xref: /freebsd/sys/kern/uipc_socket.c (revision ac099daf6742ead81ea7ea86351a8ef4e783041b)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
5  *	The Regents of the University of California.
6  * Copyright (c) 2004 The FreeBSD Foundation
7  * Copyright (c) 2004-2008 Robert N. M. Watson
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)uipc_socket.c	8.3 (Berkeley) 4/15/94
35  */
36 
37 /*
38  * Comments on the socket life cycle:
39  *
40  * soalloc() sets of socket layer state for a socket, called only by
41  * socreate() and sonewconn().  Socket layer private.
42  *
43  * sodealloc() tears down socket layer state for a socket, called only by
44  * sofree() and sonewconn().  Socket layer private.
45  *
46  * pru_attach() associates protocol layer state with an allocated socket;
47  * called only once, may fail, aborting socket allocation.  This is called
48  * from socreate() and sonewconn().  Socket layer private.
49  *
50  * pru_detach() disassociates protocol layer state from an attached socket,
51  * and will be called exactly once for sockets in which pru_attach() has
52  * been successfully called.  If pru_attach() returned an error,
53  * pru_detach() will not be called.  Socket layer private.
54  *
55  * pru_abort() and pru_close() notify the protocol layer that the last
56  * consumer of a socket is starting to tear down the socket, and that the
57  * protocol should terminate the connection.  Historically, pru_abort() also
58  * detached protocol state from the socket state, but this is no longer the
59  * case.
60  *
61  * socreate() creates a socket and attaches protocol state.  This is a public
62  * interface that may be used by socket layer consumers to create new
63  * sockets.
64  *
65  * sonewconn() creates a socket and attaches protocol state.  This is a
66  * public interface  that may be used by protocols to create new sockets when
67  * a new connection is received and will be available for accept() on a
68  * listen socket.
69  *
70  * soclose() destroys a socket after possibly waiting for it to disconnect.
71  * This is a public interface that socket consumers should use to close and
72  * release a socket when done with it.
73  *
74  * soabort() destroys a socket without waiting for it to disconnect (used
75  * only for incoming connections that are already partially or fully
76  * connected).  This is used internally by the socket layer when clearing
77  * listen socket queues (due to overflow or close on the listen socket), but
78  * is also a public interface protocols may use to abort connections in
79  * their incomplete listen queues should they no longer be required.  Sockets
80  * placed in completed connection listen queues should not be aborted for
81  * reasons described in the comment above the soclose() implementation.  This
82  * is not a general purpose close routine, and except in the specific
83  * circumstances described here, should not be used.
84  *
85  * sofree() will free a socket and its protocol state if all references on
86  * the socket have been released, and is the public interface to attempt to
87  * free a socket when a reference is removed.  This is a socket layer private
88  * interface.
89  *
90  * NOTE: In addition to socreate() and soclose(), which provide a single
91  * socket reference to the consumer to be managed as required, there are two
92  * calls to explicitly manage socket references, soref(), and sorele().
93  * Currently, these are generally required only when transitioning a socket
94  * from a listen queue to a file descriptor, in order to prevent garbage
95  * collection of the socket at an untimely moment.  For a number of reasons,
96  * these interfaces are not preferred, and should be avoided.
97  *
98  * NOTE: With regard to VNETs the general rule is that callers do not set
99  * curvnet. Exceptions to this rule include soabort(), sodisconnect(),
100  * sofree() (and with that sorele(), sotryfree()), as well as sonewconn()
101  * and sorflush(), which are usually called from a pre-set VNET context.
102  * sopoll() currently does not need a VNET context to be set.
103  */
104 
105 #include <sys/cdefs.h>
106 __FBSDID("$FreeBSD$");
107 
108 #include "opt_inet.h"
109 #include "opt_inet6.h"
110 #include "opt_kern_tls.h"
111 #include "opt_sctp.h"
112 
113 #include <sys/param.h>
114 #include <sys/systm.h>
115 #include <sys/capsicum.h>
116 #include <sys/fcntl.h>
117 #include <sys/limits.h>
118 #include <sys/lock.h>
119 #include <sys/mac.h>
120 #include <sys/malloc.h>
121 #include <sys/mbuf.h>
122 #include <sys/mutex.h>
123 #include <sys/domain.h>
124 #include <sys/file.h>			/* for struct knote */
125 #include <sys/hhook.h>
126 #include <sys/kernel.h>
127 #include <sys/khelp.h>
128 #include <sys/ktls.h>
129 #include <sys/event.h>
130 #include <sys/eventhandler.h>
131 #include <sys/poll.h>
132 #include <sys/proc.h>
133 #include <sys/protosw.h>
134 #include <sys/sbuf.h>
135 #include <sys/socket.h>
136 #include <sys/socketvar.h>
137 #include <sys/resourcevar.h>
138 #include <net/route.h>
139 #include <sys/signalvar.h>
140 #include <sys/stat.h>
141 #include <sys/sx.h>
142 #include <sys/sysctl.h>
143 #include <sys/taskqueue.h>
144 #include <sys/uio.h>
145 #include <sys/un.h>
146 #include <sys/unpcb.h>
147 #include <sys/jail.h>
148 #include <sys/syslog.h>
149 #include <netinet/in.h>
150 #include <netinet/in_pcb.h>
151 #include <netinet/tcp.h>
152 
153 #include <net/vnet.h>
154 
155 #include <security/mac/mac_framework.h>
156 
157 #include <vm/uma.h>
158 
159 #ifdef COMPAT_FREEBSD32
160 #include <sys/mount.h>
161 #include <sys/sysent.h>
162 #include <compat/freebsd32/freebsd32.h>
163 #endif
164 
165 static int	soreceive_rcvoob(struct socket *so, struct uio *uio,
166 		    int flags);
167 static void	so_rdknl_lock(void *);
168 static void	so_rdknl_unlock(void *);
169 static void	so_rdknl_assert_lock(void *, int);
170 static void	so_wrknl_lock(void *);
171 static void	so_wrknl_unlock(void *);
172 static void	so_wrknl_assert_lock(void *, int);
173 
174 static void	filt_sordetach(struct knote *kn);
175 static int	filt_soread(struct knote *kn, long hint);
176 static void	filt_sowdetach(struct knote *kn);
177 static int	filt_sowrite(struct knote *kn, long hint);
178 static int	filt_soempty(struct knote *kn, long hint);
179 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id);
180 fo_kqfilter_t	soo_kqfilter;
181 
182 static struct filterops soread_filtops = {
183 	.f_isfd = 1,
184 	.f_detach = filt_sordetach,
185 	.f_event = filt_soread,
186 };
187 static struct filterops sowrite_filtops = {
188 	.f_isfd = 1,
189 	.f_detach = filt_sowdetach,
190 	.f_event = filt_sowrite,
191 };
192 static struct filterops soempty_filtops = {
193 	.f_isfd = 1,
194 	.f_detach = filt_sowdetach,
195 	.f_event = filt_soempty,
196 };
197 
198 so_gen_t	so_gencnt;	/* generation count for sockets */
199 
200 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
201 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
202 
203 #define	VNET_SO_ASSERT(so)						\
204 	VNET_ASSERT(curvnet != NULL,					\
205 	    ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so)));
206 
207 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]);
208 #define	V_socket_hhh		VNET(socket_hhh)
209 
210 /*
211  * Limit on the number of connections in the listen queue waiting
212  * for accept(2).
213  * NB: The original sysctl somaxconn is still available but hidden
214  * to prevent confusion about the actual purpose of this number.
215  */
216 static u_int somaxconn = SOMAXCONN;
217 
218 static int
219 sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
220 {
221 	int error;
222 	int val;
223 
224 	val = somaxconn;
225 	error = sysctl_handle_int(oidp, &val, 0, req);
226 	if (error || !req->newptr )
227 		return (error);
228 
229 	/*
230 	 * The purpose of the UINT_MAX / 3 limit, is so that the formula
231 	 *   3 * so_qlimit / 2
232 	 * below, will not overflow.
233          */
234 
235 	if (val < 1 || val > UINT_MAX / 3)
236 		return (EINVAL);
237 
238 	somaxconn = val;
239 	return (0);
240 }
241 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue,
242     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 0, sizeof(int),
243     sysctl_somaxconn, "I",
244     "Maximum listen socket pending connection accept queue size");
245 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn,
246     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_NEEDGIANT, 0,
247     sizeof(int), sysctl_somaxconn, "I",
248     "Maximum listen socket pending connection accept queue size (compat)");
249 
250 static int numopensockets;
251 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,
252     &numopensockets, 0, "Number of open sockets");
253 
254 /*
255  * accept_mtx locks down per-socket fields relating to accept queues.  See
256  * socketvar.h for an annotation of the protected fields of struct socket.
257  */
258 struct mtx accept_mtx;
259 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF);
260 
261 /*
262  * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
263  * so_gencnt field.
264  */
265 static struct mtx so_global_mtx;
266 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
267 
268 /*
269  * General IPC sysctl name space, used by sockets and a variety of other IPC
270  * types.
271  */
272 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
273     "IPC");
274 
275 /*
276  * Initialize the socket subsystem and set up the socket
277  * memory allocator.
278  */
279 static uma_zone_t socket_zone;
280 int	maxsockets;
281 
282 static void
283 socket_zone_change(void *tag)
284 {
285 
286 	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
287 }
288 
289 static void
290 socket_hhook_register(int subtype)
291 {
292 
293 	if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype,
294 	    &V_socket_hhh[subtype],
295 	    HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
296 		printf("%s: WARNING: unable to register hook\n", __func__);
297 }
298 
299 static void
300 socket_hhook_deregister(int subtype)
301 {
302 
303 	if (hhook_head_deregister(V_socket_hhh[subtype]) != 0)
304 		printf("%s: WARNING: unable to deregister hook\n", __func__);
305 }
306 
307 static void
308 socket_init(void *tag)
309 {
310 
311 	socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL,
312 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
313 	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
314 	uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached");
315 	EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL,
316 	    EVENTHANDLER_PRI_FIRST);
317 }
318 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL);
319 
320 static void
321 socket_vnet_init(const void *unused __unused)
322 {
323 	int i;
324 
325 	/* We expect a contiguous range */
326 	for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
327 		socket_hhook_register(i);
328 }
329 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
330     socket_vnet_init, NULL);
331 
332 static void
333 socket_vnet_uninit(const void *unused __unused)
334 {
335 	int i;
336 
337 	for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
338 		socket_hhook_deregister(i);
339 }
340 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
341     socket_vnet_uninit, NULL);
342 
343 /*
344  * Initialise maxsockets.  This SYSINIT must be run after
345  * tunable_mbinit().
346  */
347 static void
348 init_maxsockets(void *ignored)
349 {
350 
351 	TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
352 	maxsockets = imax(maxsockets, maxfiles);
353 }
354 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
355 
356 /*
357  * Sysctl to get and set the maximum global sockets limit.  Notify protocols
358  * of the change so that they can update their dependent limits as required.
359  */
360 static int
361 sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
362 {
363 	int error, newmaxsockets;
364 
365 	newmaxsockets = maxsockets;
366 	error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
367 	if (error == 0 && req->newptr) {
368 		if (newmaxsockets > maxsockets &&
369 		    newmaxsockets <= maxfiles) {
370 			maxsockets = newmaxsockets;
371 			EVENTHANDLER_INVOKE(maxsockets_change);
372 		} else
373 			error = EINVAL;
374 	}
375 	return (error);
376 }
377 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets,
378     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &maxsockets, 0,
379     sysctl_maxsockets, "IU",
380     "Maximum number of sockets available");
381 
382 /*
383  * Socket operation routines.  These routines are called by the routines in
384  * sys_socket.c or from a system process, and implement the semantics of
385  * socket operations by switching out to the protocol specific routines.
386  */
387 
388 /*
389  * Get a socket structure from our zone, and initialize it.  Note that it
390  * would probably be better to allocate socket and PCB at the same time, but
391  * I'm not convinced that all the protocols can be easily modified to do
392  * this.
393  *
394  * soalloc() returns a socket with a ref count of 0.
395  */
396 static struct socket *
397 soalloc(struct vnet *vnet)
398 {
399 	struct socket *so;
400 
401 	so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
402 	if (so == NULL)
403 		return (NULL);
404 #ifdef MAC
405 	if (mac_socket_init(so, M_NOWAIT) != 0) {
406 		uma_zfree(socket_zone, so);
407 		return (NULL);
408 	}
409 #endif
410 	if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) {
411 		uma_zfree(socket_zone, so);
412 		return (NULL);
413 	}
414 
415 	/*
416 	 * The socket locking protocol allows to lock 2 sockets at a time,
417 	 * however, the first one must be a listening socket.  WITNESS lacks
418 	 * a feature to change class of an existing lock, so we use DUPOK.
419 	 */
420 	mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK);
421 	SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd");
422 	SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv");
423 	so->so_rcv.sb_sel = &so->so_rdsel;
424 	so->so_snd.sb_sel = &so->so_wrsel;
425 	sx_init(&so->so_snd.sb_sx, "so_snd_sx");
426 	sx_init(&so->so_rcv.sb_sx, "so_rcv_sx");
427 	TAILQ_INIT(&so->so_snd.sb_aiojobq);
428 	TAILQ_INIT(&so->so_rcv.sb_aiojobq);
429 	TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so);
430 	TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so);
431 #ifdef VIMAGE
432 	VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p",
433 	    __func__, __LINE__, so));
434 	so->so_vnet = vnet;
435 #endif
436 	/* We shouldn't need the so_global_mtx */
437 	if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) {
438 		/* Do we need more comprehensive error returns? */
439 		uma_zfree(socket_zone, so);
440 		return (NULL);
441 	}
442 	mtx_lock(&so_global_mtx);
443 	so->so_gencnt = ++so_gencnt;
444 	++numopensockets;
445 #ifdef VIMAGE
446 	vnet->vnet_sockcnt++;
447 #endif
448 	mtx_unlock(&so_global_mtx);
449 
450 	return (so);
451 }
452 
453 /*
454  * Free the storage associated with a socket at the socket layer, tear down
455  * locks, labels, etc.  All protocol state is assumed already to have been
456  * torn down (and possibly never set up) by the caller.
457  */
458 static void
459 sodealloc(struct socket *so)
460 {
461 
462 	KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
463 	KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
464 
465 	mtx_lock(&so_global_mtx);
466 	so->so_gencnt = ++so_gencnt;
467 	--numopensockets;	/* Could be below, but faster here. */
468 #ifdef VIMAGE
469 	VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p",
470 	    __func__, __LINE__, so));
471 	so->so_vnet->vnet_sockcnt--;
472 #endif
473 	mtx_unlock(&so_global_mtx);
474 #ifdef MAC
475 	mac_socket_destroy(so);
476 #endif
477 	hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE);
478 
479 	crfree(so->so_cred);
480 	khelp_destroy_osd(&so->osd);
481 	if (SOLISTENING(so)) {
482 		if (so->sol_accept_filter != NULL)
483 			accept_filt_setopt(so, NULL);
484 	} else {
485 		if (so->so_rcv.sb_hiwat)
486 			(void)chgsbsize(so->so_cred->cr_uidinfo,
487 			    &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
488 		if (so->so_snd.sb_hiwat)
489 			(void)chgsbsize(so->so_cred->cr_uidinfo,
490 			    &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
491 		sx_destroy(&so->so_snd.sb_sx);
492 		sx_destroy(&so->so_rcv.sb_sx);
493 		SOCKBUF_LOCK_DESTROY(&so->so_snd);
494 		SOCKBUF_LOCK_DESTROY(&so->so_rcv);
495 	}
496 	mtx_destroy(&so->so_lock);
497 	uma_zfree(socket_zone, so);
498 }
499 
500 /*
501  * socreate returns a socket with a ref count of 1.  The socket should be
502  * closed with soclose().
503  */
504 int
505 socreate(int dom, struct socket **aso, int type, int proto,
506     struct ucred *cred, struct thread *td)
507 {
508 	struct protosw *prp;
509 	struct socket *so;
510 	int error;
511 
512 	if (proto)
513 		prp = pffindproto(dom, proto, type);
514 	else
515 		prp = pffindtype(dom, type);
516 
517 	if (prp == NULL) {
518 		/* No support for domain. */
519 		if (pffinddomain(dom) == NULL)
520 			return (EAFNOSUPPORT);
521 		/* No support for socket type. */
522 		if (proto == 0 && type != 0)
523 			return (EPROTOTYPE);
524 		return (EPROTONOSUPPORT);
525 	}
526 	if (prp->pr_usrreqs->pru_attach == NULL ||
527 	    prp->pr_usrreqs->pru_attach == pru_attach_notsupp)
528 		return (EPROTONOSUPPORT);
529 
530 	if (IN_CAPABILITY_MODE(td) && (prp->pr_flags & PR_CAPATTACH) == 0)
531 		return (ECAPMODE);
532 
533 	if (prison_check_af(cred, prp->pr_domain->dom_family) != 0)
534 		return (EPROTONOSUPPORT);
535 
536 	if (prp->pr_type != type)
537 		return (EPROTOTYPE);
538 	so = soalloc(CRED_TO_VNET(cred));
539 	if (so == NULL)
540 		return (ENOBUFS);
541 
542 	so->so_type = type;
543 	so->so_cred = crhold(cred);
544 	if ((prp->pr_domain->dom_family == PF_INET) ||
545 	    (prp->pr_domain->dom_family == PF_INET6) ||
546 	    (prp->pr_domain->dom_family == PF_ROUTE))
547 		so->so_fibnum = td->td_proc->p_fibnum;
548 	else
549 		so->so_fibnum = 0;
550 	so->so_proto = prp;
551 #ifdef MAC
552 	mac_socket_create(cred, so);
553 #endif
554 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
555 	    so_rdknl_assert_lock);
556 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
557 	    so_wrknl_assert_lock);
558 	/*
559 	 * Auto-sizing of socket buffers is managed by the protocols and
560 	 * the appropriate flags must be set in the pru_attach function.
561 	 */
562 	CURVNET_SET(so->so_vnet);
563 	error = (*prp->pr_usrreqs->pru_attach)(so, proto, td);
564 	CURVNET_RESTORE();
565 	if (error) {
566 		sodealloc(so);
567 		return (error);
568 	}
569 	soref(so);
570 	*aso = so;
571 	return (0);
572 }
573 
574 #ifdef REGRESSION
575 static int regression_sonewconn_earlytest = 1;
576 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
577     &regression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
578 #endif
579 
580 static struct timeval overinterval = { 60, 0 };
581 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW,
582     &overinterval,
583     "Delay in seconds between warnings for listen socket overflows");
584 
585 /*
586  * When an attempt at a new connection is noted on a socket which accepts
587  * connections, sonewconn is called.  If the connection is possible (subject
588  * to space constraints, etc.) then we allocate a new structure, properly
589  * linked into the data structure of the original socket, and return this.
590  * Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED.
591  *
592  * Note: the ref count on the socket is 0 on return.
593  */
594 struct socket *
595 sonewconn(struct socket *head, int connstatus)
596 {
597 	struct sbuf descrsb;
598 	struct socket *so;
599 	int len, overcount;
600 	u_int qlen;
601 	const char localprefix[] = "local:";
602 	char descrbuf[SUNPATHLEN + sizeof(localprefix)];
603 #if defined(INET6)
604 	char addrbuf[INET6_ADDRSTRLEN];
605 #elif defined(INET)
606 	char addrbuf[INET_ADDRSTRLEN];
607 #endif
608 	bool dolog, over;
609 
610 	SOLISTEN_LOCK(head);
611 	over = (head->sol_qlen > 3 * head->sol_qlimit / 2);
612 #ifdef REGRESSION
613 	if (regression_sonewconn_earlytest && over) {
614 #else
615 	if (over) {
616 #endif
617 		head->sol_overcount++;
618 		dolog = !!ratecheck(&head->sol_lastover, &overinterval);
619 
620 		/*
621 		 * If we're going to log, copy the overflow count and queue
622 		 * length from the listen socket before dropping the lock.
623 		 * Also, reset the overflow count.
624 		 */
625 		if (dolog) {
626 			overcount = head->sol_overcount;
627 			head->sol_overcount = 0;
628 			qlen = head->sol_qlen;
629 		}
630 		SOLISTEN_UNLOCK(head);
631 
632 		if (dolog) {
633 			/*
634 			 * Try to print something descriptive about the
635 			 * socket for the error message.
636 			 */
637 			sbuf_new(&descrsb, descrbuf, sizeof(descrbuf),
638 			    SBUF_FIXEDLEN);
639 			switch (head->so_proto->pr_domain->dom_family) {
640 #if defined(INET) || defined(INET6)
641 #ifdef INET
642 			case AF_INET:
643 #endif
644 #ifdef INET6
645 			case AF_INET6:
646 				if (head->so_proto->pr_domain->dom_family ==
647 				    AF_INET6 ||
648 				    (sotoinpcb(head)->inp_inc.inc_flags &
649 				    INC_ISIPV6)) {
650 					ip6_sprintf(addrbuf,
651 					    &sotoinpcb(head)->inp_inc.inc6_laddr);
652 					sbuf_printf(&descrsb, "[%s]", addrbuf);
653 				} else
654 #endif
655 				{
656 #ifdef INET
657 					inet_ntoa_r(
658 					    sotoinpcb(head)->inp_inc.inc_laddr,
659 					    addrbuf);
660 					sbuf_cat(&descrsb, addrbuf);
661 #endif
662 				}
663 				sbuf_printf(&descrsb, ":%hu (proto %u)",
664 				    ntohs(sotoinpcb(head)->inp_inc.inc_lport),
665 				    head->so_proto->pr_protocol);
666 				break;
667 #endif /* INET || INET6 */
668 			case AF_UNIX:
669 				sbuf_cat(&descrsb, localprefix);
670 				if (sotounpcb(head)->unp_addr != NULL)
671 					len =
672 					    sotounpcb(head)->unp_addr->sun_len -
673 					    offsetof(struct sockaddr_un,
674 					    sun_path);
675 				else
676 					len = 0;
677 				if (len > 0)
678 					sbuf_bcat(&descrsb,
679 					    sotounpcb(head)->unp_addr->sun_path,
680 					    len);
681 				else
682 					sbuf_cat(&descrsb, "(unknown)");
683 				break;
684 			}
685 
686 			/*
687 			 * If we can't print something more specific, at least
688 			 * print the domain name.
689 			 */
690 			if (sbuf_finish(&descrsb) != 0 ||
691 			    sbuf_len(&descrsb) <= 0) {
692 				sbuf_clear(&descrsb);
693 				sbuf_cat(&descrsb,
694 				    head->so_proto->pr_domain->dom_name ?:
695 				    "unknown");
696 				sbuf_finish(&descrsb);
697 			}
698 			KASSERT(sbuf_len(&descrsb) > 0,
699 			    ("%s: sbuf creation failed", __func__));
700 			log(LOG_DEBUG,
701 			    "%s: pcb %p (%s): Listen queue overflow: "
702 			    "%i already in queue awaiting acceptance "
703 			    "(%d occurrences)\n",
704 			    __func__, head->so_pcb, sbuf_data(&descrsb),
705 			    qlen, overcount);
706 			sbuf_delete(&descrsb);
707 
708 			overcount = 0;
709 		}
710 
711 		return (NULL);
712 	}
713 	SOLISTEN_UNLOCK(head);
714 	VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL",
715 	    __func__, head));
716 	so = soalloc(head->so_vnet);
717 	if (so == NULL) {
718 		log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
719 		    "limit reached or out of memory\n",
720 		    __func__, head->so_pcb);
721 		return (NULL);
722 	}
723 	so->so_listen = head;
724 	so->so_type = head->so_type;
725 	so->so_options = head->so_options & ~SO_ACCEPTCONN;
726 	so->so_linger = head->so_linger;
727 	so->so_state = head->so_state | SS_NOFDREF;
728 	so->so_fibnum = head->so_fibnum;
729 	so->so_proto = head->so_proto;
730 	so->so_cred = crhold(head->so_cred);
731 #ifdef MAC
732 	mac_socket_newconn(head, so);
733 #endif
734 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
735 	    so_rdknl_assert_lock);
736 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
737 	    so_wrknl_assert_lock);
738 	VNET_SO_ASSERT(head);
739 	if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) {
740 		sodealloc(so);
741 		log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
742 		    __func__, head->so_pcb);
743 		return (NULL);
744 	}
745 	if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
746 		sodealloc(so);
747 		log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n",
748 		    __func__, head->so_pcb);
749 		return (NULL);
750 	}
751 	so->so_rcv.sb_lowat = head->sol_sbrcv_lowat;
752 	so->so_snd.sb_lowat = head->sol_sbsnd_lowat;
753 	so->so_rcv.sb_timeo = head->sol_sbrcv_timeo;
754 	so->so_snd.sb_timeo = head->sol_sbsnd_timeo;
755 	so->so_rcv.sb_flags |= head->sol_sbrcv_flags & SB_AUTOSIZE;
756 	so->so_snd.sb_flags |= head->sol_sbsnd_flags & SB_AUTOSIZE;
757 
758 	SOLISTEN_LOCK(head);
759 	if (head->sol_accept_filter != NULL)
760 		connstatus = 0;
761 	so->so_state |= connstatus;
762 	soref(head); /* A socket on (in)complete queue refs head. */
763 	if (connstatus) {
764 		TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
765 		so->so_qstate = SQ_COMP;
766 		head->sol_qlen++;
767 		solisten_wakeup(head);	/* unlocks */
768 	} else {
769 		/*
770 		 * Keep removing sockets from the head until there's room for
771 		 * us to insert on the tail.  In pre-locking revisions, this
772 		 * was a simple if(), but as we could be racing with other
773 		 * threads and soabort() requires dropping locks, we must
774 		 * loop waiting for the condition to be true.
775 		 */
776 		while (head->sol_incqlen > head->sol_qlimit) {
777 			struct socket *sp;
778 
779 			sp = TAILQ_FIRST(&head->sol_incomp);
780 			TAILQ_REMOVE(&head->sol_incomp, sp, so_list);
781 			head->sol_incqlen--;
782 			SOCK_LOCK(sp);
783 			sp->so_qstate = SQ_NONE;
784 			sp->so_listen = NULL;
785 			SOCK_UNLOCK(sp);
786 			sorele(head);	/* does SOLISTEN_UNLOCK, head stays */
787 			soabort(sp);
788 			SOLISTEN_LOCK(head);
789 		}
790 		TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list);
791 		so->so_qstate = SQ_INCOMP;
792 		head->sol_incqlen++;
793 		SOLISTEN_UNLOCK(head);
794 	}
795 	return (so);
796 }
797 
798 #if defined(SCTP) || defined(SCTP_SUPPORT)
799 /*
800  * Socket part of sctp_peeloff().  Detach a new socket from an
801  * association.  The new socket is returned with a reference.
802  */
803 struct socket *
804 sopeeloff(struct socket *head)
805 {
806 	struct socket *so;
807 
808 	VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p",
809 	    __func__, __LINE__, head));
810 	so = soalloc(head->so_vnet);
811 	if (so == NULL) {
812 		log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
813 		    "limit reached or out of memory\n",
814 		    __func__, head->so_pcb);
815 		return (NULL);
816 	}
817 	so->so_type = head->so_type;
818 	so->so_options = head->so_options;
819 	so->so_linger = head->so_linger;
820 	so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED;
821 	so->so_fibnum = head->so_fibnum;
822 	so->so_proto = head->so_proto;
823 	so->so_cred = crhold(head->so_cred);
824 #ifdef MAC
825 	mac_socket_newconn(head, so);
826 #endif
827 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
828 	    so_rdknl_assert_lock);
829 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
830 	    so_wrknl_assert_lock);
831 	VNET_SO_ASSERT(head);
832 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
833 		sodealloc(so);
834 		log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
835 		    __func__, head->so_pcb);
836 		return (NULL);
837 	}
838 	if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
839 		sodealloc(so);
840 		log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n",
841 		    __func__, head->so_pcb);
842 		return (NULL);
843 	}
844 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
845 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
846 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
847 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
848 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
849 	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
850 
851 	soref(so);
852 
853 	return (so);
854 }
855 #endif	/* SCTP */
856 
857 int
858 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
859 {
860 	int error;
861 
862 	CURVNET_SET(so->so_vnet);
863 	error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td);
864 	CURVNET_RESTORE();
865 	return (error);
866 }
867 
868 int
869 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
870 {
871 	int error;
872 
873 	CURVNET_SET(so->so_vnet);
874 	error = (*so->so_proto->pr_usrreqs->pru_bindat)(fd, so, nam, td);
875 	CURVNET_RESTORE();
876 	return (error);
877 }
878 
879 /*
880  * solisten() transitions a socket from a non-listening state to a listening
881  * state, but can also be used to update the listen queue depth on an
882  * existing listen socket.  The protocol will call back into the sockets
883  * layer using solisten_proto_check() and solisten_proto() to check and set
884  * socket-layer listen state.  Call backs are used so that the protocol can
885  * acquire both protocol and socket layer locks in whatever order is required
886  * by the protocol.
887  *
888  * Protocol implementors are advised to hold the socket lock across the
889  * socket-layer test and set to avoid races at the socket layer.
890  */
891 int
892 solisten(struct socket *so, int backlog, struct thread *td)
893 {
894 	int error;
895 
896 	CURVNET_SET(so->so_vnet);
897 	error = (*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td);
898 	CURVNET_RESTORE();
899 	return (error);
900 }
901 
902 int
903 solisten_proto_check(struct socket *so)
904 {
905 
906 	SOCK_LOCK_ASSERT(so);
907 
908 	if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
909 	    SS_ISDISCONNECTING))
910 		return (EINVAL);
911 	return (0);
912 }
913 
914 void
915 solisten_proto(struct socket *so, int backlog)
916 {
917 	int sbrcv_lowat, sbsnd_lowat;
918 	u_int sbrcv_hiwat, sbsnd_hiwat;
919 	short sbrcv_flags, sbsnd_flags;
920 	sbintime_t sbrcv_timeo, sbsnd_timeo;
921 
922 	SOCK_LOCK_ASSERT(so);
923 
924 	if (SOLISTENING(so))
925 		goto listening;
926 
927 	/*
928 	 * Change this socket to listening state.
929 	 */
930 	sbrcv_lowat = so->so_rcv.sb_lowat;
931 	sbsnd_lowat = so->so_snd.sb_lowat;
932 	sbrcv_hiwat = so->so_rcv.sb_hiwat;
933 	sbsnd_hiwat = so->so_snd.sb_hiwat;
934 	sbrcv_flags = so->so_rcv.sb_flags;
935 	sbsnd_flags = so->so_snd.sb_flags;
936 	sbrcv_timeo = so->so_rcv.sb_timeo;
937 	sbsnd_timeo = so->so_snd.sb_timeo;
938 
939 	sbdestroy(&so->so_snd, so);
940 	sbdestroy(&so->so_rcv, so);
941 	sx_destroy(&so->so_snd.sb_sx);
942 	sx_destroy(&so->so_rcv.sb_sx);
943 	SOCKBUF_LOCK_DESTROY(&so->so_snd);
944 	SOCKBUF_LOCK_DESTROY(&so->so_rcv);
945 
946 #ifdef INVARIANTS
947 	bzero(&so->so_rcv,
948 	    sizeof(struct socket) - offsetof(struct socket, so_rcv));
949 #endif
950 
951 	so->sol_sbrcv_lowat = sbrcv_lowat;
952 	so->sol_sbsnd_lowat = sbsnd_lowat;
953 	so->sol_sbrcv_hiwat = sbrcv_hiwat;
954 	so->sol_sbsnd_hiwat = sbsnd_hiwat;
955 	so->sol_sbrcv_flags = sbrcv_flags;
956 	so->sol_sbsnd_flags = sbsnd_flags;
957 	so->sol_sbrcv_timeo = sbrcv_timeo;
958 	so->sol_sbsnd_timeo = sbsnd_timeo;
959 
960 	so->sol_qlen = so->sol_incqlen = 0;
961 	TAILQ_INIT(&so->sol_incomp);
962 	TAILQ_INIT(&so->sol_comp);
963 
964 	so->sol_accept_filter = NULL;
965 	so->sol_accept_filter_arg = NULL;
966 	so->sol_accept_filter_str = NULL;
967 
968 	so->sol_upcall = NULL;
969 	so->sol_upcallarg = NULL;
970 
971 	so->so_options |= SO_ACCEPTCONN;
972 
973 listening:
974 	if (backlog < 0 || backlog > somaxconn)
975 		backlog = somaxconn;
976 	so->sol_qlimit = backlog;
977 }
978 
979 /*
980  * Wakeup listeners/subsystems once we have a complete connection.
981  * Enters with lock, returns unlocked.
982  */
983 void
984 solisten_wakeup(struct socket *sol)
985 {
986 
987 	if (sol->sol_upcall != NULL)
988 		(void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT);
989 	else {
990 		selwakeuppri(&sol->so_rdsel, PSOCK);
991 		KNOTE_LOCKED(&sol->so_rdsel.si_note, 0);
992 	}
993 	SOLISTEN_UNLOCK(sol);
994 	wakeup_one(&sol->sol_comp);
995 	if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL)
996 		pgsigio(&sol->so_sigio, SIGIO, 0);
997 }
998 
999 /*
1000  * Return single connection off a listening socket queue.  Main consumer of
1001  * the function is kern_accept4().  Some modules, that do their own accept
1002  * management also use the function.
1003  *
1004  * Listening socket must be locked on entry and is returned unlocked on
1005  * return.
1006  * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT.
1007  */
1008 int
1009 solisten_dequeue(struct socket *head, struct socket **ret, int flags)
1010 {
1011 	struct socket *so;
1012 	int error;
1013 
1014 	SOLISTEN_LOCK_ASSERT(head);
1015 
1016 	while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) &&
1017 	    head->so_error == 0) {
1018 		error = msleep(&head->sol_comp, &head->so_lock, PSOCK | PCATCH,
1019 		    "accept", 0);
1020 		if (error != 0) {
1021 			SOLISTEN_UNLOCK(head);
1022 			return (error);
1023 		}
1024 	}
1025 	if (head->so_error) {
1026 		error = head->so_error;
1027 		head->so_error = 0;
1028 	} else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp))
1029 		error = EWOULDBLOCK;
1030 	else
1031 		error = 0;
1032 	if (error) {
1033 		SOLISTEN_UNLOCK(head);
1034 		return (error);
1035 	}
1036 	so = TAILQ_FIRST(&head->sol_comp);
1037 	SOCK_LOCK(so);
1038 	KASSERT(so->so_qstate == SQ_COMP,
1039 	    ("%s: so %p not SQ_COMP", __func__, so));
1040 	soref(so);
1041 	head->sol_qlen--;
1042 	so->so_qstate = SQ_NONE;
1043 	so->so_listen = NULL;
1044 	TAILQ_REMOVE(&head->sol_comp, so, so_list);
1045 	if (flags & ACCEPT4_INHERIT)
1046 		so->so_state |= (head->so_state & SS_NBIO);
1047 	else
1048 		so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0;
1049 	SOCK_UNLOCK(so);
1050 	sorele(head);
1051 
1052 	*ret = so;
1053 	return (0);
1054 }
1055 
1056 /*
1057  * Evaluate the reference count and named references on a socket; if no
1058  * references remain, free it.  This should be called whenever a reference is
1059  * released, such as in sorele(), but also when named reference flags are
1060  * cleared in socket or protocol code.
1061  *
1062  * sofree() will free the socket if:
1063  *
1064  * - There are no outstanding file descriptor references or related consumers
1065  *   (so_count == 0).
1066  *
1067  * - The socket has been closed by user space, if ever open (SS_NOFDREF).
1068  *
1069  * - The protocol does not have an outstanding strong reference on the socket
1070  *   (SS_PROTOREF).
1071  *
1072  * - The socket is not in a completed connection queue, so a process has been
1073  *   notified that it is present.  If it is removed, the user process may
1074  *   block in accept() despite select() saying the socket was ready.
1075  */
1076 void
1077 sofree(struct socket *so)
1078 {
1079 	struct protosw *pr = so->so_proto;
1080 
1081 	SOCK_LOCK_ASSERT(so);
1082 
1083 	if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 ||
1084 	    (so->so_state & SS_PROTOREF) || (so->so_qstate == SQ_COMP)) {
1085 		SOCK_UNLOCK(so);
1086 		return;
1087 	}
1088 
1089 	if (!SOLISTENING(so) && so->so_qstate == SQ_INCOMP) {
1090 		struct socket *sol;
1091 
1092 		sol = so->so_listen;
1093 		KASSERT(sol, ("%s: so %p on incomp of NULL", __func__, so));
1094 
1095 		/*
1096 		 * To solve race between close of a listening socket and
1097 		 * a socket on its incomplete queue, we need to lock both.
1098 		 * The order is first listening socket, then regular.
1099 		 * Since we don't have SS_NOFDREF neither SS_PROTOREF, this
1100 		 * function and the listening socket are the only pointers
1101 		 * to so.  To preserve so and sol, we reference both and then
1102 		 * relock.
1103 		 * After relock the socket may not move to so_comp since it
1104 		 * doesn't have PCB already, but it may be removed from
1105 		 * so_incomp. If that happens, we share responsiblity on
1106 		 * freeing the socket, but soclose() has already removed
1107 		 * it from queue.
1108 		 */
1109 		soref(sol);
1110 		soref(so);
1111 		SOCK_UNLOCK(so);
1112 		SOLISTEN_LOCK(sol);
1113 		SOCK_LOCK(so);
1114 		if (so->so_qstate == SQ_INCOMP) {
1115 			KASSERT(so->so_listen == sol,
1116 			    ("%s: so %p migrated out of sol %p",
1117 			    __func__, so, sol));
1118 			TAILQ_REMOVE(&sol->sol_incomp, so, so_list);
1119 			sol->sol_incqlen--;
1120 			/* This is guarenteed not to be the last. */
1121 			refcount_release(&sol->so_count);
1122 			so->so_qstate = SQ_NONE;
1123 			so->so_listen = NULL;
1124 		} else
1125 			KASSERT(so->so_listen == NULL,
1126 			    ("%s: so %p not on (in)comp with so_listen",
1127 			    __func__, so));
1128 		sorele(sol);
1129 		KASSERT(so->so_count == 1,
1130 		    ("%s: so %p count %u", __func__, so, so->so_count));
1131 		so->so_count = 0;
1132 	}
1133 	if (SOLISTENING(so))
1134 		so->so_error = ECONNABORTED;
1135 	SOCK_UNLOCK(so);
1136 
1137 	if (so->so_dtor != NULL)
1138 		so->so_dtor(so);
1139 
1140 	VNET_SO_ASSERT(so);
1141 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
1142 		(*pr->pr_domain->dom_dispose)(so);
1143 	if (pr->pr_usrreqs->pru_detach != NULL)
1144 		(*pr->pr_usrreqs->pru_detach)(so);
1145 
1146 	/*
1147 	 * From this point on, we assume that no other references to this
1148 	 * socket exist anywhere else in the stack.  Therefore, no locks need
1149 	 * to be acquired or held.
1150 	 *
1151 	 * We used to do a lot of socket buffer and socket locking here, as
1152 	 * well as invoke sorflush() and perform wakeups.  The direct call to
1153 	 * dom_dispose() and sbdestroy() are an inlining of what was
1154 	 * necessary from sorflush().
1155 	 *
1156 	 * Notice that the socket buffer and kqueue state are torn down
1157 	 * before calling pru_detach.  This means that protocols shold not
1158 	 * assume they can perform socket wakeups, etc, in their detach code.
1159 	 */
1160 	if (!SOLISTENING(so)) {
1161 		sbdestroy(&so->so_snd, so);
1162 		sbdestroy(&so->so_rcv, so);
1163 	}
1164 	seldrain(&so->so_rdsel);
1165 	seldrain(&so->so_wrsel);
1166 	knlist_destroy(&so->so_rdsel.si_note);
1167 	knlist_destroy(&so->so_wrsel.si_note);
1168 	sodealloc(so);
1169 }
1170 
1171 /*
1172  * Close a socket on last file table reference removal.  Initiate disconnect
1173  * if connected.  Free socket when disconnect complete.
1174  *
1175  * This function will sorele() the socket.  Note that soclose() may be called
1176  * prior to the ref count reaching zero.  The actual socket structure will
1177  * not be freed until the ref count reaches zero.
1178  */
1179 int
1180 soclose(struct socket *so)
1181 {
1182 	struct accept_queue lqueue;
1183 	bool listening;
1184 	int error = 0;
1185 
1186 	KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter"));
1187 
1188 	CURVNET_SET(so->so_vnet);
1189 	funsetown(&so->so_sigio);
1190 	if (so->so_state & SS_ISCONNECTED) {
1191 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
1192 			error = sodisconnect(so);
1193 			if (error) {
1194 				if (error == ENOTCONN)
1195 					error = 0;
1196 				goto drop;
1197 			}
1198 		}
1199 
1200 		if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) {
1201 			if ((so->so_state & SS_ISDISCONNECTING) &&
1202 			    (so->so_state & SS_NBIO))
1203 				goto drop;
1204 			while (so->so_state & SS_ISCONNECTED) {
1205 				error = tsleep(&so->so_timeo,
1206 				    PSOCK | PCATCH, "soclos",
1207 				    so->so_linger * hz);
1208 				if (error)
1209 					break;
1210 			}
1211 		}
1212 	}
1213 
1214 drop:
1215 	if (so->so_proto->pr_usrreqs->pru_close != NULL)
1216 		(*so->so_proto->pr_usrreqs->pru_close)(so);
1217 
1218 	SOCK_LOCK(so);
1219 	if ((listening = (so->so_options & SO_ACCEPTCONN))) {
1220 		struct socket *sp;
1221 
1222 		TAILQ_INIT(&lqueue);
1223 		TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list);
1224 		TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list);
1225 
1226 		so->sol_qlen = so->sol_incqlen = 0;
1227 
1228 		TAILQ_FOREACH(sp, &lqueue, so_list) {
1229 			SOCK_LOCK(sp);
1230 			sp->so_qstate = SQ_NONE;
1231 			sp->so_listen = NULL;
1232 			SOCK_UNLOCK(sp);
1233 			/* Guaranteed not to be the last. */
1234 			refcount_release(&so->so_count);
1235 		}
1236 	}
1237 	KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF"));
1238 	so->so_state |= SS_NOFDREF;
1239 	sorele(so);
1240 	if (listening) {
1241 		struct socket *sp, *tsp;
1242 
1243 		TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp) {
1244 			SOCK_LOCK(sp);
1245 			if (sp->so_count == 0) {
1246 				SOCK_UNLOCK(sp);
1247 				soabort(sp);
1248 			} else
1249 				/* sp is now in sofree() */
1250 				SOCK_UNLOCK(sp);
1251 		}
1252 	}
1253 	CURVNET_RESTORE();
1254 	return (error);
1255 }
1256 
1257 /*
1258  * soabort() is used to abruptly tear down a connection, such as when a
1259  * resource limit is reached (listen queue depth exceeded), or if a listen
1260  * socket is closed while there are sockets waiting to be accepted.
1261  *
1262  * This interface is tricky, because it is called on an unreferenced socket,
1263  * and must be called only by a thread that has actually removed the socket
1264  * from the listen queue it was on, or races with other threads are risked.
1265  *
1266  * This interface will call into the protocol code, so must not be called
1267  * with any socket locks held.  Protocols do call it while holding their own
1268  * recursible protocol mutexes, but this is something that should be subject
1269  * to review in the future.
1270  */
1271 void
1272 soabort(struct socket *so)
1273 {
1274 
1275 	/*
1276 	 * In as much as is possible, assert that no references to this
1277 	 * socket are held.  This is not quite the same as asserting that the
1278 	 * current thread is responsible for arranging for no references, but
1279 	 * is as close as we can get for now.
1280 	 */
1281 	KASSERT(so->so_count == 0, ("soabort: so_count"));
1282 	KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF"));
1283 	KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF"));
1284 	VNET_SO_ASSERT(so);
1285 
1286 	if (so->so_proto->pr_usrreqs->pru_abort != NULL)
1287 		(*so->so_proto->pr_usrreqs->pru_abort)(so);
1288 	SOCK_LOCK(so);
1289 	sofree(so);
1290 }
1291 
1292 int
1293 soaccept(struct socket *so, struct sockaddr **nam)
1294 {
1295 	int error;
1296 
1297 	SOCK_LOCK(so);
1298 	KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF"));
1299 	so->so_state &= ~SS_NOFDREF;
1300 	SOCK_UNLOCK(so);
1301 
1302 	CURVNET_SET(so->so_vnet);
1303 	error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam);
1304 	CURVNET_RESTORE();
1305 	return (error);
1306 }
1307 
1308 int
1309 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
1310 {
1311 
1312 	return (soconnectat(AT_FDCWD, so, nam, td));
1313 }
1314 
1315 int
1316 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
1317 {
1318 	int error;
1319 
1320 	if (so->so_options & SO_ACCEPTCONN)
1321 		return (EOPNOTSUPP);
1322 
1323 	CURVNET_SET(so->so_vnet);
1324 	/*
1325 	 * If protocol is connection-based, can only connect once.
1326 	 * Otherwise, if connected, try to disconnect first.  This allows
1327 	 * user to disconnect by connecting to, e.g., a null address.
1328 	 */
1329 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
1330 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
1331 	    (error = sodisconnect(so)))) {
1332 		error = EISCONN;
1333 	} else {
1334 		/*
1335 		 * Prevent accumulated error from previous connection from
1336 		 * biting us.
1337 		 */
1338 		so->so_error = 0;
1339 		if (fd == AT_FDCWD) {
1340 			error = (*so->so_proto->pr_usrreqs->pru_connect)(so,
1341 			    nam, td);
1342 		} else {
1343 			error = (*so->so_proto->pr_usrreqs->pru_connectat)(fd,
1344 			    so, nam, td);
1345 		}
1346 	}
1347 	CURVNET_RESTORE();
1348 
1349 	return (error);
1350 }
1351 
1352 int
1353 soconnect2(struct socket *so1, struct socket *so2)
1354 {
1355 	int error;
1356 
1357 	CURVNET_SET(so1->so_vnet);
1358 	error = (*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2);
1359 	CURVNET_RESTORE();
1360 	return (error);
1361 }
1362 
1363 int
1364 sodisconnect(struct socket *so)
1365 {
1366 	int error;
1367 
1368 	if ((so->so_state & SS_ISCONNECTED) == 0)
1369 		return (ENOTCONN);
1370 	if (so->so_state & SS_ISDISCONNECTING)
1371 		return (EALREADY);
1372 	VNET_SO_ASSERT(so);
1373 	error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so);
1374 	return (error);
1375 }
1376 
1377 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT)
1378 
1379 int
1380 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
1381     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1382 {
1383 	long space;
1384 	ssize_t resid;
1385 	int clen = 0, error, dontroute;
1386 
1387 	KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM"));
1388 	KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
1389 	    ("sosend_dgram: !PR_ATOMIC"));
1390 
1391 	if (uio != NULL)
1392 		resid = uio->uio_resid;
1393 	else
1394 		resid = top->m_pkthdr.len;
1395 	/*
1396 	 * In theory resid should be unsigned.  However, space must be
1397 	 * signed, as it might be less than 0 if we over-committed, and we
1398 	 * must use a signed comparison of space and resid.  On the other
1399 	 * hand, a negative resid causes us to loop sending 0-length
1400 	 * segments to the protocol.
1401 	 */
1402 	if (resid < 0) {
1403 		error = EINVAL;
1404 		goto out;
1405 	}
1406 
1407 	dontroute =
1408 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
1409 	if (td != NULL)
1410 		td->td_ru.ru_msgsnd++;
1411 	if (control != NULL)
1412 		clen = control->m_len;
1413 
1414 	SOCKBUF_LOCK(&so->so_snd);
1415 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1416 		SOCKBUF_UNLOCK(&so->so_snd);
1417 		error = EPIPE;
1418 		goto out;
1419 	}
1420 	if (so->so_error) {
1421 		error = so->so_error;
1422 		so->so_error = 0;
1423 		SOCKBUF_UNLOCK(&so->so_snd);
1424 		goto out;
1425 	}
1426 	if ((so->so_state & SS_ISCONNECTED) == 0) {
1427 		/*
1428 		 * `sendto' and `sendmsg' is allowed on a connection-based
1429 		 * socket if it supports implied connect.  Return ENOTCONN if
1430 		 * not connected and no address is supplied.
1431 		 */
1432 		if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1433 		    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1434 			if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1435 			    !(resid == 0 && clen != 0)) {
1436 				SOCKBUF_UNLOCK(&so->so_snd);
1437 				error = ENOTCONN;
1438 				goto out;
1439 			}
1440 		} else if (addr == NULL) {
1441 			if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1442 				error = ENOTCONN;
1443 			else
1444 				error = EDESTADDRREQ;
1445 			SOCKBUF_UNLOCK(&so->so_snd);
1446 			goto out;
1447 		}
1448 	}
1449 
1450 	/*
1451 	 * Do we need MSG_OOB support in SOCK_DGRAM?  Signs here may be a
1452 	 * problem and need fixing.
1453 	 */
1454 	space = sbspace(&so->so_snd);
1455 	if (flags & MSG_OOB)
1456 		space += 1024;
1457 	space -= clen;
1458 	SOCKBUF_UNLOCK(&so->so_snd);
1459 	if (resid > space) {
1460 		error = EMSGSIZE;
1461 		goto out;
1462 	}
1463 	if (uio == NULL) {
1464 		resid = 0;
1465 		if (flags & MSG_EOR)
1466 			top->m_flags |= M_EOR;
1467 	} else {
1468 		/*
1469 		 * Copy the data from userland into a mbuf chain.
1470 		 * If no data is to be copied in, a single empty mbuf
1471 		 * is returned.
1472 		 */
1473 		top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
1474 		    (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
1475 		if (top == NULL) {
1476 			error = EFAULT;	/* only possible error */
1477 			goto out;
1478 		}
1479 		space -= resid - uio->uio_resid;
1480 		resid = uio->uio_resid;
1481 	}
1482 	KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
1483 	/*
1484 	 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
1485 	 * than with.
1486 	 */
1487 	if (dontroute) {
1488 		SOCK_LOCK(so);
1489 		so->so_options |= SO_DONTROUTE;
1490 		SOCK_UNLOCK(so);
1491 	}
1492 	/*
1493 	 * XXX all the SBS_CANTSENDMORE checks previously done could be out
1494 	 * of date.  We could have received a reset packet in an interrupt or
1495 	 * maybe we slept while doing page faults in uiomove() etc.  We could
1496 	 * probably recheck again inside the locking protection here, but
1497 	 * there are probably other places that this also happens.  We must
1498 	 * rethink this.
1499 	 */
1500 	VNET_SO_ASSERT(so);
1501 	error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1502 	    (flags & MSG_OOB) ? PRUS_OOB :
1503 	/*
1504 	 * If the user set MSG_EOF, the protocol understands this flag and
1505 	 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
1506 	 */
1507 	    ((flags & MSG_EOF) &&
1508 	     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1509 	     (resid <= 0)) ?
1510 		PRUS_EOF :
1511 		/* If there is more to send set PRUS_MORETOCOME */
1512 		(flags & MSG_MORETOCOME) ||
1513 		(resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1514 		top, addr, control, td);
1515 	if (dontroute) {
1516 		SOCK_LOCK(so);
1517 		so->so_options &= ~SO_DONTROUTE;
1518 		SOCK_UNLOCK(so);
1519 	}
1520 	clen = 0;
1521 	control = NULL;
1522 	top = NULL;
1523 out:
1524 	if (top != NULL)
1525 		m_freem(top);
1526 	if (control != NULL)
1527 		m_freem(control);
1528 	return (error);
1529 }
1530 
1531 /*
1532  * Send on a socket.  If send must go all at once and message is larger than
1533  * send buffering, then hard error.  Lock against other senders.  If must go
1534  * all at once and not enough room now, then inform user that this would
1535  * block and do nothing.  Otherwise, if nonblocking, send as much as
1536  * possible.  The data to be sent is described by "uio" if nonzero, otherwise
1537  * by the mbuf chain "top" (which must be null if uio is not).  Data provided
1538  * in mbuf chain must be small enough to send all at once.
1539  *
1540  * Returns nonzero on error, timeout or signal; callers must check for short
1541  * counts if EINTR/ERESTART are returned.  Data and control buffers are freed
1542  * on return.
1543  */
1544 int
1545 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
1546     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1547 {
1548 	long space;
1549 	ssize_t resid;
1550 	int clen = 0, error, dontroute;
1551 	int atomic = sosendallatonce(so) || top;
1552 	int pru_flag;
1553 #ifdef KERN_TLS
1554 	struct ktls_session *tls;
1555 	int tls_enq_cnt, tls_pruflag;
1556 	uint8_t tls_rtype;
1557 
1558 	tls = NULL;
1559 	tls_rtype = TLS_RLTYPE_APP;
1560 #endif
1561 	if (uio != NULL)
1562 		resid = uio->uio_resid;
1563 	else if ((top->m_flags & M_PKTHDR) != 0)
1564 		resid = top->m_pkthdr.len;
1565 	else
1566 		resid = m_length(top, NULL);
1567 	/*
1568 	 * In theory resid should be unsigned.  However, space must be
1569 	 * signed, as it might be less than 0 if we over-committed, and we
1570 	 * must use a signed comparison of space and resid.  On the other
1571 	 * hand, a negative resid causes us to loop sending 0-length
1572 	 * segments to the protocol.
1573 	 *
1574 	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
1575 	 * type sockets since that's an error.
1576 	 */
1577 	if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
1578 		error = EINVAL;
1579 		goto out;
1580 	}
1581 
1582 	dontroute =
1583 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
1584 	    (so->so_proto->pr_flags & PR_ATOMIC);
1585 	if (td != NULL)
1586 		td->td_ru.ru_msgsnd++;
1587 	if (control != NULL)
1588 		clen = control->m_len;
1589 
1590 	error = sblock(&so->so_snd, SBLOCKWAIT(flags));
1591 	if (error)
1592 		goto out;
1593 
1594 #ifdef KERN_TLS
1595 	tls_pruflag = 0;
1596 	tls = ktls_hold(so->so_snd.sb_tls_info);
1597 	if (tls != NULL) {
1598 		if (tls->mode == TCP_TLS_MODE_SW)
1599 			tls_pruflag = PRUS_NOTREADY;
1600 
1601 		if (control != NULL) {
1602 			struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1603 
1604 			if (clen >= sizeof(*cm) &&
1605 			    cm->cmsg_type == TLS_SET_RECORD_TYPE) {
1606 				tls_rtype = *((uint8_t *)CMSG_DATA(cm));
1607 				clen = 0;
1608 				m_freem(control);
1609 				control = NULL;
1610 				atomic = 1;
1611 			}
1612 		}
1613 	}
1614 #endif
1615 
1616 restart:
1617 	do {
1618 		SOCKBUF_LOCK(&so->so_snd);
1619 		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1620 			SOCKBUF_UNLOCK(&so->so_snd);
1621 			error = EPIPE;
1622 			goto release;
1623 		}
1624 		if (so->so_error) {
1625 			error = so->so_error;
1626 			so->so_error = 0;
1627 			SOCKBUF_UNLOCK(&so->so_snd);
1628 			goto release;
1629 		}
1630 		if ((so->so_state & SS_ISCONNECTED) == 0) {
1631 			/*
1632 			 * `sendto' and `sendmsg' is allowed on a connection-
1633 			 * based socket if it supports implied connect.
1634 			 * Return ENOTCONN if not connected and no address is
1635 			 * supplied.
1636 			 */
1637 			if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1638 			    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1639 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1640 				    !(resid == 0 && clen != 0)) {
1641 					SOCKBUF_UNLOCK(&so->so_snd);
1642 					error = ENOTCONN;
1643 					goto release;
1644 				}
1645 			} else if (addr == NULL) {
1646 				SOCKBUF_UNLOCK(&so->so_snd);
1647 				if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1648 					error = ENOTCONN;
1649 				else
1650 					error = EDESTADDRREQ;
1651 				goto release;
1652 			}
1653 		}
1654 		space = sbspace(&so->so_snd);
1655 		if (flags & MSG_OOB)
1656 			space += 1024;
1657 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
1658 		    clen > so->so_snd.sb_hiwat) {
1659 			SOCKBUF_UNLOCK(&so->so_snd);
1660 			error = EMSGSIZE;
1661 			goto release;
1662 		}
1663 		if (space < resid + clen &&
1664 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
1665 			if ((so->so_state & SS_NBIO) ||
1666 			    (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) {
1667 				SOCKBUF_UNLOCK(&so->so_snd);
1668 				error = EWOULDBLOCK;
1669 				goto release;
1670 			}
1671 			error = sbwait(&so->so_snd);
1672 			SOCKBUF_UNLOCK(&so->so_snd);
1673 			if (error)
1674 				goto release;
1675 			goto restart;
1676 		}
1677 		SOCKBUF_UNLOCK(&so->so_snd);
1678 		space -= clen;
1679 		do {
1680 			if (uio == NULL) {
1681 				resid = 0;
1682 				if (flags & MSG_EOR)
1683 					top->m_flags |= M_EOR;
1684 #ifdef KERN_TLS
1685 				if (tls != NULL) {
1686 					ktls_frame(top, tls, &tls_enq_cnt,
1687 					    tls_rtype);
1688 					tls_rtype = TLS_RLTYPE_APP;
1689 				}
1690 #endif
1691 			} else {
1692 				/*
1693 				 * Copy the data from userland into a mbuf
1694 				 * chain.  If resid is 0, which can happen
1695 				 * only if we have control to send, then
1696 				 * a single empty mbuf is returned.  This
1697 				 * is a workaround to prevent protocol send
1698 				 * methods to panic.
1699 				 */
1700 #ifdef KERN_TLS
1701 				if (tls != NULL) {
1702 					top = m_uiotombuf(uio, M_WAITOK, space,
1703 					    tls->params.max_frame_len,
1704 					    M_EXTPG |
1705 					    ((flags & MSG_EOR) ? M_EOR : 0));
1706 					if (top != NULL) {
1707 						ktls_frame(top, tls,
1708 						    &tls_enq_cnt, tls_rtype);
1709 					}
1710 					tls_rtype = TLS_RLTYPE_APP;
1711 				} else
1712 #endif
1713 					top = m_uiotombuf(uio, M_WAITOK, space,
1714 					    (atomic ? max_hdr : 0),
1715 					    (atomic ? M_PKTHDR : 0) |
1716 					    ((flags & MSG_EOR) ? M_EOR : 0));
1717 				if (top == NULL) {
1718 					error = EFAULT; /* only possible error */
1719 					goto release;
1720 				}
1721 				space -= resid - uio->uio_resid;
1722 				resid = uio->uio_resid;
1723 			}
1724 			if (dontroute) {
1725 				SOCK_LOCK(so);
1726 				so->so_options |= SO_DONTROUTE;
1727 				SOCK_UNLOCK(so);
1728 			}
1729 			/*
1730 			 * XXX all the SBS_CANTSENDMORE checks previously
1731 			 * done could be out of date.  We could have received
1732 			 * a reset packet in an interrupt or maybe we slept
1733 			 * while doing page faults in uiomove() etc.  We
1734 			 * could probably recheck again inside the locking
1735 			 * protection here, but there are probably other
1736 			 * places that this also happens.  We must rethink
1737 			 * this.
1738 			 */
1739 			VNET_SO_ASSERT(so);
1740 
1741 			pru_flag = (flags & MSG_OOB) ? PRUS_OOB :
1742 			/*
1743 			 * If the user set MSG_EOF, the protocol understands
1744 			 * this flag and nothing left to send then use
1745 			 * PRU_SEND_EOF instead of PRU_SEND.
1746 			 */
1747 			    ((flags & MSG_EOF) &&
1748 			     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1749 			     (resid <= 0)) ?
1750 				PRUS_EOF :
1751 			/* If there is more to send set PRUS_MORETOCOME. */
1752 			    (flags & MSG_MORETOCOME) ||
1753 			    (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0;
1754 
1755 #ifdef KERN_TLS
1756 			pru_flag |= tls_pruflag;
1757 #endif
1758 
1759 			error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1760 			    pru_flag, top, addr, control, td);
1761 
1762 			if (dontroute) {
1763 				SOCK_LOCK(so);
1764 				so->so_options &= ~SO_DONTROUTE;
1765 				SOCK_UNLOCK(so);
1766 			}
1767 
1768 #ifdef KERN_TLS
1769 			if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) {
1770 				/*
1771 				 * Note that error is intentionally
1772 				 * ignored.
1773 				 *
1774 				 * Like sendfile(), we rely on the
1775 				 * completion routine (pru_ready())
1776 				 * to free the mbufs in the event that
1777 				 * pru_send() encountered an error and
1778 				 * did not append them to the sockbuf.
1779 				 */
1780 				soref(so);
1781 				ktls_enqueue(top, so, tls_enq_cnt);
1782 			}
1783 #endif
1784 			clen = 0;
1785 			control = NULL;
1786 			top = NULL;
1787 			if (error)
1788 				goto release;
1789 		} while (resid && space > 0);
1790 	} while (resid);
1791 
1792 release:
1793 	sbunlock(&so->so_snd);
1794 out:
1795 #ifdef KERN_TLS
1796 	if (tls != NULL)
1797 		ktls_free(tls);
1798 #endif
1799 	if (top != NULL)
1800 		m_freem(top);
1801 	if (control != NULL)
1802 		m_freem(control);
1803 	return (error);
1804 }
1805 
1806 int
1807 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
1808     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1809 {
1810 	int error;
1811 
1812 	CURVNET_SET(so->so_vnet);
1813 	if (!SOLISTENING(so))
1814 		error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio,
1815 		    top, control, flags, td);
1816 	else {
1817 		m_freem(top);
1818 		m_freem(control);
1819 		error = ENOTCONN;
1820 	}
1821 	CURVNET_RESTORE();
1822 	return (error);
1823 }
1824 
1825 /*
1826  * The part of soreceive() that implements reading non-inline out-of-band
1827  * data from a socket.  For more complete comments, see soreceive(), from
1828  * which this code originated.
1829  *
1830  * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
1831  * unable to return an mbuf chain to the caller.
1832  */
1833 static int
1834 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
1835 {
1836 	struct protosw *pr = so->so_proto;
1837 	struct mbuf *m;
1838 	int error;
1839 
1840 	KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
1841 	VNET_SO_ASSERT(so);
1842 
1843 	m = m_get(M_WAITOK, MT_DATA);
1844 	error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK);
1845 	if (error)
1846 		goto bad;
1847 	do {
1848 		error = uiomove(mtod(m, void *),
1849 		    (int) min(uio->uio_resid, m->m_len), uio);
1850 		m = m_free(m);
1851 	} while (uio->uio_resid && error == 0 && m);
1852 bad:
1853 	if (m != NULL)
1854 		m_freem(m);
1855 	return (error);
1856 }
1857 
1858 /*
1859  * Following replacement or removal of the first mbuf on the first mbuf chain
1860  * of a socket buffer, push necessary state changes back into the socket
1861  * buffer so that other consumers see the values consistently.  'nextrecord'
1862  * is the callers locally stored value of the original value of
1863  * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
1864  * NOTE: 'nextrecord' may be NULL.
1865  */
1866 static __inline void
1867 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
1868 {
1869 
1870 	SOCKBUF_LOCK_ASSERT(sb);
1871 	/*
1872 	 * First, update for the new value of nextrecord.  If necessary, make
1873 	 * it the first record.
1874 	 */
1875 	if (sb->sb_mb != NULL)
1876 		sb->sb_mb->m_nextpkt = nextrecord;
1877 	else
1878 		sb->sb_mb = nextrecord;
1879 
1880 	/*
1881 	 * Now update any dependent socket buffer fields to reflect the new
1882 	 * state.  This is an expanded inline of SB_EMPTY_FIXUP(), with the
1883 	 * addition of a second clause that takes care of the case where
1884 	 * sb_mb has been updated, but remains the last record.
1885 	 */
1886 	if (sb->sb_mb == NULL) {
1887 		sb->sb_mbtail = NULL;
1888 		sb->sb_lastrecord = NULL;
1889 	} else if (sb->sb_mb->m_nextpkt == NULL)
1890 		sb->sb_lastrecord = sb->sb_mb;
1891 }
1892 
1893 /*
1894  * Implement receive operations on a socket.  We depend on the way that
1895  * records are added to the sockbuf by sbappend.  In particular, each record
1896  * (mbufs linked through m_next) must begin with an address if the protocol
1897  * so specifies, followed by an optional mbuf or mbufs containing ancillary
1898  * data, and then zero or more mbufs of data.  In order to allow parallelism
1899  * between network receive and copying to user space, as well as avoid
1900  * sleeping with a mutex held, we release the socket buffer mutex during the
1901  * user space copy.  Although the sockbuf is locked, new data may still be
1902  * appended, and thus we must maintain consistency of the sockbuf during that
1903  * time.
1904  *
1905  * The caller may receive the data as a single mbuf chain by supplying an
1906  * mbuf **mp0 for use in returning the chain.  The uio is then used only for
1907  * the count in uio_resid.
1908  */
1909 int
1910 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
1911     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1912 {
1913 	struct mbuf *m, **mp;
1914 	int flags, error, offset;
1915 	ssize_t len;
1916 	struct protosw *pr = so->so_proto;
1917 	struct mbuf *nextrecord;
1918 	int moff, type = 0;
1919 	ssize_t orig_resid = uio->uio_resid;
1920 
1921 	mp = mp0;
1922 	if (psa != NULL)
1923 		*psa = NULL;
1924 	if (controlp != NULL)
1925 		*controlp = NULL;
1926 	if (flagsp != NULL)
1927 		flags = *flagsp &~ MSG_EOR;
1928 	else
1929 		flags = 0;
1930 	if (flags & MSG_OOB)
1931 		return (soreceive_rcvoob(so, uio, flags));
1932 	if (mp != NULL)
1933 		*mp = NULL;
1934 	if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING)
1935 	    && uio->uio_resid) {
1936 		VNET_SO_ASSERT(so);
1937 		(*pr->pr_usrreqs->pru_rcvd)(so, 0);
1938 	}
1939 
1940 	error = sblock(&so->so_rcv, SBLOCKWAIT(flags));
1941 	if (error)
1942 		return (error);
1943 
1944 restart:
1945 	SOCKBUF_LOCK(&so->so_rcv);
1946 	m = so->so_rcv.sb_mb;
1947 	/*
1948 	 * If we have less data than requested, block awaiting more (subject
1949 	 * to any timeout) if:
1950 	 *   1. the current count is less than the low water mark, or
1951 	 *   2. MSG_DONTWAIT is not set
1952 	 */
1953 	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
1954 	    sbavail(&so->so_rcv) < uio->uio_resid) &&
1955 	    sbavail(&so->so_rcv) < so->so_rcv.sb_lowat &&
1956 	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
1957 		KASSERT(m != NULL || !sbavail(&so->so_rcv),
1958 		    ("receive: m == %p sbavail == %u",
1959 		    m, sbavail(&so->so_rcv)));
1960 		if (so->so_error) {
1961 			if (m != NULL)
1962 				goto dontblock;
1963 			error = so->so_error;
1964 			if ((flags & MSG_PEEK) == 0)
1965 				so->so_error = 0;
1966 			SOCKBUF_UNLOCK(&so->so_rcv);
1967 			goto release;
1968 		}
1969 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1970 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1971 			if (m != NULL)
1972 				goto dontblock;
1973 #ifdef KERN_TLS
1974 			else if (so->so_rcv.sb_tlsdcc == 0 &&
1975 			    so->so_rcv.sb_tlscc == 0) {
1976 #else
1977 			else {
1978 #endif
1979 				SOCKBUF_UNLOCK(&so->so_rcv);
1980 				goto release;
1981 			}
1982 		}
1983 		for (; m != NULL; m = m->m_next)
1984 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
1985 				m = so->so_rcv.sb_mb;
1986 				goto dontblock;
1987 			}
1988 		if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED |
1989 		    SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 &&
1990 		    (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
1991 			SOCKBUF_UNLOCK(&so->so_rcv);
1992 			error = ENOTCONN;
1993 			goto release;
1994 		}
1995 		if (uio->uio_resid == 0) {
1996 			SOCKBUF_UNLOCK(&so->so_rcv);
1997 			goto release;
1998 		}
1999 		if ((so->so_state & SS_NBIO) ||
2000 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
2001 			SOCKBUF_UNLOCK(&so->so_rcv);
2002 			error = EWOULDBLOCK;
2003 			goto release;
2004 		}
2005 		SBLASTRECORDCHK(&so->so_rcv);
2006 		SBLASTMBUFCHK(&so->so_rcv);
2007 		error = sbwait(&so->so_rcv);
2008 		SOCKBUF_UNLOCK(&so->so_rcv);
2009 		if (error)
2010 			goto release;
2011 		goto restart;
2012 	}
2013 dontblock:
2014 	/*
2015 	 * From this point onward, we maintain 'nextrecord' as a cache of the
2016 	 * pointer to the next record in the socket buffer.  We must keep the
2017 	 * various socket buffer pointers and local stack versions of the
2018 	 * pointers in sync, pushing out modifications before dropping the
2019 	 * socket buffer mutex, and re-reading them when picking it up.
2020 	 *
2021 	 * Otherwise, we will race with the network stack appending new data
2022 	 * or records onto the socket buffer by using inconsistent/stale
2023 	 * versions of the field, possibly resulting in socket buffer
2024 	 * corruption.
2025 	 *
2026 	 * By holding the high-level sblock(), we prevent simultaneous
2027 	 * readers from pulling off the front of the socket buffer.
2028 	 */
2029 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2030 	if (uio->uio_td)
2031 		uio->uio_td->td_ru.ru_msgrcv++;
2032 	KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
2033 	SBLASTRECORDCHK(&so->so_rcv);
2034 	SBLASTMBUFCHK(&so->so_rcv);
2035 	nextrecord = m->m_nextpkt;
2036 	if (pr->pr_flags & PR_ADDR) {
2037 		KASSERT(m->m_type == MT_SONAME,
2038 		    ("m->m_type == %d", m->m_type));
2039 		orig_resid = 0;
2040 		if (psa != NULL)
2041 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
2042 			    M_NOWAIT);
2043 		if (flags & MSG_PEEK) {
2044 			m = m->m_next;
2045 		} else {
2046 			sbfree(&so->so_rcv, m);
2047 			so->so_rcv.sb_mb = m_free(m);
2048 			m = so->so_rcv.sb_mb;
2049 			sockbuf_pushsync(&so->so_rcv, nextrecord);
2050 		}
2051 	}
2052 
2053 	/*
2054 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
2055 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
2056 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
2057 	 * perform externalization (or freeing if controlp == NULL).
2058 	 */
2059 	if (m != NULL && m->m_type == MT_CONTROL) {
2060 		struct mbuf *cm = NULL, *cmn;
2061 		struct mbuf **cme = &cm;
2062 #ifdef KERN_TLS
2063 		struct cmsghdr *cmsg;
2064 		struct tls_get_record tgr;
2065 
2066 		/*
2067 		 * For MSG_TLSAPPDATA, check for a non-application data
2068 		 * record.  If found, return ENXIO without removing
2069 		 * it from the receive queue.  This allows a subsequent
2070 		 * call without MSG_TLSAPPDATA to receive it.
2071 		 * Note that, for TLS, there should only be a single
2072 		 * control mbuf with the TLS_GET_RECORD message in it.
2073 		 */
2074 		if (flags & MSG_TLSAPPDATA) {
2075 			cmsg = mtod(m, struct cmsghdr *);
2076 			if (cmsg->cmsg_type == TLS_GET_RECORD &&
2077 			    cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) {
2078 				memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr));
2079 				/* This will need to change for TLS 1.3. */
2080 				if (tgr.tls_type != TLS_RLTYPE_APP) {
2081 					SOCKBUF_UNLOCK(&so->so_rcv);
2082 					error = ENXIO;
2083 					goto release;
2084 				}
2085 			}
2086 		}
2087 #endif
2088 
2089 		do {
2090 			if (flags & MSG_PEEK) {
2091 				if (controlp != NULL) {
2092 					*controlp = m_copym(m, 0, m->m_len,
2093 					    M_NOWAIT);
2094 					controlp = &(*controlp)->m_next;
2095 				}
2096 				m = m->m_next;
2097 			} else {
2098 				sbfree(&so->so_rcv, m);
2099 				so->so_rcv.sb_mb = m->m_next;
2100 				m->m_next = NULL;
2101 				*cme = m;
2102 				cme = &(*cme)->m_next;
2103 				m = so->so_rcv.sb_mb;
2104 			}
2105 		} while (m != NULL && m->m_type == MT_CONTROL);
2106 		if ((flags & MSG_PEEK) == 0)
2107 			sockbuf_pushsync(&so->so_rcv, nextrecord);
2108 		while (cm != NULL) {
2109 			cmn = cm->m_next;
2110 			cm->m_next = NULL;
2111 			if (pr->pr_domain->dom_externalize != NULL) {
2112 				SOCKBUF_UNLOCK(&so->so_rcv);
2113 				VNET_SO_ASSERT(so);
2114 				error = (*pr->pr_domain->dom_externalize)
2115 				    (cm, controlp, flags);
2116 				SOCKBUF_LOCK(&so->so_rcv);
2117 			} else if (controlp != NULL)
2118 				*controlp = cm;
2119 			else
2120 				m_freem(cm);
2121 			if (controlp != NULL) {
2122 				orig_resid = 0;
2123 				while (*controlp != NULL)
2124 					controlp = &(*controlp)->m_next;
2125 			}
2126 			cm = cmn;
2127 		}
2128 		if (m != NULL)
2129 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
2130 		else
2131 			nextrecord = so->so_rcv.sb_mb;
2132 		orig_resid = 0;
2133 	}
2134 	if (m != NULL) {
2135 		if ((flags & MSG_PEEK) == 0) {
2136 			KASSERT(m->m_nextpkt == nextrecord,
2137 			    ("soreceive: post-control, nextrecord !sync"));
2138 			if (nextrecord == NULL) {
2139 				KASSERT(so->so_rcv.sb_mb == m,
2140 				    ("soreceive: post-control, sb_mb!=m"));
2141 				KASSERT(so->so_rcv.sb_lastrecord == m,
2142 				    ("soreceive: post-control, lastrecord!=m"));
2143 			}
2144 		}
2145 		type = m->m_type;
2146 		if (type == MT_OOBDATA)
2147 			flags |= MSG_OOB;
2148 	} else {
2149 		if ((flags & MSG_PEEK) == 0) {
2150 			KASSERT(so->so_rcv.sb_mb == nextrecord,
2151 			    ("soreceive: sb_mb != nextrecord"));
2152 			if (so->so_rcv.sb_mb == NULL) {
2153 				KASSERT(so->so_rcv.sb_lastrecord == NULL,
2154 				    ("soreceive: sb_lastercord != NULL"));
2155 			}
2156 		}
2157 	}
2158 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2159 	SBLASTRECORDCHK(&so->so_rcv);
2160 	SBLASTMBUFCHK(&so->so_rcv);
2161 
2162 	/*
2163 	 * Now continue to read any data mbufs off of the head of the socket
2164 	 * buffer until the read request is satisfied.  Note that 'type' is
2165 	 * used to store the type of any mbuf reads that have happened so far
2166 	 * such that soreceive() can stop reading if the type changes, which
2167 	 * causes soreceive() to return only one of regular data and inline
2168 	 * out-of-band data in a single socket receive operation.
2169 	 */
2170 	moff = 0;
2171 	offset = 0;
2172 	while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0
2173 	    && error == 0) {
2174 		/*
2175 		 * If the type of mbuf has changed since the last mbuf
2176 		 * examined ('type'), end the receive operation.
2177 		 */
2178 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2179 		if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) {
2180 			if (type != m->m_type)
2181 				break;
2182 		} else if (type == MT_OOBDATA)
2183 			break;
2184 		else
2185 		    KASSERT(m->m_type == MT_DATA,
2186 			("m->m_type == %d", m->m_type));
2187 		so->so_rcv.sb_state &= ~SBS_RCVATMARK;
2188 		len = uio->uio_resid;
2189 		if (so->so_oobmark && len > so->so_oobmark - offset)
2190 			len = so->so_oobmark - offset;
2191 		if (len > m->m_len - moff)
2192 			len = m->m_len - moff;
2193 		/*
2194 		 * If mp is set, just pass back the mbufs.  Otherwise copy
2195 		 * them out via the uio, then free.  Sockbuf must be
2196 		 * consistent here (points to current mbuf, it points to next
2197 		 * record) when we drop priority; we must note any additions
2198 		 * to the sockbuf when we block interrupts again.
2199 		 */
2200 		if (mp == NULL) {
2201 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2202 			SBLASTRECORDCHK(&so->so_rcv);
2203 			SBLASTMBUFCHK(&so->so_rcv);
2204 			SOCKBUF_UNLOCK(&so->so_rcv);
2205 			if ((m->m_flags & M_EXTPG) != 0)
2206 				error = m_unmappedtouio(m, moff, uio, (int)len);
2207 			else
2208 				error = uiomove(mtod(m, char *) + moff,
2209 				    (int)len, uio);
2210 			SOCKBUF_LOCK(&so->so_rcv);
2211 			if (error) {
2212 				/*
2213 				 * The MT_SONAME mbuf has already been removed
2214 				 * from the record, so it is necessary to
2215 				 * remove the data mbufs, if any, to preserve
2216 				 * the invariant in the case of PR_ADDR that
2217 				 * requires MT_SONAME mbufs at the head of
2218 				 * each record.
2219 				 */
2220 				if (pr->pr_flags & PR_ATOMIC &&
2221 				    ((flags & MSG_PEEK) == 0))
2222 					(void)sbdroprecord_locked(&so->so_rcv);
2223 				SOCKBUF_UNLOCK(&so->so_rcv);
2224 				goto release;
2225 			}
2226 		} else
2227 			uio->uio_resid -= len;
2228 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2229 		if (len == m->m_len - moff) {
2230 			if (m->m_flags & M_EOR)
2231 				flags |= MSG_EOR;
2232 			if (flags & MSG_PEEK) {
2233 				m = m->m_next;
2234 				moff = 0;
2235 			} else {
2236 				nextrecord = m->m_nextpkt;
2237 				sbfree(&so->so_rcv, m);
2238 				if (mp != NULL) {
2239 					m->m_nextpkt = NULL;
2240 					*mp = m;
2241 					mp = &m->m_next;
2242 					so->so_rcv.sb_mb = m = m->m_next;
2243 					*mp = NULL;
2244 				} else {
2245 					so->so_rcv.sb_mb = m_free(m);
2246 					m = so->so_rcv.sb_mb;
2247 				}
2248 				sockbuf_pushsync(&so->so_rcv, nextrecord);
2249 				SBLASTRECORDCHK(&so->so_rcv);
2250 				SBLASTMBUFCHK(&so->so_rcv);
2251 			}
2252 		} else {
2253 			if (flags & MSG_PEEK)
2254 				moff += len;
2255 			else {
2256 				if (mp != NULL) {
2257 					if (flags & MSG_DONTWAIT) {
2258 						*mp = m_copym(m, 0, len,
2259 						    M_NOWAIT);
2260 						if (*mp == NULL) {
2261 							/*
2262 							 * m_copym() couldn't
2263 							 * allocate an mbuf.
2264 							 * Adjust uio_resid back
2265 							 * (it was adjusted
2266 							 * down by len bytes,
2267 							 * which we didn't end
2268 							 * up "copying" over).
2269 							 */
2270 							uio->uio_resid += len;
2271 							break;
2272 						}
2273 					} else {
2274 						SOCKBUF_UNLOCK(&so->so_rcv);
2275 						*mp = m_copym(m, 0, len,
2276 						    M_WAITOK);
2277 						SOCKBUF_LOCK(&so->so_rcv);
2278 					}
2279 				}
2280 				sbcut_locked(&so->so_rcv, len);
2281 			}
2282 		}
2283 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2284 		if (so->so_oobmark) {
2285 			if ((flags & MSG_PEEK) == 0) {
2286 				so->so_oobmark -= len;
2287 				if (so->so_oobmark == 0) {
2288 					so->so_rcv.sb_state |= SBS_RCVATMARK;
2289 					break;
2290 				}
2291 			} else {
2292 				offset += len;
2293 				if (offset == so->so_oobmark)
2294 					break;
2295 			}
2296 		}
2297 		if (flags & MSG_EOR)
2298 			break;
2299 		/*
2300 		 * If the MSG_WAITALL flag is set (for non-atomic socket), we
2301 		 * must not quit until "uio->uio_resid == 0" or an error
2302 		 * termination.  If a signal/timeout occurs, return with a
2303 		 * short count but without error.  Keep sockbuf locked
2304 		 * against other readers.
2305 		 */
2306 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
2307 		    !sosendallatonce(so) && nextrecord == NULL) {
2308 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2309 			if (so->so_error ||
2310 			    so->so_rcv.sb_state & SBS_CANTRCVMORE)
2311 				break;
2312 			/*
2313 			 * Notify the protocol that some data has been
2314 			 * drained before blocking.
2315 			 */
2316 			if (pr->pr_flags & PR_WANTRCVD) {
2317 				SOCKBUF_UNLOCK(&so->so_rcv);
2318 				VNET_SO_ASSERT(so);
2319 				(*pr->pr_usrreqs->pru_rcvd)(so, flags);
2320 				SOCKBUF_LOCK(&so->so_rcv);
2321 			}
2322 			SBLASTRECORDCHK(&so->so_rcv);
2323 			SBLASTMBUFCHK(&so->so_rcv);
2324 			/*
2325 			 * We could receive some data while was notifying
2326 			 * the protocol. Skip blocking in this case.
2327 			 */
2328 			if (so->so_rcv.sb_mb == NULL) {
2329 				error = sbwait(&so->so_rcv);
2330 				if (error) {
2331 					SOCKBUF_UNLOCK(&so->so_rcv);
2332 					goto release;
2333 				}
2334 			}
2335 			m = so->so_rcv.sb_mb;
2336 			if (m != NULL)
2337 				nextrecord = m->m_nextpkt;
2338 		}
2339 	}
2340 
2341 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2342 	if (m != NULL && pr->pr_flags & PR_ATOMIC) {
2343 		flags |= MSG_TRUNC;
2344 		if ((flags & MSG_PEEK) == 0)
2345 			(void) sbdroprecord_locked(&so->so_rcv);
2346 	}
2347 	if ((flags & MSG_PEEK) == 0) {
2348 		if (m == NULL) {
2349 			/*
2350 			 * First part is an inline SB_EMPTY_FIXUP().  Second
2351 			 * part makes sure sb_lastrecord is up-to-date if
2352 			 * there is still data in the socket buffer.
2353 			 */
2354 			so->so_rcv.sb_mb = nextrecord;
2355 			if (so->so_rcv.sb_mb == NULL) {
2356 				so->so_rcv.sb_mbtail = NULL;
2357 				so->so_rcv.sb_lastrecord = NULL;
2358 			} else if (nextrecord->m_nextpkt == NULL)
2359 				so->so_rcv.sb_lastrecord = nextrecord;
2360 		}
2361 		SBLASTRECORDCHK(&so->so_rcv);
2362 		SBLASTMBUFCHK(&so->so_rcv);
2363 		/*
2364 		 * If soreceive() is being done from the socket callback,
2365 		 * then don't need to generate ACK to peer to update window,
2366 		 * since ACK will be generated on return to TCP.
2367 		 */
2368 		if (!(flags & MSG_SOCALLBCK) &&
2369 		    (pr->pr_flags & PR_WANTRCVD)) {
2370 			SOCKBUF_UNLOCK(&so->so_rcv);
2371 			VNET_SO_ASSERT(so);
2372 			(*pr->pr_usrreqs->pru_rcvd)(so, flags);
2373 			SOCKBUF_LOCK(&so->so_rcv);
2374 		}
2375 	}
2376 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2377 	if (orig_resid == uio->uio_resid && orig_resid &&
2378 	    (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
2379 		SOCKBUF_UNLOCK(&so->so_rcv);
2380 		goto restart;
2381 	}
2382 	SOCKBUF_UNLOCK(&so->so_rcv);
2383 
2384 	if (flagsp != NULL)
2385 		*flagsp |= flags;
2386 release:
2387 	sbunlock(&so->so_rcv);
2388 	return (error);
2389 }
2390 
2391 /*
2392  * Optimized version of soreceive() for stream (TCP) sockets.
2393  */
2394 int
2395 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio,
2396     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2397 {
2398 	int len = 0, error = 0, flags, oresid;
2399 	struct sockbuf *sb;
2400 	struct mbuf *m, *n = NULL;
2401 
2402 	/* We only do stream sockets. */
2403 	if (so->so_type != SOCK_STREAM)
2404 		return (EINVAL);
2405 	if (psa != NULL)
2406 		*psa = NULL;
2407 	if (flagsp != NULL)
2408 		flags = *flagsp &~ MSG_EOR;
2409 	else
2410 		flags = 0;
2411 	if (controlp != NULL)
2412 		*controlp = NULL;
2413 	if (flags & MSG_OOB)
2414 		return (soreceive_rcvoob(so, uio, flags));
2415 	if (mp0 != NULL)
2416 		*mp0 = NULL;
2417 
2418 	sb = &so->so_rcv;
2419 
2420 #ifdef KERN_TLS
2421 	/*
2422 	 * KTLS store TLS records as records with a control message to
2423 	 * describe the framing.
2424 	 *
2425 	 * We check once here before acquiring locks to optimize the
2426 	 * common case.
2427 	 */
2428 	if (sb->sb_tls_info != NULL)
2429 		return (soreceive_generic(so, psa, uio, mp0, controlp,
2430 		    flagsp));
2431 #endif
2432 
2433 	/* Prevent other readers from entering the socket. */
2434 	error = sblock(sb, SBLOCKWAIT(flags));
2435 	if (error)
2436 		return (error);
2437 	SOCKBUF_LOCK(sb);
2438 
2439 #ifdef KERN_TLS
2440 	if (sb->sb_tls_info != NULL) {
2441 		SOCKBUF_UNLOCK(sb);
2442 		sbunlock(sb);
2443 		return (soreceive_generic(so, psa, uio, mp0, controlp,
2444 		    flagsp));
2445 	}
2446 #endif
2447 
2448 	/* Easy one, no space to copyout anything. */
2449 	if (uio->uio_resid == 0) {
2450 		error = EINVAL;
2451 		goto out;
2452 	}
2453 	oresid = uio->uio_resid;
2454 
2455 	/* We will never ever get anything unless we are or were connected. */
2456 	if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
2457 		error = ENOTCONN;
2458 		goto out;
2459 	}
2460 
2461 restart:
2462 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2463 
2464 	/* Abort if socket has reported problems. */
2465 	if (so->so_error) {
2466 		if (sbavail(sb) > 0)
2467 			goto deliver;
2468 		if (oresid > uio->uio_resid)
2469 			goto out;
2470 		error = so->so_error;
2471 		if (!(flags & MSG_PEEK))
2472 			so->so_error = 0;
2473 		goto out;
2474 	}
2475 
2476 	/* Door is closed.  Deliver what is left, if any. */
2477 	if (sb->sb_state & SBS_CANTRCVMORE) {
2478 		if (sbavail(sb) > 0)
2479 			goto deliver;
2480 		else
2481 			goto out;
2482 	}
2483 
2484 	/* Socket buffer is empty and we shall not block. */
2485 	if (sbavail(sb) == 0 &&
2486 	    ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) {
2487 		error = EAGAIN;
2488 		goto out;
2489 	}
2490 
2491 	/* Socket buffer got some data that we shall deliver now. */
2492 	if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) &&
2493 	    ((so->so_state & SS_NBIO) ||
2494 	     (flags & (MSG_DONTWAIT|MSG_NBIO)) ||
2495 	     sbavail(sb) >= sb->sb_lowat ||
2496 	     sbavail(sb) >= uio->uio_resid ||
2497 	     sbavail(sb) >= sb->sb_hiwat) ) {
2498 		goto deliver;
2499 	}
2500 
2501 	/* On MSG_WAITALL we must wait until all data or error arrives. */
2502 	if ((flags & MSG_WAITALL) &&
2503 	    (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat))
2504 		goto deliver;
2505 
2506 	/*
2507 	 * Wait and block until (more) data comes in.
2508 	 * NB: Drops the sockbuf lock during wait.
2509 	 */
2510 	error = sbwait(sb);
2511 	if (error)
2512 		goto out;
2513 	goto restart;
2514 
2515 deliver:
2516 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2517 	KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__));
2518 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__));
2519 
2520 	/* Statistics. */
2521 	if (uio->uio_td)
2522 		uio->uio_td->td_ru.ru_msgrcv++;
2523 
2524 	/* Fill uio until full or current end of socket buffer is reached. */
2525 	len = min(uio->uio_resid, sbavail(sb));
2526 	if (mp0 != NULL) {
2527 		/* Dequeue as many mbufs as possible. */
2528 		if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) {
2529 			if (*mp0 == NULL)
2530 				*mp0 = sb->sb_mb;
2531 			else
2532 				m_cat(*mp0, sb->sb_mb);
2533 			for (m = sb->sb_mb;
2534 			     m != NULL && m->m_len <= len;
2535 			     m = m->m_next) {
2536 				KASSERT(!(m->m_flags & M_NOTAVAIL),
2537 				    ("%s: m %p not available", __func__, m));
2538 				len -= m->m_len;
2539 				uio->uio_resid -= m->m_len;
2540 				sbfree(sb, m);
2541 				n = m;
2542 			}
2543 			n->m_next = NULL;
2544 			sb->sb_mb = m;
2545 			sb->sb_lastrecord = sb->sb_mb;
2546 			if (sb->sb_mb == NULL)
2547 				SB_EMPTY_FIXUP(sb);
2548 		}
2549 		/* Copy the remainder. */
2550 		if (len > 0) {
2551 			KASSERT(sb->sb_mb != NULL,
2552 			    ("%s: len > 0 && sb->sb_mb empty", __func__));
2553 
2554 			m = m_copym(sb->sb_mb, 0, len, M_NOWAIT);
2555 			if (m == NULL)
2556 				len = 0;	/* Don't flush data from sockbuf. */
2557 			else
2558 				uio->uio_resid -= len;
2559 			if (*mp0 != NULL)
2560 				m_cat(*mp0, m);
2561 			else
2562 				*mp0 = m;
2563 			if (*mp0 == NULL) {
2564 				error = ENOBUFS;
2565 				goto out;
2566 			}
2567 		}
2568 	} else {
2569 		/* NB: Must unlock socket buffer as uiomove may sleep. */
2570 		SOCKBUF_UNLOCK(sb);
2571 		error = m_mbuftouio(uio, sb->sb_mb, len);
2572 		SOCKBUF_LOCK(sb);
2573 		if (error)
2574 			goto out;
2575 	}
2576 	SBLASTRECORDCHK(sb);
2577 	SBLASTMBUFCHK(sb);
2578 
2579 	/*
2580 	 * Remove the delivered data from the socket buffer unless we
2581 	 * were only peeking.
2582 	 */
2583 	if (!(flags & MSG_PEEK)) {
2584 		if (len > 0)
2585 			sbdrop_locked(sb, len);
2586 
2587 		/* Notify protocol that we drained some data. */
2588 		if ((so->so_proto->pr_flags & PR_WANTRCVD) &&
2589 		    (((flags & MSG_WAITALL) && uio->uio_resid > 0) ||
2590 		     !(flags & MSG_SOCALLBCK))) {
2591 			SOCKBUF_UNLOCK(sb);
2592 			VNET_SO_ASSERT(so);
2593 			(*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags);
2594 			SOCKBUF_LOCK(sb);
2595 		}
2596 	}
2597 
2598 	/*
2599 	 * For MSG_WAITALL we may have to loop again and wait for
2600 	 * more data to come in.
2601 	 */
2602 	if ((flags & MSG_WAITALL) && uio->uio_resid > 0)
2603 		goto restart;
2604 out:
2605 	SOCKBUF_LOCK_ASSERT(sb);
2606 	SBLASTRECORDCHK(sb);
2607 	SBLASTMBUFCHK(sb);
2608 	SOCKBUF_UNLOCK(sb);
2609 	sbunlock(sb);
2610 	return (error);
2611 }
2612 
2613 /*
2614  * Optimized version of soreceive() for simple datagram cases from userspace.
2615  * Unlike in the stream case, we're able to drop a datagram if copyout()
2616  * fails, and because we handle datagrams atomically, we don't need to use a
2617  * sleep lock to prevent I/O interlacing.
2618  */
2619 int
2620 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
2621     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2622 {
2623 	struct mbuf *m, *m2;
2624 	int flags, error;
2625 	ssize_t len;
2626 	struct protosw *pr = so->so_proto;
2627 	struct mbuf *nextrecord;
2628 
2629 	if (psa != NULL)
2630 		*psa = NULL;
2631 	if (controlp != NULL)
2632 		*controlp = NULL;
2633 	if (flagsp != NULL)
2634 		flags = *flagsp &~ MSG_EOR;
2635 	else
2636 		flags = 0;
2637 
2638 	/*
2639 	 * For any complicated cases, fall back to the full
2640 	 * soreceive_generic().
2641 	 */
2642 	if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB))
2643 		return (soreceive_generic(so, psa, uio, mp0, controlp,
2644 		    flagsp));
2645 
2646 	/*
2647 	 * Enforce restrictions on use.
2648 	 */
2649 	KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
2650 	    ("soreceive_dgram: wantrcvd"));
2651 	KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
2652 	KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
2653 	    ("soreceive_dgram: SBS_RCVATMARK"));
2654 	KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
2655 	    ("soreceive_dgram: P_CONNREQUIRED"));
2656 
2657 	/*
2658 	 * Loop blocking while waiting for a datagram.
2659 	 */
2660 	SOCKBUF_LOCK(&so->so_rcv);
2661 	while ((m = so->so_rcv.sb_mb) == NULL) {
2662 		KASSERT(sbavail(&so->so_rcv) == 0,
2663 		    ("soreceive_dgram: sb_mb NULL but sbavail %u",
2664 		    sbavail(&so->so_rcv)));
2665 		if (so->so_error) {
2666 			error = so->so_error;
2667 			so->so_error = 0;
2668 			SOCKBUF_UNLOCK(&so->so_rcv);
2669 			return (error);
2670 		}
2671 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
2672 		    uio->uio_resid == 0) {
2673 			SOCKBUF_UNLOCK(&so->so_rcv);
2674 			return (0);
2675 		}
2676 		if ((so->so_state & SS_NBIO) ||
2677 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
2678 			SOCKBUF_UNLOCK(&so->so_rcv);
2679 			return (EWOULDBLOCK);
2680 		}
2681 		SBLASTRECORDCHK(&so->so_rcv);
2682 		SBLASTMBUFCHK(&so->so_rcv);
2683 		error = sbwait(&so->so_rcv);
2684 		if (error) {
2685 			SOCKBUF_UNLOCK(&so->so_rcv);
2686 			return (error);
2687 		}
2688 	}
2689 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2690 
2691 	if (uio->uio_td)
2692 		uio->uio_td->td_ru.ru_msgrcv++;
2693 	SBLASTRECORDCHK(&so->so_rcv);
2694 	SBLASTMBUFCHK(&so->so_rcv);
2695 	nextrecord = m->m_nextpkt;
2696 	if (nextrecord == NULL) {
2697 		KASSERT(so->so_rcv.sb_lastrecord == m,
2698 		    ("soreceive_dgram: lastrecord != m"));
2699 	}
2700 
2701 	KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
2702 	    ("soreceive_dgram: m_nextpkt != nextrecord"));
2703 
2704 	/*
2705 	 * Pull 'm' and its chain off the front of the packet queue.
2706 	 */
2707 	so->so_rcv.sb_mb = NULL;
2708 	sockbuf_pushsync(&so->so_rcv, nextrecord);
2709 
2710 	/*
2711 	 * Walk 'm's chain and free that many bytes from the socket buffer.
2712 	 */
2713 	for (m2 = m; m2 != NULL; m2 = m2->m_next)
2714 		sbfree(&so->so_rcv, m2);
2715 
2716 	/*
2717 	 * Do a few last checks before we let go of the lock.
2718 	 */
2719 	SBLASTRECORDCHK(&so->so_rcv);
2720 	SBLASTMBUFCHK(&so->so_rcv);
2721 	SOCKBUF_UNLOCK(&so->so_rcv);
2722 
2723 	if (pr->pr_flags & PR_ADDR) {
2724 		KASSERT(m->m_type == MT_SONAME,
2725 		    ("m->m_type == %d", m->m_type));
2726 		if (psa != NULL)
2727 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
2728 			    M_NOWAIT);
2729 		m = m_free(m);
2730 	}
2731 	if (m == NULL) {
2732 		/* XXXRW: Can this happen? */
2733 		return (0);
2734 	}
2735 
2736 	/*
2737 	 * Packet to copyout() is now in 'm' and it is disconnected from the
2738 	 * queue.
2739 	 *
2740 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
2741 	 * in the first mbuf chain on the socket buffer.  We call into the
2742 	 * protocol to perform externalization (or freeing if controlp ==
2743 	 * NULL). In some cases there can be only MT_CONTROL mbufs without
2744 	 * MT_DATA mbufs.
2745 	 */
2746 	if (m->m_type == MT_CONTROL) {
2747 		struct mbuf *cm = NULL, *cmn;
2748 		struct mbuf **cme = &cm;
2749 
2750 		do {
2751 			m2 = m->m_next;
2752 			m->m_next = NULL;
2753 			*cme = m;
2754 			cme = &(*cme)->m_next;
2755 			m = m2;
2756 		} while (m != NULL && m->m_type == MT_CONTROL);
2757 		while (cm != NULL) {
2758 			cmn = cm->m_next;
2759 			cm->m_next = NULL;
2760 			if (pr->pr_domain->dom_externalize != NULL) {
2761 				error = (*pr->pr_domain->dom_externalize)
2762 				    (cm, controlp, flags);
2763 			} else if (controlp != NULL)
2764 				*controlp = cm;
2765 			else
2766 				m_freem(cm);
2767 			if (controlp != NULL) {
2768 				while (*controlp != NULL)
2769 					controlp = &(*controlp)->m_next;
2770 			}
2771 			cm = cmn;
2772 		}
2773 	}
2774 	KASSERT(m == NULL || m->m_type == MT_DATA,
2775 	    ("soreceive_dgram: !data"));
2776 	while (m != NULL && uio->uio_resid > 0) {
2777 		len = uio->uio_resid;
2778 		if (len > m->m_len)
2779 			len = m->m_len;
2780 		error = uiomove(mtod(m, char *), (int)len, uio);
2781 		if (error) {
2782 			m_freem(m);
2783 			return (error);
2784 		}
2785 		if (len == m->m_len)
2786 			m = m_free(m);
2787 		else {
2788 			m->m_data += len;
2789 			m->m_len -= len;
2790 		}
2791 	}
2792 	if (m != NULL) {
2793 		flags |= MSG_TRUNC;
2794 		m_freem(m);
2795 	}
2796 	if (flagsp != NULL)
2797 		*flagsp |= flags;
2798 	return (0);
2799 }
2800 
2801 int
2802 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
2803     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2804 {
2805 	int error;
2806 
2807 	CURVNET_SET(so->so_vnet);
2808 	if (!SOLISTENING(so))
2809 		error = (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio,
2810 		    mp0, controlp, flagsp));
2811 	else
2812 		error = ENOTCONN;
2813 	CURVNET_RESTORE();
2814 	return (error);
2815 }
2816 
2817 int
2818 soshutdown(struct socket *so, int how)
2819 {
2820 	struct protosw *pr = so->so_proto;
2821 	int error, soerror_enotconn;
2822 
2823 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
2824 		return (EINVAL);
2825 
2826 	soerror_enotconn = 0;
2827 	if ((so->so_state &
2828 	    (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) {
2829 		/*
2830 		 * POSIX mandates us to return ENOTCONN when shutdown(2) is
2831 		 * invoked on a datagram sockets, however historically we would
2832 		 * actually tear socket down. This is known to be leveraged by
2833 		 * some applications to unblock process waiting in recvXXX(2)
2834 		 * by other process that it shares that socket with. Try to meet
2835 		 * both backward-compatibility and POSIX requirements by forcing
2836 		 * ENOTCONN but still asking protocol to perform pru_shutdown().
2837 		 */
2838 		if (so->so_type != SOCK_DGRAM && !SOLISTENING(so))
2839 			return (ENOTCONN);
2840 		soerror_enotconn = 1;
2841 	}
2842 
2843 	if (SOLISTENING(so)) {
2844 		if (how != SHUT_WR) {
2845 			SOLISTEN_LOCK(so);
2846 			so->so_error = ECONNABORTED;
2847 			solisten_wakeup(so);	/* unlocks so */
2848 		}
2849 		goto done;
2850 	}
2851 
2852 	CURVNET_SET(so->so_vnet);
2853 	if (pr->pr_usrreqs->pru_flush != NULL)
2854 		(*pr->pr_usrreqs->pru_flush)(so, how);
2855 	if (how != SHUT_WR)
2856 		sorflush(so);
2857 	if (how != SHUT_RD) {
2858 		error = (*pr->pr_usrreqs->pru_shutdown)(so);
2859 		wakeup(&so->so_timeo);
2860 		CURVNET_RESTORE();
2861 		return ((error == 0 && soerror_enotconn) ? ENOTCONN : error);
2862 	}
2863 	wakeup(&so->so_timeo);
2864 	CURVNET_RESTORE();
2865 
2866 done:
2867 	return (soerror_enotconn ? ENOTCONN : 0);
2868 }
2869 
2870 void
2871 sorflush(struct socket *so)
2872 {
2873 	struct sockbuf *sb = &so->so_rcv;
2874 	struct protosw *pr = so->so_proto;
2875 	struct socket aso;
2876 
2877 	VNET_SO_ASSERT(so);
2878 
2879 	/*
2880 	 * In order to avoid calling dom_dispose with the socket buffer mutex
2881 	 * held, and in order to generally avoid holding the lock for a long
2882 	 * time, we make a copy of the socket buffer and clear the original
2883 	 * (except locks, state).  The new socket buffer copy won't have
2884 	 * initialized locks so we can only call routines that won't use or
2885 	 * assert those locks.
2886 	 *
2887 	 * Dislodge threads currently blocked in receive and wait to acquire
2888 	 * a lock against other simultaneous readers before clearing the
2889 	 * socket buffer.  Don't let our acquire be interrupted by a signal
2890 	 * despite any existing socket disposition on interruptable waiting.
2891 	 */
2892 	socantrcvmore(so);
2893 	(void) sblock(sb, SBL_WAIT | SBL_NOINTR);
2894 
2895 	/*
2896 	 * Invalidate/clear most of the sockbuf structure, but leave selinfo
2897 	 * and mutex data unchanged.
2898 	 */
2899 	SOCKBUF_LOCK(sb);
2900 	bzero(&aso, sizeof(aso));
2901 	aso.so_pcb = so->so_pcb;
2902 	bcopy(&sb->sb_startzero, &aso.so_rcv.sb_startzero,
2903 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
2904 	bzero(&sb->sb_startzero,
2905 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
2906 	SOCKBUF_UNLOCK(sb);
2907 	sbunlock(sb);
2908 
2909 	/*
2910 	 * Dispose of special rights and flush the copied socket.  Don't call
2911 	 * any unsafe routines (that rely on locks being initialized) on aso.
2912 	 */
2913 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
2914 		(*pr->pr_domain->dom_dispose)(&aso);
2915 	sbrelease_internal(&aso.so_rcv, so);
2916 }
2917 
2918 /*
2919  * Wrapper for Socket established helper hook.
2920  * Parameters: socket, context of the hook point, hook id.
2921  */
2922 static int inline
2923 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id)
2924 {
2925 	struct socket_hhook_data hhook_data = {
2926 		.so = so,
2927 		.hctx = hctx,
2928 		.m = NULL,
2929 		.status = 0
2930 	};
2931 
2932 	CURVNET_SET(so->so_vnet);
2933 	HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd);
2934 	CURVNET_RESTORE();
2935 
2936 	/* Ugly but needed, since hhooks return void for now */
2937 	return (hhook_data.status);
2938 }
2939 
2940 /*
2941  * Perhaps this routine, and sooptcopyout(), below, ought to come in an
2942  * additional variant to handle the case where the option value needs to be
2943  * some kind of integer, but not a specific size.  In addition to their use
2944  * here, these functions are also called by the protocol-level pr_ctloutput()
2945  * routines.
2946  */
2947 int
2948 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
2949 {
2950 	size_t	valsize;
2951 
2952 	/*
2953 	 * If the user gives us more than we wanted, we ignore it, but if we
2954 	 * don't get the minimum length the caller wants, we return EINVAL.
2955 	 * On success, sopt->sopt_valsize is set to however much we actually
2956 	 * retrieved.
2957 	 */
2958 	if ((valsize = sopt->sopt_valsize) < minlen)
2959 		return EINVAL;
2960 	if (valsize > len)
2961 		sopt->sopt_valsize = valsize = len;
2962 
2963 	if (sopt->sopt_td != NULL)
2964 		return (copyin(sopt->sopt_val, buf, valsize));
2965 
2966 	bcopy(sopt->sopt_val, buf, valsize);
2967 	return (0);
2968 }
2969 
2970 /*
2971  * Kernel version of setsockopt(2).
2972  *
2973  * XXX: optlen is size_t, not socklen_t
2974  */
2975 int
2976 so_setsockopt(struct socket *so, int level, int optname, void *optval,
2977     size_t optlen)
2978 {
2979 	struct sockopt sopt;
2980 
2981 	sopt.sopt_level = level;
2982 	sopt.sopt_name = optname;
2983 	sopt.sopt_dir = SOPT_SET;
2984 	sopt.sopt_val = optval;
2985 	sopt.sopt_valsize = optlen;
2986 	sopt.sopt_td = NULL;
2987 	return (sosetopt(so, &sopt));
2988 }
2989 
2990 int
2991 sosetopt(struct socket *so, struct sockopt *sopt)
2992 {
2993 	int	error, optval;
2994 	struct	linger l;
2995 	struct	timeval tv;
2996 	sbintime_t val;
2997 	uint32_t val32;
2998 #ifdef MAC
2999 	struct mac extmac;
3000 #endif
3001 
3002 	CURVNET_SET(so->so_vnet);
3003 	error = 0;
3004 	if (sopt->sopt_level != SOL_SOCKET) {
3005 		if (so->so_proto->pr_ctloutput != NULL)
3006 			error = (*so->so_proto->pr_ctloutput)(so, sopt);
3007 		else
3008 			error = ENOPROTOOPT;
3009 	} else {
3010 		switch (sopt->sopt_name) {
3011 		case SO_ACCEPTFILTER:
3012 			error = accept_filt_setopt(so, sopt);
3013 			if (error)
3014 				goto bad;
3015 			break;
3016 
3017 		case SO_LINGER:
3018 			error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
3019 			if (error)
3020 				goto bad;
3021 			if (l.l_linger < 0 ||
3022 			    l.l_linger > USHRT_MAX ||
3023 			    l.l_linger > (INT_MAX / hz)) {
3024 				error = EDOM;
3025 				goto bad;
3026 			}
3027 			SOCK_LOCK(so);
3028 			so->so_linger = l.l_linger;
3029 			if (l.l_onoff)
3030 				so->so_options |= SO_LINGER;
3031 			else
3032 				so->so_options &= ~SO_LINGER;
3033 			SOCK_UNLOCK(so);
3034 			break;
3035 
3036 		case SO_DEBUG:
3037 		case SO_KEEPALIVE:
3038 		case SO_DONTROUTE:
3039 		case SO_USELOOPBACK:
3040 		case SO_BROADCAST:
3041 		case SO_REUSEADDR:
3042 		case SO_REUSEPORT:
3043 		case SO_REUSEPORT_LB:
3044 		case SO_OOBINLINE:
3045 		case SO_TIMESTAMP:
3046 		case SO_BINTIME:
3047 		case SO_NOSIGPIPE:
3048 		case SO_NO_DDP:
3049 		case SO_NO_OFFLOAD:
3050 			error = sooptcopyin(sopt, &optval, sizeof optval,
3051 			    sizeof optval);
3052 			if (error)
3053 				goto bad;
3054 			SOCK_LOCK(so);
3055 			if (optval)
3056 				so->so_options |= sopt->sopt_name;
3057 			else
3058 				so->so_options &= ~sopt->sopt_name;
3059 			SOCK_UNLOCK(so);
3060 			break;
3061 
3062 		case SO_SETFIB:
3063 			error = sooptcopyin(sopt, &optval, sizeof optval,
3064 			    sizeof optval);
3065 			if (error)
3066 				goto bad;
3067 
3068 			if (optval < 0 || optval >= rt_numfibs) {
3069 				error = EINVAL;
3070 				goto bad;
3071 			}
3072 			if (((so->so_proto->pr_domain->dom_family == PF_INET) ||
3073 			   (so->so_proto->pr_domain->dom_family == PF_INET6) ||
3074 			   (so->so_proto->pr_domain->dom_family == PF_ROUTE)))
3075 				so->so_fibnum = optval;
3076 			else
3077 				so->so_fibnum = 0;
3078 			break;
3079 
3080 		case SO_USER_COOKIE:
3081 			error = sooptcopyin(sopt, &val32, sizeof val32,
3082 			    sizeof val32);
3083 			if (error)
3084 				goto bad;
3085 			so->so_user_cookie = val32;
3086 			break;
3087 
3088 		case SO_SNDBUF:
3089 		case SO_RCVBUF:
3090 		case SO_SNDLOWAT:
3091 		case SO_RCVLOWAT:
3092 			error = sooptcopyin(sopt, &optval, sizeof optval,
3093 			    sizeof optval);
3094 			if (error)
3095 				goto bad;
3096 
3097 			/*
3098 			 * Values < 1 make no sense for any of these options,
3099 			 * so disallow them.
3100 			 */
3101 			if (optval < 1) {
3102 				error = EINVAL;
3103 				goto bad;
3104 			}
3105 
3106 			error = sbsetopt(so, sopt->sopt_name, optval);
3107 			break;
3108 
3109 		case SO_SNDTIMEO:
3110 		case SO_RCVTIMEO:
3111 #ifdef COMPAT_FREEBSD32
3112 			if (SV_CURPROC_FLAG(SV_ILP32)) {
3113 				struct timeval32 tv32;
3114 
3115 				error = sooptcopyin(sopt, &tv32, sizeof tv32,
3116 				    sizeof tv32);
3117 				CP(tv32, tv, tv_sec);
3118 				CP(tv32, tv, tv_usec);
3119 			} else
3120 #endif
3121 				error = sooptcopyin(sopt, &tv, sizeof tv,
3122 				    sizeof tv);
3123 			if (error)
3124 				goto bad;
3125 			if (tv.tv_sec < 0 || tv.tv_usec < 0 ||
3126 			    tv.tv_usec >= 1000000) {
3127 				error = EDOM;
3128 				goto bad;
3129 			}
3130 			if (tv.tv_sec > INT32_MAX)
3131 				val = SBT_MAX;
3132 			else
3133 				val = tvtosbt(tv);
3134 			switch (sopt->sopt_name) {
3135 			case SO_SNDTIMEO:
3136 				so->so_snd.sb_timeo = val;
3137 				break;
3138 			case SO_RCVTIMEO:
3139 				so->so_rcv.sb_timeo = val;
3140 				break;
3141 			}
3142 			break;
3143 
3144 		case SO_LABEL:
3145 #ifdef MAC
3146 			error = sooptcopyin(sopt, &extmac, sizeof extmac,
3147 			    sizeof extmac);
3148 			if (error)
3149 				goto bad;
3150 			error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
3151 			    so, &extmac);
3152 #else
3153 			error = EOPNOTSUPP;
3154 #endif
3155 			break;
3156 
3157 		case SO_TS_CLOCK:
3158 			error = sooptcopyin(sopt, &optval, sizeof optval,
3159 			    sizeof optval);
3160 			if (error)
3161 				goto bad;
3162 			if (optval < 0 || optval > SO_TS_CLOCK_MAX) {
3163 				error = EINVAL;
3164 				goto bad;
3165 			}
3166 			so->so_ts_clock = optval;
3167 			break;
3168 
3169 		case SO_MAX_PACING_RATE:
3170 			error = sooptcopyin(sopt, &val32, sizeof(val32),
3171 			    sizeof(val32));
3172 			if (error)
3173 				goto bad;
3174 			so->so_max_pacing_rate = val32;
3175 			break;
3176 
3177 		default:
3178 			if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
3179 				error = hhook_run_socket(so, sopt,
3180 				    HHOOK_SOCKET_OPT);
3181 			else
3182 				error = ENOPROTOOPT;
3183 			break;
3184 		}
3185 		if (error == 0 && so->so_proto->pr_ctloutput != NULL)
3186 			(void)(*so->so_proto->pr_ctloutput)(so, sopt);
3187 	}
3188 bad:
3189 	CURVNET_RESTORE();
3190 	return (error);
3191 }
3192 
3193 /*
3194  * Helper routine for getsockopt.
3195  */
3196 int
3197 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
3198 {
3199 	int	error;
3200 	size_t	valsize;
3201 
3202 	error = 0;
3203 
3204 	/*
3205 	 * Documented get behavior is that we always return a value, possibly
3206 	 * truncated to fit in the user's buffer.  Traditional behavior is
3207 	 * that we always tell the user precisely how much we copied, rather
3208 	 * than something useful like the total amount we had available for
3209 	 * her.  Note that this interface is not idempotent; the entire
3210 	 * answer must be generated ahead of time.
3211 	 */
3212 	valsize = min(len, sopt->sopt_valsize);
3213 	sopt->sopt_valsize = valsize;
3214 	if (sopt->sopt_val != NULL) {
3215 		if (sopt->sopt_td != NULL)
3216 			error = copyout(buf, sopt->sopt_val, valsize);
3217 		else
3218 			bcopy(buf, sopt->sopt_val, valsize);
3219 	}
3220 	return (error);
3221 }
3222 
3223 int
3224 sogetopt(struct socket *so, struct sockopt *sopt)
3225 {
3226 	int	error, optval;
3227 	struct	linger l;
3228 	struct	timeval tv;
3229 #ifdef MAC
3230 	struct mac extmac;
3231 #endif
3232 
3233 	CURVNET_SET(so->so_vnet);
3234 	error = 0;
3235 	if (sopt->sopt_level != SOL_SOCKET) {
3236 		if (so->so_proto->pr_ctloutput != NULL)
3237 			error = (*so->so_proto->pr_ctloutput)(so, sopt);
3238 		else
3239 			error = ENOPROTOOPT;
3240 		CURVNET_RESTORE();
3241 		return (error);
3242 	} else {
3243 		switch (sopt->sopt_name) {
3244 		case SO_ACCEPTFILTER:
3245 			error = accept_filt_getopt(so, sopt);
3246 			break;
3247 
3248 		case SO_LINGER:
3249 			SOCK_LOCK(so);
3250 			l.l_onoff = so->so_options & SO_LINGER;
3251 			l.l_linger = so->so_linger;
3252 			SOCK_UNLOCK(so);
3253 			error = sooptcopyout(sopt, &l, sizeof l);
3254 			break;
3255 
3256 		case SO_USELOOPBACK:
3257 		case SO_DONTROUTE:
3258 		case SO_DEBUG:
3259 		case SO_KEEPALIVE:
3260 		case SO_REUSEADDR:
3261 		case SO_REUSEPORT:
3262 		case SO_REUSEPORT_LB:
3263 		case SO_BROADCAST:
3264 		case SO_OOBINLINE:
3265 		case SO_ACCEPTCONN:
3266 		case SO_TIMESTAMP:
3267 		case SO_BINTIME:
3268 		case SO_NOSIGPIPE:
3269 		case SO_NO_DDP:
3270 		case SO_NO_OFFLOAD:
3271 			optval = so->so_options & sopt->sopt_name;
3272 integer:
3273 			error = sooptcopyout(sopt, &optval, sizeof optval);
3274 			break;
3275 
3276 		case SO_DOMAIN:
3277 			optval = so->so_proto->pr_domain->dom_family;
3278 			goto integer;
3279 
3280 		case SO_TYPE:
3281 			optval = so->so_type;
3282 			goto integer;
3283 
3284 		case SO_PROTOCOL:
3285 			optval = so->so_proto->pr_protocol;
3286 			goto integer;
3287 
3288 		case SO_ERROR:
3289 			SOCK_LOCK(so);
3290 			optval = so->so_error;
3291 			so->so_error = 0;
3292 			SOCK_UNLOCK(so);
3293 			goto integer;
3294 
3295 		case SO_SNDBUF:
3296 			optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat :
3297 			    so->so_snd.sb_hiwat;
3298 			goto integer;
3299 
3300 		case SO_RCVBUF:
3301 			optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat :
3302 			    so->so_rcv.sb_hiwat;
3303 			goto integer;
3304 
3305 		case SO_SNDLOWAT:
3306 			optval = SOLISTENING(so) ? so->sol_sbsnd_lowat :
3307 			    so->so_snd.sb_lowat;
3308 			goto integer;
3309 
3310 		case SO_RCVLOWAT:
3311 			optval = SOLISTENING(so) ? so->sol_sbrcv_lowat :
3312 			    so->so_rcv.sb_lowat;
3313 			goto integer;
3314 
3315 		case SO_SNDTIMEO:
3316 		case SO_RCVTIMEO:
3317 			tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ?
3318 			    so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
3319 #ifdef COMPAT_FREEBSD32
3320 			if (SV_CURPROC_FLAG(SV_ILP32)) {
3321 				struct timeval32 tv32;
3322 
3323 				CP(tv, tv32, tv_sec);
3324 				CP(tv, tv32, tv_usec);
3325 				error = sooptcopyout(sopt, &tv32, sizeof tv32);
3326 			} else
3327 #endif
3328 				error = sooptcopyout(sopt, &tv, sizeof tv);
3329 			break;
3330 
3331 		case SO_LABEL:
3332 #ifdef MAC
3333 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
3334 			    sizeof(extmac));
3335 			if (error)
3336 				goto bad;
3337 			error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
3338 			    so, &extmac);
3339 			if (error)
3340 				goto bad;
3341 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
3342 #else
3343 			error = EOPNOTSUPP;
3344 #endif
3345 			break;
3346 
3347 		case SO_PEERLABEL:
3348 #ifdef MAC
3349 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
3350 			    sizeof(extmac));
3351 			if (error)
3352 				goto bad;
3353 			error = mac_getsockopt_peerlabel(
3354 			    sopt->sopt_td->td_ucred, so, &extmac);
3355 			if (error)
3356 				goto bad;
3357 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
3358 #else
3359 			error = EOPNOTSUPP;
3360 #endif
3361 			break;
3362 
3363 		case SO_LISTENQLIMIT:
3364 			optval = SOLISTENING(so) ? so->sol_qlimit : 0;
3365 			goto integer;
3366 
3367 		case SO_LISTENQLEN:
3368 			optval = SOLISTENING(so) ? so->sol_qlen : 0;
3369 			goto integer;
3370 
3371 		case SO_LISTENINCQLEN:
3372 			optval = SOLISTENING(so) ? so->sol_incqlen : 0;
3373 			goto integer;
3374 
3375 		case SO_TS_CLOCK:
3376 			optval = so->so_ts_clock;
3377 			goto integer;
3378 
3379 		case SO_MAX_PACING_RATE:
3380 			optval = so->so_max_pacing_rate;
3381 			goto integer;
3382 
3383 		default:
3384 			if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
3385 				error = hhook_run_socket(so, sopt,
3386 				    HHOOK_SOCKET_OPT);
3387 			else
3388 				error = ENOPROTOOPT;
3389 			break;
3390 		}
3391 	}
3392 #ifdef MAC
3393 bad:
3394 #endif
3395 	CURVNET_RESTORE();
3396 	return (error);
3397 }
3398 
3399 int
3400 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
3401 {
3402 	struct mbuf *m, *m_prev;
3403 	int sopt_size = sopt->sopt_valsize;
3404 
3405 	MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
3406 	if (m == NULL)
3407 		return ENOBUFS;
3408 	if (sopt_size > MLEN) {
3409 		MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT);
3410 		if ((m->m_flags & M_EXT) == 0) {
3411 			m_free(m);
3412 			return ENOBUFS;
3413 		}
3414 		m->m_len = min(MCLBYTES, sopt_size);
3415 	} else {
3416 		m->m_len = min(MLEN, sopt_size);
3417 	}
3418 	sopt_size -= m->m_len;
3419 	*mp = m;
3420 	m_prev = m;
3421 
3422 	while (sopt_size) {
3423 		MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
3424 		if (m == NULL) {
3425 			m_freem(*mp);
3426 			return ENOBUFS;
3427 		}
3428 		if (sopt_size > MLEN) {
3429 			MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK :
3430 			    M_NOWAIT);
3431 			if ((m->m_flags & M_EXT) == 0) {
3432 				m_freem(m);
3433 				m_freem(*mp);
3434 				return ENOBUFS;
3435 			}
3436 			m->m_len = min(MCLBYTES, sopt_size);
3437 		} else {
3438 			m->m_len = min(MLEN, sopt_size);
3439 		}
3440 		sopt_size -= m->m_len;
3441 		m_prev->m_next = m;
3442 		m_prev = m;
3443 	}
3444 	return (0);
3445 }
3446 
3447 int
3448 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
3449 {
3450 	struct mbuf *m0 = m;
3451 
3452 	if (sopt->sopt_val == NULL)
3453 		return (0);
3454 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
3455 		if (sopt->sopt_td != NULL) {
3456 			int error;
3457 
3458 			error = copyin(sopt->sopt_val, mtod(m, char *),
3459 			    m->m_len);
3460 			if (error != 0) {
3461 				m_freem(m0);
3462 				return(error);
3463 			}
3464 		} else
3465 			bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
3466 		sopt->sopt_valsize -= m->m_len;
3467 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
3468 		m = m->m_next;
3469 	}
3470 	if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
3471 		panic("ip6_sooptmcopyin");
3472 	return (0);
3473 }
3474 
3475 int
3476 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
3477 {
3478 	struct mbuf *m0 = m;
3479 	size_t valsize = 0;
3480 
3481 	if (sopt->sopt_val == NULL)
3482 		return (0);
3483 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
3484 		if (sopt->sopt_td != NULL) {
3485 			int error;
3486 
3487 			error = copyout(mtod(m, char *), sopt->sopt_val,
3488 			    m->m_len);
3489 			if (error != 0) {
3490 				m_freem(m0);
3491 				return(error);
3492 			}
3493 		} else
3494 			bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
3495 		sopt->sopt_valsize -= m->m_len;
3496 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
3497 		valsize += m->m_len;
3498 		m = m->m_next;
3499 	}
3500 	if (m != NULL) {
3501 		/* enough soopt buffer should be given from user-land */
3502 		m_freem(m0);
3503 		return(EINVAL);
3504 	}
3505 	sopt->sopt_valsize = valsize;
3506 	return (0);
3507 }
3508 
3509 /*
3510  * sohasoutofband(): protocol notifies socket layer of the arrival of new
3511  * out-of-band data, which will then notify socket consumers.
3512  */
3513 void
3514 sohasoutofband(struct socket *so)
3515 {
3516 
3517 	if (so->so_sigio != NULL)
3518 		pgsigio(&so->so_sigio, SIGURG, 0);
3519 	selwakeuppri(&so->so_rdsel, PSOCK);
3520 }
3521 
3522 int
3523 sopoll(struct socket *so, int events, struct ucred *active_cred,
3524     struct thread *td)
3525 {
3526 
3527 	/*
3528 	 * We do not need to set or assert curvnet as long as everyone uses
3529 	 * sopoll_generic().
3530 	 */
3531 	return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred,
3532 	    td));
3533 }
3534 
3535 int
3536 sopoll_generic(struct socket *so, int events, struct ucred *active_cred,
3537     struct thread *td)
3538 {
3539 	int revents;
3540 
3541 	SOCK_LOCK(so);
3542 	if (SOLISTENING(so)) {
3543 		if (!(events & (POLLIN | POLLRDNORM)))
3544 			revents = 0;
3545 		else if (!TAILQ_EMPTY(&so->sol_comp))
3546 			revents = events & (POLLIN | POLLRDNORM);
3547 		else if ((events & POLLINIGNEOF) == 0 && so->so_error)
3548 			revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP;
3549 		else {
3550 			selrecord(td, &so->so_rdsel);
3551 			revents = 0;
3552 		}
3553 	} else {
3554 		revents = 0;
3555 		SOCKBUF_LOCK(&so->so_snd);
3556 		SOCKBUF_LOCK(&so->so_rcv);
3557 		if (events & (POLLIN | POLLRDNORM))
3558 			if (soreadabledata(so))
3559 				revents |= events & (POLLIN | POLLRDNORM);
3560 		if (events & (POLLOUT | POLLWRNORM))
3561 			if (sowriteable(so))
3562 				revents |= events & (POLLOUT | POLLWRNORM);
3563 		if (events & (POLLPRI | POLLRDBAND))
3564 			if (so->so_oobmark ||
3565 			    (so->so_rcv.sb_state & SBS_RCVATMARK))
3566 				revents |= events & (POLLPRI | POLLRDBAND);
3567 		if ((events & POLLINIGNEOF) == 0) {
3568 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3569 				revents |= events & (POLLIN | POLLRDNORM);
3570 				if (so->so_snd.sb_state & SBS_CANTSENDMORE)
3571 					revents |= POLLHUP;
3572 			}
3573 		}
3574 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
3575 			revents |= events & POLLRDHUP;
3576 		if (revents == 0) {
3577 			if (events &
3578 			    (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND | POLLRDHUP)) {
3579 				selrecord(td, &so->so_rdsel);
3580 				so->so_rcv.sb_flags |= SB_SEL;
3581 			}
3582 			if (events & (POLLOUT | POLLWRNORM)) {
3583 				selrecord(td, &so->so_wrsel);
3584 				so->so_snd.sb_flags |= SB_SEL;
3585 			}
3586 		}
3587 		SOCKBUF_UNLOCK(&so->so_rcv);
3588 		SOCKBUF_UNLOCK(&so->so_snd);
3589 	}
3590 	SOCK_UNLOCK(so);
3591 	return (revents);
3592 }
3593 
3594 int
3595 soo_kqfilter(struct file *fp, struct knote *kn)
3596 {
3597 	struct socket *so = kn->kn_fp->f_data;
3598 	struct sockbuf *sb;
3599 	struct knlist *knl;
3600 
3601 	switch (kn->kn_filter) {
3602 	case EVFILT_READ:
3603 		kn->kn_fop = &soread_filtops;
3604 		knl = &so->so_rdsel.si_note;
3605 		sb = &so->so_rcv;
3606 		break;
3607 	case EVFILT_WRITE:
3608 		kn->kn_fop = &sowrite_filtops;
3609 		knl = &so->so_wrsel.si_note;
3610 		sb = &so->so_snd;
3611 		break;
3612 	case EVFILT_EMPTY:
3613 		kn->kn_fop = &soempty_filtops;
3614 		knl = &so->so_wrsel.si_note;
3615 		sb = &so->so_snd;
3616 		break;
3617 	default:
3618 		return (EINVAL);
3619 	}
3620 
3621 	SOCK_LOCK(so);
3622 	if (SOLISTENING(so)) {
3623 		knlist_add(knl, kn, 1);
3624 	} else {
3625 		SOCKBUF_LOCK(sb);
3626 		knlist_add(knl, kn, 1);
3627 		sb->sb_flags |= SB_KNOTE;
3628 		SOCKBUF_UNLOCK(sb);
3629 	}
3630 	SOCK_UNLOCK(so);
3631 	return (0);
3632 }
3633 
3634 /*
3635  * Some routines that return EOPNOTSUPP for entry points that are not
3636  * supported by a protocol.  Fill in as needed.
3637  */
3638 int
3639 pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
3640 {
3641 
3642 	return EOPNOTSUPP;
3643 }
3644 
3645 int
3646 pru_aio_queue_notsupp(struct socket *so, struct kaiocb *job)
3647 {
3648 
3649 	return EOPNOTSUPP;
3650 }
3651 
3652 int
3653 pru_attach_notsupp(struct socket *so, int proto, struct thread *td)
3654 {
3655 
3656 	return EOPNOTSUPP;
3657 }
3658 
3659 int
3660 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
3661 {
3662 
3663 	return EOPNOTSUPP;
3664 }
3665 
3666 int
3667 pru_bindat_notsupp(int fd, struct socket *so, struct sockaddr *nam,
3668     struct thread *td)
3669 {
3670 
3671 	return EOPNOTSUPP;
3672 }
3673 
3674 int
3675 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
3676 {
3677 
3678 	return EOPNOTSUPP;
3679 }
3680 
3681 int
3682 pru_connectat_notsupp(int fd, struct socket *so, struct sockaddr *nam,
3683     struct thread *td)
3684 {
3685 
3686 	return EOPNOTSUPP;
3687 }
3688 
3689 int
3690 pru_connect2_notsupp(struct socket *so1, struct socket *so2)
3691 {
3692 
3693 	return EOPNOTSUPP;
3694 }
3695 
3696 int
3697 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
3698     struct ifnet *ifp, struct thread *td)
3699 {
3700 
3701 	return EOPNOTSUPP;
3702 }
3703 
3704 int
3705 pru_disconnect_notsupp(struct socket *so)
3706 {
3707 
3708 	return EOPNOTSUPP;
3709 }
3710 
3711 int
3712 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td)
3713 {
3714 
3715 	return EOPNOTSUPP;
3716 }
3717 
3718 int
3719 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam)
3720 {
3721 
3722 	return EOPNOTSUPP;
3723 }
3724 
3725 int
3726 pru_rcvd_notsupp(struct socket *so, int flags)
3727 {
3728 
3729 	return EOPNOTSUPP;
3730 }
3731 
3732 int
3733 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
3734 {
3735 
3736 	return EOPNOTSUPP;
3737 }
3738 
3739 int
3740 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m,
3741     struct sockaddr *addr, struct mbuf *control, struct thread *td)
3742 {
3743 
3744 	return EOPNOTSUPP;
3745 }
3746 
3747 int
3748 pru_ready_notsupp(struct socket *so, struct mbuf *m, int count)
3749 {
3750 
3751 	return (EOPNOTSUPP);
3752 }
3753 
3754 /*
3755  * This isn't really a ``null'' operation, but it's the default one and
3756  * doesn't do anything destructive.
3757  */
3758 int
3759 pru_sense_null(struct socket *so, struct stat *sb)
3760 {
3761 
3762 	sb->st_blksize = so->so_snd.sb_hiwat;
3763 	return 0;
3764 }
3765 
3766 int
3767 pru_shutdown_notsupp(struct socket *so)
3768 {
3769 
3770 	return EOPNOTSUPP;
3771 }
3772 
3773 int
3774 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam)
3775 {
3776 
3777 	return EOPNOTSUPP;
3778 }
3779 
3780 int
3781 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio,
3782     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
3783 {
3784 
3785 	return EOPNOTSUPP;
3786 }
3787 
3788 int
3789 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr,
3790     struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3791 {
3792 
3793 	return EOPNOTSUPP;
3794 }
3795 
3796 int
3797 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred,
3798     struct thread *td)
3799 {
3800 
3801 	return EOPNOTSUPP;
3802 }
3803 
3804 static void
3805 filt_sordetach(struct knote *kn)
3806 {
3807 	struct socket *so = kn->kn_fp->f_data;
3808 
3809 	so_rdknl_lock(so);
3810 	knlist_remove(&so->so_rdsel.si_note, kn, 1);
3811 	if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note))
3812 		so->so_rcv.sb_flags &= ~SB_KNOTE;
3813 	so_rdknl_unlock(so);
3814 }
3815 
3816 /*ARGSUSED*/
3817 static int
3818 filt_soread(struct knote *kn, long hint)
3819 {
3820 	struct socket *so;
3821 
3822 	so = kn->kn_fp->f_data;
3823 
3824 	if (SOLISTENING(so)) {
3825 		SOCK_LOCK_ASSERT(so);
3826 		kn->kn_data = so->sol_qlen;
3827 		if (so->so_error) {
3828 			kn->kn_flags |= EV_EOF;
3829 			kn->kn_fflags = so->so_error;
3830 			return (1);
3831 		}
3832 		return (!TAILQ_EMPTY(&so->sol_comp));
3833 	}
3834 
3835 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3836 
3837 	kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl;
3838 	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3839 		kn->kn_flags |= EV_EOF;
3840 		kn->kn_fflags = so->so_error;
3841 		return (1);
3842 	} else if (so->so_error)	/* temporary udp error */
3843 		return (1);
3844 
3845 	if (kn->kn_sfflags & NOTE_LOWAT) {
3846 		if (kn->kn_data >= kn->kn_sdata)
3847 			return (1);
3848 	} else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat)
3849 		return (1);
3850 
3851 	/* This hook returning non-zero indicates an event, not error */
3852 	return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD));
3853 }
3854 
3855 static void
3856 filt_sowdetach(struct knote *kn)
3857 {
3858 	struct socket *so = kn->kn_fp->f_data;
3859 
3860 	so_wrknl_lock(so);
3861 	knlist_remove(&so->so_wrsel.si_note, kn, 1);
3862 	if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note))
3863 		so->so_snd.sb_flags &= ~SB_KNOTE;
3864 	so_wrknl_unlock(so);
3865 }
3866 
3867 /*ARGSUSED*/
3868 static int
3869 filt_sowrite(struct knote *kn, long hint)
3870 {
3871 	struct socket *so;
3872 
3873 	so = kn->kn_fp->f_data;
3874 
3875 	if (SOLISTENING(so))
3876 		return (0);
3877 
3878 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
3879 	kn->kn_data = sbspace(&so->so_snd);
3880 
3881 	hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE);
3882 
3883 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
3884 		kn->kn_flags |= EV_EOF;
3885 		kn->kn_fflags = so->so_error;
3886 		return (1);
3887 	} else if (so->so_error)	/* temporary udp error */
3888 		return (1);
3889 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
3890 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
3891 		return (0);
3892 	else if (kn->kn_sfflags & NOTE_LOWAT)
3893 		return (kn->kn_data >= kn->kn_sdata);
3894 	else
3895 		return (kn->kn_data >= so->so_snd.sb_lowat);
3896 }
3897 
3898 static int
3899 filt_soempty(struct knote *kn, long hint)
3900 {
3901 	struct socket *so;
3902 
3903 	so = kn->kn_fp->f_data;
3904 
3905 	if (SOLISTENING(so))
3906 		return (1);
3907 
3908 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
3909 	kn->kn_data = sbused(&so->so_snd);
3910 
3911 	if (kn->kn_data == 0)
3912 		return (1);
3913 	else
3914 		return (0);
3915 }
3916 
3917 int
3918 socheckuid(struct socket *so, uid_t uid)
3919 {
3920 
3921 	if (so == NULL)
3922 		return (EPERM);
3923 	if (so->so_cred->cr_uid != uid)
3924 		return (EPERM);
3925 	return (0);
3926 }
3927 
3928 /*
3929  * These functions are used by protocols to notify the socket layer (and its
3930  * consumers) of state changes in the sockets driven by protocol-side events.
3931  */
3932 
3933 /*
3934  * Procedures to manipulate state flags of socket and do appropriate wakeups.
3935  *
3936  * Normal sequence from the active (originating) side is that
3937  * soisconnecting() is called during processing of connect() call, resulting
3938  * in an eventual call to soisconnected() if/when the connection is
3939  * established.  When the connection is torn down soisdisconnecting() is
3940  * called during processing of disconnect() call, and soisdisconnected() is
3941  * called when the connection to the peer is totally severed.  The semantics
3942  * of these routines are such that connectionless protocols can call
3943  * soisconnected() and soisdisconnected() only, bypassing the in-progress
3944  * calls when setting up a ``connection'' takes no time.
3945  *
3946  * From the passive side, a socket is created with two queues of sockets:
3947  * so_incomp for connections in progress and so_comp for connections already
3948  * made and awaiting user acceptance.  As a protocol is preparing incoming
3949  * connections, it creates a socket structure queued on so_incomp by calling
3950  * sonewconn().  When the connection is established, soisconnected() is
3951  * called, and transfers the socket structure to so_comp, making it available
3952  * to accept().
3953  *
3954  * If a socket is closed with sockets on either so_incomp or so_comp, these
3955  * sockets are dropped.
3956  *
3957  * If higher-level protocols are implemented in the kernel, the wakeups done
3958  * here will sometimes cause software-interrupt process scheduling.
3959  */
3960 void
3961 soisconnecting(struct socket *so)
3962 {
3963 
3964 	SOCK_LOCK(so);
3965 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
3966 	so->so_state |= SS_ISCONNECTING;
3967 	SOCK_UNLOCK(so);
3968 }
3969 
3970 void
3971 soisconnected(struct socket *so)
3972 {
3973 
3974 	SOCK_LOCK(so);
3975 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
3976 	so->so_state |= SS_ISCONNECTED;
3977 
3978 	if (so->so_qstate == SQ_INCOMP) {
3979 		struct socket *head = so->so_listen;
3980 		int ret;
3981 
3982 		KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so));
3983 		/*
3984 		 * Promoting a socket from incomplete queue to complete, we
3985 		 * need to go through reverse order of locking.  We first do
3986 		 * trylock, and if that doesn't succeed, we go the hard way
3987 		 * leaving a reference and rechecking consistency after proper
3988 		 * locking.
3989 		 */
3990 		if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) {
3991 			soref(head);
3992 			SOCK_UNLOCK(so);
3993 			SOLISTEN_LOCK(head);
3994 			SOCK_LOCK(so);
3995 			if (__predict_false(head != so->so_listen)) {
3996 				/*
3997 				 * The socket went off the listen queue,
3998 				 * should be lost race to close(2) of sol.
3999 				 * The socket is about to soabort().
4000 				 */
4001 				SOCK_UNLOCK(so);
4002 				sorele(head);
4003 				return;
4004 			}
4005 			/* Not the last one, as so holds a ref. */
4006 			refcount_release(&head->so_count);
4007 		}
4008 again:
4009 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
4010 			TAILQ_REMOVE(&head->sol_incomp, so, so_list);
4011 			head->sol_incqlen--;
4012 			TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
4013 			head->sol_qlen++;
4014 			so->so_qstate = SQ_COMP;
4015 			SOCK_UNLOCK(so);
4016 			solisten_wakeup(head);	/* unlocks */
4017 		} else {
4018 			SOCKBUF_LOCK(&so->so_rcv);
4019 			soupcall_set(so, SO_RCV,
4020 			    head->sol_accept_filter->accf_callback,
4021 			    head->sol_accept_filter_arg);
4022 			so->so_options &= ~SO_ACCEPTFILTER;
4023 			ret = head->sol_accept_filter->accf_callback(so,
4024 			    head->sol_accept_filter_arg, M_NOWAIT);
4025 			if (ret == SU_ISCONNECTED) {
4026 				soupcall_clear(so, SO_RCV);
4027 				SOCKBUF_UNLOCK(&so->so_rcv);
4028 				goto again;
4029 			}
4030 			SOCKBUF_UNLOCK(&so->so_rcv);
4031 			SOCK_UNLOCK(so);
4032 			SOLISTEN_UNLOCK(head);
4033 		}
4034 		return;
4035 	}
4036 	SOCK_UNLOCK(so);
4037 	wakeup(&so->so_timeo);
4038 	sorwakeup(so);
4039 	sowwakeup(so);
4040 }
4041 
4042 void
4043 soisdisconnecting(struct socket *so)
4044 {
4045 
4046 	SOCK_LOCK(so);
4047 	so->so_state &= ~SS_ISCONNECTING;
4048 	so->so_state |= SS_ISDISCONNECTING;
4049 
4050 	if (!SOLISTENING(so)) {
4051 		SOCKBUF_LOCK(&so->so_rcv);
4052 		socantrcvmore_locked(so);
4053 		SOCKBUF_LOCK(&so->so_snd);
4054 		socantsendmore_locked(so);
4055 	}
4056 	SOCK_UNLOCK(so);
4057 	wakeup(&so->so_timeo);
4058 }
4059 
4060 void
4061 soisdisconnected(struct socket *so)
4062 {
4063 
4064 	SOCK_LOCK(so);
4065 
4066 	/*
4067 	 * There is at least one reader of so_state that does not
4068 	 * acquire socket lock, namely soreceive_generic().  Ensure
4069 	 * that it never sees all flags that track connection status
4070 	 * cleared, by ordering the update with a barrier semantic of
4071 	 * our release thread fence.
4072 	 */
4073 	so->so_state |= SS_ISDISCONNECTED;
4074 	atomic_thread_fence_rel();
4075 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
4076 
4077 	if (!SOLISTENING(so)) {
4078 		SOCK_UNLOCK(so);
4079 		SOCKBUF_LOCK(&so->so_rcv);
4080 		socantrcvmore_locked(so);
4081 		SOCKBUF_LOCK(&so->so_snd);
4082 		sbdrop_locked(&so->so_snd, sbused(&so->so_snd));
4083 		socantsendmore_locked(so);
4084 	} else
4085 		SOCK_UNLOCK(so);
4086 	wakeup(&so->so_timeo);
4087 }
4088 
4089 /*
4090  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
4091  */
4092 struct sockaddr *
4093 sodupsockaddr(const struct sockaddr *sa, int mflags)
4094 {
4095 	struct sockaddr *sa2;
4096 
4097 	sa2 = malloc(sa->sa_len, M_SONAME, mflags);
4098 	if (sa2)
4099 		bcopy(sa, sa2, sa->sa_len);
4100 	return sa2;
4101 }
4102 
4103 /*
4104  * Register per-socket destructor.
4105  */
4106 void
4107 sodtor_set(struct socket *so, so_dtor_t *func)
4108 {
4109 
4110 	SOCK_LOCK_ASSERT(so);
4111 	so->so_dtor = func;
4112 }
4113 
4114 /*
4115  * Register per-socket buffer upcalls.
4116  */
4117 void
4118 soupcall_set(struct socket *so, int which, so_upcall_t func, void *arg)
4119 {
4120 	struct sockbuf *sb;
4121 
4122 	KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4123 
4124 	switch (which) {
4125 	case SO_RCV:
4126 		sb = &so->so_rcv;
4127 		break;
4128 	case SO_SND:
4129 		sb = &so->so_snd;
4130 		break;
4131 	default:
4132 		panic("soupcall_set: bad which");
4133 	}
4134 	SOCKBUF_LOCK_ASSERT(sb);
4135 	sb->sb_upcall = func;
4136 	sb->sb_upcallarg = arg;
4137 	sb->sb_flags |= SB_UPCALL;
4138 }
4139 
4140 void
4141 soupcall_clear(struct socket *so, int which)
4142 {
4143 	struct sockbuf *sb;
4144 
4145 	KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4146 
4147 	switch (which) {
4148 	case SO_RCV:
4149 		sb = &so->so_rcv;
4150 		break;
4151 	case SO_SND:
4152 		sb = &so->so_snd;
4153 		break;
4154 	default:
4155 		panic("soupcall_clear: bad which");
4156 	}
4157 	SOCKBUF_LOCK_ASSERT(sb);
4158 	KASSERT(sb->sb_upcall != NULL,
4159 	    ("%s: so %p no upcall to clear", __func__, so));
4160 	sb->sb_upcall = NULL;
4161 	sb->sb_upcallarg = NULL;
4162 	sb->sb_flags &= ~SB_UPCALL;
4163 }
4164 
4165 void
4166 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg)
4167 {
4168 
4169 	SOLISTEN_LOCK_ASSERT(so);
4170 	so->sol_upcall = func;
4171 	so->sol_upcallarg = arg;
4172 }
4173 
4174 static void
4175 so_rdknl_lock(void *arg)
4176 {
4177 	struct socket *so = arg;
4178 
4179 	if (SOLISTENING(so))
4180 		SOCK_LOCK(so);
4181 	else
4182 		SOCKBUF_LOCK(&so->so_rcv);
4183 }
4184 
4185 static void
4186 so_rdknl_unlock(void *arg)
4187 {
4188 	struct socket *so = arg;
4189 
4190 	if (SOLISTENING(so))
4191 		SOCK_UNLOCK(so);
4192 	else
4193 		SOCKBUF_UNLOCK(&so->so_rcv);
4194 }
4195 
4196 static void
4197 so_rdknl_assert_lock(void *arg, int what)
4198 {
4199 	struct socket *so = arg;
4200 
4201 	if (what == LA_LOCKED) {
4202 		if (SOLISTENING(so))
4203 			SOCK_LOCK_ASSERT(so);
4204 		else
4205 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
4206 	} else {
4207 		if (SOLISTENING(so))
4208 			SOCK_UNLOCK_ASSERT(so);
4209 		else
4210 			SOCKBUF_UNLOCK_ASSERT(&so->so_rcv);
4211 	}
4212 }
4213 
4214 static void
4215 so_wrknl_lock(void *arg)
4216 {
4217 	struct socket *so = arg;
4218 
4219 	if (SOLISTENING(so))
4220 		SOCK_LOCK(so);
4221 	else
4222 		SOCKBUF_LOCK(&so->so_snd);
4223 }
4224 
4225 static void
4226 so_wrknl_unlock(void *arg)
4227 {
4228 	struct socket *so = arg;
4229 
4230 	if (SOLISTENING(so))
4231 		SOCK_UNLOCK(so);
4232 	else
4233 		SOCKBUF_UNLOCK(&so->so_snd);
4234 }
4235 
4236 static void
4237 so_wrknl_assert_lock(void *arg, int what)
4238 {
4239 	struct socket *so = arg;
4240 
4241 	if (what == LA_LOCKED) {
4242 		if (SOLISTENING(so))
4243 			SOCK_LOCK_ASSERT(so);
4244 		else
4245 			SOCKBUF_LOCK_ASSERT(&so->so_snd);
4246 	} else {
4247 		if (SOLISTENING(so))
4248 			SOCK_UNLOCK_ASSERT(so);
4249 		else
4250 			SOCKBUF_UNLOCK_ASSERT(&so->so_snd);
4251 	}
4252 }
4253 
4254 /*
4255  * Create an external-format (``xsocket'') structure using the information in
4256  * the kernel-format socket structure pointed to by so.  This is done to
4257  * reduce the spew of irrelevant information over this interface, to isolate
4258  * user code from changes in the kernel structure, and potentially to provide
4259  * information-hiding if we decide that some of this information should be
4260  * hidden from users.
4261  */
4262 void
4263 sotoxsocket(struct socket *so, struct xsocket *xso)
4264 {
4265 
4266 	bzero(xso, sizeof(*xso));
4267 	xso->xso_len = sizeof *xso;
4268 	xso->xso_so = (uintptr_t)so;
4269 	xso->so_type = so->so_type;
4270 	xso->so_options = so->so_options;
4271 	xso->so_linger = so->so_linger;
4272 	xso->so_state = so->so_state;
4273 	xso->so_pcb = (uintptr_t)so->so_pcb;
4274 	xso->xso_protocol = so->so_proto->pr_protocol;
4275 	xso->xso_family = so->so_proto->pr_domain->dom_family;
4276 	xso->so_timeo = so->so_timeo;
4277 	xso->so_error = so->so_error;
4278 	xso->so_uid = so->so_cred->cr_uid;
4279 	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
4280 	if (SOLISTENING(so)) {
4281 		xso->so_qlen = so->sol_qlen;
4282 		xso->so_incqlen = so->sol_incqlen;
4283 		xso->so_qlimit = so->sol_qlimit;
4284 		xso->so_oobmark = 0;
4285 	} else {
4286 		xso->so_state |= so->so_qstate;
4287 		xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0;
4288 		xso->so_oobmark = so->so_oobmark;
4289 		sbtoxsockbuf(&so->so_snd, &xso->so_snd);
4290 		sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
4291 	}
4292 }
4293 
4294 struct sockbuf *
4295 so_sockbuf_rcv(struct socket *so)
4296 {
4297 
4298 	return (&so->so_rcv);
4299 }
4300 
4301 struct sockbuf *
4302 so_sockbuf_snd(struct socket *so)
4303 {
4304 
4305 	return (&so->so_snd);
4306 }
4307 
4308 int
4309 so_state_get(const struct socket *so)
4310 {
4311 
4312 	return (so->so_state);
4313 }
4314 
4315 void
4316 so_state_set(struct socket *so, int val)
4317 {
4318 
4319 	so->so_state = val;
4320 }
4321 
4322 int
4323 so_options_get(const struct socket *so)
4324 {
4325 
4326 	return (so->so_options);
4327 }
4328 
4329 void
4330 so_options_set(struct socket *so, int val)
4331 {
4332 
4333 	so->so_options = val;
4334 }
4335 
4336 int
4337 so_error_get(const struct socket *so)
4338 {
4339 
4340 	return (so->so_error);
4341 }
4342 
4343 void
4344 so_error_set(struct socket *so, int val)
4345 {
4346 
4347 	so->so_error = val;
4348 }
4349 
4350 int
4351 so_linger_get(const struct socket *so)
4352 {
4353 
4354 	return (so->so_linger);
4355 }
4356 
4357 void
4358 so_linger_set(struct socket *so, int val)
4359 {
4360 
4361 	KASSERT(val >= 0 && val <= USHRT_MAX && val <= (INT_MAX / hz),
4362 	    ("%s: val %d out of range", __func__, val));
4363 
4364 	so->so_linger = val;
4365 }
4366 
4367 struct protosw *
4368 so_protosw_get(const struct socket *so)
4369 {
4370 
4371 	return (so->so_proto);
4372 }
4373 
4374 void
4375 so_protosw_set(struct socket *so, struct protosw *val)
4376 {
4377 
4378 	so->so_proto = val;
4379 }
4380 
4381 void
4382 so_sorwakeup(struct socket *so)
4383 {
4384 
4385 	sorwakeup(so);
4386 }
4387 
4388 void
4389 so_sowwakeup(struct socket *so)
4390 {
4391 
4392 	sowwakeup(so);
4393 }
4394 
4395 void
4396 so_sorwakeup_locked(struct socket *so)
4397 {
4398 
4399 	sorwakeup_locked(so);
4400 }
4401 
4402 void
4403 so_sowwakeup_locked(struct socket *so)
4404 {
4405 
4406 	sowwakeup_locked(so);
4407 }
4408 
4409 void
4410 so_lock(struct socket *so)
4411 {
4412 
4413 	SOCK_LOCK(so);
4414 }
4415 
4416 void
4417 so_unlock(struct socket *so)
4418 {
4419 
4420 	SOCK_UNLOCK(so);
4421 }
4422