1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993 3 * The Regents of the University of California. 4 * Copyright (c) 2004 The FreeBSD Foundation 5 * Copyright (c) 2004-2008 Robert N. M. Watson 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 33 */ 34 35 /* 36 * Comments on the socket life cycle: 37 * 38 * soalloc() sets of socket layer state for a socket, called only by 39 * socreate() and sonewconn(). Socket layer private. 40 * 41 * sodealloc() tears down socket layer state for a socket, called only by 42 * sofree() and sonewconn(). Socket layer private. 43 * 44 * pru_attach() associates protocol layer state with an allocated socket; 45 * called only once, may fail, aborting socket allocation. This is called 46 * from socreate() and sonewconn(). Socket layer private. 47 * 48 * pru_detach() disassociates protocol layer state from an attached socket, 49 * and will be called exactly once for sockets in which pru_attach() has 50 * been successfully called. If pru_attach() returned an error, 51 * pru_detach() will not be called. Socket layer private. 52 * 53 * pru_abort() and pru_close() notify the protocol layer that the last 54 * consumer of a socket is starting to tear down the socket, and that the 55 * protocol should terminate the connection. Historically, pru_abort() also 56 * detached protocol state from the socket state, but this is no longer the 57 * case. 58 * 59 * socreate() creates a socket and attaches protocol state. This is a public 60 * interface that may be used by socket layer consumers to create new 61 * sockets. 62 * 63 * sonewconn() creates a socket and attaches protocol state. This is a 64 * public interface that may be used by protocols to create new sockets when 65 * a new connection is received and will be available for accept() on a 66 * listen socket. 67 * 68 * soclose() destroys a socket after possibly waiting for it to disconnect. 69 * This is a public interface that socket consumers should use to close and 70 * release a socket when done with it. 71 * 72 * soabort() destroys a socket without waiting for it to disconnect (used 73 * only for incoming connections that are already partially or fully 74 * connected). This is used internally by the socket layer when clearing 75 * listen socket queues (due to overflow or close on the listen socket), but 76 * is also a public interface protocols may use to abort connections in 77 * their incomplete listen queues should they no longer be required. Sockets 78 * placed in completed connection listen queues should not be aborted for 79 * reasons described in the comment above the soclose() implementation. This 80 * is not a general purpose close routine, and except in the specific 81 * circumstances described here, should not be used. 82 * 83 * sofree() will free a socket and its protocol state if all references on 84 * the socket have been released, and is the public interface to attempt to 85 * free a socket when a reference is removed. This is a socket layer private 86 * interface. 87 * 88 * NOTE: In addition to socreate() and soclose(), which provide a single 89 * socket reference to the consumer to be managed as required, there are two 90 * calls to explicitly manage socket references, soref(), and sorele(). 91 * Currently, these are generally required only when transitioning a socket 92 * from a listen queue to a file descriptor, in order to prevent garbage 93 * collection of the socket at an untimely moment. For a number of reasons, 94 * these interfaces are not preferred, and should be avoided. 95 * 96 * NOTE: With regard to VNETs the general rule is that callers do not set 97 * curvnet. Exceptions to this rule include soabort(), sodisconnect(), 98 * sofree() (and with that sorele(), sotryfree()), as well as sonewconn() 99 * and sorflush(), which are usually called from a pre-set VNET context. 100 * sopoll() currently does not need a VNET context to be set. 101 */ 102 103 #include <sys/cdefs.h> 104 __FBSDID("$FreeBSD$"); 105 106 #include "opt_inet.h" 107 #include "opt_inet6.h" 108 #include "opt_compat.h" 109 110 #include <sys/param.h> 111 #include <sys/systm.h> 112 #include <sys/fcntl.h> 113 #include <sys/limits.h> 114 #include <sys/lock.h> 115 #include <sys/mac.h> 116 #include <sys/malloc.h> 117 #include <sys/mbuf.h> 118 #include <sys/mutex.h> 119 #include <sys/domain.h> 120 #include <sys/file.h> /* for struct knote */ 121 #include <sys/kernel.h> 122 #include <sys/event.h> 123 #include <sys/eventhandler.h> 124 #include <sys/poll.h> 125 #include <sys/proc.h> 126 #include <sys/protosw.h> 127 #include <sys/socket.h> 128 #include <sys/socketvar.h> 129 #include <sys/resourcevar.h> 130 #include <net/route.h> 131 #include <sys/signalvar.h> 132 #include <sys/stat.h> 133 #include <sys/sx.h> 134 #include <sys/sysctl.h> 135 #include <sys/uio.h> 136 #include <sys/jail.h> 137 #include <sys/syslog.h> 138 #include <netinet/in.h> 139 140 #include <net/vnet.h> 141 142 #include <security/mac/mac_framework.h> 143 144 #include <vm/uma.h> 145 146 #ifdef COMPAT_FREEBSD32 147 #include <sys/mount.h> 148 #include <sys/sysent.h> 149 #include <compat/freebsd32/freebsd32.h> 150 #endif 151 152 static int soreceive_rcvoob(struct socket *so, struct uio *uio, 153 int flags); 154 155 static void filt_sordetach(struct knote *kn); 156 static int filt_soread(struct knote *kn, long hint); 157 static void filt_sowdetach(struct knote *kn); 158 static int filt_sowrite(struct knote *kn, long hint); 159 static int filt_solisten(struct knote *kn, long hint); 160 161 static struct filterops solisten_filtops = { 162 .f_isfd = 1, 163 .f_detach = filt_sordetach, 164 .f_event = filt_solisten, 165 }; 166 static struct filterops soread_filtops = { 167 .f_isfd = 1, 168 .f_detach = filt_sordetach, 169 .f_event = filt_soread, 170 }; 171 static struct filterops sowrite_filtops = { 172 .f_isfd = 1, 173 .f_detach = filt_sowdetach, 174 .f_event = filt_sowrite, 175 }; 176 177 so_gen_t so_gencnt; /* generation count for sockets */ 178 179 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 180 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 181 182 #define VNET_SO_ASSERT(so) \ 183 VNET_ASSERT(curvnet != NULL, \ 184 ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so))); 185 186 /* 187 * Limit on the number of connections in the listen queue waiting 188 * for accept(2). 189 * NB: The orginal sysctl somaxconn is still available but hidden 190 * to prevent confusion about the actual purpose of this number. 191 */ 192 static int somaxconn = SOMAXCONN; 193 194 static int 195 sysctl_somaxconn(SYSCTL_HANDLER_ARGS) 196 { 197 int error; 198 int val; 199 200 val = somaxconn; 201 error = sysctl_handle_int(oidp, &val, 0, req); 202 if (error || !req->newptr ) 203 return (error); 204 205 if (val < 1 || val > USHRT_MAX) 206 return (EINVAL); 207 208 somaxconn = val; 209 return (0); 210 } 211 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue, CTLTYPE_UINT | CTLFLAG_RW, 212 0, sizeof(int), sysctl_somaxconn, "I", 213 "Maximum listen socket pending connection accept queue size"); 214 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, 215 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP, 216 0, sizeof(int), sysctl_somaxconn, "I", 217 "Maximum listen socket pending connection accept queue size (compat)"); 218 219 static int numopensockets; 220 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, 221 &numopensockets, 0, "Number of open sockets"); 222 223 /* 224 * accept_mtx locks down per-socket fields relating to accept queues. See 225 * socketvar.h for an annotation of the protected fields of struct socket. 226 */ 227 struct mtx accept_mtx; 228 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF); 229 230 /* 231 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket 232 * so_gencnt field. 233 */ 234 static struct mtx so_global_mtx; 235 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); 236 237 /* 238 * General IPC sysctl name space, used by sockets and a variety of other IPC 239 * types. 240 */ 241 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC"); 242 243 /* 244 * Initialize the socket subsystem and set up the socket 245 * memory allocator. 246 */ 247 static uma_zone_t socket_zone; 248 int maxsockets; 249 250 static void 251 socket_zone_change(void *tag) 252 { 253 254 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 255 } 256 257 static void 258 socket_init(void *tag) 259 { 260 261 socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL, 262 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 263 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 264 uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached"); 265 EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL, 266 EVENTHANDLER_PRI_FIRST); 267 } 268 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL); 269 270 /* 271 * Initialise maxsockets. This SYSINIT must be run after 272 * tunable_mbinit(). 273 */ 274 static void 275 init_maxsockets(void *ignored) 276 { 277 278 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 279 maxsockets = imax(maxsockets, maxfiles); 280 } 281 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 282 283 /* 284 * Sysctl to get and set the maximum global sockets limit. Notify protocols 285 * of the change so that they can update their dependent limits as required. 286 */ 287 static int 288 sysctl_maxsockets(SYSCTL_HANDLER_ARGS) 289 { 290 int error, newmaxsockets; 291 292 newmaxsockets = maxsockets; 293 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req); 294 if (error == 0 && req->newptr) { 295 if (newmaxsockets > maxsockets && 296 newmaxsockets <= maxfiles) { 297 maxsockets = newmaxsockets; 298 EVENTHANDLER_INVOKE(maxsockets_change); 299 } else 300 error = EINVAL; 301 } 302 return (error); 303 } 304 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, CTLTYPE_INT|CTLFLAG_RW, 305 &maxsockets, 0, sysctl_maxsockets, "IU", 306 "Maximum number of sockets avaliable"); 307 308 /* 309 * Socket operation routines. These routines are called by the routines in 310 * sys_socket.c or from a system process, and implement the semantics of 311 * socket operations by switching out to the protocol specific routines. 312 */ 313 314 /* 315 * Get a socket structure from our zone, and initialize it. Note that it 316 * would probably be better to allocate socket and PCB at the same time, but 317 * I'm not convinced that all the protocols can be easily modified to do 318 * this. 319 * 320 * soalloc() returns a socket with a ref count of 0. 321 */ 322 static struct socket * 323 soalloc(struct vnet *vnet) 324 { 325 struct socket *so; 326 327 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO); 328 if (so == NULL) 329 return (NULL); 330 #ifdef MAC 331 if (mac_socket_init(so, M_NOWAIT) != 0) { 332 uma_zfree(socket_zone, so); 333 return (NULL); 334 } 335 #endif 336 SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd"); 337 SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv"); 338 sx_init(&so->so_snd.sb_sx, "so_snd_sx"); 339 sx_init(&so->so_rcv.sb_sx, "so_rcv_sx"); 340 TAILQ_INIT(&so->so_aiojobq); 341 mtx_lock(&so_global_mtx); 342 so->so_gencnt = ++so_gencnt; 343 ++numopensockets; 344 #ifdef VIMAGE 345 VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p", 346 __func__, __LINE__, so)); 347 vnet->vnet_sockcnt++; 348 so->so_vnet = vnet; 349 #endif 350 mtx_unlock(&so_global_mtx); 351 return (so); 352 } 353 354 /* 355 * Free the storage associated with a socket at the socket layer, tear down 356 * locks, labels, etc. All protocol state is assumed already to have been 357 * torn down (and possibly never set up) by the caller. 358 */ 359 static void 360 sodealloc(struct socket *so) 361 { 362 363 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); 364 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL")); 365 366 mtx_lock(&so_global_mtx); 367 so->so_gencnt = ++so_gencnt; 368 --numopensockets; /* Could be below, but faster here. */ 369 #ifdef VIMAGE 370 VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p", 371 __func__, __LINE__, so)); 372 so->so_vnet->vnet_sockcnt--; 373 #endif 374 mtx_unlock(&so_global_mtx); 375 if (so->so_rcv.sb_hiwat) 376 (void)chgsbsize(so->so_cred->cr_uidinfo, 377 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 378 if (so->so_snd.sb_hiwat) 379 (void)chgsbsize(so->so_cred->cr_uidinfo, 380 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 381 #ifdef INET 382 /* remove acccept filter if one is present. */ 383 if (so->so_accf != NULL) 384 do_setopt_accept_filter(so, NULL); 385 #endif 386 #ifdef MAC 387 mac_socket_destroy(so); 388 #endif 389 crfree(so->so_cred); 390 sx_destroy(&so->so_snd.sb_sx); 391 sx_destroy(&so->so_rcv.sb_sx); 392 SOCKBUF_LOCK_DESTROY(&so->so_snd); 393 SOCKBUF_LOCK_DESTROY(&so->so_rcv); 394 uma_zfree(socket_zone, so); 395 } 396 397 /* 398 * socreate returns a socket with a ref count of 1. The socket should be 399 * closed with soclose(). 400 */ 401 int 402 socreate(int dom, struct socket **aso, int type, int proto, 403 struct ucred *cred, struct thread *td) 404 { 405 struct protosw *prp; 406 struct socket *so; 407 int error; 408 409 if (proto) 410 prp = pffindproto(dom, proto, type); 411 else 412 prp = pffindtype(dom, type); 413 414 if (prp == NULL) { 415 /* No support for domain. */ 416 if (pffinddomain(dom) == NULL) 417 return (EAFNOSUPPORT); 418 /* No support for socket type. */ 419 if (proto == 0 && type != 0) 420 return (EPROTOTYPE); 421 return (EPROTONOSUPPORT); 422 } 423 if (prp->pr_usrreqs->pru_attach == NULL || 424 prp->pr_usrreqs->pru_attach == pru_attach_notsupp) 425 return (EPROTONOSUPPORT); 426 427 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0) 428 return (EPROTONOSUPPORT); 429 430 if (prp->pr_type != type) 431 return (EPROTOTYPE); 432 so = soalloc(CRED_TO_VNET(cred)); 433 if (so == NULL) 434 return (ENOBUFS); 435 436 TAILQ_INIT(&so->so_incomp); 437 TAILQ_INIT(&so->so_comp); 438 so->so_type = type; 439 so->so_cred = crhold(cred); 440 if ((prp->pr_domain->dom_family == PF_INET) || 441 (prp->pr_domain->dom_family == PF_INET6) || 442 (prp->pr_domain->dom_family == PF_ROUTE)) 443 so->so_fibnum = td->td_proc->p_fibnum; 444 else 445 so->so_fibnum = 0; 446 so->so_proto = prp; 447 #ifdef MAC 448 mac_socket_create(cred, so); 449 #endif 450 knlist_init_mtx(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv)); 451 knlist_init_mtx(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd)); 452 so->so_count = 1; 453 /* 454 * Auto-sizing of socket buffers is managed by the protocols and 455 * the appropriate flags must be set in the pru_attach function. 456 */ 457 CURVNET_SET(so->so_vnet); 458 error = (*prp->pr_usrreqs->pru_attach)(so, proto, td); 459 CURVNET_RESTORE(); 460 if (error) { 461 KASSERT(so->so_count == 1, ("socreate: so_count %d", 462 so->so_count)); 463 so->so_count = 0; 464 sodealloc(so); 465 return (error); 466 } 467 *aso = so; 468 return (0); 469 } 470 471 #ifdef REGRESSION 472 static int regression_sonewconn_earlytest = 1; 473 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW, 474 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test"); 475 #endif 476 477 /* 478 * When an attempt at a new connection is noted on a socket which accepts 479 * connections, sonewconn is called. If the connection is possible (subject 480 * to space constraints, etc.) then we allocate a new structure, propoerly 481 * linked into the data structure of the original socket, and return this. 482 * Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED. 483 * 484 * Note: the ref count on the socket is 0 on return. 485 */ 486 struct socket * 487 sonewconn(struct socket *head, int connstatus) 488 { 489 static struct timeval lastover; 490 static struct timeval overinterval = { 60, 0 }; 491 static int overcount; 492 493 struct socket *so; 494 int over; 495 496 ACCEPT_LOCK(); 497 over = (head->so_qlen > 3 * head->so_qlimit / 2); 498 ACCEPT_UNLOCK(); 499 #ifdef REGRESSION 500 if (regression_sonewconn_earlytest && over) { 501 #else 502 if (over) { 503 #endif 504 overcount++; 505 506 if (ratecheck(&lastover, &overinterval)) { 507 log(LOG_DEBUG, "%s: pcb %p: Listen queue overflow: " 508 "%i already in queue awaiting acceptance " 509 "(%d occurrences)\n", 510 __func__, head->so_pcb, head->so_qlen, overcount); 511 512 overcount = 0; 513 } 514 515 return (NULL); 516 } 517 VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p", 518 __func__, __LINE__, head)); 519 so = soalloc(head->so_vnet); 520 if (so == NULL) { 521 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 522 "limit reached or out of memory\n", 523 __func__, head->so_pcb); 524 return (NULL); 525 } 526 if ((head->so_options & SO_ACCEPTFILTER) != 0) 527 connstatus = 0; 528 so->so_head = head; 529 so->so_type = head->so_type; 530 so->so_options = head->so_options &~ SO_ACCEPTCONN; 531 so->so_linger = head->so_linger; 532 so->so_state = head->so_state | SS_NOFDREF; 533 so->so_fibnum = head->so_fibnum; 534 so->so_proto = head->so_proto; 535 so->so_cred = crhold(head->so_cred); 536 #ifdef MAC 537 mac_socket_newconn(head, so); 538 #endif 539 knlist_init_mtx(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv)); 540 knlist_init_mtx(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd)); 541 VNET_SO_ASSERT(head); 542 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) { 543 sodealloc(so); 544 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 545 __func__, head->so_pcb); 546 return (NULL); 547 } 548 if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 549 sodealloc(so); 550 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", 551 __func__, head->so_pcb); 552 return (NULL); 553 } 554 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; 555 so->so_snd.sb_lowat = head->so_snd.sb_lowat; 556 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; 557 so->so_snd.sb_timeo = head->so_snd.sb_timeo; 558 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE; 559 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE; 560 so->so_state |= connstatus; 561 ACCEPT_LOCK(); 562 /* 563 * The accept socket may be tearing down but we just 564 * won a race on the ACCEPT_LOCK. 565 * However, if sctp_peeloff() is called on a 1-to-many 566 * style socket, the SO_ACCEPTCONN doesn't need to be set. 567 */ 568 if (!(head->so_options & SO_ACCEPTCONN) && 569 ((head->so_proto->pr_protocol != IPPROTO_SCTP) || 570 (head->so_type != SOCK_SEQPACKET))) { 571 SOCK_LOCK(so); 572 so->so_head = NULL; 573 sofree(so); /* NB: returns ACCEPT_UNLOCK'ed. */ 574 return (NULL); 575 } 576 if (connstatus) { 577 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 578 so->so_qstate |= SQ_COMP; 579 head->so_qlen++; 580 } else { 581 /* 582 * Keep removing sockets from the head until there's room for 583 * us to insert on the tail. In pre-locking revisions, this 584 * was a simple if(), but as we could be racing with other 585 * threads and soabort() requires dropping locks, we must 586 * loop waiting for the condition to be true. 587 */ 588 while (head->so_incqlen > head->so_qlimit) { 589 struct socket *sp; 590 sp = TAILQ_FIRST(&head->so_incomp); 591 TAILQ_REMOVE(&head->so_incomp, sp, so_list); 592 head->so_incqlen--; 593 sp->so_qstate &= ~SQ_INCOMP; 594 sp->so_head = NULL; 595 ACCEPT_UNLOCK(); 596 soabort(sp); 597 ACCEPT_LOCK(); 598 } 599 TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list); 600 so->so_qstate |= SQ_INCOMP; 601 head->so_incqlen++; 602 } 603 ACCEPT_UNLOCK(); 604 if (connstatus) { 605 sorwakeup(head); 606 wakeup_one(&head->so_timeo); 607 } 608 return (so); 609 } 610 611 int 612 sobind(struct socket *so, struct sockaddr *nam, struct thread *td) 613 { 614 int error; 615 616 CURVNET_SET(so->so_vnet); 617 error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td); 618 CURVNET_RESTORE(); 619 return (error); 620 } 621 622 int 623 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 624 { 625 int error; 626 627 CURVNET_SET(so->so_vnet); 628 error = (*so->so_proto->pr_usrreqs->pru_bindat)(fd, so, nam, td); 629 CURVNET_RESTORE(); 630 return (error); 631 } 632 633 /* 634 * solisten() transitions a socket from a non-listening state to a listening 635 * state, but can also be used to update the listen queue depth on an 636 * existing listen socket. The protocol will call back into the sockets 637 * layer using solisten_proto_check() and solisten_proto() to check and set 638 * socket-layer listen state. Call backs are used so that the protocol can 639 * acquire both protocol and socket layer locks in whatever order is required 640 * by the protocol. 641 * 642 * Protocol implementors are advised to hold the socket lock across the 643 * socket-layer test and set to avoid races at the socket layer. 644 */ 645 int 646 solisten(struct socket *so, int backlog, struct thread *td) 647 { 648 int error; 649 650 CURVNET_SET(so->so_vnet); 651 error = (*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td); 652 CURVNET_RESTORE(); 653 return (error); 654 } 655 656 int 657 solisten_proto_check(struct socket *so) 658 { 659 660 SOCK_LOCK_ASSERT(so); 661 662 if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 663 SS_ISDISCONNECTING)) 664 return (EINVAL); 665 return (0); 666 } 667 668 void 669 solisten_proto(struct socket *so, int backlog) 670 { 671 672 SOCK_LOCK_ASSERT(so); 673 674 if (backlog < 0 || backlog > somaxconn) 675 backlog = somaxconn; 676 so->so_qlimit = backlog; 677 so->so_options |= SO_ACCEPTCONN; 678 } 679 680 /* 681 * Evaluate the reference count and named references on a socket; if no 682 * references remain, free it. This should be called whenever a reference is 683 * released, such as in sorele(), but also when named reference flags are 684 * cleared in socket or protocol code. 685 * 686 * sofree() will free the socket if: 687 * 688 * - There are no outstanding file descriptor references or related consumers 689 * (so_count == 0). 690 * 691 * - The socket has been closed by user space, if ever open (SS_NOFDREF). 692 * 693 * - The protocol does not have an outstanding strong reference on the socket 694 * (SS_PROTOREF). 695 * 696 * - The socket is not in a completed connection queue, so a process has been 697 * notified that it is present. If it is removed, the user process may 698 * block in accept() despite select() saying the socket was ready. 699 */ 700 void 701 sofree(struct socket *so) 702 { 703 struct protosw *pr = so->so_proto; 704 struct socket *head; 705 706 ACCEPT_LOCK_ASSERT(); 707 SOCK_LOCK_ASSERT(so); 708 709 if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 || 710 (so->so_state & SS_PROTOREF) || (so->so_qstate & SQ_COMP)) { 711 SOCK_UNLOCK(so); 712 ACCEPT_UNLOCK(); 713 return; 714 } 715 716 head = so->so_head; 717 if (head != NULL) { 718 KASSERT((so->so_qstate & SQ_COMP) != 0 || 719 (so->so_qstate & SQ_INCOMP) != 0, 720 ("sofree: so_head != NULL, but neither SQ_COMP nor " 721 "SQ_INCOMP")); 722 KASSERT((so->so_qstate & SQ_COMP) == 0 || 723 (so->so_qstate & SQ_INCOMP) == 0, 724 ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP")); 725 TAILQ_REMOVE(&head->so_incomp, so, so_list); 726 head->so_incqlen--; 727 so->so_qstate &= ~SQ_INCOMP; 728 so->so_head = NULL; 729 } 730 KASSERT((so->so_qstate & SQ_COMP) == 0 && 731 (so->so_qstate & SQ_INCOMP) == 0, 732 ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)", 733 so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP)); 734 if (so->so_options & SO_ACCEPTCONN) { 735 KASSERT((TAILQ_EMPTY(&so->so_comp)), 736 ("sofree: so_comp populated")); 737 KASSERT((TAILQ_EMPTY(&so->so_incomp)), 738 ("sofree: so_incomp populated")); 739 } 740 SOCK_UNLOCK(so); 741 ACCEPT_UNLOCK(); 742 743 VNET_SO_ASSERT(so); 744 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 745 (*pr->pr_domain->dom_dispose)(so->so_rcv.sb_mb); 746 if (pr->pr_usrreqs->pru_detach != NULL) 747 (*pr->pr_usrreqs->pru_detach)(so); 748 749 /* 750 * From this point on, we assume that no other references to this 751 * socket exist anywhere else in the stack. Therefore, no locks need 752 * to be acquired or held. 753 * 754 * We used to do a lot of socket buffer and socket locking here, as 755 * well as invoke sorflush() and perform wakeups. The direct call to 756 * dom_dispose() and sbrelease_internal() are an inlining of what was 757 * necessary from sorflush(). 758 * 759 * Notice that the socket buffer and kqueue state are torn down 760 * before calling pru_detach. This means that protocols shold not 761 * assume they can perform socket wakeups, etc, in their detach code. 762 */ 763 sbdestroy(&so->so_snd, so); 764 sbdestroy(&so->so_rcv, so); 765 seldrain(&so->so_snd.sb_sel); 766 seldrain(&so->so_rcv.sb_sel); 767 knlist_destroy(&so->so_rcv.sb_sel.si_note); 768 knlist_destroy(&so->so_snd.sb_sel.si_note); 769 sodealloc(so); 770 } 771 772 /* 773 * Close a socket on last file table reference removal. Initiate disconnect 774 * if connected. Free socket when disconnect complete. 775 * 776 * This function will sorele() the socket. Note that soclose() may be called 777 * prior to the ref count reaching zero. The actual socket structure will 778 * not be freed until the ref count reaches zero. 779 */ 780 int 781 soclose(struct socket *so) 782 { 783 int error = 0; 784 785 KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter")); 786 787 CURVNET_SET(so->so_vnet); 788 funsetown(&so->so_sigio); 789 if (so->so_state & SS_ISCONNECTED) { 790 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 791 error = sodisconnect(so); 792 if (error) { 793 if (error == ENOTCONN) 794 error = 0; 795 goto drop; 796 } 797 } 798 if (so->so_options & SO_LINGER) { 799 if ((so->so_state & SS_ISDISCONNECTING) && 800 (so->so_state & SS_NBIO)) 801 goto drop; 802 while (so->so_state & SS_ISCONNECTED) { 803 error = tsleep(&so->so_timeo, 804 PSOCK | PCATCH, "soclos", 805 so->so_linger * hz); 806 if (error) 807 break; 808 } 809 } 810 } 811 812 drop: 813 if (so->so_proto->pr_usrreqs->pru_close != NULL) 814 (*so->so_proto->pr_usrreqs->pru_close)(so); 815 ACCEPT_LOCK(); 816 if (so->so_options & SO_ACCEPTCONN) { 817 struct socket *sp; 818 /* 819 * Prevent new additions to the accept queues due 820 * to ACCEPT_LOCK races while we are draining them. 821 */ 822 so->so_options &= ~SO_ACCEPTCONN; 823 while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) { 824 TAILQ_REMOVE(&so->so_incomp, sp, so_list); 825 so->so_incqlen--; 826 sp->so_qstate &= ~SQ_INCOMP; 827 sp->so_head = NULL; 828 ACCEPT_UNLOCK(); 829 soabort(sp); 830 ACCEPT_LOCK(); 831 } 832 while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) { 833 TAILQ_REMOVE(&so->so_comp, sp, so_list); 834 so->so_qlen--; 835 sp->so_qstate &= ~SQ_COMP; 836 sp->so_head = NULL; 837 ACCEPT_UNLOCK(); 838 soabort(sp); 839 ACCEPT_LOCK(); 840 } 841 KASSERT((TAILQ_EMPTY(&so->so_comp)), 842 ("%s: so_comp populated", __func__)); 843 KASSERT((TAILQ_EMPTY(&so->so_incomp)), 844 ("%s: so_incomp populated", __func__)); 845 } 846 SOCK_LOCK(so); 847 KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF")); 848 so->so_state |= SS_NOFDREF; 849 sorele(so); /* NB: Returns with ACCEPT_UNLOCK(). */ 850 CURVNET_RESTORE(); 851 return (error); 852 } 853 854 /* 855 * soabort() is used to abruptly tear down a connection, such as when a 856 * resource limit is reached (listen queue depth exceeded), or if a listen 857 * socket is closed while there are sockets waiting to be accepted. 858 * 859 * This interface is tricky, because it is called on an unreferenced socket, 860 * and must be called only by a thread that has actually removed the socket 861 * from the listen queue it was on, or races with other threads are risked. 862 * 863 * This interface will call into the protocol code, so must not be called 864 * with any socket locks held. Protocols do call it while holding their own 865 * recursible protocol mutexes, but this is something that should be subject 866 * to review in the future. 867 */ 868 void 869 soabort(struct socket *so) 870 { 871 872 /* 873 * In as much as is possible, assert that no references to this 874 * socket are held. This is not quite the same as asserting that the 875 * current thread is responsible for arranging for no references, but 876 * is as close as we can get for now. 877 */ 878 KASSERT(so->so_count == 0, ("soabort: so_count")); 879 KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF")); 880 KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF")); 881 KASSERT((so->so_state & SQ_COMP) == 0, ("soabort: SQ_COMP")); 882 KASSERT((so->so_state & SQ_INCOMP) == 0, ("soabort: SQ_INCOMP")); 883 VNET_SO_ASSERT(so); 884 885 if (so->so_proto->pr_usrreqs->pru_abort != NULL) 886 (*so->so_proto->pr_usrreqs->pru_abort)(so); 887 ACCEPT_LOCK(); 888 SOCK_LOCK(so); 889 sofree(so); 890 } 891 892 int 893 soaccept(struct socket *so, struct sockaddr **nam) 894 { 895 int error; 896 897 SOCK_LOCK(so); 898 KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF")); 899 so->so_state &= ~SS_NOFDREF; 900 SOCK_UNLOCK(so); 901 902 CURVNET_SET(so->so_vnet); 903 error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam); 904 CURVNET_RESTORE(); 905 return (error); 906 } 907 908 int 909 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td) 910 { 911 912 return (soconnectat(AT_FDCWD, so, nam, td)); 913 } 914 915 int 916 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 917 { 918 int error; 919 920 if (so->so_options & SO_ACCEPTCONN) 921 return (EOPNOTSUPP); 922 923 CURVNET_SET(so->so_vnet); 924 /* 925 * If protocol is connection-based, can only connect once. 926 * Otherwise, if connected, try to disconnect first. This allows 927 * user to disconnect by connecting to, e.g., a null address. 928 */ 929 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 930 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 931 (error = sodisconnect(so)))) { 932 error = EISCONN; 933 } else { 934 /* 935 * Prevent accumulated error from previous connection from 936 * biting us. 937 */ 938 so->so_error = 0; 939 if (fd == AT_FDCWD) { 940 error = (*so->so_proto->pr_usrreqs->pru_connect)(so, 941 nam, td); 942 } else { 943 error = (*so->so_proto->pr_usrreqs->pru_connectat)(fd, 944 so, nam, td); 945 } 946 } 947 CURVNET_RESTORE(); 948 949 return (error); 950 } 951 952 int 953 soconnect2(struct socket *so1, struct socket *so2) 954 { 955 int error; 956 957 CURVNET_SET(so1->so_vnet); 958 error = (*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2); 959 CURVNET_RESTORE(); 960 return (error); 961 } 962 963 int 964 sodisconnect(struct socket *so) 965 { 966 int error; 967 968 if ((so->so_state & SS_ISCONNECTED) == 0) 969 return (ENOTCONN); 970 if (so->so_state & SS_ISDISCONNECTING) 971 return (EALREADY); 972 VNET_SO_ASSERT(so); 973 error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so); 974 return (error); 975 } 976 977 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT) 978 979 int 980 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, 981 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 982 { 983 long space; 984 ssize_t resid; 985 int clen = 0, error, dontroute; 986 987 KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM")); 988 KASSERT(so->so_proto->pr_flags & PR_ATOMIC, 989 ("sosend_dgram: !PR_ATOMIC")); 990 991 if (uio != NULL) 992 resid = uio->uio_resid; 993 else 994 resid = top->m_pkthdr.len; 995 /* 996 * In theory resid should be unsigned. However, space must be 997 * signed, as it might be less than 0 if we over-committed, and we 998 * must use a signed comparison of space and resid. On the other 999 * hand, a negative resid causes us to loop sending 0-length 1000 * segments to the protocol. 1001 */ 1002 if (resid < 0) { 1003 error = EINVAL; 1004 goto out; 1005 } 1006 1007 dontroute = 1008 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0; 1009 if (td != NULL) 1010 td->td_ru.ru_msgsnd++; 1011 if (control != NULL) 1012 clen = control->m_len; 1013 1014 SOCKBUF_LOCK(&so->so_snd); 1015 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1016 SOCKBUF_UNLOCK(&so->so_snd); 1017 error = EPIPE; 1018 goto out; 1019 } 1020 if (so->so_error) { 1021 error = so->so_error; 1022 so->so_error = 0; 1023 SOCKBUF_UNLOCK(&so->so_snd); 1024 goto out; 1025 } 1026 if ((so->so_state & SS_ISCONNECTED) == 0) { 1027 /* 1028 * `sendto' and `sendmsg' is allowed on a connection-based 1029 * socket if it supports implied connect. Return ENOTCONN if 1030 * not connected and no address is supplied. 1031 */ 1032 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1033 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1034 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1035 !(resid == 0 && clen != 0)) { 1036 SOCKBUF_UNLOCK(&so->so_snd); 1037 error = ENOTCONN; 1038 goto out; 1039 } 1040 } else if (addr == NULL) { 1041 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1042 error = ENOTCONN; 1043 else 1044 error = EDESTADDRREQ; 1045 SOCKBUF_UNLOCK(&so->so_snd); 1046 goto out; 1047 } 1048 } 1049 1050 /* 1051 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a 1052 * problem and need fixing. 1053 */ 1054 space = sbspace(&so->so_snd); 1055 if (flags & MSG_OOB) 1056 space += 1024; 1057 space -= clen; 1058 SOCKBUF_UNLOCK(&so->so_snd); 1059 if (resid > space) { 1060 error = EMSGSIZE; 1061 goto out; 1062 } 1063 if (uio == NULL) { 1064 resid = 0; 1065 if (flags & MSG_EOR) 1066 top->m_flags |= M_EOR; 1067 } else { 1068 /* 1069 * Copy the data from userland into a mbuf chain. 1070 * If no data is to be copied in, a single empty mbuf 1071 * is returned. 1072 */ 1073 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr, 1074 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0))); 1075 if (top == NULL) { 1076 error = EFAULT; /* only possible error */ 1077 goto out; 1078 } 1079 space -= resid - uio->uio_resid; 1080 resid = uio->uio_resid; 1081 } 1082 KASSERT(resid == 0, ("sosend_dgram: resid != 0")); 1083 /* 1084 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock 1085 * than with. 1086 */ 1087 if (dontroute) { 1088 SOCK_LOCK(so); 1089 so->so_options |= SO_DONTROUTE; 1090 SOCK_UNLOCK(so); 1091 } 1092 /* 1093 * XXX all the SBS_CANTSENDMORE checks previously done could be out 1094 * of date. We could have recieved a reset packet in an interrupt or 1095 * maybe we slept while doing page faults in uiomove() etc. We could 1096 * probably recheck again inside the locking protection here, but 1097 * there are probably other places that this also happens. We must 1098 * rethink this. 1099 */ 1100 VNET_SO_ASSERT(so); 1101 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1102 (flags & MSG_OOB) ? PRUS_OOB : 1103 /* 1104 * If the user set MSG_EOF, the protocol understands this flag and 1105 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND. 1106 */ 1107 ((flags & MSG_EOF) && 1108 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1109 (resid <= 0)) ? 1110 PRUS_EOF : 1111 /* If there is more to send set PRUS_MORETOCOME */ 1112 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1113 top, addr, control, td); 1114 if (dontroute) { 1115 SOCK_LOCK(so); 1116 so->so_options &= ~SO_DONTROUTE; 1117 SOCK_UNLOCK(so); 1118 } 1119 clen = 0; 1120 control = NULL; 1121 top = NULL; 1122 out: 1123 if (top != NULL) 1124 m_freem(top); 1125 if (control != NULL) 1126 m_freem(control); 1127 return (error); 1128 } 1129 1130 /* 1131 * Send on a socket. If send must go all at once and message is larger than 1132 * send buffering, then hard error. Lock against other senders. If must go 1133 * all at once and not enough room now, then inform user that this would 1134 * block and do nothing. Otherwise, if nonblocking, send as much as 1135 * possible. The data to be sent is described by "uio" if nonzero, otherwise 1136 * by the mbuf chain "top" (which must be null if uio is not). Data provided 1137 * in mbuf chain must be small enough to send all at once. 1138 * 1139 * Returns nonzero on error, timeout or signal; callers must check for short 1140 * counts if EINTR/ERESTART are returned. Data and control buffers are freed 1141 * on return. 1142 */ 1143 int 1144 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio, 1145 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1146 { 1147 long space; 1148 ssize_t resid; 1149 int clen = 0, error, dontroute; 1150 int atomic = sosendallatonce(so) || top; 1151 1152 if (uio != NULL) 1153 resid = uio->uio_resid; 1154 else 1155 resid = top->m_pkthdr.len; 1156 /* 1157 * In theory resid should be unsigned. However, space must be 1158 * signed, as it might be less than 0 if we over-committed, and we 1159 * must use a signed comparison of space and resid. On the other 1160 * hand, a negative resid causes us to loop sending 0-length 1161 * segments to the protocol. 1162 * 1163 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 1164 * type sockets since that's an error. 1165 */ 1166 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 1167 error = EINVAL; 1168 goto out; 1169 } 1170 1171 dontroute = 1172 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 1173 (so->so_proto->pr_flags & PR_ATOMIC); 1174 if (td != NULL) 1175 td->td_ru.ru_msgsnd++; 1176 if (control != NULL) 1177 clen = control->m_len; 1178 1179 error = sblock(&so->so_snd, SBLOCKWAIT(flags)); 1180 if (error) 1181 goto out; 1182 1183 restart: 1184 do { 1185 SOCKBUF_LOCK(&so->so_snd); 1186 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1187 SOCKBUF_UNLOCK(&so->so_snd); 1188 error = EPIPE; 1189 goto release; 1190 } 1191 if (so->so_error) { 1192 error = so->so_error; 1193 so->so_error = 0; 1194 SOCKBUF_UNLOCK(&so->so_snd); 1195 goto release; 1196 } 1197 if ((so->so_state & SS_ISCONNECTED) == 0) { 1198 /* 1199 * `sendto' and `sendmsg' is allowed on a connection- 1200 * based socket if it supports implied connect. 1201 * Return ENOTCONN if not connected and no address is 1202 * supplied. 1203 */ 1204 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1205 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1206 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1207 !(resid == 0 && clen != 0)) { 1208 SOCKBUF_UNLOCK(&so->so_snd); 1209 error = ENOTCONN; 1210 goto release; 1211 } 1212 } else if (addr == NULL) { 1213 SOCKBUF_UNLOCK(&so->so_snd); 1214 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1215 error = ENOTCONN; 1216 else 1217 error = EDESTADDRREQ; 1218 goto release; 1219 } 1220 } 1221 space = sbspace(&so->so_snd); 1222 if (flags & MSG_OOB) 1223 space += 1024; 1224 if ((atomic && resid > so->so_snd.sb_hiwat) || 1225 clen > so->so_snd.sb_hiwat) { 1226 SOCKBUF_UNLOCK(&so->so_snd); 1227 error = EMSGSIZE; 1228 goto release; 1229 } 1230 if (space < resid + clen && 1231 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 1232 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) { 1233 SOCKBUF_UNLOCK(&so->so_snd); 1234 error = EWOULDBLOCK; 1235 goto release; 1236 } 1237 error = sbwait(&so->so_snd); 1238 SOCKBUF_UNLOCK(&so->so_snd); 1239 if (error) 1240 goto release; 1241 goto restart; 1242 } 1243 SOCKBUF_UNLOCK(&so->so_snd); 1244 space -= clen; 1245 do { 1246 if (uio == NULL) { 1247 resid = 0; 1248 if (flags & MSG_EOR) 1249 top->m_flags |= M_EOR; 1250 } else { 1251 /* 1252 * Copy the data from userland into a mbuf 1253 * chain. If no data is to be copied in, 1254 * a single empty mbuf is returned. 1255 */ 1256 top = m_uiotombuf(uio, M_WAITOK, space, 1257 (atomic ? max_hdr : 0), 1258 (atomic ? M_PKTHDR : 0) | 1259 ((flags & MSG_EOR) ? M_EOR : 0)); 1260 if (top == NULL) { 1261 error = EFAULT; /* only possible error */ 1262 goto release; 1263 } 1264 space -= resid - uio->uio_resid; 1265 resid = uio->uio_resid; 1266 } 1267 if (dontroute) { 1268 SOCK_LOCK(so); 1269 so->so_options |= SO_DONTROUTE; 1270 SOCK_UNLOCK(so); 1271 } 1272 /* 1273 * XXX all the SBS_CANTSENDMORE checks previously 1274 * done could be out of date. We could have recieved 1275 * a reset packet in an interrupt or maybe we slept 1276 * while doing page faults in uiomove() etc. We 1277 * could probably recheck again inside the locking 1278 * protection here, but there are probably other 1279 * places that this also happens. We must rethink 1280 * this. 1281 */ 1282 VNET_SO_ASSERT(so); 1283 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1284 (flags & MSG_OOB) ? PRUS_OOB : 1285 /* 1286 * If the user set MSG_EOF, the protocol understands 1287 * this flag and nothing left to send then use 1288 * PRU_SEND_EOF instead of PRU_SEND. 1289 */ 1290 ((flags & MSG_EOF) && 1291 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1292 (resid <= 0)) ? 1293 PRUS_EOF : 1294 /* If there is more to send set PRUS_MORETOCOME. */ 1295 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1296 top, addr, control, td); 1297 if (dontroute) { 1298 SOCK_LOCK(so); 1299 so->so_options &= ~SO_DONTROUTE; 1300 SOCK_UNLOCK(so); 1301 } 1302 clen = 0; 1303 control = NULL; 1304 top = NULL; 1305 if (error) 1306 goto release; 1307 } while (resid && space > 0); 1308 } while (resid); 1309 1310 release: 1311 sbunlock(&so->so_snd); 1312 out: 1313 if (top != NULL) 1314 m_freem(top); 1315 if (control != NULL) 1316 m_freem(control); 1317 return (error); 1318 } 1319 1320 int 1321 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, 1322 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1323 { 1324 int error; 1325 1326 CURVNET_SET(so->so_vnet); 1327 error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, top, 1328 control, flags, td); 1329 CURVNET_RESTORE(); 1330 return (error); 1331 } 1332 1333 /* 1334 * The part of soreceive() that implements reading non-inline out-of-band 1335 * data from a socket. For more complete comments, see soreceive(), from 1336 * which this code originated. 1337 * 1338 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is 1339 * unable to return an mbuf chain to the caller. 1340 */ 1341 static int 1342 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags) 1343 { 1344 struct protosw *pr = so->so_proto; 1345 struct mbuf *m; 1346 int error; 1347 1348 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); 1349 VNET_SO_ASSERT(so); 1350 1351 m = m_get(M_WAITOK, MT_DATA); 1352 error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK); 1353 if (error) 1354 goto bad; 1355 do { 1356 error = uiomove(mtod(m, void *), 1357 (int) min(uio->uio_resid, m->m_len), uio); 1358 m = m_free(m); 1359 } while (uio->uio_resid && error == 0 && m); 1360 bad: 1361 if (m != NULL) 1362 m_freem(m); 1363 return (error); 1364 } 1365 1366 /* 1367 * Following replacement or removal of the first mbuf on the first mbuf chain 1368 * of a socket buffer, push necessary state changes back into the socket 1369 * buffer so that other consumers see the values consistently. 'nextrecord' 1370 * is the callers locally stored value of the original value of 1371 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. 1372 * NOTE: 'nextrecord' may be NULL. 1373 */ 1374 static __inline void 1375 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) 1376 { 1377 1378 SOCKBUF_LOCK_ASSERT(sb); 1379 /* 1380 * First, update for the new value of nextrecord. If necessary, make 1381 * it the first record. 1382 */ 1383 if (sb->sb_mb != NULL) 1384 sb->sb_mb->m_nextpkt = nextrecord; 1385 else 1386 sb->sb_mb = nextrecord; 1387 1388 /* 1389 * Now update any dependent socket buffer fields to reflect the new 1390 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the 1391 * addition of a second clause that takes care of the case where 1392 * sb_mb has been updated, but remains the last record. 1393 */ 1394 if (sb->sb_mb == NULL) { 1395 sb->sb_mbtail = NULL; 1396 sb->sb_lastrecord = NULL; 1397 } else if (sb->sb_mb->m_nextpkt == NULL) 1398 sb->sb_lastrecord = sb->sb_mb; 1399 } 1400 1401 /* 1402 * Implement receive operations on a socket. We depend on the way that 1403 * records are added to the sockbuf by sbappend. In particular, each record 1404 * (mbufs linked through m_next) must begin with an address if the protocol 1405 * so specifies, followed by an optional mbuf or mbufs containing ancillary 1406 * data, and then zero or more mbufs of data. In order to allow parallelism 1407 * between network receive and copying to user space, as well as avoid 1408 * sleeping with a mutex held, we release the socket buffer mutex during the 1409 * user space copy. Although the sockbuf is locked, new data may still be 1410 * appended, and thus we must maintain consistency of the sockbuf during that 1411 * time. 1412 * 1413 * The caller may receive the data as a single mbuf chain by supplying an 1414 * mbuf **mp0 for use in returning the chain. The uio is then used only for 1415 * the count in uio_resid. 1416 */ 1417 int 1418 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio, 1419 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1420 { 1421 struct mbuf *m, **mp; 1422 int flags, error, offset; 1423 ssize_t len; 1424 struct protosw *pr = so->so_proto; 1425 struct mbuf *nextrecord; 1426 int moff, type = 0; 1427 ssize_t orig_resid = uio->uio_resid; 1428 1429 mp = mp0; 1430 if (psa != NULL) 1431 *psa = NULL; 1432 if (controlp != NULL) 1433 *controlp = NULL; 1434 if (flagsp != NULL) 1435 flags = *flagsp &~ MSG_EOR; 1436 else 1437 flags = 0; 1438 if (flags & MSG_OOB) 1439 return (soreceive_rcvoob(so, uio, flags)); 1440 if (mp != NULL) 1441 *mp = NULL; 1442 if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING) 1443 && uio->uio_resid) { 1444 VNET_SO_ASSERT(so); 1445 (*pr->pr_usrreqs->pru_rcvd)(so, 0); 1446 } 1447 1448 error = sblock(&so->so_rcv, SBLOCKWAIT(flags)); 1449 if (error) 1450 return (error); 1451 1452 restart: 1453 SOCKBUF_LOCK(&so->so_rcv); 1454 m = so->so_rcv.sb_mb; 1455 /* 1456 * If we have less data than requested, block awaiting more (subject 1457 * to any timeout) if: 1458 * 1. the current count is less than the low water mark, or 1459 * 2. MSG_DONTWAIT is not set 1460 */ 1461 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 1462 so->so_rcv.sb_cc < uio->uio_resid) && 1463 so->so_rcv.sb_cc < so->so_rcv.sb_lowat && 1464 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 1465 KASSERT(m != NULL || !so->so_rcv.sb_cc, 1466 ("receive: m == %p so->so_rcv.sb_cc == %u", 1467 m, so->so_rcv.sb_cc)); 1468 if (so->so_error) { 1469 if (m != NULL) 1470 goto dontblock; 1471 error = so->so_error; 1472 if ((flags & MSG_PEEK) == 0) 1473 so->so_error = 0; 1474 SOCKBUF_UNLOCK(&so->so_rcv); 1475 goto release; 1476 } 1477 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1478 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 1479 if (m == NULL) { 1480 SOCKBUF_UNLOCK(&so->so_rcv); 1481 goto release; 1482 } else 1483 goto dontblock; 1484 } 1485 for (; m != NULL; m = m->m_next) 1486 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 1487 m = so->so_rcv.sb_mb; 1488 goto dontblock; 1489 } 1490 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 1491 (so->so_proto->pr_flags & PR_CONNREQUIRED)) { 1492 SOCKBUF_UNLOCK(&so->so_rcv); 1493 error = ENOTCONN; 1494 goto release; 1495 } 1496 if (uio->uio_resid == 0) { 1497 SOCKBUF_UNLOCK(&so->so_rcv); 1498 goto release; 1499 } 1500 if ((so->so_state & SS_NBIO) || 1501 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 1502 SOCKBUF_UNLOCK(&so->so_rcv); 1503 error = EWOULDBLOCK; 1504 goto release; 1505 } 1506 SBLASTRECORDCHK(&so->so_rcv); 1507 SBLASTMBUFCHK(&so->so_rcv); 1508 error = sbwait(&so->so_rcv); 1509 SOCKBUF_UNLOCK(&so->so_rcv); 1510 if (error) 1511 goto release; 1512 goto restart; 1513 } 1514 dontblock: 1515 /* 1516 * From this point onward, we maintain 'nextrecord' as a cache of the 1517 * pointer to the next record in the socket buffer. We must keep the 1518 * various socket buffer pointers and local stack versions of the 1519 * pointers in sync, pushing out modifications before dropping the 1520 * socket buffer mutex, and re-reading them when picking it up. 1521 * 1522 * Otherwise, we will race with the network stack appending new data 1523 * or records onto the socket buffer by using inconsistent/stale 1524 * versions of the field, possibly resulting in socket buffer 1525 * corruption. 1526 * 1527 * By holding the high-level sblock(), we prevent simultaneous 1528 * readers from pulling off the front of the socket buffer. 1529 */ 1530 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1531 if (uio->uio_td) 1532 uio->uio_td->td_ru.ru_msgrcv++; 1533 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); 1534 SBLASTRECORDCHK(&so->so_rcv); 1535 SBLASTMBUFCHK(&so->so_rcv); 1536 nextrecord = m->m_nextpkt; 1537 if (pr->pr_flags & PR_ADDR) { 1538 KASSERT(m->m_type == MT_SONAME, 1539 ("m->m_type == %d", m->m_type)); 1540 orig_resid = 0; 1541 if (psa != NULL) 1542 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 1543 M_NOWAIT); 1544 if (flags & MSG_PEEK) { 1545 m = m->m_next; 1546 } else { 1547 sbfree(&so->so_rcv, m); 1548 so->so_rcv.sb_mb = m_free(m); 1549 m = so->so_rcv.sb_mb; 1550 sockbuf_pushsync(&so->so_rcv, nextrecord); 1551 } 1552 } 1553 1554 /* 1555 * Process one or more MT_CONTROL mbufs present before any data mbufs 1556 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 1557 * just copy the data; if !MSG_PEEK, we call into the protocol to 1558 * perform externalization (or freeing if controlp == NULL). 1559 */ 1560 if (m != NULL && m->m_type == MT_CONTROL) { 1561 struct mbuf *cm = NULL, *cmn; 1562 struct mbuf **cme = &cm; 1563 1564 do { 1565 if (flags & MSG_PEEK) { 1566 if (controlp != NULL) { 1567 *controlp = m_copy(m, 0, m->m_len); 1568 controlp = &(*controlp)->m_next; 1569 } 1570 m = m->m_next; 1571 } else { 1572 sbfree(&so->so_rcv, m); 1573 so->so_rcv.sb_mb = m->m_next; 1574 m->m_next = NULL; 1575 *cme = m; 1576 cme = &(*cme)->m_next; 1577 m = so->so_rcv.sb_mb; 1578 } 1579 } while (m != NULL && m->m_type == MT_CONTROL); 1580 if ((flags & MSG_PEEK) == 0) 1581 sockbuf_pushsync(&so->so_rcv, nextrecord); 1582 while (cm != NULL) { 1583 cmn = cm->m_next; 1584 cm->m_next = NULL; 1585 if (pr->pr_domain->dom_externalize != NULL) { 1586 SOCKBUF_UNLOCK(&so->so_rcv); 1587 VNET_SO_ASSERT(so); 1588 error = (*pr->pr_domain->dom_externalize) 1589 (cm, controlp, flags); 1590 SOCKBUF_LOCK(&so->so_rcv); 1591 } else if (controlp != NULL) 1592 *controlp = cm; 1593 else 1594 m_freem(cm); 1595 if (controlp != NULL) { 1596 orig_resid = 0; 1597 while (*controlp != NULL) 1598 controlp = &(*controlp)->m_next; 1599 } 1600 cm = cmn; 1601 } 1602 if (m != NULL) 1603 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 1604 else 1605 nextrecord = so->so_rcv.sb_mb; 1606 orig_resid = 0; 1607 } 1608 if (m != NULL) { 1609 if ((flags & MSG_PEEK) == 0) { 1610 KASSERT(m->m_nextpkt == nextrecord, 1611 ("soreceive: post-control, nextrecord !sync")); 1612 if (nextrecord == NULL) { 1613 KASSERT(so->so_rcv.sb_mb == m, 1614 ("soreceive: post-control, sb_mb!=m")); 1615 KASSERT(so->so_rcv.sb_lastrecord == m, 1616 ("soreceive: post-control, lastrecord!=m")); 1617 } 1618 } 1619 type = m->m_type; 1620 if (type == MT_OOBDATA) 1621 flags |= MSG_OOB; 1622 } else { 1623 if ((flags & MSG_PEEK) == 0) { 1624 KASSERT(so->so_rcv.sb_mb == nextrecord, 1625 ("soreceive: sb_mb != nextrecord")); 1626 if (so->so_rcv.sb_mb == NULL) { 1627 KASSERT(so->so_rcv.sb_lastrecord == NULL, 1628 ("soreceive: sb_lastercord != NULL")); 1629 } 1630 } 1631 } 1632 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1633 SBLASTRECORDCHK(&so->so_rcv); 1634 SBLASTMBUFCHK(&so->so_rcv); 1635 1636 /* 1637 * Now continue to read any data mbufs off of the head of the socket 1638 * buffer until the read request is satisfied. Note that 'type' is 1639 * used to store the type of any mbuf reads that have happened so far 1640 * such that soreceive() can stop reading if the type changes, which 1641 * causes soreceive() to return only one of regular data and inline 1642 * out-of-band data in a single socket receive operation. 1643 */ 1644 moff = 0; 1645 offset = 0; 1646 while (m != NULL && uio->uio_resid > 0 && error == 0) { 1647 /* 1648 * If the type of mbuf has changed since the last mbuf 1649 * examined ('type'), end the receive operation. 1650 */ 1651 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1652 if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) { 1653 if (type != m->m_type) 1654 break; 1655 } else if (type == MT_OOBDATA) 1656 break; 1657 else 1658 KASSERT(m->m_type == MT_DATA, 1659 ("m->m_type == %d", m->m_type)); 1660 so->so_rcv.sb_state &= ~SBS_RCVATMARK; 1661 len = uio->uio_resid; 1662 if (so->so_oobmark && len > so->so_oobmark - offset) 1663 len = so->so_oobmark - offset; 1664 if (len > m->m_len - moff) 1665 len = m->m_len - moff; 1666 /* 1667 * If mp is set, just pass back the mbufs. Otherwise copy 1668 * them out via the uio, then free. Sockbuf must be 1669 * consistent here (points to current mbuf, it points to next 1670 * record) when we drop priority; we must note any additions 1671 * to the sockbuf when we block interrupts again. 1672 */ 1673 if (mp == NULL) { 1674 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1675 SBLASTRECORDCHK(&so->so_rcv); 1676 SBLASTMBUFCHK(&so->so_rcv); 1677 SOCKBUF_UNLOCK(&so->so_rcv); 1678 error = uiomove(mtod(m, char *) + moff, (int)len, uio); 1679 SOCKBUF_LOCK(&so->so_rcv); 1680 if (error) { 1681 /* 1682 * The MT_SONAME mbuf has already been removed 1683 * from the record, so it is necessary to 1684 * remove the data mbufs, if any, to preserve 1685 * the invariant in the case of PR_ADDR that 1686 * requires MT_SONAME mbufs at the head of 1687 * each record. 1688 */ 1689 if (m && pr->pr_flags & PR_ATOMIC && 1690 ((flags & MSG_PEEK) == 0)) 1691 (void)sbdroprecord_locked(&so->so_rcv); 1692 SOCKBUF_UNLOCK(&so->so_rcv); 1693 goto release; 1694 } 1695 } else 1696 uio->uio_resid -= len; 1697 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1698 if (len == m->m_len - moff) { 1699 if (m->m_flags & M_EOR) 1700 flags |= MSG_EOR; 1701 if (flags & MSG_PEEK) { 1702 m = m->m_next; 1703 moff = 0; 1704 } else { 1705 nextrecord = m->m_nextpkt; 1706 sbfree(&so->so_rcv, m); 1707 if (mp != NULL) { 1708 m->m_nextpkt = NULL; 1709 *mp = m; 1710 mp = &m->m_next; 1711 so->so_rcv.sb_mb = m = m->m_next; 1712 *mp = NULL; 1713 } else { 1714 so->so_rcv.sb_mb = m_free(m); 1715 m = so->so_rcv.sb_mb; 1716 } 1717 sockbuf_pushsync(&so->so_rcv, nextrecord); 1718 SBLASTRECORDCHK(&so->so_rcv); 1719 SBLASTMBUFCHK(&so->so_rcv); 1720 } 1721 } else { 1722 if (flags & MSG_PEEK) 1723 moff += len; 1724 else { 1725 if (mp != NULL) { 1726 if (flags & MSG_DONTWAIT) { 1727 *mp = m_copym(m, 0, len, 1728 M_NOWAIT); 1729 if (*mp == NULL) { 1730 /* 1731 * m_copym() couldn't 1732 * allocate an mbuf. 1733 * Adjust uio_resid back 1734 * (it was adjusted 1735 * down by len bytes, 1736 * which we didn't end 1737 * up "copying" over). 1738 */ 1739 uio->uio_resid += len; 1740 break; 1741 } 1742 } else { 1743 SOCKBUF_UNLOCK(&so->so_rcv); 1744 *mp = m_copym(m, 0, len, 1745 M_WAITOK); 1746 SOCKBUF_LOCK(&so->so_rcv); 1747 } 1748 } 1749 m->m_data += len; 1750 m->m_len -= len; 1751 so->so_rcv.sb_cc -= len; 1752 } 1753 } 1754 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1755 if (so->so_oobmark) { 1756 if ((flags & MSG_PEEK) == 0) { 1757 so->so_oobmark -= len; 1758 if (so->so_oobmark == 0) { 1759 so->so_rcv.sb_state |= SBS_RCVATMARK; 1760 break; 1761 } 1762 } else { 1763 offset += len; 1764 if (offset == so->so_oobmark) 1765 break; 1766 } 1767 } 1768 if (flags & MSG_EOR) 1769 break; 1770 /* 1771 * If the MSG_WAITALL flag is set (for non-atomic socket), we 1772 * must not quit until "uio->uio_resid == 0" or an error 1773 * termination. If a signal/timeout occurs, return with a 1774 * short count but without error. Keep sockbuf locked 1775 * against other readers. 1776 */ 1777 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 1778 !sosendallatonce(so) && nextrecord == NULL) { 1779 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1780 if (so->so_error || 1781 so->so_rcv.sb_state & SBS_CANTRCVMORE) 1782 break; 1783 /* 1784 * Notify the protocol that some data has been 1785 * drained before blocking. 1786 */ 1787 if (pr->pr_flags & PR_WANTRCVD) { 1788 SOCKBUF_UNLOCK(&so->so_rcv); 1789 VNET_SO_ASSERT(so); 1790 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 1791 SOCKBUF_LOCK(&so->so_rcv); 1792 } 1793 SBLASTRECORDCHK(&so->so_rcv); 1794 SBLASTMBUFCHK(&so->so_rcv); 1795 /* 1796 * We could receive some data while was notifying 1797 * the protocol. Skip blocking in this case. 1798 */ 1799 if (so->so_rcv.sb_mb == NULL) { 1800 error = sbwait(&so->so_rcv); 1801 if (error) { 1802 SOCKBUF_UNLOCK(&so->so_rcv); 1803 goto release; 1804 } 1805 } 1806 m = so->so_rcv.sb_mb; 1807 if (m != NULL) 1808 nextrecord = m->m_nextpkt; 1809 } 1810 } 1811 1812 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1813 if (m != NULL && pr->pr_flags & PR_ATOMIC) { 1814 flags |= MSG_TRUNC; 1815 if ((flags & MSG_PEEK) == 0) 1816 (void) sbdroprecord_locked(&so->so_rcv); 1817 } 1818 if ((flags & MSG_PEEK) == 0) { 1819 if (m == NULL) { 1820 /* 1821 * First part is an inline SB_EMPTY_FIXUP(). Second 1822 * part makes sure sb_lastrecord is up-to-date if 1823 * there is still data in the socket buffer. 1824 */ 1825 so->so_rcv.sb_mb = nextrecord; 1826 if (so->so_rcv.sb_mb == NULL) { 1827 so->so_rcv.sb_mbtail = NULL; 1828 so->so_rcv.sb_lastrecord = NULL; 1829 } else if (nextrecord->m_nextpkt == NULL) 1830 so->so_rcv.sb_lastrecord = nextrecord; 1831 } 1832 SBLASTRECORDCHK(&so->so_rcv); 1833 SBLASTMBUFCHK(&so->so_rcv); 1834 /* 1835 * If soreceive() is being done from the socket callback, 1836 * then don't need to generate ACK to peer to update window, 1837 * since ACK will be generated on return to TCP. 1838 */ 1839 if (!(flags & MSG_SOCALLBCK) && 1840 (pr->pr_flags & PR_WANTRCVD)) { 1841 SOCKBUF_UNLOCK(&so->so_rcv); 1842 VNET_SO_ASSERT(so); 1843 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 1844 SOCKBUF_LOCK(&so->so_rcv); 1845 } 1846 } 1847 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1848 if (orig_resid == uio->uio_resid && orig_resid && 1849 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { 1850 SOCKBUF_UNLOCK(&so->so_rcv); 1851 goto restart; 1852 } 1853 SOCKBUF_UNLOCK(&so->so_rcv); 1854 1855 if (flagsp != NULL) 1856 *flagsp |= flags; 1857 release: 1858 sbunlock(&so->so_rcv); 1859 return (error); 1860 } 1861 1862 /* 1863 * Optimized version of soreceive() for stream (TCP) sockets. 1864 * XXXAO: (MSG_WAITALL | MSG_PEEK) isn't properly handled. 1865 */ 1866 int 1867 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio, 1868 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1869 { 1870 int len = 0, error = 0, flags, oresid; 1871 struct sockbuf *sb; 1872 struct mbuf *m, *n = NULL; 1873 1874 /* We only do stream sockets. */ 1875 if (so->so_type != SOCK_STREAM) 1876 return (EINVAL); 1877 if (psa != NULL) 1878 *psa = NULL; 1879 if (controlp != NULL) 1880 return (EINVAL); 1881 if (flagsp != NULL) 1882 flags = *flagsp &~ MSG_EOR; 1883 else 1884 flags = 0; 1885 if (flags & MSG_OOB) 1886 return (soreceive_rcvoob(so, uio, flags)); 1887 if (mp0 != NULL) 1888 *mp0 = NULL; 1889 1890 sb = &so->so_rcv; 1891 1892 /* Prevent other readers from entering the socket. */ 1893 error = sblock(sb, SBLOCKWAIT(flags)); 1894 if (error) 1895 goto out; 1896 SOCKBUF_LOCK(sb); 1897 1898 /* Easy one, no space to copyout anything. */ 1899 if (uio->uio_resid == 0) { 1900 error = EINVAL; 1901 goto out; 1902 } 1903 oresid = uio->uio_resid; 1904 1905 /* We will never ever get anything unless we are or were connected. */ 1906 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 1907 error = ENOTCONN; 1908 goto out; 1909 } 1910 1911 restart: 1912 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1913 1914 /* Abort if socket has reported problems. */ 1915 if (so->so_error) { 1916 if (sb->sb_cc > 0) 1917 goto deliver; 1918 if (oresid > uio->uio_resid) 1919 goto out; 1920 error = so->so_error; 1921 if (!(flags & MSG_PEEK)) 1922 so->so_error = 0; 1923 goto out; 1924 } 1925 1926 /* Door is closed. Deliver what is left, if any. */ 1927 if (sb->sb_state & SBS_CANTRCVMORE) { 1928 if (sb->sb_cc > 0) 1929 goto deliver; 1930 else 1931 goto out; 1932 } 1933 1934 /* Socket buffer is empty and we shall not block. */ 1935 if (sb->sb_cc == 0 && 1936 ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) { 1937 error = EAGAIN; 1938 goto out; 1939 } 1940 1941 /* Socket buffer got some data that we shall deliver now. */ 1942 if (sb->sb_cc > 0 && !(flags & MSG_WAITALL) && 1943 ((sb->sb_flags & SS_NBIO) || 1944 (flags & (MSG_DONTWAIT|MSG_NBIO)) || 1945 sb->sb_cc >= sb->sb_lowat || 1946 sb->sb_cc >= uio->uio_resid || 1947 sb->sb_cc >= sb->sb_hiwat) ) { 1948 goto deliver; 1949 } 1950 1951 /* On MSG_WAITALL we must wait until all data or error arrives. */ 1952 if ((flags & MSG_WAITALL) && 1953 (sb->sb_cc >= uio->uio_resid || sb->sb_cc >= sb->sb_hiwat)) 1954 goto deliver; 1955 1956 /* 1957 * Wait and block until (more) data comes in. 1958 * NB: Drops the sockbuf lock during wait. 1959 */ 1960 error = sbwait(sb); 1961 if (error) 1962 goto out; 1963 goto restart; 1964 1965 deliver: 1966 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1967 KASSERT(sb->sb_cc > 0, ("%s: sockbuf empty", __func__)); 1968 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__)); 1969 1970 /* Statistics. */ 1971 if (uio->uio_td) 1972 uio->uio_td->td_ru.ru_msgrcv++; 1973 1974 /* Fill uio until full or current end of socket buffer is reached. */ 1975 len = min(uio->uio_resid, sb->sb_cc); 1976 if (mp0 != NULL) { 1977 /* Dequeue as many mbufs as possible. */ 1978 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) { 1979 if (*mp0 == NULL) 1980 *mp0 = sb->sb_mb; 1981 else 1982 m_cat(*mp0, sb->sb_mb); 1983 for (m = sb->sb_mb; 1984 m != NULL && m->m_len <= len; 1985 m = m->m_next) { 1986 len -= m->m_len; 1987 uio->uio_resid -= m->m_len; 1988 sbfree(sb, m); 1989 n = m; 1990 } 1991 n->m_next = NULL; 1992 sb->sb_mb = m; 1993 sb->sb_lastrecord = sb->sb_mb; 1994 if (sb->sb_mb == NULL) 1995 SB_EMPTY_FIXUP(sb); 1996 } 1997 /* Copy the remainder. */ 1998 if (len > 0) { 1999 KASSERT(sb->sb_mb != NULL, 2000 ("%s: len > 0 && sb->sb_mb empty", __func__)); 2001 2002 m = m_copym(sb->sb_mb, 0, len, M_NOWAIT); 2003 if (m == NULL) 2004 len = 0; /* Don't flush data from sockbuf. */ 2005 else 2006 uio->uio_resid -= len; 2007 if (*mp0 != NULL) 2008 m_cat(*mp0, m); 2009 else 2010 *mp0 = m; 2011 if (*mp0 == NULL) { 2012 error = ENOBUFS; 2013 goto out; 2014 } 2015 } 2016 } else { 2017 /* NB: Must unlock socket buffer as uiomove may sleep. */ 2018 SOCKBUF_UNLOCK(sb); 2019 error = m_mbuftouio(uio, sb->sb_mb, len); 2020 SOCKBUF_LOCK(sb); 2021 if (error) 2022 goto out; 2023 } 2024 SBLASTRECORDCHK(sb); 2025 SBLASTMBUFCHK(sb); 2026 2027 /* 2028 * Remove the delivered data from the socket buffer unless we 2029 * were only peeking. 2030 */ 2031 if (!(flags & MSG_PEEK)) { 2032 if (len > 0) 2033 sbdrop_locked(sb, len); 2034 2035 /* Notify protocol that we drained some data. */ 2036 if ((so->so_proto->pr_flags & PR_WANTRCVD) && 2037 (((flags & MSG_WAITALL) && uio->uio_resid > 0) || 2038 !(flags & MSG_SOCALLBCK))) { 2039 SOCKBUF_UNLOCK(sb); 2040 VNET_SO_ASSERT(so); 2041 (*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags); 2042 SOCKBUF_LOCK(sb); 2043 } 2044 } 2045 2046 /* 2047 * For MSG_WAITALL we may have to loop again and wait for 2048 * more data to come in. 2049 */ 2050 if ((flags & MSG_WAITALL) && uio->uio_resid > 0) 2051 goto restart; 2052 out: 2053 SOCKBUF_LOCK_ASSERT(sb); 2054 SBLASTRECORDCHK(sb); 2055 SBLASTMBUFCHK(sb); 2056 SOCKBUF_UNLOCK(sb); 2057 sbunlock(sb); 2058 return (error); 2059 } 2060 2061 /* 2062 * Optimized version of soreceive() for simple datagram cases from userspace. 2063 * Unlike in the stream case, we're able to drop a datagram if copyout() 2064 * fails, and because we handle datagrams atomically, we don't need to use a 2065 * sleep lock to prevent I/O interlacing. 2066 */ 2067 int 2068 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio, 2069 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2070 { 2071 struct mbuf *m, *m2; 2072 int flags, error; 2073 ssize_t len; 2074 struct protosw *pr = so->so_proto; 2075 struct mbuf *nextrecord; 2076 2077 if (psa != NULL) 2078 *psa = NULL; 2079 if (controlp != NULL) 2080 *controlp = NULL; 2081 if (flagsp != NULL) 2082 flags = *flagsp &~ MSG_EOR; 2083 else 2084 flags = 0; 2085 2086 /* 2087 * For any complicated cases, fall back to the full 2088 * soreceive_generic(). 2089 */ 2090 if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB)) 2091 return (soreceive_generic(so, psa, uio, mp0, controlp, 2092 flagsp)); 2093 2094 /* 2095 * Enforce restrictions on use. 2096 */ 2097 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0, 2098 ("soreceive_dgram: wantrcvd")); 2099 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic")); 2100 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0, 2101 ("soreceive_dgram: SBS_RCVATMARK")); 2102 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0, 2103 ("soreceive_dgram: P_CONNREQUIRED")); 2104 2105 /* 2106 * Loop blocking while waiting for a datagram. 2107 */ 2108 SOCKBUF_LOCK(&so->so_rcv); 2109 while ((m = so->so_rcv.sb_mb) == NULL) { 2110 KASSERT(so->so_rcv.sb_cc == 0, 2111 ("soreceive_dgram: sb_mb NULL but sb_cc %u", 2112 so->so_rcv.sb_cc)); 2113 if (so->so_error) { 2114 error = so->so_error; 2115 so->so_error = 0; 2116 SOCKBUF_UNLOCK(&so->so_rcv); 2117 return (error); 2118 } 2119 if (so->so_rcv.sb_state & SBS_CANTRCVMORE || 2120 uio->uio_resid == 0) { 2121 SOCKBUF_UNLOCK(&so->so_rcv); 2122 return (0); 2123 } 2124 if ((so->so_state & SS_NBIO) || 2125 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2126 SOCKBUF_UNLOCK(&so->so_rcv); 2127 return (EWOULDBLOCK); 2128 } 2129 SBLASTRECORDCHK(&so->so_rcv); 2130 SBLASTMBUFCHK(&so->so_rcv); 2131 error = sbwait(&so->so_rcv); 2132 if (error) { 2133 SOCKBUF_UNLOCK(&so->so_rcv); 2134 return (error); 2135 } 2136 } 2137 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2138 2139 if (uio->uio_td) 2140 uio->uio_td->td_ru.ru_msgrcv++; 2141 SBLASTRECORDCHK(&so->so_rcv); 2142 SBLASTMBUFCHK(&so->so_rcv); 2143 nextrecord = m->m_nextpkt; 2144 if (nextrecord == NULL) { 2145 KASSERT(so->so_rcv.sb_lastrecord == m, 2146 ("soreceive_dgram: lastrecord != m")); 2147 } 2148 2149 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord, 2150 ("soreceive_dgram: m_nextpkt != nextrecord")); 2151 2152 /* 2153 * Pull 'm' and its chain off the front of the packet queue. 2154 */ 2155 so->so_rcv.sb_mb = NULL; 2156 sockbuf_pushsync(&so->so_rcv, nextrecord); 2157 2158 /* 2159 * Walk 'm's chain and free that many bytes from the socket buffer. 2160 */ 2161 for (m2 = m; m2 != NULL; m2 = m2->m_next) 2162 sbfree(&so->so_rcv, m2); 2163 2164 /* 2165 * Do a few last checks before we let go of the lock. 2166 */ 2167 SBLASTRECORDCHK(&so->so_rcv); 2168 SBLASTMBUFCHK(&so->so_rcv); 2169 SOCKBUF_UNLOCK(&so->so_rcv); 2170 2171 if (pr->pr_flags & PR_ADDR) { 2172 KASSERT(m->m_type == MT_SONAME, 2173 ("m->m_type == %d", m->m_type)); 2174 if (psa != NULL) 2175 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2176 M_NOWAIT); 2177 m = m_free(m); 2178 } 2179 if (m == NULL) { 2180 /* XXXRW: Can this happen? */ 2181 return (0); 2182 } 2183 2184 /* 2185 * Packet to copyout() is now in 'm' and it is disconnected from the 2186 * queue. 2187 * 2188 * Process one or more MT_CONTROL mbufs present before any data mbufs 2189 * in the first mbuf chain on the socket buffer. We call into the 2190 * protocol to perform externalization (or freeing if controlp == 2191 * NULL). 2192 */ 2193 if (m->m_type == MT_CONTROL) { 2194 struct mbuf *cm = NULL, *cmn; 2195 struct mbuf **cme = &cm; 2196 2197 do { 2198 m2 = m->m_next; 2199 m->m_next = NULL; 2200 *cme = m; 2201 cme = &(*cme)->m_next; 2202 m = m2; 2203 } while (m != NULL && m->m_type == MT_CONTROL); 2204 while (cm != NULL) { 2205 cmn = cm->m_next; 2206 cm->m_next = NULL; 2207 if (pr->pr_domain->dom_externalize != NULL) { 2208 error = (*pr->pr_domain->dom_externalize) 2209 (cm, controlp, flags); 2210 } else if (controlp != NULL) 2211 *controlp = cm; 2212 else 2213 m_freem(cm); 2214 if (controlp != NULL) { 2215 while (*controlp != NULL) 2216 controlp = &(*controlp)->m_next; 2217 } 2218 cm = cmn; 2219 } 2220 } 2221 KASSERT(m->m_type == MT_DATA, ("soreceive_dgram: !data")); 2222 2223 while (m != NULL && uio->uio_resid > 0) { 2224 len = uio->uio_resid; 2225 if (len > m->m_len) 2226 len = m->m_len; 2227 error = uiomove(mtod(m, char *), (int)len, uio); 2228 if (error) { 2229 m_freem(m); 2230 return (error); 2231 } 2232 if (len == m->m_len) 2233 m = m_free(m); 2234 else { 2235 m->m_data += len; 2236 m->m_len -= len; 2237 } 2238 } 2239 if (m != NULL) 2240 flags |= MSG_TRUNC; 2241 m_freem(m); 2242 if (flagsp != NULL) 2243 *flagsp |= flags; 2244 return (0); 2245 } 2246 2247 int 2248 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, 2249 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2250 { 2251 int error; 2252 2253 CURVNET_SET(so->so_vnet); 2254 error = (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, mp0, 2255 controlp, flagsp)); 2256 CURVNET_RESTORE(); 2257 return (error); 2258 } 2259 2260 int 2261 soshutdown(struct socket *so, int how) 2262 { 2263 struct protosw *pr = so->so_proto; 2264 int error; 2265 2266 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 2267 return (EINVAL); 2268 2269 CURVNET_SET(so->so_vnet); 2270 if (pr->pr_usrreqs->pru_flush != NULL) 2271 (*pr->pr_usrreqs->pru_flush)(so, how); 2272 if (how != SHUT_WR) 2273 sorflush(so); 2274 if (how != SHUT_RD) { 2275 error = (*pr->pr_usrreqs->pru_shutdown)(so); 2276 wakeup(&so->so_timeo); 2277 CURVNET_RESTORE(); 2278 return (error); 2279 } 2280 wakeup(&so->so_timeo); 2281 CURVNET_RESTORE(); 2282 return (0); 2283 } 2284 2285 void 2286 sorflush(struct socket *so) 2287 { 2288 struct sockbuf *sb = &so->so_rcv; 2289 struct protosw *pr = so->so_proto; 2290 struct sockbuf asb; 2291 2292 VNET_SO_ASSERT(so); 2293 2294 /* 2295 * In order to avoid calling dom_dispose with the socket buffer mutex 2296 * held, and in order to generally avoid holding the lock for a long 2297 * time, we make a copy of the socket buffer and clear the original 2298 * (except locks, state). The new socket buffer copy won't have 2299 * initialized locks so we can only call routines that won't use or 2300 * assert those locks. 2301 * 2302 * Dislodge threads currently blocked in receive and wait to acquire 2303 * a lock against other simultaneous readers before clearing the 2304 * socket buffer. Don't let our acquire be interrupted by a signal 2305 * despite any existing socket disposition on interruptable waiting. 2306 */ 2307 socantrcvmore(so); 2308 (void) sblock(sb, SBL_WAIT | SBL_NOINTR); 2309 2310 /* 2311 * Invalidate/clear most of the sockbuf structure, but leave selinfo 2312 * and mutex data unchanged. 2313 */ 2314 SOCKBUF_LOCK(sb); 2315 bzero(&asb, offsetof(struct sockbuf, sb_startzero)); 2316 bcopy(&sb->sb_startzero, &asb.sb_startzero, 2317 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 2318 bzero(&sb->sb_startzero, 2319 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 2320 SOCKBUF_UNLOCK(sb); 2321 sbunlock(sb); 2322 2323 /* 2324 * Dispose of special rights and flush the socket buffer. Don't call 2325 * any unsafe routines (that rely on locks being initialized) on asb. 2326 */ 2327 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 2328 (*pr->pr_domain->dom_dispose)(asb.sb_mb); 2329 sbrelease_internal(&asb, so); 2330 } 2331 2332 /* 2333 * Perhaps this routine, and sooptcopyout(), below, ought to come in an 2334 * additional variant to handle the case where the option value needs to be 2335 * some kind of integer, but not a specific size. In addition to their use 2336 * here, these functions are also called by the protocol-level pr_ctloutput() 2337 * routines. 2338 */ 2339 int 2340 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen) 2341 { 2342 size_t valsize; 2343 2344 /* 2345 * If the user gives us more than we wanted, we ignore it, but if we 2346 * don't get the minimum length the caller wants, we return EINVAL. 2347 * On success, sopt->sopt_valsize is set to however much we actually 2348 * retrieved. 2349 */ 2350 if ((valsize = sopt->sopt_valsize) < minlen) 2351 return EINVAL; 2352 if (valsize > len) 2353 sopt->sopt_valsize = valsize = len; 2354 2355 if (sopt->sopt_td != NULL) 2356 return (copyin(sopt->sopt_val, buf, valsize)); 2357 2358 bcopy(sopt->sopt_val, buf, valsize); 2359 return (0); 2360 } 2361 2362 /* 2363 * Kernel version of setsockopt(2). 2364 * 2365 * XXX: optlen is size_t, not socklen_t 2366 */ 2367 int 2368 so_setsockopt(struct socket *so, int level, int optname, void *optval, 2369 size_t optlen) 2370 { 2371 struct sockopt sopt; 2372 2373 sopt.sopt_level = level; 2374 sopt.sopt_name = optname; 2375 sopt.sopt_dir = SOPT_SET; 2376 sopt.sopt_val = optval; 2377 sopt.sopt_valsize = optlen; 2378 sopt.sopt_td = NULL; 2379 return (sosetopt(so, &sopt)); 2380 } 2381 2382 int 2383 sosetopt(struct socket *so, struct sockopt *sopt) 2384 { 2385 int error, optval; 2386 struct linger l; 2387 struct timeval tv; 2388 sbintime_t val; 2389 uint32_t val32; 2390 #ifdef MAC 2391 struct mac extmac; 2392 #endif 2393 2394 CURVNET_SET(so->so_vnet); 2395 error = 0; 2396 if (sopt->sopt_level != SOL_SOCKET) { 2397 if (so->so_proto->pr_ctloutput != NULL) { 2398 error = (*so->so_proto->pr_ctloutput)(so, sopt); 2399 CURVNET_RESTORE(); 2400 return (error); 2401 } 2402 error = ENOPROTOOPT; 2403 } else { 2404 switch (sopt->sopt_name) { 2405 #ifdef INET 2406 case SO_ACCEPTFILTER: 2407 error = do_setopt_accept_filter(so, sopt); 2408 if (error) 2409 goto bad; 2410 break; 2411 #endif 2412 case SO_LINGER: 2413 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 2414 if (error) 2415 goto bad; 2416 2417 SOCK_LOCK(so); 2418 so->so_linger = l.l_linger; 2419 if (l.l_onoff) 2420 so->so_options |= SO_LINGER; 2421 else 2422 so->so_options &= ~SO_LINGER; 2423 SOCK_UNLOCK(so); 2424 break; 2425 2426 case SO_DEBUG: 2427 case SO_KEEPALIVE: 2428 case SO_DONTROUTE: 2429 case SO_USELOOPBACK: 2430 case SO_BROADCAST: 2431 case SO_REUSEADDR: 2432 case SO_REUSEPORT: 2433 case SO_OOBINLINE: 2434 case SO_TIMESTAMP: 2435 case SO_BINTIME: 2436 case SO_NOSIGPIPE: 2437 case SO_NO_DDP: 2438 case SO_NO_OFFLOAD: 2439 error = sooptcopyin(sopt, &optval, sizeof optval, 2440 sizeof optval); 2441 if (error) 2442 goto bad; 2443 SOCK_LOCK(so); 2444 if (optval) 2445 so->so_options |= sopt->sopt_name; 2446 else 2447 so->so_options &= ~sopt->sopt_name; 2448 SOCK_UNLOCK(so); 2449 break; 2450 2451 case SO_SETFIB: 2452 error = sooptcopyin(sopt, &optval, sizeof optval, 2453 sizeof optval); 2454 if (error) 2455 goto bad; 2456 2457 if (optval < 0 || optval >= rt_numfibs) { 2458 error = EINVAL; 2459 goto bad; 2460 } 2461 if (((so->so_proto->pr_domain->dom_family == PF_INET) || 2462 (so->so_proto->pr_domain->dom_family == PF_INET6) || 2463 (so->so_proto->pr_domain->dom_family == PF_ROUTE))) 2464 so->so_fibnum = optval; 2465 else 2466 so->so_fibnum = 0; 2467 break; 2468 2469 case SO_USER_COOKIE: 2470 error = sooptcopyin(sopt, &val32, sizeof val32, 2471 sizeof val32); 2472 if (error) 2473 goto bad; 2474 so->so_user_cookie = val32; 2475 break; 2476 2477 case SO_SNDBUF: 2478 case SO_RCVBUF: 2479 case SO_SNDLOWAT: 2480 case SO_RCVLOWAT: 2481 error = sooptcopyin(sopt, &optval, sizeof optval, 2482 sizeof optval); 2483 if (error) 2484 goto bad; 2485 2486 /* 2487 * Values < 1 make no sense for any of these options, 2488 * so disallow them. 2489 */ 2490 if (optval < 1) { 2491 error = EINVAL; 2492 goto bad; 2493 } 2494 2495 switch (sopt->sopt_name) { 2496 case SO_SNDBUF: 2497 case SO_RCVBUF: 2498 if (sbreserve(sopt->sopt_name == SO_SNDBUF ? 2499 &so->so_snd : &so->so_rcv, (u_long)optval, 2500 so, curthread) == 0) { 2501 error = ENOBUFS; 2502 goto bad; 2503 } 2504 (sopt->sopt_name == SO_SNDBUF ? &so->so_snd : 2505 &so->so_rcv)->sb_flags &= ~SB_AUTOSIZE; 2506 break; 2507 2508 /* 2509 * Make sure the low-water is never greater than the 2510 * high-water. 2511 */ 2512 case SO_SNDLOWAT: 2513 SOCKBUF_LOCK(&so->so_snd); 2514 so->so_snd.sb_lowat = 2515 (optval > so->so_snd.sb_hiwat) ? 2516 so->so_snd.sb_hiwat : optval; 2517 SOCKBUF_UNLOCK(&so->so_snd); 2518 break; 2519 case SO_RCVLOWAT: 2520 SOCKBUF_LOCK(&so->so_rcv); 2521 so->so_rcv.sb_lowat = 2522 (optval > so->so_rcv.sb_hiwat) ? 2523 so->so_rcv.sb_hiwat : optval; 2524 SOCKBUF_UNLOCK(&so->so_rcv); 2525 break; 2526 } 2527 break; 2528 2529 case SO_SNDTIMEO: 2530 case SO_RCVTIMEO: 2531 #ifdef COMPAT_FREEBSD32 2532 if (SV_CURPROC_FLAG(SV_ILP32)) { 2533 struct timeval32 tv32; 2534 2535 error = sooptcopyin(sopt, &tv32, sizeof tv32, 2536 sizeof tv32); 2537 CP(tv32, tv, tv_sec); 2538 CP(tv32, tv, tv_usec); 2539 } else 2540 #endif 2541 error = sooptcopyin(sopt, &tv, sizeof tv, 2542 sizeof tv); 2543 if (error) 2544 goto bad; 2545 if (tv.tv_sec < 0 || tv.tv_usec < 0 || 2546 tv.tv_usec >= 1000000) { 2547 error = EDOM; 2548 goto bad; 2549 } 2550 val = tvtosbt(tv); 2551 2552 switch (sopt->sopt_name) { 2553 case SO_SNDTIMEO: 2554 so->so_snd.sb_timeo = val; 2555 break; 2556 case SO_RCVTIMEO: 2557 so->so_rcv.sb_timeo = val; 2558 break; 2559 } 2560 break; 2561 2562 case SO_LABEL: 2563 #ifdef MAC 2564 error = sooptcopyin(sopt, &extmac, sizeof extmac, 2565 sizeof extmac); 2566 if (error) 2567 goto bad; 2568 error = mac_setsockopt_label(sopt->sopt_td->td_ucred, 2569 so, &extmac); 2570 #else 2571 error = EOPNOTSUPP; 2572 #endif 2573 break; 2574 2575 default: 2576 error = ENOPROTOOPT; 2577 break; 2578 } 2579 if (error == 0 && so->so_proto->pr_ctloutput != NULL) 2580 (void)(*so->so_proto->pr_ctloutput)(so, sopt); 2581 } 2582 bad: 2583 CURVNET_RESTORE(); 2584 return (error); 2585 } 2586 2587 /* 2588 * Helper routine for getsockopt. 2589 */ 2590 int 2591 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 2592 { 2593 int error; 2594 size_t valsize; 2595 2596 error = 0; 2597 2598 /* 2599 * Documented get behavior is that we always return a value, possibly 2600 * truncated to fit in the user's buffer. Traditional behavior is 2601 * that we always tell the user precisely how much we copied, rather 2602 * than something useful like the total amount we had available for 2603 * her. Note that this interface is not idempotent; the entire 2604 * answer must generated ahead of time. 2605 */ 2606 valsize = min(len, sopt->sopt_valsize); 2607 sopt->sopt_valsize = valsize; 2608 if (sopt->sopt_val != NULL) { 2609 if (sopt->sopt_td != NULL) 2610 error = copyout(buf, sopt->sopt_val, valsize); 2611 else 2612 bcopy(buf, sopt->sopt_val, valsize); 2613 } 2614 return (error); 2615 } 2616 2617 int 2618 sogetopt(struct socket *so, struct sockopt *sopt) 2619 { 2620 int error, optval; 2621 struct linger l; 2622 struct timeval tv; 2623 #ifdef MAC 2624 struct mac extmac; 2625 #endif 2626 2627 CURVNET_SET(so->so_vnet); 2628 error = 0; 2629 if (sopt->sopt_level != SOL_SOCKET) { 2630 if (so->so_proto->pr_ctloutput != NULL) 2631 error = (*so->so_proto->pr_ctloutput)(so, sopt); 2632 else 2633 error = ENOPROTOOPT; 2634 CURVNET_RESTORE(); 2635 return (error); 2636 } else { 2637 switch (sopt->sopt_name) { 2638 #ifdef INET 2639 case SO_ACCEPTFILTER: 2640 error = do_getopt_accept_filter(so, sopt); 2641 break; 2642 #endif 2643 case SO_LINGER: 2644 SOCK_LOCK(so); 2645 l.l_onoff = so->so_options & SO_LINGER; 2646 l.l_linger = so->so_linger; 2647 SOCK_UNLOCK(so); 2648 error = sooptcopyout(sopt, &l, sizeof l); 2649 break; 2650 2651 case SO_USELOOPBACK: 2652 case SO_DONTROUTE: 2653 case SO_DEBUG: 2654 case SO_KEEPALIVE: 2655 case SO_REUSEADDR: 2656 case SO_REUSEPORT: 2657 case SO_BROADCAST: 2658 case SO_OOBINLINE: 2659 case SO_ACCEPTCONN: 2660 case SO_TIMESTAMP: 2661 case SO_BINTIME: 2662 case SO_NOSIGPIPE: 2663 optval = so->so_options & sopt->sopt_name; 2664 integer: 2665 error = sooptcopyout(sopt, &optval, sizeof optval); 2666 break; 2667 2668 case SO_TYPE: 2669 optval = so->so_type; 2670 goto integer; 2671 2672 case SO_PROTOCOL: 2673 optval = so->so_proto->pr_protocol; 2674 goto integer; 2675 2676 case SO_ERROR: 2677 SOCK_LOCK(so); 2678 optval = so->so_error; 2679 so->so_error = 0; 2680 SOCK_UNLOCK(so); 2681 goto integer; 2682 2683 case SO_SNDBUF: 2684 optval = so->so_snd.sb_hiwat; 2685 goto integer; 2686 2687 case SO_RCVBUF: 2688 optval = so->so_rcv.sb_hiwat; 2689 goto integer; 2690 2691 case SO_SNDLOWAT: 2692 optval = so->so_snd.sb_lowat; 2693 goto integer; 2694 2695 case SO_RCVLOWAT: 2696 optval = so->so_rcv.sb_lowat; 2697 goto integer; 2698 2699 case SO_SNDTIMEO: 2700 case SO_RCVTIMEO: 2701 optval = (sopt->sopt_name == SO_SNDTIMEO ? 2702 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 2703 2704 tv = sbttotv(optval); 2705 #ifdef COMPAT_FREEBSD32 2706 if (SV_CURPROC_FLAG(SV_ILP32)) { 2707 struct timeval32 tv32; 2708 2709 CP(tv, tv32, tv_sec); 2710 CP(tv, tv32, tv_usec); 2711 error = sooptcopyout(sopt, &tv32, sizeof tv32); 2712 } else 2713 #endif 2714 error = sooptcopyout(sopt, &tv, sizeof tv); 2715 break; 2716 2717 case SO_LABEL: 2718 #ifdef MAC 2719 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 2720 sizeof(extmac)); 2721 if (error) 2722 goto bad; 2723 error = mac_getsockopt_label(sopt->sopt_td->td_ucred, 2724 so, &extmac); 2725 if (error) 2726 goto bad; 2727 error = sooptcopyout(sopt, &extmac, sizeof extmac); 2728 #else 2729 error = EOPNOTSUPP; 2730 #endif 2731 break; 2732 2733 case SO_PEERLABEL: 2734 #ifdef MAC 2735 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 2736 sizeof(extmac)); 2737 if (error) 2738 goto bad; 2739 error = mac_getsockopt_peerlabel( 2740 sopt->sopt_td->td_ucred, so, &extmac); 2741 if (error) 2742 goto bad; 2743 error = sooptcopyout(sopt, &extmac, sizeof extmac); 2744 #else 2745 error = EOPNOTSUPP; 2746 #endif 2747 break; 2748 2749 case SO_LISTENQLIMIT: 2750 optval = so->so_qlimit; 2751 goto integer; 2752 2753 case SO_LISTENQLEN: 2754 optval = so->so_qlen; 2755 goto integer; 2756 2757 case SO_LISTENINCQLEN: 2758 optval = so->so_incqlen; 2759 goto integer; 2760 2761 default: 2762 error = ENOPROTOOPT; 2763 break; 2764 } 2765 } 2766 #ifdef MAC 2767 bad: 2768 #endif 2769 CURVNET_RESTORE(); 2770 return (error); 2771 } 2772 2773 int 2774 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 2775 { 2776 struct mbuf *m, *m_prev; 2777 int sopt_size = sopt->sopt_valsize; 2778 2779 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 2780 if (m == NULL) 2781 return ENOBUFS; 2782 if (sopt_size > MLEN) { 2783 MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT); 2784 if ((m->m_flags & M_EXT) == 0) { 2785 m_free(m); 2786 return ENOBUFS; 2787 } 2788 m->m_len = min(MCLBYTES, sopt_size); 2789 } else { 2790 m->m_len = min(MLEN, sopt_size); 2791 } 2792 sopt_size -= m->m_len; 2793 *mp = m; 2794 m_prev = m; 2795 2796 while (sopt_size) { 2797 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 2798 if (m == NULL) { 2799 m_freem(*mp); 2800 return ENOBUFS; 2801 } 2802 if (sopt_size > MLEN) { 2803 MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK : 2804 M_NOWAIT); 2805 if ((m->m_flags & M_EXT) == 0) { 2806 m_freem(m); 2807 m_freem(*mp); 2808 return ENOBUFS; 2809 } 2810 m->m_len = min(MCLBYTES, sopt_size); 2811 } else { 2812 m->m_len = min(MLEN, sopt_size); 2813 } 2814 sopt_size -= m->m_len; 2815 m_prev->m_next = m; 2816 m_prev = m; 2817 } 2818 return (0); 2819 } 2820 2821 int 2822 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 2823 { 2824 struct mbuf *m0 = m; 2825 2826 if (sopt->sopt_val == NULL) 2827 return (0); 2828 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 2829 if (sopt->sopt_td != NULL) { 2830 int error; 2831 2832 error = copyin(sopt->sopt_val, mtod(m, char *), 2833 m->m_len); 2834 if (error != 0) { 2835 m_freem(m0); 2836 return(error); 2837 } 2838 } else 2839 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 2840 sopt->sopt_valsize -= m->m_len; 2841 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 2842 m = m->m_next; 2843 } 2844 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 2845 panic("ip6_sooptmcopyin"); 2846 return (0); 2847 } 2848 2849 int 2850 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 2851 { 2852 struct mbuf *m0 = m; 2853 size_t valsize = 0; 2854 2855 if (sopt->sopt_val == NULL) 2856 return (0); 2857 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 2858 if (sopt->sopt_td != NULL) { 2859 int error; 2860 2861 error = copyout(mtod(m, char *), sopt->sopt_val, 2862 m->m_len); 2863 if (error != 0) { 2864 m_freem(m0); 2865 return(error); 2866 } 2867 } else 2868 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 2869 sopt->sopt_valsize -= m->m_len; 2870 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 2871 valsize += m->m_len; 2872 m = m->m_next; 2873 } 2874 if (m != NULL) { 2875 /* enough soopt buffer should be given from user-land */ 2876 m_freem(m0); 2877 return(EINVAL); 2878 } 2879 sopt->sopt_valsize = valsize; 2880 return (0); 2881 } 2882 2883 /* 2884 * sohasoutofband(): protocol notifies socket layer of the arrival of new 2885 * out-of-band data, which will then notify socket consumers. 2886 */ 2887 void 2888 sohasoutofband(struct socket *so) 2889 { 2890 2891 if (so->so_sigio != NULL) 2892 pgsigio(&so->so_sigio, SIGURG, 0); 2893 selwakeuppri(&so->so_rcv.sb_sel, PSOCK); 2894 } 2895 2896 int 2897 sopoll(struct socket *so, int events, struct ucred *active_cred, 2898 struct thread *td) 2899 { 2900 2901 /* 2902 * We do not need to set or assert curvnet as long as everyone uses 2903 * sopoll_generic(). 2904 */ 2905 return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred, 2906 td)); 2907 } 2908 2909 int 2910 sopoll_generic(struct socket *so, int events, struct ucred *active_cred, 2911 struct thread *td) 2912 { 2913 int revents = 0; 2914 2915 SOCKBUF_LOCK(&so->so_snd); 2916 SOCKBUF_LOCK(&so->so_rcv); 2917 if (events & (POLLIN | POLLRDNORM)) 2918 if (soreadabledata(so)) 2919 revents |= events & (POLLIN | POLLRDNORM); 2920 2921 if (events & (POLLOUT | POLLWRNORM)) 2922 if (sowriteable(so)) 2923 revents |= events & (POLLOUT | POLLWRNORM); 2924 2925 if (events & (POLLPRI | POLLRDBAND)) 2926 if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK)) 2927 revents |= events & (POLLPRI | POLLRDBAND); 2928 2929 if ((events & POLLINIGNEOF) == 0) { 2930 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 2931 revents |= events & (POLLIN | POLLRDNORM); 2932 if (so->so_snd.sb_state & SBS_CANTSENDMORE) 2933 revents |= POLLHUP; 2934 } 2935 } 2936 2937 if (revents == 0) { 2938 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) { 2939 selrecord(td, &so->so_rcv.sb_sel); 2940 so->so_rcv.sb_flags |= SB_SEL; 2941 } 2942 2943 if (events & (POLLOUT | POLLWRNORM)) { 2944 selrecord(td, &so->so_snd.sb_sel); 2945 so->so_snd.sb_flags |= SB_SEL; 2946 } 2947 } 2948 2949 SOCKBUF_UNLOCK(&so->so_rcv); 2950 SOCKBUF_UNLOCK(&so->so_snd); 2951 return (revents); 2952 } 2953 2954 int 2955 soo_kqfilter(struct file *fp, struct knote *kn) 2956 { 2957 struct socket *so = kn->kn_fp->f_data; 2958 struct sockbuf *sb; 2959 2960 switch (kn->kn_filter) { 2961 case EVFILT_READ: 2962 if (so->so_options & SO_ACCEPTCONN) 2963 kn->kn_fop = &solisten_filtops; 2964 else 2965 kn->kn_fop = &soread_filtops; 2966 sb = &so->so_rcv; 2967 break; 2968 case EVFILT_WRITE: 2969 kn->kn_fop = &sowrite_filtops; 2970 sb = &so->so_snd; 2971 break; 2972 default: 2973 return (EINVAL); 2974 } 2975 2976 SOCKBUF_LOCK(sb); 2977 knlist_add(&sb->sb_sel.si_note, kn, 1); 2978 sb->sb_flags |= SB_KNOTE; 2979 SOCKBUF_UNLOCK(sb); 2980 return (0); 2981 } 2982 2983 /* 2984 * Some routines that return EOPNOTSUPP for entry points that are not 2985 * supported by a protocol. Fill in as needed. 2986 */ 2987 int 2988 pru_accept_notsupp(struct socket *so, struct sockaddr **nam) 2989 { 2990 2991 return EOPNOTSUPP; 2992 } 2993 2994 int 2995 pru_attach_notsupp(struct socket *so, int proto, struct thread *td) 2996 { 2997 2998 return EOPNOTSUPP; 2999 } 3000 3001 int 3002 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 3003 { 3004 3005 return EOPNOTSUPP; 3006 } 3007 3008 int 3009 pru_bindat_notsupp(int fd, struct socket *so, struct sockaddr *nam, 3010 struct thread *td) 3011 { 3012 3013 return EOPNOTSUPP; 3014 } 3015 3016 int 3017 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 3018 { 3019 3020 return EOPNOTSUPP; 3021 } 3022 3023 int 3024 pru_connectat_notsupp(int fd, struct socket *so, struct sockaddr *nam, 3025 struct thread *td) 3026 { 3027 3028 return EOPNOTSUPP; 3029 } 3030 3031 int 3032 pru_connect2_notsupp(struct socket *so1, struct socket *so2) 3033 { 3034 3035 return EOPNOTSUPP; 3036 } 3037 3038 int 3039 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, 3040 struct ifnet *ifp, struct thread *td) 3041 { 3042 3043 return EOPNOTSUPP; 3044 } 3045 3046 int 3047 pru_disconnect_notsupp(struct socket *so) 3048 { 3049 3050 return EOPNOTSUPP; 3051 } 3052 3053 int 3054 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td) 3055 { 3056 3057 return EOPNOTSUPP; 3058 } 3059 3060 int 3061 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam) 3062 { 3063 3064 return EOPNOTSUPP; 3065 } 3066 3067 int 3068 pru_rcvd_notsupp(struct socket *so, int flags) 3069 { 3070 3071 return EOPNOTSUPP; 3072 } 3073 3074 int 3075 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) 3076 { 3077 3078 return EOPNOTSUPP; 3079 } 3080 3081 int 3082 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m, 3083 struct sockaddr *addr, struct mbuf *control, struct thread *td) 3084 { 3085 3086 return EOPNOTSUPP; 3087 } 3088 3089 /* 3090 * This isn't really a ``null'' operation, but it's the default one and 3091 * doesn't do anything destructive. 3092 */ 3093 int 3094 pru_sense_null(struct socket *so, struct stat *sb) 3095 { 3096 3097 sb->st_blksize = so->so_snd.sb_hiwat; 3098 return 0; 3099 } 3100 3101 int 3102 pru_shutdown_notsupp(struct socket *so) 3103 { 3104 3105 return EOPNOTSUPP; 3106 } 3107 3108 int 3109 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam) 3110 { 3111 3112 return EOPNOTSUPP; 3113 } 3114 3115 int 3116 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio, 3117 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 3118 { 3119 3120 return EOPNOTSUPP; 3121 } 3122 3123 int 3124 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr, 3125 struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 3126 { 3127 3128 return EOPNOTSUPP; 3129 } 3130 3131 int 3132 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred, 3133 struct thread *td) 3134 { 3135 3136 return EOPNOTSUPP; 3137 } 3138 3139 static void 3140 filt_sordetach(struct knote *kn) 3141 { 3142 struct socket *so = kn->kn_fp->f_data; 3143 3144 SOCKBUF_LOCK(&so->so_rcv); 3145 knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1); 3146 if (knlist_empty(&so->so_rcv.sb_sel.si_note)) 3147 so->so_rcv.sb_flags &= ~SB_KNOTE; 3148 SOCKBUF_UNLOCK(&so->so_rcv); 3149 } 3150 3151 /*ARGSUSED*/ 3152 static int 3153 filt_soread(struct knote *kn, long hint) 3154 { 3155 struct socket *so; 3156 3157 so = kn->kn_fp->f_data; 3158 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 3159 3160 kn->kn_data = so->so_rcv.sb_cc - so->so_rcv.sb_ctl; 3161 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3162 kn->kn_flags |= EV_EOF; 3163 kn->kn_fflags = so->so_error; 3164 return (1); 3165 } else if (so->so_error) /* temporary udp error */ 3166 return (1); 3167 else if (kn->kn_sfflags & NOTE_LOWAT) 3168 return (kn->kn_data >= kn->kn_sdata); 3169 else 3170 return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat); 3171 } 3172 3173 static void 3174 filt_sowdetach(struct knote *kn) 3175 { 3176 struct socket *so = kn->kn_fp->f_data; 3177 3178 SOCKBUF_LOCK(&so->so_snd); 3179 knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1); 3180 if (knlist_empty(&so->so_snd.sb_sel.si_note)) 3181 so->so_snd.sb_flags &= ~SB_KNOTE; 3182 SOCKBUF_UNLOCK(&so->so_snd); 3183 } 3184 3185 /*ARGSUSED*/ 3186 static int 3187 filt_sowrite(struct knote *kn, long hint) 3188 { 3189 struct socket *so; 3190 3191 so = kn->kn_fp->f_data; 3192 SOCKBUF_LOCK_ASSERT(&so->so_snd); 3193 kn->kn_data = sbspace(&so->so_snd); 3194 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 3195 kn->kn_flags |= EV_EOF; 3196 kn->kn_fflags = so->so_error; 3197 return (1); 3198 } else if (so->so_error) /* temporary udp error */ 3199 return (1); 3200 else if (((so->so_state & SS_ISCONNECTED) == 0) && 3201 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 3202 return (0); 3203 else if (kn->kn_sfflags & NOTE_LOWAT) 3204 return (kn->kn_data >= kn->kn_sdata); 3205 else 3206 return (kn->kn_data >= so->so_snd.sb_lowat); 3207 } 3208 3209 /*ARGSUSED*/ 3210 static int 3211 filt_solisten(struct knote *kn, long hint) 3212 { 3213 struct socket *so = kn->kn_fp->f_data; 3214 3215 kn->kn_data = so->so_qlen; 3216 return (!TAILQ_EMPTY(&so->so_comp)); 3217 } 3218 3219 int 3220 socheckuid(struct socket *so, uid_t uid) 3221 { 3222 3223 if (so == NULL) 3224 return (EPERM); 3225 if (so->so_cred->cr_uid != uid) 3226 return (EPERM); 3227 return (0); 3228 } 3229 3230 /* 3231 * These functions are used by protocols to notify the socket layer (and its 3232 * consumers) of state changes in the sockets driven by protocol-side events. 3233 */ 3234 3235 /* 3236 * Procedures to manipulate state flags of socket and do appropriate wakeups. 3237 * 3238 * Normal sequence from the active (originating) side is that 3239 * soisconnecting() is called during processing of connect() call, resulting 3240 * in an eventual call to soisconnected() if/when the connection is 3241 * established. When the connection is torn down soisdisconnecting() is 3242 * called during processing of disconnect() call, and soisdisconnected() is 3243 * called when the connection to the peer is totally severed. The semantics 3244 * of these routines are such that connectionless protocols can call 3245 * soisconnected() and soisdisconnected() only, bypassing the in-progress 3246 * calls when setting up a ``connection'' takes no time. 3247 * 3248 * From the passive side, a socket is created with two queues of sockets: 3249 * so_incomp for connections in progress and so_comp for connections already 3250 * made and awaiting user acceptance. As a protocol is preparing incoming 3251 * connections, it creates a socket structure queued on so_incomp by calling 3252 * sonewconn(). When the connection is established, soisconnected() is 3253 * called, and transfers the socket structure to so_comp, making it available 3254 * to accept(). 3255 * 3256 * If a socket is closed with sockets on either so_incomp or so_comp, these 3257 * sockets are dropped. 3258 * 3259 * If higher-level protocols are implemented in the kernel, the wakeups done 3260 * here will sometimes cause software-interrupt process scheduling. 3261 */ 3262 void 3263 soisconnecting(struct socket *so) 3264 { 3265 3266 SOCK_LOCK(so); 3267 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 3268 so->so_state |= SS_ISCONNECTING; 3269 SOCK_UNLOCK(so); 3270 } 3271 3272 void 3273 soisconnected(struct socket *so) 3274 { 3275 struct socket *head; 3276 int ret; 3277 3278 restart: 3279 ACCEPT_LOCK(); 3280 SOCK_LOCK(so); 3281 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 3282 so->so_state |= SS_ISCONNECTED; 3283 head = so->so_head; 3284 if (head != NULL && (so->so_qstate & SQ_INCOMP)) { 3285 if ((so->so_options & SO_ACCEPTFILTER) == 0) { 3286 SOCK_UNLOCK(so); 3287 TAILQ_REMOVE(&head->so_incomp, so, so_list); 3288 head->so_incqlen--; 3289 so->so_qstate &= ~SQ_INCOMP; 3290 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 3291 head->so_qlen++; 3292 so->so_qstate |= SQ_COMP; 3293 ACCEPT_UNLOCK(); 3294 sorwakeup(head); 3295 wakeup_one(&head->so_timeo); 3296 } else { 3297 ACCEPT_UNLOCK(); 3298 soupcall_set(so, SO_RCV, 3299 head->so_accf->so_accept_filter->accf_callback, 3300 head->so_accf->so_accept_filter_arg); 3301 so->so_options &= ~SO_ACCEPTFILTER; 3302 ret = head->so_accf->so_accept_filter->accf_callback(so, 3303 head->so_accf->so_accept_filter_arg, M_NOWAIT); 3304 if (ret == SU_ISCONNECTED) 3305 soupcall_clear(so, SO_RCV); 3306 SOCK_UNLOCK(so); 3307 if (ret == SU_ISCONNECTED) 3308 goto restart; 3309 } 3310 return; 3311 } 3312 SOCK_UNLOCK(so); 3313 ACCEPT_UNLOCK(); 3314 wakeup(&so->so_timeo); 3315 sorwakeup(so); 3316 sowwakeup(so); 3317 } 3318 3319 void 3320 soisdisconnecting(struct socket *so) 3321 { 3322 3323 /* 3324 * Note: This code assumes that SOCK_LOCK(so) and 3325 * SOCKBUF_LOCK(&so->so_rcv) are the same. 3326 */ 3327 SOCKBUF_LOCK(&so->so_rcv); 3328 so->so_state &= ~SS_ISCONNECTING; 3329 so->so_state |= SS_ISDISCONNECTING; 3330 so->so_rcv.sb_state |= SBS_CANTRCVMORE; 3331 sorwakeup_locked(so); 3332 SOCKBUF_LOCK(&so->so_snd); 3333 so->so_snd.sb_state |= SBS_CANTSENDMORE; 3334 sowwakeup_locked(so); 3335 wakeup(&so->so_timeo); 3336 } 3337 3338 void 3339 soisdisconnected(struct socket *so) 3340 { 3341 3342 /* 3343 * Note: This code assumes that SOCK_LOCK(so) and 3344 * SOCKBUF_LOCK(&so->so_rcv) are the same. 3345 */ 3346 SOCKBUF_LOCK(&so->so_rcv); 3347 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 3348 so->so_state |= SS_ISDISCONNECTED; 3349 so->so_rcv.sb_state |= SBS_CANTRCVMORE; 3350 sorwakeup_locked(so); 3351 SOCKBUF_LOCK(&so->so_snd); 3352 so->so_snd.sb_state |= SBS_CANTSENDMORE; 3353 sbdrop_locked(&so->so_snd, so->so_snd.sb_cc); 3354 sowwakeup_locked(so); 3355 wakeup(&so->so_timeo); 3356 } 3357 3358 /* 3359 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 3360 */ 3361 struct sockaddr * 3362 sodupsockaddr(const struct sockaddr *sa, int mflags) 3363 { 3364 struct sockaddr *sa2; 3365 3366 sa2 = malloc(sa->sa_len, M_SONAME, mflags); 3367 if (sa2) 3368 bcopy(sa, sa2, sa->sa_len); 3369 return sa2; 3370 } 3371 3372 /* 3373 * Register per-socket buffer upcalls. 3374 */ 3375 void 3376 soupcall_set(struct socket *so, int which, 3377 int (*func)(struct socket *, void *, int), void *arg) 3378 { 3379 struct sockbuf *sb; 3380 3381 switch (which) { 3382 case SO_RCV: 3383 sb = &so->so_rcv; 3384 break; 3385 case SO_SND: 3386 sb = &so->so_snd; 3387 break; 3388 default: 3389 panic("soupcall_set: bad which"); 3390 } 3391 SOCKBUF_LOCK_ASSERT(sb); 3392 #if 0 3393 /* XXX: accf_http actually wants to do this on purpose. */ 3394 KASSERT(sb->sb_upcall == NULL, ("soupcall_set: overwriting upcall")); 3395 #endif 3396 sb->sb_upcall = func; 3397 sb->sb_upcallarg = arg; 3398 sb->sb_flags |= SB_UPCALL; 3399 } 3400 3401 void 3402 soupcall_clear(struct socket *so, int which) 3403 { 3404 struct sockbuf *sb; 3405 3406 switch (which) { 3407 case SO_RCV: 3408 sb = &so->so_rcv; 3409 break; 3410 case SO_SND: 3411 sb = &so->so_snd; 3412 break; 3413 default: 3414 panic("soupcall_clear: bad which"); 3415 } 3416 SOCKBUF_LOCK_ASSERT(sb); 3417 KASSERT(sb->sb_upcall != NULL, ("soupcall_clear: no upcall to clear")); 3418 sb->sb_upcall = NULL; 3419 sb->sb_upcallarg = NULL; 3420 sb->sb_flags &= ~SB_UPCALL; 3421 } 3422 3423 /* 3424 * Create an external-format (``xsocket'') structure using the information in 3425 * the kernel-format socket structure pointed to by so. This is done to 3426 * reduce the spew of irrelevant information over this interface, to isolate 3427 * user code from changes in the kernel structure, and potentially to provide 3428 * information-hiding if we decide that some of this information should be 3429 * hidden from users. 3430 */ 3431 void 3432 sotoxsocket(struct socket *so, struct xsocket *xso) 3433 { 3434 3435 xso->xso_len = sizeof *xso; 3436 xso->xso_so = so; 3437 xso->so_type = so->so_type; 3438 xso->so_options = so->so_options; 3439 xso->so_linger = so->so_linger; 3440 xso->so_state = so->so_state; 3441 xso->so_pcb = so->so_pcb; 3442 xso->xso_protocol = so->so_proto->pr_protocol; 3443 xso->xso_family = so->so_proto->pr_domain->dom_family; 3444 xso->so_qlen = so->so_qlen; 3445 xso->so_incqlen = so->so_incqlen; 3446 xso->so_qlimit = so->so_qlimit; 3447 xso->so_timeo = so->so_timeo; 3448 xso->so_error = so->so_error; 3449 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 3450 xso->so_oobmark = so->so_oobmark; 3451 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 3452 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 3453 xso->so_uid = so->so_cred->cr_uid; 3454 } 3455 3456 3457 /* 3458 * Socket accessor functions to provide external consumers with 3459 * a safe interface to socket state 3460 * 3461 */ 3462 3463 void 3464 so_listeners_apply_all(struct socket *so, void (*func)(struct socket *, void *), 3465 void *arg) 3466 { 3467 3468 TAILQ_FOREACH(so, &so->so_comp, so_list) 3469 func(so, arg); 3470 } 3471 3472 struct sockbuf * 3473 so_sockbuf_rcv(struct socket *so) 3474 { 3475 3476 return (&so->so_rcv); 3477 } 3478 3479 struct sockbuf * 3480 so_sockbuf_snd(struct socket *so) 3481 { 3482 3483 return (&so->so_snd); 3484 } 3485 3486 int 3487 so_state_get(const struct socket *so) 3488 { 3489 3490 return (so->so_state); 3491 } 3492 3493 void 3494 so_state_set(struct socket *so, int val) 3495 { 3496 3497 so->so_state = val; 3498 } 3499 3500 int 3501 so_options_get(const struct socket *so) 3502 { 3503 3504 return (so->so_options); 3505 } 3506 3507 void 3508 so_options_set(struct socket *so, int val) 3509 { 3510 3511 so->so_options = val; 3512 } 3513 3514 int 3515 so_error_get(const struct socket *so) 3516 { 3517 3518 return (so->so_error); 3519 } 3520 3521 void 3522 so_error_set(struct socket *so, int val) 3523 { 3524 3525 so->so_error = val; 3526 } 3527 3528 int 3529 so_linger_get(const struct socket *so) 3530 { 3531 3532 return (so->so_linger); 3533 } 3534 3535 void 3536 so_linger_set(struct socket *so, int val) 3537 { 3538 3539 so->so_linger = val; 3540 } 3541 3542 struct protosw * 3543 so_protosw_get(const struct socket *so) 3544 { 3545 3546 return (so->so_proto); 3547 } 3548 3549 void 3550 so_protosw_set(struct socket *so, struct protosw *val) 3551 { 3552 3553 so->so_proto = val; 3554 } 3555 3556 void 3557 so_sorwakeup(struct socket *so) 3558 { 3559 3560 sorwakeup(so); 3561 } 3562 3563 void 3564 so_sowwakeup(struct socket *so) 3565 { 3566 3567 sowwakeup(so); 3568 } 3569 3570 void 3571 so_sorwakeup_locked(struct socket *so) 3572 { 3573 3574 sorwakeup_locked(so); 3575 } 3576 3577 void 3578 so_sowwakeup_locked(struct socket *so) 3579 { 3580 3581 sowwakeup_locked(so); 3582 } 3583 3584 void 3585 so_lock(struct socket *so) 3586 { 3587 3588 SOCK_LOCK(so); 3589 } 3590 3591 void 3592 so_unlock(struct socket *so) 3593 { 3594 3595 SOCK_UNLOCK(so); 3596 } 3597