1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993 3 * The Regents of the University of California. 4 * Copyright (c) 2004 The FreeBSD Foundation 5 * Copyright (c) 2004-2008 Robert N. M. Watson 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 33 */ 34 35 /* 36 * Comments on the socket life cycle: 37 * 38 * soalloc() sets of socket layer state for a socket, called only by 39 * socreate() and sonewconn(). Socket layer private. 40 * 41 * sodealloc() tears down socket layer state for a socket, called only by 42 * sofree() and sonewconn(). Socket layer private. 43 * 44 * pru_attach() associates protocol layer state with an allocated socket; 45 * called only once, may fail, aborting socket allocation. This is called 46 * from socreate() and sonewconn(). Socket layer private. 47 * 48 * pru_detach() disassociates protocol layer state from an attached socket, 49 * and will be called exactly once for sockets in which pru_attach() has 50 * been successfully called. If pru_attach() returned an error, 51 * pru_detach() will not be called. Socket layer private. 52 * 53 * pru_abort() and pru_close() notify the protocol layer that the last 54 * consumer of a socket is starting to tear down the socket, and that the 55 * protocol should terminate the connection. Historically, pru_abort() also 56 * detached protocol state from the socket state, but this is no longer the 57 * case. 58 * 59 * socreate() creates a socket and attaches protocol state. This is a public 60 * interface that may be used by socket layer consumers to create new 61 * sockets. 62 * 63 * sonewconn() creates a socket and attaches protocol state. This is a 64 * public interface that may be used by protocols to create new sockets when 65 * a new connection is received and will be available for accept() on a 66 * listen socket. 67 * 68 * soclose() destroys a socket after possibly waiting for it to disconnect. 69 * This is a public interface that socket consumers should use to close and 70 * release a socket when done with it. 71 * 72 * soabort() destroys a socket without waiting for it to disconnect (used 73 * only for incoming connections that are already partially or fully 74 * connected). This is used internally by the socket layer when clearing 75 * listen socket queues (due to overflow or close on the listen socket), but 76 * is also a public interface protocols may use to abort connections in 77 * their incomplete listen queues should they no longer be required. Sockets 78 * placed in completed connection listen queues should not be aborted for 79 * reasons described in the comment above the soclose() implementation. This 80 * is not a general purpose close routine, and except in the specific 81 * circumstances described here, should not be used. 82 * 83 * sofree() will free a socket and its protocol state if all references on 84 * the socket have been released, and is the public interface to attempt to 85 * free a socket when a reference is removed. This is a socket layer private 86 * interface. 87 * 88 * NOTE: In addition to socreate() and soclose(), which provide a single 89 * socket reference to the consumer to be managed as required, there are two 90 * calls to explicitly manage socket references, soref(), and sorele(). 91 * Currently, these are generally required only when transitioning a socket 92 * from a listen queue to a file descriptor, in order to prevent garbage 93 * collection of the socket at an untimely moment. For a number of reasons, 94 * these interfaces are not preferred, and should be avoided. 95 * 96 * NOTE: With regard to VNETs the general rule is that callers do not set 97 * curvnet. Exceptions to this rule include soabort(), sodisconnect(), 98 * sofree() (and with that sorele(), sotryfree()), as well as sonewconn() 99 * and sorflush(), which are usually called from a pre-set VNET context. 100 * sopoll() currently does not need a VNET context to be set. 101 */ 102 103 #include <sys/cdefs.h> 104 __FBSDID("$FreeBSD$"); 105 106 #include "opt_inet.h" 107 #include "opt_inet6.h" 108 #include "opt_zero.h" 109 #include "opt_compat.h" 110 111 #include <sys/param.h> 112 #include <sys/systm.h> 113 #include <sys/fcntl.h> 114 #include <sys/limits.h> 115 #include <sys/lock.h> 116 #include <sys/mac.h> 117 #include <sys/malloc.h> 118 #include <sys/mbuf.h> 119 #include <sys/mutex.h> 120 #include <sys/domain.h> 121 #include <sys/file.h> /* for struct knote */ 122 #include <sys/kernel.h> 123 #include <sys/event.h> 124 #include <sys/eventhandler.h> 125 #include <sys/poll.h> 126 #include <sys/proc.h> 127 #include <sys/protosw.h> 128 #include <sys/socket.h> 129 #include <sys/socketvar.h> 130 #include <sys/resourcevar.h> 131 #include <net/route.h> 132 #include <sys/signalvar.h> 133 #include <sys/stat.h> 134 #include <sys/sx.h> 135 #include <sys/sysctl.h> 136 #include <sys/uio.h> 137 #include <sys/jail.h> 138 139 #include <net/vnet.h> 140 141 #include <security/mac/mac_framework.h> 142 143 #include <vm/uma.h> 144 145 #ifdef COMPAT_FREEBSD32 146 #include <sys/mount.h> 147 #include <sys/sysent.h> 148 #include <compat/freebsd32/freebsd32.h> 149 #endif 150 151 static int soreceive_rcvoob(struct socket *so, struct uio *uio, 152 int flags); 153 154 static void filt_sordetach(struct knote *kn); 155 static int filt_soread(struct knote *kn, long hint); 156 static void filt_sowdetach(struct knote *kn); 157 static int filt_sowrite(struct knote *kn, long hint); 158 static int filt_solisten(struct knote *kn, long hint); 159 160 static struct filterops solisten_filtops = { 161 .f_isfd = 1, 162 .f_detach = filt_sordetach, 163 .f_event = filt_solisten, 164 }; 165 static struct filterops soread_filtops = { 166 .f_isfd = 1, 167 .f_detach = filt_sordetach, 168 .f_event = filt_soread, 169 }; 170 static struct filterops sowrite_filtops = { 171 .f_isfd = 1, 172 .f_detach = filt_sowdetach, 173 .f_event = filt_sowrite, 174 }; 175 176 uma_zone_t socket_zone; 177 so_gen_t so_gencnt; /* generation count for sockets */ 178 179 int maxsockets; 180 181 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 182 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 183 184 #define VNET_SO_ASSERT(so) \ 185 VNET_ASSERT(curvnet != NULL, \ 186 ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so))); 187 188 static int somaxconn = SOMAXCONN; 189 static int sysctl_somaxconn(SYSCTL_HANDLER_ARGS); 190 /* XXX: we dont have SYSCTL_USHORT */ 191 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLTYPE_UINT | CTLFLAG_RW, 192 0, sizeof(int), sysctl_somaxconn, "I", "Maximum pending socket connection " 193 "queue size"); 194 static int numopensockets; 195 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, 196 &numopensockets, 0, "Number of open sockets"); 197 #ifdef ZERO_COPY_SOCKETS 198 /* These aren't static because they're used in other files. */ 199 int so_zero_copy_send = 1; 200 int so_zero_copy_receive = 1; 201 SYSCTL_NODE(_kern_ipc, OID_AUTO, zero_copy, CTLFLAG_RD, 0, 202 "Zero copy controls"); 203 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, receive, CTLFLAG_RW, 204 &so_zero_copy_receive, 0, "Enable zero copy receive"); 205 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, send, CTLFLAG_RW, 206 &so_zero_copy_send, 0, "Enable zero copy send"); 207 #endif /* ZERO_COPY_SOCKETS */ 208 209 /* 210 * accept_mtx locks down per-socket fields relating to accept queues. See 211 * socketvar.h for an annotation of the protected fields of struct socket. 212 */ 213 struct mtx accept_mtx; 214 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF); 215 216 /* 217 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket 218 * so_gencnt field. 219 */ 220 static struct mtx so_global_mtx; 221 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); 222 223 /* 224 * General IPC sysctl name space, used by sockets and a variety of other IPC 225 * types. 226 */ 227 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC"); 228 229 /* 230 * Sysctl to get and set the maximum global sockets limit. Notify protocols 231 * of the change so that they can update their dependent limits as required. 232 */ 233 static int 234 sysctl_maxsockets(SYSCTL_HANDLER_ARGS) 235 { 236 int error, newmaxsockets; 237 238 newmaxsockets = maxsockets; 239 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req); 240 if (error == 0 && req->newptr) { 241 if (newmaxsockets > maxsockets) { 242 maxsockets = newmaxsockets; 243 if (maxsockets > ((maxfiles / 4) * 3)) { 244 maxfiles = (maxsockets * 5) / 4; 245 maxfilesperproc = (maxfiles * 9) / 10; 246 } 247 EVENTHANDLER_INVOKE(maxsockets_change); 248 } else 249 error = EINVAL; 250 } 251 return (error); 252 } 253 254 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, CTLTYPE_INT|CTLFLAG_RW, 255 &maxsockets, 0, sysctl_maxsockets, "IU", 256 "Maximum number of sockets avaliable"); 257 258 /* 259 * Initialise maxsockets. This SYSINIT must be run after 260 * tunable_mbinit(). 261 */ 262 static void 263 init_maxsockets(void *ignored) 264 { 265 266 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 267 maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters)); 268 } 269 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 270 271 /* 272 * Socket operation routines. These routines are called by the routines in 273 * sys_socket.c or from a system process, and implement the semantics of 274 * socket operations by switching out to the protocol specific routines. 275 */ 276 277 /* 278 * Get a socket structure from our zone, and initialize it. Note that it 279 * would probably be better to allocate socket and PCB at the same time, but 280 * I'm not convinced that all the protocols can be easily modified to do 281 * this. 282 * 283 * soalloc() returns a socket with a ref count of 0. 284 */ 285 static struct socket * 286 soalloc(struct vnet *vnet) 287 { 288 struct socket *so; 289 290 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO); 291 if (so == NULL) 292 return (NULL); 293 #ifdef MAC 294 if (mac_socket_init(so, M_NOWAIT) != 0) { 295 uma_zfree(socket_zone, so); 296 return (NULL); 297 } 298 #endif 299 SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd"); 300 SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv"); 301 sx_init(&so->so_snd.sb_sx, "so_snd_sx"); 302 sx_init(&so->so_rcv.sb_sx, "so_rcv_sx"); 303 TAILQ_INIT(&so->so_aiojobq); 304 mtx_lock(&so_global_mtx); 305 so->so_gencnt = ++so_gencnt; 306 ++numopensockets; 307 #ifdef VIMAGE 308 VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p", 309 __func__, __LINE__, so)); 310 vnet->vnet_sockcnt++; 311 so->so_vnet = vnet; 312 #endif 313 mtx_unlock(&so_global_mtx); 314 return (so); 315 } 316 317 /* 318 * Free the storage associated with a socket at the socket layer, tear down 319 * locks, labels, etc. All protocol state is assumed already to have been 320 * torn down (and possibly never set up) by the caller. 321 */ 322 static void 323 sodealloc(struct socket *so) 324 { 325 326 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); 327 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL")); 328 329 mtx_lock(&so_global_mtx); 330 so->so_gencnt = ++so_gencnt; 331 --numopensockets; /* Could be below, but faster here. */ 332 #ifdef VIMAGE 333 VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p", 334 __func__, __LINE__, so)); 335 so->so_vnet->vnet_sockcnt--; 336 #endif 337 mtx_unlock(&so_global_mtx); 338 if (so->so_rcv.sb_hiwat) 339 (void)chgsbsize(so->so_cred->cr_uidinfo, 340 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 341 if (so->so_snd.sb_hiwat) 342 (void)chgsbsize(so->so_cred->cr_uidinfo, 343 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 344 #ifdef INET 345 /* remove acccept filter if one is present. */ 346 if (so->so_accf != NULL) 347 do_setopt_accept_filter(so, NULL); 348 #endif 349 #ifdef MAC 350 mac_socket_destroy(so); 351 #endif 352 crfree(so->so_cred); 353 sx_destroy(&so->so_snd.sb_sx); 354 sx_destroy(&so->so_rcv.sb_sx); 355 SOCKBUF_LOCK_DESTROY(&so->so_snd); 356 SOCKBUF_LOCK_DESTROY(&so->so_rcv); 357 uma_zfree(socket_zone, so); 358 } 359 360 /* 361 * socreate returns a socket with a ref count of 1. The socket should be 362 * closed with soclose(). 363 */ 364 int 365 socreate(int dom, struct socket **aso, int type, int proto, 366 struct ucred *cred, struct thread *td) 367 { 368 struct protosw *prp; 369 struct socket *so; 370 int error; 371 372 if (proto) 373 prp = pffindproto(dom, proto, type); 374 else 375 prp = pffindtype(dom, type); 376 377 if (prp == NULL || prp->pr_usrreqs->pru_attach == NULL || 378 prp->pr_usrreqs->pru_attach == pru_attach_notsupp) 379 return (EPROTONOSUPPORT); 380 381 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0) 382 return (EPROTONOSUPPORT); 383 384 if (prp->pr_type != type) 385 return (EPROTOTYPE); 386 so = soalloc(CRED_TO_VNET(cred)); 387 if (so == NULL) 388 return (ENOBUFS); 389 390 TAILQ_INIT(&so->so_incomp); 391 TAILQ_INIT(&so->so_comp); 392 so->so_type = type; 393 so->so_cred = crhold(cred); 394 if ((prp->pr_domain->dom_family == PF_INET) || 395 (prp->pr_domain->dom_family == PF_INET6) || 396 (prp->pr_domain->dom_family == PF_ROUTE)) 397 so->so_fibnum = td->td_proc->p_fibnum; 398 else 399 so->so_fibnum = 0; 400 so->so_proto = prp; 401 #ifdef MAC 402 mac_socket_create(cred, so); 403 #endif 404 knlist_init_mtx(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv)); 405 knlist_init_mtx(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd)); 406 so->so_count = 1; 407 /* 408 * Auto-sizing of socket buffers is managed by the protocols and 409 * the appropriate flags must be set in the pru_attach function. 410 */ 411 CURVNET_SET(so->so_vnet); 412 error = (*prp->pr_usrreqs->pru_attach)(so, proto, td); 413 CURVNET_RESTORE(); 414 if (error) { 415 KASSERT(so->so_count == 1, ("socreate: so_count %d", 416 so->so_count)); 417 so->so_count = 0; 418 sodealloc(so); 419 return (error); 420 } 421 *aso = so; 422 return (0); 423 } 424 425 #ifdef REGRESSION 426 static int regression_sonewconn_earlytest = 1; 427 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW, 428 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test"); 429 #endif 430 431 /* 432 * When an attempt at a new connection is noted on a socket which accepts 433 * connections, sonewconn is called. If the connection is possible (subject 434 * to space constraints, etc.) then we allocate a new structure, propoerly 435 * linked into the data structure of the original socket, and return this. 436 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED. 437 * 438 * Note: the ref count on the socket is 0 on return. 439 */ 440 struct socket * 441 sonewconn(struct socket *head, int connstatus) 442 { 443 struct socket *so; 444 int over; 445 446 ACCEPT_LOCK(); 447 over = (head->so_qlen > 3 * head->so_qlimit / 2); 448 ACCEPT_UNLOCK(); 449 #ifdef REGRESSION 450 if (regression_sonewconn_earlytest && over) 451 #else 452 if (over) 453 #endif 454 return (NULL); 455 VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p", 456 __func__, __LINE__, head)); 457 so = soalloc(head->so_vnet); 458 if (so == NULL) 459 return (NULL); 460 if ((head->so_options & SO_ACCEPTFILTER) != 0) 461 connstatus = 0; 462 so->so_head = head; 463 so->so_type = head->so_type; 464 so->so_options = head->so_options &~ SO_ACCEPTCONN; 465 so->so_linger = head->so_linger; 466 so->so_state = head->so_state | SS_NOFDREF; 467 so->so_fibnum = head->so_fibnum; 468 so->so_proto = head->so_proto; 469 so->so_cred = crhold(head->so_cred); 470 #ifdef MAC 471 mac_socket_newconn(head, so); 472 #endif 473 knlist_init_mtx(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv)); 474 knlist_init_mtx(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd)); 475 VNET_SO_ASSERT(head); 476 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) || 477 (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 478 sodealloc(so); 479 return (NULL); 480 } 481 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; 482 so->so_snd.sb_lowat = head->so_snd.sb_lowat; 483 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; 484 so->so_snd.sb_timeo = head->so_snd.sb_timeo; 485 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE; 486 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE; 487 so->so_state |= connstatus; 488 ACCEPT_LOCK(); 489 if (connstatus) { 490 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 491 so->so_qstate |= SQ_COMP; 492 head->so_qlen++; 493 } else { 494 /* 495 * Keep removing sockets from the head until there's room for 496 * us to insert on the tail. In pre-locking revisions, this 497 * was a simple if(), but as we could be racing with other 498 * threads and soabort() requires dropping locks, we must 499 * loop waiting for the condition to be true. 500 */ 501 while (head->so_incqlen > head->so_qlimit) { 502 struct socket *sp; 503 sp = TAILQ_FIRST(&head->so_incomp); 504 TAILQ_REMOVE(&head->so_incomp, sp, so_list); 505 head->so_incqlen--; 506 sp->so_qstate &= ~SQ_INCOMP; 507 sp->so_head = NULL; 508 ACCEPT_UNLOCK(); 509 soabort(sp); 510 ACCEPT_LOCK(); 511 } 512 TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list); 513 so->so_qstate |= SQ_INCOMP; 514 head->so_incqlen++; 515 } 516 ACCEPT_UNLOCK(); 517 if (connstatus) { 518 sorwakeup(head); 519 wakeup_one(&head->so_timeo); 520 } 521 return (so); 522 } 523 524 int 525 sobind(struct socket *so, struct sockaddr *nam, struct thread *td) 526 { 527 int error; 528 529 CURVNET_SET(so->so_vnet); 530 error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td); 531 CURVNET_RESTORE(); 532 return error; 533 } 534 535 /* 536 * solisten() transitions a socket from a non-listening state to a listening 537 * state, but can also be used to update the listen queue depth on an 538 * existing listen socket. The protocol will call back into the sockets 539 * layer using solisten_proto_check() and solisten_proto() to check and set 540 * socket-layer listen state. Call backs are used so that the protocol can 541 * acquire both protocol and socket layer locks in whatever order is required 542 * by the protocol. 543 * 544 * Protocol implementors are advised to hold the socket lock across the 545 * socket-layer test and set to avoid races at the socket layer. 546 */ 547 int 548 solisten(struct socket *so, int backlog, struct thread *td) 549 { 550 int error; 551 552 CURVNET_SET(so->so_vnet); 553 error = (*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td); 554 CURVNET_RESTORE(); 555 return error; 556 } 557 558 int 559 solisten_proto_check(struct socket *so) 560 { 561 562 SOCK_LOCK_ASSERT(so); 563 564 if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 565 SS_ISDISCONNECTING)) 566 return (EINVAL); 567 return (0); 568 } 569 570 void 571 solisten_proto(struct socket *so, int backlog) 572 { 573 574 SOCK_LOCK_ASSERT(so); 575 576 if (backlog < 0 || backlog > somaxconn) 577 backlog = somaxconn; 578 so->so_qlimit = backlog; 579 so->so_options |= SO_ACCEPTCONN; 580 } 581 582 /* 583 * Evaluate the reference count and named references on a socket; if no 584 * references remain, free it. This should be called whenever a reference is 585 * released, such as in sorele(), but also when named reference flags are 586 * cleared in socket or protocol code. 587 * 588 * sofree() will free the socket if: 589 * 590 * - There are no outstanding file descriptor references or related consumers 591 * (so_count == 0). 592 * 593 * - The socket has been closed by user space, if ever open (SS_NOFDREF). 594 * 595 * - The protocol does not have an outstanding strong reference on the socket 596 * (SS_PROTOREF). 597 * 598 * - The socket is not in a completed connection queue, so a process has been 599 * notified that it is present. If it is removed, the user process may 600 * block in accept() despite select() saying the socket was ready. 601 */ 602 void 603 sofree(struct socket *so) 604 { 605 struct protosw *pr = so->so_proto; 606 struct socket *head; 607 608 ACCEPT_LOCK_ASSERT(); 609 SOCK_LOCK_ASSERT(so); 610 611 if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 || 612 (so->so_state & SS_PROTOREF) || (so->so_qstate & SQ_COMP)) { 613 SOCK_UNLOCK(so); 614 ACCEPT_UNLOCK(); 615 return; 616 } 617 618 head = so->so_head; 619 if (head != NULL) { 620 KASSERT((so->so_qstate & SQ_COMP) != 0 || 621 (so->so_qstate & SQ_INCOMP) != 0, 622 ("sofree: so_head != NULL, but neither SQ_COMP nor " 623 "SQ_INCOMP")); 624 KASSERT((so->so_qstate & SQ_COMP) == 0 || 625 (so->so_qstate & SQ_INCOMP) == 0, 626 ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP")); 627 TAILQ_REMOVE(&head->so_incomp, so, so_list); 628 head->so_incqlen--; 629 so->so_qstate &= ~SQ_INCOMP; 630 so->so_head = NULL; 631 } 632 KASSERT((so->so_qstate & SQ_COMP) == 0 && 633 (so->so_qstate & SQ_INCOMP) == 0, 634 ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)", 635 so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP)); 636 if (so->so_options & SO_ACCEPTCONN) { 637 KASSERT((TAILQ_EMPTY(&so->so_comp)), ("sofree: so_comp populated")); 638 KASSERT((TAILQ_EMPTY(&so->so_incomp)), ("sofree: so_comp populated")); 639 } 640 SOCK_UNLOCK(so); 641 ACCEPT_UNLOCK(); 642 643 VNET_SO_ASSERT(so); 644 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 645 (*pr->pr_domain->dom_dispose)(so->so_rcv.sb_mb); 646 if (pr->pr_usrreqs->pru_detach != NULL) 647 (*pr->pr_usrreqs->pru_detach)(so); 648 649 /* 650 * From this point on, we assume that no other references to this 651 * socket exist anywhere else in the stack. Therefore, no locks need 652 * to be acquired or held. 653 * 654 * We used to do a lot of socket buffer and socket locking here, as 655 * well as invoke sorflush() and perform wakeups. The direct call to 656 * dom_dispose() and sbrelease_internal() are an inlining of what was 657 * necessary from sorflush(). 658 * 659 * Notice that the socket buffer and kqueue state are torn down 660 * before calling pru_detach. This means that protocols shold not 661 * assume they can perform socket wakeups, etc, in their detach code. 662 */ 663 sbdestroy(&so->so_snd, so); 664 sbdestroy(&so->so_rcv, so); 665 seldrain(&so->so_snd.sb_sel); 666 seldrain(&so->so_rcv.sb_sel); 667 knlist_destroy(&so->so_rcv.sb_sel.si_note); 668 knlist_destroy(&so->so_snd.sb_sel.si_note); 669 sodealloc(so); 670 } 671 672 /* 673 * Close a socket on last file table reference removal. Initiate disconnect 674 * if connected. Free socket when disconnect complete. 675 * 676 * This function will sorele() the socket. Note that soclose() may be called 677 * prior to the ref count reaching zero. The actual socket structure will 678 * not be freed until the ref count reaches zero. 679 */ 680 int 681 soclose(struct socket *so) 682 { 683 int error = 0; 684 685 KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter")); 686 687 CURVNET_SET(so->so_vnet); 688 funsetown(&so->so_sigio); 689 if (so->so_state & SS_ISCONNECTED) { 690 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 691 error = sodisconnect(so); 692 if (error) { 693 if (error == ENOTCONN) 694 error = 0; 695 goto drop; 696 } 697 } 698 if (so->so_options & SO_LINGER) { 699 if ((so->so_state & SS_ISDISCONNECTING) && 700 (so->so_state & SS_NBIO)) 701 goto drop; 702 while (so->so_state & SS_ISCONNECTED) { 703 error = tsleep(&so->so_timeo, 704 PSOCK | PCATCH, "soclos", so->so_linger * hz); 705 if (error) 706 break; 707 } 708 } 709 } 710 711 drop: 712 if (so->so_proto->pr_usrreqs->pru_close != NULL) 713 (*so->so_proto->pr_usrreqs->pru_close)(so); 714 if (so->so_options & SO_ACCEPTCONN) { 715 struct socket *sp; 716 ACCEPT_LOCK(); 717 while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) { 718 TAILQ_REMOVE(&so->so_incomp, sp, so_list); 719 so->so_incqlen--; 720 sp->so_qstate &= ~SQ_INCOMP; 721 sp->so_head = NULL; 722 ACCEPT_UNLOCK(); 723 soabort(sp); 724 ACCEPT_LOCK(); 725 } 726 while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) { 727 TAILQ_REMOVE(&so->so_comp, sp, so_list); 728 so->so_qlen--; 729 sp->so_qstate &= ~SQ_COMP; 730 sp->so_head = NULL; 731 ACCEPT_UNLOCK(); 732 soabort(sp); 733 ACCEPT_LOCK(); 734 } 735 ACCEPT_UNLOCK(); 736 } 737 ACCEPT_LOCK(); 738 SOCK_LOCK(so); 739 KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF")); 740 so->so_state |= SS_NOFDREF; 741 sorele(so); 742 CURVNET_RESTORE(); 743 return (error); 744 } 745 746 /* 747 * soabort() is used to abruptly tear down a connection, such as when a 748 * resource limit is reached (listen queue depth exceeded), or if a listen 749 * socket is closed while there are sockets waiting to be accepted. 750 * 751 * This interface is tricky, because it is called on an unreferenced socket, 752 * and must be called only by a thread that has actually removed the socket 753 * from the listen queue it was on, or races with other threads are risked. 754 * 755 * This interface will call into the protocol code, so must not be called 756 * with any socket locks held. Protocols do call it while holding their own 757 * recursible protocol mutexes, but this is something that should be subject 758 * to review in the future. 759 */ 760 void 761 soabort(struct socket *so) 762 { 763 764 /* 765 * In as much as is possible, assert that no references to this 766 * socket are held. This is not quite the same as asserting that the 767 * current thread is responsible for arranging for no references, but 768 * is as close as we can get for now. 769 */ 770 KASSERT(so->so_count == 0, ("soabort: so_count")); 771 KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF")); 772 KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF")); 773 KASSERT((so->so_state & SQ_COMP) == 0, ("soabort: SQ_COMP")); 774 KASSERT((so->so_state & SQ_INCOMP) == 0, ("soabort: SQ_INCOMP")); 775 VNET_SO_ASSERT(so); 776 777 if (so->so_proto->pr_usrreqs->pru_abort != NULL) 778 (*so->so_proto->pr_usrreqs->pru_abort)(so); 779 ACCEPT_LOCK(); 780 SOCK_LOCK(so); 781 sofree(so); 782 } 783 784 int 785 soaccept(struct socket *so, struct sockaddr **nam) 786 { 787 int error; 788 789 SOCK_LOCK(so); 790 KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF")); 791 so->so_state &= ~SS_NOFDREF; 792 SOCK_UNLOCK(so); 793 794 CURVNET_SET(so->so_vnet); 795 error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam); 796 CURVNET_RESTORE(); 797 return (error); 798 } 799 800 int 801 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td) 802 { 803 int error; 804 805 if (so->so_options & SO_ACCEPTCONN) 806 return (EOPNOTSUPP); 807 808 CURVNET_SET(so->so_vnet); 809 /* 810 * If protocol is connection-based, can only connect once. 811 * Otherwise, if connected, try to disconnect first. This allows 812 * user to disconnect by connecting to, e.g., a null address. 813 */ 814 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 815 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 816 (error = sodisconnect(so)))) { 817 error = EISCONN; 818 } else { 819 /* 820 * Prevent accumulated error from previous connection from 821 * biting us. 822 */ 823 so->so_error = 0; 824 error = (*so->so_proto->pr_usrreqs->pru_connect)(so, nam, td); 825 } 826 CURVNET_RESTORE(); 827 828 return (error); 829 } 830 831 int 832 soconnect2(struct socket *so1, struct socket *so2) 833 { 834 int error; 835 836 CURVNET_SET(so1->so_vnet); 837 error = (*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2); 838 CURVNET_RESTORE(); 839 return (error); 840 } 841 842 int 843 sodisconnect(struct socket *so) 844 { 845 int error; 846 847 if ((so->so_state & SS_ISCONNECTED) == 0) 848 return (ENOTCONN); 849 if (so->so_state & SS_ISDISCONNECTING) 850 return (EALREADY); 851 VNET_SO_ASSERT(so); 852 error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so); 853 return (error); 854 } 855 856 #ifdef ZERO_COPY_SOCKETS 857 struct so_zerocopy_stats{ 858 int size_ok; 859 int align_ok; 860 int found_ifp; 861 }; 862 struct so_zerocopy_stats so_zerocp_stats = {0,0,0}; 863 #include <netinet/in.h> 864 #include <net/route.h> 865 #include <netinet/in_pcb.h> 866 #include <vm/vm.h> 867 #include <vm/vm_page.h> 868 #include <vm/vm_object.h> 869 870 /* 871 * sosend_copyin() is only used if zero copy sockets are enabled. Otherwise 872 * sosend_dgram() and sosend_generic() use m_uiotombuf(). 873 * 874 * sosend_copyin() accepts a uio and prepares an mbuf chain holding part or 875 * all of the data referenced by the uio. If desired, it uses zero-copy. 876 * *space will be updated to reflect data copied in. 877 * 878 * NB: If atomic I/O is requested, the caller must already have checked that 879 * space can hold resid bytes. 880 * 881 * NB: In the event of an error, the caller may need to free the partial 882 * chain pointed to by *mpp. The contents of both *uio and *space may be 883 * modified even in the case of an error. 884 */ 885 static int 886 sosend_copyin(struct uio *uio, struct mbuf **retmp, int atomic, long *space, 887 int flags) 888 { 889 struct mbuf *m, **mp, *top; 890 long len, resid; 891 int error; 892 #ifdef ZERO_COPY_SOCKETS 893 int cow_send; 894 #endif 895 896 *retmp = top = NULL; 897 mp = ⊤ 898 len = 0; 899 resid = uio->uio_resid; 900 error = 0; 901 do { 902 #ifdef ZERO_COPY_SOCKETS 903 cow_send = 0; 904 #endif /* ZERO_COPY_SOCKETS */ 905 if (resid >= MINCLSIZE) { 906 #ifdef ZERO_COPY_SOCKETS 907 if (top == NULL) { 908 m = m_gethdr(M_WAITOK, MT_DATA); 909 m->m_pkthdr.len = 0; 910 m->m_pkthdr.rcvif = NULL; 911 } else 912 m = m_get(M_WAITOK, MT_DATA); 913 if (so_zero_copy_send && 914 resid>=PAGE_SIZE && 915 *space>=PAGE_SIZE && 916 uio->uio_iov->iov_len>=PAGE_SIZE) { 917 so_zerocp_stats.size_ok++; 918 so_zerocp_stats.align_ok++; 919 cow_send = socow_setup(m, uio); 920 len = cow_send; 921 } 922 if (!cow_send) { 923 m_clget(m, M_WAITOK); 924 len = min(min(MCLBYTES, resid), *space); 925 } 926 #else /* ZERO_COPY_SOCKETS */ 927 if (top == NULL) { 928 m = m_getcl(M_WAIT, MT_DATA, M_PKTHDR); 929 m->m_pkthdr.len = 0; 930 m->m_pkthdr.rcvif = NULL; 931 } else 932 m = m_getcl(M_WAIT, MT_DATA, 0); 933 len = min(min(MCLBYTES, resid), *space); 934 #endif /* ZERO_COPY_SOCKETS */ 935 } else { 936 if (top == NULL) { 937 m = m_gethdr(M_WAIT, MT_DATA); 938 m->m_pkthdr.len = 0; 939 m->m_pkthdr.rcvif = NULL; 940 941 len = min(min(MHLEN, resid), *space); 942 /* 943 * For datagram protocols, leave room 944 * for protocol headers in first mbuf. 945 */ 946 if (atomic && m && len < MHLEN) 947 MH_ALIGN(m, len); 948 } else { 949 m = m_get(M_WAIT, MT_DATA); 950 len = min(min(MLEN, resid), *space); 951 } 952 } 953 if (m == NULL) { 954 error = ENOBUFS; 955 goto out; 956 } 957 958 *space -= len; 959 #ifdef ZERO_COPY_SOCKETS 960 if (cow_send) 961 error = 0; 962 else 963 #endif /* ZERO_COPY_SOCKETS */ 964 error = uiomove(mtod(m, void *), (int)len, uio); 965 resid = uio->uio_resid; 966 m->m_len = len; 967 *mp = m; 968 top->m_pkthdr.len += len; 969 if (error) 970 goto out; 971 mp = &m->m_next; 972 if (resid <= 0) { 973 if (flags & MSG_EOR) 974 top->m_flags |= M_EOR; 975 break; 976 } 977 } while (*space > 0 && atomic); 978 out: 979 *retmp = top; 980 return (error); 981 } 982 #endif /*ZERO_COPY_SOCKETS*/ 983 984 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT) 985 986 int 987 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, 988 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 989 { 990 long space, resid; 991 int clen = 0, error, dontroute; 992 #ifdef ZERO_COPY_SOCKETS 993 int atomic = sosendallatonce(so) || top; 994 #endif 995 996 KASSERT(so->so_type == SOCK_DGRAM, ("sodgram_send: !SOCK_DGRAM")); 997 KASSERT(so->so_proto->pr_flags & PR_ATOMIC, 998 ("sodgram_send: !PR_ATOMIC")); 999 1000 if (uio != NULL) 1001 resid = uio->uio_resid; 1002 else 1003 resid = top->m_pkthdr.len; 1004 /* 1005 * In theory resid should be unsigned. However, space must be 1006 * signed, as it might be less than 0 if we over-committed, and we 1007 * must use a signed comparison of space and resid. On the other 1008 * hand, a negative resid causes us to loop sending 0-length 1009 * segments to the protocol. 1010 */ 1011 if (resid < 0) { 1012 error = EINVAL; 1013 goto out; 1014 } 1015 1016 dontroute = 1017 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0; 1018 if (td != NULL) 1019 td->td_ru.ru_msgsnd++; 1020 if (control != NULL) 1021 clen = control->m_len; 1022 1023 SOCKBUF_LOCK(&so->so_snd); 1024 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1025 SOCKBUF_UNLOCK(&so->so_snd); 1026 error = EPIPE; 1027 goto out; 1028 } 1029 if (so->so_error) { 1030 error = so->so_error; 1031 so->so_error = 0; 1032 SOCKBUF_UNLOCK(&so->so_snd); 1033 goto out; 1034 } 1035 if ((so->so_state & SS_ISCONNECTED) == 0) { 1036 /* 1037 * `sendto' and `sendmsg' is allowed on a connection-based 1038 * socket if it supports implied connect. Return ENOTCONN if 1039 * not connected and no address is supplied. 1040 */ 1041 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1042 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1043 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1044 !(resid == 0 && clen != 0)) { 1045 SOCKBUF_UNLOCK(&so->so_snd); 1046 error = ENOTCONN; 1047 goto out; 1048 } 1049 } else if (addr == NULL) { 1050 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1051 error = ENOTCONN; 1052 else 1053 error = EDESTADDRREQ; 1054 SOCKBUF_UNLOCK(&so->so_snd); 1055 goto out; 1056 } 1057 } 1058 1059 /* 1060 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a 1061 * problem and need fixing. 1062 */ 1063 space = sbspace(&so->so_snd); 1064 if (flags & MSG_OOB) 1065 space += 1024; 1066 space -= clen; 1067 SOCKBUF_UNLOCK(&so->so_snd); 1068 if (resid > space) { 1069 error = EMSGSIZE; 1070 goto out; 1071 } 1072 if (uio == NULL) { 1073 resid = 0; 1074 if (flags & MSG_EOR) 1075 top->m_flags |= M_EOR; 1076 } else { 1077 #ifdef ZERO_COPY_SOCKETS 1078 error = sosend_copyin(uio, &top, atomic, &space, flags); 1079 if (error) 1080 goto out; 1081 #else 1082 /* 1083 * Copy the data from userland into a mbuf chain. 1084 * If no data is to be copied in, a single empty mbuf 1085 * is returned. 1086 */ 1087 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr, 1088 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0))); 1089 if (top == NULL) { 1090 error = EFAULT; /* only possible error */ 1091 goto out; 1092 } 1093 space -= resid - uio->uio_resid; 1094 #endif 1095 resid = uio->uio_resid; 1096 } 1097 KASSERT(resid == 0, ("sosend_dgram: resid != 0")); 1098 /* 1099 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock 1100 * than with. 1101 */ 1102 if (dontroute) { 1103 SOCK_LOCK(so); 1104 so->so_options |= SO_DONTROUTE; 1105 SOCK_UNLOCK(so); 1106 } 1107 /* 1108 * XXX all the SBS_CANTSENDMORE checks previously done could be out 1109 * of date. We could have recieved a reset packet in an interrupt or 1110 * maybe we slept while doing page faults in uiomove() etc. We could 1111 * probably recheck again inside the locking protection here, but 1112 * there are probably other places that this also happens. We must 1113 * rethink this. 1114 */ 1115 VNET_SO_ASSERT(so); 1116 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1117 (flags & MSG_OOB) ? PRUS_OOB : 1118 /* 1119 * If the user set MSG_EOF, the protocol understands this flag and 1120 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND. 1121 */ 1122 ((flags & MSG_EOF) && 1123 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1124 (resid <= 0)) ? 1125 PRUS_EOF : 1126 /* If there is more to send set PRUS_MORETOCOME */ 1127 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1128 top, addr, control, td); 1129 if (dontroute) { 1130 SOCK_LOCK(so); 1131 so->so_options &= ~SO_DONTROUTE; 1132 SOCK_UNLOCK(so); 1133 } 1134 clen = 0; 1135 control = NULL; 1136 top = NULL; 1137 out: 1138 if (top != NULL) 1139 m_freem(top); 1140 if (control != NULL) 1141 m_freem(control); 1142 return (error); 1143 } 1144 1145 /* 1146 * Send on a socket. If send must go all at once and message is larger than 1147 * send buffering, then hard error. Lock against other senders. If must go 1148 * all at once and not enough room now, then inform user that this would 1149 * block and do nothing. Otherwise, if nonblocking, send as much as 1150 * possible. The data to be sent is described by "uio" if nonzero, otherwise 1151 * by the mbuf chain "top" (which must be null if uio is not). Data provided 1152 * in mbuf chain must be small enough to send all at once. 1153 * 1154 * Returns nonzero on error, timeout or signal; callers must check for short 1155 * counts if EINTR/ERESTART are returned. Data and control buffers are freed 1156 * on return. 1157 */ 1158 int 1159 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio, 1160 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1161 { 1162 long space, resid; 1163 int clen = 0, error, dontroute; 1164 int atomic = sosendallatonce(so) || top; 1165 1166 if (uio != NULL) 1167 resid = uio->uio_resid; 1168 else 1169 resid = top->m_pkthdr.len; 1170 /* 1171 * In theory resid should be unsigned. However, space must be 1172 * signed, as it might be less than 0 if we over-committed, and we 1173 * must use a signed comparison of space and resid. On the other 1174 * hand, a negative resid causes us to loop sending 0-length 1175 * segments to the protocol. 1176 * 1177 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 1178 * type sockets since that's an error. 1179 */ 1180 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 1181 error = EINVAL; 1182 goto out; 1183 } 1184 1185 dontroute = 1186 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 1187 (so->so_proto->pr_flags & PR_ATOMIC); 1188 if (td != NULL) 1189 td->td_ru.ru_msgsnd++; 1190 if (control != NULL) 1191 clen = control->m_len; 1192 1193 error = sblock(&so->so_snd, SBLOCKWAIT(flags)); 1194 if (error) 1195 goto out; 1196 1197 restart: 1198 do { 1199 SOCKBUF_LOCK(&so->so_snd); 1200 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1201 SOCKBUF_UNLOCK(&so->so_snd); 1202 error = EPIPE; 1203 goto release; 1204 } 1205 if (so->so_error) { 1206 error = so->so_error; 1207 so->so_error = 0; 1208 SOCKBUF_UNLOCK(&so->so_snd); 1209 goto release; 1210 } 1211 if ((so->so_state & SS_ISCONNECTED) == 0) { 1212 /* 1213 * `sendto' and `sendmsg' is allowed on a connection- 1214 * based socket if it supports implied connect. 1215 * Return ENOTCONN if not connected and no address is 1216 * supplied. 1217 */ 1218 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1219 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1220 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1221 !(resid == 0 && clen != 0)) { 1222 SOCKBUF_UNLOCK(&so->so_snd); 1223 error = ENOTCONN; 1224 goto release; 1225 } 1226 } else if (addr == NULL) { 1227 SOCKBUF_UNLOCK(&so->so_snd); 1228 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1229 error = ENOTCONN; 1230 else 1231 error = EDESTADDRREQ; 1232 goto release; 1233 } 1234 } 1235 space = sbspace(&so->so_snd); 1236 if (flags & MSG_OOB) 1237 space += 1024; 1238 if ((atomic && resid > so->so_snd.sb_hiwat) || 1239 clen > so->so_snd.sb_hiwat) { 1240 SOCKBUF_UNLOCK(&so->so_snd); 1241 error = EMSGSIZE; 1242 goto release; 1243 } 1244 if (space < resid + clen && 1245 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 1246 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) { 1247 SOCKBUF_UNLOCK(&so->so_snd); 1248 error = EWOULDBLOCK; 1249 goto release; 1250 } 1251 error = sbwait(&so->so_snd); 1252 SOCKBUF_UNLOCK(&so->so_snd); 1253 if (error) 1254 goto release; 1255 goto restart; 1256 } 1257 SOCKBUF_UNLOCK(&so->so_snd); 1258 space -= clen; 1259 do { 1260 if (uio == NULL) { 1261 resid = 0; 1262 if (flags & MSG_EOR) 1263 top->m_flags |= M_EOR; 1264 } else { 1265 #ifdef ZERO_COPY_SOCKETS 1266 error = sosend_copyin(uio, &top, atomic, 1267 &space, flags); 1268 if (error != 0) 1269 goto release; 1270 #else 1271 /* 1272 * Copy the data from userland into a mbuf 1273 * chain. If no data is to be copied in, 1274 * a single empty mbuf is returned. 1275 */ 1276 top = m_uiotombuf(uio, M_WAITOK, space, 1277 (atomic ? max_hdr : 0), 1278 (atomic ? M_PKTHDR : 0) | 1279 ((flags & MSG_EOR) ? M_EOR : 0)); 1280 if (top == NULL) { 1281 error = EFAULT; /* only possible error */ 1282 goto release; 1283 } 1284 space -= resid - uio->uio_resid; 1285 #endif 1286 resid = uio->uio_resid; 1287 } 1288 if (dontroute) { 1289 SOCK_LOCK(so); 1290 so->so_options |= SO_DONTROUTE; 1291 SOCK_UNLOCK(so); 1292 } 1293 /* 1294 * XXX all the SBS_CANTSENDMORE checks previously 1295 * done could be out of date. We could have recieved 1296 * a reset packet in an interrupt or maybe we slept 1297 * while doing page faults in uiomove() etc. We 1298 * could probably recheck again inside the locking 1299 * protection here, but there are probably other 1300 * places that this also happens. We must rethink 1301 * this. 1302 */ 1303 VNET_SO_ASSERT(so); 1304 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1305 (flags & MSG_OOB) ? PRUS_OOB : 1306 /* 1307 * If the user set MSG_EOF, the protocol understands 1308 * this flag and nothing left to send then use 1309 * PRU_SEND_EOF instead of PRU_SEND. 1310 */ 1311 ((flags & MSG_EOF) && 1312 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1313 (resid <= 0)) ? 1314 PRUS_EOF : 1315 /* If there is more to send set PRUS_MORETOCOME. */ 1316 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1317 top, addr, control, td); 1318 if (dontroute) { 1319 SOCK_LOCK(so); 1320 so->so_options &= ~SO_DONTROUTE; 1321 SOCK_UNLOCK(so); 1322 } 1323 clen = 0; 1324 control = NULL; 1325 top = NULL; 1326 if (error) 1327 goto release; 1328 } while (resid && space > 0); 1329 } while (resid); 1330 1331 release: 1332 sbunlock(&so->so_snd); 1333 out: 1334 if (top != NULL) 1335 m_freem(top); 1336 if (control != NULL) 1337 m_freem(control); 1338 return (error); 1339 } 1340 1341 int 1342 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, 1343 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1344 { 1345 int error; 1346 1347 CURVNET_SET(so->so_vnet); 1348 error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, top, 1349 control, flags, td); 1350 CURVNET_RESTORE(); 1351 return (error); 1352 } 1353 1354 /* 1355 * The part of soreceive() that implements reading non-inline out-of-band 1356 * data from a socket. For more complete comments, see soreceive(), from 1357 * which this code originated. 1358 * 1359 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is 1360 * unable to return an mbuf chain to the caller. 1361 */ 1362 static int 1363 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags) 1364 { 1365 struct protosw *pr = so->so_proto; 1366 struct mbuf *m; 1367 int error; 1368 1369 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); 1370 VNET_SO_ASSERT(so); 1371 1372 m = m_get(M_WAIT, MT_DATA); 1373 error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK); 1374 if (error) 1375 goto bad; 1376 do { 1377 #ifdef ZERO_COPY_SOCKETS 1378 if (so_zero_copy_receive) { 1379 int disposable; 1380 1381 if ((m->m_flags & M_EXT) 1382 && (m->m_ext.ext_type == EXT_DISPOSABLE)) 1383 disposable = 1; 1384 else 1385 disposable = 0; 1386 1387 error = uiomoveco(mtod(m, void *), 1388 min(uio->uio_resid, m->m_len), 1389 uio, disposable); 1390 } else 1391 #endif /* ZERO_COPY_SOCKETS */ 1392 error = uiomove(mtod(m, void *), 1393 (int) min(uio->uio_resid, m->m_len), uio); 1394 m = m_free(m); 1395 } while (uio->uio_resid && error == 0 && m); 1396 bad: 1397 if (m != NULL) 1398 m_freem(m); 1399 return (error); 1400 } 1401 1402 /* 1403 * Following replacement or removal of the first mbuf on the first mbuf chain 1404 * of a socket buffer, push necessary state changes back into the socket 1405 * buffer so that other consumers see the values consistently. 'nextrecord' 1406 * is the callers locally stored value of the original value of 1407 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. 1408 * NOTE: 'nextrecord' may be NULL. 1409 */ 1410 static __inline void 1411 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) 1412 { 1413 1414 SOCKBUF_LOCK_ASSERT(sb); 1415 /* 1416 * First, update for the new value of nextrecord. If necessary, make 1417 * it the first record. 1418 */ 1419 if (sb->sb_mb != NULL) 1420 sb->sb_mb->m_nextpkt = nextrecord; 1421 else 1422 sb->sb_mb = nextrecord; 1423 1424 /* 1425 * Now update any dependent socket buffer fields to reflect the new 1426 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the 1427 * addition of a second clause that takes care of the case where 1428 * sb_mb has been updated, but remains the last record. 1429 */ 1430 if (sb->sb_mb == NULL) { 1431 sb->sb_mbtail = NULL; 1432 sb->sb_lastrecord = NULL; 1433 } else if (sb->sb_mb->m_nextpkt == NULL) 1434 sb->sb_lastrecord = sb->sb_mb; 1435 } 1436 1437 1438 /* 1439 * Implement receive operations on a socket. We depend on the way that 1440 * records are added to the sockbuf by sbappend. In particular, each record 1441 * (mbufs linked through m_next) must begin with an address if the protocol 1442 * so specifies, followed by an optional mbuf or mbufs containing ancillary 1443 * data, and then zero or more mbufs of data. In order to allow parallelism 1444 * between network receive and copying to user space, as well as avoid 1445 * sleeping with a mutex held, we release the socket buffer mutex during the 1446 * user space copy. Although the sockbuf is locked, new data may still be 1447 * appended, and thus we must maintain consistency of the sockbuf during that 1448 * time. 1449 * 1450 * The caller may receive the data as a single mbuf chain by supplying an 1451 * mbuf **mp0 for use in returning the chain. The uio is then used only for 1452 * the count in uio_resid. 1453 */ 1454 int 1455 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio, 1456 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1457 { 1458 struct mbuf *m, **mp; 1459 int flags, len, error, offset; 1460 struct protosw *pr = so->so_proto; 1461 struct mbuf *nextrecord; 1462 int moff, type = 0; 1463 int orig_resid = uio->uio_resid; 1464 1465 mp = mp0; 1466 if (psa != NULL) 1467 *psa = NULL; 1468 if (controlp != NULL) 1469 *controlp = NULL; 1470 if (flagsp != NULL) 1471 flags = *flagsp &~ MSG_EOR; 1472 else 1473 flags = 0; 1474 if (flags & MSG_OOB) 1475 return (soreceive_rcvoob(so, uio, flags)); 1476 if (mp != NULL) 1477 *mp = NULL; 1478 if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING) 1479 && uio->uio_resid) { 1480 VNET_SO_ASSERT(so); 1481 (*pr->pr_usrreqs->pru_rcvd)(so, 0); 1482 } 1483 1484 error = sblock(&so->so_rcv, SBLOCKWAIT(flags)); 1485 if (error) 1486 return (error); 1487 1488 restart: 1489 SOCKBUF_LOCK(&so->so_rcv); 1490 m = so->so_rcv.sb_mb; 1491 /* 1492 * If we have less data than requested, block awaiting more (subject 1493 * to any timeout) if: 1494 * 1. the current count is less than the low water mark, or 1495 * 2. MSG_WAITALL is set, and it is possible to do the entire 1496 * receive operation at once if we block (resid <= hiwat). 1497 * 3. MSG_DONTWAIT is not set 1498 * If MSG_WAITALL is set but resid is larger than the receive buffer, 1499 * we have to do the receive in sections, and thus risk returning a 1500 * short count if a timeout or signal occurs after we start. 1501 */ 1502 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 1503 so->so_rcv.sb_cc < uio->uio_resid) && 1504 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat || 1505 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) && 1506 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 1507 KASSERT(m != NULL || !so->so_rcv.sb_cc, 1508 ("receive: m == %p so->so_rcv.sb_cc == %u", 1509 m, so->so_rcv.sb_cc)); 1510 if (so->so_error) { 1511 if (m != NULL) 1512 goto dontblock; 1513 error = so->so_error; 1514 if ((flags & MSG_PEEK) == 0) 1515 so->so_error = 0; 1516 SOCKBUF_UNLOCK(&so->so_rcv); 1517 goto release; 1518 } 1519 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1520 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 1521 if (m == NULL) { 1522 SOCKBUF_UNLOCK(&so->so_rcv); 1523 goto release; 1524 } else 1525 goto dontblock; 1526 } 1527 for (; m != NULL; m = m->m_next) 1528 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 1529 m = so->so_rcv.sb_mb; 1530 goto dontblock; 1531 } 1532 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 1533 (so->so_proto->pr_flags & PR_CONNREQUIRED)) { 1534 SOCKBUF_UNLOCK(&so->so_rcv); 1535 error = ENOTCONN; 1536 goto release; 1537 } 1538 if (uio->uio_resid == 0) { 1539 SOCKBUF_UNLOCK(&so->so_rcv); 1540 goto release; 1541 } 1542 if ((so->so_state & SS_NBIO) || 1543 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 1544 SOCKBUF_UNLOCK(&so->so_rcv); 1545 error = EWOULDBLOCK; 1546 goto release; 1547 } 1548 SBLASTRECORDCHK(&so->so_rcv); 1549 SBLASTMBUFCHK(&so->so_rcv); 1550 error = sbwait(&so->so_rcv); 1551 SOCKBUF_UNLOCK(&so->so_rcv); 1552 if (error) 1553 goto release; 1554 goto restart; 1555 } 1556 dontblock: 1557 /* 1558 * From this point onward, we maintain 'nextrecord' as a cache of the 1559 * pointer to the next record in the socket buffer. We must keep the 1560 * various socket buffer pointers and local stack versions of the 1561 * pointers in sync, pushing out modifications before dropping the 1562 * socket buffer mutex, and re-reading them when picking it up. 1563 * 1564 * Otherwise, we will race with the network stack appending new data 1565 * or records onto the socket buffer by using inconsistent/stale 1566 * versions of the field, possibly resulting in socket buffer 1567 * corruption. 1568 * 1569 * By holding the high-level sblock(), we prevent simultaneous 1570 * readers from pulling off the front of the socket buffer. 1571 */ 1572 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1573 if (uio->uio_td) 1574 uio->uio_td->td_ru.ru_msgrcv++; 1575 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); 1576 SBLASTRECORDCHK(&so->so_rcv); 1577 SBLASTMBUFCHK(&so->so_rcv); 1578 nextrecord = m->m_nextpkt; 1579 if (pr->pr_flags & PR_ADDR) { 1580 KASSERT(m->m_type == MT_SONAME, 1581 ("m->m_type == %d", m->m_type)); 1582 orig_resid = 0; 1583 if (psa != NULL) 1584 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 1585 M_NOWAIT); 1586 if (flags & MSG_PEEK) { 1587 m = m->m_next; 1588 } else { 1589 sbfree(&so->so_rcv, m); 1590 so->so_rcv.sb_mb = m_free(m); 1591 m = so->so_rcv.sb_mb; 1592 sockbuf_pushsync(&so->so_rcv, nextrecord); 1593 } 1594 } 1595 1596 /* 1597 * Process one or more MT_CONTROL mbufs present before any data mbufs 1598 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 1599 * just copy the data; if !MSG_PEEK, we call into the protocol to 1600 * perform externalization (or freeing if controlp == NULL). 1601 */ 1602 if (m != NULL && m->m_type == MT_CONTROL) { 1603 struct mbuf *cm = NULL, *cmn; 1604 struct mbuf **cme = &cm; 1605 1606 do { 1607 if (flags & MSG_PEEK) { 1608 if (controlp != NULL) { 1609 *controlp = m_copy(m, 0, m->m_len); 1610 controlp = &(*controlp)->m_next; 1611 } 1612 m = m->m_next; 1613 } else { 1614 sbfree(&so->so_rcv, m); 1615 so->so_rcv.sb_mb = m->m_next; 1616 m->m_next = NULL; 1617 *cme = m; 1618 cme = &(*cme)->m_next; 1619 m = so->so_rcv.sb_mb; 1620 } 1621 } while (m != NULL && m->m_type == MT_CONTROL); 1622 if ((flags & MSG_PEEK) == 0) 1623 sockbuf_pushsync(&so->so_rcv, nextrecord); 1624 while (cm != NULL) { 1625 cmn = cm->m_next; 1626 cm->m_next = NULL; 1627 if (pr->pr_domain->dom_externalize != NULL) { 1628 SOCKBUF_UNLOCK(&so->so_rcv); 1629 VNET_SO_ASSERT(so); 1630 error = (*pr->pr_domain->dom_externalize) 1631 (cm, controlp); 1632 SOCKBUF_LOCK(&so->so_rcv); 1633 } else if (controlp != NULL) 1634 *controlp = cm; 1635 else 1636 m_freem(cm); 1637 if (controlp != NULL) { 1638 orig_resid = 0; 1639 while (*controlp != NULL) 1640 controlp = &(*controlp)->m_next; 1641 } 1642 cm = cmn; 1643 } 1644 if (m != NULL) 1645 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 1646 else 1647 nextrecord = so->so_rcv.sb_mb; 1648 orig_resid = 0; 1649 } 1650 if (m != NULL) { 1651 if ((flags & MSG_PEEK) == 0) { 1652 KASSERT(m->m_nextpkt == nextrecord, 1653 ("soreceive: post-control, nextrecord !sync")); 1654 if (nextrecord == NULL) { 1655 KASSERT(so->so_rcv.sb_mb == m, 1656 ("soreceive: post-control, sb_mb!=m")); 1657 KASSERT(so->so_rcv.sb_lastrecord == m, 1658 ("soreceive: post-control, lastrecord!=m")); 1659 } 1660 } 1661 type = m->m_type; 1662 if (type == MT_OOBDATA) 1663 flags |= MSG_OOB; 1664 } else { 1665 if ((flags & MSG_PEEK) == 0) { 1666 KASSERT(so->so_rcv.sb_mb == nextrecord, 1667 ("soreceive: sb_mb != nextrecord")); 1668 if (so->so_rcv.sb_mb == NULL) { 1669 KASSERT(so->so_rcv.sb_lastrecord == NULL, 1670 ("soreceive: sb_lastercord != NULL")); 1671 } 1672 } 1673 } 1674 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1675 SBLASTRECORDCHK(&so->so_rcv); 1676 SBLASTMBUFCHK(&so->so_rcv); 1677 1678 /* 1679 * Now continue to read any data mbufs off of the head of the socket 1680 * buffer until the read request is satisfied. Note that 'type' is 1681 * used to store the type of any mbuf reads that have happened so far 1682 * such that soreceive() can stop reading if the type changes, which 1683 * causes soreceive() to return only one of regular data and inline 1684 * out-of-band data in a single socket receive operation. 1685 */ 1686 moff = 0; 1687 offset = 0; 1688 while (m != NULL && uio->uio_resid > 0 && error == 0) { 1689 /* 1690 * If the type of mbuf has changed since the last mbuf 1691 * examined ('type'), end the receive operation. 1692 */ 1693 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1694 if (m->m_type == MT_OOBDATA) { 1695 if (type != MT_OOBDATA) 1696 break; 1697 } else if (type == MT_OOBDATA) 1698 break; 1699 else 1700 KASSERT(m->m_type == MT_DATA, 1701 ("m->m_type == %d", m->m_type)); 1702 so->so_rcv.sb_state &= ~SBS_RCVATMARK; 1703 len = uio->uio_resid; 1704 if (so->so_oobmark && len > so->so_oobmark - offset) 1705 len = so->so_oobmark - offset; 1706 if (len > m->m_len - moff) 1707 len = m->m_len - moff; 1708 /* 1709 * If mp is set, just pass back the mbufs. Otherwise copy 1710 * them out via the uio, then free. Sockbuf must be 1711 * consistent here (points to current mbuf, it points to next 1712 * record) when we drop priority; we must note any additions 1713 * to the sockbuf when we block interrupts again. 1714 */ 1715 if (mp == NULL) { 1716 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1717 SBLASTRECORDCHK(&so->so_rcv); 1718 SBLASTMBUFCHK(&so->so_rcv); 1719 SOCKBUF_UNLOCK(&so->so_rcv); 1720 #ifdef ZERO_COPY_SOCKETS 1721 if (so_zero_copy_receive) { 1722 int disposable; 1723 1724 if ((m->m_flags & M_EXT) 1725 && (m->m_ext.ext_type == EXT_DISPOSABLE)) 1726 disposable = 1; 1727 else 1728 disposable = 0; 1729 1730 error = uiomoveco(mtod(m, char *) + moff, 1731 (int)len, uio, 1732 disposable); 1733 } else 1734 #endif /* ZERO_COPY_SOCKETS */ 1735 error = uiomove(mtod(m, char *) + moff, (int)len, uio); 1736 SOCKBUF_LOCK(&so->so_rcv); 1737 if (error) { 1738 /* 1739 * The MT_SONAME mbuf has already been removed 1740 * from the record, so it is necessary to 1741 * remove the data mbufs, if any, to preserve 1742 * the invariant in the case of PR_ADDR that 1743 * requires MT_SONAME mbufs at the head of 1744 * each record. 1745 */ 1746 if (m && pr->pr_flags & PR_ATOMIC && 1747 ((flags & MSG_PEEK) == 0)) 1748 (void)sbdroprecord_locked(&so->so_rcv); 1749 SOCKBUF_UNLOCK(&so->so_rcv); 1750 goto release; 1751 } 1752 } else 1753 uio->uio_resid -= len; 1754 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1755 if (len == m->m_len - moff) { 1756 if (m->m_flags & M_EOR) 1757 flags |= MSG_EOR; 1758 if (flags & MSG_PEEK) { 1759 m = m->m_next; 1760 moff = 0; 1761 } else { 1762 nextrecord = m->m_nextpkt; 1763 sbfree(&so->so_rcv, m); 1764 if (mp != NULL) { 1765 *mp = m; 1766 mp = &m->m_next; 1767 so->so_rcv.sb_mb = m = m->m_next; 1768 *mp = NULL; 1769 } else { 1770 so->so_rcv.sb_mb = m_free(m); 1771 m = so->so_rcv.sb_mb; 1772 } 1773 sockbuf_pushsync(&so->so_rcv, nextrecord); 1774 SBLASTRECORDCHK(&so->so_rcv); 1775 SBLASTMBUFCHK(&so->so_rcv); 1776 } 1777 } else { 1778 if (flags & MSG_PEEK) 1779 moff += len; 1780 else { 1781 if (mp != NULL) { 1782 int copy_flag; 1783 1784 if (flags & MSG_DONTWAIT) 1785 copy_flag = M_DONTWAIT; 1786 else 1787 copy_flag = M_WAIT; 1788 if (copy_flag == M_WAIT) 1789 SOCKBUF_UNLOCK(&so->so_rcv); 1790 *mp = m_copym(m, 0, len, copy_flag); 1791 if (copy_flag == M_WAIT) 1792 SOCKBUF_LOCK(&so->so_rcv); 1793 if (*mp == NULL) { 1794 /* 1795 * m_copym() couldn't 1796 * allocate an mbuf. Adjust 1797 * uio_resid back (it was 1798 * adjusted down by len 1799 * bytes, which we didn't end 1800 * up "copying" over). 1801 */ 1802 uio->uio_resid += len; 1803 break; 1804 } 1805 } 1806 m->m_data += len; 1807 m->m_len -= len; 1808 so->so_rcv.sb_cc -= len; 1809 } 1810 } 1811 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1812 if (so->so_oobmark) { 1813 if ((flags & MSG_PEEK) == 0) { 1814 so->so_oobmark -= len; 1815 if (so->so_oobmark == 0) { 1816 so->so_rcv.sb_state |= SBS_RCVATMARK; 1817 break; 1818 } 1819 } else { 1820 offset += len; 1821 if (offset == so->so_oobmark) 1822 break; 1823 } 1824 } 1825 if (flags & MSG_EOR) 1826 break; 1827 /* 1828 * If the MSG_WAITALL flag is set (for non-atomic socket), we 1829 * must not quit until "uio->uio_resid == 0" or an error 1830 * termination. If a signal/timeout occurs, return with a 1831 * short count but without error. Keep sockbuf locked 1832 * against other readers. 1833 */ 1834 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 1835 !sosendallatonce(so) && nextrecord == NULL) { 1836 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1837 if (so->so_error || so->so_rcv.sb_state & SBS_CANTRCVMORE) 1838 break; 1839 /* 1840 * Notify the protocol that some data has been 1841 * drained before blocking. 1842 */ 1843 if (pr->pr_flags & PR_WANTRCVD) { 1844 SOCKBUF_UNLOCK(&so->so_rcv); 1845 VNET_SO_ASSERT(so); 1846 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 1847 SOCKBUF_LOCK(&so->so_rcv); 1848 } 1849 SBLASTRECORDCHK(&so->so_rcv); 1850 SBLASTMBUFCHK(&so->so_rcv); 1851 /* 1852 * We could receive some data while was notifying 1853 * the protocol. Skip blocking in this case. 1854 */ 1855 if (so->so_rcv.sb_mb == NULL) { 1856 error = sbwait(&so->so_rcv); 1857 if (error) { 1858 SOCKBUF_UNLOCK(&so->so_rcv); 1859 goto release; 1860 } 1861 } 1862 m = so->so_rcv.sb_mb; 1863 if (m != NULL) 1864 nextrecord = m->m_nextpkt; 1865 } 1866 } 1867 1868 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1869 if (m != NULL && pr->pr_flags & PR_ATOMIC) { 1870 flags |= MSG_TRUNC; 1871 if ((flags & MSG_PEEK) == 0) 1872 (void) sbdroprecord_locked(&so->so_rcv); 1873 } 1874 if ((flags & MSG_PEEK) == 0) { 1875 if (m == NULL) { 1876 /* 1877 * First part is an inline SB_EMPTY_FIXUP(). Second 1878 * part makes sure sb_lastrecord is up-to-date if 1879 * there is still data in the socket buffer. 1880 */ 1881 so->so_rcv.sb_mb = nextrecord; 1882 if (so->so_rcv.sb_mb == NULL) { 1883 so->so_rcv.sb_mbtail = NULL; 1884 so->so_rcv.sb_lastrecord = NULL; 1885 } else if (nextrecord->m_nextpkt == NULL) 1886 so->so_rcv.sb_lastrecord = nextrecord; 1887 } 1888 SBLASTRECORDCHK(&so->so_rcv); 1889 SBLASTMBUFCHK(&so->so_rcv); 1890 /* 1891 * If soreceive() is being done from the socket callback, 1892 * then don't need to generate ACK to peer to update window, 1893 * since ACK will be generated on return to TCP. 1894 */ 1895 if (!(flags & MSG_SOCALLBCK) && 1896 (pr->pr_flags & PR_WANTRCVD)) { 1897 SOCKBUF_UNLOCK(&so->so_rcv); 1898 VNET_SO_ASSERT(so); 1899 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 1900 SOCKBUF_LOCK(&so->so_rcv); 1901 } 1902 } 1903 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1904 if (orig_resid == uio->uio_resid && orig_resid && 1905 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { 1906 SOCKBUF_UNLOCK(&so->so_rcv); 1907 goto restart; 1908 } 1909 SOCKBUF_UNLOCK(&so->so_rcv); 1910 1911 if (flagsp != NULL) 1912 *flagsp |= flags; 1913 release: 1914 sbunlock(&so->so_rcv); 1915 return (error); 1916 } 1917 1918 /* 1919 * Optimized version of soreceive() for stream (TCP) sockets. 1920 */ 1921 int 1922 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio, 1923 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1924 { 1925 int len = 0, error = 0, flags, oresid; 1926 struct sockbuf *sb; 1927 struct mbuf *m, *n = NULL; 1928 1929 /* We only do stream sockets. */ 1930 if (so->so_type != SOCK_STREAM) 1931 return (EINVAL); 1932 if (psa != NULL) 1933 *psa = NULL; 1934 if (controlp != NULL) 1935 return (EINVAL); 1936 if (flagsp != NULL) 1937 flags = *flagsp &~ MSG_EOR; 1938 else 1939 flags = 0; 1940 if (flags & MSG_OOB) 1941 return (soreceive_rcvoob(so, uio, flags)); 1942 if (mp0 != NULL) 1943 *mp0 = NULL; 1944 1945 sb = &so->so_rcv; 1946 1947 /* Prevent other readers from entering the socket. */ 1948 error = sblock(sb, SBLOCKWAIT(flags)); 1949 if (error) 1950 goto out; 1951 SOCKBUF_LOCK(sb); 1952 1953 /* Easy one, no space to copyout anything. */ 1954 if (uio->uio_resid == 0) { 1955 error = EINVAL; 1956 goto out; 1957 } 1958 oresid = uio->uio_resid; 1959 1960 /* We will never ever get anything unless we are or were connected. */ 1961 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 1962 error = ENOTCONN; 1963 goto out; 1964 } 1965 1966 restart: 1967 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1968 1969 /* Abort if socket has reported problems. */ 1970 if (so->so_error) { 1971 if (sb->sb_cc > 0) 1972 goto deliver; 1973 if (oresid > uio->uio_resid) 1974 goto out; 1975 error = so->so_error; 1976 if (!(flags & MSG_PEEK)) 1977 so->so_error = 0; 1978 goto out; 1979 } 1980 1981 /* Door is closed. Deliver what is left, if any. */ 1982 if (sb->sb_state & SBS_CANTRCVMORE) { 1983 if (sb->sb_cc > 0) 1984 goto deliver; 1985 else 1986 goto out; 1987 } 1988 1989 /* Socket buffer is empty and we shall not block. */ 1990 if (sb->sb_cc == 0 && 1991 ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) { 1992 error = EAGAIN; 1993 goto out; 1994 } 1995 1996 /* Socket buffer got some data that we shall deliver now. */ 1997 if (sb->sb_cc > 0 && !(flags & MSG_WAITALL) && 1998 ((sb->sb_flags & SS_NBIO) || 1999 (flags & (MSG_DONTWAIT|MSG_NBIO)) || 2000 sb->sb_cc >= sb->sb_lowat || 2001 sb->sb_cc >= uio->uio_resid || 2002 sb->sb_cc >= sb->sb_hiwat) ) { 2003 goto deliver; 2004 } 2005 2006 /* On MSG_WAITALL we must wait until all data or error arrives. */ 2007 if ((flags & MSG_WAITALL) && 2008 (sb->sb_cc >= uio->uio_resid || sb->sb_cc >= sb->sb_lowat)) 2009 goto deliver; 2010 2011 /* 2012 * Wait and block until (more) data comes in. 2013 * NB: Drops the sockbuf lock during wait. 2014 */ 2015 error = sbwait(sb); 2016 if (error) 2017 goto out; 2018 goto restart; 2019 2020 deliver: 2021 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2022 KASSERT(sb->sb_cc > 0, ("%s: sockbuf empty", __func__)); 2023 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__)); 2024 2025 /* Statistics. */ 2026 if (uio->uio_td) 2027 uio->uio_td->td_ru.ru_msgrcv++; 2028 2029 /* Fill uio until full or current end of socket buffer is reached. */ 2030 len = min(uio->uio_resid, sb->sb_cc); 2031 if (mp0 != NULL) { 2032 /* Dequeue as many mbufs as possible. */ 2033 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) { 2034 for (*mp0 = m = sb->sb_mb; 2035 m != NULL && m->m_len <= len; 2036 m = m->m_next) { 2037 len -= m->m_len; 2038 uio->uio_resid -= m->m_len; 2039 sbfree(sb, m); 2040 n = m; 2041 } 2042 sb->sb_mb = m; 2043 if (sb->sb_mb == NULL) 2044 SB_EMPTY_FIXUP(sb); 2045 n->m_next = NULL; 2046 } 2047 /* Copy the remainder. */ 2048 if (len > 0) { 2049 KASSERT(sb->sb_mb != NULL, 2050 ("%s: len > 0 && sb->sb_mb empty", __func__)); 2051 2052 m = m_copym(sb->sb_mb, 0, len, M_DONTWAIT); 2053 if (m == NULL) 2054 len = 0; /* Don't flush data from sockbuf. */ 2055 else 2056 uio->uio_resid -= m->m_len; 2057 if (*mp0 != NULL) 2058 n->m_next = m; 2059 else 2060 *mp0 = m; 2061 if (*mp0 == NULL) { 2062 error = ENOBUFS; 2063 goto out; 2064 } 2065 } 2066 } else { 2067 /* NB: Must unlock socket buffer as uiomove may sleep. */ 2068 SOCKBUF_UNLOCK(sb); 2069 error = m_mbuftouio(uio, sb->sb_mb, len); 2070 SOCKBUF_LOCK(sb); 2071 if (error) 2072 goto out; 2073 } 2074 SBLASTRECORDCHK(sb); 2075 SBLASTMBUFCHK(sb); 2076 2077 /* 2078 * Remove the delivered data from the socket buffer unless we 2079 * were only peeking. 2080 */ 2081 if (!(flags & MSG_PEEK)) { 2082 if (len > 0) 2083 sbdrop_locked(sb, len); 2084 2085 /* Notify protocol that we drained some data. */ 2086 if ((so->so_proto->pr_flags & PR_WANTRCVD) && 2087 (((flags & MSG_WAITALL) && uio->uio_resid > 0) || 2088 !(flags & MSG_SOCALLBCK))) { 2089 SOCKBUF_UNLOCK(sb); 2090 VNET_SO_ASSERT(so); 2091 (*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags); 2092 SOCKBUF_LOCK(sb); 2093 } 2094 } 2095 2096 /* 2097 * For MSG_WAITALL we may have to loop again and wait for 2098 * more data to come in. 2099 */ 2100 if ((flags & MSG_WAITALL) && uio->uio_resid > 0) 2101 goto restart; 2102 out: 2103 SOCKBUF_LOCK_ASSERT(sb); 2104 SBLASTRECORDCHK(sb); 2105 SBLASTMBUFCHK(sb); 2106 SOCKBUF_UNLOCK(sb); 2107 sbunlock(sb); 2108 return (error); 2109 } 2110 2111 /* 2112 * Optimized version of soreceive() for simple datagram cases from userspace. 2113 * Unlike in the stream case, we're able to drop a datagram if copyout() 2114 * fails, and because we handle datagrams atomically, we don't need to use a 2115 * sleep lock to prevent I/O interlacing. 2116 */ 2117 int 2118 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio, 2119 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2120 { 2121 struct mbuf *m, *m2; 2122 int flags, len, error; 2123 struct protosw *pr = so->so_proto; 2124 struct mbuf *nextrecord; 2125 2126 if (psa != NULL) 2127 *psa = NULL; 2128 if (controlp != NULL) 2129 *controlp = NULL; 2130 if (flagsp != NULL) 2131 flags = *flagsp &~ MSG_EOR; 2132 else 2133 flags = 0; 2134 2135 /* 2136 * For any complicated cases, fall back to the full 2137 * soreceive_generic(). 2138 */ 2139 if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB)) 2140 return (soreceive_generic(so, psa, uio, mp0, controlp, 2141 flagsp)); 2142 2143 /* 2144 * Enforce restrictions on use. 2145 */ 2146 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0, 2147 ("soreceive_dgram: wantrcvd")); 2148 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic")); 2149 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0, 2150 ("soreceive_dgram: SBS_RCVATMARK")); 2151 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0, 2152 ("soreceive_dgram: P_CONNREQUIRED")); 2153 2154 /* 2155 * Loop blocking while waiting for a datagram. 2156 */ 2157 SOCKBUF_LOCK(&so->so_rcv); 2158 while ((m = so->so_rcv.sb_mb) == NULL) { 2159 KASSERT(so->so_rcv.sb_cc == 0, 2160 ("soreceive_dgram: sb_mb NULL but sb_cc %u", 2161 so->so_rcv.sb_cc)); 2162 if (so->so_error) { 2163 error = so->so_error; 2164 so->so_error = 0; 2165 SOCKBUF_UNLOCK(&so->so_rcv); 2166 return (error); 2167 } 2168 if (so->so_rcv.sb_state & SBS_CANTRCVMORE || 2169 uio->uio_resid == 0) { 2170 SOCKBUF_UNLOCK(&so->so_rcv); 2171 return (0); 2172 } 2173 if ((so->so_state & SS_NBIO) || 2174 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2175 SOCKBUF_UNLOCK(&so->so_rcv); 2176 return (EWOULDBLOCK); 2177 } 2178 SBLASTRECORDCHK(&so->so_rcv); 2179 SBLASTMBUFCHK(&so->so_rcv); 2180 error = sbwait(&so->so_rcv); 2181 if (error) { 2182 SOCKBUF_UNLOCK(&so->so_rcv); 2183 return (error); 2184 } 2185 } 2186 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2187 2188 if (uio->uio_td) 2189 uio->uio_td->td_ru.ru_msgrcv++; 2190 SBLASTRECORDCHK(&so->so_rcv); 2191 SBLASTMBUFCHK(&so->so_rcv); 2192 nextrecord = m->m_nextpkt; 2193 if (nextrecord == NULL) { 2194 KASSERT(so->so_rcv.sb_lastrecord == m, 2195 ("soreceive_dgram: lastrecord != m")); 2196 } 2197 2198 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord, 2199 ("soreceive_dgram: m_nextpkt != nextrecord")); 2200 2201 /* 2202 * Pull 'm' and its chain off the front of the packet queue. 2203 */ 2204 so->so_rcv.sb_mb = NULL; 2205 sockbuf_pushsync(&so->so_rcv, nextrecord); 2206 2207 /* 2208 * Walk 'm's chain and free that many bytes from the socket buffer. 2209 */ 2210 for (m2 = m; m2 != NULL; m2 = m2->m_next) 2211 sbfree(&so->so_rcv, m2); 2212 2213 /* 2214 * Do a few last checks before we let go of the lock. 2215 */ 2216 SBLASTRECORDCHK(&so->so_rcv); 2217 SBLASTMBUFCHK(&so->so_rcv); 2218 SOCKBUF_UNLOCK(&so->so_rcv); 2219 2220 if (pr->pr_flags & PR_ADDR) { 2221 KASSERT(m->m_type == MT_SONAME, 2222 ("m->m_type == %d", m->m_type)); 2223 if (psa != NULL) 2224 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2225 M_NOWAIT); 2226 m = m_free(m); 2227 } 2228 if (m == NULL) { 2229 /* XXXRW: Can this happen? */ 2230 return (0); 2231 } 2232 2233 /* 2234 * Packet to copyout() is now in 'm' and it is disconnected from the 2235 * queue. 2236 * 2237 * Process one or more MT_CONTROL mbufs present before any data mbufs 2238 * in the first mbuf chain on the socket buffer. We call into the 2239 * protocol to perform externalization (or freeing if controlp == 2240 * NULL). 2241 */ 2242 if (m->m_type == MT_CONTROL) { 2243 struct mbuf *cm = NULL, *cmn; 2244 struct mbuf **cme = &cm; 2245 2246 do { 2247 m2 = m->m_next; 2248 m->m_next = NULL; 2249 *cme = m; 2250 cme = &(*cme)->m_next; 2251 m = m2; 2252 } while (m != NULL && m->m_type == MT_CONTROL); 2253 while (cm != NULL) { 2254 cmn = cm->m_next; 2255 cm->m_next = NULL; 2256 if (pr->pr_domain->dom_externalize != NULL) { 2257 error = (*pr->pr_domain->dom_externalize) 2258 (cm, controlp); 2259 } else if (controlp != NULL) 2260 *controlp = cm; 2261 else 2262 m_freem(cm); 2263 if (controlp != NULL) { 2264 while (*controlp != NULL) 2265 controlp = &(*controlp)->m_next; 2266 } 2267 cm = cmn; 2268 } 2269 } 2270 KASSERT(m->m_type == MT_DATA, ("soreceive_dgram: !data")); 2271 2272 while (m != NULL && uio->uio_resid > 0) { 2273 len = uio->uio_resid; 2274 if (len > m->m_len) 2275 len = m->m_len; 2276 error = uiomove(mtod(m, char *), (int)len, uio); 2277 if (error) { 2278 m_freem(m); 2279 return (error); 2280 } 2281 if (len == m->m_len) 2282 m = m_free(m); 2283 else { 2284 m->m_data += len; 2285 m->m_len -= len; 2286 } 2287 } 2288 if (m != NULL) 2289 flags |= MSG_TRUNC; 2290 m_freem(m); 2291 if (flagsp != NULL) 2292 *flagsp |= flags; 2293 return (0); 2294 } 2295 2296 int 2297 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, 2298 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2299 { 2300 int error; 2301 2302 CURVNET_SET(so->so_vnet); 2303 error = (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, mp0, 2304 controlp, flagsp)); 2305 CURVNET_RESTORE(); 2306 return (error); 2307 } 2308 2309 int 2310 soshutdown(struct socket *so, int how) 2311 { 2312 struct protosw *pr = so->so_proto; 2313 int error; 2314 2315 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 2316 return (EINVAL); 2317 2318 CURVNET_SET(so->so_vnet); 2319 if (pr->pr_usrreqs->pru_flush != NULL) { 2320 (*pr->pr_usrreqs->pru_flush)(so, how); 2321 } 2322 if (how != SHUT_WR) 2323 sorflush(so); 2324 if (how != SHUT_RD) { 2325 error = (*pr->pr_usrreqs->pru_shutdown)(so); 2326 CURVNET_RESTORE(); 2327 return (error); 2328 } 2329 CURVNET_RESTORE(); 2330 return (0); 2331 } 2332 2333 void 2334 sorflush(struct socket *so) 2335 { 2336 struct sockbuf *sb = &so->so_rcv; 2337 struct protosw *pr = so->so_proto; 2338 struct sockbuf asb; 2339 2340 VNET_SO_ASSERT(so); 2341 2342 /* 2343 * In order to avoid calling dom_dispose with the socket buffer mutex 2344 * held, and in order to generally avoid holding the lock for a long 2345 * time, we make a copy of the socket buffer and clear the original 2346 * (except locks, state). The new socket buffer copy won't have 2347 * initialized locks so we can only call routines that won't use or 2348 * assert those locks. 2349 * 2350 * Dislodge threads currently blocked in receive and wait to acquire 2351 * a lock against other simultaneous readers before clearing the 2352 * socket buffer. Don't let our acquire be interrupted by a signal 2353 * despite any existing socket disposition on interruptable waiting. 2354 */ 2355 socantrcvmore(so); 2356 (void) sblock(sb, SBL_WAIT | SBL_NOINTR); 2357 2358 /* 2359 * Invalidate/clear most of the sockbuf structure, but leave selinfo 2360 * and mutex data unchanged. 2361 */ 2362 SOCKBUF_LOCK(sb); 2363 bzero(&asb, offsetof(struct sockbuf, sb_startzero)); 2364 bcopy(&sb->sb_startzero, &asb.sb_startzero, 2365 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 2366 bzero(&sb->sb_startzero, 2367 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 2368 SOCKBUF_UNLOCK(sb); 2369 sbunlock(sb); 2370 2371 /* 2372 * Dispose of special rights and flush the socket buffer. Don't call 2373 * any unsafe routines (that rely on locks being initialized) on asb. 2374 */ 2375 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 2376 (*pr->pr_domain->dom_dispose)(asb.sb_mb); 2377 sbrelease_internal(&asb, so); 2378 } 2379 2380 /* 2381 * Perhaps this routine, and sooptcopyout(), below, ought to come in an 2382 * additional variant to handle the case where the option value needs to be 2383 * some kind of integer, but not a specific size. In addition to their use 2384 * here, these functions are also called by the protocol-level pr_ctloutput() 2385 * routines. 2386 */ 2387 int 2388 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen) 2389 { 2390 size_t valsize; 2391 2392 /* 2393 * If the user gives us more than we wanted, we ignore it, but if we 2394 * don't get the minimum length the caller wants, we return EINVAL. 2395 * On success, sopt->sopt_valsize is set to however much we actually 2396 * retrieved. 2397 */ 2398 if ((valsize = sopt->sopt_valsize) < minlen) 2399 return EINVAL; 2400 if (valsize > len) 2401 sopt->sopt_valsize = valsize = len; 2402 2403 if (sopt->sopt_td != NULL) 2404 return (copyin(sopt->sopt_val, buf, valsize)); 2405 2406 bcopy(sopt->sopt_val, buf, valsize); 2407 return (0); 2408 } 2409 2410 /* 2411 * Kernel version of setsockopt(2). 2412 * 2413 * XXX: optlen is size_t, not socklen_t 2414 */ 2415 int 2416 so_setsockopt(struct socket *so, int level, int optname, void *optval, 2417 size_t optlen) 2418 { 2419 struct sockopt sopt; 2420 2421 sopt.sopt_level = level; 2422 sopt.sopt_name = optname; 2423 sopt.sopt_dir = SOPT_SET; 2424 sopt.sopt_val = optval; 2425 sopt.sopt_valsize = optlen; 2426 sopt.sopt_td = NULL; 2427 return (sosetopt(so, &sopt)); 2428 } 2429 2430 int 2431 sosetopt(struct socket *so, struct sockopt *sopt) 2432 { 2433 int error, optval; 2434 struct linger l; 2435 struct timeval tv; 2436 u_long val; 2437 uint32_t val32; 2438 #ifdef MAC 2439 struct mac extmac; 2440 #endif 2441 2442 CURVNET_SET(so->so_vnet); 2443 error = 0; 2444 if (sopt->sopt_level != SOL_SOCKET) { 2445 if (so->so_proto && so->so_proto->pr_ctloutput) { 2446 error = (*so->so_proto->pr_ctloutput)(so, sopt); 2447 CURVNET_RESTORE(); 2448 return (error); 2449 } 2450 error = ENOPROTOOPT; 2451 } else { 2452 switch (sopt->sopt_name) { 2453 #ifdef INET 2454 case SO_ACCEPTFILTER: 2455 error = do_setopt_accept_filter(so, sopt); 2456 if (error) 2457 goto bad; 2458 break; 2459 #endif 2460 case SO_LINGER: 2461 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 2462 if (error) 2463 goto bad; 2464 2465 SOCK_LOCK(so); 2466 so->so_linger = l.l_linger; 2467 if (l.l_onoff) 2468 so->so_options |= SO_LINGER; 2469 else 2470 so->so_options &= ~SO_LINGER; 2471 SOCK_UNLOCK(so); 2472 break; 2473 2474 case SO_DEBUG: 2475 case SO_KEEPALIVE: 2476 case SO_DONTROUTE: 2477 case SO_USELOOPBACK: 2478 case SO_BROADCAST: 2479 case SO_REUSEADDR: 2480 case SO_REUSEPORT: 2481 case SO_OOBINLINE: 2482 case SO_TIMESTAMP: 2483 case SO_BINTIME: 2484 case SO_NOSIGPIPE: 2485 case SO_NO_DDP: 2486 case SO_NO_OFFLOAD: 2487 error = sooptcopyin(sopt, &optval, sizeof optval, 2488 sizeof optval); 2489 if (error) 2490 goto bad; 2491 SOCK_LOCK(so); 2492 if (optval) 2493 so->so_options |= sopt->sopt_name; 2494 else 2495 so->so_options &= ~sopt->sopt_name; 2496 SOCK_UNLOCK(so); 2497 break; 2498 2499 case SO_SETFIB: 2500 error = sooptcopyin(sopt, &optval, sizeof optval, 2501 sizeof optval); 2502 if (optval < 0 || optval >= rt_numfibs) { 2503 error = EINVAL; 2504 goto bad; 2505 } 2506 if (so->so_proto != NULL && 2507 ((so->so_proto->pr_domain->dom_family == PF_INET) || 2508 (so->so_proto->pr_domain->dom_family == PF_INET6) || 2509 (so->so_proto->pr_domain->dom_family == PF_ROUTE))) { 2510 so->so_fibnum = optval; 2511 /* Note: ignore error */ 2512 if (so->so_proto->pr_ctloutput) 2513 (*so->so_proto->pr_ctloutput)(so, sopt); 2514 } else { 2515 so->so_fibnum = 0; 2516 } 2517 break; 2518 2519 case SO_USER_COOKIE: 2520 error = sooptcopyin(sopt, &val32, sizeof val32, 2521 sizeof val32); 2522 if (error) 2523 goto bad; 2524 so->so_user_cookie = val32; 2525 break; 2526 2527 case SO_SNDBUF: 2528 case SO_RCVBUF: 2529 case SO_SNDLOWAT: 2530 case SO_RCVLOWAT: 2531 error = sooptcopyin(sopt, &optval, sizeof optval, 2532 sizeof optval); 2533 if (error) 2534 goto bad; 2535 2536 /* 2537 * Values < 1 make no sense for any of these options, 2538 * so disallow them. 2539 */ 2540 if (optval < 1) { 2541 error = EINVAL; 2542 goto bad; 2543 } 2544 2545 switch (sopt->sopt_name) { 2546 case SO_SNDBUF: 2547 case SO_RCVBUF: 2548 if (sbreserve(sopt->sopt_name == SO_SNDBUF ? 2549 &so->so_snd : &so->so_rcv, (u_long)optval, 2550 so, curthread) == 0) { 2551 error = ENOBUFS; 2552 goto bad; 2553 } 2554 (sopt->sopt_name == SO_SNDBUF ? &so->so_snd : 2555 &so->so_rcv)->sb_flags &= ~SB_AUTOSIZE; 2556 break; 2557 2558 /* 2559 * Make sure the low-water is never greater than the 2560 * high-water. 2561 */ 2562 case SO_SNDLOWAT: 2563 SOCKBUF_LOCK(&so->so_snd); 2564 so->so_snd.sb_lowat = 2565 (optval > so->so_snd.sb_hiwat) ? 2566 so->so_snd.sb_hiwat : optval; 2567 SOCKBUF_UNLOCK(&so->so_snd); 2568 break; 2569 case SO_RCVLOWAT: 2570 SOCKBUF_LOCK(&so->so_rcv); 2571 so->so_rcv.sb_lowat = 2572 (optval > so->so_rcv.sb_hiwat) ? 2573 so->so_rcv.sb_hiwat : optval; 2574 SOCKBUF_UNLOCK(&so->so_rcv); 2575 break; 2576 } 2577 break; 2578 2579 case SO_SNDTIMEO: 2580 case SO_RCVTIMEO: 2581 #ifdef COMPAT_FREEBSD32 2582 if (SV_CURPROC_FLAG(SV_ILP32)) { 2583 struct timeval32 tv32; 2584 2585 error = sooptcopyin(sopt, &tv32, sizeof tv32, 2586 sizeof tv32); 2587 CP(tv32, tv, tv_sec); 2588 CP(tv32, tv, tv_usec); 2589 } else 2590 #endif 2591 error = sooptcopyin(sopt, &tv, sizeof tv, 2592 sizeof tv); 2593 if (error) 2594 goto bad; 2595 2596 /* assert(hz > 0); */ 2597 if (tv.tv_sec < 0 || tv.tv_sec > INT_MAX / hz || 2598 tv.tv_usec < 0 || tv.tv_usec >= 1000000) { 2599 error = EDOM; 2600 goto bad; 2601 } 2602 /* assert(tick > 0); */ 2603 /* assert(ULONG_MAX - INT_MAX >= 1000000); */ 2604 val = (u_long)(tv.tv_sec * hz) + tv.tv_usec / tick; 2605 if (val > INT_MAX) { 2606 error = EDOM; 2607 goto bad; 2608 } 2609 if (val == 0 && tv.tv_usec != 0) 2610 val = 1; 2611 2612 switch (sopt->sopt_name) { 2613 case SO_SNDTIMEO: 2614 so->so_snd.sb_timeo = val; 2615 break; 2616 case SO_RCVTIMEO: 2617 so->so_rcv.sb_timeo = val; 2618 break; 2619 } 2620 break; 2621 2622 case SO_LABEL: 2623 #ifdef MAC 2624 error = sooptcopyin(sopt, &extmac, sizeof extmac, 2625 sizeof extmac); 2626 if (error) 2627 goto bad; 2628 error = mac_setsockopt_label(sopt->sopt_td->td_ucred, 2629 so, &extmac); 2630 #else 2631 error = EOPNOTSUPP; 2632 #endif 2633 break; 2634 2635 default: 2636 error = ENOPROTOOPT; 2637 break; 2638 } 2639 if (error == 0 && so->so_proto != NULL && 2640 so->so_proto->pr_ctloutput != NULL) { 2641 (void) ((*so->so_proto->pr_ctloutput) 2642 (so, sopt)); 2643 } 2644 } 2645 bad: 2646 CURVNET_RESTORE(); 2647 return (error); 2648 } 2649 2650 /* 2651 * Helper routine for getsockopt. 2652 */ 2653 int 2654 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 2655 { 2656 int error; 2657 size_t valsize; 2658 2659 error = 0; 2660 2661 /* 2662 * Documented get behavior is that we always return a value, possibly 2663 * truncated to fit in the user's buffer. Traditional behavior is 2664 * that we always tell the user precisely how much we copied, rather 2665 * than something useful like the total amount we had available for 2666 * her. Note that this interface is not idempotent; the entire 2667 * answer must generated ahead of time. 2668 */ 2669 valsize = min(len, sopt->sopt_valsize); 2670 sopt->sopt_valsize = valsize; 2671 if (sopt->sopt_val != NULL) { 2672 if (sopt->sopt_td != NULL) 2673 error = copyout(buf, sopt->sopt_val, valsize); 2674 else 2675 bcopy(buf, sopt->sopt_val, valsize); 2676 } 2677 return (error); 2678 } 2679 2680 int 2681 sogetopt(struct socket *so, struct sockopt *sopt) 2682 { 2683 int error, optval; 2684 struct linger l; 2685 struct timeval tv; 2686 #ifdef MAC 2687 struct mac extmac; 2688 #endif 2689 2690 CURVNET_SET(so->so_vnet); 2691 error = 0; 2692 if (sopt->sopt_level != SOL_SOCKET) { 2693 if (so->so_proto && so->so_proto->pr_ctloutput) 2694 error = (*so->so_proto->pr_ctloutput)(so, sopt); 2695 else 2696 error = ENOPROTOOPT; 2697 CURVNET_RESTORE(); 2698 return (error); 2699 } else { 2700 switch (sopt->sopt_name) { 2701 #ifdef INET 2702 case SO_ACCEPTFILTER: 2703 error = do_getopt_accept_filter(so, sopt); 2704 break; 2705 #endif 2706 case SO_LINGER: 2707 SOCK_LOCK(so); 2708 l.l_onoff = so->so_options & SO_LINGER; 2709 l.l_linger = so->so_linger; 2710 SOCK_UNLOCK(so); 2711 error = sooptcopyout(sopt, &l, sizeof l); 2712 break; 2713 2714 case SO_USELOOPBACK: 2715 case SO_DONTROUTE: 2716 case SO_DEBUG: 2717 case SO_KEEPALIVE: 2718 case SO_REUSEADDR: 2719 case SO_REUSEPORT: 2720 case SO_BROADCAST: 2721 case SO_OOBINLINE: 2722 case SO_ACCEPTCONN: 2723 case SO_TIMESTAMP: 2724 case SO_BINTIME: 2725 case SO_NOSIGPIPE: 2726 optval = so->so_options & sopt->sopt_name; 2727 integer: 2728 error = sooptcopyout(sopt, &optval, sizeof optval); 2729 break; 2730 2731 case SO_TYPE: 2732 optval = so->so_type; 2733 goto integer; 2734 2735 case SO_ERROR: 2736 SOCK_LOCK(so); 2737 optval = so->so_error; 2738 so->so_error = 0; 2739 SOCK_UNLOCK(so); 2740 goto integer; 2741 2742 case SO_SNDBUF: 2743 optval = so->so_snd.sb_hiwat; 2744 goto integer; 2745 2746 case SO_RCVBUF: 2747 optval = so->so_rcv.sb_hiwat; 2748 goto integer; 2749 2750 case SO_SNDLOWAT: 2751 optval = so->so_snd.sb_lowat; 2752 goto integer; 2753 2754 case SO_RCVLOWAT: 2755 optval = so->so_rcv.sb_lowat; 2756 goto integer; 2757 2758 case SO_SNDTIMEO: 2759 case SO_RCVTIMEO: 2760 optval = (sopt->sopt_name == SO_SNDTIMEO ? 2761 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 2762 2763 tv.tv_sec = optval / hz; 2764 tv.tv_usec = (optval % hz) * tick; 2765 #ifdef COMPAT_FREEBSD32 2766 if (SV_CURPROC_FLAG(SV_ILP32)) { 2767 struct timeval32 tv32; 2768 2769 CP(tv, tv32, tv_sec); 2770 CP(tv, tv32, tv_usec); 2771 error = sooptcopyout(sopt, &tv32, sizeof tv32); 2772 } else 2773 #endif 2774 error = sooptcopyout(sopt, &tv, sizeof tv); 2775 break; 2776 2777 case SO_LABEL: 2778 #ifdef MAC 2779 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 2780 sizeof(extmac)); 2781 if (error) 2782 goto bad; 2783 error = mac_getsockopt_label(sopt->sopt_td->td_ucred, 2784 so, &extmac); 2785 if (error) 2786 goto bad; 2787 error = sooptcopyout(sopt, &extmac, sizeof extmac); 2788 #else 2789 error = EOPNOTSUPP; 2790 #endif 2791 break; 2792 2793 case SO_PEERLABEL: 2794 #ifdef MAC 2795 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 2796 sizeof(extmac)); 2797 if (error) 2798 goto bad; 2799 error = mac_getsockopt_peerlabel( 2800 sopt->sopt_td->td_ucred, so, &extmac); 2801 if (error) 2802 goto bad; 2803 error = sooptcopyout(sopt, &extmac, sizeof extmac); 2804 #else 2805 error = EOPNOTSUPP; 2806 #endif 2807 break; 2808 2809 case SO_LISTENQLIMIT: 2810 optval = so->so_qlimit; 2811 goto integer; 2812 2813 case SO_LISTENQLEN: 2814 optval = so->so_qlen; 2815 goto integer; 2816 2817 case SO_LISTENINCQLEN: 2818 optval = so->so_incqlen; 2819 goto integer; 2820 2821 default: 2822 error = ENOPROTOOPT; 2823 break; 2824 } 2825 } 2826 #ifdef MAC 2827 bad: 2828 #endif 2829 CURVNET_RESTORE(); 2830 return (error); 2831 } 2832 2833 int 2834 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 2835 { 2836 struct mbuf *m, *m_prev; 2837 int sopt_size = sopt->sopt_valsize; 2838 2839 MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA); 2840 if (m == NULL) 2841 return ENOBUFS; 2842 if (sopt_size > MLEN) { 2843 MCLGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT); 2844 if ((m->m_flags & M_EXT) == 0) { 2845 m_free(m); 2846 return ENOBUFS; 2847 } 2848 m->m_len = min(MCLBYTES, sopt_size); 2849 } else { 2850 m->m_len = min(MLEN, sopt_size); 2851 } 2852 sopt_size -= m->m_len; 2853 *mp = m; 2854 m_prev = m; 2855 2856 while (sopt_size) { 2857 MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA); 2858 if (m == NULL) { 2859 m_freem(*mp); 2860 return ENOBUFS; 2861 } 2862 if (sopt_size > MLEN) { 2863 MCLGET(m, sopt->sopt_td != NULL ? M_WAIT : 2864 M_DONTWAIT); 2865 if ((m->m_flags & M_EXT) == 0) { 2866 m_freem(m); 2867 m_freem(*mp); 2868 return ENOBUFS; 2869 } 2870 m->m_len = min(MCLBYTES, sopt_size); 2871 } else { 2872 m->m_len = min(MLEN, sopt_size); 2873 } 2874 sopt_size -= m->m_len; 2875 m_prev->m_next = m; 2876 m_prev = m; 2877 } 2878 return (0); 2879 } 2880 2881 int 2882 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 2883 { 2884 struct mbuf *m0 = m; 2885 2886 if (sopt->sopt_val == NULL) 2887 return (0); 2888 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 2889 if (sopt->sopt_td != NULL) { 2890 int error; 2891 2892 error = copyin(sopt->sopt_val, mtod(m, char *), 2893 m->m_len); 2894 if (error != 0) { 2895 m_freem(m0); 2896 return(error); 2897 } 2898 } else 2899 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 2900 sopt->sopt_valsize -= m->m_len; 2901 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 2902 m = m->m_next; 2903 } 2904 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 2905 panic("ip6_sooptmcopyin"); 2906 return (0); 2907 } 2908 2909 int 2910 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 2911 { 2912 struct mbuf *m0 = m; 2913 size_t valsize = 0; 2914 2915 if (sopt->sopt_val == NULL) 2916 return (0); 2917 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 2918 if (sopt->sopt_td != NULL) { 2919 int error; 2920 2921 error = copyout(mtod(m, char *), sopt->sopt_val, 2922 m->m_len); 2923 if (error != 0) { 2924 m_freem(m0); 2925 return(error); 2926 } 2927 } else 2928 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 2929 sopt->sopt_valsize -= m->m_len; 2930 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 2931 valsize += m->m_len; 2932 m = m->m_next; 2933 } 2934 if (m != NULL) { 2935 /* enough soopt buffer should be given from user-land */ 2936 m_freem(m0); 2937 return(EINVAL); 2938 } 2939 sopt->sopt_valsize = valsize; 2940 return (0); 2941 } 2942 2943 /* 2944 * sohasoutofband(): protocol notifies socket layer of the arrival of new 2945 * out-of-band data, which will then notify socket consumers. 2946 */ 2947 void 2948 sohasoutofband(struct socket *so) 2949 { 2950 2951 if (so->so_sigio != NULL) 2952 pgsigio(&so->so_sigio, SIGURG, 0); 2953 selwakeuppri(&so->so_rcv.sb_sel, PSOCK); 2954 } 2955 2956 int 2957 sopoll(struct socket *so, int events, struct ucred *active_cred, 2958 struct thread *td) 2959 { 2960 2961 /* 2962 * We do not need to set or assert curvnet as long as everyone uses 2963 * sopoll_generic(). 2964 */ 2965 return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred, 2966 td)); 2967 } 2968 2969 int 2970 sopoll_generic(struct socket *so, int events, struct ucred *active_cred, 2971 struct thread *td) 2972 { 2973 int revents = 0; 2974 2975 SOCKBUF_LOCK(&so->so_snd); 2976 SOCKBUF_LOCK(&so->so_rcv); 2977 if (events & (POLLIN | POLLRDNORM)) 2978 if (soreadabledata(so)) 2979 revents |= events & (POLLIN | POLLRDNORM); 2980 2981 if (events & (POLLOUT | POLLWRNORM)) 2982 if (sowriteable(so)) 2983 revents |= events & (POLLOUT | POLLWRNORM); 2984 2985 if (events & (POLLPRI | POLLRDBAND)) 2986 if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK)) 2987 revents |= events & (POLLPRI | POLLRDBAND); 2988 2989 if ((events & POLLINIGNEOF) == 0) { 2990 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 2991 revents |= events & (POLLIN | POLLRDNORM); 2992 if (so->so_snd.sb_state & SBS_CANTSENDMORE) 2993 revents |= POLLHUP; 2994 } 2995 } 2996 2997 if (revents == 0) { 2998 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) { 2999 selrecord(td, &so->so_rcv.sb_sel); 3000 so->so_rcv.sb_flags |= SB_SEL; 3001 } 3002 3003 if (events & (POLLOUT | POLLWRNORM)) { 3004 selrecord(td, &so->so_snd.sb_sel); 3005 so->so_snd.sb_flags |= SB_SEL; 3006 } 3007 } 3008 3009 SOCKBUF_UNLOCK(&so->so_rcv); 3010 SOCKBUF_UNLOCK(&so->so_snd); 3011 return (revents); 3012 } 3013 3014 int 3015 soo_kqfilter(struct file *fp, struct knote *kn) 3016 { 3017 struct socket *so = kn->kn_fp->f_data; 3018 struct sockbuf *sb; 3019 3020 switch (kn->kn_filter) { 3021 case EVFILT_READ: 3022 if (so->so_options & SO_ACCEPTCONN) 3023 kn->kn_fop = &solisten_filtops; 3024 else 3025 kn->kn_fop = &soread_filtops; 3026 sb = &so->so_rcv; 3027 break; 3028 case EVFILT_WRITE: 3029 kn->kn_fop = &sowrite_filtops; 3030 sb = &so->so_snd; 3031 break; 3032 default: 3033 return (EINVAL); 3034 } 3035 3036 SOCKBUF_LOCK(sb); 3037 knlist_add(&sb->sb_sel.si_note, kn, 1); 3038 sb->sb_flags |= SB_KNOTE; 3039 SOCKBUF_UNLOCK(sb); 3040 return (0); 3041 } 3042 3043 /* 3044 * Some routines that return EOPNOTSUPP for entry points that are not 3045 * supported by a protocol. Fill in as needed. 3046 */ 3047 int 3048 pru_accept_notsupp(struct socket *so, struct sockaddr **nam) 3049 { 3050 3051 return EOPNOTSUPP; 3052 } 3053 3054 int 3055 pru_attach_notsupp(struct socket *so, int proto, struct thread *td) 3056 { 3057 3058 return EOPNOTSUPP; 3059 } 3060 3061 int 3062 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 3063 { 3064 3065 return EOPNOTSUPP; 3066 } 3067 3068 int 3069 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 3070 { 3071 3072 return EOPNOTSUPP; 3073 } 3074 3075 int 3076 pru_connect2_notsupp(struct socket *so1, struct socket *so2) 3077 { 3078 3079 return EOPNOTSUPP; 3080 } 3081 3082 int 3083 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, 3084 struct ifnet *ifp, struct thread *td) 3085 { 3086 3087 return EOPNOTSUPP; 3088 } 3089 3090 int 3091 pru_disconnect_notsupp(struct socket *so) 3092 { 3093 3094 return EOPNOTSUPP; 3095 } 3096 3097 int 3098 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td) 3099 { 3100 3101 return EOPNOTSUPP; 3102 } 3103 3104 int 3105 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam) 3106 { 3107 3108 return EOPNOTSUPP; 3109 } 3110 3111 int 3112 pru_rcvd_notsupp(struct socket *so, int flags) 3113 { 3114 3115 return EOPNOTSUPP; 3116 } 3117 3118 int 3119 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) 3120 { 3121 3122 return EOPNOTSUPP; 3123 } 3124 3125 int 3126 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m, 3127 struct sockaddr *addr, struct mbuf *control, struct thread *td) 3128 { 3129 3130 return EOPNOTSUPP; 3131 } 3132 3133 /* 3134 * This isn't really a ``null'' operation, but it's the default one and 3135 * doesn't do anything destructive. 3136 */ 3137 int 3138 pru_sense_null(struct socket *so, struct stat *sb) 3139 { 3140 3141 sb->st_blksize = so->so_snd.sb_hiwat; 3142 return 0; 3143 } 3144 3145 int 3146 pru_shutdown_notsupp(struct socket *so) 3147 { 3148 3149 return EOPNOTSUPP; 3150 } 3151 3152 int 3153 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam) 3154 { 3155 3156 return EOPNOTSUPP; 3157 } 3158 3159 int 3160 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio, 3161 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 3162 { 3163 3164 return EOPNOTSUPP; 3165 } 3166 3167 int 3168 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr, 3169 struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 3170 { 3171 3172 return EOPNOTSUPP; 3173 } 3174 3175 int 3176 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred, 3177 struct thread *td) 3178 { 3179 3180 return EOPNOTSUPP; 3181 } 3182 3183 static void 3184 filt_sordetach(struct knote *kn) 3185 { 3186 struct socket *so = kn->kn_fp->f_data; 3187 3188 SOCKBUF_LOCK(&so->so_rcv); 3189 knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1); 3190 if (knlist_empty(&so->so_rcv.sb_sel.si_note)) 3191 so->so_rcv.sb_flags &= ~SB_KNOTE; 3192 SOCKBUF_UNLOCK(&so->so_rcv); 3193 } 3194 3195 /*ARGSUSED*/ 3196 static int 3197 filt_soread(struct knote *kn, long hint) 3198 { 3199 struct socket *so; 3200 3201 so = kn->kn_fp->f_data; 3202 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 3203 3204 kn->kn_data = so->so_rcv.sb_cc - so->so_rcv.sb_ctl; 3205 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3206 kn->kn_flags |= EV_EOF; 3207 kn->kn_fflags = so->so_error; 3208 return (1); 3209 } else if (so->so_error) /* temporary udp error */ 3210 return (1); 3211 else if (kn->kn_sfflags & NOTE_LOWAT) 3212 return (kn->kn_data >= kn->kn_sdata); 3213 else 3214 return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat); 3215 } 3216 3217 static void 3218 filt_sowdetach(struct knote *kn) 3219 { 3220 struct socket *so = kn->kn_fp->f_data; 3221 3222 SOCKBUF_LOCK(&so->so_snd); 3223 knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1); 3224 if (knlist_empty(&so->so_snd.sb_sel.si_note)) 3225 so->so_snd.sb_flags &= ~SB_KNOTE; 3226 SOCKBUF_UNLOCK(&so->so_snd); 3227 } 3228 3229 /*ARGSUSED*/ 3230 static int 3231 filt_sowrite(struct knote *kn, long hint) 3232 { 3233 struct socket *so; 3234 3235 so = kn->kn_fp->f_data; 3236 SOCKBUF_LOCK_ASSERT(&so->so_snd); 3237 kn->kn_data = sbspace(&so->so_snd); 3238 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 3239 kn->kn_flags |= EV_EOF; 3240 kn->kn_fflags = so->so_error; 3241 return (1); 3242 } else if (so->so_error) /* temporary udp error */ 3243 return (1); 3244 else if (((so->so_state & SS_ISCONNECTED) == 0) && 3245 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 3246 return (0); 3247 else if (kn->kn_sfflags & NOTE_LOWAT) 3248 return (kn->kn_data >= kn->kn_sdata); 3249 else 3250 return (kn->kn_data >= so->so_snd.sb_lowat); 3251 } 3252 3253 /*ARGSUSED*/ 3254 static int 3255 filt_solisten(struct knote *kn, long hint) 3256 { 3257 struct socket *so = kn->kn_fp->f_data; 3258 3259 kn->kn_data = so->so_qlen; 3260 return (! TAILQ_EMPTY(&so->so_comp)); 3261 } 3262 3263 int 3264 socheckuid(struct socket *so, uid_t uid) 3265 { 3266 3267 if (so == NULL) 3268 return (EPERM); 3269 if (so->so_cred->cr_uid != uid) 3270 return (EPERM); 3271 return (0); 3272 } 3273 3274 static int 3275 sysctl_somaxconn(SYSCTL_HANDLER_ARGS) 3276 { 3277 int error; 3278 int val; 3279 3280 val = somaxconn; 3281 error = sysctl_handle_int(oidp, &val, 0, req); 3282 if (error || !req->newptr ) 3283 return (error); 3284 3285 if (val < 1 || val > USHRT_MAX) 3286 return (EINVAL); 3287 3288 somaxconn = val; 3289 return (0); 3290 } 3291 3292 /* 3293 * These functions are used by protocols to notify the socket layer (and its 3294 * consumers) of state changes in the sockets driven by protocol-side events. 3295 */ 3296 3297 /* 3298 * Procedures to manipulate state flags of socket and do appropriate wakeups. 3299 * 3300 * Normal sequence from the active (originating) side is that 3301 * soisconnecting() is called during processing of connect() call, resulting 3302 * in an eventual call to soisconnected() if/when the connection is 3303 * established. When the connection is torn down soisdisconnecting() is 3304 * called during processing of disconnect() call, and soisdisconnected() is 3305 * called when the connection to the peer is totally severed. The semantics 3306 * of these routines are such that connectionless protocols can call 3307 * soisconnected() and soisdisconnected() only, bypassing the in-progress 3308 * calls when setting up a ``connection'' takes no time. 3309 * 3310 * From the passive side, a socket is created with two queues of sockets: 3311 * so_incomp for connections in progress and so_comp for connections already 3312 * made and awaiting user acceptance. As a protocol is preparing incoming 3313 * connections, it creates a socket structure queued on so_incomp by calling 3314 * sonewconn(). When the connection is established, soisconnected() is 3315 * called, and transfers the socket structure to so_comp, making it available 3316 * to accept(). 3317 * 3318 * If a socket is closed with sockets on either so_incomp or so_comp, these 3319 * sockets are dropped. 3320 * 3321 * If higher-level protocols are implemented in the kernel, the wakeups done 3322 * here will sometimes cause software-interrupt process scheduling. 3323 */ 3324 void 3325 soisconnecting(struct socket *so) 3326 { 3327 3328 SOCK_LOCK(so); 3329 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 3330 so->so_state |= SS_ISCONNECTING; 3331 SOCK_UNLOCK(so); 3332 } 3333 3334 void 3335 soisconnected(struct socket *so) 3336 { 3337 struct socket *head; 3338 int ret; 3339 3340 restart: 3341 ACCEPT_LOCK(); 3342 SOCK_LOCK(so); 3343 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 3344 so->so_state |= SS_ISCONNECTED; 3345 head = so->so_head; 3346 if (head != NULL && (so->so_qstate & SQ_INCOMP)) { 3347 if ((so->so_options & SO_ACCEPTFILTER) == 0) { 3348 SOCK_UNLOCK(so); 3349 TAILQ_REMOVE(&head->so_incomp, so, so_list); 3350 head->so_incqlen--; 3351 so->so_qstate &= ~SQ_INCOMP; 3352 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 3353 head->so_qlen++; 3354 so->so_qstate |= SQ_COMP; 3355 ACCEPT_UNLOCK(); 3356 sorwakeup(head); 3357 wakeup_one(&head->so_timeo); 3358 } else { 3359 ACCEPT_UNLOCK(); 3360 soupcall_set(so, SO_RCV, 3361 head->so_accf->so_accept_filter->accf_callback, 3362 head->so_accf->so_accept_filter_arg); 3363 so->so_options &= ~SO_ACCEPTFILTER; 3364 ret = head->so_accf->so_accept_filter->accf_callback(so, 3365 head->so_accf->so_accept_filter_arg, M_DONTWAIT); 3366 if (ret == SU_ISCONNECTED) 3367 soupcall_clear(so, SO_RCV); 3368 SOCK_UNLOCK(so); 3369 if (ret == SU_ISCONNECTED) 3370 goto restart; 3371 } 3372 return; 3373 } 3374 SOCK_UNLOCK(so); 3375 ACCEPT_UNLOCK(); 3376 wakeup(&so->so_timeo); 3377 sorwakeup(so); 3378 sowwakeup(so); 3379 } 3380 3381 void 3382 soisdisconnecting(struct socket *so) 3383 { 3384 3385 /* 3386 * Note: This code assumes that SOCK_LOCK(so) and 3387 * SOCKBUF_LOCK(&so->so_rcv) are the same. 3388 */ 3389 SOCKBUF_LOCK(&so->so_rcv); 3390 so->so_state &= ~SS_ISCONNECTING; 3391 so->so_state |= SS_ISDISCONNECTING; 3392 so->so_rcv.sb_state |= SBS_CANTRCVMORE; 3393 sorwakeup_locked(so); 3394 SOCKBUF_LOCK(&so->so_snd); 3395 so->so_snd.sb_state |= SBS_CANTSENDMORE; 3396 sowwakeup_locked(so); 3397 wakeup(&so->so_timeo); 3398 } 3399 3400 void 3401 soisdisconnected(struct socket *so) 3402 { 3403 3404 /* 3405 * Note: This code assumes that SOCK_LOCK(so) and 3406 * SOCKBUF_LOCK(&so->so_rcv) are the same. 3407 */ 3408 SOCKBUF_LOCK(&so->so_rcv); 3409 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 3410 so->so_state |= SS_ISDISCONNECTED; 3411 so->so_rcv.sb_state |= SBS_CANTRCVMORE; 3412 sorwakeup_locked(so); 3413 SOCKBUF_LOCK(&so->so_snd); 3414 so->so_snd.sb_state |= SBS_CANTSENDMORE; 3415 sbdrop_locked(&so->so_snd, so->so_snd.sb_cc); 3416 sowwakeup_locked(so); 3417 wakeup(&so->so_timeo); 3418 } 3419 3420 /* 3421 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 3422 */ 3423 struct sockaddr * 3424 sodupsockaddr(const struct sockaddr *sa, int mflags) 3425 { 3426 struct sockaddr *sa2; 3427 3428 sa2 = malloc(sa->sa_len, M_SONAME, mflags); 3429 if (sa2) 3430 bcopy(sa, sa2, sa->sa_len); 3431 return sa2; 3432 } 3433 3434 /* 3435 * Register per-socket buffer upcalls. 3436 */ 3437 void 3438 soupcall_set(struct socket *so, int which, 3439 int (*func)(struct socket *, void *, int), void *arg) 3440 { 3441 struct sockbuf *sb; 3442 3443 switch (which) { 3444 case SO_RCV: 3445 sb = &so->so_rcv; 3446 break; 3447 case SO_SND: 3448 sb = &so->so_snd; 3449 break; 3450 default: 3451 panic("soupcall_set: bad which"); 3452 } 3453 SOCKBUF_LOCK_ASSERT(sb); 3454 #if 0 3455 /* XXX: accf_http actually wants to do this on purpose. */ 3456 KASSERT(sb->sb_upcall == NULL, ("soupcall_set: overwriting upcall")); 3457 #endif 3458 sb->sb_upcall = func; 3459 sb->sb_upcallarg = arg; 3460 sb->sb_flags |= SB_UPCALL; 3461 } 3462 3463 void 3464 soupcall_clear(struct socket *so, int which) 3465 { 3466 struct sockbuf *sb; 3467 3468 switch (which) { 3469 case SO_RCV: 3470 sb = &so->so_rcv; 3471 break; 3472 case SO_SND: 3473 sb = &so->so_snd; 3474 break; 3475 default: 3476 panic("soupcall_clear: bad which"); 3477 } 3478 SOCKBUF_LOCK_ASSERT(sb); 3479 KASSERT(sb->sb_upcall != NULL, ("soupcall_clear: no upcall to clear")); 3480 sb->sb_upcall = NULL; 3481 sb->sb_upcallarg = NULL; 3482 sb->sb_flags &= ~SB_UPCALL; 3483 } 3484 3485 /* 3486 * Create an external-format (``xsocket'') structure using the information in 3487 * the kernel-format socket structure pointed to by so. This is done to 3488 * reduce the spew of irrelevant information over this interface, to isolate 3489 * user code from changes in the kernel structure, and potentially to provide 3490 * information-hiding if we decide that some of this information should be 3491 * hidden from users. 3492 */ 3493 void 3494 sotoxsocket(struct socket *so, struct xsocket *xso) 3495 { 3496 3497 xso->xso_len = sizeof *xso; 3498 xso->xso_so = so; 3499 xso->so_type = so->so_type; 3500 xso->so_options = so->so_options; 3501 xso->so_linger = so->so_linger; 3502 xso->so_state = so->so_state; 3503 xso->so_pcb = so->so_pcb; 3504 xso->xso_protocol = so->so_proto->pr_protocol; 3505 xso->xso_family = so->so_proto->pr_domain->dom_family; 3506 xso->so_qlen = so->so_qlen; 3507 xso->so_incqlen = so->so_incqlen; 3508 xso->so_qlimit = so->so_qlimit; 3509 xso->so_timeo = so->so_timeo; 3510 xso->so_error = so->so_error; 3511 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 3512 xso->so_oobmark = so->so_oobmark; 3513 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 3514 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 3515 xso->so_uid = so->so_cred->cr_uid; 3516 } 3517 3518 3519 /* 3520 * Socket accessor functions to provide external consumers with 3521 * a safe interface to socket state 3522 * 3523 */ 3524 3525 void 3526 so_listeners_apply_all(struct socket *so, void (*func)(struct socket *, void *), void *arg) 3527 { 3528 3529 TAILQ_FOREACH(so, &so->so_comp, so_list) 3530 func(so, arg); 3531 } 3532 3533 struct sockbuf * 3534 so_sockbuf_rcv(struct socket *so) 3535 { 3536 3537 return (&so->so_rcv); 3538 } 3539 3540 struct sockbuf * 3541 so_sockbuf_snd(struct socket *so) 3542 { 3543 3544 return (&so->so_snd); 3545 } 3546 3547 int 3548 so_state_get(const struct socket *so) 3549 { 3550 3551 return (so->so_state); 3552 } 3553 3554 void 3555 so_state_set(struct socket *so, int val) 3556 { 3557 3558 so->so_state = val; 3559 } 3560 3561 int 3562 so_options_get(const struct socket *so) 3563 { 3564 3565 return (so->so_options); 3566 } 3567 3568 void 3569 so_options_set(struct socket *so, int val) 3570 { 3571 3572 so->so_options = val; 3573 } 3574 3575 int 3576 so_error_get(const struct socket *so) 3577 { 3578 3579 return (so->so_error); 3580 } 3581 3582 void 3583 so_error_set(struct socket *so, int val) 3584 { 3585 3586 so->so_error = val; 3587 } 3588 3589 int 3590 so_linger_get(const struct socket *so) 3591 { 3592 3593 return (so->so_linger); 3594 } 3595 3596 void 3597 so_linger_set(struct socket *so, int val) 3598 { 3599 3600 so->so_linger = val; 3601 } 3602 3603 struct protosw * 3604 so_protosw_get(const struct socket *so) 3605 { 3606 3607 return (so->so_proto); 3608 } 3609 3610 void 3611 so_protosw_set(struct socket *so, struct protosw *val) 3612 { 3613 3614 so->so_proto = val; 3615 } 3616 3617 void 3618 so_sorwakeup(struct socket *so) 3619 { 3620 3621 sorwakeup(so); 3622 } 3623 3624 void 3625 so_sowwakeup(struct socket *so) 3626 { 3627 3628 sowwakeup(so); 3629 } 3630 3631 void 3632 so_sorwakeup_locked(struct socket *so) 3633 { 3634 3635 sorwakeup_locked(so); 3636 } 3637 3638 void 3639 so_sowwakeup_locked(struct socket *so) 3640 { 3641 3642 sowwakeup_locked(so); 3643 } 3644 3645 void 3646 so_lock(struct socket *so) 3647 { 3648 SOCK_LOCK(so); 3649 } 3650 3651 void 3652 so_unlock(struct socket *so) 3653 { 3654 SOCK_UNLOCK(so); 3655 } 3656