1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. 6 * Copyright (c) 2004 The FreeBSD Foundation 7 * Copyright (c) 2004-2008 Robert N. M. Watson 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 35 */ 36 37 /* 38 * Comments on the socket life cycle: 39 * 40 * soalloc() sets of socket layer state for a socket, called only by 41 * socreate() and sonewconn(). Socket layer private. 42 * 43 * sodealloc() tears down socket layer state for a socket, called only by 44 * sofree() and sonewconn(). Socket layer private. 45 * 46 * pru_attach() associates protocol layer state with an allocated socket; 47 * called only once, may fail, aborting socket allocation. This is called 48 * from socreate() and sonewconn(). Socket layer private. 49 * 50 * pru_detach() disassociates protocol layer state from an attached socket, 51 * and will be called exactly once for sockets in which pru_attach() has 52 * been successfully called. If pru_attach() returned an error, 53 * pru_detach() will not be called. Socket layer private. 54 * 55 * pru_abort() and pru_close() notify the protocol layer that the last 56 * consumer of a socket is starting to tear down the socket, and that the 57 * protocol should terminate the connection. Historically, pru_abort() also 58 * detached protocol state from the socket state, but this is no longer the 59 * case. 60 * 61 * socreate() creates a socket and attaches protocol state. This is a public 62 * interface that may be used by socket layer consumers to create new 63 * sockets. 64 * 65 * sonewconn() creates a socket and attaches protocol state. This is a 66 * public interface that may be used by protocols to create new sockets when 67 * a new connection is received and will be available for accept() on a 68 * listen socket. 69 * 70 * soclose() destroys a socket after possibly waiting for it to disconnect. 71 * This is a public interface that socket consumers should use to close and 72 * release a socket when done with it. 73 * 74 * soabort() destroys a socket without waiting for it to disconnect (used 75 * only for incoming connections that are already partially or fully 76 * connected). This is used internally by the socket layer when clearing 77 * listen socket queues (due to overflow or close on the listen socket), but 78 * is also a public interface protocols may use to abort connections in 79 * their incomplete listen queues should they no longer be required. Sockets 80 * placed in completed connection listen queues should not be aborted for 81 * reasons described in the comment above the soclose() implementation. This 82 * is not a general purpose close routine, and except in the specific 83 * circumstances described here, should not be used. 84 * 85 * sofree() will free a socket and its protocol state if all references on 86 * the socket have been released, and is the public interface to attempt to 87 * free a socket when a reference is removed. This is a socket layer private 88 * interface. 89 * 90 * NOTE: In addition to socreate() and soclose(), which provide a single 91 * socket reference to the consumer to be managed as required, there are two 92 * calls to explicitly manage socket references, soref(), and sorele(). 93 * Currently, these are generally required only when transitioning a socket 94 * from a listen queue to a file descriptor, in order to prevent garbage 95 * collection of the socket at an untimely moment. For a number of reasons, 96 * these interfaces are not preferred, and should be avoided. 97 * 98 * NOTE: With regard to VNETs the general rule is that callers do not set 99 * curvnet. Exceptions to this rule include soabort(), sodisconnect(), 100 * sofree() (and with that sorele(), sotryfree()), as well as sonewconn() 101 * and sorflush(), which are usually called from a pre-set VNET context. 102 * sopoll() currently does not need a VNET context to be set. 103 */ 104 105 #include <sys/cdefs.h> 106 __FBSDID("$FreeBSD$"); 107 108 #include "opt_inet.h" 109 #include "opt_inet6.h" 110 #include "opt_kern_tls.h" 111 #include "opt_sctp.h" 112 113 #include <sys/param.h> 114 #include <sys/systm.h> 115 #include <sys/capsicum.h> 116 #include <sys/fcntl.h> 117 #include <sys/limits.h> 118 #include <sys/lock.h> 119 #include <sys/mac.h> 120 #include <sys/malloc.h> 121 #include <sys/mbuf.h> 122 #include <sys/mutex.h> 123 #include <sys/domain.h> 124 #include <sys/file.h> /* for struct knote */ 125 #include <sys/hhook.h> 126 #include <sys/kernel.h> 127 #include <sys/khelp.h> 128 #include <sys/ktls.h> 129 #include <sys/event.h> 130 #include <sys/eventhandler.h> 131 #include <sys/poll.h> 132 #include <sys/proc.h> 133 #include <sys/protosw.h> 134 #include <sys/sbuf.h> 135 #include <sys/socket.h> 136 #include <sys/socketvar.h> 137 #include <sys/resourcevar.h> 138 #include <net/route.h> 139 #include <sys/signalvar.h> 140 #include <sys/stat.h> 141 #include <sys/sx.h> 142 #include <sys/sysctl.h> 143 #include <sys/taskqueue.h> 144 #include <sys/uio.h> 145 #include <sys/un.h> 146 #include <sys/unpcb.h> 147 #include <sys/jail.h> 148 #include <sys/syslog.h> 149 #include <netinet/in.h> 150 #include <netinet/in_pcb.h> 151 #include <netinet/tcp.h> 152 153 #include <net/vnet.h> 154 155 #include <security/mac/mac_framework.h> 156 157 #include <vm/uma.h> 158 159 #ifdef COMPAT_FREEBSD32 160 #include <sys/mount.h> 161 #include <sys/sysent.h> 162 #include <compat/freebsd32/freebsd32.h> 163 #endif 164 165 static int soreceive_rcvoob(struct socket *so, struct uio *uio, 166 int flags); 167 static void so_rdknl_lock(void *); 168 static void so_rdknl_unlock(void *); 169 static void so_rdknl_assert_lock(void *, int); 170 static void so_wrknl_lock(void *); 171 static void so_wrknl_unlock(void *); 172 static void so_wrknl_assert_lock(void *, int); 173 174 static void filt_sordetach(struct knote *kn); 175 static int filt_soread(struct knote *kn, long hint); 176 static void filt_sowdetach(struct knote *kn); 177 static int filt_sowrite(struct knote *kn, long hint); 178 static int filt_soempty(struct knote *kn, long hint); 179 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id); 180 fo_kqfilter_t soo_kqfilter; 181 182 static struct filterops soread_filtops = { 183 .f_isfd = 1, 184 .f_detach = filt_sordetach, 185 .f_event = filt_soread, 186 }; 187 static struct filterops sowrite_filtops = { 188 .f_isfd = 1, 189 .f_detach = filt_sowdetach, 190 .f_event = filt_sowrite, 191 }; 192 static struct filterops soempty_filtops = { 193 .f_isfd = 1, 194 .f_detach = filt_sowdetach, 195 .f_event = filt_soempty, 196 }; 197 198 so_gen_t so_gencnt; /* generation count for sockets */ 199 200 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 201 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 202 203 #define VNET_SO_ASSERT(so) \ 204 VNET_ASSERT(curvnet != NULL, \ 205 ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so))); 206 207 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]); 208 #define V_socket_hhh VNET(socket_hhh) 209 210 /* 211 * Limit on the number of connections in the listen queue waiting 212 * for accept(2). 213 * NB: The original sysctl somaxconn is still available but hidden 214 * to prevent confusion about the actual purpose of this number. 215 */ 216 static u_int somaxconn = SOMAXCONN; 217 218 static int 219 sysctl_somaxconn(SYSCTL_HANDLER_ARGS) 220 { 221 int error; 222 int val; 223 224 val = somaxconn; 225 error = sysctl_handle_int(oidp, &val, 0, req); 226 if (error || !req->newptr ) 227 return (error); 228 229 /* 230 * The purpose of the UINT_MAX / 3 limit, is so that the formula 231 * 3 * so_qlimit / 2 232 * below, will not overflow. 233 */ 234 235 if (val < 1 || val > UINT_MAX / 3) 236 return (EINVAL); 237 238 somaxconn = val; 239 return (0); 240 } 241 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue, 242 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, sizeof(int), 243 sysctl_somaxconn, "I", 244 "Maximum listen socket pending connection accept queue size"); 245 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, 246 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE, 0, 247 sizeof(int), sysctl_somaxconn, "I", 248 "Maximum listen socket pending connection accept queue size (compat)"); 249 250 static int numopensockets; 251 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, 252 &numopensockets, 0, "Number of open sockets"); 253 254 /* 255 * accept_mtx locks down per-socket fields relating to accept queues. See 256 * socketvar.h for an annotation of the protected fields of struct socket. 257 */ 258 struct mtx accept_mtx; 259 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF); 260 261 /* 262 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket 263 * so_gencnt field. 264 */ 265 static struct mtx so_global_mtx; 266 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); 267 268 /* 269 * General IPC sysctl name space, used by sockets and a variety of other IPC 270 * types. 271 */ 272 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 273 "IPC"); 274 275 /* 276 * Initialize the socket subsystem and set up the socket 277 * memory allocator. 278 */ 279 static uma_zone_t socket_zone; 280 int maxsockets; 281 282 static void 283 socket_zone_change(void *tag) 284 { 285 286 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 287 } 288 289 static void 290 socket_hhook_register(int subtype) 291 { 292 293 if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype, 294 &V_socket_hhh[subtype], 295 HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 296 printf("%s: WARNING: unable to register hook\n", __func__); 297 } 298 299 static void 300 socket_hhook_deregister(int subtype) 301 { 302 303 if (hhook_head_deregister(V_socket_hhh[subtype]) != 0) 304 printf("%s: WARNING: unable to deregister hook\n", __func__); 305 } 306 307 static void 308 socket_init(void *tag) 309 { 310 311 socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL, 312 NULL, NULL, UMA_ALIGN_PTR, 0); 313 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 314 uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached"); 315 EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL, 316 EVENTHANDLER_PRI_FIRST); 317 } 318 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL); 319 320 static void 321 socket_vnet_init(const void *unused __unused) 322 { 323 int i; 324 325 /* We expect a contiguous range */ 326 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 327 socket_hhook_register(i); 328 } 329 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 330 socket_vnet_init, NULL); 331 332 static void 333 socket_vnet_uninit(const void *unused __unused) 334 { 335 int i; 336 337 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 338 socket_hhook_deregister(i); 339 } 340 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 341 socket_vnet_uninit, NULL); 342 343 /* 344 * Initialise maxsockets. This SYSINIT must be run after 345 * tunable_mbinit(). 346 */ 347 static void 348 init_maxsockets(void *ignored) 349 { 350 351 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 352 maxsockets = imax(maxsockets, maxfiles); 353 } 354 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 355 356 /* 357 * Sysctl to get and set the maximum global sockets limit. Notify protocols 358 * of the change so that they can update their dependent limits as required. 359 */ 360 static int 361 sysctl_maxsockets(SYSCTL_HANDLER_ARGS) 362 { 363 int error, newmaxsockets; 364 365 newmaxsockets = maxsockets; 366 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req); 367 if (error == 0 && req->newptr && newmaxsockets != maxsockets) { 368 if (newmaxsockets > maxsockets && 369 newmaxsockets <= maxfiles) { 370 maxsockets = newmaxsockets; 371 EVENTHANDLER_INVOKE(maxsockets_change); 372 } else 373 error = EINVAL; 374 } 375 return (error); 376 } 377 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, 378 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, &maxsockets, 0, 379 sysctl_maxsockets, "IU", 380 "Maximum number of sockets available"); 381 382 /* 383 * Socket operation routines. These routines are called by the routines in 384 * sys_socket.c or from a system process, and implement the semantics of 385 * socket operations by switching out to the protocol specific routines. 386 */ 387 388 /* 389 * Get a socket structure from our zone, and initialize it. Note that it 390 * would probably be better to allocate socket and PCB at the same time, but 391 * I'm not convinced that all the protocols can be easily modified to do 392 * this. 393 * 394 * soalloc() returns a socket with a ref count of 0. 395 */ 396 static struct socket * 397 soalloc(struct vnet *vnet) 398 { 399 struct socket *so; 400 401 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO); 402 if (so == NULL) 403 return (NULL); 404 #ifdef MAC 405 if (mac_socket_init(so, M_NOWAIT) != 0) { 406 uma_zfree(socket_zone, so); 407 return (NULL); 408 } 409 #endif 410 if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) { 411 uma_zfree(socket_zone, so); 412 return (NULL); 413 } 414 415 /* 416 * The socket locking protocol allows to lock 2 sockets at a time, 417 * however, the first one must be a listening socket. WITNESS lacks 418 * a feature to change class of an existing lock, so we use DUPOK. 419 */ 420 mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK); 421 mtx_init(&so->so_snd_mtx, "so_snd", NULL, MTX_DEF); 422 mtx_init(&so->so_rcv_mtx, "so_rcv", NULL, MTX_DEF); 423 so->so_rcv.sb_sel = &so->so_rdsel; 424 so->so_snd.sb_sel = &so->so_wrsel; 425 sx_init(&so->so_snd_sx, "so_snd_sx"); 426 sx_init(&so->so_rcv_sx, "so_rcv_sx"); 427 TAILQ_INIT(&so->so_snd.sb_aiojobq); 428 TAILQ_INIT(&so->so_rcv.sb_aiojobq); 429 TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so); 430 TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so); 431 #ifdef VIMAGE 432 VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p", 433 __func__, __LINE__, so)); 434 so->so_vnet = vnet; 435 #endif 436 /* We shouldn't need the so_global_mtx */ 437 if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) { 438 /* Do we need more comprehensive error returns? */ 439 uma_zfree(socket_zone, so); 440 return (NULL); 441 } 442 mtx_lock(&so_global_mtx); 443 so->so_gencnt = ++so_gencnt; 444 ++numopensockets; 445 #ifdef VIMAGE 446 vnet->vnet_sockcnt++; 447 #endif 448 mtx_unlock(&so_global_mtx); 449 450 return (so); 451 } 452 453 /* 454 * Free the storage associated with a socket at the socket layer, tear down 455 * locks, labels, etc. All protocol state is assumed already to have been 456 * torn down (and possibly never set up) by the caller. 457 */ 458 void 459 sodealloc(struct socket *so) 460 { 461 462 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); 463 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL")); 464 465 mtx_lock(&so_global_mtx); 466 so->so_gencnt = ++so_gencnt; 467 --numopensockets; /* Could be below, but faster here. */ 468 #ifdef VIMAGE 469 VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p", 470 __func__, __LINE__, so)); 471 so->so_vnet->vnet_sockcnt--; 472 #endif 473 mtx_unlock(&so_global_mtx); 474 #ifdef MAC 475 mac_socket_destroy(so); 476 #endif 477 hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE); 478 479 khelp_destroy_osd(&so->osd); 480 if (SOLISTENING(so)) { 481 if (so->sol_accept_filter != NULL) 482 accept_filt_setopt(so, NULL); 483 } else { 484 if (so->so_rcv.sb_hiwat) 485 (void)chgsbsize(so->so_cred->cr_uidinfo, 486 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 487 if (so->so_snd.sb_hiwat) 488 (void)chgsbsize(so->so_cred->cr_uidinfo, 489 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 490 sx_destroy(&so->so_snd_sx); 491 sx_destroy(&so->so_rcv_sx); 492 mtx_destroy(&so->so_snd_mtx); 493 mtx_destroy(&so->so_rcv_mtx); 494 } 495 crfree(so->so_cred); 496 mtx_destroy(&so->so_lock); 497 uma_zfree(socket_zone, so); 498 } 499 500 /* 501 * socreate returns a socket with a ref count of 1 and a file descriptor 502 * reference. The socket should be closed with soclose(). 503 */ 504 int 505 socreate(int dom, struct socket **aso, int type, int proto, 506 struct ucred *cred, struct thread *td) 507 { 508 struct protosw *prp; 509 struct socket *so; 510 int error; 511 512 /* 513 * XXX: divert(4) historically abused PF_INET. Keep this compatibility 514 * shim until all applications have been updated. 515 */ 516 if (__predict_false(dom == PF_INET && type == SOCK_RAW && 517 proto == IPPROTO_DIVERT)) { 518 dom = PF_DIVERT; 519 printf("%s uses obsolete way to create divert(4) socket\n", 520 td->td_proc->p_comm); 521 } 522 523 prp = pffindproto(dom, type, proto); 524 if (prp == NULL) { 525 /* No support for domain. */ 526 if (pffinddomain(dom) == NULL) 527 return (EAFNOSUPPORT); 528 /* No support for socket type. */ 529 if (proto == 0 && type != 0) 530 return (EPROTOTYPE); 531 return (EPROTONOSUPPORT); 532 } 533 534 MPASS(prp->pr_attach); 535 536 if (IN_CAPABILITY_MODE(td) && (prp->pr_flags & PR_CAPATTACH) == 0) 537 return (ECAPMODE); 538 539 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0) 540 return (EPROTONOSUPPORT); 541 542 so = soalloc(CRED_TO_VNET(cred)); 543 if (so == NULL) 544 return (ENOBUFS); 545 546 so->so_type = type; 547 so->so_cred = crhold(cred); 548 if ((prp->pr_domain->dom_family == PF_INET) || 549 (prp->pr_domain->dom_family == PF_INET6) || 550 (prp->pr_domain->dom_family == PF_ROUTE)) 551 so->so_fibnum = td->td_proc->p_fibnum; 552 else 553 so->so_fibnum = 0; 554 so->so_proto = prp; 555 #ifdef MAC 556 mac_socket_create(cred, so); 557 #endif 558 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 559 so_rdknl_assert_lock); 560 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 561 so_wrknl_assert_lock); 562 if ((prp->pr_flags & PR_SOCKBUF) == 0) { 563 so->so_snd.sb_mtx = &so->so_snd_mtx; 564 so->so_rcv.sb_mtx = &so->so_rcv_mtx; 565 } 566 /* 567 * Auto-sizing of socket buffers is managed by the protocols and 568 * the appropriate flags must be set in the pru_attach function. 569 */ 570 CURVNET_SET(so->so_vnet); 571 error = prp->pr_attach(so, proto, td); 572 CURVNET_RESTORE(); 573 if (error) { 574 sodealloc(so); 575 return (error); 576 } 577 soref(so); 578 *aso = so; 579 return (0); 580 } 581 582 #ifdef REGRESSION 583 static int regression_sonewconn_earlytest = 1; 584 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW, 585 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test"); 586 #endif 587 588 static struct timeval overinterval = { 60, 0 }; 589 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW, 590 &overinterval, 591 "Delay in seconds between warnings for listen socket overflows"); 592 593 /* 594 * When an attempt at a new connection is noted on a socket which supports 595 * accept(2), the protocol has two options: 596 * 1) Call legacy sonewconn() function, which would call protocol attach 597 * method, same as used for socket(2). 598 * 2) Call solisten_clone(), do attach that is specific to a cloned connection, 599 * and then call solisten_enqueue(). 600 * 601 * Note: the ref count on the socket is 0 on return. 602 */ 603 struct socket * 604 solisten_clone(struct socket *head) 605 { 606 struct sbuf descrsb; 607 struct socket *so; 608 int len, overcount; 609 u_int qlen; 610 const char localprefix[] = "local:"; 611 char descrbuf[SUNPATHLEN + sizeof(localprefix)]; 612 #if defined(INET6) 613 char addrbuf[INET6_ADDRSTRLEN]; 614 #elif defined(INET) 615 char addrbuf[INET_ADDRSTRLEN]; 616 #endif 617 bool dolog, over; 618 619 SOLISTEN_LOCK(head); 620 over = (head->sol_qlen > 3 * head->sol_qlimit / 2); 621 #ifdef REGRESSION 622 if (regression_sonewconn_earlytest && over) { 623 #else 624 if (over) { 625 #endif 626 head->sol_overcount++; 627 dolog = !!ratecheck(&head->sol_lastover, &overinterval); 628 629 /* 630 * If we're going to log, copy the overflow count and queue 631 * length from the listen socket before dropping the lock. 632 * Also, reset the overflow count. 633 */ 634 if (dolog) { 635 overcount = head->sol_overcount; 636 head->sol_overcount = 0; 637 qlen = head->sol_qlen; 638 } 639 SOLISTEN_UNLOCK(head); 640 641 if (dolog) { 642 /* 643 * Try to print something descriptive about the 644 * socket for the error message. 645 */ 646 sbuf_new(&descrsb, descrbuf, sizeof(descrbuf), 647 SBUF_FIXEDLEN); 648 switch (head->so_proto->pr_domain->dom_family) { 649 #if defined(INET) || defined(INET6) 650 #ifdef INET 651 case AF_INET: 652 #endif 653 #ifdef INET6 654 case AF_INET6: 655 if (head->so_proto->pr_domain->dom_family == 656 AF_INET6 || 657 (sotoinpcb(head)->inp_inc.inc_flags & 658 INC_ISIPV6)) { 659 ip6_sprintf(addrbuf, 660 &sotoinpcb(head)->inp_inc.inc6_laddr); 661 sbuf_printf(&descrsb, "[%s]", addrbuf); 662 } else 663 #endif 664 { 665 #ifdef INET 666 inet_ntoa_r( 667 sotoinpcb(head)->inp_inc.inc_laddr, 668 addrbuf); 669 sbuf_cat(&descrsb, addrbuf); 670 #endif 671 } 672 sbuf_printf(&descrsb, ":%hu (proto %u)", 673 ntohs(sotoinpcb(head)->inp_inc.inc_lport), 674 head->so_proto->pr_protocol); 675 break; 676 #endif /* INET || INET6 */ 677 case AF_UNIX: 678 sbuf_cat(&descrsb, localprefix); 679 if (sotounpcb(head)->unp_addr != NULL) 680 len = 681 sotounpcb(head)->unp_addr->sun_len - 682 offsetof(struct sockaddr_un, 683 sun_path); 684 else 685 len = 0; 686 if (len > 0) 687 sbuf_bcat(&descrsb, 688 sotounpcb(head)->unp_addr->sun_path, 689 len); 690 else 691 sbuf_cat(&descrsb, "(unknown)"); 692 break; 693 } 694 695 /* 696 * If we can't print something more specific, at least 697 * print the domain name. 698 */ 699 if (sbuf_finish(&descrsb) != 0 || 700 sbuf_len(&descrsb) <= 0) { 701 sbuf_clear(&descrsb); 702 sbuf_cat(&descrsb, 703 head->so_proto->pr_domain->dom_name ?: 704 "unknown"); 705 sbuf_finish(&descrsb); 706 } 707 KASSERT(sbuf_len(&descrsb) > 0, 708 ("%s: sbuf creation failed", __func__)); 709 /* 710 * Preserve the historic listen queue overflow log 711 * message, that starts with "sonewconn:". It has 712 * been known to sysadmins for years and also test 713 * sys/kern/sonewconn_overflow checks for it. 714 */ 715 if (head->so_cred == 0) { 716 log(LOG_DEBUG, "sonewconn: pcb %p (%s): " 717 "Listen queue overflow: %i already in " 718 "queue awaiting acceptance (%d " 719 "occurrences)\n", head->so_pcb, 720 sbuf_data(&descrsb), 721 qlen, overcount); 722 } else { 723 log(LOG_DEBUG, "sonewconn: pcb %p (%s): " 724 "Listen queue overflow: " 725 "%i already in queue awaiting acceptance " 726 "(%d occurrences), euid %d, rgid %d, jail %s\n", 727 head->so_pcb, sbuf_data(&descrsb), qlen, 728 overcount, head->so_cred->cr_uid, 729 head->so_cred->cr_rgid, 730 head->so_cred->cr_prison ? 731 head->so_cred->cr_prison->pr_name : 732 "not_jailed"); 733 } 734 sbuf_delete(&descrsb); 735 736 overcount = 0; 737 } 738 739 return (NULL); 740 } 741 SOLISTEN_UNLOCK(head); 742 VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL", 743 __func__, head)); 744 so = soalloc(head->so_vnet); 745 if (so == NULL) { 746 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 747 "limit reached or out of memory\n", 748 __func__, head->so_pcb); 749 return (NULL); 750 } 751 so->so_listen = head; 752 so->so_type = head->so_type; 753 so->so_options = head->so_options & ~SO_ACCEPTCONN; 754 so->so_linger = head->so_linger; 755 so->so_state = head->so_state; 756 so->so_fibnum = head->so_fibnum; 757 so->so_proto = head->so_proto; 758 so->so_cred = crhold(head->so_cred); 759 #ifdef MAC 760 mac_socket_newconn(head, so); 761 #endif 762 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 763 so_rdknl_assert_lock); 764 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 765 so_wrknl_assert_lock); 766 VNET_SO_ASSERT(head); 767 if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) { 768 sodealloc(so); 769 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 770 __func__, head->so_pcb); 771 return (NULL); 772 } 773 so->so_rcv.sb_lowat = head->sol_sbrcv_lowat; 774 so->so_snd.sb_lowat = head->sol_sbsnd_lowat; 775 so->so_rcv.sb_timeo = head->sol_sbrcv_timeo; 776 so->so_snd.sb_timeo = head->sol_sbsnd_timeo; 777 so->so_rcv.sb_flags = head->sol_sbrcv_flags & SB_AUTOSIZE; 778 so->so_snd.sb_flags = head->sol_sbsnd_flags & SB_AUTOSIZE; 779 if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) { 780 so->so_snd.sb_mtx = &so->so_snd_mtx; 781 so->so_rcv.sb_mtx = &so->so_rcv_mtx; 782 } 783 784 return (so); 785 } 786 787 /* Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED. */ 788 struct socket * 789 sonewconn(struct socket *head, int connstatus) 790 { 791 struct socket *so; 792 793 if ((so = solisten_clone(head)) == NULL) 794 return (NULL); 795 796 if (so->so_proto->pr_attach(so, 0, NULL) != 0) { 797 sodealloc(so); 798 log(LOG_DEBUG, "%s: pcb %p: pr_attach() failed\n", 799 __func__, head->so_pcb); 800 return (NULL); 801 } 802 803 solisten_enqueue(so, connstatus); 804 805 return (so); 806 } 807 808 /* 809 * Enqueue socket cloned by solisten_clone() to the listen queue of the 810 * listener it has been cloned from. 811 */ 812 void 813 solisten_enqueue(struct socket *so, int connstatus) 814 { 815 struct socket *head = so->so_listen; 816 817 MPASS(refcount_load(&so->so_count) == 0); 818 refcount_init(&so->so_count, 1); 819 820 SOLISTEN_LOCK(head); 821 if (head->sol_accept_filter != NULL) 822 connstatus = 0; 823 so->so_state |= connstatus; 824 soref(head); /* A socket on (in)complete queue refs head. */ 825 if (connstatus) { 826 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 827 so->so_qstate = SQ_COMP; 828 head->sol_qlen++; 829 solisten_wakeup(head); /* unlocks */ 830 } else { 831 /* 832 * Keep removing sockets from the head until there's room for 833 * us to insert on the tail. In pre-locking revisions, this 834 * was a simple if(), but as we could be racing with other 835 * threads and soabort() requires dropping locks, we must 836 * loop waiting for the condition to be true. 837 */ 838 while (head->sol_incqlen > head->sol_qlimit) { 839 struct socket *sp; 840 841 sp = TAILQ_FIRST(&head->sol_incomp); 842 TAILQ_REMOVE(&head->sol_incomp, sp, so_list); 843 head->sol_incqlen--; 844 SOCK_LOCK(sp); 845 sp->so_qstate = SQ_NONE; 846 sp->so_listen = NULL; 847 SOCK_UNLOCK(sp); 848 sorele_locked(head); /* does SOLISTEN_UNLOCK, head stays */ 849 soabort(sp); 850 SOLISTEN_LOCK(head); 851 } 852 TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list); 853 so->so_qstate = SQ_INCOMP; 854 head->sol_incqlen++; 855 SOLISTEN_UNLOCK(head); 856 } 857 } 858 859 #if defined(SCTP) || defined(SCTP_SUPPORT) 860 /* 861 * Socket part of sctp_peeloff(). Detach a new socket from an 862 * association. The new socket is returned with a reference. 863 * 864 * XXXGL: reduce copy-paste with solisten_clone(). 865 */ 866 struct socket * 867 sopeeloff(struct socket *head) 868 { 869 struct socket *so; 870 871 VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p", 872 __func__, __LINE__, head)); 873 so = soalloc(head->so_vnet); 874 if (so == NULL) { 875 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 876 "limit reached or out of memory\n", 877 __func__, head->so_pcb); 878 return (NULL); 879 } 880 so->so_type = head->so_type; 881 so->so_options = head->so_options; 882 so->so_linger = head->so_linger; 883 so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED; 884 so->so_fibnum = head->so_fibnum; 885 so->so_proto = head->so_proto; 886 so->so_cred = crhold(head->so_cred); 887 #ifdef MAC 888 mac_socket_newconn(head, so); 889 #endif 890 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 891 so_rdknl_assert_lock); 892 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 893 so_wrknl_assert_lock); 894 VNET_SO_ASSERT(head); 895 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) { 896 sodealloc(so); 897 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 898 __func__, head->so_pcb); 899 return (NULL); 900 } 901 if ((*so->so_proto->pr_attach)(so, 0, NULL)) { 902 sodealloc(so); 903 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", 904 __func__, head->so_pcb); 905 return (NULL); 906 } 907 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; 908 so->so_snd.sb_lowat = head->so_snd.sb_lowat; 909 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; 910 so->so_snd.sb_timeo = head->so_snd.sb_timeo; 911 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE; 912 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE; 913 914 soref(so); 915 916 return (so); 917 } 918 #endif /* SCTP */ 919 920 int 921 sobind(struct socket *so, struct sockaddr *nam, struct thread *td) 922 { 923 int error; 924 925 CURVNET_SET(so->so_vnet); 926 error = so->so_proto->pr_bind(so, nam, td); 927 CURVNET_RESTORE(); 928 return (error); 929 } 930 931 int 932 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 933 { 934 int error; 935 936 CURVNET_SET(so->so_vnet); 937 error = so->so_proto->pr_bindat(fd, so, nam, td); 938 CURVNET_RESTORE(); 939 return (error); 940 } 941 942 /* 943 * solisten() transitions a socket from a non-listening state to a listening 944 * state, but can also be used to update the listen queue depth on an 945 * existing listen socket. The protocol will call back into the sockets 946 * layer using solisten_proto_check() and solisten_proto() to check and set 947 * socket-layer listen state. Call backs are used so that the protocol can 948 * acquire both protocol and socket layer locks in whatever order is required 949 * by the protocol. 950 * 951 * Protocol implementors are advised to hold the socket lock across the 952 * socket-layer test and set to avoid races at the socket layer. 953 */ 954 int 955 solisten(struct socket *so, int backlog, struct thread *td) 956 { 957 int error; 958 959 CURVNET_SET(so->so_vnet); 960 error = so->so_proto->pr_listen(so, backlog, td); 961 CURVNET_RESTORE(); 962 return (error); 963 } 964 965 /* 966 * Prepare for a call to solisten_proto(). Acquire all socket buffer locks in 967 * order to interlock with socket I/O. 968 */ 969 int 970 solisten_proto_check(struct socket *so) 971 { 972 SOCK_LOCK_ASSERT(so); 973 974 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 975 SS_ISDISCONNECTING)) != 0) 976 return (EINVAL); 977 978 /* 979 * Sleeping is not permitted here, so simply fail if userspace is 980 * attempting to transmit or receive on the socket. This kind of 981 * transient failure is not ideal, but it should occur only if userspace 982 * is misusing the socket interfaces. 983 */ 984 if (!sx_try_xlock(&so->so_snd_sx)) 985 return (EAGAIN); 986 if (!sx_try_xlock(&so->so_rcv_sx)) { 987 sx_xunlock(&so->so_snd_sx); 988 return (EAGAIN); 989 } 990 mtx_lock(&so->so_snd_mtx); 991 mtx_lock(&so->so_rcv_mtx); 992 993 /* Interlock with soo_aio_queue(). */ 994 if (!SOLISTENING(so) && 995 ((so->so_snd.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0 || 996 (so->so_rcv.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0)) { 997 solisten_proto_abort(so); 998 return (EINVAL); 999 } 1000 return (0); 1001 } 1002 1003 /* 1004 * Undo the setup done by solisten_proto_check(). 1005 */ 1006 void 1007 solisten_proto_abort(struct socket *so) 1008 { 1009 mtx_unlock(&so->so_snd_mtx); 1010 mtx_unlock(&so->so_rcv_mtx); 1011 sx_xunlock(&so->so_snd_sx); 1012 sx_xunlock(&so->so_rcv_sx); 1013 } 1014 1015 void 1016 solisten_proto(struct socket *so, int backlog) 1017 { 1018 int sbrcv_lowat, sbsnd_lowat; 1019 u_int sbrcv_hiwat, sbsnd_hiwat; 1020 short sbrcv_flags, sbsnd_flags; 1021 sbintime_t sbrcv_timeo, sbsnd_timeo; 1022 1023 SOCK_LOCK_ASSERT(so); 1024 KASSERT((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 1025 SS_ISDISCONNECTING)) == 0, 1026 ("%s: bad socket state %p", __func__, so)); 1027 1028 if (SOLISTENING(so)) 1029 goto listening; 1030 1031 /* 1032 * Change this socket to listening state. 1033 */ 1034 sbrcv_lowat = so->so_rcv.sb_lowat; 1035 sbsnd_lowat = so->so_snd.sb_lowat; 1036 sbrcv_hiwat = so->so_rcv.sb_hiwat; 1037 sbsnd_hiwat = so->so_snd.sb_hiwat; 1038 sbrcv_flags = so->so_rcv.sb_flags; 1039 sbsnd_flags = so->so_snd.sb_flags; 1040 sbrcv_timeo = so->so_rcv.sb_timeo; 1041 sbsnd_timeo = so->so_snd.sb_timeo; 1042 1043 sbdestroy(so, SO_SND); 1044 sbdestroy(so, SO_RCV); 1045 1046 #ifdef INVARIANTS 1047 bzero(&so->so_rcv, 1048 sizeof(struct socket) - offsetof(struct socket, so_rcv)); 1049 #endif 1050 1051 so->sol_sbrcv_lowat = sbrcv_lowat; 1052 so->sol_sbsnd_lowat = sbsnd_lowat; 1053 so->sol_sbrcv_hiwat = sbrcv_hiwat; 1054 so->sol_sbsnd_hiwat = sbsnd_hiwat; 1055 so->sol_sbrcv_flags = sbrcv_flags; 1056 so->sol_sbsnd_flags = sbsnd_flags; 1057 so->sol_sbrcv_timeo = sbrcv_timeo; 1058 so->sol_sbsnd_timeo = sbsnd_timeo; 1059 1060 so->sol_qlen = so->sol_incqlen = 0; 1061 TAILQ_INIT(&so->sol_incomp); 1062 TAILQ_INIT(&so->sol_comp); 1063 1064 so->sol_accept_filter = NULL; 1065 so->sol_accept_filter_arg = NULL; 1066 so->sol_accept_filter_str = NULL; 1067 1068 so->sol_upcall = NULL; 1069 so->sol_upcallarg = NULL; 1070 1071 so->so_options |= SO_ACCEPTCONN; 1072 1073 listening: 1074 if (backlog < 0 || backlog > somaxconn) 1075 backlog = somaxconn; 1076 so->sol_qlimit = backlog; 1077 1078 mtx_unlock(&so->so_snd_mtx); 1079 mtx_unlock(&so->so_rcv_mtx); 1080 sx_xunlock(&so->so_snd_sx); 1081 sx_xunlock(&so->so_rcv_sx); 1082 } 1083 1084 /* 1085 * Wakeup listeners/subsystems once we have a complete connection. 1086 * Enters with lock, returns unlocked. 1087 */ 1088 void 1089 solisten_wakeup(struct socket *sol) 1090 { 1091 1092 if (sol->sol_upcall != NULL) 1093 (void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT); 1094 else { 1095 selwakeuppri(&sol->so_rdsel, PSOCK); 1096 KNOTE_LOCKED(&sol->so_rdsel.si_note, 0); 1097 } 1098 SOLISTEN_UNLOCK(sol); 1099 wakeup_one(&sol->sol_comp); 1100 if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL) 1101 pgsigio(&sol->so_sigio, SIGIO, 0); 1102 } 1103 1104 /* 1105 * Return single connection off a listening socket queue. Main consumer of 1106 * the function is kern_accept4(). Some modules, that do their own accept 1107 * management also use the function. The socket reference held by the 1108 * listen queue is handed to the caller. 1109 * 1110 * Listening socket must be locked on entry and is returned unlocked on 1111 * return. 1112 * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT. 1113 */ 1114 int 1115 solisten_dequeue(struct socket *head, struct socket **ret, int flags) 1116 { 1117 struct socket *so; 1118 int error; 1119 1120 SOLISTEN_LOCK_ASSERT(head); 1121 1122 while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) && 1123 head->so_error == 0) { 1124 error = msleep(&head->sol_comp, SOCK_MTX(head), PSOCK | PCATCH, 1125 "accept", 0); 1126 if (error != 0) { 1127 SOLISTEN_UNLOCK(head); 1128 return (error); 1129 } 1130 } 1131 if (head->so_error) { 1132 error = head->so_error; 1133 head->so_error = 0; 1134 } else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp)) 1135 error = EWOULDBLOCK; 1136 else 1137 error = 0; 1138 if (error) { 1139 SOLISTEN_UNLOCK(head); 1140 return (error); 1141 } 1142 so = TAILQ_FIRST(&head->sol_comp); 1143 SOCK_LOCK(so); 1144 KASSERT(so->so_qstate == SQ_COMP, 1145 ("%s: so %p not SQ_COMP", __func__, so)); 1146 head->sol_qlen--; 1147 so->so_qstate = SQ_NONE; 1148 so->so_listen = NULL; 1149 TAILQ_REMOVE(&head->sol_comp, so, so_list); 1150 if (flags & ACCEPT4_INHERIT) 1151 so->so_state |= (head->so_state & SS_NBIO); 1152 else 1153 so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0; 1154 SOCK_UNLOCK(so); 1155 sorele_locked(head); 1156 1157 *ret = so; 1158 return (0); 1159 } 1160 1161 /* 1162 * Free socket upon release of the very last reference. 1163 */ 1164 static void 1165 sofree(struct socket *so) 1166 { 1167 struct protosw *pr = so->so_proto; 1168 1169 SOCK_LOCK_ASSERT(so); 1170 KASSERT(refcount_load(&so->so_count) == 0, 1171 ("%s: so %p has references", __func__, so)); 1172 KASSERT(SOLISTENING(so) || so->so_qstate == SQ_NONE, 1173 ("%s: so %p is on listen queue", __func__, so)); 1174 1175 SOCK_UNLOCK(so); 1176 1177 if (so->so_dtor != NULL) 1178 so->so_dtor(so); 1179 1180 VNET_SO_ASSERT(so); 1181 if ((pr->pr_flags & PR_RIGHTS) && !SOLISTENING(so)) { 1182 MPASS(pr->pr_domain->dom_dispose != NULL); 1183 (*pr->pr_domain->dom_dispose)(so); 1184 } 1185 if (pr->pr_detach != NULL) 1186 pr->pr_detach(so); 1187 1188 /* 1189 * From this point on, we assume that no other references to this 1190 * socket exist anywhere else in the stack. Therefore, no locks need 1191 * to be acquired or held. 1192 */ 1193 if (!(pr->pr_flags & PR_SOCKBUF) && !SOLISTENING(so)) { 1194 sbdestroy(so, SO_SND); 1195 sbdestroy(so, SO_RCV); 1196 } 1197 seldrain(&so->so_rdsel); 1198 seldrain(&so->so_wrsel); 1199 knlist_destroy(&so->so_rdsel.si_note); 1200 knlist_destroy(&so->so_wrsel.si_note); 1201 sodealloc(so); 1202 } 1203 1204 /* 1205 * Release a reference on a socket while holding the socket lock. 1206 * Unlocks the socket lock before returning. 1207 */ 1208 void 1209 sorele_locked(struct socket *so) 1210 { 1211 SOCK_LOCK_ASSERT(so); 1212 if (refcount_release(&so->so_count)) 1213 sofree(so); 1214 else 1215 SOCK_UNLOCK(so); 1216 } 1217 1218 /* 1219 * Close a socket on last file table reference removal. Initiate disconnect 1220 * if connected. Free socket when disconnect complete. 1221 * 1222 * This function will sorele() the socket. Note that soclose() may be called 1223 * prior to the ref count reaching zero. The actual socket structure will 1224 * not be freed until the ref count reaches zero. 1225 */ 1226 int 1227 soclose(struct socket *so) 1228 { 1229 struct accept_queue lqueue; 1230 int error = 0; 1231 bool listening, last __diagused; 1232 1233 CURVNET_SET(so->so_vnet); 1234 funsetown(&so->so_sigio); 1235 if (so->so_state & SS_ISCONNECTED) { 1236 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 1237 error = sodisconnect(so); 1238 if (error) { 1239 if (error == ENOTCONN) 1240 error = 0; 1241 goto drop; 1242 } 1243 } 1244 1245 if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) { 1246 if ((so->so_state & SS_ISDISCONNECTING) && 1247 (so->so_state & SS_NBIO)) 1248 goto drop; 1249 while (so->so_state & SS_ISCONNECTED) { 1250 error = tsleep(&so->so_timeo, 1251 PSOCK | PCATCH, "soclos", 1252 so->so_linger * hz); 1253 if (error) 1254 break; 1255 } 1256 } 1257 } 1258 1259 drop: 1260 if (so->so_proto->pr_close != NULL) 1261 so->so_proto->pr_close(so); 1262 1263 SOCK_LOCK(so); 1264 if ((listening = SOLISTENING(so))) { 1265 struct socket *sp; 1266 1267 TAILQ_INIT(&lqueue); 1268 TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list); 1269 TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list); 1270 1271 so->sol_qlen = so->sol_incqlen = 0; 1272 1273 TAILQ_FOREACH(sp, &lqueue, so_list) { 1274 SOCK_LOCK(sp); 1275 sp->so_qstate = SQ_NONE; 1276 sp->so_listen = NULL; 1277 SOCK_UNLOCK(sp); 1278 last = refcount_release(&so->so_count); 1279 KASSERT(!last, ("%s: released last reference for %p", 1280 __func__, so)); 1281 } 1282 } 1283 sorele_locked(so); 1284 if (listening) { 1285 struct socket *sp, *tsp; 1286 1287 TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp) 1288 soabort(sp); 1289 } 1290 CURVNET_RESTORE(); 1291 return (error); 1292 } 1293 1294 /* 1295 * soabort() is used to abruptly tear down a connection, such as when a 1296 * resource limit is reached (listen queue depth exceeded), or if a listen 1297 * socket is closed while there are sockets waiting to be accepted. 1298 * 1299 * This interface is tricky, because it is called on an unreferenced socket, 1300 * and must be called only by a thread that has actually removed the socket 1301 * from the listen queue it was on. Likely this thread holds the last 1302 * reference on the socket and soabort() will proceed with sofree(). But 1303 * it might be not the last, as the sockets on the listen queues are seen 1304 * from the protocol side. 1305 * 1306 * This interface will call into the protocol code, so must not be called 1307 * with any socket locks held. Protocols do call it while holding their own 1308 * recursible protocol mutexes, but this is something that should be subject 1309 * to review in the future. 1310 * 1311 * Usually socket should have a single reference left, but this is not a 1312 * requirement. In the past, when we have had named references for file 1313 * descriptor and protocol, we asserted that none of them are being held. 1314 */ 1315 void 1316 soabort(struct socket *so) 1317 { 1318 1319 VNET_SO_ASSERT(so); 1320 1321 if (so->so_proto->pr_abort != NULL) 1322 so->so_proto->pr_abort(so); 1323 SOCK_LOCK(so); 1324 sorele_locked(so); 1325 } 1326 1327 int 1328 soaccept(struct socket *so, struct sockaddr **nam) 1329 { 1330 int error; 1331 1332 CURVNET_SET(so->so_vnet); 1333 error = so->so_proto->pr_accept(so, nam); 1334 CURVNET_RESTORE(); 1335 return (error); 1336 } 1337 1338 int 1339 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td) 1340 { 1341 1342 return (soconnectat(AT_FDCWD, so, nam, td)); 1343 } 1344 1345 int 1346 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 1347 { 1348 int error; 1349 1350 CURVNET_SET(so->so_vnet); 1351 /* 1352 * If protocol is connection-based, can only connect once. 1353 * Otherwise, if connected, try to disconnect first. This allows 1354 * user to disconnect by connecting to, e.g., a null address. 1355 */ 1356 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 1357 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 1358 (error = sodisconnect(so)))) { 1359 error = EISCONN; 1360 } else { 1361 /* 1362 * Prevent accumulated error from previous connection from 1363 * biting us. 1364 */ 1365 so->so_error = 0; 1366 if (fd == AT_FDCWD) { 1367 error = so->so_proto->pr_connect(so, nam, td); 1368 } else { 1369 error = so->so_proto->pr_connectat(fd, so, nam, td); 1370 } 1371 } 1372 CURVNET_RESTORE(); 1373 1374 return (error); 1375 } 1376 1377 int 1378 soconnect2(struct socket *so1, struct socket *so2) 1379 { 1380 int error; 1381 1382 CURVNET_SET(so1->so_vnet); 1383 error = so1->so_proto->pr_connect2(so1, so2); 1384 CURVNET_RESTORE(); 1385 return (error); 1386 } 1387 1388 int 1389 sodisconnect(struct socket *so) 1390 { 1391 int error; 1392 1393 if ((so->so_state & SS_ISCONNECTED) == 0) 1394 return (ENOTCONN); 1395 if (so->so_state & SS_ISDISCONNECTING) 1396 return (EALREADY); 1397 VNET_SO_ASSERT(so); 1398 error = so->so_proto->pr_disconnect(so); 1399 return (error); 1400 } 1401 1402 int 1403 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, 1404 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1405 { 1406 long space; 1407 ssize_t resid; 1408 int clen = 0, error, dontroute; 1409 1410 KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM")); 1411 KASSERT(so->so_proto->pr_flags & PR_ATOMIC, 1412 ("sosend_dgram: !PR_ATOMIC")); 1413 1414 if (uio != NULL) 1415 resid = uio->uio_resid; 1416 else 1417 resid = top->m_pkthdr.len; 1418 /* 1419 * In theory resid should be unsigned. However, space must be 1420 * signed, as it might be less than 0 if we over-committed, and we 1421 * must use a signed comparison of space and resid. On the other 1422 * hand, a negative resid causes us to loop sending 0-length 1423 * segments to the protocol. 1424 */ 1425 if (resid < 0) { 1426 error = EINVAL; 1427 goto out; 1428 } 1429 1430 dontroute = 1431 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0; 1432 if (td != NULL) 1433 td->td_ru.ru_msgsnd++; 1434 if (control != NULL) 1435 clen = control->m_len; 1436 1437 SOCKBUF_LOCK(&so->so_snd); 1438 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1439 SOCKBUF_UNLOCK(&so->so_snd); 1440 error = EPIPE; 1441 goto out; 1442 } 1443 if (so->so_error) { 1444 error = so->so_error; 1445 so->so_error = 0; 1446 SOCKBUF_UNLOCK(&so->so_snd); 1447 goto out; 1448 } 1449 if ((so->so_state & SS_ISCONNECTED) == 0) { 1450 /* 1451 * `sendto' and `sendmsg' is allowed on a connection-based 1452 * socket if it supports implied connect. Return ENOTCONN if 1453 * not connected and no address is supplied. 1454 */ 1455 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1456 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1457 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1458 !(resid == 0 && clen != 0)) { 1459 SOCKBUF_UNLOCK(&so->so_snd); 1460 error = ENOTCONN; 1461 goto out; 1462 } 1463 } else if (addr == NULL) { 1464 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1465 error = ENOTCONN; 1466 else 1467 error = EDESTADDRREQ; 1468 SOCKBUF_UNLOCK(&so->so_snd); 1469 goto out; 1470 } 1471 } 1472 1473 /* 1474 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a 1475 * problem and need fixing. 1476 */ 1477 space = sbspace(&so->so_snd); 1478 if (flags & MSG_OOB) 1479 space += 1024; 1480 space -= clen; 1481 SOCKBUF_UNLOCK(&so->so_snd); 1482 if (resid > space) { 1483 error = EMSGSIZE; 1484 goto out; 1485 } 1486 if (uio == NULL) { 1487 resid = 0; 1488 if (flags & MSG_EOR) 1489 top->m_flags |= M_EOR; 1490 } else { 1491 /* 1492 * Copy the data from userland into a mbuf chain. 1493 * If no data is to be copied in, a single empty mbuf 1494 * is returned. 1495 */ 1496 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr, 1497 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0))); 1498 if (top == NULL) { 1499 error = EFAULT; /* only possible error */ 1500 goto out; 1501 } 1502 space -= resid - uio->uio_resid; 1503 resid = uio->uio_resid; 1504 } 1505 KASSERT(resid == 0, ("sosend_dgram: resid != 0")); 1506 /* 1507 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock 1508 * than with. 1509 */ 1510 if (dontroute) { 1511 SOCK_LOCK(so); 1512 so->so_options |= SO_DONTROUTE; 1513 SOCK_UNLOCK(so); 1514 } 1515 /* 1516 * XXX all the SBS_CANTSENDMORE checks previously done could be out 1517 * of date. We could have received a reset packet in an interrupt or 1518 * maybe we slept while doing page faults in uiomove() etc. We could 1519 * probably recheck again inside the locking protection here, but 1520 * there are probably other places that this also happens. We must 1521 * rethink this. 1522 */ 1523 VNET_SO_ASSERT(so); 1524 error = so->so_proto->pr_send(so, (flags & MSG_OOB) ? PRUS_OOB : 1525 /* 1526 * If the user set MSG_EOF, the protocol understands this flag and 1527 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND. 1528 */ 1529 ((flags & MSG_EOF) && 1530 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1531 (resid <= 0)) ? 1532 PRUS_EOF : 1533 /* If there is more to send set PRUS_MORETOCOME */ 1534 (flags & MSG_MORETOCOME) || 1535 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1536 top, addr, control, td); 1537 if (dontroute) { 1538 SOCK_LOCK(so); 1539 so->so_options &= ~SO_DONTROUTE; 1540 SOCK_UNLOCK(so); 1541 } 1542 clen = 0; 1543 control = NULL; 1544 top = NULL; 1545 out: 1546 if (top != NULL) 1547 m_freem(top); 1548 if (control != NULL) 1549 m_freem(control); 1550 return (error); 1551 } 1552 1553 /* 1554 * Send on a socket. If send must go all at once and message is larger than 1555 * send buffering, then hard error. Lock against other senders. If must go 1556 * all at once and not enough room now, then inform user that this would 1557 * block and do nothing. Otherwise, if nonblocking, send as much as 1558 * possible. The data to be sent is described by "uio" if nonzero, otherwise 1559 * by the mbuf chain "top" (which must be null if uio is not). Data provided 1560 * in mbuf chain must be small enough to send all at once. 1561 * 1562 * Returns nonzero on error, timeout or signal; callers must check for short 1563 * counts if EINTR/ERESTART are returned. Data and control buffers are freed 1564 * on return. 1565 */ 1566 int 1567 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio, 1568 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1569 { 1570 long space; 1571 ssize_t resid; 1572 int clen = 0, error, dontroute; 1573 int atomic = sosendallatonce(so) || top; 1574 int pr_send_flag; 1575 #ifdef KERN_TLS 1576 struct ktls_session *tls; 1577 int tls_enq_cnt, tls_send_flag; 1578 uint8_t tls_rtype; 1579 1580 tls = NULL; 1581 tls_rtype = TLS_RLTYPE_APP; 1582 #endif 1583 if (uio != NULL) 1584 resid = uio->uio_resid; 1585 else if ((top->m_flags & M_PKTHDR) != 0) 1586 resid = top->m_pkthdr.len; 1587 else 1588 resid = m_length(top, NULL); 1589 /* 1590 * In theory resid should be unsigned. However, space must be 1591 * signed, as it might be less than 0 if we over-committed, and we 1592 * must use a signed comparison of space and resid. On the other 1593 * hand, a negative resid causes us to loop sending 0-length 1594 * segments to the protocol. 1595 * 1596 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 1597 * type sockets since that's an error. 1598 */ 1599 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 1600 error = EINVAL; 1601 goto out; 1602 } 1603 1604 dontroute = 1605 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 1606 (so->so_proto->pr_flags & PR_ATOMIC); 1607 if (td != NULL) 1608 td->td_ru.ru_msgsnd++; 1609 if (control != NULL) 1610 clen = control->m_len; 1611 1612 error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags)); 1613 if (error) 1614 goto out; 1615 1616 #ifdef KERN_TLS 1617 tls_send_flag = 0; 1618 tls = ktls_hold(so->so_snd.sb_tls_info); 1619 if (tls != NULL) { 1620 if (tls->mode == TCP_TLS_MODE_SW) 1621 tls_send_flag = PRUS_NOTREADY; 1622 1623 if (control != NULL) { 1624 struct cmsghdr *cm = mtod(control, struct cmsghdr *); 1625 1626 if (clen >= sizeof(*cm) && 1627 cm->cmsg_type == TLS_SET_RECORD_TYPE) { 1628 tls_rtype = *((uint8_t *)CMSG_DATA(cm)); 1629 clen = 0; 1630 m_freem(control); 1631 control = NULL; 1632 atomic = 1; 1633 } 1634 } 1635 1636 if (resid == 0 && !ktls_permit_empty_frames(tls)) { 1637 error = EINVAL; 1638 goto release; 1639 } 1640 } 1641 #endif 1642 1643 restart: 1644 do { 1645 SOCKBUF_LOCK(&so->so_snd); 1646 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1647 SOCKBUF_UNLOCK(&so->so_snd); 1648 error = EPIPE; 1649 goto release; 1650 } 1651 if (so->so_error) { 1652 error = so->so_error; 1653 so->so_error = 0; 1654 SOCKBUF_UNLOCK(&so->so_snd); 1655 goto release; 1656 } 1657 if ((so->so_state & SS_ISCONNECTED) == 0) { 1658 /* 1659 * `sendto' and `sendmsg' is allowed on a connection- 1660 * based socket if it supports implied connect. 1661 * Return ENOTCONN if not connected and no address is 1662 * supplied. 1663 */ 1664 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1665 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1666 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1667 !(resid == 0 && clen != 0)) { 1668 SOCKBUF_UNLOCK(&so->so_snd); 1669 error = ENOTCONN; 1670 goto release; 1671 } 1672 } else if (addr == NULL) { 1673 SOCKBUF_UNLOCK(&so->so_snd); 1674 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1675 error = ENOTCONN; 1676 else 1677 error = EDESTADDRREQ; 1678 goto release; 1679 } 1680 } 1681 space = sbspace(&so->so_snd); 1682 if (flags & MSG_OOB) 1683 space += 1024; 1684 if ((atomic && resid > so->so_snd.sb_hiwat) || 1685 clen > so->so_snd.sb_hiwat) { 1686 SOCKBUF_UNLOCK(&so->so_snd); 1687 error = EMSGSIZE; 1688 goto release; 1689 } 1690 if (space < resid + clen && 1691 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 1692 if ((so->so_state & SS_NBIO) || 1693 (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) { 1694 SOCKBUF_UNLOCK(&so->so_snd); 1695 error = EWOULDBLOCK; 1696 goto release; 1697 } 1698 error = sbwait(so, SO_SND); 1699 SOCKBUF_UNLOCK(&so->so_snd); 1700 if (error) 1701 goto release; 1702 goto restart; 1703 } 1704 SOCKBUF_UNLOCK(&so->so_snd); 1705 space -= clen; 1706 do { 1707 if (uio == NULL) { 1708 resid = 0; 1709 if (flags & MSG_EOR) 1710 top->m_flags |= M_EOR; 1711 #ifdef KERN_TLS 1712 if (tls != NULL) { 1713 ktls_frame(top, tls, &tls_enq_cnt, 1714 tls_rtype); 1715 tls_rtype = TLS_RLTYPE_APP; 1716 } 1717 #endif 1718 } else { 1719 /* 1720 * Copy the data from userland into a mbuf 1721 * chain. If resid is 0, which can happen 1722 * only if we have control to send, then 1723 * a single empty mbuf is returned. This 1724 * is a workaround to prevent protocol send 1725 * methods to panic. 1726 */ 1727 #ifdef KERN_TLS 1728 if (tls != NULL) { 1729 top = m_uiotombuf(uio, M_WAITOK, space, 1730 tls->params.max_frame_len, 1731 M_EXTPG | 1732 ((flags & MSG_EOR) ? M_EOR : 0)); 1733 if (top != NULL) { 1734 ktls_frame(top, tls, 1735 &tls_enq_cnt, tls_rtype); 1736 } 1737 tls_rtype = TLS_RLTYPE_APP; 1738 } else 1739 #endif 1740 top = m_uiotombuf(uio, M_WAITOK, space, 1741 (atomic ? max_hdr : 0), 1742 (atomic ? M_PKTHDR : 0) | 1743 ((flags & MSG_EOR) ? M_EOR : 0)); 1744 if (top == NULL) { 1745 error = EFAULT; /* only possible error */ 1746 goto release; 1747 } 1748 space -= resid - uio->uio_resid; 1749 resid = uio->uio_resid; 1750 } 1751 if (dontroute) { 1752 SOCK_LOCK(so); 1753 so->so_options |= SO_DONTROUTE; 1754 SOCK_UNLOCK(so); 1755 } 1756 /* 1757 * XXX all the SBS_CANTSENDMORE checks previously 1758 * done could be out of date. We could have received 1759 * a reset packet in an interrupt or maybe we slept 1760 * while doing page faults in uiomove() etc. We 1761 * could probably recheck again inside the locking 1762 * protection here, but there are probably other 1763 * places that this also happens. We must rethink 1764 * this. 1765 */ 1766 VNET_SO_ASSERT(so); 1767 1768 pr_send_flag = (flags & MSG_OOB) ? PRUS_OOB : 1769 /* 1770 * If the user set MSG_EOF, the protocol understands 1771 * this flag and nothing left to send then use 1772 * PRU_SEND_EOF instead of PRU_SEND. 1773 */ 1774 ((flags & MSG_EOF) && 1775 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1776 (resid <= 0)) ? 1777 PRUS_EOF : 1778 /* If there is more to send set PRUS_MORETOCOME. */ 1779 (flags & MSG_MORETOCOME) || 1780 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0; 1781 1782 #ifdef KERN_TLS 1783 pr_send_flag |= tls_send_flag; 1784 #endif 1785 1786 error = so->so_proto->pr_send(so, pr_send_flag, top, 1787 addr, control, td); 1788 1789 if (dontroute) { 1790 SOCK_LOCK(so); 1791 so->so_options &= ~SO_DONTROUTE; 1792 SOCK_UNLOCK(so); 1793 } 1794 1795 #ifdef KERN_TLS 1796 if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) { 1797 if (error != 0) { 1798 m_freem(top); 1799 top = NULL; 1800 } else { 1801 soref(so); 1802 ktls_enqueue(top, so, tls_enq_cnt); 1803 } 1804 } 1805 #endif 1806 clen = 0; 1807 control = NULL; 1808 top = NULL; 1809 if (error) 1810 goto release; 1811 } while (resid && space > 0); 1812 } while (resid); 1813 1814 release: 1815 SOCK_IO_SEND_UNLOCK(so); 1816 out: 1817 #ifdef KERN_TLS 1818 if (tls != NULL) 1819 ktls_free(tls); 1820 #endif 1821 if (top != NULL) 1822 m_freem(top); 1823 if (control != NULL) 1824 m_freem(control); 1825 return (error); 1826 } 1827 1828 int 1829 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, 1830 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1831 { 1832 int error; 1833 1834 CURVNET_SET(so->so_vnet); 1835 error = so->so_proto->pr_sosend(so, addr, uio, 1836 top, control, flags, td); 1837 CURVNET_RESTORE(); 1838 return (error); 1839 } 1840 1841 /* 1842 * The part of soreceive() that implements reading non-inline out-of-band 1843 * data from a socket. For more complete comments, see soreceive(), from 1844 * which this code originated. 1845 * 1846 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is 1847 * unable to return an mbuf chain to the caller. 1848 */ 1849 static int 1850 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags) 1851 { 1852 struct protosw *pr = so->so_proto; 1853 struct mbuf *m; 1854 int error; 1855 1856 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); 1857 VNET_SO_ASSERT(so); 1858 1859 m = m_get(M_WAITOK, MT_DATA); 1860 error = pr->pr_rcvoob(so, m, flags & MSG_PEEK); 1861 if (error) 1862 goto bad; 1863 do { 1864 error = uiomove(mtod(m, void *), 1865 (int) min(uio->uio_resid, m->m_len), uio); 1866 m = m_free(m); 1867 } while (uio->uio_resid && error == 0 && m); 1868 bad: 1869 if (m != NULL) 1870 m_freem(m); 1871 return (error); 1872 } 1873 1874 /* 1875 * Following replacement or removal of the first mbuf on the first mbuf chain 1876 * of a socket buffer, push necessary state changes back into the socket 1877 * buffer so that other consumers see the values consistently. 'nextrecord' 1878 * is the callers locally stored value of the original value of 1879 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. 1880 * NOTE: 'nextrecord' may be NULL. 1881 */ 1882 static __inline void 1883 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) 1884 { 1885 1886 SOCKBUF_LOCK_ASSERT(sb); 1887 /* 1888 * First, update for the new value of nextrecord. If necessary, make 1889 * it the first record. 1890 */ 1891 if (sb->sb_mb != NULL) 1892 sb->sb_mb->m_nextpkt = nextrecord; 1893 else 1894 sb->sb_mb = nextrecord; 1895 1896 /* 1897 * Now update any dependent socket buffer fields to reflect the new 1898 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the 1899 * addition of a second clause that takes care of the case where 1900 * sb_mb has been updated, but remains the last record. 1901 */ 1902 if (sb->sb_mb == NULL) { 1903 sb->sb_mbtail = NULL; 1904 sb->sb_lastrecord = NULL; 1905 } else if (sb->sb_mb->m_nextpkt == NULL) 1906 sb->sb_lastrecord = sb->sb_mb; 1907 } 1908 1909 /* 1910 * Implement receive operations on a socket. We depend on the way that 1911 * records are added to the sockbuf by sbappend. In particular, each record 1912 * (mbufs linked through m_next) must begin with an address if the protocol 1913 * so specifies, followed by an optional mbuf or mbufs containing ancillary 1914 * data, and then zero or more mbufs of data. In order to allow parallelism 1915 * between network receive and copying to user space, as well as avoid 1916 * sleeping with a mutex held, we release the socket buffer mutex during the 1917 * user space copy. Although the sockbuf is locked, new data may still be 1918 * appended, and thus we must maintain consistency of the sockbuf during that 1919 * time. 1920 * 1921 * The caller may receive the data as a single mbuf chain by supplying an 1922 * mbuf **mp0 for use in returning the chain. The uio is then used only for 1923 * the count in uio_resid. 1924 */ 1925 int 1926 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio, 1927 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1928 { 1929 struct mbuf *m, **mp; 1930 int flags, error, offset; 1931 ssize_t len; 1932 struct protosw *pr = so->so_proto; 1933 struct mbuf *nextrecord; 1934 int moff, type = 0; 1935 ssize_t orig_resid = uio->uio_resid; 1936 bool report_real_len = false; 1937 1938 mp = mp0; 1939 if (psa != NULL) 1940 *psa = NULL; 1941 if (controlp != NULL) 1942 *controlp = NULL; 1943 if (flagsp != NULL) { 1944 report_real_len = *flagsp & MSG_TRUNC; 1945 *flagsp &= ~MSG_TRUNC; 1946 flags = *flagsp &~ MSG_EOR; 1947 } else 1948 flags = 0; 1949 if (flags & MSG_OOB) 1950 return (soreceive_rcvoob(so, uio, flags)); 1951 if (mp != NULL) 1952 *mp = NULL; 1953 if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING) 1954 && uio->uio_resid) { 1955 VNET_SO_ASSERT(so); 1956 pr->pr_rcvd(so, 0); 1957 } 1958 1959 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags)); 1960 if (error) 1961 return (error); 1962 1963 restart: 1964 SOCKBUF_LOCK(&so->so_rcv); 1965 m = so->so_rcv.sb_mb; 1966 /* 1967 * If we have less data than requested, block awaiting more (subject 1968 * to any timeout) if: 1969 * 1. the current count is less than the low water mark, or 1970 * 2. MSG_DONTWAIT is not set 1971 */ 1972 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 1973 sbavail(&so->so_rcv) < uio->uio_resid) && 1974 sbavail(&so->so_rcv) < so->so_rcv.sb_lowat && 1975 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 1976 KASSERT(m != NULL || !sbavail(&so->so_rcv), 1977 ("receive: m == %p sbavail == %u", 1978 m, sbavail(&so->so_rcv))); 1979 if (so->so_error || so->so_rerror) { 1980 if (m != NULL) 1981 goto dontblock; 1982 if (so->so_error) 1983 error = so->so_error; 1984 else 1985 error = so->so_rerror; 1986 if ((flags & MSG_PEEK) == 0) { 1987 if (so->so_error) 1988 so->so_error = 0; 1989 else 1990 so->so_rerror = 0; 1991 } 1992 SOCKBUF_UNLOCK(&so->so_rcv); 1993 goto release; 1994 } 1995 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1996 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 1997 if (m != NULL) 1998 goto dontblock; 1999 #ifdef KERN_TLS 2000 else if (so->so_rcv.sb_tlsdcc == 0 && 2001 so->so_rcv.sb_tlscc == 0) { 2002 #else 2003 else { 2004 #endif 2005 SOCKBUF_UNLOCK(&so->so_rcv); 2006 goto release; 2007 } 2008 } 2009 for (; m != NULL; m = m->m_next) 2010 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 2011 m = so->so_rcv.sb_mb; 2012 goto dontblock; 2013 } 2014 if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED | 2015 SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 && 2016 (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) { 2017 SOCKBUF_UNLOCK(&so->so_rcv); 2018 error = ENOTCONN; 2019 goto release; 2020 } 2021 if (uio->uio_resid == 0 && !report_real_len) { 2022 SOCKBUF_UNLOCK(&so->so_rcv); 2023 goto release; 2024 } 2025 if ((so->so_state & SS_NBIO) || 2026 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2027 SOCKBUF_UNLOCK(&so->so_rcv); 2028 error = EWOULDBLOCK; 2029 goto release; 2030 } 2031 SBLASTRECORDCHK(&so->so_rcv); 2032 SBLASTMBUFCHK(&so->so_rcv); 2033 error = sbwait(so, SO_RCV); 2034 SOCKBUF_UNLOCK(&so->so_rcv); 2035 if (error) 2036 goto release; 2037 goto restart; 2038 } 2039 dontblock: 2040 /* 2041 * From this point onward, we maintain 'nextrecord' as a cache of the 2042 * pointer to the next record in the socket buffer. We must keep the 2043 * various socket buffer pointers and local stack versions of the 2044 * pointers in sync, pushing out modifications before dropping the 2045 * socket buffer mutex, and re-reading them when picking it up. 2046 * 2047 * Otherwise, we will race with the network stack appending new data 2048 * or records onto the socket buffer by using inconsistent/stale 2049 * versions of the field, possibly resulting in socket buffer 2050 * corruption. 2051 * 2052 * By holding the high-level sblock(), we prevent simultaneous 2053 * readers from pulling off the front of the socket buffer. 2054 */ 2055 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2056 if (uio->uio_td) 2057 uio->uio_td->td_ru.ru_msgrcv++; 2058 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); 2059 SBLASTRECORDCHK(&so->so_rcv); 2060 SBLASTMBUFCHK(&so->so_rcv); 2061 nextrecord = m->m_nextpkt; 2062 if (pr->pr_flags & PR_ADDR) { 2063 KASSERT(m->m_type == MT_SONAME, 2064 ("m->m_type == %d", m->m_type)); 2065 orig_resid = 0; 2066 if (psa != NULL) 2067 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2068 M_NOWAIT); 2069 if (flags & MSG_PEEK) { 2070 m = m->m_next; 2071 } else { 2072 sbfree(&so->so_rcv, m); 2073 so->so_rcv.sb_mb = m_free(m); 2074 m = so->so_rcv.sb_mb; 2075 sockbuf_pushsync(&so->so_rcv, nextrecord); 2076 } 2077 } 2078 2079 /* 2080 * Process one or more MT_CONTROL mbufs present before any data mbufs 2081 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 2082 * just copy the data; if !MSG_PEEK, we call into the protocol to 2083 * perform externalization (or freeing if controlp == NULL). 2084 */ 2085 if (m != NULL && m->m_type == MT_CONTROL) { 2086 struct mbuf *cm = NULL, *cmn; 2087 struct mbuf **cme = &cm; 2088 #ifdef KERN_TLS 2089 struct cmsghdr *cmsg; 2090 struct tls_get_record tgr; 2091 2092 /* 2093 * For MSG_TLSAPPDATA, check for an alert record. 2094 * If found, return ENXIO without removing 2095 * it from the receive queue. This allows a subsequent 2096 * call without MSG_TLSAPPDATA to receive it. 2097 * Note that, for TLS, there should only be a single 2098 * control mbuf with the TLS_GET_RECORD message in it. 2099 */ 2100 if (flags & MSG_TLSAPPDATA) { 2101 cmsg = mtod(m, struct cmsghdr *); 2102 if (cmsg->cmsg_type == TLS_GET_RECORD && 2103 cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) { 2104 memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr)); 2105 if (__predict_false(tgr.tls_type == 2106 TLS_RLTYPE_ALERT)) { 2107 SOCKBUF_UNLOCK(&so->so_rcv); 2108 error = ENXIO; 2109 goto release; 2110 } 2111 } 2112 } 2113 #endif 2114 2115 do { 2116 if (flags & MSG_PEEK) { 2117 if (controlp != NULL) { 2118 *controlp = m_copym(m, 0, m->m_len, 2119 M_NOWAIT); 2120 controlp = &(*controlp)->m_next; 2121 } 2122 m = m->m_next; 2123 } else { 2124 sbfree(&so->so_rcv, m); 2125 so->so_rcv.sb_mb = m->m_next; 2126 m->m_next = NULL; 2127 *cme = m; 2128 cme = &(*cme)->m_next; 2129 m = so->so_rcv.sb_mb; 2130 } 2131 } while (m != NULL && m->m_type == MT_CONTROL); 2132 if ((flags & MSG_PEEK) == 0) 2133 sockbuf_pushsync(&so->so_rcv, nextrecord); 2134 while (cm != NULL) { 2135 cmn = cm->m_next; 2136 cm->m_next = NULL; 2137 if (pr->pr_domain->dom_externalize != NULL) { 2138 SOCKBUF_UNLOCK(&so->so_rcv); 2139 VNET_SO_ASSERT(so); 2140 error = (*pr->pr_domain->dom_externalize) 2141 (cm, controlp, flags); 2142 SOCKBUF_LOCK(&so->so_rcv); 2143 } else if (controlp != NULL) 2144 *controlp = cm; 2145 else 2146 m_freem(cm); 2147 if (controlp != NULL) { 2148 while (*controlp != NULL) 2149 controlp = &(*controlp)->m_next; 2150 } 2151 cm = cmn; 2152 } 2153 if (m != NULL) 2154 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 2155 else 2156 nextrecord = so->so_rcv.sb_mb; 2157 orig_resid = 0; 2158 } 2159 if (m != NULL) { 2160 if ((flags & MSG_PEEK) == 0) { 2161 KASSERT(m->m_nextpkt == nextrecord, 2162 ("soreceive: post-control, nextrecord !sync")); 2163 if (nextrecord == NULL) { 2164 KASSERT(so->so_rcv.sb_mb == m, 2165 ("soreceive: post-control, sb_mb!=m")); 2166 KASSERT(so->so_rcv.sb_lastrecord == m, 2167 ("soreceive: post-control, lastrecord!=m")); 2168 } 2169 } 2170 type = m->m_type; 2171 if (type == MT_OOBDATA) 2172 flags |= MSG_OOB; 2173 } else { 2174 if ((flags & MSG_PEEK) == 0) { 2175 KASSERT(so->so_rcv.sb_mb == nextrecord, 2176 ("soreceive: sb_mb != nextrecord")); 2177 if (so->so_rcv.sb_mb == NULL) { 2178 KASSERT(so->so_rcv.sb_lastrecord == NULL, 2179 ("soreceive: sb_lastercord != NULL")); 2180 } 2181 } 2182 } 2183 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2184 SBLASTRECORDCHK(&so->so_rcv); 2185 SBLASTMBUFCHK(&so->so_rcv); 2186 2187 /* 2188 * Now continue to read any data mbufs off of the head of the socket 2189 * buffer until the read request is satisfied. Note that 'type' is 2190 * used to store the type of any mbuf reads that have happened so far 2191 * such that soreceive() can stop reading if the type changes, which 2192 * causes soreceive() to return only one of regular data and inline 2193 * out-of-band data in a single socket receive operation. 2194 */ 2195 moff = 0; 2196 offset = 0; 2197 while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0 2198 && error == 0) { 2199 /* 2200 * If the type of mbuf has changed since the last mbuf 2201 * examined ('type'), end the receive operation. 2202 */ 2203 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2204 if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) { 2205 if (type != m->m_type) 2206 break; 2207 } else if (type == MT_OOBDATA) 2208 break; 2209 else 2210 KASSERT(m->m_type == MT_DATA, 2211 ("m->m_type == %d", m->m_type)); 2212 so->so_rcv.sb_state &= ~SBS_RCVATMARK; 2213 len = uio->uio_resid; 2214 if (so->so_oobmark && len > so->so_oobmark - offset) 2215 len = so->so_oobmark - offset; 2216 if (len > m->m_len - moff) 2217 len = m->m_len - moff; 2218 /* 2219 * If mp is set, just pass back the mbufs. Otherwise copy 2220 * them out via the uio, then free. Sockbuf must be 2221 * consistent here (points to current mbuf, it points to next 2222 * record) when we drop priority; we must note any additions 2223 * to the sockbuf when we block interrupts again. 2224 */ 2225 if (mp == NULL) { 2226 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2227 SBLASTRECORDCHK(&so->so_rcv); 2228 SBLASTMBUFCHK(&so->so_rcv); 2229 SOCKBUF_UNLOCK(&so->so_rcv); 2230 if ((m->m_flags & M_EXTPG) != 0) 2231 error = m_unmapped_uiomove(m, moff, uio, 2232 (int)len); 2233 else 2234 error = uiomove(mtod(m, char *) + moff, 2235 (int)len, uio); 2236 SOCKBUF_LOCK(&so->so_rcv); 2237 if (error) { 2238 /* 2239 * The MT_SONAME mbuf has already been removed 2240 * from the record, so it is necessary to 2241 * remove the data mbufs, if any, to preserve 2242 * the invariant in the case of PR_ADDR that 2243 * requires MT_SONAME mbufs at the head of 2244 * each record. 2245 */ 2246 if (pr->pr_flags & PR_ATOMIC && 2247 ((flags & MSG_PEEK) == 0)) 2248 (void)sbdroprecord_locked(&so->so_rcv); 2249 SOCKBUF_UNLOCK(&so->so_rcv); 2250 goto release; 2251 } 2252 } else 2253 uio->uio_resid -= len; 2254 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2255 if (len == m->m_len - moff) { 2256 if (m->m_flags & M_EOR) 2257 flags |= MSG_EOR; 2258 if (flags & MSG_PEEK) { 2259 m = m->m_next; 2260 moff = 0; 2261 } else { 2262 nextrecord = m->m_nextpkt; 2263 sbfree(&so->so_rcv, m); 2264 if (mp != NULL) { 2265 m->m_nextpkt = NULL; 2266 *mp = m; 2267 mp = &m->m_next; 2268 so->so_rcv.sb_mb = m = m->m_next; 2269 *mp = NULL; 2270 } else { 2271 so->so_rcv.sb_mb = m_free(m); 2272 m = so->so_rcv.sb_mb; 2273 } 2274 sockbuf_pushsync(&so->so_rcv, nextrecord); 2275 SBLASTRECORDCHK(&so->so_rcv); 2276 SBLASTMBUFCHK(&so->so_rcv); 2277 } 2278 } else { 2279 if (flags & MSG_PEEK) 2280 moff += len; 2281 else { 2282 if (mp != NULL) { 2283 if (flags & MSG_DONTWAIT) { 2284 *mp = m_copym(m, 0, len, 2285 M_NOWAIT); 2286 if (*mp == NULL) { 2287 /* 2288 * m_copym() couldn't 2289 * allocate an mbuf. 2290 * Adjust uio_resid back 2291 * (it was adjusted 2292 * down by len bytes, 2293 * which we didn't end 2294 * up "copying" over). 2295 */ 2296 uio->uio_resid += len; 2297 break; 2298 } 2299 } else { 2300 SOCKBUF_UNLOCK(&so->so_rcv); 2301 *mp = m_copym(m, 0, len, 2302 M_WAITOK); 2303 SOCKBUF_LOCK(&so->so_rcv); 2304 } 2305 } 2306 sbcut_locked(&so->so_rcv, len); 2307 } 2308 } 2309 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2310 if (so->so_oobmark) { 2311 if ((flags & MSG_PEEK) == 0) { 2312 so->so_oobmark -= len; 2313 if (so->so_oobmark == 0) { 2314 so->so_rcv.sb_state |= SBS_RCVATMARK; 2315 break; 2316 } 2317 } else { 2318 offset += len; 2319 if (offset == so->so_oobmark) 2320 break; 2321 } 2322 } 2323 if (flags & MSG_EOR) 2324 break; 2325 /* 2326 * If the MSG_WAITALL flag is set (for non-atomic socket), we 2327 * must not quit until "uio->uio_resid == 0" or an error 2328 * termination. If a signal/timeout occurs, return with a 2329 * short count but without error. Keep sockbuf locked 2330 * against other readers. 2331 */ 2332 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 2333 !sosendallatonce(so) && nextrecord == NULL) { 2334 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2335 if (so->so_error || so->so_rerror || 2336 so->so_rcv.sb_state & SBS_CANTRCVMORE) 2337 break; 2338 /* 2339 * Notify the protocol that some data has been 2340 * drained before blocking. 2341 */ 2342 if (pr->pr_flags & PR_WANTRCVD) { 2343 SOCKBUF_UNLOCK(&so->so_rcv); 2344 VNET_SO_ASSERT(so); 2345 pr->pr_rcvd(so, flags); 2346 SOCKBUF_LOCK(&so->so_rcv); 2347 } 2348 SBLASTRECORDCHK(&so->so_rcv); 2349 SBLASTMBUFCHK(&so->so_rcv); 2350 /* 2351 * We could receive some data while was notifying 2352 * the protocol. Skip blocking in this case. 2353 */ 2354 if (so->so_rcv.sb_mb == NULL) { 2355 error = sbwait(so, SO_RCV); 2356 if (error) { 2357 SOCKBUF_UNLOCK(&so->so_rcv); 2358 goto release; 2359 } 2360 } 2361 m = so->so_rcv.sb_mb; 2362 if (m != NULL) 2363 nextrecord = m->m_nextpkt; 2364 } 2365 } 2366 2367 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2368 if (m != NULL && pr->pr_flags & PR_ATOMIC) { 2369 if (report_real_len) 2370 uio->uio_resid -= m_length(m, NULL) - moff; 2371 flags |= MSG_TRUNC; 2372 if ((flags & MSG_PEEK) == 0) 2373 (void) sbdroprecord_locked(&so->so_rcv); 2374 } 2375 if ((flags & MSG_PEEK) == 0) { 2376 if (m == NULL) { 2377 /* 2378 * First part is an inline SB_EMPTY_FIXUP(). Second 2379 * part makes sure sb_lastrecord is up-to-date if 2380 * there is still data in the socket buffer. 2381 */ 2382 so->so_rcv.sb_mb = nextrecord; 2383 if (so->so_rcv.sb_mb == NULL) { 2384 so->so_rcv.sb_mbtail = NULL; 2385 so->so_rcv.sb_lastrecord = NULL; 2386 } else if (nextrecord->m_nextpkt == NULL) 2387 so->so_rcv.sb_lastrecord = nextrecord; 2388 } 2389 SBLASTRECORDCHK(&so->so_rcv); 2390 SBLASTMBUFCHK(&so->so_rcv); 2391 /* 2392 * If soreceive() is being done from the socket callback, 2393 * then don't need to generate ACK to peer to update window, 2394 * since ACK will be generated on return to TCP. 2395 */ 2396 if (!(flags & MSG_SOCALLBCK) && 2397 (pr->pr_flags & PR_WANTRCVD)) { 2398 SOCKBUF_UNLOCK(&so->so_rcv); 2399 VNET_SO_ASSERT(so); 2400 pr->pr_rcvd(so, flags); 2401 SOCKBUF_LOCK(&so->so_rcv); 2402 } 2403 } 2404 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2405 if (orig_resid == uio->uio_resid && orig_resid && 2406 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { 2407 SOCKBUF_UNLOCK(&so->so_rcv); 2408 goto restart; 2409 } 2410 SOCKBUF_UNLOCK(&so->so_rcv); 2411 2412 if (flagsp != NULL) 2413 *flagsp |= flags; 2414 release: 2415 SOCK_IO_RECV_UNLOCK(so); 2416 return (error); 2417 } 2418 2419 /* 2420 * Optimized version of soreceive() for stream (TCP) sockets. 2421 */ 2422 int 2423 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio, 2424 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2425 { 2426 int len = 0, error = 0, flags, oresid; 2427 struct sockbuf *sb; 2428 struct mbuf *m, *n = NULL; 2429 2430 /* We only do stream sockets. */ 2431 if (so->so_type != SOCK_STREAM) 2432 return (EINVAL); 2433 if (psa != NULL) 2434 *psa = NULL; 2435 if (flagsp != NULL) 2436 flags = *flagsp &~ MSG_EOR; 2437 else 2438 flags = 0; 2439 if (controlp != NULL) 2440 *controlp = NULL; 2441 if (flags & MSG_OOB) 2442 return (soreceive_rcvoob(so, uio, flags)); 2443 if (mp0 != NULL) 2444 *mp0 = NULL; 2445 2446 sb = &so->so_rcv; 2447 2448 #ifdef KERN_TLS 2449 /* 2450 * KTLS store TLS records as records with a control message to 2451 * describe the framing. 2452 * 2453 * We check once here before acquiring locks to optimize the 2454 * common case. 2455 */ 2456 if (sb->sb_tls_info != NULL) 2457 return (soreceive_generic(so, psa, uio, mp0, controlp, 2458 flagsp)); 2459 #endif 2460 2461 /* Prevent other readers from entering the socket. */ 2462 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags)); 2463 if (error) 2464 return (error); 2465 SOCKBUF_LOCK(sb); 2466 2467 #ifdef KERN_TLS 2468 if (sb->sb_tls_info != NULL) { 2469 SOCKBUF_UNLOCK(sb); 2470 SOCK_IO_RECV_UNLOCK(so); 2471 return (soreceive_generic(so, psa, uio, mp0, controlp, 2472 flagsp)); 2473 } 2474 #endif 2475 2476 /* Easy one, no space to copyout anything. */ 2477 if (uio->uio_resid == 0) { 2478 error = EINVAL; 2479 goto out; 2480 } 2481 oresid = uio->uio_resid; 2482 2483 /* We will never ever get anything unless we are or were connected. */ 2484 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 2485 error = ENOTCONN; 2486 goto out; 2487 } 2488 2489 restart: 2490 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2491 2492 /* Abort if socket has reported problems. */ 2493 if (so->so_error) { 2494 if (sbavail(sb) > 0) 2495 goto deliver; 2496 if (oresid > uio->uio_resid) 2497 goto out; 2498 error = so->so_error; 2499 if (!(flags & MSG_PEEK)) 2500 so->so_error = 0; 2501 goto out; 2502 } 2503 2504 /* Door is closed. Deliver what is left, if any. */ 2505 if (sb->sb_state & SBS_CANTRCVMORE) { 2506 if (sbavail(sb) > 0) 2507 goto deliver; 2508 else 2509 goto out; 2510 } 2511 2512 /* Socket buffer is empty and we shall not block. */ 2513 if (sbavail(sb) == 0 && 2514 ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) { 2515 error = EAGAIN; 2516 goto out; 2517 } 2518 2519 /* Socket buffer got some data that we shall deliver now. */ 2520 if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) && 2521 ((so->so_state & SS_NBIO) || 2522 (flags & (MSG_DONTWAIT|MSG_NBIO)) || 2523 sbavail(sb) >= sb->sb_lowat || 2524 sbavail(sb) >= uio->uio_resid || 2525 sbavail(sb) >= sb->sb_hiwat) ) { 2526 goto deliver; 2527 } 2528 2529 /* On MSG_WAITALL we must wait until all data or error arrives. */ 2530 if ((flags & MSG_WAITALL) && 2531 (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat)) 2532 goto deliver; 2533 2534 /* 2535 * Wait and block until (more) data comes in. 2536 * NB: Drops the sockbuf lock during wait. 2537 */ 2538 error = sbwait(so, SO_RCV); 2539 if (error) 2540 goto out; 2541 goto restart; 2542 2543 deliver: 2544 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2545 KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__)); 2546 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__)); 2547 2548 /* Statistics. */ 2549 if (uio->uio_td) 2550 uio->uio_td->td_ru.ru_msgrcv++; 2551 2552 /* Fill uio until full or current end of socket buffer is reached. */ 2553 len = min(uio->uio_resid, sbavail(sb)); 2554 if (mp0 != NULL) { 2555 /* Dequeue as many mbufs as possible. */ 2556 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) { 2557 if (*mp0 == NULL) 2558 *mp0 = sb->sb_mb; 2559 else 2560 m_cat(*mp0, sb->sb_mb); 2561 for (m = sb->sb_mb; 2562 m != NULL && m->m_len <= len; 2563 m = m->m_next) { 2564 KASSERT(!(m->m_flags & M_NOTAVAIL), 2565 ("%s: m %p not available", __func__, m)); 2566 len -= m->m_len; 2567 uio->uio_resid -= m->m_len; 2568 sbfree(sb, m); 2569 n = m; 2570 } 2571 n->m_next = NULL; 2572 sb->sb_mb = m; 2573 sb->sb_lastrecord = sb->sb_mb; 2574 if (sb->sb_mb == NULL) 2575 SB_EMPTY_FIXUP(sb); 2576 } 2577 /* Copy the remainder. */ 2578 if (len > 0) { 2579 KASSERT(sb->sb_mb != NULL, 2580 ("%s: len > 0 && sb->sb_mb empty", __func__)); 2581 2582 m = m_copym(sb->sb_mb, 0, len, M_NOWAIT); 2583 if (m == NULL) 2584 len = 0; /* Don't flush data from sockbuf. */ 2585 else 2586 uio->uio_resid -= len; 2587 if (*mp0 != NULL) 2588 m_cat(*mp0, m); 2589 else 2590 *mp0 = m; 2591 if (*mp0 == NULL) { 2592 error = ENOBUFS; 2593 goto out; 2594 } 2595 } 2596 } else { 2597 /* NB: Must unlock socket buffer as uiomove may sleep. */ 2598 SOCKBUF_UNLOCK(sb); 2599 error = m_mbuftouio(uio, sb->sb_mb, len); 2600 SOCKBUF_LOCK(sb); 2601 if (error) 2602 goto out; 2603 } 2604 SBLASTRECORDCHK(sb); 2605 SBLASTMBUFCHK(sb); 2606 2607 /* 2608 * Remove the delivered data from the socket buffer unless we 2609 * were only peeking. 2610 */ 2611 if (!(flags & MSG_PEEK)) { 2612 if (len > 0) 2613 sbdrop_locked(sb, len); 2614 2615 /* Notify protocol that we drained some data. */ 2616 if ((so->so_proto->pr_flags & PR_WANTRCVD) && 2617 (((flags & MSG_WAITALL) && uio->uio_resid > 0) || 2618 !(flags & MSG_SOCALLBCK))) { 2619 SOCKBUF_UNLOCK(sb); 2620 VNET_SO_ASSERT(so); 2621 so->so_proto->pr_rcvd(so, flags); 2622 SOCKBUF_LOCK(sb); 2623 } 2624 } 2625 2626 /* 2627 * For MSG_WAITALL we may have to loop again and wait for 2628 * more data to come in. 2629 */ 2630 if ((flags & MSG_WAITALL) && uio->uio_resid > 0) 2631 goto restart; 2632 out: 2633 SBLASTRECORDCHK(sb); 2634 SBLASTMBUFCHK(sb); 2635 SOCKBUF_UNLOCK(sb); 2636 SOCK_IO_RECV_UNLOCK(so); 2637 return (error); 2638 } 2639 2640 /* 2641 * Optimized version of soreceive() for simple datagram cases from userspace. 2642 * Unlike in the stream case, we're able to drop a datagram if copyout() 2643 * fails, and because we handle datagrams atomically, we don't need to use a 2644 * sleep lock to prevent I/O interlacing. 2645 */ 2646 int 2647 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio, 2648 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2649 { 2650 struct mbuf *m, *m2; 2651 int flags, error; 2652 ssize_t len; 2653 struct protosw *pr = so->so_proto; 2654 struct mbuf *nextrecord; 2655 2656 if (psa != NULL) 2657 *psa = NULL; 2658 if (controlp != NULL) 2659 *controlp = NULL; 2660 if (flagsp != NULL) 2661 flags = *flagsp &~ MSG_EOR; 2662 else 2663 flags = 0; 2664 2665 /* 2666 * For any complicated cases, fall back to the full 2667 * soreceive_generic(). 2668 */ 2669 if (mp0 != NULL || (flags & (MSG_PEEK | MSG_OOB | MSG_TRUNC))) 2670 return (soreceive_generic(so, psa, uio, mp0, controlp, 2671 flagsp)); 2672 2673 /* 2674 * Enforce restrictions on use. 2675 */ 2676 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0, 2677 ("soreceive_dgram: wantrcvd")); 2678 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic")); 2679 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0, 2680 ("soreceive_dgram: SBS_RCVATMARK")); 2681 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0, 2682 ("soreceive_dgram: P_CONNREQUIRED")); 2683 2684 /* 2685 * Loop blocking while waiting for a datagram. 2686 */ 2687 SOCKBUF_LOCK(&so->so_rcv); 2688 while ((m = so->so_rcv.sb_mb) == NULL) { 2689 KASSERT(sbavail(&so->so_rcv) == 0, 2690 ("soreceive_dgram: sb_mb NULL but sbavail %u", 2691 sbavail(&so->so_rcv))); 2692 if (so->so_error) { 2693 error = so->so_error; 2694 so->so_error = 0; 2695 SOCKBUF_UNLOCK(&so->so_rcv); 2696 return (error); 2697 } 2698 if (so->so_rcv.sb_state & SBS_CANTRCVMORE || 2699 uio->uio_resid == 0) { 2700 SOCKBUF_UNLOCK(&so->so_rcv); 2701 return (0); 2702 } 2703 if ((so->so_state & SS_NBIO) || 2704 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2705 SOCKBUF_UNLOCK(&so->so_rcv); 2706 return (EWOULDBLOCK); 2707 } 2708 SBLASTRECORDCHK(&so->so_rcv); 2709 SBLASTMBUFCHK(&so->so_rcv); 2710 error = sbwait(so, SO_RCV); 2711 if (error) { 2712 SOCKBUF_UNLOCK(&so->so_rcv); 2713 return (error); 2714 } 2715 } 2716 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2717 2718 if (uio->uio_td) 2719 uio->uio_td->td_ru.ru_msgrcv++; 2720 SBLASTRECORDCHK(&so->so_rcv); 2721 SBLASTMBUFCHK(&so->so_rcv); 2722 nextrecord = m->m_nextpkt; 2723 if (nextrecord == NULL) { 2724 KASSERT(so->so_rcv.sb_lastrecord == m, 2725 ("soreceive_dgram: lastrecord != m")); 2726 } 2727 2728 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord, 2729 ("soreceive_dgram: m_nextpkt != nextrecord")); 2730 2731 /* 2732 * Pull 'm' and its chain off the front of the packet queue. 2733 */ 2734 so->so_rcv.sb_mb = NULL; 2735 sockbuf_pushsync(&so->so_rcv, nextrecord); 2736 2737 /* 2738 * Walk 'm's chain and free that many bytes from the socket buffer. 2739 */ 2740 for (m2 = m; m2 != NULL; m2 = m2->m_next) 2741 sbfree(&so->so_rcv, m2); 2742 2743 /* 2744 * Do a few last checks before we let go of the lock. 2745 */ 2746 SBLASTRECORDCHK(&so->so_rcv); 2747 SBLASTMBUFCHK(&so->so_rcv); 2748 SOCKBUF_UNLOCK(&so->so_rcv); 2749 2750 if (pr->pr_flags & PR_ADDR) { 2751 KASSERT(m->m_type == MT_SONAME, 2752 ("m->m_type == %d", m->m_type)); 2753 if (psa != NULL) 2754 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2755 M_NOWAIT); 2756 m = m_free(m); 2757 } 2758 if (m == NULL) { 2759 /* XXXRW: Can this happen? */ 2760 return (0); 2761 } 2762 2763 /* 2764 * Packet to copyout() is now in 'm' and it is disconnected from the 2765 * queue. 2766 * 2767 * Process one or more MT_CONTROL mbufs present before any data mbufs 2768 * in the first mbuf chain on the socket buffer. We call into the 2769 * protocol to perform externalization (or freeing if controlp == 2770 * NULL). In some cases there can be only MT_CONTROL mbufs without 2771 * MT_DATA mbufs. 2772 */ 2773 if (m->m_type == MT_CONTROL) { 2774 struct mbuf *cm = NULL, *cmn; 2775 struct mbuf **cme = &cm; 2776 2777 do { 2778 m2 = m->m_next; 2779 m->m_next = NULL; 2780 *cme = m; 2781 cme = &(*cme)->m_next; 2782 m = m2; 2783 } while (m != NULL && m->m_type == MT_CONTROL); 2784 while (cm != NULL) { 2785 cmn = cm->m_next; 2786 cm->m_next = NULL; 2787 if (pr->pr_domain->dom_externalize != NULL) { 2788 error = (*pr->pr_domain->dom_externalize) 2789 (cm, controlp, flags); 2790 } else if (controlp != NULL) 2791 *controlp = cm; 2792 else 2793 m_freem(cm); 2794 if (controlp != NULL) { 2795 while (*controlp != NULL) 2796 controlp = &(*controlp)->m_next; 2797 } 2798 cm = cmn; 2799 } 2800 } 2801 KASSERT(m == NULL || m->m_type == MT_DATA, 2802 ("soreceive_dgram: !data")); 2803 while (m != NULL && uio->uio_resid > 0) { 2804 len = uio->uio_resid; 2805 if (len > m->m_len) 2806 len = m->m_len; 2807 error = uiomove(mtod(m, char *), (int)len, uio); 2808 if (error) { 2809 m_freem(m); 2810 return (error); 2811 } 2812 if (len == m->m_len) 2813 m = m_free(m); 2814 else { 2815 m->m_data += len; 2816 m->m_len -= len; 2817 } 2818 } 2819 if (m != NULL) { 2820 flags |= MSG_TRUNC; 2821 m_freem(m); 2822 } 2823 if (flagsp != NULL) 2824 *flagsp |= flags; 2825 return (0); 2826 } 2827 2828 int 2829 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, 2830 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2831 { 2832 int error; 2833 2834 CURVNET_SET(so->so_vnet); 2835 error = so->so_proto->pr_soreceive(so, psa, uio, mp0, controlp, flagsp); 2836 CURVNET_RESTORE(); 2837 return (error); 2838 } 2839 2840 int 2841 soshutdown(struct socket *so, int how) 2842 { 2843 struct protosw *pr; 2844 int error, soerror_enotconn; 2845 2846 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 2847 return (EINVAL); 2848 2849 soerror_enotconn = 0; 2850 SOCK_LOCK(so); 2851 if ((so->so_state & 2852 (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) { 2853 /* 2854 * POSIX mandates us to return ENOTCONN when shutdown(2) is 2855 * invoked on a datagram sockets, however historically we would 2856 * actually tear socket down. This is known to be leveraged by 2857 * some applications to unblock process waiting in recvXXX(2) 2858 * by other process that it shares that socket with. Try to meet 2859 * both backward-compatibility and POSIX requirements by forcing 2860 * ENOTCONN but still asking protocol to perform pru_shutdown(). 2861 */ 2862 if (so->so_type != SOCK_DGRAM && !SOLISTENING(so)) { 2863 SOCK_UNLOCK(so); 2864 return (ENOTCONN); 2865 } 2866 soerror_enotconn = 1; 2867 } 2868 2869 if (SOLISTENING(so)) { 2870 if (how != SHUT_WR) { 2871 so->so_error = ECONNABORTED; 2872 solisten_wakeup(so); /* unlocks so */ 2873 } else { 2874 SOCK_UNLOCK(so); 2875 } 2876 goto done; 2877 } 2878 SOCK_UNLOCK(so); 2879 2880 CURVNET_SET(so->so_vnet); 2881 pr = so->so_proto; 2882 if (pr->pr_flush != NULL) 2883 pr->pr_flush(so, how); 2884 if (how != SHUT_WR) 2885 sorflush(so); 2886 if (how != SHUT_RD) { 2887 error = pr->pr_shutdown(so); 2888 wakeup(&so->so_timeo); 2889 CURVNET_RESTORE(); 2890 return ((error == 0 && soerror_enotconn) ? ENOTCONN : error); 2891 } 2892 wakeup(&so->so_timeo); 2893 CURVNET_RESTORE(); 2894 2895 done: 2896 return (soerror_enotconn ? ENOTCONN : 0); 2897 } 2898 2899 void 2900 sorflush(struct socket *so) 2901 { 2902 struct protosw *pr; 2903 int error; 2904 2905 VNET_SO_ASSERT(so); 2906 2907 /* 2908 * Dislodge threads currently blocked in receive and wait to acquire 2909 * a lock against other simultaneous readers before clearing the 2910 * socket buffer. Don't let our acquire be interrupted by a signal 2911 * despite any existing socket disposition on interruptable waiting. 2912 */ 2913 socantrcvmore(so); 2914 2915 error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR); 2916 if (error != 0) { 2917 KASSERT(SOLISTENING(so), 2918 ("%s: soiolock(%p) failed", __func__, so)); 2919 return; 2920 } 2921 2922 pr = so->so_proto; 2923 if (pr->pr_flags & PR_RIGHTS) { 2924 MPASS(pr->pr_domain->dom_dispose != NULL); 2925 (*pr->pr_domain->dom_dispose)(so); 2926 } else { 2927 sbrelease(so, SO_RCV); 2928 SOCK_IO_RECV_UNLOCK(so); 2929 } 2930 2931 } 2932 2933 /* 2934 * Wrapper for Socket established helper hook. 2935 * Parameters: socket, context of the hook point, hook id. 2936 */ 2937 static int inline 2938 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id) 2939 { 2940 struct socket_hhook_data hhook_data = { 2941 .so = so, 2942 .hctx = hctx, 2943 .m = NULL, 2944 .status = 0 2945 }; 2946 2947 CURVNET_SET(so->so_vnet); 2948 HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd); 2949 CURVNET_RESTORE(); 2950 2951 /* Ugly but needed, since hhooks return void for now */ 2952 return (hhook_data.status); 2953 } 2954 2955 /* 2956 * Perhaps this routine, and sooptcopyout(), below, ought to come in an 2957 * additional variant to handle the case where the option value needs to be 2958 * some kind of integer, but not a specific size. In addition to their use 2959 * here, these functions are also called by the protocol-level pr_ctloutput() 2960 * routines. 2961 */ 2962 int 2963 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen) 2964 { 2965 size_t valsize; 2966 2967 /* 2968 * If the user gives us more than we wanted, we ignore it, but if we 2969 * don't get the minimum length the caller wants, we return EINVAL. 2970 * On success, sopt->sopt_valsize is set to however much we actually 2971 * retrieved. 2972 */ 2973 if ((valsize = sopt->sopt_valsize) < minlen) 2974 return EINVAL; 2975 if (valsize > len) 2976 sopt->sopt_valsize = valsize = len; 2977 2978 if (sopt->sopt_td != NULL) 2979 return (copyin(sopt->sopt_val, buf, valsize)); 2980 2981 bcopy(sopt->sopt_val, buf, valsize); 2982 return (0); 2983 } 2984 2985 /* 2986 * Kernel version of setsockopt(2). 2987 * 2988 * XXX: optlen is size_t, not socklen_t 2989 */ 2990 int 2991 so_setsockopt(struct socket *so, int level, int optname, void *optval, 2992 size_t optlen) 2993 { 2994 struct sockopt sopt; 2995 2996 sopt.sopt_level = level; 2997 sopt.sopt_name = optname; 2998 sopt.sopt_dir = SOPT_SET; 2999 sopt.sopt_val = optval; 3000 sopt.sopt_valsize = optlen; 3001 sopt.sopt_td = NULL; 3002 return (sosetopt(so, &sopt)); 3003 } 3004 3005 int 3006 sosetopt(struct socket *so, struct sockopt *sopt) 3007 { 3008 int error, optval; 3009 struct linger l; 3010 struct timeval tv; 3011 sbintime_t val, *valp; 3012 uint32_t val32; 3013 #ifdef MAC 3014 struct mac extmac; 3015 #endif 3016 3017 CURVNET_SET(so->so_vnet); 3018 error = 0; 3019 if (sopt->sopt_level != SOL_SOCKET) { 3020 if (so->so_proto->pr_ctloutput != NULL) 3021 error = (*so->so_proto->pr_ctloutput)(so, sopt); 3022 else 3023 error = ENOPROTOOPT; 3024 } else { 3025 switch (sopt->sopt_name) { 3026 case SO_ACCEPTFILTER: 3027 error = accept_filt_setopt(so, sopt); 3028 if (error) 3029 goto bad; 3030 break; 3031 3032 case SO_LINGER: 3033 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 3034 if (error) 3035 goto bad; 3036 if (l.l_linger < 0 || 3037 l.l_linger > USHRT_MAX || 3038 l.l_linger > (INT_MAX / hz)) { 3039 error = EDOM; 3040 goto bad; 3041 } 3042 SOCK_LOCK(so); 3043 so->so_linger = l.l_linger; 3044 if (l.l_onoff) 3045 so->so_options |= SO_LINGER; 3046 else 3047 so->so_options &= ~SO_LINGER; 3048 SOCK_UNLOCK(so); 3049 break; 3050 3051 case SO_DEBUG: 3052 case SO_KEEPALIVE: 3053 case SO_DONTROUTE: 3054 case SO_USELOOPBACK: 3055 case SO_BROADCAST: 3056 case SO_REUSEADDR: 3057 case SO_REUSEPORT: 3058 case SO_REUSEPORT_LB: 3059 case SO_OOBINLINE: 3060 case SO_TIMESTAMP: 3061 case SO_BINTIME: 3062 case SO_NOSIGPIPE: 3063 case SO_NO_DDP: 3064 case SO_NO_OFFLOAD: 3065 case SO_RERROR: 3066 error = sooptcopyin(sopt, &optval, sizeof optval, 3067 sizeof optval); 3068 if (error) 3069 goto bad; 3070 SOCK_LOCK(so); 3071 if (optval) 3072 so->so_options |= sopt->sopt_name; 3073 else 3074 so->so_options &= ~sopt->sopt_name; 3075 SOCK_UNLOCK(so); 3076 break; 3077 3078 case SO_SETFIB: 3079 error = sooptcopyin(sopt, &optval, sizeof optval, 3080 sizeof optval); 3081 if (error) 3082 goto bad; 3083 3084 if (optval < 0 || optval >= rt_numfibs) { 3085 error = EINVAL; 3086 goto bad; 3087 } 3088 if (((so->so_proto->pr_domain->dom_family == PF_INET) || 3089 (so->so_proto->pr_domain->dom_family == PF_INET6) || 3090 (so->so_proto->pr_domain->dom_family == PF_ROUTE))) 3091 so->so_fibnum = optval; 3092 else 3093 so->so_fibnum = 0; 3094 break; 3095 3096 case SO_USER_COOKIE: 3097 error = sooptcopyin(sopt, &val32, sizeof val32, 3098 sizeof val32); 3099 if (error) 3100 goto bad; 3101 so->so_user_cookie = val32; 3102 break; 3103 3104 case SO_SNDBUF: 3105 case SO_RCVBUF: 3106 case SO_SNDLOWAT: 3107 case SO_RCVLOWAT: 3108 error = sooptcopyin(sopt, &optval, sizeof optval, 3109 sizeof optval); 3110 if (error) 3111 goto bad; 3112 3113 /* 3114 * Values < 1 make no sense for any of these options, 3115 * so disallow them. 3116 */ 3117 if (optval < 1) { 3118 error = EINVAL; 3119 goto bad; 3120 } 3121 3122 error = sbsetopt(so, sopt->sopt_name, optval); 3123 break; 3124 3125 case SO_SNDTIMEO: 3126 case SO_RCVTIMEO: 3127 #ifdef COMPAT_FREEBSD32 3128 if (SV_CURPROC_FLAG(SV_ILP32)) { 3129 struct timeval32 tv32; 3130 3131 error = sooptcopyin(sopt, &tv32, sizeof tv32, 3132 sizeof tv32); 3133 CP(tv32, tv, tv_sec); 3134 CP(tv32, tv, tv_usec); 3135 } else 3136 #endif 3137 error = sooptcopyin(sopt, &tv, sizeof tv, 3138 sizeof tv); 3139 if (error) 3140 goto bad; 3141 if (tv.tv_sec < 0 || tv.tv_usec < 0 || 3142 tv.tv_usec >= 1000000) { 3143 error = EDOM; 3144 goto bad; 3145 } 3146 if (tv.tv_sec > INT32_MAX) 3147 val = SBT_MAX; 3148 else 3149 val = tvtosbt(tv); 3150 SOCK_LOCK(so); 3151 valp = sopt->sopt_name == SO_SNDTIMEO ? 3152 (SOLISTENING(so) ? &so->sol_sbsnd_timeo : 3153 &so->so_snd.sb_timeo) : 3154 (SOLISTENING(so) ? &so->sol_sbrcv_timeo : 3155 &so->so_rcv.sb_timeo); 3156 *valp = val; 3157 SOCK_UNLOCK(so); 3158 break; 3159 3160 case SO_LABEL: 3161 #ifdef MAC 3162 error = sooptcopyin(sopt, &extmac, sizeof extmac, 3163 sizeof extmac); 3164 if (error) 3165 goto bad; 3166 error = mac_setsockopt_label(sopt->sopt_td->td_ucred, 3167 so, &extmac); 3168 #else 3169 error = EOPNOTSUPP; 3170 #endif 3171 break; 3172 3173 case SO_TS_CLOCK: 3174 error = sooptcopyin(sopt, &optval, sizeof optval, 3175 sizeof optval); 3176 if (error) 3177 goto bad; 3178 if (optval < 0 || optval > SO_TS_CLOCK_MAX) { 3179 error = EINVAL; 3180 goto bad; 3181 } 3182 so->so_ts_clock = optval; 3183 break; 3184 3185 case SO_MAX_PACING_RATE: 3186 error = sooptcopyin(sopt, &val32, sizeof(val32), 3187 sizeof(val32)); 3188 if (error) 3189 goto bad; 3190 so->so_max_pacing_rate = val32; 3191 break; 3192 3193 default: 3194 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 3195 error = hhook_run_socket(so, sopt, 3196 HHOOK_SOCKET_OPT); 3197 else 3198 error = ENOPROTOOPT; 3199 break; 3200 } 3201 if (error == 0 && so->so_proto->pr_ctloutput != NULL) 3202 (void)(*so->so_proto->pr_ctloutput)(so, sopt); 3203 } 3204 bad: 3205 CURVNET_RESTORE(); 3206 return (error); 3207 } 3208 3209 /* 3210 * Helper routine for getsockopt. 3211 */ 3212 int 3213 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 3214 { 3215 int error; 3216 size_t valsize; 3217 3218 error = 0; 3219 3220 /* 3221 * Documented get behavior is that we always return a value, possibly 3222 * truncated to fit in the user's buffer. Traditional behavior is 3223 * that we always tell the user precisely how much we copied, rather 3224 * than something useful like the total amount we had available for 3225 * her. Note that this interface is not idempotent; the entire 3226 * answer must be generated ahead of time. 3227 */ 3228 valsize = min(len, sopt->sopt_valsize); 3229 sopt->sopt_valsize = valsize; 3230 if (sopt->sopt_val != NULL) { 3231 if (sopt->sopt_td != NULL) 3232 error = copyout(buf, sopt->sopt_val, valsize); 3233 else 3234 bcopy(buf, sopt->sopt_val, valsize); 3235 } 3236 return (error); 3237 } 3238 3239 int 3240 sogetopt(struct socket *so, struct sockopt *sopt) 3241 { 3242 int error, optval; 3243 struct linger l; 3244 struct timeval tv; 3245 #ifdef MAC 3246 struct mac extmac; 3247 #endif 3248 3249 CURVNET_SET(so->so_vnet); 3250 error = 0; 3251 if (sopt->sopt_level != SOL_SOCKET) { 3252 if (so->so_proto->pr_ctloutput != NULL) 3253 error = (*so->so_proto->pr_ctloutput)(so, sopt); 3254 else 3255 error = ENOPROTOOPT; 3256 CURVNET_RESTORE(); 3257 return (error); 3258 } else { 3259 switch (sopt->sopt_name) { 3260 case SO_ACCEPTFILTER: 3261 error = accept_filt_getopt(so, sopt); 3262 break; 3263 3264 case SO_LINGER: 3265 SOCK_LOCK(so); 3266 l.l_onoff = so->so_options & SO_LINGER; 3267 l.l_linger = so->so_linger; 3268 SOCK_UNLOCK(so); 3269 error = sooptcopyout(sopt, &l, sizeof l); 3270 break; 3271 3272 case SO_USELOOPBACK: 3273 case SO_DONTROUTE: 3274 case SO_DEBUG: 3275 case SO_KEEPALIVE: 3276 case SO_REUSEADDR: 3277 case SO_REUSEPORT: 3278 case SO_REUSEPORT_LB: 3279 case SO_BROADCAST: 3280 case SO_OOBINLINE: 3281 case SO_ACCEPTCONN: 3282 case SO_TIMESTAMP: 3283 case SO_BINTIME: 3284 case SO_NOSIGPIPE: 3285 case SO_NO_DDP: 3286 case SO_NO_OFFLOAD: 3287 case SO_RERROR: 3288 optval = so->so_options & sopt->sopt_name; 3289 integer: 3290 error = sooptcopyout(sopt, &optval, sizeof optval); 3291 break; 3292 3293 case SO_DOMAIN: 3294 optval = so->so_proto->pr_domain->dom_family; 3295 goto integer; 3296 3297 case SO_TYPE: 3298 optval = so->so_type; 3299 goto integer; 3300 3301 case SO_PROTOCOL: 3302 optval = so->so_proto->pr_protocol; 3303 goto integer; 3304 3305 case SO_ERROR: 3306 SOCK_LOCK(so); 3307 if (so->so_error) { 3308 optval = so->so_error; 3309 so->so_error = 0; 3310 } else { 3311 optval = so->so_rerror; 3312 so->so_rerror = 0; 3313 } 3314 SOCK_UNLOCK(so); 3315 goto integer; 3316 3317 case SO_SNDBUF: 3318 optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat : 3319 so->so_snd.sb_hiwat; 3320 goto integer; 3321 3322 case SO_RCVBUF: 3323 optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat : 3324 so->so_rcv.sb_hiwat; 3325 goto integer; 3326 3327 case SO_SNDLOWAT: 3328 optval = SOLISTENING(so) ? so->sol_sbsnd_lowat : 3329 so->so_snd.sb_lowat; 3330 goto integer; 3331 3332 case SO_RCVLOWAT: 3333 optval = SOLISTENING(so) ? so->sol_sbrcv_lowat : 3334 so->so_rcv.sb_lowat; 3335 goto integer; 3336 3337 case SO_SNDTIMEO: 3338 case SO_RCVTIMEO: 3339 SOCK_LOCK(so); 3340 tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ? 3341 (SOLISTENING(so) ? so->sol_sbsnd_timeo : 3342 so->so_snd.sb_timeo) : 3343 (SOLISTENING(so) ? so->sol_sbrcv_timeo : 3344 so->so_rcv.sb_timeo)); 3345 SOCK_UNLOCK(so); 3346 #ifdef COMPAT_FREEBSD32 3347 if (SV_CURPROC_FLAG(SV_ILP32)) { 3348 struct timeval32 tv32; 3349 3350 CP(tv, tv32, tv_sec); 3351 CP(tv, tv32, tv_usec); 3352 error = sooptcopyout(sopt, &tv32, sizeof tv32); 3353 } else 3354 #endif 3355 error = sooptcopyout(sopt, &tv, sizeof tv); 3356 break; 3357 3358 case SO_LABEL: 3359 #ifdef MAC 3360 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 3361 sizeof(extmac)); 3362 if (error) 3363 goto bad; 3364 error = mac_getsockopt_label(sopt->sopt_td->td_ucred, 3365 so, &extmac); 3366 if (error) 3367 goto bad; 3368 error = sooptcopyout(sopt, &extmac, sizeof extmac); 3369 #else 3370 error = EOPNOTSUPP; 3371 #endif 3372 break; 3373 3374 case SO_PEERLABEL: 3375 #ifdef MAC 3376 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 3377 sizeof(extmac)); 3378 if (error) 3379 goto bad; 3380 error = mac_getsockopt_peerlabel( 3381 sopt->sopt_td->td_ucred, so, &extmac); 3382 if (error) 3383 goto bad; 3384 error = sooptcopyout(sopt, &extmac, sizeof extmac); 3385 #else 3386 error = EOPNOTSUPP; 3387 #endif 3388 break; 3389 3390 case SO_LISTENQLIMIT: 3391 optval = SOLISTENING(so) ? so->sol_qlimit : 0; 3392 goto integer; 3393 3394 case SO_LISTENQLEN: 3395 optval = SOLISTENING(so) ? so->sol_qlen : 0; 3396 goto integer; 3397 3398 case SO_LISTENINCQLEN: 3399 optval = SOLISTENING(so) ? so->sol_incqlen : 0; 3400 goto integer; 3401 3402 case SO_TS_CLOCK: 3403 optval = so->so_ts_clock; 3404 goto integer; 3405 3406 case SO_MAX_PACING_RATE: 3407 optval = so->so_max_pacing_rate; 3408 goto integer; 3409 3410 default: 3411 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 3412 error = hhook_run_socket(so, sopt, 3413 HHOOK_SOCKET_OPT); 3414 else 3415 error = ENOPROTOOPT; 3416 break; 3417 } 3418 } 3419 #ifdef MAC 3420 bad: 3421 #endif 3422 CURVNET_RESTORE(); 3423 return (error); 3424 } 3425 3426 int 3427 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 3428 { 3429 struct mbuf *m, *m_prev; 3430 int sopt_size = sopt->sopt_valsize; 3431 3432 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 3433 if (m == NULL) 3434 return ENOBUFS; 3435 if (sopt_size > MLEN) { 3436 MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT); 3437 if ((m->m_flags & M_EXT) == 0) { 3438 m_free(m); 3439 return ENOBUFS; 3440 } 3441 m->m_len = min(MCLBYTES, sopt_size); 3442 } else { 3443 m->m_len = min(MLEN, sopt_size); 3444 } 3445 sopt_size -= m->m_len; 3446 *mp = m; 3447 m_prev = m; 3448 3449 while (sopt_size) { 3450 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 3451 if (m == NULL) { 3452 m_freem(*mp); 3453 return ENOBUFS; 3454 } 3455 if (sopt_size > MLEN) { 3456 MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK : 3457 M_NOWAIT); 3458 if ((m->m_flags & M_EXT) == 0) { 3459 m_freem(m); 3460 m_freem(*mp); 3461 return ENOBUFS; 3462 } 3463 m->m_len = min(MCLBYTES, sopt_size); 3464 } else { 3465 m->m_len = min(MLEN, sopt_size); 3466 } 3467 sopt_size -= m->m_len; 3468 m_prev->m_next = m; 3469 m_prev = m; 3470 } 3471 return (0); 3472 } 3473 3474 int 3475 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 3476 { 3477 struct mbuf *m0 = m; 3478 3479 if (sopt->sopt_val == NULL) 3480 return (0); 3481 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 3482 if (sopt->sopt_td != NULL) { 3483 int error; 3484 3485 error = copyin(sopt->sopt_val, mtod(m, char *), 3486 m->m_len); 3487 if (error != 0) { 3488 m_freem(m0); 3489 return(error); 3490 } 3491 } else 3492 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 3493 sopt->sopt_valsize -= m->m_len; 3494 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 3495 m = m->m_next; 3496 } 3497 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 3498 panic("ip6_sooptmcopyin"); 3499 return (0); 3500 } 3501 3502 int 3503 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 3504 { 3505 struct mbuf *m0 = m; 3506 size_t valsize = 0; 3507 3508 if (sopt->sopt_val == NULL) 3509 return (0); 3510 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 3511 if (sopt->sopt_td != NULL) { 3512 int error; 3513 3514 error = copyout(mtod(m, char *), sopt->sopt_val, 3515 m->m_len); 3516 if (error != 0) { 3517 m_freem(m0); 3518 return(error); 3519 } 3520 } else 3521 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 3522 sopt->sopt_valsize -= m->m_len; 3523 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 3524 valsize += m->m_len; 3525 m = m->m_next; 3526 } 3527 if (m != NULL) { 3528 /* enough soopt buffer should be given from user-land */ 3529 m_freem(m0); 3530 return(EINVAL); 3531 } 3532 sopt->sopt_valsize = valsize; 3533 return (0); 3534 } 3535 3536 /* 3537 * sohasoutofband(): protocol notifies socket layer of the arrival of new 3538 * out-of-band data, which will then notify socket consumers. 3539 */ 3540 void 3541 sohasoutofband(struct socket *so) 3542 { 3543 3544 if (so->so_sigio != NULL) 3545 pgsigio(&so->so_sigio, SIGURG, 0); 3546 selwakeuppri(&so->so_rdsel, PSOCK); 3547 } 3548 3549 int 3550 sopoll(struct socket *so, int events, struct ucred *active_cred, 3551 struct thread *td) 3552 { 3553 3554 /* 3555 * We do not need to set or assert curvnet as long as everyone uses 3556 * sopoll_generic(). 3557 */ 3558 return (so->so_proto->pr_sopoll(so, events, active_cred, td)); 3559 } 3560 3561 int 3562 sopoll_generic(struct socket *so, int events, struct ucred *active_cred, 3563 struct thread *td) 3564 { 3565 int revents; 3566 3567 SOCK_LOCK(so); 3568 if (SOLISTENING(so)) { 3569 if (!(events & (POLLIN | POLLRDNORM))) 3570 revents = 0; 3571 else if (!TAILQ_EMPTY(&so->sol_comp)) 3572 revents = events & (POLLIN | POLLRDNORM); 3573 else if ((events & POLLINIGNEOF) == 0 && so->so_error) 3574 revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP; 3575 else { 3576 selrecord(td, &so->so_rdsel); 3577 revents = 0; 3578 } 3579 } else { 3580 revents = 0; 3581 SOCK_SENDBUF_LOCK(so); 3582 SOCK_RECVBUF_LOCK(so); 3583 if (events & (POLLIN | POLLRDNORM)) 3584 if (soreadabledata(so)) 3585 revents |= events & (POLLIN | POLLRDNORM); 3586 if (events & (POLLOUT | POLLWRNORM)) 3587 if (sowriteable(so)) 3588 revents |= events & (POLLOUT | POLLWRNORM); 3589 if (events & (POLLPRI | POLLRDBAND)) 3590 if (so->so_oobmark || 3591 (so->so_rcv.sb_state & SBS_RCVATMARK)) 3592 revents |= events & (POLLPRI | POLLRDBAND); 3593 if ((events & POLLINIGNEOF) == 0) { 3594 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3595 revents |= events & (POLLIN | POLLRDNORM); 3596 if (so->so_snd.sb_state & SBS_CANTSENDMORE) 3597 revents |= POLLHUP; 3598 } 3599 } 3600 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) 3601 revents |= events & POLLRDHUP; 3602 if (revents == 0) { 3603 if (events & 3604 (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND | POLLRDHUP)) { 3605 selrecord(td, &so->so_rdsel); 3606 so->so_rcv.sb_flags |= SB_SEL; 3607 } 3608 if (events & (POLLOUT | POLLWRNORM)) { 3609 selrecord(td, &so->so_wrsel); 3610 so->so_snd.sb_flags |= SB_SEL; 3611 } 3612 } 3613 SOCK_RECVBUF_UNLOCK(so); 3614 SOCK_SENDBUF_UNLOCK(so); 3615 } 3616 SOCK_UNLOCK(so); 3617 return (revents); 3618 } 3619 3620 int 3621 soo_kqfilter(struct file *fp, struct knote *kn) 3622 { 3623 struct socket *so = kn->kn_fp->f_data; 3624 struct sockbuf *sb; 3625 sb_which which; 3626 struct knlist *knl; 3627 3628 switch (kn->kn_filter) { 3629 case EVFILT_READ: 3630 kn->kn_fop = &soread_filtops; 3631 knl = &so->so_rdsel.si_note; 3632 sb = &so->so_rcv; 3633 which = SO_RCV; 3634 break; 3635 case EVFILT_WRITE: 3636 kn->kn_fop = &sowrite_filtops; 3637 knl = &so->so_wrsel.si_note; 3638 sb = &so->so_snd; 3639 which = SO_SND; 3640 break; 3641 case EVFILT_EMPTY: 3642 kn->kn_fop = &soempty_filtops; 3643 knl = &so->so_wrsel.si_note; 3644 sb = &so->so_snd; 3645 which = SO_SND; 3646 break; 3647 default: 3648 return (EINVAL); 3649 } 3650 3651 SOCK_LOCK(so); 3652 if (SOLISTENING(so)) { 3653 knlist_add(knl, kn, 1); 3654 } else { 3655 SOCK_BUF_LOCK(so, which); 3656 knlist_add(knl, kn, 1); 3657 sb->sb_flags |= SB_KNOTE; 3658 SOCK_BUF_UNLOCK(so, which); 3659 } 3660 SOCK_UNLOCK(so); 3661 return (0); 3662 } 3663 3664 static void 3665 filt_sordetach(struct knote *kn) 3666 { 3667 struct socket *so = kn->kn_fp->f_data; 3668 3669 so_rdknl_lock(so); 3670 knlist_remove(&so->so_rdsel.si_note, kn, 1); 3671 if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note)) 3672 so->so_rcv.sb_flags &= ~SB_KNOTE; 3673 so_rdknl_unlock(so); 3674 } 3675 3676 /*ARGSUSED*/ 3677 static int 3678 filt_soread(struct knote *kn, long hint) 3679 { 3680 struct socket *so; 3681 3682 so = kn->kn_fp->f_data; 3683 3684 if (SOLISTENING(so)) { 3685 SOCK_LOCK_ASSERT(so); 3686 kn->kn_data = so->sol_qlen; 3687 if (so->so_error) { 3688 kn->kn_flags |= EV_EOF; 3689 kn->kn_fflags = so->so_error; 3690 return (1); 3691 } 3692 return (!TAILQ_EMPTY(&so->sol_comp)); 3693 } 3694 3695 SOCK_RECVBUF_LOCK_ASSERT(so); 3696 3697 kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl; 3698 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3699 kn->kn_flags |= EV_EOF; 3700 kn->kn_fflags = so->so_error; 3701 return (1); 3702 } else if (so->so_error || so->so_rerror) 3703 return (1); 3704 3705 if (kn->kn_sfflags & NOTE_LOWAT) { 3706 if (kn->kn_data >= kn->kn_sdata) 3707 return (1); 3708 } else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat) 3709 return (1); 3710 3711 /* This hook returning non-zero indicates an event, not error */ 3712 return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD)); 3713 } 3714 3715 static void 3716 filt_sowdetach(struct knote *kn) 3717 { 3718 struct socket *so = kn->kn_fp->f_data; 3719 3720 so_wrknl_lock(so); 3721 knlist_remove(&so->so_wrsel.si_note, kn, 1); 3722 if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note)) 3723 so->so_snd.sb_flags &= ~SB_KNOTE; 3724 so_wrknl_unlock(so); 3725 } 3726 3727 /*ARGSUSED*/ 3728 static int 3729 filt_sowrite(struct knote *kn, long hint) 3730 { 3731 struct socket *so; 3732 3733 so = kn->kn_fp->f_data; 3734 3735 if (SOLISTENING(so)) 3736 return (0); 3737 3738 SOCK_SENDBUF_LOCK_ASSERT(so); 3739 kn->kn_data = sbspace(&so->so_snd); 3740 3741 hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE); 3742 3743 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 3744 kn->kn_flags |= EV_EOF; 3745 kn->kn_fflags = so->so_error; 3746 return (1); 3747 } else if (so->so_error) /* temporary udp error */ 3748 return (1); 3749 else if (((so->so_state & SS_ISCONNECTED) == 0) && 3750 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 3751 return (0); 3752 else if (kn->kn_sfflags & NOTE_LOWAT) 3753 return (kn->kn_data >= kn->kn_sdata); 3754 else 3755 return (kn->kn_data >= so->so_snd.sb_lowat); 3756 } 3757 3758 static int 3759 filt_soempty(struct knote *kn, long hint) 3760 { 3761 struct socket *so; 3762 3763 so = kn->kn_fp->f_data; 3764 3765 if (SOLISTENING(so)) 3766 return (1); 3767 3768 SOCK_SENDBUF_LOCK_ASSERT(so); 3769 kn->kn_data = sbused(&so->so_snd); 3770 3771 if (kn->kn_data == 0) 3772 return (1); 3773 else 3774 return (0); 3775 } 3776 3777 int 3778 socheckuid(struct socket *so, uid_t uid) 3779 { 3780 3781 if (so == NULL) 3782 return (EPERM); 3783 if (so->so_cred->cr_uid != uid) 3784 return (EPERM); 3785 return (0); 3786 } 3787 3788 /* 3789 * These functions are used by protocols to notify the socket layer (and its 3790 * consumers) of state changes in the sockets driven by protocol-side events. 3791 */ 3792 3793 /* 3794 * Procedures to manipulate state flags of socket and do appropriate wakeups. 3795 * 3796 * Normal sequence from the active (originating) side is that 3797 * soisconnecting() is called during processing of connect() call, resulting 3798 * in an eventual call to soisconnected() if/when the connection is 3799 * established. When the connection is torn down soisdisconnecting() is 3800 * called during processing of disconnect() call, and soisdisconnected() is 3801 * called when the connection to the peer is totally severed. The semantics 3802 * of these routines are such that connectionless protocols can call 3803 * soisconnected() and soisdisconnected() only, bypassing the in-progress 3804 * calls when setting up a ``connection'' takes no time. 3805 * 3806 * From the passive side, a socket is created with two queues of sockets: 3807 * so_incomp for connections in progress and so_comp for connections already 3808 * made and awaiting user acceptance. As a protocol is preparing incoming 3809 * connections, it creates a socket structure queued on so_incomp by calling 3810 * sonewconn(). When the connection is established, soisconnected() is 3811 * called, and transfers the socket structure to so_comp, making it available 3812 * to accept(). 3813 * 3814 * If a socket is closed with sockets on either so_incomp or so_comp, these 3815 * sockets are dropped. 3816 * 3817 * If higher-level protocols are implemented in the kernel, the wakeups done 3818 * here will sometimes cause software-interrupt process scheduling. 3819 */ 3820 void 3821 soisconnecting(struct socket *so) 3822 { 3823 3824 SOCK_LOCK(so); 3825 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 3826 so->so_state |= SS_ISCONNECTING; 3827 SOCK_UNLOCK(so); 3828 } 3829 3830 void 3831 soisconnected(struct socket *so) 3832 { 3833 bool last __diagused; 3834 3835 SOCK_LOCK(so); 3836 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 3837 so->so_state |= SS_ISCONNECTED; 3838 3839 if (so->so_qstate == SQ_INCOMP) { 3840 struct socket *head = so->so_listen; 3841 int ret; 3842 3843 KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so)); 3844 /* 3845 * Promoting a socket from incomplete queue to complete, we 3846 * need to go through reverse order of locking. We first do 3847 * trylock, and if that doesn't succeed, we go the hard way 3848 * leaving a reference and rechecking consistency after proper 3849 * locking. 3850 */ 3851 if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) { 3852 soref(head); 3853 SOCK_UNLOCK(so); 3854 SOLISTEN_LOCK(head); 3855 SOCK_LOCK(so); 3856 if (__predict_false(head != so->so_listen)) { 3857 /* 3858 * The socket went off the listen queue, 3859 * should be lost race to close(2) of sol. 3860 * The socket is about to soabort(). 3861 */ 3862 SOCK_UNLOCK(so); 3863 sorele_locked(head); 3864 return; 3865 } 3866 last = refcount_release(&head->so_count); 3867 KASSERT(!last, ("%s: released last reference for %p", 3868 __func__, head)); 3869 } 3870 again: 3871 if ((so->so_options & SO_ACCEPTFILTER) == 0) { 3872 TAILQ_REMOVE(&head->sol_incomp, so, so_list); 3873 head->sol_incqlen--; 3874 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 3875 head->sol_qlen++; 3876 so->so_qstate = SQ_COMP; 3877 SOCK_UNLOCK(so); 3878 solisten_wakeup(head); /* unlocks */ 3879 } else { 3880 SOCK_RECVBUF_LOCK(so); 3881 soupcall_set(so, SO_RCV, 3882 head->sol_accept_filter->accf_callback, 3883 head->sol_accept_filter_arg); 3884 so->so_options &= ~SO_ACCEPTFILTER; 3885 ret = head->sol_accept_filter->accf_callback(so, 3886 head->sol_accept_filter_arg, M_NOWAIT); 3887 if (ret == SU_ISCONNECTED) { 3888 soupcall_clear(so, SO_RCV); 3889 SOCK_RECVBUF_UNLOCK(so); 3890 goto again; 3891 } 3892 SOCK_RECVBUF_UNLOCK(so); 3893 SOCK_UNLOCK(so); 3894 SOLISTEN_UNLOCK(head); 3895 } 3896 return; 3897 } 3898 SOCK_UNLOCK(so); 3899 wakeup(&so->so_timeo); 3900 sorwakeup(so); 3901 sowwakeup(so); 3902 } 3903 3904 void 3905 soisdisconnecting(struct socket *so) 3906 { 3907 3908 SOCK_LOCK(so); 3909 so->so_state &= ~SS_ISCONNECTING; 3910 so->so_state |= SS_ISDISCONNECTING; 3911 3912 if (!SOLISTENING(so)) { 3913 SOCK_RECVBUF_LOCK(so); 3914 socantrcvmore_locked(so); 3915 SOCK_SENDBUF_LOCK(so); 3916 socantsendmore_locked(so); 3917 } 3918 SOCK_UNLOCK(so); 3919 wakeup(&so->so_timeo); 3920 } 3921 3922 void 3923 soisdisconnected(struct socket *so) 3924 { 3925 3926 SOCK_LOCK(so); 3927 3928 /* 3929 * There is at least one reader of so_state that does not 3930 * acquire socket lock, namely soreceive_generic(). Ensure 3931 * that it never sees all flags that track connection status 3932 * cleared, by ordering the update with a barrier semantic of 3933 * our release thread fence. 3934 */ 3935 so->so_state |= SS_ISDISCONNECTED; 3936 atomic_thread_fence_rel(); 3937 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 3938 3939 if (!SOLISTENING(so)) { 3940 SOCK_UNLOCK(so); 3941 SOCK_RECVBUF_LOCK(so); 3942 socantrcvmore_locked(so); 3943 SOCK_SENDBUF_LOCK(so); 3944 sbdrop_locked(&so->so_snd, sbused(&so->so_snd)); 3945 socantsendmore_locked(so); 3946 } else 3947 SOCK_UNLOCK(so); 3948 wakeup(&so->so_timeo); 3949 } 3950 3951 int 3952 soiolock(struct socket *so, struct sx *sx, int flags) 3953 { 3954 int error; 3955 3956 KASSERT((flags & SBL_VALID) == flags, 3957 ("soiolock: invalid flags %#x", flags)); 3958 3959 if ((flags & SBL_WAIT) != 0) { 3960 if ((flags & SBL_NOINTR) != 0) { 3961 sx_xlock(sx); 3962 } else { 3963 error = sx_xlock_sig(sx); 3964 if (error != 0) 3965 return (error); 3966 } 3967 } else if (!sx_try_xlock(sx)) { 3968 return (EWOULDBLOCK); 3969 } 3970 3971 if (__predict_false(SOLISTENING(so))) { 3972 sx_xunlock(sx); 3973 return (ENOTCONN); 3974 } 3975 return (0); 3976 } 3977 3978 void 3979 soiounlock(struct sx *sx) 3980 { 3981 sx_xunlock(sx); 3982 } 3983 3984 /* 3985 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 3986 */ 3987 struct sockaddr * 3988 sodupsockaddr(const struct sockaddr *sa, int mflags) 3989 { 3990 struct sockaddr *sa2; 3991 3992 sa2 = malloc(sa->sa_len, M_SONAME, mflags); 3993 if (sa2) 3994 bcopy(sa, sa2, sa->sa_len); 3995 return sa2; 3996 } 3997 3998 /* 3999 * Register per-socket destructor. 4000 */ 4001 void 4002 sodtor_set(struct socket *so, so_dtor_t *func) 4003 { 4004 4005 SOCK_LOCK_ASSERT(so); 4006 so->so_dtor = func; 4007 } 4008 4009 /* 4010 * Register per-socket buffer upcalls. 4011 */ 4012 void 4013 soupcall_set(struct socket *so, sb_which which, so_upcall_t func, void *arg) 4014 { 4015 struct sockbuf *sb; 4016 4017 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 4018 4019 switch (which) { 4020 case SO_RCV: 4021 sb = &so->so_rcv; 4022 break; 4023 case SO_SND: 4024 sb = &so->so_snd; 4025 break; 4026 } 4027 SOCK_BUF_LOCK_ASSERT(so, which); 4028 sb->sb_upcall = func; 4029 sb->sb_upcallarg = arg; 4030 sb->sb_flags |= SB_UPCALL; 4031 } 4032 4033 void 4034 soupcall_clear(struct socket *so, sb_which which) 4035 { 4036 struct sockbuf *sb; 4037 4038 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 4039 4040 switch (which) { 4041 case SO_RCV: 4042 sb = &so->so_rcv; 4043 break; 4044 case SO_SND: 4045 sb = &so->so_snd; 4046 break; 4047 } 4048 SOCK_BUF_LOCK_ASSERT(so, which); 4049 KASSERT(sb->sb_upcall != NULL, 4050 ("%s: so %p no upcall to clear", __func__, so)); 4051 sb->sb_upcall = NULL; 4052 sb->sb_upcallarg = NULL; 4053 sb->sb_flags &= ~SB_UPCALL; 4054 } 4055 4056 void 4057 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg) 4058 { 4059 4060 SOLISTEN_LOCK_ASSERT(so); 4061 so->sol_upcall = func; 4062 so->sol_upcallarg = arg; 4063 } 4064 4065 static void 4066 so_rdknl_lock(void *arg) 4067 { 4068 struct socket *so = arg; 4069 4070 retry: 4071 if (SOLISTENING(so)) { 4072 SOLISTEN_LOCK(so); 4073 } else { 4074 SOCK_RECVBUF_LOCK(so); 4075 if (__predict_false(SOLISTENING(so))) { 4076 SOCK_RECVBUF_UNLOCK(so); 4077 goto retry; 4078 } 4079 } 4080 } 4081 4082 static void 4083 so_rdknl_unlock(void *arg) 4084 { 4085 struct socket *so = arg; 4086 4087 if (SOLISTENING(so)) 4088 SOLISTEN_UNLOCK(so); 4089 else 4090 SOCK_RECVBUF_UNLOCK(so); 4091 } 4092 4093 static void 4094 so_rdknl_assert_lock(void *arg, int what) 4095 { 4096 struct socket *so = arg; 4097 4098 if (what == LA_LOCKED) { 4099 if (SOLISTENING(so)) 4100 SOLISTEN_LOCK_ASSERT(so); 4101 else 4102 SOCK_RECVBUF_LOCK_ASSERT(so); 4103 } else { 4104 if (SOLISTENING(so)) 4105 SOLISTEN_UNLOCK_ASSERT(so); 4106 else 4107 SOCK_RECVBUF_UNLOCK_ASSERT(so); 4108 } 4109 } 4110 4111 static void 4112 so_wrknl_lock(void *arg) 4113 { 4114 struct socket *so = arg; 4115 4116 retry: 4117 if (SOLISTENING(so)) { 4118 SOLISTEN_LOCK(so); 4119 } else { 4120 SOCK_SENDBUF_LOCK(so); 4121 if (__predict_false(SOLISTENING(so))) { 4122 SOCK_SENDBUF_UNLOCK(so); 4123 goto retry; 4124 } 4125 } 4126 } 4127 4128 static void 4129 so_wrknl_unlock(void *arg) 4130 { 4131 struct socket *so = arg; 4132 4133 if (SOLISTENING(so)) 4134 SOLISTEN_UNLOCK(so); 4135 else 4136 SOCK_SENDBUF_UNLOCK(so); 4137 } 4138 4139 static void 4140 so_wrknl_assert_lock(void *arg, int what) 4141 { 4142 struct socket *so = arg; 4143 4144 if (what == LA_LOCKED) { 4145 if (SOLISTENING(so)) 4146 SOLISTEN_LOCK_ASSERT(so); 4147 else 4148 SOCK_SENDBUF_LOCK_ASSERT(so); 4149 } else { 4150 if (SOLISTENING(so)) 4151 SOLISTEN_UNLOCK_ASSERT(so); 4152 else 4153 SOCK_SENDBUF_UNLOCK_ASSERT(so); 4154 } 4155 } 4156 4157 /* 4158 * Create an external-format (``xsocket'') structure using the information in 4159 * the kernel-format socket structure pointed to by so. This is done to 4160 * reduce the spew of irrelevant information over this interface, to isolate 4161 * user code from changes in the kernel structure, and potentially to provide 4162 * information-hiding if we decide that some of this information should be 4163 * hidden from users. 4164 */ 4165 void 4166 sotoxsocket(struct socket *so, struct xsocket *xso) 4167 { 4168 4169 bzero(xso, sizeof(*xso)); 4170 xso->xso_len = sizeof *xso; 4171 xso->xso_so = (uintptr_t)so; 4172 xso->so_type = so->so_type; 4173 xso->so_options = so->so_options; 4174 xso->so_linger = so->so_linger; 4175 xso->so_state = so->so_state; 4176 xso->so_pcb = (uintptr_t)so->so_pcb; 4177 xso->xso_protocol = so->so_proto->pr_protocol; 4178 xso->xso_family = so->so_proto->pr_domain->dom_family; 4179 xso->so_timeo = so->so_timeo; 4180 xso->so_error = so->so_error; 4181 xso->so_uid = so->so_cred->cr_uid; 4182 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 4183 if (SOLISTENING(so)) { 4184 xso->so_qlen = so->sol_qlen; 4185 xso->so_incqlen = so->sol_incqlen; 4186 xso->so_qlimit = so->sol_qlimit; 4187 xso->so_oobmark = 0; 4188 } else { 4189 xso->so_state |= so->so_qstate; 4190 xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0; 4191 xso->so_oobmark = so->so_oobmark; 4192 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 4193 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 4194 } 4195 } 4196 4197 struct sockbuf * 4198 so_sockbuf_rcv(struct socket *so) 4199 { 4200 4201 return (&so->so_rcv); 4202 } 4203 4204 struct sockbuf * 4205 so_sockbuf_snd(struct socket *so) 4206 { 4207 4208 return (&so->so_snd); 4209 } 4210 4211 int 4212 so_state_get(const struct socket *so) 4213 { 4214 4215 return (so->so_state); 4216 } 4217 4218 void 4219 so_state_set(struct socket *so, int val) 4220 { 4221 4222 so->so_state = val; 4223 } 4224 4225 int 4226 so_options_get(const struct socket *so) 4227 { 4228 4229 return (so->so_options); 4230 } 4231 4232 void 4233 so_options_set(struct socket *so, int val) 4234 { 4235 4236 so->so_options = val; 4237 } 4238 4239 int 4240 so_error_get(const struct socket *so) 4241 { 4242 4243 return (so->so_error); 4244 } 4245 4246 void 4247 so_error_set(struct socket *so, int val) 4248 { 4249 4250 so->so_error = val; 4251 } 4252 4253 int 4254 so_linger_get(const struct socket *so) 4255 { 4256 4257 return (so->so_linger); 4258 } 4259 4260 void 4261 so_linger_set(struct socket *so, int val) 4262 { 4263 4264 KASSERT(val >= 0 && val <= USHRT_MAX && val <= (INT_MAX / hz), 4265 ("%s: val %d out of range", __func__, val)); 4266 4267 so->so_linger = val; 4268 } 4269 4270 struct protosw * 4271 so_protosw_get(const struct socket *so) 4272 { 4273 4274 return (so->so_proto); 4275 } 4276 4277 void 4278 so_protosw_set(struct socket *so, struct protosw *val) 4279 { 4280 4281 so->so_proto = val; 4282 } 4283 4284 void 4285 so_sorwakeup(struct socket *so) 4286 { 4287 4288 sorwakeup(so); 4289 } 4290 4291 void 4292 so_sowwakeup(struct socket *so) 4293 { 4294 4295 sowwakeup(so); 4296 } 4297 4298 void 4299 so_sorwakeup_locked(struct socket *so) 4300 { 4301 4302 sorwakeup_locked(so); 4303 } 4304 4305 void 4306 so_sowwakeup_locked(struct socket *so) 4307 { 4308 4309 sowwakeup_locked(so); 4310 } 4311 4312 void 4313 so_lock(struct socket *so) 4314 { 4315 4316 SOCK_LOCK(so); 4317 } 4318 4319 void 4320 so_unlock(struct socket *so) 4321 { 4322 4323 SOCK_UNLOCK(so); 4324 } 4325