sopt_valsize = valsize = len; 3011 3012 if (sopt->sopt_td != NULL) 3013 return (copyin(sopt->sopt_val, buf, valsize)); 3014 3015 bcopy(sopt->sopt_val, buf, valsize); 3016 return (0); 3017 } 3018 3019 /* 3020 * Kernel version of setsockopt(2). 3021 * 3022 * XXX: optlen is size_t, not socklen_t 3023 */ 3024 int 3025 so_setsockopt(struct socket *so, int level, int optname, void *optval, 3026 size_t optlen) 3027 { 3028 struct sockopt sopt; 3029 3030 sopt.sopt_level = level; 3031 sopt.sopt_name = optname; 3032 sopt.sopt_dir = SOPT_SET; 3033 sopt.sopt_val = optval; 3034 sopt.sopt_valsize = optlen; 3035 sopt.sopt_td = NULL; 3036 return (sosetopt(so, &sopt)); 3037 } 3038 3039 int 3040 sosetopt(struct socket *so, struct sockopt *sopt) 3041 { 3042 int error, optval; 3043 struct linger l; 3044 struct timeval tv; 3045 sbintime_t val; 3046 uint32_t val32; 3047 #ifdef MAC 3048 struct mac extmac; 3049 #endif 3050 3051 CURVNET_SET(so->so_vnet); 3052 error = 0; 3053 if (sopt->sopt_level != SOL_SOCKET) { 3054 if (so->so_proto->pr_ctloutput != NULL) 3055 error = (*so->so_proto->pr_ctloutput)(so, sopt); 3056 else 3057 error = ENOPROTOOPT; 3058 } else { 3059 switch (sopt->sopt_name) { 3060 case SO_ACCEPTFILTER: 3061 error = accept_filt_setopt(so, sopt); 3062 if (error) 3063 goto bad; 3064 break; 3065 3066 case SO_LINGER: 3067 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 3068 if (error) 3069 goto bad; 3070 if (l.l_linger < 0 || 3071 l.l_linger > USHRT_MAX || 3072 l.l_linger > (INT_MAX / hz)) { 3073 error = EDOM; 3074 goto bad; 3075 } 3076 SOCK_LOCK(so); 3077 so->so_linger = l.l_linger; 3078 if (l.l_onoff) 3079 so->so_options |= SO_LINGER; 3080 else 3081 so->so_options &= ~SO_LINGER; 3082 SOCK_UNLOCK(so); 3083 break; 3084 3085 case SO_DEBUG: 3086 case SO_KEEPALIVE: 3087 case SO_DONTROUTE: 3088 case SO_USELOOPBACK: 3089 case SO_BROADCAST: 3090 case SO_REUSEADDR: 3091 case SO_REUSEPORT: 3092 case SO_REUSEPORT_LB: 3093 case SO_OOBINLINE: 3094 case SO_TIMESTAMP: 3095 case SO_BINTIME: 3096 case SO_NOSIGPIPE: 3097 case SO_NO_DDP: 3098 case SO_NO_OFFLOAD: 3099 case SO_RERROR: 3100 error = sooptcopyin(sopt, &optval, sizeof optval, 3101 sizeof optval); 3102 if (error) 3103 goto bad; 3104 SOCK_LOCK(so); 3105 if (optval) 3106 so->so_options |= sopt->sopt_name; 3107 else 3108 so->so_options &= ~sopt->sopt_name; 3109 SOCK_UNLOCK(so); 3110 break; 3111 3112 case SO_SETFIB: 3113 error = sooptcopyin(sopt, &optval, sizeof optval, 3114 sizeof optval); 3115 if (error) 3116 goto bad; 3117 3118 if (optval < 0 || optval >= rt_numfibs) { 3119 error = EINVAL; 3120 goto bad; 3121 } 3122 if (((so->so_proto->pr_domain->dom_family == PF_INET) || 3123 (so->so_proto->pr_domain->dom_family == PF_INET6) || 3124 (so->so_proto->pr_domain->dom_family == PF_ROUTE))) 3125 so->so_fibnum = optval; 3126 else 3127 so->so_fibnum = 0; 3128 break; 3129 3130 case SO_USER_COOKIE: 3131 error = sooptcopyin(sopt, &val32, sizeof val32, 3132 sizeof val32); 3133 if (error) 3134 goto bad; 3135 so->so_user_cookie = val32; 3136 break; 3137 3138 case SO_SNDBUF: 3139 case SO_RCVBUF: 3140 case SO_SNDLOWAT: 3141 case SO_RCVLOWAT: 3142 error = sooptcopyin(sopt, &optval, sizeof optval, 3143 sizeof optval); 3144 if (error) 3145 goto bad; 3146 3147 /* 3148 * Values < 1 make no sense for any of these options, 3149 * so disallow them. 3150 */ 3151 if (optval < 1) { 3152 error = EINVAL; 3153 goto bad; 3154 } 3155 3156 error = sbsetopt(so, sopt->sopt_name, optval); 3157 break; 3158 3159 case SO_SNDTIMEO: 3160 case SO_RCVTIMEO: 3161 #ifdef COMPAT_FREEBSD32 3162 if (SV_CURPROC_FLAG(SV_ILP32)) { 3163 struct timeval32 tv32; 3164 3165 error = sooptcopyin(sopt, &tv32, sizeof tv32, 3166 sizeof tv32); 3167 CP(tv32, tv, tv_sec); 3168 CP(tv32, tv, tv_usec); 3169 } else 3170 #endif 3171 error = sooptcopyin(sopt, &tv, sizeof tv, 3172 sizeof tv); 3173 if (error) 3174 goto bad; 3175 if (tv.tv_sec < 0 || tv.tv_usec < 0 || 3176 tv.tv_usec >= 1000000) { 3177 error = EDOM; 3178 goto bad; 3179 } 3180 if (tv.tv_sec > INT32_MAX) 3181 val = SBT_MAX; 3182 else 3183 val = tvtosbt(tv); 3184 switch (sopt->sopt_name) { 3185 case SO_SNDTIMEO: 3186 so->so_snd.sb_timeo = val; 3187 break; 3188 case SO_RCVTIMEO: 3189 so->so_rcv.sb_timeo = val; 3190 break; 3191 } 3192 break; 3193 3194 case SO_LABEL: 3195 #ifdef MAC 3196 error = sooptcopyin(sopt, &extmac, sizeof extmac, 3197 sizeof extmac); 3198 if (error) 3199 goto bad; 3200 error = mac_setsockopt_label(sopt->sopt_td->td_ucred, 3201 so, &extmac); 3202 #else 3203 error = EOPNOTSUPP; 3204 #endif 3205 break; 3206 3207 case SO_TS_CLOCK: 3208 error = sooptcopyin(sopt, &optval, sizeof optval, 3209 sizeof optval); 3210 if (error) 3211 goto bad; 3212 if (optval < 0 || optval > SO_TS_CLOCK_MAX) { 3213 error = EINVAL; 3214 goto bad; 3215 } 3216 so->so_ts_clock = optval; 3217 break; 3218 3219 case SO_MAX_PACING_RATE: 3220 error = sooptcopyin(sopt, &val32, sizeof(val32), 3221 sizeof(val32)); 3222 if (error) 3223 goto bad; 3224 so->so_max_pacing_rate = val32; 3225 break; 3226 3227 default: 3228 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 3229 error = hhook_run_socket(so, sopt, 3230 HHOOK_SOCKET_OPT); 3231 else 3232 error = ENOPROTOOPT; 3233 break; 3234 } 3235 if (error == 0 && so->so_proto->pr_ctloutput != NULL) 3236 (void)(*so->so_proto->pr_ctloutput)(so, sopt); 3237 } 3238 bad: 3239 CURVNET_RESTORE(); 3240 return (error); 3241 } 3242 3243 /* 3244 * Helper routine for getsockopt. 3245 */ 3246 int 3247 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 3248 { 3249 int error; 3250 size_t valsize; 3251 3252 error = 0; 3253 3254 /* 3255 * Documented get behavior is that we always return a value, possibly 3256 * truncated to fit in the user's buffer. Traditional behavior is 3257 * that we always tell the user precisely how much we copied, rather 3258 * than something useful like the total amount we had available for 3259 * her. Note that this interface is not idempotent; the entire 3260 * answer must be generated ahead of time. 3261 */ 3262 valsize = min(len, sopt->sopt_valsize); 3263 sopt->sopt_valsize = valsize; 3264 if (sopt->sopt_val != NULL) { 3265 if (sopt->sopt_td != NULL) 3266 error = copyout(buf, sopt->sopt_val, valsize); 3267 else 3268 bcopy(buf, sopt->sopt_val, valsize); 3269 } 3270 return (error); 3271 } 3272 3273 int 3274 sogetopt(struct socket *so, struct sockopt *sopt) 3275 { 3276 int error, optval; 3277 struct linger l; 3278 struct timeval tv; 3279 #ifdef MAC 3280 struct mac extmac; 3281 #endif 3282 3283 CURVNET_SET(so->so_vnet); 3284 error = 0; 3285 if (sopt->sopt_level != SOL_SOCKET) { 3286 if (so->so_proto->pr_ctloutput != NULL) 3287 error = (*so->so_proto->pr_ctloutput)(so, sopt); 3288 else 3289 error = ENOPROTOOPT; 3290 CURVNET_RESTORE(); 3291 return (error); 3292 } else { 3293 switch (sopt->sopt_name) { 3294 case SO_ACCEPTFILTER: 3295 error = accept_filt_getopt(so, sopt); 3296 break; 3297 3298 case SO_LINGER: 3299 SOCK_LOCK(so); 3300 l.l_onoff = so->so_options & SO_LINGER; 3301 l.l_linger = so->so_linger; 3302 SOCK_UNLOCK(so); 3303 error = sooptcopyout(sopt, &l, sizeof l); 3304 break; 3305 3306 case SO_USELOOPBACK: 3307 case SO_DONTROUTE: 3308 case SO_DEBUG: 3309 case SO_KEEPALIVE: 3310 case SO_REUSEADDR: 3311 case SO_REUSEPORT: 3312 case SO_REUSEPORT_LB: 3313 case SO_BROADCAST: 3314 case SO_OOBINLINE: 3315 case SO_ACCEPTCONN: 3316 case SO_TIMESTAMP: 3317 case SO_BINTIME: 3318 case SO_NOSIGPIPE: 3319 case SO_NO_DDP: 3320 case SO_NO_OFFLOAD: 3321 case SO_RERROR: 3322 optval = so->so_options & sopt->sopt_name; 3323 integer: 3324 error = sooptcopyout(sopt, &optval, sizeof optval); 3325 break; 3326 3327 case SO_DOMAIN: 3328 optval = so->so_proto->pr_domain->dom_family; 3329 goto integer; 3330 3331 case SO_TYPE: 3332 optval = so->so_type; 3333 goto integer; 3334 3335 case SO_PROTOCOL: 3336 optval = so->so_proto->pr_protocol; 3337 goto integer; 3338 3339 case SO_ERROR: 3340 SOCK_LOCK(so); 3341 if (so->so_error) { 3342 optval = so->so_error; 3343 so->so_error = 0; 3344 } else { 3345 optval = so->so_rerror; 3346 so->so_rerror = 0; 3347 } 3348 SOCK_UNLOCK(so); 3349 goto integer; 3350 3351 case SO_SNDBUF: 3352 optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat : 3353 so->so_snd.sb_hiwat; 3354 goto integer; 3355 3356 case SO_RCVBUF: 3357 optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat : 3358 so->so_rcv.sb_hiwat; 3359 goto integer; 3360 3361 case SO_SNDLOWAT: 3362 optval = SOLISTENING(so) ? so->sol_sbsnd_lowat : 3363 so->so_snd.sb_lowat; 3364 goto integer; 3365 3366 case SO_RCVLOWAT: 3367 optval = SOLISTENING(so) ? so->sol_sbrcv_lowat : 3368 so->so_rcv.sb_lowat; 3369 goto integer; 3370 3371 case SO_SNDTIMEO: 3372 case SO_RCVTIMEO: 3373 tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ? 3374 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 3375 #ifdef COMPAT_FREEBSD32 3376 if (SV_CURPROC_FLAG(SV_ILP32)) { 3377 struct timeval32 tv32; 3378 3379 CP(tv, tv32, tv_sec); 3380 CP(tv, tv32, tv_usec); 3381 error = sooptcopyout(sopt, &tv32, sizeof tv32); 3382 } else 3383 #endif 3384 error = sooptcopyout(sopt, &tv, sizeof tv); 3385 break; 3386 3387 case SO_LABEL: 3388 #ifdef MAC 3389 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 3390 sizeof(extmac)); 3391 if (error) 3392 goto bad; 3393 error = mac_getsockopt_label(sopt->sopt_td->td_ucred, 3394 so, &extmac); 3395 if (error) 3396 goto bad; 3397 error = sooptcopyout(sopt, &extmac, sizeof extmac); 3398 #else 3399 error = EOPNOTSUPP; 3400 #endif 3401 break; 3402 3403 case SO_PEERLABEL: 3404 #ifdef MAC 3405 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 3406 sizeof(extmac)); 3407 if (error) 3408 goto bad; 3409 error = mac_getsockopt_peerlabel( 3410 sopt->sopt_td->td_ucred, so, &extmac); 3411 if (error) 3412 goto bad; 3413 error = sooptcopyout(sopt, &extmac, sizeof extmac); 3414 #else 3415 error = EOPNOTSUPP; 3416 #endif 3417 break; 3418 3419 case SO_LISTENQLIMIT: 3420 optval = SOLISTENING(so) ? so->sol_qlimit : 0; 3421 goto integer; 3422 3423 case SO_LISTENQLEN: 3424 optval = SOLISTENING(so) ? so->sol_qlen : 0; 3425 goto integer; 3426 3427 case SO_LISTENINCQLEN: 3428 optval = SOLISTENING(so) ? so->sol_incqlen : 0; 3429 goto integer; 3430 3431 case SO_TS_CLOCK: 3432 optval = so->so_ts_clock; 3433 goto integer; 3434 3435 case SO_MAX_PACING_RATE: 3436 optval = so->so_max_pacing_rate; 3437 goto integer; 3438 3439 default: 3440 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 3441 error = hhook_run_socket(so, sopt, 3442 HHOOK_SOCKET_OPT); 3443 else 3444 error = ENOPROTOOPT; 3445 break; 3446 } 3447 } 3448 #ifdef MAC 3449 bad: 3450 #endif 3451 CURVNET_RESTORE(); 3452 return (error); 3453 } 3454 3455 int 3456 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 3457 { 3458 struct mbuf *m, *m_prev; 3459 int sopt_size = sopt->sopt_valsize; 3460 3461 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 3462 if (m == NULL) 3463 return ENOBUFS; 3464 if (sopt_size > MLEN) { 3465 MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT); 3466 if ((m->m_flags & M_EXT) == 0) { 3467 m_free(m); 3468 return ENOBUFS; 3469 } 3470 m->m_len = min(MCLBYTES, sopt_size); 3471 } else { 3472 m->m_len = min(MLEN, sopt_size); 3473 } 3474 sopt_size -= m->m_len; 3475 *mp = m; 3476 m_prev = m; 3477 3478 while (sopt_size) { 3479 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 3480 if (m == NULL) { 3481 m_freem(*mp); 3482 return ENOBUFS; 3483 } 3484 if (sopt_size > MLEN) { 3485 MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK : 3486 M_NOWAIT); 3487 if ((m->m_flags & M_EXT) == 0) { 3488 m_freem(m); 3489 m_freem(*mp); 3490 return ENOBUFS; 3491 } 3492 m->m_len = min(MCLBYTES, sopt_size); 3493 } else { 3494 m->m_len = min(MLEN, sopt_size); 3495 } 3496 sopt_size -= m->m_len; 3497 m_prev->m_next = m; 3498 m_prev = m; 3499 } 3500 return (0); 3501 } 3502 3503 int 3504 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 3505 { 3506 struct mbuf *m0 = m; 3507 3508 if (sopt->sopt_val == NULL) 3509 return (0); 3510 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 3511 if (sopt->sopt_td != NULL) { 3512 int error; 3513 3514 error = copyin(sopt->sopt_val, mtod(m, char *), 3515 m->m_len); 3516 if (error != 0) { 3517 m_freem(m0); 3518 return(error); 3519 } 3520 } else 3521 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 3522 sopt->sopt_valsize -= m->m_len; 3523 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 3524 m = m->m_next; 3525 } 3526 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 3527 panic("ip6_sooptmcopyin"); 3528 return (0); 3529 } 3530 3531 int 3532 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 3533 { 3534 struct mbuf *m0 = m; 3535 size_t valsize = 0; 3536 3537 if (sopt->sopt_val == NULL) 3538 return (0); 3539 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 3540 if (sopt->sopt_td != NULL) { 3541 int error; 3542 3543 error = copyout(mtod(m, char *), sopt->sopt_val, 3544 m->m_len); 3545 if (error != 0) { 3546 m_freem(m0); 3547 return(error); 3548 } 3549 } else 3550 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 3551 sopt->sopt_valsize -= m->m_len; 3552 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 3553 valsize += m->m_len; 3554 m = m->m_next; 3555 } 3556 if (m != NULL) { 3557 /* enough soopt buffer should be given from user-land */ 3558 m_freem(m0); 3559 return(EINVAL); 3560 } 3561 sopt->sopt_valsize = valsize; 3562 return (0); 3563 } 3564 3565 /* 3566 * sohasoutofband(): protocol notifies socket layer of the arrival of new 3567 * out-of-band data, which will then notify socket consumers. 3568 */ 3569 void 3570 sohasoutofband(struct socket *so) 3571 { 3572 3573 if (so->so_sigio != NULL) 3574 pgsigio(&so->so_sigio, SIGURG, 0); 3575 selwakeuppri(&so->so_rdsel, PSOCK); 3576 } 3577 3578 int 3579 sopoll(struct socket *so, int events, struct ucred *active_cred, 3580 struct thread *td) 3581 { 3582 3583 /* 3584 * We do not need to set or assert curvnet as long as everyone uses 3585 * sopoll_generic(). 3586 */ 3587 return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred, 3588 td)); 3589 } 3590 3591 int 3592 sopoll_generic(struct socket *so, int events, struct ucred *active_cred, 3593 struct thread *td) 3594 { 3595 int revents; 3596 3597 SOCK_LOCK(so); 3598 if (SOLISTENING(so)) { 3599 if (!(events & (POLLIN | POLLRDNORM))) 3600 revents = 0; 3601 else if (!TAILQ_EMPTY(&so->sol_comp)) 3602 revents = events & (POLLIN | POLLRDNORM); 3603 else if ((events & POLLINIGNEOF) == 0 && so->so_error) 3604 revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP; 3605 else { 3606 selrecord(td, &so->so_rdsel); 3607 revents = 0; 3608 } 3609 } else { 3610 revents = 0; 3611 SOCKBUF_LOCK(&so->so_snd); 3612 SOCKBUF_LOCK(&so->so_rcv); 3613 if (events & (POLLIN | POLLRDNORM)) 3614 if (soreadabledata(so)) 3615 revents |= events & (POLLIN | POLLRDNORM); 3616 if (events & (POLLOUT | POLLWRNORM)) 3617 if (sowriteable(so)) 3618 revents |= events & (POLLOUT | POLLWRNORM); 3619 if (events & (POLLPRI | POLLRDBAND)) 3620 if (so->so_oobmark || 3621 (so->so_rcv.sb_state & SBS_RCVATMARK)) 3622 revents |= events & (POLLPRI | POLLRDBAND); 3623 if ((events & POLLINIGNEOF) == 0) { 3624 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3625 revents |= events & (POLLIN | POLLRDNORM); 3626 if (so->so_snd.sb_state & SBS_CANTSENDMORE) 3627 revents |= POLLHUP; 3628 } 3629 } 3630 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) 3631 revents |= events & POLLRDHUP; 3632 if (revents == 0) { 3633 if (events & 3634 (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND | POLLRDHUP)) { 3635 selrecord(td, &so->so_rdsel); 3636 so->so_rcv.sb_flags |= SB_SEL; 3637 } 3638 if (events & (POLLOUT | POLLWRNORM)) { 3639 selrecord(td, &so->so_wrsel); 3640 so->so_snd.sb_flags |= SB_SEL; 3641 } 3642 } 3643 SOCKBUF_UNLOCK(&so->so_rcv); 3644 SOCKBUF_UNLOCK(&so->so_snd); 3645 } 3646 SOCK_UNLOCK(so); 3647 return (revents); 3648 } 3649 3650 int 3651 soo_kqfilter(struct file *fp, struct knote *kn) 3652 { 3653 struct socket *so = kn->kn_fp->f_data; 3654 struct sockbuf *sb; 3655 struct knlist *knl; 3656 3657 switch (kn->kn_filter) { 3658 case EVFILT_READ: 3659 kn->kn_fop = &soread_filtops; 3660 knl = &so->so_rdsel.si_note; 3661 sb = &so->so_rcv; 3662 break; 3663 case EVFILT_WRITE: 3664 kn->kn_fop = &sowrite_filtops; 3665 knl = &so->so_wrsel.si_note; 3666 sb = &so->so_snd; 3667 break; 3668 case EVFILT_EMPTY: 3669 kn->kn_fop = &soempty_filtops; 3670 knl = &so->so_wrsel.si_note; 3671 sb = &so->so_snd; 3672 break; 3673 default: 3674 return (EINVAL); 3675 } 3676 3677 SOCK_LOCK(so); 3678 if (SOLISTENING(so)) { 3679 knlist_add(knl, kn, 1); 3680 } else { 3681 SOCKBUF_LOCK(sb); 3682 knlist_add(knl, kn, 1); 3683 sb->sb_flags |= SB_KNOTE; 3684 SOCKBUF_UNLOCK(sb); 3685 } 3686 SOCK_UNLOCK(so); 3687 return (0); 3688 } 3689 3690 /* 3691 * Some routines that return EOPNOTSUPP for entry points that are not 3692 * supported by a protocol. Fill in as needed. 3693 */ 3694 int 3695 pru_accept_notsupp(struct socket *so, struct sockaddr **nam) 3696 { 3697 3698 return EOPNOTSUPP; 3699 } 3700 3701 int 3702 pru_aio_queue_notsupp(struct socket *so, struct kaiocb *job) 3703 { 3704 3705 return EOPNOTSUPP; 3706 } 3707 3708 int 3709 pru_attach_notsupp(struct socket *so, int proto, struct thread *td) 3710 { 3711 3712 return EOPNOTSUPP; 3713 } 3714 3715 int 3716 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 3717 { 3718 3719 return EOPNOTSUPP; 3720 } 3721 3722 int 3723 pru_bindat_notsupp(int fd, struct socket *so, struct sockaddr *nam, 3724 struct thread *td) 3725 { 3726 3727 return EOPNOTSUPP; 3728 } 3729 3730 int 3731 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 3732 { 3733 3734 return EOPNOTSUPP; 3735 } 3736 3737 int 3738 pru_connectat_notsupp(int fd, struct socket *so, struct sockaddr *nam, 3739 struct thread *td) 3740 { 3741 3742 return EOPNOTSUPP; 3743 } 3744 3745 int 3746 pru_connect2_notsupp(struct socket *so1, struct socket *so2) 3747 { 3748 3749 return EOPNOTSUPP; 3750 } 3751 3752 int 3753 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, 3754 struct ifnet *ifp, struct thread *td) 3755 { 3756 3757 return EOPNOTSUPP; 3758 } 3759 3760 int 3761 pru_disconnect_notsupp(struct socket *so) 3762 { 3763 3764 return EOPNOTSUPP; 3765 } 3766 3767 int 3768 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td) 3769 { 3770 3771 return EOPNOTSUPP; 3772 } 3773 3774 int 3775 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam) 3776 { 3777 3778 return EOPNOTSUPP; 3779 } 3780 3781 int 3782 pru_rcvd_notsupp(struct socket *so, int flags) 3783 { 3784 3785 return EOPNOTSUPP; 3786 } 3787 3788 int 3789 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) 3790 { 3791 3792 return EOPNOTSUPP; 3793 } 3794 3795 int 3796 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m, 3797 struct sockaddr *addr, struct mbuf *control, struct thread *td) 3798 { 3799 3800 if (control != NULL) 3801 m_freem(control); 3802 if ((flags & PRUS_NOTREADY) == 0) 3803 m_freem(m); 3804 return (EOPNOTSUPP); 3805 } 3806 3807 int 3808 pru_ready_notsupp(struct socket *so, struct mbuf *m, int count) 3809 { 3810 3811 return (EOPNOTSUPP); 3812 } 3813 3814 /* 3815 * This isn't really a ``null'' operation, but it's the default one and 3816 * doesn't do anything destructive. 3817 */ 3818 int 3819 pru_sense_null(struct socket *so, struct stat *sb) 3820 { 3821 3822 sb->st_blksize = so->so_snd.sb_hiwat; 3823 return 0; 3824 } 3825 3826 int 3827 pru_shutdown_notsupp(struct socket *so) 3828 { 3829 3830 return EOPNOTSUPP; 3831 } 3832 3833 int 3834 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam) 3835 { 3836 3837 return EOPNOTSUPP; 3838 } 3839 3840 int 3841 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio, 3842 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 3843 { 3844 3845 return EOPNOTSUPP; 3846 } 3847 3848 int 3849 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr, 3850 struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 3851 { 3852 3853 return EOPNOTSUPP; 3854 } 3855 3856 int 3857 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred, 3858 struct thread *td) 3859 { 3860 3861 return EOPNOTSUPP; 3862 } 3863 3864 static void 3865 filt_sordetach(struct knote *kn) 3866 { 3867 struct socket *so = kn->kn_fp->f_data; 3868 3869 so_rdknl_lock(so); 3870 knlist_remove(&so->so_rdsel.si_note, kn, 1); 3871 if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note)) 3872 so->so_rcv.sb_flags &= ~SB_KNOTE; 3873 so_rdknl_unlock(so); 3874 } 3875 3876 /*ARGSUSED*/ 3877 static int 3878 filt_soread(struct knote *kn, long hint) 3879 { 3880 struct socket *so; 3881 3882 so = kn->kn_fp->f_data; 3883 3884 if (SOLISTENING(so)) { 3885 SOCK_LOCK_ASSERT(so); 3886 kn->kn_data = so->sol_qlen; 3887 if (so->so_error) { 3888 kn->kn_flags |= EV_EOF; 3889 kn->kn_fflags = so->so_error; 3890 return (1); 3891 } 3892 return (!TAILQ_EMPTY(&so->sol_comp)); 3893 } 3894 3895 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 3896 3897 kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl; 3898 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3899 kn->kn_flags |= EV_EOF; 3900 kn->kn_fflags = so->so_error; 3901 return (1); 3902 } else if (so->so_error || so->so_rerror) 3903 return (1); 3904 3905 if (kn->kn_sfflags & NOTE_LOWAT) { 3906 if (kn->kn_data >= kn->kn_sdata) 3907 return (1); 3908 } else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat) 3909 return (1); 3910 3911 /* This hook returning non-zero indicates an event, not error */ 3912 return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD)); 3913 } 3914 3915 static void 3916 filt_sowdetach(struct knote *kn) 3917 { 3918 struct socket *so = kn->kn_fp->f_data; 3919 3920 so_wrknl_lock(so); 3921 knlist_remove(&so->so_wrsel.si_note, kn, 1); 3922 if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note)) 3923 so->so_snd.sb_flags &= ~SB_KNOTE; 3924 so_wrknl_unlock(so); 3925 } 3926 3927 /*ARGSUSED*/ 3928 static int 3929 filt_sowrite(struct knote *kn, long hint) 3930 { 3931 struct socket *so; 3932 3933 so = kn->kn_fp->f_data; 3934 3935 if (SOLISTENING(so)) 3936 return (0); 3937 3938 SOCKBUF_LOCK_ASSERT(&so->so_snd); 3939 kn->kn_data = sbspace(&so->so_snd); 3940 3941 hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE); 3942 3943 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 3944 kn->kn_flags |= EV_EOF; 3945 kn->kn_fflags = so->so_error; 3946 return (1); 3947 } else if (so->so_error) /* temporary udp error */ 3948 return (1); 3949 else if (((so->so_state & SS_ISCONNECTED) == 0) && 3950 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 3951 return (0); 3952 else if (kn->kn_sfflags & NOTE_LOWAT) 3953 return (kn->kn_data >= kn->kn_sdata); 3954 else 3955 return (kn->kn_data >= so->so_snd.sb_lowat); 3956 } 3957 3958 static int 3959 filt_soempty(struct knote *kn, long hint) 3960 { 3961 struct socket *so; 3962 3963 so = kn->kn_fp->f_data; 3964 3965 if (SOLISTENING(so)) 3966 return (1); 3967 3968 SOCKBUF_LOCK_ASSERT(&so->so_snd); 3969 kn->kn_data = sbused(&so->so_snd); 3970 3971 if (kn->kn_data == 0) 3972 return (1); 3973 else 3974 return (0); 3975 } 3976 3977 int 3978 socheckuid(struct socket *so, uid_t uid) 3979 { 3980 3981 if (so == NULL) 3982 return (EPERM); 3983 if (so->so_cred->cr_uid != uid) 3984 return (EPERM); 3985 return (0); 3986 } 3987 3988 /* 3989 * These functions are used by protocols to notify the socket layer (and its 3990 * consumers) of state changes in the sockets driven by protocol-side events. 3991 */ 3992 3993 /* 3994 * Procedures to manipulate state flags of socket and do appropriate wakeups. 3995 * 3996 * Normal sequence from the active (originating) side is that 3997 * soisconnecting() is called during processing of connect() call, resulting 3998 * in an eventual call to soisconnected() if/when the connection is 3999 * established. When the connection is torn down soisdisconnecting() is 4000 * called during processing of disconnect() call, and soisdisconnected() is 4001 * called when the connection to the peer is totally severed. The semantics 4002 * of these routines are such that connectionless protocols can call 4003 * soisconnected() and soisdisconnected() only, bypassing the in-progress 4004 * calls when setting up a ``connection'' takes no time. 4005 * 4006 * From the passive side, a socket is created with two queues of sockets: 4007 * so_incomp for connections in progress and so_comp for connections already 4008 * made and awaiting user acceptance. As a protocol is preparing incoming 4009 * connections, it creates a socket structure queued on so_incomp by calling 4010 * sonewconn(). When the connection is established, soisconnected() is 4011 * called, and transfers the socket structure to so_comp, making it available 4012 * to accept(). 4013 * 4014 * If a socket is closed with sockets on either so_incomp or so_comp, these 4015 * sockets are dropped. 4016 * 4017 * If higher-level protocols are implemented in the kernel, the wakeups done 4018 * here will sometimes cause software-interrupt process scheduling. 4019 */ 4020 void 4021 soisconnecting(struct socket *so) 4022 { 4023 4024 SOCK_LOCK(so); 4025 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 4026 so->so_state |= SS_ISCONNECTING; 4027 SOCK_UNLOCK(so); 4028 } 4029 4030 void 4031 soisconnected(struct socket *so) 4032 { 4033 bool last __diagused; 4034 4035 SOCK_LOCK(so); 4036 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 4037 so->so_state |= SS_ISCONNECTED; 4038 4039 if (so->so_qstate == SQ_INCOMP) { 4040 struct socket *head = so->so_listen; 4041 int ret; 4042 4043 KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so)); 4044 /* 4045 * Promoting a socket from incomplete queue to complete, we 4046 * need to go through reverse order of locking. We first do 4047 * trylock, and if that doesn't succeed, we go the hard way 4048 * leaving a reference and rechecking consistency after proper 4049 * locking. 4050 */ 4051 if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) { 4052 soref(head); 4053 SOCK_UNLOCK(so); 4054 SOLISTEN_LOCK(head); 4055 SOCK_LOCK(so); 4056 if (__predict_false(head != so->so_listen)) { 4057 /* 4058 * The socket went off the listen queue, 4059 * should be lost race to close(2) of sol. 4060 * The socket is about to soabort(). 4061 */ 4062 SOCK_UNLOCK(so); 4063 sorele(head); 4064 return; 4065 } 4066 last = refcount_release(&head->so_count); 4067 KASSERT(!last, ("%s: released last reference for %p", 4068 __func__, head)); 4069 } 4070 again: 4071 if ((so->so_options & SO_ACCEPTFILTER) == 0) { 4072 TAILQ_REMOVE(&head->sol_incomp, so, so_list); 4073 head->sol_incqlen--; 4074 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 4075 head->sol_qlen++; 4076 so->so_qstate = SQ_COMP; 4077 SOCK_UNLOCK(so); 4078 solisten_wakeup(head); /* unlocks */ 4079 } else { 4080 SOCKBUF_LOCK(&so->so_rcv); 4081 soupcall_set(so, SO_RCV, 4082 head->sol_accept_filter->accf_callback, 4083 head->sol_accept_filter_arg); 4084 so->so_options &= ~SO_ACCEPTFILTER; 4085 ret = head->sol_accept_filter->accf_callback(so, 4086 head->sol_accept_filter_arg, M_NOWAIT); 4087 if (ret == SU_ISCONNECTED) { 4088 soupcall_clear(so, SO_RCV); 4089 SOCKBUF_UNLOCK(&so->so_rcv); 4090 goto again; 4091 } 4092 SOCKBUF_UNLOCK(&so->so_rcv); 4093 SOCK_UNLOCK(so); 4094 SOLISTEN_UNLOCK(head); 4095 } 4096 return; 4097 } 4098 SOCK_UNLOCK(so); 4099 wakeup(&so->so_timeo); 4100 sorwakeup(so); 4101 sowwakeup(so); 4102 } 4103 4104 void 4105 soisdisconnecting(struct socket *so) 4106 { 4107 4108 SOCK_LOCK(so); 4109 so->so_state &= ~SS_ISCONNECTING; 4110 so->so_state |= SS_ISDISCONNECTING; 4111 4112 if (!SOLISTENING(so)) { 4113 SOCKBUF_LOCK(&so->so_rcv); 4114 socantrcvmore_locked(so); 4115 SOCKBUF_LOCK(&so->so_snd); 4116 socantsendmore_locked(so); 4117 } 4118 SOCK_UNLOCK(so); 4119 wakeup(&so->so_timeo); 4120 } 4121 4122 void 4123 soisdisconnected(struct socket *so) 4124 { 4125 4126 SOCK_LOCK(so); 4127 4128 /* 4129 * There is at least one reader of so_state that does not 4130 * acquire socket lock, namely soreceive_generic(). Ensure 4131 * that it never sees all flags that track connection status 4132 * cleared, by ordering the update with a barrier semantic of 4133 * our release thread fence. 4134 */ 4135 so->so_state |= SS_ISDISCONNECTED; 4136 atomic_thread_fence_rel(); 4137 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 4138 4139 if (!SOLISTENING(so)) { 4140 SOCK_UNLOCK(so); 4141 SOCKBUF_LOCK(&so->so_rcv); 4142 socantrcvmore_locked(so); 4143 SOCKBUF_LOCK(&so->so_snd); 4144 sbdrop_locked(&so->so_snd, sbused(&so->so_snd)); 4145 socantsendmore_locked(so); 4146 } else 4147 SOCK_UNLOCK(so); 4148 wakeup(&so->so_timeo); 4149 } 4150 4151 int 4152 soiolock(struct socket *so, struct sx *sx, int flags) 4153 { 4154 int error; 4155 4156 KASSERT((flags & SBL_VALID) == flags, 4157 ("soiolock: invalid flags %#x", flags)); 4158 4159 if ((flags & SBL_WAIT) != 0) { 4160 if ((flags & SBL_NOINTR) != 0) { 4161 sx_xlock(sx); 4162 } else { 4163 error = sx_xlock_sig(sx); 4164 if (error != 0) 4165 return (error); 4166 } 4167 } else if (!sx_try_xlock(sx)) { 4168 return (EWOULDBLOCK); 4169 } 4170 4171 if (__predict_false(SOLISTENING(so))) { 4172 sx_xunlock(sx); 4173 return (ENOTCONN); 4174 } 4175 return (0); 4176 } 4177 4178 void 4179 soiounlock(struct sx *sx) 4180 { 4181 sx_xunlock(sx); 4182 } 4183 4184 /* 4185 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 4186 */ 4187 struct sockaddr * 4188 sodupsockaddr(const struct sockaddr *sa, int mflags) 4189 { 4190 struct sockaddr *sa2; 4191 4192 sa2 = malloc(sa->sa_len, M_SONAME, mflags); 4193 if (sa2) 4194 bcopy(sa, sa2, sa->sa_len); 4195 return sa2; 4196 } 4197 4198 /* 4199 * Register per-socket destructor. 4200 */ 4201 void 4202 sodtor_set(struct socket *so, so_dtor_t *func) 4203 { 4204 4205 SOCK_LOCK_ASSERT(so); 4206 so->so_dtor = func; 4207 } 4208 4209 /* 4210 * Register per-socket buffer upcalls. 4211 */ 4212 void 4213 soupcall_set(struct socket *so, int which, so_upcall_t func, void *arg) 4214 { 4215 struct sockbuf *sb; 4216 4217 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 4218 4219 switch (which) { 4220 case SO_RCV: 4221 sb = &so->so_rcv; 4222 break; 4223 case SO_SND: 4224 sb = &so->so_snd; 4225 break; 4226 default: 4227 panic("soupcall_set: bad which"); 4228 } 4229 SOCKBUF_LOCK_ASSERT(sb); 4230 sb->sb_upcall = func; 4231 sb->sb_upcallarg = arg; 4232 sb->sb_flags |= SB_UPCALL; 4233 } 4234 4235 void 4236 soupcall_clear(struct socket *so, int which) 4237 { 4238 struct sockbuf *sb; 4239 4240 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 4241 4242 switch (which) { 4243 case SO_RCV: 4244 sb = &so->so_rcv; 4245 break; 4246 case SO_SND: 4247 sb = &so->so_snd; 4248 break; 4249 default: 4250 panic("soupcall_clear: bad which"); 4251 } 4252 SOCKBUF_LOCK_ASSERT(sb); 4253 KASSERT(sb->sb_upcall != NULL, 4254 ("%s: so %p no upcall to clear", __func__, so)); 4255 sb->sb_upcall = NULL; 4256 sb->sb_upcallarg = NULL; 4257 sb->sb_flags &= ~SB_UPCALL; 4258 } 4259 4260 void 4261 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg) 4262 { 4263 4264 SOLISTEN_LOCK_ASSERT(so); 4265 so->sol_upcall = func; 4266 so->sol_upcallarg = arg; 4267 } 4268 4269 static void 4270 so_rdknl_lock(void *arg) 4271 { 4272 struct socket *so = arg; 4273 4274 if (SOLISTENING(so)) 4275 SOCK_LOCK(so); 4276 else 4277 SOCKBUF_LOCK(&so->so_rcv); 4278 } 4279 4280 static void 4281 so_rdknl_unlock(void *arg) 4282 { 4283 struct socket *so = arg; 4284 4285 if (SOLISTENING(so)) 4286 SOCK_UNLOCK(so); 4287 else 4288 SOCKBUF_UNLOCK(&so->so_rcv); 4289 } 4290 4291 static void 4292 so_rdknl_assert_lock(void *arg, int what) 4293 { 4294 struct socket *so = arg; 4295 4296 if (what == LA_LOCKED) { 4297 if (SOLISTENING(so)) 4298 SOCK_LOCK_ASSERT(so); 4299 else 4300 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 4301 } else { 4302 if (SOLISTENING(so)) 4303 SOCK_UNLOCK_ASSERT(so); 4304 else 4305 SOCKBUF_UNLOCK_ASSERT(&so->so_rcv); 4306 } 4307 } 4308 4309 static void 4310 so_wrknl_lock(void *arg) 4311 { 4312 struct socket *so = arg; 4313 4314 if (SOLISTENING(so)) 4315 SOCK_LOCK(so); 4316 else 4317 SOCKBUF_LOCK(&so->so_snd); 4318 } 4319 4320 static void 4321 so_wrknl_unlock(void *arg) 4322 { 4323 struct socket *so = arg; 4324 4325 if (SOLISTENING(so)) 4326 SOCK_UNLOCK(so); 4327 else 4328 SOCKBUF_UNLOCK(&so->so_snd); 4329 } 4330 4331 static void 4332 so_wrknl_assert_lock(void *arg, int what) 4333 { 4334 struct socket *so = arg; 4335 4336 if (what == LA_LOCKED) { 4337 if (SOLISTENING(so)) 4338 SOCK_LOCK_ASSERT(so); 4339 else 4340 SOCKBUF_LOCK_ASSERT(&so->so_snd); 4341 } else { 4342 if (SOLISTENING(so)) 4343 SOCK_UNLOCK_ASSERT(so); 4344 else 4345 SOCKBUF_UNLOCK_ASSERT(&so->so_snd); 4346 } 4347 } 4348 4349 /* 4350 * Create an external-format (``xsocket'') structure using the information in 4351 * the kernel-format socket structure pointed to by so. This is done to 4352 * reduce the spew of irrelevant information over this interface, to isolate 4353 * user code from changes in the kernel structure, and potentially to provide 4354 * information-hiding if we decide that some of this information should be 4355 * hidden from users. 4356 */ 4357 void 4358 sotoxsocket(struct socket *so, struct xsocket *xso) 4359 { 4360 4361 bzero(xso, sizeof(*xso)); 4362 xso->xso_len = sizeof *xso; 4363 xso->xso_so = (uintptr_t)so; 4364 xso->so_type = so->so_type; 4365 xso->so_options = so->so_options; 4366 xso->so_linger = so->so_linger; 4367 xso->so_state = so->so_state; 4368 xso->so_pcb = (uintptr_t)so->so_pcb; 4369 xso->xso_protocol = so->so_proto->pr_protocol; 4370 xso->xso_family = so->so_proto->pr_domain->dom_family; 4371 xso->so_timeo = so->so_timeo; 4372 xso->so_error = so->so_error; 4373 xso->so_uid = so->so_cred->cr_uid; 4374 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 4375 if (SOLISTENING(so)) { 4376 xso->so_qlen = so->sol_qlen; 4377 xso->so_incqlen = so->sol_incqlen; 4378 xso->so_qlimit = so->sol_qlimit; 4379 xso->so_oobmark = 0; 4380 } else { 4381 xso->so_state |= so->so_qstate; 4382 xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0; 4383 xso->so_oobmark = so->so_oobmark; 4384 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 4385 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 4386 } 4387 } 4388 4389 struct sockbuf * 4390 so_sockbuf_rcv(struct socket *so) 4391 { 4392 4393 return (&so->so_rcv); 4394 } 4395 4396 struct sockbuf * 4397 so_sockbuf_snd(struct socket *so) 4398 { 4399 4400 return (&so->so_snd); 4401 } 4402 4403 int 4404 so_state_get(const struct socket *so) 4405 { 4406 4407 return (so->so_state); 4408 } 4409 4410 void 4411 so_state_set(struct socket *so, int val) 4412 { 4413 4414 so->so_state = val; 4415 } 4416 4417 int 4418 so_options_get(const struct socket *so) 4419 { 4420 4421 return (so->so_options); 4422 } 4423 4424 void 4425 so_options_set(struct socket *so, int val) 4426 { 4427 4428 so->so_options = val; 4429 } 4430 4431 int 4432 so_error_get(const struct socket *so) 4433 { 4434 4435 return (so->so_error); 4436 } 4437 4438 void 4439 so_error_set(struct socket *so, int val) 4440 { 4441 4442 so->so_error = val; 4443 } 4444 4445 int 4446 so_linger_get(const struct socket *so) 4447 { 4448 4449 return (so->so_linger); 4450 } 4451 4452 void 4453 so_linger_set(struct socket *so, int val) 4454 { 4455 4456 KASSERT(val >= 0 && val <= USHRT_MAX && val <= (INT_MAX / hz), 4457 ("%s: val %d out of range", __func__, val)); 4458 4459 so->so_linger = val; 4460 } 4461 4462 struct protosw * 4463 so_protosw_get(const struct socket *so) 4464 { 4465 4466 return (so->so_proto); 4467 } 4468 4469 void 4470 so_protosw_set(struct socket *so, struct protosw *val) 4471 { 4472 4473 so->so_proto = val; 4474 } 4475 4476 void 4477 so_sorwakeup(struct socket *so) 4478 { 4479 4480 sorwakeup(so); 4481 } 4482 4483 void 4484 so_sowwakeup(struct socket *so) 4485 { 4486 4487 sowwakeup(so); 4488 } 4489 4490 void 4491 so_sorwakeup_locked(struct socket *so) 4492 { 4493 4494 sorwakeup_locked(so); 4495 } 4496 4497 void 4498 so_sowwakeup_locked(struct socket *so) 4499 { 4500 4501 sowwakeup_locked(so); 4502 } 4503 4504 void 4505 so_lock(struct socket *so) 4506 { 4507 4508 SOCK_LOCK(so); 4509 } 4510 4511 void 4512 so_unlock(struct socket *so) 4513 { 4514 4515 SOCK_UNLOCK(so); 4516 } 4517