1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. 6 * Copyright (c) 2004 The FreeBSD Foundation 7 * Copyright (c) 2004-2008 Robert N. M. Watson 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 35 */ 36 37 /* 38 * Comments on the socket life cycle: 39 * 40 * soalloc() sets of socket layer state for a socket, called only by 41 * socreate() and sonewconn(). Socket layer private. 42 * 43 * sodealloc() tears down socket layer state for a socket, called only by 44 * sofree() and sonewconn(). Socket layer private. 45 * 46 * pru_attach() associates protocol layer state with an allocated socket; 47 * called only once, may fail, aborting socket allocation. This is called 48 * from socreate() and sonewconn(). Socket layer private. 49 * 50 * pru_detach() disassociates protocol layer state from an attached socket, 51 * and will be called exactly once for sockets in which pru_attach() has 52 * been successfully called. If pru_attach() returned an error, 53 * pru_detach() will not be called. Socket layer private. 54 * 55 * pru_abort() and pru_close() notify the protocol layer that the last 56 * consumer of a socket is starting to tear down the socket, and that the 57 * protocol should terminate the connection. Historically, pru_abort() also 58 * detached protocol state from the socket state, but this is no longer the 59 * case. 60 * 61 * socreate() creates a socket and attaches protocol state. This is a public 62 * interface that may be used by socket layer consumers to create new 63 * sockets. 64 * 65 * sonewconn() creates a socket and attaches protocol state. This is a 66 * public interface that may be used by protocols to create new sockets when 67 * a new connection is received and will be available for accept() on a 68 * listen socket. 69 * 70 * soclose() destroys a socket after possibly waiting for it to disconnect. 71 * This is a public interface that socket consumers should use to close and 72 * release a socket when done with it. 73 * 74 * soabort() destroys a socket without waiting for it to disconnect (used 75 * only for incoming connections that are already partially or fully 76 * connected). This is used internally by the socket layer when clearing 77 * listen socket queues (due to overflow or close on the listen socket), but 78 * is also a public interface protocols may use to abort connections in 79 * their incomplete listen queues should they no longer be required. Sockets 80 * placed in completed connection listen queues should not be aborted for 81 * reasons described in the comment above the soclose() implementation. This 82 * is not a general purpose close routine, and except in the specific 83 * circumstances described here, should not be used. 84 * 85 * sofree() will free a socket and its protocol state if all references on 86 * the socket have been released, and is the public interface to attempt to 87 * free a socket when a reference is removed. This is a socket layer private 88 * interface. 89 * 90 * NOTE: In addition to socreate() and soclose(), which provide a single 91 * socket reference to the consumer to be managed as required, there are two 92 * calls to explicitly manage socket references, soref(), and sorele(). 93 * Currently, these are generally required only when transitioning a socket 94 * from a listen queue to a file descriptor, in order to prevent garbage 95 * collection of the socket at an untimely moment. For a number of reasons, 96 * these interfaces are not preferred, and should be avoided. 97 * 98 * NOTE: With regard to VNETs the general rule is that callers do not set 99 * curvnet. Exceptions to this rule include soabort(), sodisconnect(), 100 * sofree() (and with that sorele(), sotryfree()), as well as sonewconn() 101 * and sorflush(), which are usually called from a pre-set VNET context. 102 * sopoll() currently does not need a VNET context to be set. 103 */ 104 105 #include <sys/cdefs.h> 106 __FBSDID("$FreeBSD$"); 107 108 #include "opt_inet.h" 109 #include "opt_inet6.h" 110 #include "opt_kern_tls.h" 111 #include "opt_sctp.h" 112 113 #include <sys/param.h> 114 #include <sys/systm.h> 115 #include <sys/capsicum.h> 116 #include <sys/fcntl.h> 117 #include <sys/limits.h> 118 #include <sys/lock.h> 119 #include <sys/mac.h> 120 #include <sys/malloc.h> 121 #include <sys/mbuf.h> 122 #include <sys/mutex.h> 123 #include <sys/domain.h> 124 #include <sys/file.h> /* for struct knote */ 125 #include <sys/hhook.h> 126 #include <sys/kernel.h> 127 #include <sys/khelp.h> 128 #include <sys/ktls.h> 129 #include <sys/event.h> 130 #include <sys/eventhandler.h> 131 #include <sys/poll.h> 132 #include <sys/proc.h> 133 #include <sys/protosw.h> 134 #include <sys/sbuf.h> 135 #include <sys/socket.h> 136 #include <sys/socketvar.h> 137 #include <sys/resourcevar.h> 138 #include <net/route.h> 139 #include <sys/signalvar.h> 140 #include <sys/stat.h> 141 #include <sys/sx.h> 142 #include <sys/sysctl.h> 143 #include <sys/taskqueue.h> 144 #include <sys/uio.h> 145 #include <sys/un.h> 146 #include <sys/unpcb.h> 147 #include <sys/jail.h> 148 #include <sys/syslog.h> 149 #include <netinet/in.h> 150 #include <netinet/in_pcb.h> 151 #include <netinet/tcp.h> 152 153 #include <net/vnet.h> 154 155 #include <security/mac/mac_framework.h> 156 157 #include <vm/uma.h> 158 159 #ifdef COMPAT_FREEBSD32 160 #include <sys/mount.h> 161 #include <sys/sysent.h> 162 #include <compat/freebsd32/freebsd32.h> 163 #endif 164 165 static int soreceive_rcvoob(struct socket *so, struct uio *uio, 166 int flags); 167 static void so_rdknl_lock(void *); 168 static void so_rdknl_unlock(void *); 169 static void so_rdknl_assert_lock(void *, int); 170 static void so_wrknl_lock(void *); 171 static void so_wrknl_unlock(void *); 172 static void so_wrknl_assert_lock(void *, int); 173 174 static void filt_sordetach(struct knote *kn); 175 static int filt_soread(struct knote *kn, long hint); 176 static void filt_sowdetach(struct knote *kn); 177 static int filt_sowrite(struct knote *kn, long hint); 178 static int filt_soempty(struct knote *kn, long hint); 179 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id); 180 fo_kqfilter_t soo_kqfilter; 181 182 static struct filterops soread_filtops = { 183 .f_isfd = 1, 184 .f_detach = filt_sordetach, 185 .f_event = filt_soread, 186 }; 187 static struct filterops sowrite_filtops = { 188 .f_isfd = 1, 189 .f_detach = filt_sowdetach, 190 .f_event = filt_sowrite, 191 }; 192 static struct filterops soempty_filtops = { 193 .f_isfd = 1, 194 .f_detach = filt_sowdetach, 195 .f_event = filt_soempty, 196 }; 197 198 so_gen_t so_gencnt; /* generation count for sockets */ 199 200 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 201 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 202 203 #define VNET_SO_ASSERT(so) \ 204 VNET_ASSERT(curvnet != NULL, \ 205 ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so))); 206 207 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]); 208 #define V_socket_hhh VNET(socket_hhh) 209 210 /* 211 * Limit on the number of connections in the listen queue waiting 212 * for accept(2). 213 * NB: The original sysctl somaxconn is still available but hidden 214 * to prevent confusion about the actual purpose of this number. 215 */ 216 static u_int somaxconn = SOMAXCONN; 217 218 static int 219 sysctl_somaxconn(SYSCTL_HANDLER_ARGS) 220 { 221 int error; 222 int val; 223 224 val = somaxconn; 225 error = sysctl_handle_int(oidp, &val, 0, req); 226 if (error || !req->newptr ) 227 return (error); 228 229 /* 230 * The purpose of the UINT_MAX / 3 limit, is so that the formula 231 * 3 * so_qlimit / 2 232 * below, will not overflow. 233 */ 234 235 if (val < 1 || val > UINT_MAX / 3) 236 return (EINVAL); 237 238 somaxconn = val; 239 return (0); 240 } 241 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue, 242 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 0, sizeof(int), 243 sysctl_somaxconn, "I", 244 "Maximum listen socket pending connection accept queue size"); 245 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, 246 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_NEEDGIANT, 0, 247 sizeof(int), sysctl_somaxconn, "I", 248 "Maximum listen socket pending connection accept queue size (compat)"); 249 250 static int numopensockets; 251 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, 252 &numopensockets, 0, "Number of open sockets"); 253 254 /* 255 * accept_mtx locks down per-socket fields relating to accept queues. See 256 * socketvar.h for an annotation of the protected fields of struct socket. 257 */ 258 struct mtx accept_mtx; 259 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF); 260 261 /* 262 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket 263 * so_gencnt field. 264 */ 265 static struct mtx so_global_mtx; 266 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); 267 268 /* 269 * General IPC sysctl name space, used by sockets and a variety of other IPC 270 * types. 271 */ 272 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 273 "IPC"); 274 275 /* 276 * Initialize the socket subsystem and set up the socket 277 * memory allocator. 278 */ 279 static uma_zone_t socket_zone; 280 int maxsockets; 281 282 static void 283 socket_zone_change(void *tag) 284 { 285 286 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 287 } 288 289 static void 290 socket_hhook_register(int subtype) 291 { 292 293 if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype, 294 &V_socket_hhh[subtype], 295 HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 296 printf("%s: WARNING: unable to register hook\n", __func__); 297 } 298 299 static void 300 socket_hhook_deregister(int subtype) 301 { 302 303 if (hhook_head_deregister(V_socket_hhh[subtype]) != 0) 304 printf("%s: WARNING: unable to deregister hook\n", __func__); 305 } 306 307 static void 308 socket_init(void *tag) 309 { 310 311 socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL, 312 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 313 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 314 uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached"); 315 EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL, 316 EVENTHANDLER_PRI_FIRST); 317 } 318 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL); 319 320 static void 321 socket_vnet_init(const void *unused __unused) 322 { 323 int i; 324 325 /* We expect a contiguous range */ 326 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 327 socket_hhook_register(i); 328 } 329 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 330 socket_vnet_init, NULL); 331 332 static void 333 socket_vnet_uninit(const void *unused __unused) 334 { 335 int i; 336 337 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 338 socket_hhook_deregister(i); 339 } 340 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 341 socket_vnet_uninit, NULL); 342 343 /* 344 * Initialise maxsockets. This SYSINIT must be run after 345 * tunable_mbinit(). 346 */ 347 static void 348 init_maxsockets(void *ignored) 349 { 350 351 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 352 maxsockets = imax(maxsockets, maxfiles); 353 } 354 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 355 356 /* 357 * Sysctl to get and set the maximum global sockets limit. Notify protocols 358 * of the change so that they can update their dependent limits as required. 359 */ 360 static int 361 sysctl_maxsockets(SYSCTL_HANDLER_ARGS) 362 { 363 int error, newmaxsockets; 364 365 newmaxsockets = maxsockets; 366 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req); 367 if (error == 0 && req->newptr) { 368 if (newmaxsockets > maxsockets && 369 newmaxsockets <= maxfiles) { 370 maxsockets = newmaxsockets; 371 EVENTHANDLER_INVOKE(maxsockets_change); 372 } else 373 error = EINVAL; 374 } 375 return (error); 376 } 377 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, 378 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &maxsockets, 0, 379 sysctl_maxsockets, "IU", 380 "Maximum number of sockets available"); 381 382 /* 383 * Socket operation routines. These routines are called by the routines in 384 * sys_socket.c or from a system process, and implement the semantics of 385 * socket operations by switching out to the protocol specific routines. 386 */ 387 388 /* 389 * Get a socket structure from our zone, and initialize it. Note that it 390 * would probably be better to allocate socket and PCB at the same time, but 391 * I'm not convinced that all the protocols can be easily modified to do 392 * this. 393 * 394 * soalloc() returns a socket with a ref count of 0. 395 */ 396 static struct socket * 397 soalloc(struct vnet *vnet) 398 { 399 struct socket *so; 400 401 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO); 402 if (so == NULL) 403 return (NULL); 404 #ifdef MAC 405 if (mac_socket_init(so, M_NOWAIT) != 0) { 406 uma_zfree(socket_zone, so); 407 return (NULL); 408 } 409 #endif 410 if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) { 411 uma_zfree(socket_zone, so); 412 return (NULL); 413 } 414 415 /* 416 * The socket locking protocol allows to lock 2 sockets at a time, 417 * however, the first one must be a listening socket. WITNESS lacks 418 * a feature to change class of an existing lock, so we use DUPOK. 419 */ 420 mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK); 421 SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd"); 422 SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv"); 423 so->so_rcv.sb_sel = &so->so_rdsel; 424 so->so_snd.sb_sel = &so->so_wrsel; 425 sx_init(&so->so_snd.sb_sx, "so_snd_sx"); 426 sx_init(&so->so_rcv.sb_sx, "so_rcv_sx"); 427 TAILQ_INIT(&so->so_snd.sb_aiojobq); 428 TAILQ_INIT(&so->so_rcv.sb_aiojobq); 429 TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so); 430 TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so); 431 #ifdef VIMAGE 432 VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p", 433 __func__, __LINE__, so)); 434 so->so_vnet = vnet; 435 #endif 436 /* We shouldn't need the so_global_mtx */ 437 if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) { 438 /* Do we need more comprehensive error returns? */ 439 uma_zfree(socket_zone, so); 440 return (NULL); 441 } 442 mtx_lock(&so_global_mtx); 443 so->so_gencnt = ++so_gencnt; 444 ++numopensockets; 445 #ifdef VIMAGE 446 vnet->vnet_sockcnt++; 447 #endif 448 mtx_unlock(&so_global_mtx); 449 450 return (so); 451 } 452 453 /* 454 * Free the storage associated with a socket at the socket layer, tear down 455 * locks, labels, etc. All protocol state is assumed already to have been 456 * torn down (and possibly never set up) by the caller. 457 */ 458 static void 459 sodealloc(struct socket *so) 460 { 461 462 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); 463 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL")); 464 465 mtx_lock(&so_global_mtx); 466 so->so_gencnt = ++so_gencnt; 467 --numopensockets; /* Could be below, but faster here. */ 468 #ifdef VIMAGE 469 VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p", 470 __func__, __LINE__, so)); 471 so->so_vnet->vnet_sockcnt--; 472 #endif 473 mtx_unlock(&so_global_mtx); 474 #ifdef MAC 475 mac_socket_destroy(so); 476 #endif 477 hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE); 478 479 crfree(so->so_cred); 480 khelp_destroy_osd(&so->osd); 481 if (SOLISTENING(so)) { 482 if (so->sol_accept_filter != NULL) 483 accept_filt_setopt(so, NULL); 484 } else { 485 if (so->so_rcv.sb_hiwat) 486 (void)chgsbsize(so->so_cred->cr_uidinfo, 487 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 488 if (so->so_snd.sb_hiwat) 489 (void)chgsbsize(so->so_cred->cr_uidinfo, 490 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 491 sx_destroy(&so->so_snd.sb_sx); 492 sx_destroy(&so->so_rcv.sb_sx); 493 SOCKBUF_LOCK_DESTROY(&so->so_snd); 494 SOCKBUF_LOCK_DESTROY(&so->so_rcv); 495 } 496 mtx_destroy(&so->so_lock); 497 uma_zfree(socket_zone, so); 498 } 499 500 /* 501 * socreate returns a socket with a ref count of 1. The socket should be 502 * closed with soclose(). 503 */ 504 int 505 socreate(int dom, struct socket **aso, int type, int proto, 506 struct ucred *cred, struct thread *td) 507 { 508 struct protosw *prp; 509 struct socket *so; 510 int error; 511 512 if (proto) 513 prp = pffindproto(dom, proto, type); 514 else 515 prp = pffindtype(dom, type); 516 517 if (prp == NULL) { 518 /* No support for domain. */ 519 if (pffinddomain(dom) == NULL) 520 return (EAFNOSUPPORT); 521 /* No support for socket type. */ 522 if (proto == 0 && type != 0) 523 return (EPROTOTYPE); 524 return (EPROTONOSUPPORT); 525 } 526 if (prp->pr_usrreqs->pru_attach == NULL || 527 prp->pr_usrreqs->pru_attach == pru_attach_notsupp) 528 return (EPROTONOSUPPORT); 529 530 if (IN_CAPABILITY_MODE(td) && (prp->pr_flags & PR_CAPATTACH) == 0) 531 return (ECAPMODE); 532 533 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0) 534 return (EPROTONOSUPPORT); 535 536 if (prp->pr_type != type) 537 return (EPROTOTYPE); 538 so = soalloc(CRED_TO_VNET(cred)); 539 if (so == NULL) 540 return (ENOBUFS); 541 542 so->so_type = type; 543 so->so_cred = crhold(cred); 544 if ((prp->pr_domain->dom_family == PF_INET) || 545 (prp->pr_domain->dom_family == PF_INET6) || 546 (prp->pr_domain->dom_family == PF_ROUTE)) 547 so->so_fibnum = td->td_proc->p_fibnum; 548 else 549 so->so_fibnum = 0; 550 so->so_proto = prp; 551 #ifdef MAC 552 mac_socket_create(cred, so); 553 #endif 554 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 555 so_rdknl_assert_lock); 556 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 557 so_wrknl_assert_lock); 558 /* 559 * Auto-sizing of socket buffers is managed by the protocols and 560 * the appropriate flags must be set in the pru_attach function. 561 */ 562 CURVNET_SET(so->so_vnet); 563 error = (*prp->pr_usrreqs->pru_attach)(so, proto, td); 564 CURVNET_RESTORE(); 565 if (error) { 566 sodealloc(so); 567 return (error); 568 } 569 soref(so); 570 *aso = so; 571 return (0); 572 } 573 574 #ifdef REGRESSION 575 static int regression_sonewconn_earlytest = 1; 576 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW, 577 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test"); 578 #endif 579 580 static struct timeval overinterval = { 60, 0 }; 581 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW, 582 &overinterval, 583 "Delay in seconds between warnings for listen socket overflows"); 584 585 /* 586 * When an attempt at a new connection is noted on a socket which accepts 587 * connections, sonewconn is called. If the connection is possible (subject 588 * to space constraints, etc.) then we allocate a new structure, properly 589 * linked into the data structure of the original socket, and return this. 590 * Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED. 591 * 592 * Note: the ref count on the socket is 0 on return. 593 */ 594 struct socket * 595 sonewconn(struct socket *head, int connstatus) 596 { 597 struct sbuf descrsb; 598 struct socket *so; 599 int len, overcount; 600 u_int qlen; 601 const char localprefix[] = "local:"; 602 char descrbuf[SUNPATHLEN + sizeof(localprefix)]; 603 #if defined(INET6) 604 char addrbuf[INET6_ADDRSTRLEN]; 605 #elif defined(INET) 606 char addrbuf[INET_ADDRSTRLEN]; 607 #endif 608 bool dolog, over; 609 610 SOLISTEN_LOCK(head); 611 over = (head->sol_qlen > 3 * head->sol_qlimit / 2); 612 #ifdef REGRESSION 613 if (regression_sonewconn_earlytest && over) { 614 #else 615 if (over) { 616 #endif 617 head->sol_overcount++; 618 dolog = !!ratecheck(&head->sol_lastover, &overinterval); 619 620 /* 621 * If we're going to log, copy the overflow count and queue 622 * length from the listen socket before dropping the lock. 623 * Also, reset the overflow count. 624 */ 625 if (dolog) { 626 overcount = head->sol_overcount; 627 head->sol_overcount = 0; 628 qlen = head->sol_qlen; 629 } 630 SOLISTEN_UNLOCK(head); 631 632 if (dolog) { 633 /* 634 * Try to print something descriptive about the 635 * socket for the error message. 636 */ 637 sbuf_new(&descrsb, descrbuf, sizeof(descrbuf), 638 SBUF_FIXEDLEN); 639 switch (head->so_proto->pr_domain->dom_family) { 640 #if defined(INET) || defined(INET6) 641 #ifdef INET 642 case AF_INET: 643 #endif 644 #ifdef INET6 645 case AF_INET6: 646 if (head->so_proto->pr_domain->dom_family == 647 AF_INET6 || 648 (sotoinpcb(head)->inp_inc.inc_flags & 649 INC_ISIPV6)) { 650 ip6_sprintf(addrbuf, 651 &sotoinpcb(head)->inp_inc.inc6_laddr); 652 sbuf_printf(&descrsb, "[%s]", addrbuf); 653 } else 654 #endif 655 { 656 #ifdef INET 657 inet_ntoa_r( 658 sotoinpcb(head)->inp_inc.inc_laddr, 659 addrbuf); 660 sbuf_cat(&descrsb, addrbuf); 661 #endif 662 } 663 sbuf_printf(&descrsb, ":%hu (proto %u)", 664 ntohs(sotoinpcb(head)->inp_inc.inc_lport), 665 head->so_proto->pr_protocol); 666 break; 667 #endif /* INET || INET6 */ 668 case AF_UNIX: 669 sbuf_cat(&descrsb, localprefix); 670 if (sotounpcb(head)->unp_addr != NULL) 671 len = 672 sotounpcb(head)->unp_addr->sun_len - 673 offsetof(struct sockaddr_un, 674 sun_path); 675 else 676 len = 0; 677 if (len > 0) 678 sbuf_bcat(&descrsb, 679 sotounpcb(head)->unp_addr->sun_path, 680 len); 681 else 682 sbuf_cat(&descrsb, "(unknown)"); 683 break; 684 } 685 686 /* 687 * If we can't print something more specific, at least 688 * print the domain name. 689 */ 690 if (sbuf_finish(&descrsb) != 0 || 691 sbuf_len(&descrsb) <= 0) { 692 sbuf_clear(&descrsb); 693 sbuf_cat(&descrsb, 694 head->so_proto->pr_domain->dom_name ?: 695 "unknown"); 696 sbuf_finish(&descrsb); 697 } 698 KASSERT(sbuf_len(&descrsb) > 0, 699 ("%s: sbuf creation failed", __func__)); 700 log(LOG_DEBUG, 701 "%s: pcb %p (%s): Listen queue overflow: " 702 "%i already in queue awaiting acceptance " 703 "(%d occurrences)\n", 704 __func__, head->so_pcb, sbuf_data(&descrsb), 705 qlen, overcount); 706 sbuf_delete(&descrsb); 707 708 overcount = 0; 709 } 710 711 return (NULL); 712 } 713 SOLISTEN_UNLOCK(head); 714 VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL", 715 __func__, head)); 716 so = soalloc(head->so_vnet); 717 if (so == NULL) { 718 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 719 "limit reached or out of memory\n", 720 __func__, head->so_pcb); 721 return (NULL); 722 } 723 so->so_listen = head; 724 so->so_type = head->so_type; 725 so->so_options = head->so_options & ~SO_ACCEPTCONN; 726 so->so_linger = head->so_linger; 727 so->so_state = head->so_state | SS_NOFDREF; 728 so->so_fibnum = head->so_fibnum; 729 so->so_proto = head->so_proto; 730 so->so_cred = crhold(head->so_cred); 731 #ifdef MAC 732 mac_socket_newconn(head, so); 733 #endif 734 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 735 so_rdknl_assert_lock); 736 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 737 so_wrknl_assert_lock); 738 VNET_SO_ASSERT(head); 739 if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) { 740 sodealloc(so); 741 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 742 __func__, head->so_pcb); 743 return (NULL); 744 } 745 if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 746 sodealloc(so); 747 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", 748 __func__, head->so_pcb); 749 return (NULL); 750 } 751 so->so_rcv.sb_lowat = head->sol_sbrcv_lowat; 752 so->so_snd.sb_lowat = head->sol_sbsnd_lowat; 753 so->so_rcv.sb_timeo = head->sol_sbrcv_timeo; 754 so->so_snd.sb_timeo = head->sol_sbsnd_timeo; 755 so->so_rcv.sb_flags |= head->sol_sbrcv_flags & SB_AUTOSIZE; 756 so->so_snd.sb_flags |= head->sol_sbsnd_flags & SB_AUTOSIZE; 757 758 SOLISTEN_LOCK(head); 759 if (head->sol_accept_filter != NULL) 760 connstatus = 0; 761 so->so_state |= connstatus; 762 soref(head); /* A socket on (in)complete queue refs head. */ 763 if (connstatus) { 764 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 765 so->so_qstate = SQ_COMP; 766 head->sol_qlen++; 767 solisten_wakeup(head); /* unlocks */ 768 } else { 769 /* 770 * Keep removing sockets from the head until there's room for 771 * us to insert on the tail. In pre-locking revisions, this 772 * was a simple if(), but as we could be racing with other 773 * threads and soabort() requires dropping locks, we must 774 * loop waiting for the condition to be true. 775 */ 776 while (head->sol_incqlen > head->sol_qlimit) { 777 struct socket *sp; 778 779 sp = TAILQ_FIRST(&head->sol_incomp); 780 TAILQ_REMOVE(&head->sol_incomp, sp, so_list); 781 head->sol_incqlen--; 782 SOCK_LOCK(sp); 783 sp->so_qstate = SQ_NONE; 784 sp->so_listen = NULL; 785 SOCK_UNLOCK(sp); 786 sorele(head); /* does SOLISTEN_UNLOCK, head stays */ 787 soabort(sp); 788 SOLISTEN_LOCK(head); 789 } 790 TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list); 791 so->so_qstate = SQ_INCOMP; 792 head->sol_incqlen++; 793 SOLISTEN_UNLOCK(head); 794 } 795 return (so); 796 } 797 798 #if defined(SCTP) || defined(SCTP_SUPPORT) 799 /* 800 * Socket part of sctp_peeloff(). Detach a new socket from an 801 * association. The new socket is returned with a reference. 802 */ 803 struct socket * 804 sopeeloff(struct socket *head) 805 { 806 struct socket *so; 807 808 VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p", 809 __func__, __LINE__, head)); 810 so = soalloc(head->so_vnet); 811 if (so == NULL) { 812 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 813 "limit reached or out of memory\n", 814 __func__, head->so_pcb); 815 return (NULL); 816 } 817 so->so_type = head->so_type; 818 so->so_options = head->so_options; 819 so->so_linger = head->so_linger; 820 so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED; 821 so->so_fibnum = head->so_fibnum; 822 so->so_proto = head->so_proto; 823 so->so_cred = crhold(head->so_cred); 824 #ifdef MAC 825 mac_socket_newconn(head, so); 826 #endif 827 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 828 so_rdknl_assert_lock); 829 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 830 so_wrknl_assert_lock); 831 VNET_SO_ASSERT(head); 832 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) { 833 sodealloc(so); 834 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 835 __func__, head->so_pcb); 836 return (NULL); 837 } 838 if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 839 sodealloc(so); 840 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", 841 __func__, head->so_pcb); 842 return (NULL); 843 } 844 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; 845 so->so_snd.sb_lowat = head->so_snd.sb_lowat; 846 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; 847 so->so_snd.sb_timeo = head->so_snd.sb_timeo; 848 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE; 849 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE; 850 851 soref(so); 852 853 return (so); 854 } 855 #endif /* SCTP */ 856 857 int 858 sobind(struct socket *so, struct sockaddr *nam, struct thread *td) 859 { 860 int error; 861 862 CURVNET_SET(so->so_vnet); 863 error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td); 864 CURVNET_RESTORE(); 865 return (error); 866 } 867 868 int 869 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 870 { 871 int error; 872 873 CURVNET_SET(so->so_vnet); 874 error = (*so->so_proto->pr_usrreqs->pru_bindat)(fd, so, nam, td); 875 CURVNET_RESTORE(); 876 return (error); 877 } 878 879 /* 880 * solisten() transitions a socket from a non-listening state to a listening 881 * state, but can also be used to update the listen queue depth on an 882 * existing listen socket. The protocol will call back into the sockets 883 * layer using solisten_proto_check() and solisten_proto() to check and set 884 * socket-layer listen state. Call backs are used so that the protocol can 885 * acquire both protocol and socket layer locks in whatever order is required 886 * by the protocol. 887 * 888 * Protocol implementors are advised to hold the socket lock across the 889 * socket-layer test and set to avoid races at the socket layer. 890 */ 891 int 892 solisten(struct socket *so, int backlog, struct thread *td) 893 { 894 int error; 895 896 CURVNET_SET(so->so_vnet); 897 error = (*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td); 898 CURVNET_RESTORE(); 899 return (error); 900 } 901 902 int 903 solisten_proto_check(struct socket *so) 904 { 905 906 SOCK_LOCK_ASSERT(so); 907 908 if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 909 SS_ISDISCONNECTING)) 910 return (EINVAL); 911 return (0); 912 } 913 914 void 915 solisten_proto(struct socket *so, int backlog) 916 { 917 int sbrcv_lowat, sbsnd_lowat; 918 u_int sbrcv_hiwat, sbsnd_hiwat; 919 short sbrcv_flags, sbsnd_flags; 920 sbintime_t sbrcv_timeo, sbsnd_timeo; 921 922 SOCK_LOCK_ASSERT(so); 923 924 if (SOLISTENING(so)) 925 goto listening; 926 927 /* 928 * Change this socket to listening state. 929 */ 930 sbrcv_lowat = so->so_rcv.sb_lowat; 931 sbsnd_lowat = so->so_snd.sb_lowat; 932 sbrcv_hiwat = so->so_rcv.sb_hiwat; 933 sbsnd_hiwat = so->so_snd.sb_hiwat; 934 sbrcv_flags = so->so_rcv.sb_flags; 935 sbsnd_flags = so->so_snd.sb_flags; 936 sbrcv_timeo = so->so_rcv.sb_timeo; 937 sbsnd_timeo = so->so_snd.sb_timeo; 938 939 sbdestroy(&so->so_snd, so); 940 sbdestroy(&so->so_rcv, so); 941 sx_destroy(&so->so_snd.sb_sx); 942 sx_destroy(&so->so_rcv.sb_sx); 943 SOCKBUF_LOCK_DESTROY(&so->so_snd); 944 SOCKBUF_LOCK_DESTROY(&so->so_rcv); 945 946 #ifdef INVARIANTS 947 bzero(&so->so_rcv, 948 sizeof(struct socket) - offsetof(struct socket, so_rcv)); 949 #endif 950 951 so->sol_sbrcv_lowat = sbrcv_lowat; 952 so->sol_sbsnd_lowat = sbsnd_lowat; 953 so->sol_sbrcv_hiwat = sbrcv_hiwat; 954 so->sol_sbsnd_hiwat = sbsnd_hiwat; 955 so->sol_sbrcv_flags = sbrcv_flags; 956 so->sol_sbsnd_flags = sbsnd_flags; 957 so->sol_sbrcv_timeo = sbrcv_timeo; 958 so->sol_sbsnd_timeo = sbsnd_timeo; 959 960 so->sol_qlen = so->sol_incqlen = 0; 961 TAILQ_INIT(&so->sol_incomp); 962 TAILQ_INIT(&so->sol_comp); 963 964 so->sol_accept_filter = NULL; 965 so->sol_accept_filter_arg = NULL; 966 so->sol_accept_filter_str = NULL; 967 968 so->sol_upcall = NULL; 969 so->sol_upcallarg = NULL; 970 971 so->so_options |= SO_ACCEPTCONN; 972 973 listening: 974 if (backlog < 0 || backlog > somaxconn) 975 backlog = somaxconn; 976 so->sol_qlimit = backlog; 977 } 978 979 /* 980 * Wakeup listeners/subsystems once we have a complete connection. 981 * Enters with lock, returns unlocked. 982 */ 983 void 984 solisten_wakeup(struct socket *sol) 985 { 986 987 if (sol->sol_upcall != NULL) 988 (void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT); 989 else { 990 selwakeuppri(&sol->so_rdsel, PSOCK); 991 KNOTE_LOCKED(&sol->so_rdsel.si_note, 0); 992 } 993 SOLISTEN_UNLOCK(sol); 994 wakeup_one(&sol->sol_comp); 995 if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL) 996 pgsigio(&sol->so_sigio, SIGIO, 0); 997 } 998 999 /* 1000 * Return single connection off a listening socket queue. Main consumer of 1001 * the function is kern_accept4(). Some modules, that do their own accept 1002 * management also use the function. 1003 * 1004 * Listening socket must be locked on entry and is returned unlocked on 1005 * return. 1006 * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT. 1007 */ 1008 int 1009 solisten_dequeue(struct socket *head, struct socket **ret, int flags) 1010 { 1011 struct socket *so; 1012 int error; 1013 1014 SOLISTEN_LOCK_ASSERT(head); 1015 1016 while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) && 1017 head->so_error == 0) { 1018 error = msleep(&head->sol_comp, &head->so_lock, PSOCK | PCATCH, 1019 "accept", 0); 1020 if (error != 0) { 1021 SOLISTEN_UNLOCK(head); 1022 return (error); 1023 } 1024 } 1025 if (head->so_error) { 1026 error = head->so_error; 1027 head->so_error = 0; 1028 } else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp)) 1029 error = EWOULDBLOCK; 1030 else 1031 error = 0; 1032 if (error) { 1033 SOLISTEN_UNLOCK(head); 1034 return (error); 1035 } 1036 so = TAILQ_FIRST(&head->sol_comp); 1037 SOCK_LOCK(so); 1038 KASSERT(so->so_qstate == SQ_COMP, 1039 ("%s: so %p not SQ_COMP", __func__, so)); 1040 soref(so); 1041 head->sol_qlen--; 1042 so->so_qstate = SQ_NONE; 1043 so->so_listen = NULL; 1044 TAILQ_REMOVE(&head->sol_comp, so, so_list); 1045 if (flags & ACCEPT4_INHERIT) 1046 so->so_state |= (head->so_state & SS_NBIO); 1047 else 1048 so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0; 1049 SOCK_UNLOCK(so); 1050 sorele(head); 1051 1052 *ret = so; 1053 return (0); 1054 } 1055 1056 /* 1057 * Evaluate the reference count and named references on a socket; if no 1058 * references remain, free it. This should be called whenever a reference is 1059 * released, such as in sorele(), but also when named reference flags are 1060 * cleared in socket or protocol code. 1061 * 1062 * sofree() will free the socket if: 1063 * 1064 * - There are no outstanding file descriptor references or related consumers 1065 * (so_count == 0). 1066 * 1067 * - The socket has been closed by user space, if ever open (SS_NOFDREF). 1068 * 1069 * - The protocol does not have an outstanding strong reference on the socket 1070 * (SS_PROTOREF). 1071 * 1072 * - The socket is not in a completed connection queue, so a process has been 1073 * notified that it is present. If it is removed, the user process may 1074 * block in accept() despite select() saying the socket was ready. 1075 */ 1076 void 1077 sofree(struct socket *so) 1078 { 1079 struct protosw *pr = so->so_proto; 1080 1081 SOCK_LOCK_ASSERT(so); 1082 1083 if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 || 1084 (so->so_state & SS_PROTOREF) || (so->so_qstate == SQ_COMP)) { 1085 SOCK_UNLOCK(so); 1086 return; 1087 } 1088 1089 if (!SOLISTENING(so) && so->so_qstate == SQ_INCOMP) { 1090 struct socket *sol; 1091 1092 sol = so->so_listen; 1093 KASSERT(sol, ("%s: so %p on incomp of NULL", __func__, so)); 1094 1095 /* 1096 * To solve race between close of a listening socket and 1097 * a socket on its incomplete queue, we need to lock both. 1098 * The order is first listening socket, then regular. 1099 * Since we don't have SS_NOFDREF neither SS_PROTOREF, this 1100 * function and the listening socket are the only pointers 1101 * to so. To preserve so and sol, we reference both and then 1102 * relock. 1103 * After relock the socket may not move to so_comp since it 1104 * doesn't have PCB already, but it may be removed from 1105 * so_incomp. If that happens, we share responsiblity on 1106 * freeing the socket, but soclose() has already removed 1107 * it from queue. 1108 */ 1109 soref(sol); 1110 soref(so); 1111 SOCK_UNLOCK(so); 1112 SOLISTEN_LOCK(sol); 1113 SOCK_LOCK(so); 1114 if (so->so_qstate == SQ_INCOMP) { 1115 KASSERT(so->so_listen == sol, 1116 ("%s: so %p migrated out of sol %p", 1117 __func__, so, sol)); 1118 TAILQ_REMOVE(&sol->sol_incomp, so, so_list); 1119 sol->sol_incqlen--; 1120 /* This is guarenteed not to be the last. */ 1121 refcount_release(&sol->so_count); 1122 so->so_qstate = SQ_NONE; 1123 so->so_listen = NULL; 1124 } else 1125 KASSERT(so->so_listen == NULL, 1126 ("%s: so %p not on (in)comp with so_listen", 1127 __func__, so)); 1128 sorele(sol); 1129 KASSERT(so->so_count == 1, 1130 ("%s: so %p count %u", __func__, so, so->so_count)); 1131 so->so_count = 0; 1132 } 1133 if (SOLISTENING(so)) 1134 so->so_error = ECONNABORTED; 1135 SOCK_UNLOCK(so); 1136 1137 if (so->so_dtor != NULL) 1138 so->so_dtor(so); 1139 1140 VNET_SO_ASSERT(so); 1141 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 1142 (*pr->pr_domain->dom_dispose)(so); 1143 if (pr->pr_usrreqs->pru_detach != NULL) 1144 (*pr->pr_usrreqs->pru_detach)(so); 1145 1146 /* 1147 * From this point on, we assume that no other references to this 1148 * socket exist anywhere else in the stack. Therefore, no locks need 1149 * to be acquired or held. 1150 * 1151 * We used to do a lot of socket buffer and socket locking here, as 1152 * well as invoke sorflush() and perform wakeups. The direct call to 1153 * dom_dispose() and sbdestroy() are an inlining of what was 1154 * necessary from sorflush(). 1155 * 1156 * Notice that the socket buffer and kqueue state are torn down 1157 * before calling pru_detach. This means that protocols shold not 1158 * assume they can perform socket wakeups, etc, in their detach code. 1159 */ 1160 if (!SOLISTENING(so)) { 1161 sbdestroy(&so->so_snd, so); 1162 sbdestroy(&so->so_rcv, so); 1163 } 1164 seldrain(&so->so_rdsel); 1165 seldrain(&so->so_wrsel); 1166 knlist_destroy(&so->so_rdsel.si_note); 1167 knlist_destroy(&so->so_wrsel.si_note); 1168 sodealloc(so); 1169 } 1170 1171 /* 1172 * Close a socket on last file table reference removal. Initiate disconnect 1173 * if connected. Free socket when disconnect complete. 1174 * 1175 * This function will sorele() the socket. Note that soclose() may be called 1176 * prior to the ref count reaching zero. The actual socket structure will 1177 * not be freed until the ref count reaches zero. 1178 */ 1179 int 1180 soclose(struct socket *so) 1181 { 1182 struct accept_queue lqueue; 1183 bool listening; 1184 int error = 0; 1185 1186 KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter")); 1187 1188 CURVNET_SET(so->so_vnet); 1189 funsetown(&so->so_sigio); 1190 if (so->so_state & SS_ISCONNECTED) { 1191 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 1192 error = sodisconnect(so); 1193 if (error) { 1194 if (error == ENOTCONN) 1195 error = 0; 1196 goto drop; 1197 } 1198 } 1199 1200 if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) { 1201 if ((so->so_state & SS_ISDISCONNECTING) && 1202 (so->so_state & SS_NBIO)) 1203 goto drop; 1204 while (so->so_state & SS_ISCONNECTED) { 1205 error = tsleep(&so->so_timeo, 1206 PSOCK | PCATCH, "soclos", 1207 so->so_linger * hz); 1208 if (error) 1209 break; 1210 } 1211 } 1212 } 1213 1214 drop: 1215 if (so->so_proto->pr_usrreqs->pru_close != NULL) 1216 (*so->so_proto->pr_usrreqs->pru_close)(so); 1217 1218 SOCK_LOCK(so); 1219 if ((listening = (so->so_options & SO_ACCEPTCONN))) { 1220 struct socket *sp; 1221 1222 TAILQ_INIT(&lqueue); 1223 TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list); 1224 TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list); 1225 1226 so->sol_qlen = so->sol_incqlen = 0; 1227 1228 TAILQ_FOREACH(sp, &lqueue, so_list) { 1229 SOCK_LOCK(sp); 1230 sp->so_qstate = SQ_NONE; 1231 sp->so_listen = NULL; 1232 SOCK_UNLOCK(sp); 1233 /* Guaranteed not to be the last. */ 1234 refcount_release(&so->so_count); 1235 } 1236 } 1237 KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF")); 1238 so->so_state |= SS_NOFDREF; 1239 sorele(so); 1240 if (listening) { 1241 struct socket *sp, *tsp; 1242 1243 TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp) { 1244 SOCK_LOCK(sp); 1245 if (sp->so_count == 0) { 1246 SOCK_UNLOCK(sp); 1247 soabort(sp); 1248 } else 1249 /* sp is now in sofree() */ 1250 SOCK_UNLOCK(sp); 1251 } 1252 } 1253 CURVNET_RESTORE(); 1254 return (error); 1255 } 1256 1257 /* 1258 * soabort() is used to abruptly tear down a connection, such as when a 1259 * resource limit is reached (listen queue depth exceeded), or if a listen 1260 * socket is closed while there are sockets waiting to be accepted. 1261 * 1262 * This interface is tricky, because it is called on an unreferenced socket, 1263 * and must be called only by a thread that has actually removed the socket 1264 * from the listen queue it was on, or races with other threads are risked. 1265 * 1266 * This interface will call into the protocol code, so must not be called 1267 * with any socket locks held. Protocols do call it while holding their own 1268 * recursible protocol mutexes, but this is something that should be subject 1269 * to review in the future. 1270 */ 1271 void 1272 soabort(struct socket *so) 1273 { 1274 1275 /* 1276 * In as much as is possible, assert that no references to this 1277 * socket are held. This is not quite the same as asserting that the 1278 * current thread is responsible for arranging for no references, but 1279 * is as close as we can get for now. 1280 */ 1281 KASSERT(so->so_count == 0, ("soabort: so_count")); 1282 KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF")); 1283 KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF")); 1284 VNET_SO_ASSERT(so); 1285 1286 if (so->so_proto->pr_usrreqs->pru_abort != NULL) 1287 (*so->so_proto->pr_usrreqs->pru_abort)(so); 1288 SOCK_LOCK(so); 1289 sofree(so); 1290 } 1291 1292 int 1293 soaccept(struct socket *so, struct sockaddr **nam) 1294 { 1295 int error; 1296 1297 SOCK_LOCK(so); 1298 KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF")); 1299 so->so_state &= ~SS_NOFDREF; 1300 SOCK_UNLOCK(so); 1301 1302 CURVNET_SET(so->so_vnet); 1303 error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam); 1304 CURVNET_RESTORE(); 1305 return (error); 1306 } 1307 1308 int 1309 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td) 1310 { 1311 1312 return (soconnectat(AT_FDCWD, so, nam, td)); 1313 } 1314 1315 int 1316 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 1317 { 1318 int error; 1319 1320 if (so->so_options & SO_ACCEPTCONN) 1321 return (EOPNOTSUPP); 1322 1323 CURVNET_SET(so->so_vnet); 1324 /* 1325 * If protocol is connection-based, can only connect once. 1326 * Otherwise, if connected, try to disconnect first. This allows 1327 * user to disconnect by connecting to, e.g., a null address. 1328 */ 1329 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 1330 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 1331 (error = sodisconnect(so)))) { 1332 error = EISCONN; 1333 } else { 1334 /* 1335 * Prevent accumulated error from previous connection from 1336 * biting us. 1337 */ 1338 so->so_error = 0; 1339 if (fd == AT_FDCWD) { 1340 error = (*so->so_proto->pr_usrreqs->pru_connect)(so, 1341 nam, td); 1342 } else { 1343 error = (*so->so_proto->pr_usrreqs->pru_connectat)(fd, 1344 so, nam, td); 1345 } 1346 } 1347 CURVNET_RESTORE(); 1348 1349 return (error); 1350 } 1351 1352 int 1353 soconnect2(struct socket *so1, struct socket *so2) 1354 { 1355 int error; 1356 1357 CURVNET_SET(so1->so_vnet); 1358 error = (*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2); 1359 CURVNET_RESTORE(); 1360 return (error); 1361 } 1362 1363 int 1364 sodisconnect(struct socket *so) 1365 { 1366 int error; 1367 1368 if ((so->so_state & SS_ISCONNECTED) == 0) 1369 return (ENOTCONN); 1370 if (so->so_state & SS_ISDISCONNECTING) 1371 return (EALREADY); 1372 VNET_SO_ASSERT(so); 1373 error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so); 1374 return (error); 1375 } 1376 1377 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT) 1378 1379 int 1380 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, 1381 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1382 { 1383 long space; 1384 ssize_t resid; 1385 int clen = 0, error, dontroute; 1386 1387 KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM")); 1388 KASSERT(so->so_proto->pr_flags & PR_ATOMIC, 1389 ("sosend_dgram: !PR_ATOMIC")); 1390 1391 if (uio != NULL) 1392 resid = uio->uio_resid; 1393 else 1394 resid = top->m_pkthdr.len; 1395 /* 1396 * In theory resid should be unsigned. However, space must be 1397 * signed, as it might be less than 0 if we over-committed, and we 1398 * must use a signed comparison of space and resid. On the other 1399 * hand, a negative resid causes us to loop sending 0-length 1400 * segments to the protocol. 1401 */ 1402 if (resid < 0) { 1403 error = EINVAL; 1404 goto out; 1405 } 1406 1407 dontroute = 1408 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0; 1409 if (td != NULL) 1410 td->td_ru.ru_msgsnd++; 1411 if (control != NULL) 1412 clen = control->m_len; 1413 1414 SOCKBUF_LOCK(&so->so_snd); 1415 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1416 SOCKBUF_UNLOCK(&so->so_snd); 1417 error = EPIPE; 1418 goto out; 1419 } 1420 if (so->so_error) { 1421 error = so->so_error; 1422 so->so_error = 0; 1423 SOCKBUF_UNLOCK(&so->so_snd); 1424 goto out; 1425 } 1426 if ((so->so_state & SS_ISCONNECTED) == 0) { 1427 /* 1428 * `sendto' and `sendmsg' is allowed on a connection-based 1429 * socket if it supports implied connect. Return ENOTCONN if 1430 * not connected and no address is supplied. 1431 */ 1432 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1433 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1434 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1435 !(resid == 0 && clen != 0)) { 1436 SOCKBUF_UNLOCK(&so->so_snd); 1437 error = ENOTCONN; 1438 goto out; 1439 } 1440 } else if (addr == NULL) { 1441 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1442 error = ENOTCONN; 1443 else 1444 error = EDESTADDRREQ; 1445 SOCKBUF_UNLOCK(&so->so_snd); 1446 goto out; 1447 } 1448 } 1449 1450 /* 1451 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a 1452 * problem and need fixing. 1453 */ 1454 space = sbspace(&so->so_snd); 1455 if (flags & MSG_OOB) 1456 space += 1024; 1457 space -= clen; 1458 SOCKBUF_UNLOCK(&so->so_snd); 1459 if (resid > space) { 1460 error = EMSGSIZE; 1461 goto out; 1462 } 1463 if (uio == NULL) { 1464 resid = 0; 1465 if (flags & MSG_EOR) 1466 top->m_flags |= M_EOR; 1467 } else { 1468 /* 1469 * Copy the data from userland into a mbuf chain. 1470 * If no data is to be copied in, a single empty mbuf 1471 * is returned. 1472 */ 1473 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr, 1474 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0))); 1475 if (top == NULL) { 1476 error = EFAULT; /* only possible error */ 1477 goto out; 1478 } 1479 space -= resid - uio->uio_resid; 1480 resid = uio->uio_resid; 1481 } 1482 KASSERT(resid == 0, ("sosend_dgram: resid != 0")); 1483 /* 1484 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock 1485 * than with. 1486 */ 1487 if (dontroute) { 1488 SOCK_LOCK(so); 1489 so->so_options |= SO_DONTROUTE; 1490 SOCK_UNLOCK(so); 1491 } 1492 /* 1493 * XXX all the SBS_CANTSENDMORE checks previously done could be out 1494 * of date. We could have received a reset packet in an interrupt or 1495 * maybe we slept while doing page faults in uiomove() etc. We could 1496 * probably recheck again inside the locking protection here, but 1497 * there are probably other places that this also happens. We must 1498 * rethink this. 1499 */ 1500 VNET_SO_ASSERT(so); 1501 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1502 (flags & MSG_OOB) ? PRUS_OOB : 1503 /* 1504 * If the user set MSG_EOF, the protocol understands this flag and 1505 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND. 1506 */ 1507 ((flags & MSG_EOF) && 1508 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1509 (resid <= 0)) ? 1510 PRUS_EOF : 1511 /* If there is more to send set PRUS_MORETOCOME */ 1512 (flags & MSG_MORETOCOME) || 1513 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1514 top, addr, control, td); 1515 if (dontroute) { 1516 SOCK_LOCK(so); 1517 so->so_options &= ~SO_DONTROUTE; 1518 SOCK_UNLOCK(so); 1519 } 1520 clen = 0; 1521 control = NULL; 1522 top = NULL; 1523 out: 1524 if (top != NULL) 1525 m_freem(top); 1526 if (control != NULL) 1527 m_freem(control); 1528 return (error); 1529 } 1530 1531 /* 1532 * Send on a socket. If send must go all at once and message is larger than 1533 * send buffering, then hard error. Lock against other senders. If must go 1534 * all at once and not enough room now, then inform user that this would 1535 * block and do nothing. Otherwise, if nonblocking, send as much as 1536 * possible. The data to be sent is described by "uio" if nonzero, otherwise 1537 * by the mbuf chain "top" (which must be null if uio is not). Data provided 1538 * in mbuf chain must be small enough to send all at once. 1539 * 1540 * Returns nonzero on error, timeout or signal; callers must check for short 1541 * counts if EINTR/ERESTART are returned. Data and control buffers are freed 1542 * on return. 1543 */ 1544 int 1545 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio, 1546 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1547 { 1548 long space; 1549 ssize_t resid; 1550 int clen = 0, error, dontroute; 1551 int atomic = sosendallatonce(so) || top; 1552 int pru_flag; 1553 #ifdef KERN_TLS 1554 struct ktls_session *tls; 1555 int tls_enq_cnt, tls_pruflag; 1556 uint8_t tls_rtype; 1557 1558 tls = NULL; 1559 tls_rtype = TLS_RLTYPE_APP; 1560 #endif 1561 if (uio != NULL) 1562 resid = uio->uio_resid; 1563 else if ((top->m_flags & M_PKTHDR) != 0) 1564 resid = top->m_pkthdr.len; 1565 else 1566 resid = m_length(top, NULL); 1567 /* 1568 * In theory resid should be unsigned. However, space must be 1569 * signed, as it might be less than 0 if we over-committed, and we 1570 * must use a signed comparison of space and resid. On the other 1571 * hand, a negative resid causes us to loop sending 0-length 1572 * segments to the protocol. 1573 * 1574 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 1575 * type sockets since that's an error. 1576 */ 1577 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 1578 error = EINVAL; 1579 goto out; 1580 } 1581 1582 dontroute = 1583 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 1584 (so->so_proto->pr_flags & PR_ATOMIC); 1585 if (td != NULL) 1586 td->td_ru.ru_msgsnd++; 1587 if (control != NULL) 1588 clen = control->m_len; 1589 1590 error = sblock(&so->so_snd, SBLOCKWAIT(flags)); 1591 if (error) 1592 goto out; 1593 1594 #ifdef KERN_TLS 1595 tls_pruflag = 0; 1596 tls = ktls_hold(so->so_snd.sb_tls_info); 1597 if (tls != NULL) { 1598 if (tls->mode == TCP_TLS_MODE_SW) 1599 tls_pruflag = PRUS_NOTREADY; 1600 1601 if (control != NULL) { 1602 struct cmsghdr *cm = mtod(control, struct cmsghdr *); 1603 1604 if (clen >= sizeof(*cm) && 1605 cm->cmsg_type == TLS_SET_RECORD_TYPE) { 1606 tls_rtype = *((uint8_t *)CMSG_DATA(cm)); 1607 clen = 0; 1608 m_freem(control); 1609 control = NULL; 1610 atomic = 1; 1611 } 1612 } 1613 } 1614 #endif 1615 1616 restart: 1617 do { 1618 SOCKBUF_LOCK(&so->so_snd); 1619 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1620 SOCKBUF_UNLOCK(&so->so_snd); 1621 error = EPIPE; 1622 goto release; 1623 } 1624 if (so->so_error) { 1625 error = so->so_error; 1626 so->so_error = 0; 1627 SOCKBUF_UNLOCK(&so->so_snd); 1628 goto release; 1629 } 1630 if ((so->so_state & SS_ISCONNECTED) == 0) { 1631 /* 1632 * `sendto' and `sendmsg' is allowed on a connection- 1633 * based socket if it supports implied connect. 1634 * Return ENOTCONN if not connected and no address is 1635 * supplied. 1636 */ 1637 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1638 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1639 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1640 !(resid == 0 && clen != 0)) { 1641 SOCKBUF_UNLOCK(&so->so_snd); 1642 error = ENOTCONN; 1643 goto release; 1644 } 1645 } else if (addr == NULL) { 1646 SOCKBUF_UNLOCK(&so->so_snd); 1647 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1648 error = ENOTCONN; 1649 else 1650 error = EDESTADDRREQ; 1651 goto release; 1652 } 1653 } 1654 space = sbspace(&so->so_snd); 1655 if (flags & MSG_OOB) 1656 space += 1024; 1657 if ((atomic && resid > so->so_snd.sb_hiwat) || 1658 clen > so->so_snd.sb_hiwat) { 1659 SOCKBUF_UNLOCK(&so->so_snd); 1660 error = EMSGSIZE; 1661 goto release; 1662 } 1663 if (space < resid + clen && 1664 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 1665 if ((so->so_state & SS_NBIO) || 1666 (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) { 1667 SOCKBUF_UNLOCK(&so->so_snd); 1668 error = EWOULDBLOCK; 1669 goto release; 1670 } 1671 error = sbwait(&so->so_snd); 1672 SOCKBUF_UNLOCK(&so->so_snd); 1673 if (error) 1674 goto release; 1675 goto restart; 1676 } 1677 SOCKBUF_UNLOCK(&so->so_snd); 1678 space -= clen; 1679 do { 1680 if (uio == NULL) { 1681 resid = 0; 1682 if (flags & MSG_EOR) 1683 top->m_flags |= M_EOR; 1684 #ifdef KERN_TLS 1685 if (tls != NULL) { 1686 ktls_frame(top, tls, &tls_enq_cnt, 1687 tls_rtype); 1688 tls_rtype = TLS_RLTYPE_APP; 1689 } 1690 #endif 1691 } else { 1692 /* 1693 * Copy the data from userland into a mbuf 1694 * chain. If resid is 0, which can happen 1695 * only if we have control to send, then 1696 * a single empty mbuf is returned. This 1697 * is a workaround to prevent protocol send 1698 * methods to panic. 1699 */ 1700 #ifdef KERN_TLS 1701 if (tls != NULL) { 1702 top = m_uiotombuf(uio, M_WAITOK, space, 1703 tls->params.max_frame_len, 1704 M_EXTPG | 1705 ((flags & MSG_EOR) ? M_EOR : 0)); 1706 if (top != NULL) { 1707 ktls_frame(top, tls, 1708 &tls_enq_cnt, tls_rtype); 1709 } 1710 tls_rtype = TLS_RLTYPE_APP; 1711 } else 1712 #endif 1713 top = m_uiotombuf(uio, M_WAITOK, space, 1714 (atomic ? max_hdr : 0), 1715 (atomic ? M_PKTHDR : 0) | 1716 ((flags & MSG_EOR) ? M_EOR : 0)); 1717 if (top == NULL) { 1718 error = EFAULT; /* only possible error */ 1719 goto release; 1720 } 1721 space -= resid - uio->uio_resid; 1722 resid = uio->uio_resid; 1723 } 1724 if (dontroute) { 1725 SOCK_LOCK(so); 1726 so->so_options |= SO_DONTROUTE; 1727 SOCK_UNLOCK(so); 1728 } 1729 /* 1730 * XXX all the SBS_CANTSENDMORE checks previously 1731 * done could be out of date. We could have received 1732 * a reset packet in an interrupt or maybe we slept 1733 * while doing page faults in uiomove() etc. We 1734 * could probably recheck again inside the locking 1735 * protection here, but there are probably other 1736 * places that this also happens. We must rethink 1737 * this. 1738 */ 1739 VNET_SO_ASSERT(so); 1740 1741 pru_flag = (flags & MSG_OOB) ? PRUS_OOB : 1742 /* 1743 * If the user set MSG_EOF, the protocol understands 1744 * this flag and nothing left to send then use 1745 * PRU_SEND_EOF instead of PRU_SEND. 1746 */ 1747 ((flags & MSG_EOF) && 1748 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1749 (resid <= 0)) ? 1750 PRUS_EOF : 1751 /* If there is more to send set PRUS_MORETOCOME. */ 1752 (flags & MSG_MORETOCOME) || 1753 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0; 1754 1755 #ifdef KERN_TLS 1756 pru_flag |= tls_pruflag; 1757 #endif 1758 1759 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1760 pru_flag, top, addr, control, td); 1761 1762 if (dontroute) { 1763 SOCK_LOCK(so); 1764 so->so_options &= ~SO_DONTROUTE; 1765 SOCK_UNLOCK(so); 1766 } 1767 1768 #ifdef KERN_TLS 1769 if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) { 1770 /* 1771 * Note that error is intentionally 1772 * ignored. 1773 * 1774 * Like sendfile(), we rely on the 1775 * completion routine (pru_ready()) 1776 * to free the mbufs in the event that 1777 * pru_send() encountered an error and 1778 * did not append them to the sockbuf. 1779 */ 1780 soref(so); 1781 ktls_enqueue(top, so, tls_enq_cnt); 1782 } 1783 #endif 1784 clen = 0; 1785 control = NULL; 1786 top = NULL; 1787 if (error) 1788 goto release; 1789 } while (resid && space > 0); 1790 } while (resid); 1791 1792 release: 1793 sbunlock(&so->so_snd); 1794 out: 1795 #ifdef KERN_TLS 1796 if (tls != NULL) 1797 ktls_free(tls); 1798 #endif 1799 if (top != NULL) 1800 m_freem(top); 1801 if (control != NULL) 1802 m_freem(control); 1803 return (error); 1804 } 1805 1806 int 1807 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, 1808 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1809 { 1810 int error; 1811 1812 CURVNET_SET(so->so_vnet); 1813 if (!SOLISTENING(so)) 1814 error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, 1815 top, control, flags, td); 1816 else { 1817 m_freem(top); 1818 m_freem(control); 1819 error = ENOTCONN; 1820 } 1821 CURVNET_RESTORE(); 1822 return (error); 1823 } 1824 1825 /* 1826 * The part of soreceive() that implements reading non-inline out-of-band 1827 * data from a socket. For more complete comments, see soreceive(), from 1828 * which this code originated. 1829 * 1830 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is 1831 * unable to return an mbuf chain to the caller. 1832 */ 1833 static int 1834 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags) 1835 { 1836 struct protosw *pr = so->so_proto; 1837 struct mbuf *m; 1838 int error; 1839 1840 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); 1841 VNET_SO_ASSERT(so); 1842 1843 m = m_get(M_WAITOK, MT_DATA); 1844 error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK); 1845 if (error) 1846 goto bad; 1847 do { 1848 error = uiomove(mtod(m, void *), 1849 (int) min(uio->uio_resid, m->m_len), uio); 1850 m = m_free(m); 1851 } while (uio->uio_resid && error == 0 && m); 1852 bad: 1853 if (m != NULL) 1854 m_freem(m); 1855 return (error); 1856 } 1857 1858 /* 1859 * Following replacement or removal of the first mbuf on the first mbuf chain 1860 * of a socket buffer, push necessary state changes back into the socket 1861 * buffer so that other consumers see the values consistently. 'nextrecord' 1862 * is the callers locally stored value of the original value of 1863 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. 1864 * NOTE: 'nextrecord' may be NULL. 1865 */ 1866 static __inline void 1867 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) 1868 { 1869 1870 SOCKBUF_LOCK_ASSERT(sb); 1871 /* 1872 * First, update for the new value of nextrecord. If necessary, make 1873 * it the first record. 1874 */ 1875 if (sb->sb_mb != NULL) 1876 sb->sb_mb->m_nextpkt = nextrecord; 1877 else 1878 sb->sb_mb = nextrecord; 1879 1880 /* 1881 * Now update any dependent socket buffer fields to reflect the new 1882 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the 1883 * addition of a second clause that takes care of the case where 1884 * sb_mb has been updated, but remains the last record. 1885 */ 1886 if (sb->sb_mb == NULL) { 1887 sb->sb_mbtail = NULL; 1888 sb->sb_lastrecord = NULL; 1889 } else if (sb->sb_mb->m_nextpkt == NULL) 1890 sb->sb_lastrecord = sb->sb_mb; 1891 } 1892 1893 /* 1894 * Implement receive operations on a socket. We depend on the way that 1895 * records are added to the sockbuf by sbappend. In particular, each record 1896 * (mbufs linked through m_next) must begin with an address if the protocol 1897 * so specifies, followed by an optional mbuf or mbufs containing ancillary 1898 * data, and then zero or more mbufs of data. In order to allow parallelism 1899 * between network receive and copying to user space, as well as avoid 1900 * sleeping with a mutex held, we release the socket buffer mutex during the 1901 * user space copy. Although the sockbuf is locked, new data may still be 1902 * appended, and thus we must maintain consistency of the sockbuf during that 1903 * time. 1904 * 1905 * The caller may receive the data as a single mbuf chain by supplying an 1906 * mbuf **mp0 for use in returning the chain. The uio is then used only for 1907 * the count in uio_resid. 1908 */ 1909 int 1910 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio, 1911 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1912 { 1913 struct mbuf *m, **mp; 1914 int flags, error, offset; 1915 ssize_t len; 1916 struct protosw *pr = so->so_proto; 1917 struct mbuf *nextrecord; 1918 int moff, type = 0; 1919 ssize_t orig_resid = uio->uio_resid; 1920 1921 mp = mp0; 1922 if (psa != NULL) 1923 *psa = NULL; 1924 if (controlp != NULL) 1925 *controlp = NULL; 1926 if (flagsp != NULL) 1927 flags = *flagsp &~ MSG_EOR; 1928 else 1929 flags = 0; 1930 if (flags & MSG_OOB) 1931 return (soreceive_rcvoob(so, uio, flags)); 1932 if (mp != NULL) 1933 *mp = NULL; 1934 if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING) 1935 && uio->uio_resid) { 1936 VNET_SO_ASSERT(so); 1937 (*pr->pr_usrreqs->pru_rcvd)(so, 0); 1938 } 1939 1940 error = sblock(&so->so_rcv, SBLOCKWAIT(flags)); 1941 if (error) 1942 return (error); 1943 1944 restart: 1945 SOCKBUF_LOCK(&so->so_rcv); 1946 m = so->so_rcv.sb_mb; 1947 /* 1948 * If we have less data than requested, block awaiting more (subject 1949 * to any timeout) if: 1950 * 1. the current count is less than the low water mark, or 1951 * 2. MSG_DONTWAIT is not set 1952 */ 1953 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 1954 sbavail(&so->so_rcv) < uio->uio_resid) && 1955 sbavail(&so->so_rcv) < so->so_rcv.sb_lowat && 1956 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 1957 KASSERT(m != NULL || !sbavail(&so->so_rcv), 1958 ("receive: m == %p sbavail == %u", 1959 m, sbavail(&so->so_rcv))); 1960 if (so->so_error) { 1961 if (m != NULL) 1962 goto dontblock; 1963 error = so->so_error; 1964 if ((flags & MSG_PEEK) == 0) 1965 so->so_error = 0; 1966 SOCKBUF_UNLOCK(&so->so_rcv); 1967 goto release; 1968 } 1969 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1970 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 1971 if (m != NULL) 1972 goto dontblock; 1973 #ifdef KERN_TLS 1974 else if (so->so_rcv.sb_tlsdcc == 0 && 1975 so->so_rcv.sb_tlscc == 0) { 1976 #else 1977 else { 1978 #endif 1979 SOCKBUF_UNLOCK(&so->so_rcv); 1980 goto release; 1981 } 1982 } 1983 for (; m != NULL; m = m->m_next) 1984 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 1985 m = so->so_rcv.sb_mb; 1986 goto dontblock; 1987 } 1988 if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED | 1989 SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 && 1990 (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) { 1991 SOCKBUF_UNLOCK(&so->so_rcv); 1992 error = ENOTCONN; 1993 goto release; 1994 } 1995 if (uio->uio_resid == 0) { 1996 SOCKBUF_UNLOCK(&so->so_rcv); 1997 goto release; 1998 } 1999 if ((so->so_state & SS_NBIO) || 2000 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2001 SOCKBUF_UNLOCK(&so->so_rcv); 2002 error = EWOULDBLOCK; 2003 goto release; 2004 } 2005 SBLASTRECORDCHK(&so->so_rcv); 2006 SBLASTMBUFCHK(&so->so_rcv); 2007 error = sbwait(&so->so_rcv); 2008 SOCKBUF_UNLOCK(&so->so_rcv); 2009 if (error) 2010 goto release; 2011 goto restart; 2012 } 2013 dontblock: 2014 /* 2015 * From this point onward, we maintain 'nextrecord' as a cache of the 2016 * pointer to the next record in the socket buffer. We must keep the 2017 * various socket buffer pointers and local stack versions of the 2018 * pointers in sync, pushing out modifications before dropping the 2019 * socket buffer mutex, and re-reading them when picking it up. 2020 * 2021 * Otherwise, we will race with the network stack appending new data 2022 * or records onto the socket buffer by using inconsistent/stale 2023 * versions of the field, possibly resulting in socket buffer 2024 * corruption. 2025 * 2026 * By holding the high-level sblock(), we prevent simultaneous 2027 * readers from pulling off the front of the socket buffer. 2028 */ 2029 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2030 if (uio->uio_td) 2031 uio->uio_td->td_ru.ru_msgrcv++; 2032 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); 2033 SBLASTRECORDCHK(&so->so_rcv); 2034 SBLASTMBUFCHK(&so->so_rcv); 2035 nextrecord = m->m_nextpkt; 2036 if (pr->pr_flags & PR_ADDR) { 2037 KASSERT(m->m_type == MT_SONAME, 2038 ("m->m_type == %d", m->m_type)); 2039 orig_resid = 0; 2040 if (psa != NULL) 2041 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2042 M_NOWAIT); 2043 if (flags & MSG_PEEK) { 2044 m = m->m_next; 2045 } else { 2046 sbfree(&so->so_rcv, m); 2047 so->so_rcv.sb_mb = m_free(m); 2048 m = so->so_rcv.sb_mb; 2049 sockbuf_pushsync(&so->so_rcv, nextrecord); 2050 } 2051 } 2052 2053 /* 2054 * Process one or more MT_CONTROL mbufs present before any data mbufs 2055 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 2056 * just copy the data; if !MSG_PEEK, we call into the protocol to 2057 * perform externalization (or freeing if controlp == NULL). 2058 */ 2059 if (m != NULL && m->m_type == MT_CONTROL) { 2060 struct mbuf *cm = NULL, *cmn; 2061 struct mbuf **cme = &cm; 2062 #ifdef KERN_TLS 2063 struct cmsghdr *cmsg; 2064 struct tls_get_record tgr; 2065 2066 /* 2067 * For MSG_TLSAPPDATA, check for a non-application data 2068 * record. If found, return ENXIO without removing 2069 * it from the receive queue. This allows a subsequent 2070 * call without MSG_TLSAPPDATA to receive it. 2071 * Note that, for TLS, there should only be a single 2072 * control mbuf with the TLS_GET_RECORD message in it. 2073 */ 2074 if (flags & MSG_TLSAPPDATA) { 2075 cmsg = mtod(m, struct cmsghdr *); 2076 if (cmsg->cmsg_type == TLS_GET_RECORD && 2077 cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) { 2078 memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr)); 2079 /* This will need to change for TLS 1.3. */ 2080 if (tgr.tls_type != TLS_RLTYPE_APP) { 2081 SOCKBUF_UNLOCK(&so->so_rcv); 2082 error = ENXIO; 2083 goto release; 2084 } 2085 } 2086 } 2087 #endif 2088 2089 do { 2090 if (flags & MSG_PEEK) { 2091 if (controlp != NULL) { 2092 *controlp = m_copym(m, 0, m->m_len, 2093 M_NOWAIT); 2094 controlp = &(*controlp)->m_next; 2095 } 2096 m = m->m_next; 2097 } else { 2098 sbfree(&so->so_rcv, m); 2099 so->so_rcv.sb_mb = m->m_next; 2100 m->m_next = NULL; 2101 *cme = m; 2102 cme = &(*cme)->m_next; 2103 m = so->so_rcv.sb_mb; 2104 } 2105 } while (m != NULL && m->m_type == MT_CONTROL); 2106 if ((flags & MSG_PEEK) == 0) 2107 sockbuf_pushsync(&so->so_rcv, nextrecord); 2108 while (cm != NULL) { 2109 cmn = cm->m_next; 2110 cm->m_next = NULL; 2111 if (pr->pr_domain->dom_externalize != NULL) { 2112 SOCKBUF_UNLOCK(&so->so_rcv); 2113 VNET_SO_ASSERT(so); 2114 error = (*pr->pr_domain->dom_externalize) 2115 (cm, controlp, flags); 2116 SOCKBUF_LOCK(&so->so_rcv); 2117 } else if (controlp != NULL) 2118 *controlp = cm; 2119 else 2120 m_freem(cm); 2121 if (controlp != NULL) { 2122 orig_resid = 0; 2123 while (*controlp != NULL) 2124 controlp = &(*controlp)->m_next; 2125 } 2126 cm = cmn; 2127 } 2128 if (m != NULL) 2129 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 2130 else 2131 nextrecord = so->so_rcv.sb_mb; 2132 orig_resid = 0; 2133 } 2134 if (m != NULL) { 2135 if ((flags & MSG_PEEK) == 0) { 2136 KASSERT(m->m_nextpkt == nextrecord, 2137 ("soreceive: post-control, nextrecord !sync")); 2138 if (nextrecord == NULL) { 2139 KASSERT(so->so_rcv.sb_mb == m, 2140 ("soreceive: post-control, sb_mb!=m")); 2141 KASSERT(so->so_rcv.sb_lastrecord == m, 2142 ("soreceive: post-control, lastrecord!=m")); 2143 } 2144 } 2145 type = m->m_type; 2146 if (type == MT_OOBDATA) 2147 flags |= MSG_OOB; 2148 } else { 2149 if ((flags & MSG_PEEK) == 0) { 2150 KASSERT(so->so_rcv.sb_mb == nextrecord, 2151 ("soreceive: sb_mb != nextrecord")); 2152 if (so->so_rcv.sb_mb == NULL) { 2153 KASSERT(so->so_rcv.sb_lastrecord == NULL, 2154 ("soreceive: sb_lastercord != NULL")); 2155 } 2156 } 2157 } 2158 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2159 SBLASTRECORDCHK(&so->so_rcv); 2160 SBLASTMBUFCHK(&so->so_rcv); 2161 2162 /* 2163 * Now continue to read any data mbufs off of the head of the socket 2164 * buffer until the read request is satisfied. Note that 'type' is 2165 * used to store the type of any mbuf reads that have happened so far 2166 * such that soreceive() can stop reading if the type changes, which 2167 * causes soreceive() to return only one of regular data and inline 2168 * out-of-band data in a single socket receive operation. 2169 */ 2170 moff = 0; 2171 offset = 0; 2172 while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0 2173 && error == 0) { 2174 /* 2175 * If the type of mbuf has changed since the last mbuf 2176 * examined ('type'), end the receive operation. 2177 */ 2178 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2179 if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) { 2180 if (type != m->m_type) 2181 break; 2182 } else if (type == MT_OOBDATA) 2183 break; 2184 else 2185 KASSERT(m->m_type == MT_DATA, 2186 ("m->m_type == %d", m->m_type)); 2187 so->so_rcv.sb_state &= ~SBS_RCVATMARK; 2188 len = uio->uio_resid; 2189 if (so->so_oobmark && len > so->so_oobmark - offset) 2190 len = so->so_oobmark - offset; 2191 if (len > m->m_len - moff) 2192 len = m->m_len - moff; 2193 /* 2194 * If mp is set, just pass back the mbufs. Otherwise copy 2195 * them out via the uio, then free. Sockbuf must be 2196 * consistent here (points to current mbuf, it points to next 2197 * record) when we drop priority; we must note any additions 2198 * to the sockbuf when we block interrupts again. 2199 */ 2200 if (mp == NULL) { 2201 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2202 SBLASTRECORDCHK(&so->so_rcv); 2203 SBLASTMBUFCHK(&so->so_rcv); 2204 SOCKBUF_UNLOCK(&so->so_rcv); 2205 if ((m->m_flags & M_EXTPG) != 0) 2206 error = m_unmappedtouio(m, moff, uio, (int)len); 2207 else 2208 error = uiomove(mtod(m, char *) + moff, 2209 (int)len, uio); 2210 SOCKBUF_LOCK(&so->so_rcv); 2211 if (error) { 2212 /* 2213 * The MT_SONAME mbuf has already been removed 2214 * from the record, so it is necessary to 2215 * remove the data mbufs, if any, to preserve 2216 * the invariant in the case of PR_ADDR that 2217 * requires MT_SONAME mbufs at the head of 2218 * each record. 2219 */ 2220 if (pr->pr_flags & PR_ATOMIC && 2221 ((flags & MSG_PEEK) == 0)) 2222 (void)sbdroprecord_locked(&so->so_rcv); 2223 SOCKBUF_UNLOCK(&so->so_rcv); 2224 goto release; 2225 } 2226 } else 2227 uio->uio_resid -= len; 2228 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2229 if (len == m->m_len - moff) { 2230 if (m->m_flags & M_EOR) 2231 flags |= MSG_EOR; 2232 if (flags & MSG_PEEK) { 2233 m = m->m_next; 2234 moff = 0; 2235 } else { 2236 nextrecord = m->m_nextpkt; 2237 sbfree(&so->so_rcv, m); 2238 if (mp != NULL) { 2239 m->m_nextpkt = NULL; 2240 *mp = m; 2241 mp = &m->m_next; 2242 so->so_rcv.sb_mb = m = m->m_next; 2243 *mp = NULL; 2244 } else { 2245 so->so_rcv.sb_mb = m_free(m); 2246 m = so->so_rcv.sb_mb; 2247 } 2248 sockbuf_pushsync(&so->so_rcv, nextrecord); 2249 SBLASTRECORDCHK(&so->so_rcv); 2250 SBLASTMBUFCHK(&so->so_rcv); 2251 } 2252 } else { 2253 if (flags & MSG_PEEK) 2254 moff += len; 2255 else { 2256 if (mp != NULL) { 2257 if (flags & MSG_DONTWAIT) { 2258 *mp = m_copym(m, 0, len, 2259 M_NOWAIT); 2260 if (*mp == NULL) { 2261 /* 2262 * m_copym() couldn't 2263 * allocate an mbuf. 2264 * Adjust uio_resid back 2265 * (it was adjusted 2266 * down by len bytes, 2267 * which we didn't end 2268 * up "copying" over). 2269 */ 2270 uio->uio_resid += len; 2271 break; 2272 } 2273 } else { 2274 SOCKBUF_UNLOCK(&so->so_rcv); 2275 *mp = m_copym(m, 0, len, 2276 M_WAITOK); 2277 SOCKBUF_LOCK(&so->so_rcv); 2278 } 2279 } 2280 sbcut_locked(&so->so_rcv, len); 2281 } 2282 } 2283 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2284 if (so->so_oobmark) { 2285 if ((flags & MSG_PEEK) == 0) { 2286 so->so_oobmark -= len; 2287 if (so->so_oobmark == 0) { 2288 so->so_rcv.sb_state |= SBS_RCVATMARK; 2289 break; 2290 } 2291 } else { 2292 offset += len; 2293 if (offset == so->so_oobmark) 2294 break; 2295 } 2296 } 2297 if (flags & MSG_EOR) 2298 break; 2299 /* 2300 * If the MSG_WAITALL flag is set (for non-atomic socket), we 2301 * must not quit until "uio->uio_resid == 0" or an error 2302 * termination. If a signal/timeout occurs, return with a 2303 * short count but without error. Keep sockbuf locked 2304 * against other readers. 2305 */ 2306 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 2307 !sosendallatonce(so) && nextrecord == NULL) { 2308 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2309 if (so->so_error || 2310 so->so_rcv.sb_state & SBS_CANTRCVMORE) 2311 break; 2312 /* 2313 * Notify the protocol that some data has been 2314 * drained before blocking. 2315 */ 2316 if (pr->pr_flags & PR_WANTRCVD) { 2317 SOCKBUF_UNLOCK(&so->so_rcv); 2318 VNET_SO_ASSERT(so); 2319 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 2320 SOCKBUF_LOCK(&so->so_rcv); 2321 } 2322 SBLASTRECORDCHK(&so->so_rcv); 2323 SBLASTMBUFCHK(&so->so_rcv); 2324 /* 2325 * We could receive some data while was notifying 2326 * the protocol. Skip blocking in this case. 2327 */ 2328 if (so->so_rcv.sb_mb == NULL) { 2329 error = sbwait(&so->so_rcv); 2330 if (error) { 2331 SOCKBUF_UNLOCK(&so->so_rcv); 2332 goto release; 2333 } 2334 } 2335 m = so->so_rcv.sb_mb; 2336 if (m != NULL) 2337 nextrecord = m->m_nextpkt; 2338 } 2339 } 2340 2341 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2342 if (m != NULL && pr->pr_flags & PR_ATOMIC) { 2343 flags |= MSG_TRUNC; 2344 if ((flags & MSG_PEEK) == 0) 2345 (void) sbdroprecord_locked(&so->so_rcv); 2346 } 2347 if ((flags & MSG_PEEK) == 0) { 2348 if (m == NULL) { 2349 /* 2350 * First part is an inline SB_EMPTY_FIXUP(). Second 2351 * part makes sure sb_lastrecord is up-to-date if 2352 * there is still data in the socket buffer. 2353 */ 2354 so->so_rcv.sb_mb = nextrecord; 2355 if (so->so_rcv.sb_mb == NULL) { 2356 so->so_rcv.sb_mbtail = NULL; 2357 so->so_rcv.sb_lastrecord = NULL; 2358 } else if (nextrecord->m_nextpkt == NULL) 2359 so->so_rcv.sb_lastrecord = nextrecord; 2360 } 2361 SBLASTRECORDCHK(&so->so_rcv); 2362 SBLASTMBUFCHK(&so->so_rcv); 2363 /* 2364 * If soreceive() is being done from the socket callback, 2365 * then don't need to generate ACK to peer to update window, 2366 * since ACK will be generated on return to TCP. 2367 */ 2368 if (!(flags & MSG_SOCALLBCK) && 2369 (pr->pr_flags & PR_WANTRCVD)) { 2370 SOCKBUF_UNLOCK(&so->so_rcv); 2371 VNET_SO_ASSERT(so); 2372 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 2373 SOCKBUF_LOCK(&so->so_rcv); 2374 } 2375 } 2376 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2377 if (orig_resid == uio->uio_resid && orig_resid && 2378 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { 2379 SOCKBUF_UNLOCK(&so->so_rcv); 2380 goto restart; 2381 } 2382 SOCKBUF_UNLOCK(&so->so_rcv); 2383 2384 if (flagsp != NULL) 2385 *flagsp |= flags; 2386 release: 2387 sbunlock(&so->so_rcv); 2388 return (error); 2389 } 2390 2391 /* 2392 * Optimized version of soreceive() for stream (TCP) sockets. 2393 */ 2394 int 2395 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio, 2396 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2397 { 2398 int len = 0, error = 0, flags, oresid; 2399 struct sockbuf *sb; 2400 struct mbuf *m, *n = NULL; 2401 2402 /* We only do stream sockets. */ 2403 if (so->so_type != SOCK_STREAM) 2404 return (EINVAL); 2405 if (psa != NULL) 2406 *psa = NULL; 2407 if (flagsp != NULL) 2408 flags = *flagsp &~ MSG_EOR; 2409 else 2410 flags = 0; 2411 if (controlp != NULL) 2412 *controlp = NULL; 2413 if (flags & MSG_OOB) 2414 return (soreceive_rcvoob(so, uio, flags)); 2415 if (mp0 != NULL) 2416 *mp0 = NULL; 2417 2418 sb = &so->so_rcv; 2419 2420 #ifdef KERN_TLS 2421 /* 2422 * KTLS store TLS records as records with a control message to 2423 * describe the framing. 2424 * 2425 * We check once here before acquiring locks to optimize the 2426 * common case. 2427 */ 2428 if (sb->sb_tls_info != NULL) 2429 return (soreceive_generic(so, psa, uio, mp0, controlp, 2430 flagsp)); 2431 #endif 2432 2433 /* Prevent other readers from entering the socket. */ 2434 error = sblock(sb, SBLOCKWAIT(flags)); 2435 if (error) 2436 return (error); 2437 SOCKBUF_LOCK(sb); 2438 2439 #ifdef KERN_TLS 2440 if (sb->sb_tls_info != NULL) { 2441 SOCKBUF_UNLOCK(sb); 2442 sbunlock(sb); 2443 return (soreceive_generic(so, psa, uio, mp0, controlp, 2444 flagsp)); 2445 } 2446 #endif 2447 2448 /* Easy one, no space to copyout anything. */ 2449 if (uio->uio_resid == 0) { 2450 error = EINVAL; 2451 goto out; 2452 } 2453 oresid = uio->uio_resid; 2454 2455 /* We will never ever get anything unless we are or were connected. */ 2456 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 2457 error = ENOTCONN; 2458 goto out; 2459 } 2460 2461 restart: 2462 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2463 2464 /* Abort if socket has reported problems. */ 2465 if (so->so_error) { 2466 if (sbavail(sb) > 0) 2467 goto deliver; 2468 if (oresid > uio->uio_resid) 2469 goto out; 2470 error = so->so_error; 2471 if (!(flags & MSG_PEEK)) 2472 so->so_error = 0; 2473 goto out; 2474 } 2475 2476 /* Door is closed. Deliver what is left, if any. */ 2477 if (sb->sb_state & SBS_CANTRCVMORE) { 2478 if (sbavail(sb) > 0) 2479 goto deliver; 2480 else 2481 goto out; 2482 } 2483 2484 /* Socket buffer is empty and we shall not block. */ 2485 if (sbavail(sb) == 0 && 2486 ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) { 2487 error = EAGAIN; 2488 goto out; 2489 } 2490 2491 /* Socket buffer got some data that we shall deliver now. */ 2492 if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) && 2493 ((so->so_state & SS_NBIO) || 2494 (flags & (MSG_DONTWAIT|MSG_NBIO)) || 2495 sbavail(sb) >= sb->sb_lowat || 2496 sbavail(sb) >= uio->uio_resid || 2497 sbavail(sb) >= sb->sb_hiwat) ) { 2498 goto deliver; 2499 } 2500 2501 /* On MSG_WAITALL we must wait until all data or error arrives. */ 2502 if ((flags & MSG_WAITALL) && 2503 (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat)) 2504 goto deliver; 2505 2506 /* 2507 * Wait and block until (more) data comes in. 2508 * NB: Drops the sockbuf lock during wait. 2509 */ 2510 error = sbwait(sb); 2511 if (error) 2512 goto out; 2513 goto restart; 2514 2515 deliver: 2516 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2517 KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__)); 2518 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__)); 2519 2520 /* Statistics. */ 2521 if (uio->uio_td) 2522 uio->uio_td->td_ru.ru_msgrcv++; 2523 2524 /* Fill uio until full or current end of socket buffer is reached. */ 2525 len = min(uio->uio_resid, sbavail(sb)); 2526 if (mp0 != NULL) { 2527 /* Dequeue as many mbufs as possible. */ 2528 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) { 2529 if (*mp0 == NULL) 2530 *mp0 = sb->sb_mb; 2531 else 2532 m_cat(*mp0, sb->sb_mb); 2533 for (m = sb->sb_mb; 2534 m != NULL && m->m_len <= len; 2535 m = m->m_next) { 2536 KASSERT(!(m->m_flags & M_NOTAVAIL), 2537 ("%s: m %p not available", __func__, m)); 2538 len -= m->m_len; 2539 uio->uio_resid -= m->m_len; 2540 sbfree(sb, m); 2541 n = m; 2542 } 2543 n->m_next = NULL; 2544 sb->sb_mb = m; 2545 sb->sb_lastrecord = sb->sb_mb; 2546 if (sb->sb_mb == NULL) 2547 SB_EMPTY_FIXUP(sb); 2548 } 2549 /* Copy the remainder. */ 2550 if (len > 0) { 2551 KASSERT(sb->sb_mb != NULL, 2552 ("%s: len > 0 && sb->sb_mb empty", __func__)); 2553 2554 m = m_copym(sb->sb_mb, 0, len, M_NOWAIT); 2555 if (m == NULL) 2556 len = 0; /* Don't flush data from sockbuf. */ 2557 else 2558 uio->uio_resid -= len; 2559 if (*mp0 != NULL) 2560 m_cat(*mp0, m); 2561 else 2562 *mp0 = m; 2563 if (*mp0 == NULL) { 2564 error = ENOBUFS; 2565 goto out; 2566 } 2567 } 2568 } else { 2569 /* NB: Must unlock socket buffer as uiomove may sleep. */ 2570 SOCKBUF_UNLOCK(sb); 2571 error = m_mbuftouio(uio, sb->sb_mb, len); 2572 SOCKBUF_LOCK(sb); 2573 if (error) 2574 goto out; 2575 } 2576 SBLASTRECORDCHK(sb); 2577 SBLASTMBUFCHK(sb); 2578 2579 /* 2580 * Remove the delivered data from the socket buffer unless we 2581 * were only peeking. 2582 */ 2583 if (!(flags & MSG_PEEK)) { 2584 if (len > 0) 2585 sbdrop_locked(sb, len); 2586 2587 /* Notify protocol that we drained some data. */ 2588 if ((so->so_proto->pr_flags & PR_WANTRCVD) && 2589 (((flags & MSG_WAITALL) && uio->uio_resid > 0) || 2590 !(flags & MSG_SOCALLBCK))) { 2591 SOCKBUF_UNLOCK(sb); 2592 VNET_SO_ASSERT(so); 2593 (*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags); 2594 SOCKBUF_LOCK(sb); 2595 } 2596 } 2597 2598 /* 2599 * For MSG_WAITALL we may have to loop again and wait for 2600 * more data to come in. 2601 */ 2602 if ((flags & MSG_WAITALL) && uio->uio_resid > 0) 2603 goto restart; 2604 out: 2605 SOCKBUF_LOCK_ASSERT(sb); 2606 SBLASTRECORDCHK(sb); 2607 SBLASTMBUFCHK(sb); 2608 SOCKBUF_UNLOCK(sb); 2609 sbunlock(sb); 2610 return (error); 2611 } 2612 2613 /* 2614 * Optimized version of soreceive() for simple datagram cases from userspace. 2615 * Unlike in the stream case, we're able to drop a datagram if copyout() 2616 * fails, and because we handle datagrams atomically, we don't need to use a 2617 * sleep lock to prevent I/O interlacing. 2618 */ 2619 int 2620 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio, 2621 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2622 { 2623 struct mbuf *m, *m2; 2624 int flags, error; 2625 ssize_t len; 2626 struct protosw *pr = so->so_proto; 2627 struct mbuf *nextrecord; 2628 2629 if (psa != NULL) 2630 *psa = NULL; 2631 if (controlp != NULL) 2632 *controlp = NULL; 2633 if (flagsp != NULL) 2634 flags = *flagsp &~ MSG_EOR; 2635 else 2636 flags = 0; 2637 2638 /* 2639 * For any complicated cases, fall back to the full 2640 * soreceive_generic(). 2641 */ 2642 if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB)) 2643 return (soreceive_generic(so, psa, uio, mp0, controlp, 2644 flagsp)); 2645 2646 /* 2647 * Enforce restrictions on use. 2648 */ 2649 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0, 2650 ("soreceive_dgram: wantrcvd")); 2651 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic")); 2652 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0, 2653 ("soreceive_dgram: SBS_RCVATMARK")); 2654 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0, 2655 ("soreceive_dgram: P_CONNREQUIRED")); 2656 2657 /* 2658 * Loop blocking while waiting for a datagram. 2659 */ 2660 SOCKBUF_LOCK(&so->so_rcv); 2661 while ((m = so->so_rcv.sb_mb) == NULL) { 2662 KASSERT(sbavail(&so->so_rcv) == 0, 2663 ("soreceive_dgram: sb_mb NULL but sbavail %u", 2664 sbavail(&so->so_rcv))); 2665 if (so->so_error) { 2666 error = so->so_error; 2667 so->so_error = 0; 2668 SOCKBUF_UNLOCK(&so->so_rcv); 2669 return (error); 2670 } 2671 if (so->so_rcv.sb_state & SBS_CANTRCVMORE || 2672 uio->uio_resid == 0) { 2673 SOCKBUF_UNLOCK(&so->so_rcv); 2674 return (0); 2675 } 2676 if ((so->so_state & SS_NBIO) || 2677 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2678 SOCKBUF_UNLOCK(&so->so_rcv); 2679 return (EWOULDBLOCK); 2680 } 2681 SBLASTRECORDCHK(&so->so_rcv); 2682 SBLASTMBUFCHK(&so->so_rcv); 2683 error = sbwait(&so->so_rcv); 2684 if (error) { 2685 SOCKBUF_UNLOCK(&so->so_rcv); 2686 return (error); 2687 } 2688 } 2689 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2690 2691 if (uio->uio_td) 2692 uio->uio_td->td_ru.ru_msgrcv++; 2693 SBLASTRECORDCHK(&so->so_rcv); 2694 SBLASTMBUFCHK(&so->so_rcv); 2695 nextrecord = m->m_nextpkt; 2696 if (nextrecord == NULL) { 2697 KASSERT(so->so_rcv.sb_lastrecord == m, 2698 ("soreceive_dgram: lastrecord != m")); 2699 } 2700 2701 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord, 2702 ("soreceive_dgram: m_nextpkt != nextrecord")); 2703 2704 /* 2705 * Pull 'm' and its chain off the front of the packet queue. 2706 */ 2707 so->so_rcv.sb_mb = NULL; 2708 sockbuf_pushsync(&so->so_rcv, nextrecord); 2709 2710 /* 2711 * Walk 'm's chain and free that many bytes from the socket buffer. 2712 */ 2713 for (m2 = m; m2 != NULL; m2 = m2->m_next) 2714 sbfree(&so->so_rcv, m2); 2715 2716 /* 2717 * Do a few last checks before we let go of the lock. 2718 */ 2719 SBLASTRECORDCHK(&so->so_rcv); 2720 SBLASTMBUFCHK(&so->so_rcv); 2721 SOCKBUF_UNLOCK(&so->so_rcv); 2722 2723 if (pr->pr_flags & PR_ADDR) { 2724 KASSERT(m->m_type == MT_SONAME, 2725 ("m->m_type == %d", m->m_type)); 2726 if (psa != NULL) 2727 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2728 M_NOWAIT); 2729 m = m_free(m); 2730 } 2731 if (m == NULL) { 2732 /* XXXRW: Can this happen? */ 2733 return (0); 2734 } 2735 2736 /* 2737 * Packet to copyout() is now in 'm' and it is disconnected from the 2738 * queue. 2739 * 2740 * Process one or more MT_CONTROL mbufs present before any data mbufs 2741 * in the first mbuf chain on the socket buffer. We call into the 2742 * protocol to perform externalization (or freeing if controlp == 2743 * NULL). In some cases there can be only MT_CONTROL mbufs without 2744 * MT_DATA mbufs. 2745 */ 2746 if (m->m_type == MT_CONTROL) { 2747 struct mbuf *cm = NULL, *cmn; 2748 struct mbuf **cme = &cm; 2749 2750 do { 2751 m2 = m->m_next; 2752 m->m_next = NULL; 2753 *cme = m; 2754 cme = &(*cme)->m_next; 2755 m = m2; 2756 } while (m != NULL && m->m_type == MT_CONTROL); 2757 while (cm != NULL) { 2758 cmn = cm->m_next; 2759 cm->m_next = NULL; 2760 if (pr->pr_domain->dom_externalize != NULL) { 2761 error = (*pr->pr_domain->dom_externalize) 2762 (cm, controlp, flags); 2763 } else if (controlp != NULL) 2764 *controlp = cm; 2765 else 2766 m_freem(cm); 2767 if (controlp != NULL) { 2768 while (*controlp != NULL) 2769 controlp = &(*controlp)->m_next; 2770 } 2771 cm = cmn; 2772 } 2773 } 2774 KASSERT(m == NULL || m->m_type == MT_DATA, 2775 ("soreceive_dgram: !data")); 2776 while (m != NULL && uio->uio_resid > 0) { 2777 len = uio->uio_resid; 2778 if (len > m->m_len) 2779 len = m->m_len; 2780 error = uiomove(mtod(m, char *), (int)len, uio); 2781 if (error) { 2782 m_freem(m); 2783 return (error); 2784 } 2785 if (len == m->m_len) 2786 m = m_free(m); 2787 else { 2788 m->m_data += len; 2789 m->m_len -= len; 2790 } 2791 } 2792 if (m != NULL) { 2793 flags |= MSG_TRUNC; 2794 m_freem(m); 2795 } 2796 if (flagsp != NULL) 2797 *flagsp |= flags; 2798 return (0); 2799 } 2800 2801 int 2802 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, 2803 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2804 { 2805 int error; 2806 2807 CURVNET_SET(so->so_vnet); 2808 if (!SOLISTENING(so)) 2809 error = (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, 2810 mp0, controlp, flagsp)); 2811 else 2812 error = ENOTCONN; 2813 CURVNET_RESTORE(); 2814 return (error); 2815 } 2816 2817 int 2818 soshutdown(struct socket *so, int how) 2819 { 2820 struct protosw *pr = so->so_proto; 2821 int error, soerror_enotconn; 2822 2823 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 2824 return (EINVAL); 2825 2826 soerror_enotconn = 0; 2827 if ((so->so_state & 2828 (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) { 2829 /* 2830 * POSIX mandates us to return ENOTCONN when shutdown(2) is 2831 * invoked on a datagram sockets, however historically we would 2832 * actually tear socket down. This is known to be leveraged by 2833 * some applications to unblock process waiting in recvXXX(2) 2834 * by other process that it shares that socket with. Try to meet 2835 * both backward-compatibility and POSIX requirements by forcing 2836 * ENOTCONN but still asking protocol to perform pru_shutdown(). 2837 */ 2838 if (so->so_type != SOCK_DGRAM && !SOLISTENING(so)) 2839 return (ENOTCONN); 2840 soerror_enotconn = 1; 2841 } 2842 2843 if (SOLISTENING(so)) { 2844 if (how != SHUT_WR) { 2845 SOLISTEN_LOCK(so); 2846 so->so_error = ECONNABORTED; 2847 solisten_wakeup(so); /* unlocks so */ 2848 } 2849 goto done; 2850 } 2851 2852 CURVNET_SET(so->so_vnet); 2853 if (pr->pr_usrreqs->pru_flush != NULL) 2854 (*pr->pr_usrreqs->pru_flush)(so, how); 2855 if (how != SHUT_WR) 2856 sorflush(so); 2857 if (how != SHUT_RD) { 2858 error = (*pr->pr_usrreqs->pru_shutdown)(so); 2859 wakeup(&so->so_timeo); 2860 CURVNET_RESTORE(); 2861 return ((error == 0 && soerror_enotconn) ? ENOTCONN : error); 2862 } 2863 wakeup(&so->so_timeo); 2864 CURVNET_RESTORE(); 2865 2866 done: 2867 return (soerror_enotconn ? ENOTCONN : 0); 2868 } 2869 2870 void 2871 sorflush(struct socket *so) 2872 { 2873 struct sockbuf *sb = &so->so_rcv; 2874 struct protosw *pr = so->so_proto; 2875 struct socket aso; 2876 2877 VNET_SO_ASSERT(so); 2878 2879 /* 2880 * In order to avoid calling dom_dispose with the socket buffer mutex 2881 * held, and in order to generally avoid holding the lock for a long 2882 * time, we make a copy of the socket buffer and clear the original 2883 * (except locks, state). The new socket buffer copy won't have 2884 * initialized locks so we can only call routines that won't use or 2885 * assert those locks. 2886 * 2887 * Dislodge threads currently blocked in receive and wait to acquire 2888 * a lock against other simultaneous readers before clearing the 2889 * socket buffer. Don't let our acquire be interrupted by a signal 2890 * despite any existing socket disposition on interruptable waiting. 2891 */ 2892 socantrcvmore(so); 2893 (void) sblock(sb, SBL_WAIT | SBL_NOINTR); 2894 2895 /* 2896 * Invalidate/clear most of the sockbuf structure, but leave selinfo 2897 * and mutex data unchanged. 2898 */ 2899 SOCKBUF_LOCK(sb); 2900 bzero(&aso, sizeof(aso)); 2901 aso.so_pcb = so->so_pcb; 2902 bcopy(&sb->sb_startzero, &aso.so_rcv.sb_startzero, 2903 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 2904 bzero(&sb->sb_startzero, 2905 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 2906 SOCKBUF_UNLOCK(sb); 2907 sbunlock(sb); 2908 2909 /* 2910 * Dispose of special rights and flush the copied socket. Don't call 2911 * any unsafe routines (that rely on locks being initialized) on aso. 2912 */ 2913 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 2914 (*pr->pr_domain->dom_dispose)(&aso); 2915 sbrelease_internal(&aso.so_rcv, so); 2916 } 2917 2918 /* 2919 * Wrapper for Socket established helper hook. 2920 * Parameters: socket, context of the hook point, hook id. 2921 */ 2922 static int inline 2923 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id) 2924 { 2925 struct socket_hhook_data hhook_data = { 2926 .so = so, 2927 .hctx = hctx, 2928 .m = NULL, 2929 .status = 0 2930 }; 2931 2932 CURVNET_SET(so->so_vnet); 2933 HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd); 2934 CURVNET_RESTORE(); 2935 2936 /* Ugly but needed, since hhooks return void for now */ 2937 return (hhook_data.status); 2938 } 2939 2940 /* 2941 * Perhaps this routine, and sooptcopyout(), below, ought to come in an 2942 * additional variant to handle the case where the option value needs to be 2943 * some kind of integer, but not a specific size. In addition to their use 2944 * here, these functions are also called by the protocol-level pr_ctloutput() 2945 * routines. 2946 */ 2947 int 2948 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen) 2949 { 2950 size_t valsize; 2951 2952 /* 2953 * If the user gives us more than we wanted, we ignore it, but if we 2954 * don't get the minimum length the caller wants, we return EINVAL. 2955 * On success, sopt->sopt_valsize is set to however much we actually 2956 * retrieved. 2957 */ 2958 if ((valsize = sopt->sopt_valsize) < minlen) 2959 return EINVAL; 2960 if (valsize > len) 2961 sopt->sopt_valsize = valsize = len; 2962 2963 if (sopt->sopt_td != NULL) 2964 return (copyin(sopt->sopt_val, buf, valsize)); 2965 2966 bcopy(sopt->sopt_val, buf, valsize); 2967 return (0); 2968 } 2969 2970 /* 2971 * Kernel version of setsockopt(2). 2972 * 2973 * XXX: optlen is size_t, not socklen_t 2974 */ 2975 int 2976 so_setsockopt(struct socket *so, int level, int optname, void *optval, 2977 size_t optlen) 2978 { 2979 struct sockopt sopt; 2980 2981 sopt.sopt_level = level; 2982 sopt.sopt_name = optname; 2983 sopt.sopt_dir = SOPT_SET; 2984 sopt.sopt_val = optval; 2985 sopt.sopt_valsize = optlen; 2986 sopt.sopt_td = NULL; 2987 return (sosetopt(so, &sopt)); 2988 } 2989 2990 int 2991 sosetopt(struct socket *so, struct sockopt *sopt) 2992 { 2993 int error, optval; 2994 struct linger l; 2995 struct timeval tv; 2996 sbintime_t val; 2997 uint32_t val32; 2998 #ifdef MAC 2999 struct mac extmac; 3000 #endif 3001 3002 CURVNET_SET(so->so_vnet); 3003 error = 0; 3004 if (sopt->sopt_level != SOL_SOCKET) { 3005 if (so->so_proto->pr_ctloutput != NULL) 3006 error = (*so->so_proto->pr_ctloutput)(so, sopt); 3007 else 3008 error = ENOPROTOOPT; 3009 } else { 3010 switch (sopt->sopt_name) { 3011 case SO_ACCEPTFILTER: 3012 error = accept_filt_setopt(so, sopt); 3013 if (error) 3014 goto bad; 3015 break; 3016 3017 case SO_LINGER: 3018 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 3019 if (error) 3020 goto bad; 3021 if (l.l_linger < 0 || 3022 l.l_linger > USHRT_MAX || 3023 l.l_linger > (INT_MAX / hz)) { 3024 error = EDOM; 3025 goto bad; 3026 } 3027 SOCK_LOCK(so); 3028 so->so_linger = l.l_linger; 3029 if (l.l_onoff) 3030 so->so_options |= SO_LINGER; 3031 else 3032 so->so_options &= ~SO_LINGER; 3033 SOCK_UNLOCK(so); 3034 break; 3035 3036 case SO_DEBUG: 3037 case SO_KEEPALIVE: 3038 case SO_DONTROUTE: 3039 case SO_USELOOPBACK: 3040 case SO_BROADCAST: 3041 case SO_REUSEADDR: 3042 case SO_REUSEPORT: 3043 case SO_REUSEPORT_LB: 3044 case SO_OOBINLINE: 3045 case SO_TIMESTAMP: 3046 case SO_BINTIME: 3047 case SO_NOSIGPIPE: 3048 case SO_NO_DDP: 3049 case SO_NO_OFFLOAD: 3050 error = sooptcopyin(sopt, &optval, sizeof optval, 3051 sizeof optval); 3052 if (error) 3053 goto bad; 3054 SOCK_LOCK(so); 3055 if (optval) 3056 so->so_options |= sopt->sopt_name; 3057 else 3058 so->so_options &= ~sopt->sopt_name; 3059 SOCK_UNLOCK(so); 3060 break; 3061 3062 case SO_SETFIB: 3063 error = sooptcopyin(sopt, &optval, sizeof optval, 3064 sizeof optval); 3065 if (error) 3066 goto bad; 3067 3068 if (optval < 0 || optval >= rt_numfibs) { 3069 error = EINVAL; 3070 goto bad; 3071 } 3072 if (((so->so_proto->pr_domain->dom_family == PF_INET) || 3073 (so->so_proto->pr_domain->dom_family == PF_INET6) || 3074 (so->so_proto->pr_domain->dom_family == PF_ROUTE))) 3075 so->so_fibnum = optval; 3076 else 3077 so->so_fibnum = 0; 3078 break; 3079 3080 case SO_USER_COOKIE: 3081 error = sooptcopyin(sopt, &val32, sizeof val32, 3082 sizeof val32); 3083 if (error) 3084 goto bad; 3085 so->so_user_cookie = val32; 3086 break; 3087 3088 case SO_SNDBUF: 3089 case SO_RCVBUF: 3090 case SO_SNDLOWAT: 3091 case SO_RCVLOWAT: 3092 error = sooptcopyin(sopt, &optval, sizeof optval, 3093 sizeof optval); 3094 if (error) 3095 goto bad; 3096 3097 /* 3098 * Values < 1 make no sense for any of these options, 3099 * so disallow them. 3100 */ 3101 if (optval < 1) { 3102 error = EINVAL; 3103 goto bad; 3104 } 3105 3106 error = sbsetopt(so, sopt->sopt_name, optval); 3107 break; 3108 3109 case SO_SNDTIMEO: 3110 case SO_RCVTIMEO: 3111 #ifdef COMPAT_FREEBSD32 3112 if (SV_CURPROC_FLAG(SV_ILP32)) { 3113 struct timeval32 tv32; 3114 3115 error = sooptcopyin(sopt, &tv32, sizeof tv32, 3116 sizeof tv32); 3117 CP(tv32, tv, tv_sec); 3118 CP(tv32, tv, tv_usec); 3119 } else 3120 #endif 3121 error = sooptcopyin(sopt, &tv, sizeof tv, 3122 sizeof tv); 3123 if (error) 3124 goto bad; 3125 if (tv.tv_sec < 0 || tv.tv_usec < 0 || 3126 tv.tv_usec >= 1000000) { 3127 error = EDOM; 3128 goto bad; 3129 } 3130 if (tv.tv_sec > INT32_MAX) 3131 val = SBT_MAX; 3132 else 3133 val = tvtosbt(tv); 3134 switch (sopt->sopt_name) { 3135 case SO_SNDTIMEO: 3136 so->so_snd.sb_timeo = val; 3137 break; 3138 case SO_RCVTIMEO: 3139 so->so_rcv.sb_timeo = val; 3140 break; 3141 } 3142 break; 3143 3144 case SO_LABEL: 3145 #ifdef MAC 3146 error = sooptcopyin(sopt, &extmac, sizeof extmac, 3147 sizeof extmac); 3148 if (error) 3149 goto bad; 3150 error = mac_setsockopt_label(sopt->sopt_td->td_ucred, 3151 so, &extmac); 3152 #else 3153 error = EOPNOTSUPP; 3154 #endif 3155 break; 3156 3157 case SO_TS_CLOCK: 3158 error = sooptcopyin(sopt, &optval, sizeof optval, 3159 sizeof optval); 3160 if (error) 3161 goto bad; 3162 if (optval < 0 || optval > SO_TS_CLOCK_MAX) { 3163 error = EINVAL; 3164 goto bad; 3165 } 3166 so->so_ts_clock = optval; 3167 break; 3168 3169 case SO_MAX_PACING_RATE: 3170 error = sooptcopyin(sopt, &val32, sizeof(val32), 3171 sizeof(val32)); 3172 if (error) 3173 goto bad; 3174 so->so_max_pacing_rate = val32; 3175 break; 3176 3177 default: 3178 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 3179 error = hhook_run_socket(so, sopt, 3180 HHOOK_SOCKET_OPT); 3181 else 3182 error = ENOPROTOOPT; 3183 break; 3184 } 3185 if (error == 0 && so->so_proto->pr_ctloutput != NULL) 3186 (void)(*so->so_proto->pr_ctloutput)(so, sopt); 3187 } 3188 bad: 3189 CURVNET_RESTORE(); 3190 return (error); 3191 } 3192 3193 /* 3194 * Helper routine for getsockopt. 3195 */ 3196 int 3197 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 3198 { 3199 int error; 3200 size_t valsize; 3201 3202 error = 0; 3203 3204 /* 3205 * Documented get behavior is that we always return a value, possibly 3206 * truncated to fit in the user's buffer. Traditional behavior is 3207 * that we always tell the user precisely how much we copied, rather 3208 * than something useful like the total amount we had available for 3209 * her. Note that this interface is not idempotent; the entire 3210 * answer must be generated ahead of time. 3211 */ 3212 valsize = min(len, sopt->sopt_valsize); 3213 sopt->sopt_valsize = valsize; 3214 if (sopt->sopt_val != NULL) { 3215 if (sopt->sopt_td != NULL) 3216 error = copyout(buf, sopt->sopt_val, valsize); 3217 else 3218 bcopy(buf, sopt->sopt_val, valsize); 3219 } 3220 return (error); 3221 } 3222 3223 int 3224 sogetopt(struct socket *so, struct sockopt *sopt) 3225 { 3226 int error, optval; 3227 struct linger l; 3228 struct timeval tv; 3229 #ifdef MAC 3230 struct mac extmac; 3231 #endif 3232 3233 CURVNET_SET(so->so_vnet); 3234 error = 0; 3235 if (sopt->sopt_level != SOL_SOCKET) { 3236 if (so->so_proto->pr_ctloutput != NULL) 3237 error = (*so->so_proto->pr_ctloutput)(so, sopt); 3238 else 3239 error = ENOPROTOOPT; 3240 CURVNET_RESTORE(); 3241 return (error); 3242 } else { 3243 switch (sopt->sopt_name) { 3244 case SO_ACCEPTFILTER: 3245 error = accept_filt_getopt(so, sopt); 3246 break; 3247 3248 case SO_LINGER: 3249 SOCK_LOCK(so); 3250 l.l_onoff = so->so_options & SO_LINGER; 3251 l.l_linger = so->so_linger; 3252 SOCK_UNLOCK(so); 3253 error = sooptcopyout(sopt, &l, sizeof l); 3254 break; 3255 3256 case SO_USELOOPBACK: 3257 case SO_DONTROUTE: 3258 case SO_DEBUG: 3259 case SO_KEEPALIVE: 3260 case SO_REUSEADDR: 3261 case SO_REUSEPORT: 3262 case SO_REUSEPORT_LB: 3263 case SO_BROADCAST: 3264 case SO_OOBINLINE: 3265 case SO_ACCEPTCONN: 3266 case SO_TIMESTAMP: 3267 case SO_BINTIME: 3268 case SO_NOSIGPIPE: 3269 case SO_NO_DDP: 3270 case SO_NO_OFFLOAD: 3271 optval = so->so_options & sopt->sopt_name; 3272 integer: 3273 error = sooptcopyout(sopt, &optval, sizeof optval); 3274 break; 3275 3276 case SO_DOMAIN: 3277 optval = so->so_proto->pr_domain->dom_family; 3278 goto integer; 3279 3280 case SO_TYPE: 3281 optval = so->so_type; 3282 goto integer; 3283 3284 case SO_PROTOCOL: 3285 optval = so->so_proto->pr_protocol; 3286 goto integer; 3287 3288 case SO_ERROR: 3289 SOCK_LOCK(so); 3290 optval = so->so_error; 3291 so->so_error = 0; 3292 SOCK_UNLOCK(so); 3293 goto integer; 3294 3295 case SO_SNDBUF: 3296 optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat : 3297 so->so_snd.sb_hiwat; 3298 goto integer; 3299 3300 case SO_RCVBUF: 3301 optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat : 3302 so->so_rcv.sb_hiwat; 3303 goto integer; 3304 3305 case SO_SNDLOWAT: 3306 optval = SOLISTENING(so) ? so->sol_sbsnd_lowat : 3307 so->so_snd.sb_lowat; 3308 goto integer; 3309 3310 case SO_RCVLOWAT: 3311 optval = SOLISTENING(so) ? so->sol_sbrcv_lowat : 3312 so->so_rcv.sb_lowat; 3313 goto integer; 3314 3315 case SO_SNDTIMEO: 3316 case SO_RCVTIMEO: 3317 tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ? 3318 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 3319 #ifdef COMPAT_FREEBSD32 3320 if (SV_CURPROC_FLAG(SV_ILP32)) { 3321 struct timeval32 tv32; 3322 3323 CP(tv, tv32, tv_sec); 3324 CP(tv, tv32, tv_usec); 3325 error = sooptcopyout(sopt, &tv32, sizeof tv32); 3326 } else 3327 #endif 3328 error = sooptcopyout(sopt, &tv, sizeof tv); 3329 break; 3330 3331 case SO_LABEL: 3332 #ifdef MAC 3333 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 3334 sizeof(extmac)); 3335 if (error) 3336 goto bad; 3337 error = mac_getsockopt_label(sopt->sopt_td->td_ucred, 3338 so, &extmac); 3339 if (error) 3340 goto bad; 3341 error = sooptcopyout(sopt, &extmac, sizeof extmac); 3342 #else 3343 error = EOPNOTSUPP; 3344 #endif 3345 break; 3346 3347 case SO_PEERLABEL: 3348 #ifdef MAC 3349 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 3350 sizeof(extmac)); 3351 if (error) 3352 goto bad; 3353 error = mac_getsockopt_peerlabel( 3354 sopt->sopt_td->td_ucred, so, &extmac); 3355 if (error) 3356 goto bad; 3357 error = sooptcopyout(sopt, &extmac, sizeof extmac); 3358 #else 3359 error = EOPNOTSUPP; 3360 #endif 3361 break; 3362 3363 case SO_LISTENQLIMIT: 3364 optval = SOLISTENING(so) ? so->sol_qlimit : 0; 3365 goto integer; 3366 3367 case SO_LISTENQLEN: 3368 optval = SOLISTENING(so) ? so->sol_qlen : 0; 3369 goto integer; 3370 3371 case SO_LISTENINCQLEN: 3372 optval = SOLISTENING(so) ? so->sol_incqlen : 0; 3373 goto integer; 3374 3375 case SO_TS_CLOCK: 3376 optval = so->so_ts_clock; 3377 goto integer; 3378 3379 case SO_MAX_PACING_RATE: 3380 optval = so->so_max_pacing_rate; 3381 goto integer; 3382 3383 default: 3384 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 3385 error = hhook_run_socket(so, sopt, 3386 HHOOK_SOCKET_OPT); 3387 else 3388 error = ENOPROTOOPT; 3389 break; 3390 } 3391 } 3392 #ifdef MAC 3393 bad: 3394 #endif 3395 CURVNET_RESTORE(); 3396 return (error); 3397 } 3398 3399 int 3400 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 3401 { 3402 struct mbuf *m, *m_prev; 3403 int sopt_size = sopt->sopt_valsize; 3404 3405 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 3406 if (m == NULL) 3407 return ENOBUFS; 3408 if (sopt_size > MLEN) { 3409 MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT); 3410 if ((m->m_flags & M_EXT) == 0) { 3411 m_free(m); 3412 return ENOBUFS; 3413 } 3414 m->m_len = min(MCLBYTES, sopt_size); 3415 } else { 3416 m->m_len = min(MLEN, sopt_size); 3417 } 3418 sopt_size -= m->m_len; 3419 *mp = m; 3420 m_prev = m; 3421 3422 while (sopt_size) { 3423 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 3424 if (m == NULL) { 3425 m_freem(*mp); 3426 return ENOBUFS; 3427 } 3428 if (sopt_size > MLEN) { 3429 MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK : 3430 M_NOWAIT); 3431 if ((m->m_flags & M_EXT) == 0) { 3432 m_freem(m); 3433 m_freem(*mp); 3434 return ENOBUFS; 3435 } 3436 m->m_len = min(MCLBYTES, sopt_size); 3437 } else { 3438 m->m_len = min(MLEN, sopt_size); 3439 } 3440 sopt_size -= m->m_len; 3441 m_prev->m_next = m; 3442 m_prev = m; 3443 } 3444 return (0); 3445 } 3446 3447 int 3448 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 3449 { 3450 struct mbuf *m0 = m; 3451 3452 if (sopt->sopt_val == NULL) 3453 return (0); 3454 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 3455 if (sopt->sopt_td != NULL) { 3456 int error; 3457 3458 error = copyin(sopt->sopt_val, mtod(m, char *), 3459 m->m_len); 3460 if (error != 0) { 3461 m_freem(m0); 3462 return(error); 3463 } 3464 } else 3465 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 3466 sopt->sopt_valsize -= m->m_len; 3467 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 3468 m = m->m_next; 3469 } 3470 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 3471 panic("ip6_sooptmcopyin"); 3472 return (0); 3473 } 3474 3475 int 3476 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 3477 { 3478 struct mbuf *m0 = m; 3479 size_t valsize = 0; 3480 3481 if (sopt->sopt_val == NULL) 3482 return (0); 3483 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 3484 if (sopt->sopt_td != NULL) { 3485 int error; 3486 3487 error = copyout(mtod(m, char *), sopt->sopt_val, 3488 m->m_len); 3489 if (error != 0) { 3490 m_freem(m0); 3491 return(error); 3492 } 3493 } else 3494 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 3495 sopt->sopt_valsize -= m->m_len; 3496 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 3497 valsize += m->m_len; 3498 m = m->m_next; 3499 } 3500 if (m != NULL) { 3501 /* enough soopt buffer should be given from user-land */ 3502 m_freem(m0); 3503 return(EINVAL); 3504 } 3505 sopt->sopt_valsize = valsize; 3506 return (0); 3507 } 3508 3509 /* 3510 * sohasoutofband(): protocol notifies socket layer of the arrival of new 3511 * out-of-band data, which will then notify socket consumers. 3512 */ 3513 void 3514 sohasoutofband(struct socket *so) 3515 { 3516 3517 if (so->so_sigio != NULL) 3518 pgsigio(&so->so_sigio, SIGURG, 0); 3519 selwakeuppri(&so->so_rdsel, PSOCK); 3520 } 3521 3522 int 3523 sopoll(struct socket *so, int events, struct ucred *active_cred, 3524 struct thread *td) 3525 { 3526 3527 /* 3528 * We do not need to set or assert curvnet as long as everyone uses 3529 * sopoll_generic(). 3530 */ 3531 return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred, 3532 td)); 3533 } 3534 3535 int 3536 sopoll_generic(struct socket *so, int events, struct ucred *active_cred, 3537 struct thread *td) 3538 { 3539 int revents; 3540 3541 SOCK_LOCK(so); 3542 if (SOLISTENING(so)) { 3543 if (!(events & (POLLIN | POLLRDNORM))) 3544 revents = 0; 3545 else if (!TAILQ_EMPTY(&so->sol_comp)) 3546 revents = events & (POLLIN | POLLRDNORM); 3547 else if ((events & POLLINIGNEOF) == 0 && so->so_error) 3548 revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP; 3549 else { 3550 selrecord(td, &so->so_rdsel); 3551 revents = 0; 3552 } 3553 } else { 3554 revents = 0; 3555 SOCKBUF_LOCK(&so->so_snd); 3556 SOCKBUF_LOCK(&so->so_rcv); 3557 if (events & (POLLIN | POLLRDNORM)) 3558 if (soreadabledata(so)) 3559 revents |= events & (POLLIN | POLLRDNORM); 3560 if (events & (POLLOUT | POLLWRNORM)) 3561 if (sowriteable(so)) 3562 revents |= events & (POLLOUT | POLLWRNORM); 3563 if (events & (POLLPRI | POLLRDBAND)) 3564 if (so->so_oobmark || 3565 (so->so_rcv.sb_state & SBS_RCVATMARK)) 3566 revents |= events & (POLLPRI | POLLRDBAND); 3567 if ((events & POLLINIGNEOF) == 0) { 3568 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3569 revents |= events & (POLLIN | POLLRDNORM); 3570 if (so->so_snd.sb_state & SBS_CANTSENDMORE) 3571 revents |= POLLHUP; 3572 } 3573 } 3574 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) 3575 revents |= events & POLLRDHUP; 3576 if (revents == 0) { 3577 if (events & 3578 (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND | POLLRDHUP)) { 3579 selrecord(td, &so->so_rdsel); 3580 so->so_rcv.sb_flags |= SB_SEL; 3581 } 3582 if (events & (POLLOUT | POLLWRNORM)) { 3583 selrecord(td, &so->so_wrsel); 3584 so->so_snd.sb_flags |= SB_SEL; 3585 } 3586 } 3587 SOCKBUF_UNLOCK(&so->so_rcv); 3588 SOCKBUF_UNLOCK(&so->so_snd); 3589 } 3590 SOCK_UNLOCK(so); 3591 return (revents); 3592 } 3593 3594 int 3595 soo_kqfilter(struct file *fp, struct knote *kn) 3596 { 3597 struct socket *so = kn->kn_fp->f_data; 3598 struct sockbuf *sb; 3599 struct knlist *knl; 3600 3601 switch (kn->kn_filter) { 3602 case EVFILT_READ: 3603 kn->kn_fop = &soread_filtops; 3604 knl = &so->so_rdsel.si_note; 3605 sb = &so->so_rcv; 3606 break; 3607 case EVFILT_WRITE: 3608 kn->kn_fop = &sowrite_filtops; 3609 knl = &so->so_wrsel.si_note; 3610 sb = &so->so_snd; 3611 break; 3612 case EVFILT_EMPTY: 3613 kn->kn_fop = &soempty_filtops; 3614 knl = &so->so_wrsel.si_note; 3615 sb = &so->so_snd; 3616 break; 3617 default: 3618 return (EINVAL); 3619 } 3620 3621 SOCK_LOCK(so); 3622 if (SOLISTENING(so)) { 3623 knlist_add(knl, kn, 1); 3624 } else { 3625 SOCKBUF_LOCK(sb); 3626 knlist_add(knl, kn, 1); 3627 sb->sb_flags |= SB_KNOTE; 3628 SOCKBUF_UNLOCK(sb); 3629 } 3630 SOCK_UNLOCK(so); 3631 return (0); 3632 } 3633 3634 /* 3635 * Some routines that return EOPNOTSUPP for entry points that are not 3636 * supported by a protocol. Fill in as needed. 3637 */ 3638 int 3639 pru_accept_notsupp(struct socket *so, struct sockaddr **nam) 3640 { 3641 3642 return EOPNOTSUPP; 3643 } 3644 3645 int 3646 pru_aio_queue_notsupp(struct socket *so, struct kaiocb *job) 3647 { 3648 3649 return EOPNOTSUPP; 3650 } 3651 3652 int 3653 pru_attach_notsupp(struct socket *so, int proto, struct thread *td) 3654 { 3655 3656 return EOPNOTSUPP; 3657 } 3658 3659 int 3660 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 3661 { 3662 3663 return EOPNOTSUPP; 3664 } 3665 3666 int 3667 pru_bindat_notsupp(int fd, struct socket *so, struct sockaddr *nam, 3668 struct thread *td) 3669 { 3670 3671 return EOPNOTSUPP; 3672 } 3673 3674 int 3675 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 3676 { 3677 3678 return EOPNOTSUPP; 3679 } 3680 3681 int 3682 pru_connectat_notsupp(int fd, struct socket *so, struct sockaddr *nam, 3683 struct thread *td) 3684 { 3685 3686 return EOPNOTSUPP; 3687 } 3688 3689 int 3690 pru_connect2_notsupp(struct socket *so1, struct socket *so2) 3691 { 3692 3693 return EOPNOTSUPP; 3694 } 3695 3696 int 3697 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, 3698 struct ifnet *ifp, struct thread *td) 3699 { 3700 3701 return EOPNOTSUPP; 3702 } 3703 3704 int 3705 pru_disconnect_notsupp(struct socket *so) 3706 { 3707 3708 return EOPNOTSUPP; 3709 } 3710 3711 int 3712 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td) 3713 { 3714 3715 return EOPNOTSUPP; 3716 } 3717 3718 int 3719 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam) 3720 { 3721 3722 return EOPNOTSUPP; 3723 } 3724 3725 int 3726 pru_rcvd_notsupp(struct socket *so, int flags) 3727 { 3728 3729 return EOPNOTSUPP; 3730 } 3731 3732 int 3733 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) 3734 { 3735 3736 return EOPNOTSUPP; 3737 } 3738 3739 int 3740 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m, 3741 struct sockaddr *addr, struct mbuf *control, struct thread *td) 3742 { 3743 3744 return EOPNOTSUPP; 3745 } 3746 3747 int 3748 pru_ready_notsupp(struct socket *so, struct mbuf *m, int count) 3749 { 3750 3751 return (EOPNOTSUPP); 3752 } 3753 3754 /* 3755 * This isn't really a ``null'' operation, but it's the default one and 3756 * doesn't do anything destructive. 3757 */ 3758 int 3759 pru_sense_null(struct socket *so, struct stat *sb) 3760 { 3761 3762 sb->st_blksize = so->so_snd.sb_hiwat; 3763 return 0; 3764 } 3765 3766 int 3767 pru_shutdown_notsupp(struct socket *so) 3768 { 3769 3770 return EOPNOTSUPP; 3771 } 3772 3773 int 3774 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam) 3775 { 3776 3777 return EOPNOTSUPP; 3778 } 3779 3780 int 3781 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio, 3782 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 3783 { 3784 3785 return EOPNOTSUPP; 3786 } 3787 3788 int 3789 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr, 3790 struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 3791 { 3792 3793 return EOPNOTSUPP; 3794 } 3795 3796 int 3797 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred, 3798 struct thread *td) 3799 { 3800 3801 return EOPNOTSUPP; 3802 } 3803 3804 static void 3805 filt_sordetach(struct knote *kn) 3806 { 3807 struct socket *so = kn->kn_fp->f_data; 3808 3809 so_rdknl_lock(so); 3810 knlist_remove(&so->so_rdsel.si_note, kn, 1); 3811 if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note)) 3812 so->so_rcv.sb_flags &= ~SB_KNOTE; 3813 so_rdknl_unlock(so); 3814 } 3815 3816 /*ARGSUSED*/ 3817 static int 3818 filt_soread(struct knote *kn, long hint) 3819 { 3820 struct socket *so; 3821 3822 so = kn->kn_fp->f_data; 3823 3824 if (SOLISTENING(so)) { 3825 SOCK_LOCK_ASSERT(so); 3826 kn->kn_data = so->sol_qlen; 3827 if (so->so_error) { 3828 kn->kn_flags |= EV_EOF; 3829 kn->kn_fflags = so->so_error; 3830 return (1); 3831 } 3832 return (!TAILQ_EMPTY(&so->sol_comp)); 3833 } 3834 3835 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 3836 3837 kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl; 3838 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3839 kn->kn_flags |= EV_EOF; 3840 kn->kn_fflags = so->so_error; 3841 return (1); 3842 } else if (so->so_error) /* temporary udp error */ 3843 return (1); 3844 3845 if (kn->kn_sfflags & NOTE_LOWAT) { 3846 if (kn->kn_data >= kn->kn_sdata) 3847 return (1); 3848 } else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat) 3849 return (1); 3850 3851 /* This hook returning non-zero indicates an event, not error */ 3852 return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD)); 3853 } 3854 3855 static void 3856 filt_sowdetach(struct knote *kn) 3857 { 3858 struct socket *so = kn->kn_fp->f_data; 3859 3860 so_wrknl_lock(so); 3861 knlist_remove(&so->so_wrsel.si_note, kn, 1); 3862 if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note)) 3863 so->so_snd.sb_flags &= ~SB_KNOTE; 3864 so_wrknl_unlock(so); 3865 } 3866 3867 /*ARGSUSED*/ 3868 static int 3869 filt_sowrite(struct knote *kn, long hint) 3870 { 3871 struct socket *so; 3872 3873 so = kn->kn_fp->f_data; 3874 3875 if (SOLISTENING(so)) 3876 return (0); 3877 3878 SOCKBUF_LOCK_ASSERT(&so->so_snd); 3879 kn->kn_data = sbspace(&so->so_snd); 3880 3881 hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE); 3882 3883 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 3884 kn->kn_flags |= EV_EOF; 3885 kn->kn_fflags = so->so_error; 3886 return (1); 3887 } else if (so->so_error) /* temporary udp error */ 3888 return (1); 3889 else if (((so->so_state & SS_ISCONNECTED) == 0) && 3890 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 3891 return (0); 3892 else if (kn->kn_sfflags & NOTE_LOWAT) 3893 return (kn->kn_data >= kn->kn_sdata); 3894 else 3895 return (kn->kn_data >= so->so_snd.sb_lowat); 3896 } 3897 3898 static int 3899 filt_soempty(struct knote *kn, long hint) 3900 { 3901 struct socket *so; 3902 3903 so = kn->kn_fp->f_data; 3904 3905 if (SOLISTENING(so)) 3906 return (1); 3907 3908 SOCKBUF_LOCK_ASSERT(&so->so_snd); 3909 kn->kn_data = sbused(&so->so_snd); 3910 3911 if (kn->kn_data == 0) 3912 return (1); 3913 else 3914 return (0); 3915 } 3916 3917 int 3918 socheckuid(struct socket *so, uid_t uid) 3919 { 3920 3921 if (so == NULL) 3922 return (EPERM); 3923 if (so->so_cred->cr_uid != uid) 3924 return (EPERM); 3925 return (0); 3926 } 3927 3928 /* 3929 * These functions are used by protocols to notify the socket layer (and its 3930 * consumers) of state changes in the sockets driven by protocol-side events. 3931 */ 3932 3933 /* 3934 * Procedures to manipulate state flags of socket and do appropriate wakeups. 3935 * 3936 * Normal sequence from the active (originating) side is that 3937 * soisconnecting() is called during processing of connect() call, resulting 3938 * in an eventual call to soisconnected() if/when the connection is 3939 * established. When the connection is torn down soisdisconnecting() is 3940 * called during processing of disconnect() call, and soisdisconnected() is 3941 * called when the connection to the peer is totally severed. The semantics 3942 * of these routines are such that connectionless protocols can call 3943 * soisconnected() and soisdisconnected() only, bypassing the in-progress 3944 * calls when setting up a ``connection'' takes no time. 3945 * 3946 * From the passive side, a socket is created with two queues of sockets: 3947 * so_incomp for connections in progress and so_comp for connections already 3948 * made and awaiting user acceptance. As a protocol is preparing incoming 3949 * connections, it creates a socket structure queued on so_incomp by calling 3950 * sonewconn(). When the connection is established, soisconnected() is 3951 * called, and transfers the socket structure to so_comp, making it available 3952 * to accept(). 3953 * 3954 * If a socket is closed with sockets on either so_incomp or so_comp, these 3955 * sockets are dropped. 3956 * 3957 * If higher-level protocols are implemented in the kernel, the wakeups done 3958 * here will sometimes cause software-interrupt process scheduling. 3959 */ 3960 void 3961 soisconnecting(struct socket *so) 3962 { 3963 3964 SOCK_LOCK(so); 3965 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 3966 so->so_state |= SS_ISCONNECTING; 3967 SOCK_UNLOCK(so); 3968 } 3969 3970 void 3971 soisconnected(struct socket *so) 3972 { 3973 3974 SOCK_LOCK(so); 3975 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 3976 so->so_state |= SS_ISCONNECTED; 3977 3978 if (so->so_qstate == SQ_INCOMP) { 3979 struct socket *head = so->so_listen; 3980 int ret; 3981 3982 KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so)); 3983 /* 3984 * Promoting a socket from incomplete queue to complete, we 3985 * need to go through reverse order of locking. We first do 3986 * trylock, and if that doesn't succeed, we go the hard way 3987 * leaving a reference and rechecking consistency after proper 3988 * locking. 3989 */ 3990 if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) { 3991 soref(head); 3992 SOCK_UNLOCK(so); 3993 SOLISTEN_LOCK(head); 3994 SOCK_LOCK(so); 3995 if (__predict_false(head != so->so_listen)) { 3996 /* 3997 * The socket went off the listen queue, 3998 * should be lost race to close(2) of sol. 3999 * The socket is about to soabort(). 4000 */ 4001 SOCK_UNLOCK(so); 4002 sorele(head); 4003 return; 4004 } 4005 /* Not the last one, as so holds a ref. */ 4006 refcount_release(&head->so_count); 4007 } 4008 again: 4009 if ((so->so_options & SO_ACCEPTFILTER) == 0) { 4010 TAILQ_REMOVE(&head->sol_incomp, so, so_list); 4011 head->sol_incqlen--; 4012 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 4013 head->sol_qlen++; 4014 so->so_qstate = SQ_COMP; 4015 SOCK_UNLOCK(so); 4016 solisten_wakeup(head); /* unlocks */ 4017 } else { 4018 SOCKBUF_LOCK(&so->so_rcv); 4019 soupcall_set(so, SO_RCV, 4020 head->sol_accept_filter->accf_callback, 4021 head->sol_accept_filter_arg); 4022 so->so_options &= ~SO_ACCEPTFILTER; 4023 ret = head->sol_accept_filter->accf_callback(so, 4024 head->sol_accept_filter_arg, M_NOWAIT); 4025 if (ret == SU_ISCONNECTED) { 4026 soupcall_clear(so, SO_RCV); 4027 SOCKBUF_UNLOCK(&so->so_rcv); 4028 goto again; 4029 } 4030 SOCKBUF_UNLOCK(&so->so_rcv); 4031 SOCK_UNLOCK(so); 4032 SOLISTEN_UNLOCK(head); 4033 } 4034 return; 4035 } 4036 SOCK_UNLOCK(so); 4037 wakeup(&so->so_timeo); 4038 sorwakeup(so); 4039 sowwakeup(so); 4040 } 4041 4042 void 4043 soisdisconnecting(struct socket *so) 4044 { 4045 4046 SOCK_LOCK(so); 4047 so->so_state &= ~SS_ISCONNECTING; 4048 so->so_state |= SS_ISDISCONNECTING; 4049 4050 if (!SOLISTENING(so)) { 4051 SOCKBUF_LOCK(&so->so_rcv); 4052 socantrcvmore_locked(so); 4053 SOCKBUF_LOCK(&so->so_snd); 4054 socantsendmore_locked(so); 4055 } 4056 SOCK_UNLOCK(so); 4057 wakeup(&so->so_timeo); 4058 } 4059 4060 void 4061 soisdisconnected(struct socket *so) 4062 { 4063 4064 SOCK_LOCK(so); 4065 4066 /* 4067 * There is at least one reader of so_state that does not 4068 * acquire socket lock, namely soreceive_generic(). Ensure 4069 * that it never sees all flags that track connection status 4070 * cleared, by ordering the update with a barrier semantic of 4071 * our release thread fence. 4072 */ 4073 so->so_state |= SS_ISDISCONNECTED; 4074 atomic_thread_fence_rel(); 4075 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 4076 4077 if (!SOLISTENING(so)) { 4078 SOCK_UNLOCK(so); 4079 SOCKBUF_LOCK(&so->so_rcv); 4080 socantrcvmore_locked(so); 4081 SOCKBUF_LOCK(&so->so_snd); 4082 sbdrop_locked(&so->so_snd, sbused(&so->so_snd)); 4083 socantsendmore_locked(so); 4084 } else 4085 SOCK_UNLOCK(so); 4086 wakeup(&so->so_timeo); 4087 } 4088 4089 /* 4090 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 4091 */ 4092 struct sockaddr * 4093 sodupsockaddr(const struct sockaddr *sa, int mflags) 4094 { 4095 struct sockaddr *sa2; 4096 4097 sa2 = malloc(sa->sa_len, M_SONAME, mflags); 4098 if (sa2) 4099 bcopy(sa, sa2, sa->sa_len); 4100 return sa2; 4101 } 4102 4103 /* 4104 * Register per-socket destructor. 4105 */ 4106 void 4107 sodtor_set(struct socket *so, so_dtor_t *func) 4108 { 4109 4110 SOCK_LOCK_ASSERT(so); 4111 so->so_dtor = func; 4112 } 4113 4114 /* 4115 * Register per-socket buffer upcalls. 4116 */ 4117 void 4118 soupcall_set(struct socket *so, int which, so_upcall_t func, void *arg) 4119 { 4120 struct sockbuf *sb; 4121 4122 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 4123 4124 switch (which) { 4125 case SO_RCV: 4126 sb = &so->so_rcv; 4127 break; 4128 case SO_SND: 4129 sb = &so->so_snd; 4130 break; 4131 default: 4132 panic("soupcall_set: bad which"); 4133 } 4134 SOCKBUF_LOCK_ASSERT(sb); 4135 sb->sb_upcall = func; 4136 sb->sb_upcallarg = arg; 4137 sb->sb_flags |= SB_UPCALL; 4138 } 4139 4140 void 4141 soupcall_clear(struct socket *so, int which) 4142 { 4143 struct sockbuf *sb; 4144 4145 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 4146 4147 switch (which) { 4148 case SO_RCV: 4149 sb = &so->so_rcv; 4150 break; 4151 case SO_SND: 4152 sb = &so->so_snd; 4153 break; 4154 default: 4155 panic("soupcall_clear: bad which"); 4156 } 4157 SOCKBUF_LOCK_ASSERT(sb); 4158 KASSERT(sb->sb_upcall != NULL, 4159 ("%s: so %p no upcall to clear", __func__, so)); 4160 sb->sb_upcall = NULL; 4161 sb->sb_upcallarg = NULL; 4162 sb->sb_flags &= ~SB_UPCALL; 4163 } 4164 4165 void 4166 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg) 4167 { 4168 4169 SOLISTEN_LOCK_ASSERT(so); 4170 so->sol_upcall = func; 4171 so->sol_upcallarg = arg; 4172 } 4173 4174 static void 4175 so_rdknl_lock(void *arg) 4176 { 4177 struct socket *so = arg; 4178 4179 if (SOLISTENING(so)) 4180 SOCK_LOCK(so); 4181 else 4182 SOCKBUF_LOCK(&so->so_rcv); 4183 } 4184 4185 static void 4186 so_rdknl_unlock(void *arg) 4187 { 4188 struct socket *so = arg; 4189 4190 if (SOLISTENING(so)) 4191 SOCK_UNLOCK(so); 4192 else 4193 SOCKBUF_UNLOCK(&so->so_rcv); 4194 } 4195 4196 static void 4197 so_rdknl_assert_lock(void *arg, int what) 4198 { 4199 struct socket *so = arg; 4200 4201 if (what == LA_LOCKED) { 4202 if (SOLISTENING(so)) 4203 SOCK_LOCK_ASSERT(so); 4204 else 4205 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 4206 } else { 4207 if (SOLISTENING(so)) 4208 SOCK_UNLOCK_ASSERT(so); 4209 else 4210 SOCKBUF_UNLOCK_ASSERT(&so->so_rcv); 4211 } 4212 } 4213 4214 static void 4215 so_wrknl_lock(void *arg) 4216 { 4217 struct socket *so = arg; 4218 4219 if (SOLISTENING(so)) 4220 SOCK_LOCK(so); 4221 else 4222 SOCKBUF_LOCK(&so->so_snd); 4223 } 4224 4225 static void 4226 so_wrknl_unlock(void *arg) 4227 { 4228 struct socket *so = arg; 4229 4230 if (SOLISTENING(so)) 4231 SOCK_UNLOCK(so); 4232 else 4233 SOCKBUF_UNLOCK(&so->so_snd); 4234 } 4235 4236 static void 4237 so_wrknl_assert_lock(void *arg, int what) 4238 { 4239 struct socket *so = arg; 4240 4241 if (what == LA_LOCKED) { 4242 if (SOLISTENING(so)) 4243 SOCK_LOCK_ASSERT(so); 4244 else 4245 SOCKBUF_LOCK_ASSERT(&so->so_snd); 4246 } else { 4247 if (SOLISTENING(so)) 4248 SOCK_UNLOCK_ASSERT(so); 4249 else 4250 SOCKBUF_UNLOCK_ASSERT(&so->so_snd); 4251 } 4252 } 4253 4254 /* 4255 * Create an external-format (``xsocket'') structure using the information in 4256 * the kernel-format socket structure pointed to by so. This is done to 4257 * reduce the spew of irrelevant information over this interface, to isolate 4258 * user code from changes in the kernel structure, and potentially to provide 4259 * information-hiding if we decide that some of this information should be 4260 * hidden from users. 4261 */ 4262 void 4263 sotoxsocket(struct socket *so, struct xsocket *xso) 4264 { 4265 4266 bzero(xso, sizeof(*xso)); 4267 xso->xso_len = sizeof *xso; 4268 xso->xso_so = (uintptr_t)so; 4269 xso->so_type = so->so_type; 4270 xso->so_options = so->so_options; 4271 xso->so_linger = so->so_linger; 4272 xso->so_state = so->so_state; 4273 xso->so_pcb = (uintptr_t)so->so_pcb; 4274 xso->xso_protocol = so->so_proto->pr_protocol; 4275 xso->xso_family = so->so_proto->pr_domain->dom_family; 4276 xso->so_timeo = so->so_timeo; 4277 xso->so_error = so->so_error; 4278 xso->so_uid = so->so_cred->cr_uid; 4279 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 4280 if (SOLISTENING(so)) { 4281 xso->so_qlen = so->sol_qlen; 4282 xso->so_incqlen = so->sol_incqlen; 4283 xso->so_qlimit = so->sol_qlimit; 4284 xso->so_oobmark = 0; 4285 } else { 4286 xso->so_state |= so->so_qstate; 4287 xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0; 4288 xso->so_oobmark = so->so_oobmark; 4289 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 4290 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 4291 } 4292 } 4293 4294 struct sockbuf * 4295 so_sockbuf_rcv(struct socket *so) 4296 { 4297 4298 return (&so->so_rcv); 4299 } 4300 4301 struct sockbuf * 4302 so_sockbuf_snd(struct socket *so) 4303 { 4304 4305 return (&so->so_snd); 4306 } 4307 4308 int 4309 so_state_get(const struct socket *so) 4310 { 4311 4312 return (so->so_state); 4313 } 4314 4315 void 4316 so_state_set(struct socket *so, int val) 4317 { 4318 4319 so->so_state = val; 4320 } 4321 4322 int 4323 so_options_get(const struct socket *so) 4324 { 4325 4326 return (so->so_options); 4327 } 4328 4329 void 4330 so_options_set(struct socket *so, int val) 4331 { 4332 4333 so->so_options = val; 4334 } 4335 4336 int 4337 so_error_get(const struct socket *so) 4338 { 4339 4340 return (so->so_error); 4341 } 4342 4343 void 4344 so_error_set(struct socket *so, int val) 4345 { 4346 4347 so->so_error = val; 4348 } 4349 4350 int 4351 so_linger_get(const struct socket *so) 4352 { 4353 4354 return (so->so_linger); 4355 } 4356 4357 void 4358 so_linger_set(struct socket *so, int val) 4359 { 4360 4361 KASSERT(val >= 0 && val <= USHRT_MAX && val <= (INT_MAX / hz), 4362 ("%s: val %d out of range", __func__, val)); 4363 4364 so->so_linger = val; 4365 } 4366 4367 struct protosw * 4368 so_protosw_get(const struct socket *so) 4369 { 4370 4371 return (so->so_proto); 4372 } 4373 4374 void 4375 so_protosw_set(struct socket *so, struct protosw *val) 4376 { 4377 4378 so->so_proto = val; 4379 } 4380 4381 void 4382 so_sorwakeup(struct socket *so) 4383 { 4384 4385 sorwakeup(so); 4386 } 4387 4388 void 4389 so_sowwakeup(struct socket *so) 4390 { 4391 4392 sowwakeup(so); 4393 } 4394 4395 void 4396 so_sorwakeup_locked(struct socket *so) 4397 { 4398 4399 sorwakeup_locked(so); 4400 } 4401 4402 void 4403 so_sowwakeup_locked(struct socket *so) 4404 { 4405 4406 sowwakeup_locked(so); 4407 } 4408 4409 void 4410 so_lock(struct socket *so) 4411 { 4412 4413 SOCK_LOCK(so); 4414 } 4415 4416 void 4417 so_unlock(struct socket *so) 4418 { 4419 4420 SOCK_UNLOCK(so); 4421 } 4422