1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993 3 * The Regents of the University of California. 4 * Copyright (c) 2004 The FreeBSD Foundation 5 * Copyright (c) 2004-2008 Robert N. M. Watson 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 33 */ 34 35 /* 36 * Comments on the socket life cycle: 37 * 38 * soalloc() sets of socket layer state for a socket, called only by 39 * socreate() and sonewconn(). Socket layer private. 40 * 41 * sodealloc() tears down socket layer state for a socket, called only by 42 * sofree() and sonewconn(). Socket layer private. 43 * 44 * pru_attach() associates protocol layer state with an allocated socket; 45 * called only once, may fail, aborting socket allocation. This is called 46 * from socreate() and sonewconn(). Socket layer private. 47 * 48 * pru_detach() disassociates protocol layer state from an attached socket, 49 * and will be called exactly once for sockets in which pru_attach() has 50 * been successfully called. If pru_attach() returned an error, 51 * pru_detach() will not be called. Socket layer private. 52 * 53 * pru_abort() and pru_close() notify the protocol layer that the last 54 * consumer of a socket is starting to tear down the socket, and that the 55 * protocol should terminate the connection. Historically, pru_abort() also 56 * detached protocol state from the socket state, but this is no longer the 57 * case. 58 * 59 * socreate() creates a socket and attaches protocol state. This is a public 60 * interface that may be used by socket layer consumers to create new 61 * sockets. 62 * 63 * sonewconn() creates a socket and attaches protocol state. This is a 64 * public interface that may be used by protocols to create new sockets when 65 * a new connection is received and will be available for accept() on a 66 * listen socket. 67 * 68 * soclose() destroys a socket after possibly waiting for it to disconnect. 69 * This is a public interface that socket consumers should use to close and 70 * release a socket when done with it. 71 * 72 * soabort() destroys a socket without waiting for it to disconnect (used 73 * only for incoming connections that are already partially or fully 74 * connected). This is used internally by the socket layer when clearing 75 * listen socket queues (due to overflow or close on the listen socket), but 76 * is also a public interface protocols may use to abort connections in 77 * their incomplete listen queues should they no longer be required. Sockets 78 * placed in completed connection listen queues should not be aborted for 79 * reasons described in the comment above the soclose() implementation. This 80 * is not a general purpose close routine, and except in the specific 81 * circumstances described here, should not be used. 82 * 83 * sofree() will free a socket and its protocol state if all references on 84 * the socket have been released, and is the public interface to attempt to 85 * free a socket when a reference is removed. This is a socket layer private 86 * interface. 87 * 88 * NOTE: In addition to socreate() and soclose(), which provide a single 89 * socket reference to the consumer to be managed as required, there are two 90 * calls to explicitly manage socket references, soref(), and sorele(). 91 * Currently, these are generally required only when transitioning a socket 92 * from a listen queue to a file descriptor, in order to prevent garbage 93 * collection of the socket at an untimely moment. For a number of reasons, 94 * these interfaces are not preferred, and should be avoided. 95 */ 96 97 #include <sys/cdefs.h> 98 __FBSDID("$FreeBSD$"); 99 100 #include "opt_inet.h" 101 #include "opt_inet6.h" 102 #include "opt_zero.h" 103 #include "opt_compat.h" 104 105 #include <sys/param.h> 106 #include <sys/systm.h> 107 #include <sys/fcntl.h> 108 #include <sys/limits.h> 109 #include <sys/lock.h> 110 #include <sys/mac.h> 111 #include <sys/malloc.h> 112 #include <sys/mbuf.h> 113 #include <sys/mutex.h> 114 #include <sys/domain.h> 115 #include <sys/file.h> /* for struct knote */ 116 #include <sys/kernel.h> 117 #include <sys/event.h> 118 #include <sys/eventhandler.h> 119 #include <sys/poll.h> 120 #include <sys/proc.h> 121 #include <sys/protosw.h> 122 #include <sys/socket.h> 123 #include <sys/socketvar.h> 124 #include <sys/resourcevar.h> 125 #include <net/route.h> 126 #include <sys/signalvar.h> 127 #include <sys/stat.h> 128 #include <sys/sx.h> 129 #include <sys/sysctl.h> 130 #include <sys/uio.h> 131 #include <sys/jail.h> 132 #include <sys/vimage.h> 133 134 #include <security/mac/mac_framework.h> 135 136 #include <vm/uma.h> 137 138 #ifdef COMPAT_IA32 139 #include <sys/mount.h> 140 #include <sys/sysent.h> 141 #include <compat/freebsd32/freebsd32.h> 142 #endif 143 144 static int soreceive_rcvoob(struct socket *so, struct uio *uio, 145 int flags); 146 147 static void filt_sordetach(struct knote *kn); 148 static int filt_soread(struct knote *kn, long hint); 149 static void filt_sowdetach(struct knote *kn); 150 static int filt_sowrite(struct knote *kn, long hint); 151 static int filt_solisten(struct knote *kn, long hint); 152 153 static struct filterops solisten_filtops = 154 { 1, NULL, filt_sordetach, filt_solisten }; 155 static struct filterops soread_filtops = 156 { 1, NULL, filt_sordetach, filt_soread }; 157 static struct filterops sowrite_filtops = 158 { 1, NULL, filt_sowdetach, filt_sowrite }; 159 160 uma_zone_t socket_zone; 161 so_gen_t so_gencnt; /* generation count for sockets */ 162 163 int maxsockets; 164 165 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 166 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 167 168 static int somaxconn = SOMAXCONN; 169 static int sysctl_somaxconn(SYSCTL_HANDLER_ARGS); 170 /* XXX: we dont have SYSCTL_USHORT */ 171 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLTYPE_UINT | CTLFLAG_RW, 172 0, sizeof(int), sysctl_somaxconn, "I", "Maximum pending socket connection " 173 "queue size"); 174 static int numopensockets; 175 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, 176 &numopensockets, 0, "Number of open sockets"); 177 #ifdef ZERO_COPY_SOCKETS 178 /* These aren't static because they're used in other files. */ 179 int so_zero_copy_send = 1; 180 int so_zero_copy_receive = 1; 181 SYSCTL_NODE(_kern_ipc, OID_AUTO, zero_copy, CTLFLAG_RD, 0, 182 "Zero copy controls"); 183 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, receive, CTLFLAG_RW, 184 &so_zero_copy_receive, 0, "Enable zero copy receive"); 185 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, send, CTLFLAG_RW, 186 &so_zero_copy_send, 0, "Enable zero copy send"); 187 #endif /* ZERO_COPY_SOCKETS */ 188 189 /* 190 * accept_mtx locks down per-socket fields relating to accept queues. See 191 * socketvar.h for an annotation of the protected fields of struct socket. 192 */ 193 struct mtx accept_mtx; 194 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF); 195 196 /* 197 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket 198 * so_gencnt field. 199 */ 200 static struct mtx so_global_mtx; 201 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); 202 203 /* 204 * General IPC sysctl name space, used by sockets and a variety of other IPC 205 * types. 206 */ 207 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC"); 208 209 /* 210 * Sysctl to get and set the maximum global sockets limit. Notify protocols 211 * of the change so that they can update their dependent limits as required. 212 */ 213 static int 214 sysctl_maxsockets(SYSCTL_HANDLER_ARGS) 215 { 216 int error, newmaxsockets; 217 218 newmaxsockets = maxsockets; 219 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req); 220 if (error == 0 && req->newptr) { 221 if (newmaxsockets > maxsockets) { 222 maxsockets = newmaxsockets; 223 if (maxsockets > ((maxfiles / 4) * 3)) { 224 maxfiles = (maxsockets * 5) / 4; 225 maxfilesperproc = (maxfiles * 9) / 10; 226 } 227 EVENTHANDLER_INVOKE(maxsockets_change); 228 } else 229 error = EINVAL; 230 } 231 return (error); 232 } 233 234 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, CTLTYPE_INT|CTLFLAG_RW, 235 &maxsockets, 0, sysctl_maxsockets, "IU", 236 "Maximum number of sockets avaliable"); 237 238 /* 239 * Initialise maxsockets. This SYSINIT must be run after 240 * tunable_mbinit(). 241 */ 242 static void 243 init_maxsockets(void *ignored) 244 { 245 246 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 247 maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters)); 248 } 249 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 250 251 /* 252 * Socket operation routines. These routines are called by the routines in 253 * sys_socket.c or from a system process, and implement the semantics of 254 * socket operations by switching out to the protocol specific routines. 255 */ 256 257 /* 258 * Get a socket structure from our zone, and initialize it. Note that it 259 * would probably be better to allocate socket and PCB at the same time, but 260 * I'm not convinced that all the protocols can be easily modified to do 261 * this. 262 * 263 * soalloc() returns a socket with a ref count of 0. 264 */ 265 static struct socket * 266 soalloc(struct vnet *vnet) 267 { 268 struct socket *so; 269 270 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO); 271 if (so == NULL) 272 return (NULL); 273 #ifdef MAC 274 if (mac_socket_init(so, M_NOWAIT) != 0) { 275 uma_zfree(socket_zone, so); 276 return (NULL); 277 } 278 #endif 279 SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd"); 280 SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv"); 281 sx_init(&so->so_snd.sb_sx, "so_snd_sx"); 282 sx_init(&so->so_rcv.sb_sx, "so_rcv_sx"); 283 TAILQ_INIT(&so->so_aiojobq); 284 mtx_lock(&so_global_mtx); 285 so->so_gencnt = ++so_gencnt; 286 ++numopensockets; 287 #ifdef VIMAGE 288 ++vnet->sockcnt; /* Locked with so_global_mtx. */ 289 so->so_vnet = vnet; 290 #endif 291 mtx_unlock(&so_global_mtx); 292 return (so); 293 } 294 295 /* 296 * Free the storage associated with a socket at the socket layer, tear down 297 * locks, labels, etc. All protocol state is assumed already to have been 298 * torn down (and possibly never set up) by the caller. 299 */ 300 static void 301 sodealloc(struct socket *so) 302 { 303 304 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); 305 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL")); 306 307 mtx_lock(&so_global_mtx); 308 so->so_gencnt = ++so_gencnt; 309 --numopensockets; /* Could be below, but faster here. */ 310 #ifdef VIMAGE 311 --so->so_vnet->sockcnt; 312 #endif 313 mtx_unlock(&so_global_mtx); 314 if (so->so_rcv.sb_hiwat) 315 (void)chgsbsize(so->so_cred->cr_uidinfo, 316 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 317 if (so->so_snd.sb_hiwat) 318 (void)chgsbsize(so->so_cred->cr_uidinfo, 319 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 320 #ifdef INET 321 /* remove acccept filter if one is present. */ 322 if (so->so_accf != NULL) 323 do_setopt_accept_filter(so, NULL); 324 #endif 325 #ifdef MAC 326 mac_socket_destroy(so); 327 #endif 328 crfree(so->so_cred); 329 sx_destroy(&so->so_snd.sb_sx); 330 sx_destroy(&so->so_rcv.sb_sx); 331 SOCKBUF_LOCK_DESTROY(&so->so_snd); 332 SOCKBUF_LOCK_DESTROY(&so->so_rcv); 333 uma_zfree(socket_zone, so); 334 } 335 336 /* 337 * socreate returns a socket with a ref count of 1. The socket should be 338 * closed with soclose(). 339 */ 340 int 341 socreate(int dom, struct socket **aso, int type, int proto, 342 struct ucred *cred, struct thread *td) 343 { 344 struct protosw *prp; 345 struct socket *so; 346 int error; 347 348 if (proto) 349 prp = pffindproto(dom, proto, type); 350 else 351 prp = pffindtype(dom, type); 352 353 if (prp == NULL || prp->pr_usrreqs->pru_attach == NULL || 354 prp->pr_usrreqs->pru_attach == pru_attach_notsupp) 355 return (EPROTONOSUPPORT); 356 357 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0) 358 return (EPROTONOSUPPORT); 359 360 if (prp->pr_type != type) 361 return (EPROTOTYPE); 362 so = soalloc(CRED_TO_VNET(cred)); 363 if (so == NULL) 364 return (ENOBUFS); 365 366 TAILQ_INIT(&so->so_incomp); 367 TAILQ_INIT(&so->so_comp); 368 so->so_type = type; 369 so->so_cred = crhold(cred); 370 if ((prp->pr_domain->dom_family == PF_INET) || 371 (prp->pr_domain->dom_family == PF_ROUTE)) 372 so->so_fibnum = td->td_proc->p_fibnum; 373 else 374 so->so_fibnum = 0; 375 so->so_proto = prp; 376 #ifdef MAC 377 mac_socket_create(cred, so); 378 #endif 379 knlist_init_mtx(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv)); 380 knlist_init_mtx(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd)); 381 so->so_count = 1; 382 /* 383 * Auto-sizing of socket buffers is managed by the protocols and 384 * the appropriate flags must be set in the pru_attach function. 385 */ 386 CURVNET_SET(so->so_vnet); 387 error = (*prp->pr_usrreqs->pru_attach)(so, proto, td); 388 CURVNET_RESTORE(); 389 if (error) { 390 KASSERT(so->so_count == 1, ("socreate: so_count %d", 391 so->so_count)); 392 so->so_count = 0; 393 sodealloc(so); 394 return (error); 395 } 396 *aso = so; 397 return (0); 398 } 399 400 #ifdef REGRESSION 401 static int regression_sonewconn_earlytest = 1; 402 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW, 403 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test"); 404 #endif 405 406 /* 407 * When an attempt at a new connection is noted on a socket which accepts 408 * connections, sonewconn is called. If the connection is possible (subject 409 * to space constraints, etc.) then we allocate a new structure, propoerly 410 * linked into the data structure of the original socket, and return this. 411 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED. 412 * 413 * Note: the ref count on the socket is 0 on return. 414 */ 415 struct socket * 416 sonewconn(struct socket *head, int connstatus) 417 { 418 struct socket *so; 419 int over; 420 421 ACCEPT_LOCK(); 422 over = (head->so_qlen > 3 * head->so_qlimit / 2); 423 ACCEPT_UNLOCK(); 424 #ifdef REGRESSION 425 if (regression_sonewconn_earlytest && over) 426 #else 427 if (over) 428 #endif 429 return (NULL); 430 VNET_ASSERT(head->so_vnet); 431 so = soalloc(head->so_vnet); 432 if (so == NULL) 433 return (NULL); 434 if ((head->so_options & SO_ACCEPTFILTER) != 0) 435 connstatus = 0; 436 so->so_head = head; 437 so->so_type = head->so_type; 438 so->so_options = head->so_options &~ SO_ACCEPTCONN; 439 so->so_linger = head->so_linger; 440 so->so_state = head->so_state | SS_NOFDREF; 441 so->so_proto = head->so_proto; 442 so->so_cred = crhold(head->so_cred); 443 #ifdef MAC 444 mac_socket_newconn(head, so); 445 #endif 446 knlist_init_mtx(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv)); 447 knlist_init_mtx(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd)); 448 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) || 449 (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 450 sodealloc(so); 451 return (NULL); 452 } 453 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; 454 so->so_snd.sb_lowat = head->so_snd.sb_lowat; 455 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; 456 so->so_snd.sb_timeo = head->so_snd.sb_timeo; 457 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE; 458 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE; 459 so->so_state |= connstatus; 460 ACCEPT_LOCK(); 461 if (connstatus) { 462 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 463 so->so_qstate |= SQ_COMP; 464 head->so_qlen++; 465 } else { 466 /* 467 * Keep removing sockets from the head until there's room for 468 * us to insert on the tail. In pre-locking revisions, this 469 * was a simple if(), but as we could be racing with other 470 * threads and soabort() requires dropping locks, we must 471 * loop waiting for the condition to be true. 472 */ 473 while (head->so_incqlen > head->so_qlimit) { 474 struct socket *sp; 475 sp = TAILQ_FIRST(&head->so_incomp); 476 TAILQ_REMOVE(&head->so_incomp, sp, so_list); 477 head->so_incqlen--; 478 sp->so_qstate &= ~SQ_INCOMP; 479 sp->so_head = NULL; 480 ACCEPT_UNLOCK(); 481 soabort(sp); 482 ACCEPT_LOCK(); 483 } 484 TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list); 485 so->so_qstate |= SQ_INCOMP; 486 head->so_incqlen++; 487 } 488 ACCEPT_UNLOCK(); 489 if (connstatus) { 490 sorwakeup(head); 491 wakeup_one(&head->so_timeo); 492 } 493 return (so); 494 } 495 496 int 497 sobind(struct socket *so, struct sockaddr *nam, struct thread *td) 498 { 499 int error; 500 501 CURVNET_SET(so->so_vnet); 502 error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td); 503 CURVNET_RESTORE(); 504 return error; 505 } 506 507 /* 508 * solisten() transitions a socket from a non-listening state to a listening 509 * state, but can also be used to update the listen queue depth on an 510 * existing listen socket. The protocol will call back into the sockets 511 * layer using solisten_proto_check() and solisten_proto() to check and set 512 * socket-layer listen state. Call backs are used so that the protocol can 513 * acquire both protocol and socket layer locks in whatever order is required 514 * by the protocol. 515 * 516 * Protocol implementors are advised to hold the socket lock across the 517 * socket-layer test and set to avoid races at the socket layer. 518 */ 519 int 520 solisten(struct socket *so, int backlog, struct thread *td) 521 { 522 523 return ((*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td)); 524 } 525 526 int 527 solisten_proto_check(struct socket *so) 528 { 529 530 SOCK_LOCK_ASSERT(so); 531 532 if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 533 SS_ISDISCONNECTING)) 534 return (EINVAL); 535 return (0); 536 } 537 538 void 539 solisten_proto(struct socket *so, int backlog) 540 { 541 542 SOCK_LOCK_ASSERT(so); 543 544 if (backlog < 0 || backlog > somaxconn) 545 backlog = somaxconn; 546 so->so_qlimit = backlog; 547 so->so_options |= SO_ACCEPTCONN; 548 } 549 550 /* 551 * Attempt to free a socket. This should really be sotryfree(). 552 * 553 * sofree() will succeed if: 554 * 555 * - There are no outstanding file descriptor references or related consumers 556 * (so_count == 0). 557 * 558 * - The socket has been closed by user space, if ever open (SS_NOFDREF). 559 * 560 * - The protocol does not have an outstanding strong reference on the socket 561 * (SS_PROTOREF). 562 * 563 * - The socket is not in a completed connection queue, so a process has been 564 * notified that it is present. If it is removed, the user process may 565 * block in accept() despite select() saying the socket was ready. 566 * 567 * Otherwise, it will quietly abort so that a future call to sofree(), when 568 * conditions are right, can succeed. 569 */ 570 void 571 sofree(struct socket *so) 572 { 573 struct protosw *pr = so->so_proto; 574 struct socket *head; 575 576 ACCEPT_LOCK_ASSERT(); 577 SOCK_LOCK_ASSERT(so); 578 579 if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 || 580 (so->so_state & SS_PROTOREF) || (so->so_qstate & SQ_COMP)) { 581 SOCK_UNLOCK(so); 582 ACCEPT_UNLOCK(); 583 return; 584 } 585 586 head = so->so_head; 587 if (head != NULL) { 588 KASSERT((so->so_qstate & SQ_COMP) != 0 || 589 (so->so_qstate & SQ_INCOMP) != 0, 590 ("sofree: so_head != NULL, but neither SQ_COMP nor " 591 "SQ_INCOMP")); 592 KASSERT((so->so_qstate & SQ_COMP) == 0 || 593 (so->so_qstate & SQ_INCOMP) == 0, 594 ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP")); 595 TAILQ_REMOVE(&head->so_incomp, so, so_list); 596 head->so_incqlen--; 597 so->so_qstate &= ~SQ_INCOMP; 598 so->so_head = NULL; 599 } 600 KASSERT((so->so_qstate & SQ_COMP) == 0 && 601 (so->so_qstate & SQ_INCOMP) == 0, 602 ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)", 603 so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP)); 604 if (so->so_options & SO_ACCEPTCONN) { 605 KASSERT((TAILQ_EMPTY(&so->so_comp)), ("sofree: so_comp populated")); 606 KASSERT((TAILQ_EMPTY(&so->so_incomp)), ("sofree: so_comp populated")); 607 } 608 SOCK_UNLOCK(so); 609 ACCEPT_UNLOCK(); 610 611 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 612 (*pr->pr_domain->dom_dispose)(so->so_rcv.sb_mb); 613 if (pr->pr_usrreqs->pru_detach != NULL) 614 (*pr->pr_usrreqs->pru_detach)(so); 615 616 /* 617 * From this point on, we assume that no other references to this 618 * socket exist anywhere else in the stack. Therefore, no locks need 619 * to be acquired or held. 620 * 621 * We used to do a lot of socket buffer and socket locking here, as 622 * well as invoke sorflush() and perform wakeups. The direct call to 623 * dom_dispose() and sbrelease_internal() are an inlining of what was 624 * necessary from sorflush(). 625 * 626 * Notice that the socket buffer and kqueue state are torn down 627 * before calling pru_detach. This means that protocols shold not 628 * assume they can perform socket wakeups, etc, in their detach code. 629 */ 630 sbdestroy(&so->so_snd, so); 631 sbdestroy(&so->so_rcv, so); 632 knlist_destroy(&so->so_rcv.sb_sel.si_note); 633 knlist_destroy(&so->so_snd.sb_sel.si_note); 634 sodealloc(so); 635 } 636 637 /* 638 * Close a socket on last file table reference removal. Initiate disconnect 639 * if connected. Free socket when disconnect complete. 640 * 641 * This function will sorele() the socket. Note that soclose() may be called 642 * prior to the ref count reaching zero. The actual socket structure will 643 * not be freed until the ref count reaches zero. 644 */ 645 int 646 soclose(struct socket *so) 647 { 648 int error = 0; 649 650 KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter")); 651 652 CURVNET_SET(so->so_vnet); 653 funsetown(&so->so_sigio); 654 if (so->so_state & SS_ISCONNECTED) { 655 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 656 error = sodisconnect(so); 657 if (error) 658 goto drop; 659 } 660 if (so->so_options & SO_LINGER) { 661 if ((so->so_state & SS_ISDISCONNECTING) && 662 (so->so_state & SS_NBIO)) 663 goto drop; 664 while (so->so_state & SS_ISCONNECTED) { 665 error = tsleep(&so->so_timeo, 666 PSOCK | PCATCH, "soclos", so->so_linger * hz); 667 if (error) 668 break; 669 } 670 } 671 } 672 673 drop: 674 if (so->so_proto->pr_usrreqs->pru_close != NULL) 675 (*so->so_proto->pr_usrreqs->pru_close)(so); 676 if (so->so_options & SO_ACCEPTCONN) { 677 struct socket *sp; 678 ACCEPT_LOCK(); 679 while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) { 680 TAILQ_REMOVE(&so->so_incomp, sp, so_list); 681 so->so_incqlen--; 682 sp->so_qstate &= ~SQ_INCOMP; 683 sp->so_head = NULL; 684 ACCEPT_UNLOCK(); 685 soabort(sp); 686 ACCEPT_LOCK(); 687 } 688 while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) { 689 TAILQ_REMOVE(&so->so_comp, sp, so_list); 690 so->so_qlen--; 691 sp->so_qstate &= ~SQ_COMP; 692 sp->so_head = NULL; 693 ACCEPT_UNLOCK(); 694 soabort(sp); 695 ACCEPT_LOCK(); 696 } 697 ACCEPT_UNLOCK(); 698 } 699 ACCEPT_LOCK(); 700 SOCK_LOCK(so); 701 KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF")); 702 so->so_state |= SS_NOFDREF; 703 sorele(so); 704 CURVNET_RESTORE(); 705 return (error); 706 } 707 708 /* 709 * soabort() is used to abruptly tear down a connection, such as when a 710 * resource limit is reached (listen queue depth exceeded), or if a listen 711 * socket is closed while there are sockets waiting to be accepted. 712 * 713 * This interface is tricky, because it is called on an unreferenced socket, 714 * and must be called only by a thread that has actually removed the socket 715 * from the listen queue it was on, or races with other threads are risked. 716 * 717 * This interface will call into the protocol code, so must not be called 718 * with any socket locks held. Protocols do call it while holding their own 719 * recursible protocol mutexes, but this is something that should be subject 720 * to review in the future. 721 */ 722 void 723 soabort(struct socket *so) 724 { 725 726 /* 727 * In as much as is possible, assert that no references to this 728 * socket are held. This is not quite the same as asserting that the 729 * current thread is responsible for arranging for no references, but 730 * is as close as we can get for now. 731 */ 732 KASSERT(so->so_count == 0, ("soabort: so_count")); 733 KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF")); 734 KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF")); 735 KASSERT((so->so_state & SQ_COMP) == 0, ("soabort: SQ_COMP")); 736 KASSERT((so->so_state & SQ_INCOMP) == 0, ("soabort: SQ_INCOMP")); 737 738 if (so->so_proto->pr_usrreqs->pru_abort != NULL) 739 (*so->so_proto->pr_usrreqs->pru_abort)(so); 740 ACCEPT_LOCK(); 741 SOCK_LOCK(so); 742 sofree(so); 743 } 744 745 int 746 soaccept(struct socket *so, struct sockaddr **nam) 747 { 748 int error; 749 750 SOCK_LOCK(so); 751 KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF")); 752 so->so_state &= ~SS_NOFDREF; 753 SOCK_UNLOCK(so); 754 error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam); 755 return (error); 756 } 757 758 int 759 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td) 760 { 761 int error; 762 763 if (so->so_options & SO_ACCEPTCONN) 764 return (EOPNOTSUPP); 765 /* 766 * If protocol is connection-based, can only connect once. 767 * Otherwise, if connected, try to disconnect first. This allows 768 * user to disconnect by connecting to, e.g., a null address. 769 */ 770 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 771 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 772 (error = sodisconnect(so)))) { 773 error = EISCONN; 774 } else { 775 /* 776 * Prevent accumulated error from previous connection from 777 * biting us. 778 */ 779 so->so_error = 0; 780 CURVNET_SET(so->so_vnet); 781 error = (*so->so_proto->pr_usrreqs->pru_connect)(so, nam, td); 782 CURVNET_RESTORE(); 783 } 784 785 return (error); 786 } 787 788 int 789 soconnect2(struct socket *so1, struct socket *so2) 790 { 791 792 return ((*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2)); 793 } 794 795 int 796 sodisconnect(struct socket *so) 797 { 798 int error; 799 800 if ((so->so_state & SS_ISCONNECTED) == 0) 801 return (ENOTCONN); 802 if (so->so_state & SS_ISDISCONNECTING) 803 return (EALREADY); 804 error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so); 805 return (error); 806 } 807 808 #ifdef ZERO_COPY_SOCKETS 809 struct so_zerocopy_stats{ 810 int size_ok; 811 int align_ok; 812 int found_ifp; 813 }; 814 struct so_zerocopy_stats so_zerocp_stats = {0,0,0}; 815 #include <netinet/in.h> 816 #include <net/route.h> 817 #include <netinet/in_pcb.h> 818 #include <vm/vm.h> 819 #include <vm/vm_page.h> 820 #include <vm/vm_object.h> 821 822 /* 823 * sosend_copyin() is only used if zero copy sockets are enabled. Otherwise 824 * sosend_dgram() and sosend_generic() use m_uiotombuf(). 825 * 826 * sosend_copyin() accepts a uio and prepares an mbuf chain holding part or 827 * all of the data referenced by the uio. If desired, it uses zero-copy. 828 * *space will be updated to reflect data copied in. 829 * 830 * NB: If atomic I/O is requested, the caller must already have checked that 831 * space can hold resid bytes. 832 * 833 * NB: In the event of an error, the caller may need to free the partial 834 * chain pointed to by *mpp. The contents of both *uio and *space may be 835 * modified even in the case of an error. 836 */ 837 static int 838 sosend_copyin(struct uio *uio, struct mbuf **retmp, int atomic, long *space, 839 int flags) 840 { 841 struct mbuf *m, **mp, *top; 842 long len, resid; 843 int error; 844 #ifdef ZERO_COPY_SOCKETS 845 int cow_send; 846 #endif 847 848 *retmp = top = NULL; 849 mp = ⊤ 850 len = 0; 851 resid = uio->uio_resid; 852 error = 0; 853 do { 854 #ifdef ZERO_COPY_SOCKETS 855 cow_send = 0; 856 #endif /* ZERO_COPY_SOCKETS */ 857 if (resid >= MINCLSIZE) { 858 #ifdef ZERO_COPY_SOCKETS 859 if (top == NULL) { 860 m = m_gethdr(M_WAITOK, MT_DATA); 861 m->m_pkthdr.len = 0; 862 m->m_pkthdr.rcvif = NULL; 863 } else 864 m = m_get(M_WAITOK, MT_DATA); 865 if (so_zero_copy_send && 866 resid>=PAGE_SIZE && 867 *space>=PAGE_SIZE && 868 uio->uio_iov->iov_len>=PAGE_SIZE) { 869 so_zerocp_stats.size_ok++; 870 so_zerocp_stats.align_ok++; 871 cow_send = socow_setup(m, uio); 872 len = cow_send; 873 } 874 if (!cow_send) { 875 m_clget(m, M_WAITOK); 876 len = min(min(MCLBYTES, resid), *space); 877 } 878 #else /* ZERO_COPY_SOCKETS */ 879 if (top == NULL) { 880 m = m_getcl(M_WAIT, MT_DATA, M_PKTHDR); 881 m->m_pkthdr.len = 0; 882 m->m_pkthdr.rcvif = NULL; 883 } else 884 m = m_getcl(M_WAIT, MT_DATA, 0); 885 len = min(min(MCLBYTES, resid), *space); 886 #endif /* ZERO_COPY_SOCKETS */ 887 } else { 888 if (top == NULL) { 889 m = m_gethdr(M_WAIT, MT_DATA); 890 m->m_pkthdr.len = 0; 891 m->m_pkthdr.rcvif = NULL; 892 893 len = min(min(MHLEN, resid), *space); 894 /* 895 * For datagram protocols, leave room 896 * for protocol headers in first mbuf. 897 */ 898 if (atomic && m && len < MHLEN) 899 MH_ALIGN(m, len); 900 } else { 901 m = m_get(M_WAIT, MT_DATA); 902 len = min(min(MLEN, resid), *space); 903 } 904 } 905 if (m == NULL) { 906 error = ENOBUFS; 907 goto out; 908 } 909 910 *space -= len; 911 #ifdef ZERO_COPY_SOCKETS 912 if (cow_send) 913 error = 0; 914 else 915 #endif /* ZERO_COPY_SOCKETS */ 916 error = uiomove(mtod(m, void *), (int)len, uio); 917 resid = uio->uio_resid; 918 m->m_len = len; 919 *mp = m; 920 top->m_pkthdr.len += len; 921 if (error) 922 goto out; 923 mp = &m->m_next; 924 if (resid <= 0) { 925 if (flags & MSG_EOR) 926 top->m_flags |= M_EOR; 927 break; 928 } 929 } while (*space > 0 && atomic); 930 out: 931 *retmp = top; 932 return (error); 933 } 934 #endif /*ZERO_COPY_SOCKETS*/ 935 936 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT) 937 938 int 939 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, 940 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 941 { 942 long space, resid; 943 int clen = 0, error, dontroute; 944 #ifdef ZERO_COPY_SOCKETS 945 int atomic = sosendallatonce(so) || top; 946 #endif 947 948 KASSERT(so->so_type == SOCK_DGRAM, ("sodgram_send: !SOCK_DGRAM")); 949 KASSERT(so->so_proto->pr_flags & PR_ATOMIC, 950 ("sodgram_send: !PR_ATOMIC")); 951 952 if (uio != NULL) 953 resid = uio->uio_resid; 954 else 955 resid = top->m_pkthdr.len; 956 /* 957 * In theory resid should be unsigned. However, space must be 958 * signed, as it might be less than 0 if we over-committed, and we 959 * must use a signed comparison of space and resid. On the other 960 * hand, a negative resid causes us to loop sending 0-length 961 * segments to the protocol. 962 * 963 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 964 * type sockets since that's an error. 965 */ 966 if (resid < 0) { 967 error = EINVAL; 968 goto out; 969 } 970 971 dontroute = 972 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0; 973 if (td != NULL) 974 td->td_ru.ru_msgsnd++; 975 if (control != NULL) 976 clen = control->m_len; 977 978 SOCKBUF_LOCK(&so->so_snd); 979 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 980 SOCKBUF_UNLOCK(&so->so_snd); 981 error = EPIPE; 982 goto out; 983 } 984 if (so->so_error) { 985 error = so->so_error; 986 so->so_error = 0; 987 SOCKBUF_UNLOCK(&so->so_snd); 988 goto out; 989 } 990 if ((so->so_state & SS_ISCONNECTED) == 0) { 991 /* 992 * `sendto' and `sendmsg' is allowed on a connection-based 993 * socket if it supports implied connect. Return ENOTCONN if 994 * not connected and no address is supplied. 995 */ 996 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 997 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 998 if ((so->so_state & SS_ISCONFIRMING) == 0 && 999 !(resid == 0 && clen != 0)) { 1000 SOCKBUF_UNLOCK(&so->so_snd); 1001 error = ENOTCONN; 1002 goto out; 1003 } 1004 } else if (addr == NULL) { 1005 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1006 error = ENOTCONN; 1007 else 1008 error = EDESTADDRREQ; 1009 SOCKBUF_UNLOCK(&so->so_snd); 1010 goto out; 1011 } 1012 } 1013 1014 /* 1015 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a 1016 * problem and need fixing. 1017 */ 1018 space = sbspace(&so->so_snd); 1019 if (flags & MSG_OOB) 1020 space += 1024; 1021 space -= clen; 1022 SOCKBUF_UNLOCK(&so->so_snd); 1023 if (resid > space) { 1024 error = EMSGSIZE; 1025 goto out; 1026 } 1027 if (uio == NULL) { 1028 resid = 0; 1029 if (flags & MSG_EOR) 1030 top->m_flags |= M_EOR; 1031 } else { 1032 #ifdef ZERO_COPY_SOCKETS 1033 error = sosend_copyin(uio, &top, atomic, &space, flags); 1034 if (error) 1035 goto out; 1036 #else 1037 /* 1038 * Copy the data from userland into a mbuf chain. 1039 * If no data is to be copied in, a single empty mbuf 1040 * is returned. 1041 */ 1042 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr, 1043 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0))); 1044 if (top == NULL) { 1045 error = EFAULT; /* only possible error */ 1046 goto out; 1047 } 1048 space -= resid - uio->uio_resid; 1049 #endif 1050 resid = uio->uio_resid; 1051 } 1052 KASSERT(resid == 0, ("sosend_dgram: resid != 0")); 1053 /* 1054 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock 1055 * than with. 1056 */ 1057 if (dontroute) { 1058 SOCK_LOCK(so); 1059 so->so_options |= SO_DONTROUTE; 1060 SOCK_UNLOCK(so); 1061 } 1062 /* 1063 * XXX all the SBS_CANTSENDMORE checks previously done could be out 1064 * of date. We could have recieved a reset packet in an interrupt or 1065 * maybe we slept while doing page faults in uiomove() etc. We could 1066 * probably recheck again inside the locking protection here, but 1067 * there are probably other places that this also happens. We must 1068 * rethink this. 1069 */ 1070 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1071 (flags & MSG_OOB) ? PRUS_OOB : 1072 /* 1073 * If the user set MSG_EOF, the protocol understands this flag and 1074 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND. 1075 */ 1076 ((flags & MSG_EOF) && 1077 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1078 (resid <= 0)) ? 1079 PRUS_EOF : 1080 /* If there is more to send set PRUS_MORETOCOME */ 1081 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1082 top, addr, control, td); 1083 if (dontroute) { 1084 SOCK_LOCK(so); 1085 so->so_options &= ~SO_DONTROUTE; 1086 SOCK_UNLOCK(so); 1087 } 1088 clen = 0; 1089 control = NULL; 1090 top = NULL; 1091 out: 1092 if (top != NULL) 1093 m_freem(top); 1094 if (control != NULL) 1095 m_freem(control); 1096 return (error); 1097 } 1098 1099 /* 1100 * Send on a socket. If send must go all at once and message is larger than 1101 * send buffering, then hard error. Lock against other senders. If must go 1102 * all at once and not enough room now, then inform user that this would 1103 * block and do nothing. Otherwise, if nonblocking, send as much as 1104 * possible. The data to be sent is described by "uio" if nonzero, otherwise 1105 * by the mbuf chain "top" (which must be null if uio is not). Data provided 1106 * in mbuf chain must be small enough to send all at once. 1107 * 1108 * Returns nonzero on error, timeout or signal; callers must check for short 1109 * counts if EINTR/ERESTART are returned. Data and control buffers are freed 1110 * on return. 1111 */ 1112 int 1113 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio, 1114 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1115 { 1116 long space, resid; 1117 int clen = 0, error, dontroute; 1118 int atomic = sosendallatonce(so) || top; 1119 1120 if (uio != NULL) 1121 resid = uio->uio_resid; 1122 else 1123 resid = top->m_pkthdr.len; 1124 /* 1125 * In theory resid should be unsigned. However, space must be 1126 * signed, as it might be less than 0 if we over-committed, and we 1127 * must use a signed comparison of space and resid. On the other 1128 * hand, a negative resid causes us to loop sending 0-length 1129 * segments to the protocol. 1130 * 1131 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 1132 * type sockets since that's an error. 1133 */ 1134 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 1135 error = EINVAL; 1136 goto out; 1137 } 1138 1139 dontroute = 1140 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 1141 (so->so_proto->pr_flags & PR_ATOMIC); 1142 if (td != NULL) 1143 td->td_ru.ru_msgsnd++; 1144 if (control != NULL) 1145 clen = control->m_len; 1146 1147 error = sblock(&so->so_snd, SBLOCKWAIT(flags)); 1148 if (error) 1149 goto out; 1150 1151 restart: 1152 do { 1153 SOCKBUF_LOCK(&so->so_snd); 1154 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1155 SOCKBUF_UNLOCK(&so->so_snd); 1156 error = EPIPE; 1157 goto release; 1158 } 1159 if (so->so_error) { 1160 error = so->so_error; 1161 so->so_error = 0; 1162 SOCKBUF_UNLOCK(&so->so_snd); 1163 goto release; 1164 } 1165 if ((so->so_state & SS_ISCONNECTED) == 0) { 1166 /* 1167 * `sendto' and `sendmsg' is allowed on a connection- 1168 * based socket if it supports implied connect. 1169 * Return ENOTCONN if not connected and no address is 1170 * supplied. 1171 */ 1172 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1173 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1174 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1175 !(resid == 0 && clen != 0)) { 1176 SOCKBUF_UNLOCK(&so->so_snd); 1177 error = ENOTCONN; 1178 goto release; 1179 } 1180 } else if (addr == NULL) { 1181 SOCKBUF_UNLOCK(&so->so_snd); 1182 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1183 error = ENOTCONN; 1184 else 1185 error = EDESTADDRREQ; 1186 goto release; 1187 } 1188 } 1189 space = sbspace(&so->so_snd); 1190 if (flags & MSG_OOB) 1191 space += 1024; 1192 if ((atomic && resid > so->so_snd.sb_hiwat) || 1193 clen > so->so_snd.sb_hiwat) { 1194 SOCKBUF_UNLOCK(&so->so_snd); 1195 error = EMSGSIZE; 1196 goto release; 1197 } 1198 if (space < resid + clen && 1199 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 1200 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) { 1201 SOCKBUF_UNLOCK(&so->so_snd); 1202 error = EWOULDBLOCK; 1203 goto release; 1204 } 1205 error = sbwait(&so->so_snd); 1206 SOCKBUF_UNLOCK(&so->so_snd); 1207 if (error) 1208 goto release; 1209 goto restart; 1210 } 1211 SOCKBUF_UNLOCK(&so->so_snd); 1212 space -= clen; 1213 do { 1214 if (uio == NULL) { 1215 resid = 0; 1216 if (flags & MSG_EOR) 1217 top->m_flags |= M_EOR; 1218 } else { 1219 #ifdef ZERO_COPY_SOCKETS 1220 error = sosend_copyin(uio, &top, atomic, 1221 &space, flags); 1222 if (error != 0) 1223 goto release; 1224 #else 1225 /* 1226 * Copy the data from userland into a mbuf 1227 * chain. If no data is to be copied in, 1228 * a single empty mbuf is returned. 1229 */ 1230 top = m_uiotombuf(uio, M_WAITOK, space, 1231 (atomic ? max_hdr : 0), 1232 (atomic ? M_PKTHDR : 0) | 1233 ((flags & MSG_EOR) ? M_EOR : 0)); 1234 if (top == NULL) { 1235 error = EFAULT; /* only possible error */ 1236 goto release; 1237 } 1238 space -= resid - uio->uio_resid; 1239 #endif 1240 resid = uio->uio_resid; 1241 } 1242 if (dontroute) { 1243 SOCK_LOCK(so); 1244 so->so_options |= SO_DONTROUTE; 1245 SOCK_UNLOCK(so); 1246 } 1247 /* 1248 * XXX all the SBS_CANTSENDMORE checks previously 1249 * done could be out of date. We could have recieved 1250 * a reset packet in an interrupt or maybe we slept 1251 * while doing page faults in uiomove() etc. We 1252 * could probably recheck again inside the locking 1253 * protection here, but there are probably other 1254 * places that this also happens. We must rethink 1255 * this. 1256 */ 1257 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1258 (flags & MSG_OOB) ? PRUS_OOB : 1259 /* 1260 * If the user set MSG_EOF, the protocol understands 1261 * this flag and nothing left to send then use 1262 * PRU_SEND_EOF instead of PRU_SEND. 1263 */ 1264 ((flags & MSG_EOF) && 1265 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1266 (resid <= 0)) ? 1267 PRUS_EOF : 1268 /* If there is more to send set PRUS_MORETOCOME. */ 1269 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1270 top, addr, control, td); 1271 if (dontroute) { 1272 SOCK_LOCK(so); 1273 so->so_options &= ~SO_DONTROUTE; 1274 SOCK_UNLOCK(so); 1275 } 1276 clen = 0; 1277 control = NULL; 1278 top = NULL; 1279 if (error) 1280 goto release; 1281 } while (resid && space > 0); 1282 } while (resid); 1283 1284 release: 1285 sbunlock(&so->so_snd); 1286 out: 1287 if (top != NULL) 1288 m_freem(top); 1289 if (control != NULL) 1290 m_freem(control); 1291 return (error); 1292 } 1293 1294 int 1295 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, 1296 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1297 { 1298 int error; 1299 1300 CURVNET_SET(so->so_vnet); 1301 error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, top, 1302 control, flags, td); 1303 CURVNET_RESTORE(); 1304 return (error); 1305 } 1306 1307 /* 1308 * The part of soreceive() that implements reading non-inline out-of-band 1309 * data from a socket. For more complete comments, see soreceive(), from 1310 * which this code originated. 1311 * 1312 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is 1313 * unable to return an mbuf chain to the caller. 1314 */ 1315 static int 1316 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags) 1317 { 1318 struct protosw *pr = so->so_proto; 1319 struct mbuf *m; 1320 int error; 1321 1322 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); 1323 1324 m = m_get(M_WAIT, MT_DATA); 1325 error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK); 1326 if (error) 1327 goto bad; 1328 do { 1329 #ifdef ZERO_COPY_SOCKETS 1330 if (so_zero_copy_receive) { 1331 int disposable; 1332 1333 if ((m->m_flags & M_EXT) 1334 && (m->m_ext.ext_type == EXT_DISPOSABLE)) 1335 disposable = 1; 1336 else 1337 disposable = 0; 1338 1339 error = uiomoveco(mtod(m, void *), 1340 min(uio->uio_resid, m->m_len), 1341 uio, disposable); 1342 } else 1343 #endif /* ZERO_COPY_SOCKETS */ 1344 error = uiomove(mtod(m, void *), 1345 (int) min(uio->uio_resid, m->m_len), uio); 1346 m = m_free(m); 1347 } while (uio->uio_resid && error == 0 && m); 1348 bad: 1349 if (m != NULL) 1350 m_freem(m); 1351 return (error); 1352 } 1353 1354 /* 1355 * Following replacement or removal of the first mbuf on the first mbuf chain 1356 * of a socket buffer, push necessary state changes back into the socket 1357 * buffer so that other consumers see the values consistently. 'nextrecord' 1358 * is the callers locally stored value of the original value of 1359 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. 1360 * NOTE: 'nextrecord' may be NULL. 1361 */ 1362 static __inline void 1363 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) 1364 { 1365 1366 SOCKBUF_LOCK_ASSERT(sb); 1367 /* 1368 * First, update for the new value of nextrecord. If necessary, make 1369 * it the first record. 1370 */ 1371 if (sb->sb_mb != NULL) 1372 sb->sb_mb->m_nextpkt = nextrecord; 1373 else 1374 sb->sb_mb = nextrecord; 1375 1376 /* 1377 * Now update any dependent socket buffer fields to reflect the new 1378 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the 1379 * addition of a second clause that takes care of the case where 1380 * sb_mb has been updated, but remains the last record. 1381 */ 1382 if (sb->sb_mb == NULL) { 1383 sb->sb_mbtail = NULL; 1384 sb->sb_lastrecord = NULL; 1385 } else if (sb->sb_mb->m_nextpkt == NULL) 1386 sb->sb_lastrecord = sb->sb_mb; 1387 } 1388 1389 1390 /* 1391 * Implement receive operations on a socket. We depend on the way that 1392 * records are added to the sockbuf by sbappend. In particular, each record 1393 * (mbufs linked through m_next) must begin with an address if the protocol 1394 * so specifies, followed by an optional mbuf or mbufs containing ancillary 1395 * data, and then zero or more mbufs of data. In order to allow parallelism 1396 * between network receive and copying to user space, as well as avoid 1397 * sleeping with a mutex held, we release the socket buffer mutex during the 1398 * user space copy. Although the sockbuf is locked, new data may still be 1399 * appended, and thus we must maintain consistency of the sockbuf during that 1400 * time. 1401 * 1402 * The caller may receive the data as a single mbuf chain by supplying an 1403 * mbuf **mp0 for use in returning the chain. The uio is then used only for 1404 * the count in uio_resid. 1405 */ 1406 int 1407 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio, 1408 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1409 { 1410 struct mbuf *m, **mp; 1411 int flags, len, error, offset; 1412 struct protosw *pr = so->so_proto; 1413 struct mbuf *nextrecord; 1414 int moff, type = 0; 1415 int orig_resid = uio->uio_resid; 1416 1417 mp = mp0; 1418 if (psa != NULL) 1419 *psa = NULL; 1420 if (controlp != NULL) 1421 *controlp = NULL; 1422 if (flagsp != NULL) 1423 flags = *flagsp &~ MSG_EOR; 1424 else 1425 flags = 0; 1426 if (flags & MSG_OOB) 1427 return (soreceive_rcvoob(so, uio, flags)); 1428 if (mp != NULL) 1429 *mp = NULL; 1430 if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING) 1431 && uio->uio_resid) 1432 (*pr->pr_usrreqs->pru_rcvd)(so, 0); 1433 1434 error = sblock(&so->so_rcv, SBLOCKWAIT(flags)); 1435 if (error) 1436 return (error); 1437 1438 restart: 1439 SOCKBUF_LOCK(&so->so_rcv); 1440 m = so->so_rcv.sb_mb; 1441 /* 1442 * If we have less data than requested, block awaiting more (subject 1443 * to any timeout) if: 1444 * 1. the current count is less than the low water mark, or 1445 * 2. MSG_WAITALL is set, and it is possible to do the entire 1446 * receive operation at once if we block (resid <= hiwat). 1447 * 3. MSG_DONTWAIT is not set 1448 * If MSG_WAITALL is set but resid is larger than the receive buffer, 1449 * we have to do the receive in sections, and thus risk returning a 1450 * short count if a timeout or signal occurs after we start. 1451 */ 1452 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 1453 so->so_rcv.sb_cc < uio->uio_resid) && 1454 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat || 1455 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) && 1456 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 1457 KASSERT(m != NULL || !so->so_rcv.sb_cc, 1458 ("receive: m == %p so->so_rcv.sb_cc == %u", 1459 m, so->so_rcv.sb_cc)); 1460 if (so->so_error) { 1461 if (m != NULL) 1462 goto dontblock; 1463 error = so->so_error; 1464 if ((flags & MSG_PEEK) == 0) 1465 so->so_error = 0; 1466 SOCKBUF_UNLOCK(&so->so_rcv); 1467 goto release; 1468 } 1469 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1470 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 1471 if (m == NULL) { 1472 SOCKBUF_UNLOCK(&so->so_rcv); 1473 goto release; 1474 } else 1475 goto dontblock; 1476 } 1477 for (; m != NULL; m = m->m_next) 1478 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 1479 m = so->so_rcv.sb_mb; 1480 goto dontblock; 1481 } 1482 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 1483 (so->so_proto->pr_flags & PR_CONNREQUIRED)) { 1484 SOCKBUF_UNLOCK(&so->so_rcv); 1485 error = ENOTCONN; 1486 goto release; 1487 } 1488 if (uio->uio_resid == 0) { 1489 SOCKBUF_UNLOCK(&so->so_rcv); 1490 goto release; 1491 } 1492 if ((so->so_state & SS_NBIO) || 1493 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 1494 SOCKBUF_UNLOCK(&so->so_rcv); 1495 error = EWOULDBLOCK; 1496 goto release; 1497 } 1498 SBLASTRECORDCHK(&so->so_rcv); 1499 SBLASTMBUFCHK(&so->so_rcv); 1500 error = sbwait(&so->so_rcv); 1501 SOCKBUF_UNLOCK(&so->so_rcv); 1502 if (error) 1503 goto release; 1504 goto restart; 1505 } 1506 dontblock: 1507 /* 1508 * From this point onward, we maintain 'nextrecord' as a cache of the 1509 * pointer to the next record in the socket buffer. We must keep the 1510 * various socket buffer pointers and local stack versions of the 1511 * pointers in sync, pushing out modifications before dropping the 1512 * socket buffer mutex, and re-reading them when picking it up. 1513 * 1514 * Otherwise, we will race with the network stack appending new data 1515 * or records onto the socket buffer by using inconsistent/stale 1516 * versions of the field, possibly resulting in socket buffer 1517 * corruption. 1518 * 1519 * By holding the high-level sblock(), we prevent simultaneous 1520 * readers from pulling off the front of the socket buffer. 1521 */ 1522 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1523 if (uio->uio_td) 1524 uio->uio_td->td_ru.ru_msgrcv++; 1525 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); 1526 SBLASTRECORDCHK(&so->so_rcv); 1527 SBLASTMBUFCHK(&so->so_rcv); 1528 nextrecord = m->m_nextpkt; 1529 if (pr->pr_flags & PR_ADDR) { 1530 KASSERT(m->m_type == MT_SONAME, 1531 ("m->m_type == %d", m->m_type)); 1532 orig_resid = 0; 1533 if (psa != NULL) 1534 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 1535 M_NOWAIT); 1536 if (flags & MSG_PEEK) { 1537 m = m->m_next; 1538 } else { 1539 sbfree(&so->so_rcv, m); 1540 so->so_rcv.sb_mb = m_free(m); 1541 m = so->so_rcv.sb_mb; 1542 sockbuf_pushsync(&so->so_rcv, nextrecord); 1543 } 1544 } 1545 1546 /* 1547 * Process one or more MT_CONTROL mbufs present before any data mbufs 1548 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 1549 * just copy the data; if !MSG_PEEK, we call into the protocol to 1550 * perform externalization (or freeing if controlp == NULL). 1551 */ 1552 if (m != NULL && m->m_type == MT_CONTROL) { 1553 struct mbuf *cm = NULL, *cmn; 1554 struct mbuf **cme = &cm; 1555 1556 do { 1557 if (flags & MSG_PEEK) { 1558 if (controlp != NULL) { 1559 *controlp = m_copy(m, 0, m->m_len); 1560 controlp = &(*controlp)->m_next; 1561 } 1562 m = m->m_next; 1563 } else { 1564 sbfree(&so->so_rcv, m); 1565 so->so_rcv.sb_mb = m->m_next; 1566 m->m_next = NULL; 1567 *cme = m; 1568 cme = &(*cme)->m_next; 1569 m = so->so_rcv.sb_mb; 1570 } 1571 } while (m != NULL && m->m_type == MT_CONTROL); 1572 if ((flags & MSG_PEEK) == 0) 1573 sockbuf_pushsync(&so->so_rcv, nextrecord); 1574 while (cm != NULL) { 1575 cmn = cm->m_next; 1576 cm->m_next = NULL; 1577 if (pr->pr_domain->dom_externalize != NULL) { 1578 SOCKBUF_UNLOCK(&so->so_rcv); 1579 error = (*pr->pr_domain->dom_externalize) 1580 (cm, controlp); 1581 SOCKBUF_LOCK(&so->so_rcv); 1582 } else if (controlp != NULL) 1583 *controlp = cm; 1584 else 1585 m_freem(cm); 1586 if (controlp != NULL) { 1587 orig_resid = 0; 1588 while (*controlp != NULL) 1589 controlp = &(*controlp)->m_next; 1590 } 1591 cm = cmn; 1592 } 1593 if (m != NULL) 1594 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 1595 else 1596 nextrecord = so->so_rcv.sb_mb; 1597 orig_resid = 0; 1598 } 1599 if (m != NULL) { 1600 if ((flags & MSG_PEEK) == 0) { 1601 KASSERT(m->m_nextpkt == nextrecord, 1602 ("soreceive: post-control, nextrecord !sync")); 1603 if (nextrecord == NULL) { 1604 KASSERT(so->so_rcv.sb_mb == m, 1605 ("soreceive: post-control, sb_mb!=m")); 1606 KASSERT(so->so_rcv.sb_lastrecord == m, 1607 ("soreceive: post-control, lastrecord!=m")); 1608 } 1609 } 1610 type = m->m_type; 1611 if (type == MT_OOBDATA) 1612 flags |= MSG_OOB; 1613 } else { 1614 if ((flags & MSG_PEEK) == 0) { 1615 KASSERT(so->so_rcv.sb_mb == nextrecord, 1616 ("soreceive: sb_mb != nextrecord")); 1617 if (so->so_rcv.sb_mb == NULL) { 1618 KASSERT(so->so_rcv.sb_lastrecord == NULL, 1619 ("soreceive: sb_lastercord != NULL")); 1620 } 1621 } 1622 } 1623 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1624 SBLASTRECORDCHK(&so->so_rcv); 1625 SBLASTMBUFCHK(&so->so_rcv); 1626 1627 /* 1628 * Now continue to read any data mbufs off of the head of the socket 1629 * buffer until the read request is satisfied. Note that 'type' is 1630 * used to store the type of any mbuf reads that have happened so far 1631 * such that soreceive() can stop reading if the type changes, which 1632 * causes soreceive() to return only one of regular data and inline 1633 * out-of-band data in a single socket receive operation. 1634 */ 1635 moff = 0; 1636 offset = 0; 1637 while (m != NULL && uio->uio_resid > 0 && error == 0) { 1638 /* 1639 * If the type of mbuf has changed since the last mbuf 1640 * examined ('type'), end the receive operation. 1641 */ 1642 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1643 if (m->m_type == MT_OOBDATA) { 1644 if (type != MT_OOBDATA) 1645 break; 1646 } else if (type == MT_OOBDATA) 1647 break; 1648 else 1649 KASSERT(m->m_type == MT_DATA, 1650 ("m->m_type == %d", m->m_type)); 1651 so->so_rcv.sb_state &= ~SBS_RCVATMARK; 1652 len = uio->uio_resid; 1653 if (so->so_oobmark && len > so->so_oobmark - offset) 1654 len = so->so_oobmark - offset; 1655 if (len > m->m_len - moff) 1656 len = m->m_len - moff; 1657 /* 1658 * If mp is set, just pass back the mbufs. Otherwise copy 1659 * them out via the uio, then free. Sockbuf must be 1660 * consistent here (points to current mbuf, it points to next 1661 * record) when we drop priority; we must note any additions 1662 * to the sockbuf when we block interrupts again. 1663 */ 1664 if (mp == NULL) { 1665 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1666 SBLASTRECORDCHK(&so->so_rcv); 1667 SBLASTMBUFCHK(&so->so_rcv); 1668 SOCKBUF_UNLOCK(&so->so_rcv); 1669 #ifdef ZERO_COPY_SOCKETS 1670 if (so_zero_copy_receive) { 1671 int disposable; 1672 1673 if ((m->m_flags & M_EXT) 1674 && (m->m_ext.ext_type == EXT_DISPOSABLE)) 1675 disposable = 1; 1676 else 1677 disposable = 0; 1678 1679 error = uiomoveco(mtod(m, char *) + moff, 1680 (int)len, uio, 1681 disposable); 1682 } else 1683 #endif /* ZERO_COPY_SOCKETS */ 1684 error = uiomove(mtod(m, char *) + moff, (int)len, uio); 1685 SOCKBUF_LOCK(&so->so_rcv); 1686 if (error) { 1687 /* 1688 * The MT_SONAME mbuf has already been removed 1689 * from the record, so it is necessary to 1690 * remove the data mbufs, if any, to preserve 1691 * the invariant in the case of PR_ADDR that 1692 * requires MT_SONAME mbufs at the head of 1693 * each record. 1694 */ 1695 if (m && pr->pr_flags & PR_ATOMIC && 1696 ((flags & MSG_PEEK) == 0)) 1697 (void)sbdroprecord_locked(&so->so_rcv); 1698 SOCKBUF_UNLOCK(&so->so_rcv); 1699 goto release; 1700 } 1701 } else 1702 uio->uio_resid -= len; 1703 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1704 if (len == m->m_len - moff) { 1705 if (m->m_flags & M_EOR) 1706 flags |= MSG_EOR; 1707 if (flags & MSG_PEEK) { 1708 m = m->m_next; 1709 moff = 0; 1710 } else { 1711 nextrecord = m->m_nextpkt; 1712 sbfree(&so->so_rcv, m); 1713 if (mp != NULL) { 1714 *mp = m; 1715 mp = &m->m_next; 1716 so->so_rcv.sb_mb = m = m->m_next; 1717 *mp = NULL; 1718 } else { 1719 so->so_rcv.sb_mb = m_free(m); 1720 m = so->so_rcv.sb_mb; 1721 } 1722 sockbuf_pushsync(&so->so_rcv, nextrecord); 1723 SBLASTRECORDCHK(&so->so_rcv); 1724 SBLASTMBUFCHK(&so->so_rcv); 1725 } 1726 } else { 1727 if (flags & MSG_PEEK) 1728 moff += len; 1729 else { 1730 if (mp != NULL) { 1731 int copy_flag; 1732 1733 if (flags & MSG_DONTWAIT) 1734 copy_flag = M_DONTWAIT; 1735 else 1736 copy_flag = M_WAIT; 1737 if (copy_flag == M_WAIT) 1738 SOCKBUF_UNLOCK(&so->so_rcv); 1739 *mp = m_copym(m, 0, len, copy_flag); 1740 if (copy_flag == M_WAIT) 1741 SOCKBUF_LOCK(&so->so_rcv); 1742 if (*mp == NULL) { 1743 /* 1744 * m_copym() couldn't 1745 * allocate an mbuf. Adjust 1746 * uio_resid back (it was 1747 * adjusted down by len 1748 * bytes, which we didn't end 1749 * up "copying" over). 1750 */ 1751 uio->uio_resid += len; 1752 break; 1753 } 1754 } 1755 m->m_data += len; 1756 m->m_len -= len; 1757 so->so_rcv.sb_cc -= len; 1758 } 1759 } 1760 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1761 if (so->so_oobmark) { 1762 if ((flags & MSG_PEEK) == 0) { 1763 so->so_oobmark -= len; 1764 if (so->so_oobmark == 0) { 1765 so->so_rcv.sb_state |= SBS_RCVATMARK; 1766 break; 1767 } 1768 } else { 1769 offset += len; 1770 if (offset == so->so_oobmark) 1771 break; 1772 } 1773 } 1774 if (flags & MSG_EOR) 1775 break; 1776 /* 1777 * If the MSG_WAITALL flag is set (for non-atomic socket), we 1778 * must not quit until "uio->uio_resid == 0" or an error 1779 * termination. If a signal/timeout occurs, return with a 1780 * short count but without error. Keep sockbuf locked 1781 * against other readers. 1782 */ 1783 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 1784 !sosendallatonce(so) && nextrecord == NULL) { 1785 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1786 if (so->so_error || so->so_rcv.sb_state & SBS_CANTRCVMORE) 1787 break; 1788 /* 1789 * Notify the protocol that some data has been 1790 * drained before blocking. 1791 */ 1792 if (pr->pr_flags & PR_WANTRCVD) { 1793 SOCKBUF_UNLOCK(&so->so_rcv); 1794 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 1795 SOCKBUF_LOCK(&so->so_rcv); 1796 } 1797 SBLASTRECORDCHK(&so->so_rcv); 1798 SBLASTMBUFCHK(&so->so_rcv); 1799 error = sbwait(&so->so_rcv); 1800 if (error) { 1801 SOCKBUF_UNLOCK(&so->so_rcv); 1802 goto release; 1803 } 1804 m = so->so_rcv.sb_mb; 1805 if (m != NULL) 1806 nextrecord = m->m_nextpkt; 1807 } 1808 } 1809 1810 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1811 if (m != NULL && pr->pr_flags & PR_ATOMIC) { 1812 flags |= MSG_TRUNC; 1813 if ((flags & MSG_PEEK) == 0) 1814 (void) sbdroprecord_locked(&so->so_rcv); 1815 } 1816 if ((flags & MSG_PEEK) == 0) { 1817 if (m == NULL) { 1818 /* 1819 * First part is an inline SB_EMPTY_FIXUP(). Second 1820 * part makes sure sb_lastrecord is up-to-date if 1821 * there is still data in the socket buffer. 1822 */ 1823 so->so_rcv.sb_mb = nextrecord; 1824 if (so->so_rcv.sb_mb == NULL) { 1825 so->so_rcv.sb_mbtail = NULL; 1826 so->so_rcv.sb_lastrecord = NULL; 1827 } else if (nextrecord->m_nextpkt == NULL) 1828 so->so_rcv.sb_lastrecord = nextrecord; 1829 } 1830 SBLASTRECORDCHK(&so->so_rcv); 1831 SBLASTMBUFCHK(&so->so_rcv); 1832 /* 1833 * If soreceive() is being done from the socket callback, 1834 * then don't need to generate ACK to peer to update window, 1835 * since ACK will be generated on return to TCP. 1836 */ 1837 if (!(flags & MSG_SOCALLBCK) && 1838 (pr->pr_flags & PR_WANTRCVD)) { 1839 SOCKBUF_UNLOCK(&so->so_rcv); 1840 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 1841 SOCKBUF_LOCK(&so->so_rcv); 1842 } 1843 } 1844 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1845 if (orig_resid == uio->uio_resid && orig_resid && 1846 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { 1847 SOCKBUF_UNLOCK(&so->so_rcv); 1848 goto restart; 1849 } 1850 SOCKBUF_UNLOCK(&so->so_rcv); 1851 1852 if (flagsp != NULL) 1853 *flagsp |= flags; 1854 release: 1855 sbunlock(&so->so_rcv); 1856 return (error); 1857 } 1858 1859 /* 1860 * Optimized version of soreceive() for simple datagram cases from userspace. 1861 * Unlike in the stream case, we're able to drop a datagram if copyout() 1862 * fails, and because we handle datagrams atomically, we don't need to use a 1863 * sleep lock to prevent I/O interlacing. 1864 */ 1865 int 1866 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio, 1867 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1868 { 1869 struct mbuf *m, *m2; 1870 int flags, len, error; 1871 struct protosw *pr = so->so_proto; 1872 struct mbuf *nextrecord; 1873 1874 if (psa != NULL) 1875 *psa = NULL; 1876 if (controlp != NULL) 1877 *controlp = NULL; 1878 if (flagsp != NULL) 1879 flags = *flagsp &~ MSG_EOR; 1880 else 1881 flags = 0; 1882 1883 /* 1884 * For any complicated cases, fall back to the full 1885 * soreceive_generic(). 1886 */ 1887 if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB)) 1888 return (soreceive_generic(so, psa, uio, mp0, controlp, 1889 flagsp)); 1890 1891 /* 1892 * Enforce restrictions on use. 1893 */ 1894 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0, 1895 ("soreceive_dgram: wantrcvd")); 1896 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic")); 1897 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0, 1898 ("soreceive_dgram: SBS_RCVATMARK")); 1899 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0, 1900 ("soreceive_dgram: P_CONNREQUIRED")); 1901 1902 /* 1903 * Loop blocking while waiting for a datagram. 1904 */ 1905 SOCKBUF_LOCK(&so->so_rcv); 1906 while ((m = so->so_rcv.sb_mb) == NULL) { 1907 KASSERT(so->so_rcv.sb_cc == 0, 1908 ("soreceive_dgram: sb_mb NULL but sb_cc %u", 1909 so->so_rcv.sb_cc)); 1910 if (so->so_error) { 1911 error = so->so_error; 1912 so->so_error = 0; 1913 SOCKBUF_UNLOCK(&so->so_rcv); 1914 return (error); 1915 } 1916 if (so->so_rcv.sb_state & SBS_CANTRCVMORE || 1917 uio->uio_resid == 0) { 1918 SOCKBUF_UNLOCK(&so->so_rcv); 1919 return (0); 1920 } 1921 if ((so->so_state & SS_NBIO) || 1922 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 1923 SOCKBUF_UNLOCK(&so->so_rcv); 1924 return (EWOULDBLOCK); 1925 } 1926 SBLASTRECORDCHK(&so->so_rcv); 1927 SBLASTMBUFCHK(&so->so_rcv); 1928 error = sbwait(&so->so_rcv); 1929 if (error) { 1930 SOCKBUF_UNLOCK(&so->so_rcv); 1931 return (error); 1932 } 1933 } 1934 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1935 1936 if (uio->uio_td) 1937 uio->uio_td->td_ru.ru_msgrcv++; 1938 SBLASTRECORDCHK(&so->so_rcv); 1939 SBLASTMBUFCHK(&so->so_rcv); 1940 nextrecord = m->m_nextpkt; 1941 if (nextrecord == NULL) { 1942 KASSERT(so->so_rcv.sb_lastrecord == m, 1943 ("soreceive_dgram: lastrecord != m")); 1944 } 1945 1946 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord, 1947 ("soreceive_dgram: m_nextpkt != nextrecord")); 1948 1949 /* 1950 * Pull 'm' and its chain off the front of the packet queue. 1951 */ 1952 so->so_rcv.sb_mb = NULL; 1953 sockbuf_pushsync(&so->so_rcv, nextrecord); 1954 1955 /* 1956 * Walk 'm's chain and free that many bytes from the socket buffer. 1957 */ 1958 for (m2 = m; m2 != NULL; m2 = m2->m_next) 1959 sbfree(&so->so_rcv, m2); 1960 1961 /* 1962 * Do a few last checks before we let go of the lock. 1963 */ 1964 SBLASTRECORDCHK(&so->so_rcv); 1965 SBLASTMBUFCHK(&so->so_rcv); 1966 SOCKBUF_UNLOCK(&so->so_rcv); 1967 1968 if (pr->pr_flags & PR_ADDR) { 1969 KASSERT(m->m_type == MT_SONAME, 1970 ("m->m_type == %d", m->m_type)); 1971 if (psa != NULL) 1972 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 1973 M_NOWAIT); 1974 m = m_free(m); 1975 } 1976 if (m == NULL) { 1977 /* XXXRW: Can this happen? */ 1978 return (0); 1979 } 1980 1981 /* 1982 * Packet to copyout() is now in 'm' and it is disconnected from the 1983 * queue. 1984 * 1985 * Process one or more MT_CONTROL mbufs present before any data mbufs 1986 * in the first mbuf chain on the socket buffer. We call into the 1987 * protocol to perform externalization (or freeing if controlp == 1988 * NULL). 1989 */ 1990 if (m->m_type == MT_CONTROL) { 1991 struct mbuf *cm = NULL, *cmn; 1992 struct mbuf **cme = &cm; 1993 1994 do { 1995 m2 = m->m_next; 1996 m->m_next = NULL; 1997 *cme = m; 1998 cme = &(*cme)->m_next; 1999 m = m2; 2000 } while (m != NULL && m->m_type == MT_CONTROL); 2001 while (cm != NULL) { 2002 cmn = cm->m_next; 2003 cm->m_next = NULL; 2004 if (pr->pr_domain->dom_externalize != NULL) { 2005 error = (*pr->pr_domain->dom_externalize) 2006 (cm, controlp); 2007 } else if (controlp != NULL) 2008 *controlp = cm; 2009 else 2010 m_freem(cm); 2011 if (controlp != NULL) { 2012 while (*controlp != NULL) 2013 controlp = &(*controlp)->m_next; 2014 } 2015 cm = cmn; 2016 } 2017 } 2018 KASSERT(m->m_type == MT_DATA, ("soreceive_dgram: !data")); 2019 2020 while (m != NULL && uio->uio_resid > 0) { 2021 len = uio->uio_resid; 2022 if (len > m->m_len) 2023 len = m->m_len; 2024 error = uiomove(mtod(m, char *), (int)len, uio); 2025 if (error) { 2026 m_freem(m); 2027 return (error); 2028 } 2029 m = m_free(m); 2030 } 2031 if (m != NULL) 2032 flags |= MSG_TRUNC; 2033 m_freem(m); 2034 if (flagsp != NULL) 2035 *flagsp |= flags; 2036 return (0); 2037 } 2038 2039 int 2040 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, 2041 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2042 { 2043 2044 return (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, mp0, 2045 controlp, flagsp)); 2046 } 2047 2048 int 2049 soshutdown(struct socket *so, int how) 2050 { 2051 struct protosw *pr = so->so_proto; 2052 int error; 2053 2054 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 2055 return (EINVAL); 2056 if (pr->pr_usrreqs->pru_flush != NULL) { 2057 (*pr->pr_usrreqs->pru_flush)(so, how); 2058 } 2059 if (how != SHUT_WR) 2060 sorflush(so); 2061 if (how != SHUT_RD) { 2062 CURVNET_SET(so->so_vnet); 2063 error = (*pr->pr_usrreqs->pru_shutdown)(so); 2064 CURVNET_RESTORE(); 2065 return (error); 2066 } 2067 return (0); 2068 } 2069 2070 void 2071 sorflush(struct socket *so) 2072 { 2073 struct sockbuf *sb = &so->so_rcv; 2074 struct protosw *pr = so->so_proto; 2075 struct sockbuf asb; 2076 2077 /* 2078 * In order to avoid calling dom_dispose with the socket buffer mutex 2079 * held, and in order to generally avoid holding the lock for a long 2080 * time, we make a copy of the socket buffer and clear the original 2081 * (except locks, state). The new socket buffer copy won't have 2082 * initialized locks so we can only call routines that won't use or 2083 * assert those locks. 2084 * 2085 * Dislodge threads currently blocked in receive and wait to acquire 2086 * a lock against other simultaneous readers before clearing the 2087 * socket buffer. Don't let our acquire be interrupted by a signal 2088 * despite any existing socket disposition on interruptable waiting. 2089 */ 2090 CURVNET_SET(so->so_vnet); 2091 socantrcvmore(so); 2092 (void) sblock(sb, SBL_WAIT | SBL_NOINTR); 2093 2094 /* 2095 * Invalidate/clear most of the sockbuf structure, but leave selinfo 2096 * and mutex data unchanged. 2097 */ 2098 SOCKBUF_LOCK(sb); 2099 bzero(&asb, offsetof(struct sockbuf, sb_startzero)); 2100 bcopy(&sb->sb_startzero, &asb.sb_startzero, 2101 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 2102 bzero(&sb->sb_startzero, 2103 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 2104 SOCKBUF_UNLOCK(sb); 2105 sbunlock(sb); 2106 2107 /* 2108 * Dispose of special rights and flush the socket buffer. Don't call 2109 * any unsafe routines (that rely on locks being initialized) on asb. 2110 */ 2111 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 2112 (*pr->pr_domain->dom_dispose)(asb.sb_mb); 2113 sbrelease_internal(&asb, so); 2114 CURVNET_RESTORE(); 2115 } 2116 2117 /* 2118 * Perhaps this routine, and sooptcopyout(), below, ought to come in an 2119 * additional variant to handle the case where the option value needs to be 2120 * some kind of integer, but not a specific size. In addition to their use 2121 * here, these functions are also called by the protocol-level pr_ctloutput() 2122 * routines. 2123 */ 2124 int 2125 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen) 2126 { 2127 size_t valsize; 2128 2129 /* 2130 * If the user gives us more than we wanted, we ignore it, but if we 2131 * don't get the minimum length the caller wants, we return EINVAL. 2132 * On success, sopt->sopt_valsize is set to however much we actually 2133 * retrieved. 2134 */ 2135 if ((valsize = sopt->sopt_valsize) < minlen) 2136 return EINVAL; 2137 if (valsize > len) 2138 sopt->sopt_valsize = valsize = len; 2139 2140 if (sopt->sopt_td != NULL) 2141 return (copyin(sopt->sopt_val, buf, valsize)); 2142 2143 bcopy(sopt->sopt_val, buf, valsize); 2144 return (0); 2145 } 2146 2147 /* 2148 * Kernel version of setsockopt(2). 2149 * 2150 * XXX: optlen is size_t, not socklen_t 2151 */ 2152 int 2153 so_setsockopt(struct socket *so, int level, int optname, void *optval, 2154 size_t optlen) 2155 { 2156 struct sockopt sopt; 2157 2158 sopt.sopt_level = level; 2159 sopt.sopt_name = optname; 2160 sopt.sopt_dir = SOPT_SET; 2161 sopt.sopt_val = optval; 2162 sopt.sopt_valsize = optlen; 2163 sopt.sopt_td = NULL; 2164 return (sosetopt(so, &sopt)); 2165 } 2166 2167 int 2168 sosetopt(struct socket *so, struct sockopt *sopt) 2169 { 2170 int error, optval; 2171 struct linger l; 2172 struct timeval tv; 2173 u_long val; 2174 #ifdef MAC 2175 struct mac extmac; 2176 #endif 2177 2178 error = 0; 2179 if (sopt->sopt_level != SOL_SOCKET) { 2180 if (so->so_proto && so->so_proto->pr_ctloutput) 2181 return ((*so->so_proto->pr_ctloutput) 2182 (so, sopt)); 2183 error = ENOPROTOOPT; 2184 } else { 2185 switch (sopt->sopt_name) { 2186 #ifdef INET 2187 case SO_ACCEPTFILTER: 2188 error = do_setopt_accept_filter(so, sopt); 2189 if (error) 2190 goto bad; 2191 break; 2192 #endif 2193 case SO_LINGER: 2194 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 2195 if (error) 2196 goto bad; 2197 2198 SOCK_LOCK(so); 2199 so->so_linger = l.l_linger; 2200 if (l.l_onoff) 2201 so->so_options |= SO_LINGER; 2202 else 2203 so->so_options &= ~SO_LINGER; 2204 SOCK_UNLOCK(so); 2205 break; 2206 2207 case SO_DEBUG: 2208 case SO_KEEPALIVE: 2209 case SO_DONTROUTE: 2210 case SO_USELOOPBACK: 2211 case SO_BROADCAST: 2212 case SO_REUSEADDR: 2213 case SO_REUSEPORT: 2214 case SO_OOBINLINE: 2215 case SO_TIMESTAMP: 2216 case SO_BINTIME: 2217 case SO_NOSIGPIPE: 2218 case SO_NO_DDP: 2219 case SO_NO_OFFLOAD: 2220 error = sooptcopyin(sopt, &optval, sizeof optval, 2221 sizeof optval); 2222 if (error) 2223 goto bad; 2224 SOCK_LOCK(so); 2225 if (optval) 2226 so->so_options |= sopt->sopt_name; 2227 else 2228 so->so_options &= ~sopt->sopt_name; 2229 SOCK_UNLOCK(so); 2230 break; 2231 2232 case SO_SETFIB: 2233 error = sooptcopyin(sopt, &optval, sizeof optval, 2234 sizeof optval); 2235 if (optval < 1 || optval > rt_numfibs) { 2236 error = EINVAL; 2237 goto bad; 2238 } 2239 if ((so->so_proto->pr_domain->dom_family == PF_INET) || 2240 (so->so_proto->pr_domain->dom_family == PF_ROUTE)) { 2241 so->so_fibnum = optval; 2242 /* Note: ignore error */ 2243 if (so->so_proto && so->so_proto->pr_ctloutput) 2244 (*so->so_proto->pr_ctloutput)(so, sopt); 2245 } else { 2246 so->so_fibnum = 0; 2247 } 2248 break; 2249 case SO_SNDBUF: 2250 case SO_RCVBUF: 2251 case SO_SNDLOWAT: 2252 case SO_RCVLOWAT: 2253 error = sooptcopyin(sopt, &optval, sizeof optval, 2254 sizeof optval); 2255 if (error) 2256 goto bad; 2257 2258 /* 2259 * Values < 1 make no sense for any of these options, 2260 * so disallow them. 2261 */ 2262 if (optval < 1) { 2263 error = EINVAL; 2264 goto bad; 2265 } 2266 2267 switch (sopt->sopt_name) { 2268 case SO_SNDBUF: 2269 case SO_RCVBUF: 2270 if (sbreserve(sopt->sopt_name == SO_SNDBUF ? 2271 &so->so_snd : &so->so_rcv, (u_long)optval, 2272 so, curthread) == 0) { 2273 error = ENOBUFS; 2274 goto bad; 2275 } 2276 (sopt->sopt_name == SO_SNDBUF ? &so->so_snd : 2277 &so->so_rcv)->sb_flags &= ~SB_AUTOSIZE; 2278 break; 2279 2280 /* 2281 * Make sure the low-water is never greater than the 2282 * high-water. 2283 */ 2284 case SO_SNDLOWAT: 2285 SOCKBUF_LOCK(&so->so_snd); 2286 so->so_snd.sb_lowat = 2287 (optval > so->so_snd.sb_hiwat) ? 2288 so->so_snd.sb_hiwat : optval; 2289 SOCKBUF_UNLOCK(&so->so_snd); 2290 break; 2291 case SO_RCVLOWAT: 2292 SOCKBUF_LOCK(&so->so_rcv); 2293 so->so_rcv.sb_lowat = 2294 (optval > so->so_rcv.sb_hiwat) ? 2295 so->so_rcv.sb_hiwat : optval; 2296 SOCKBUF_UNLOCK(&so->so_rcv); 2297 break; 2298 } 2299 break; 2300 2301 case SO_SNDTIMEO: 2302 case SO_RCVTIMEO: 2303 #ifdef COMPAT_IA32 2304 if (SV_CURPROC_FLAG(SV_ILP32)) { 2305 struct timeval32 tv32; 2306 2307 error = sooptcopyin(sopt, &tv32, sizeof tv32, 2308 sizeof tv32); 2309 CP(tv32, tv, tv_sec); 2310 CP(tv32, tv, tv_usec); 2311 } else 2312 #endif 2313 error = sooptcopyin(sopt, &tv, sizeof tv, 2314 sizeof tv); 2315 if (error) 2316 goto bad; 2317 2318 /* assert(hz > 0); */ 2319 if (tv.tv_sec < 0 || tv.tv_sec > INT_MAX / hz || 2320 tv.tv_usec < 0 || tv.tv_usec >= 1000000) { 2321 error = EDOM; 2322 goto bad; 2323 } 2324 /* assert(tick > 0); */ 2325 /* assert(ULONG_MAX - INT_MAX >= 1000000); */ 2326 val = (u_long)(tv.tv_sec * hz) + tv.tv_usec / tick; 2327 if (val > INT_MAX) { 2328 error = EDOM; 2329 goto bad; 2330 } 2331 if (val == 0 && tv.tv_usec != 0) 2332 val = 1; 2333 2334 switch (sopt->sopt_name) { 2335 case SO_SNDTIMEO: 2336 so->so_snd.sb_timeo = val; 2337 break; 2338 case SO_RCVTIMEO: 2339 so->so_rcv.sb_timeo = val; 2340 break; 2341 } 2342 break; 2343 2344 case SO_LABEL: 2345 #ifdef MAC 2346 error = sooptcopyin(sopt, &extmac, sizeof extmac, 2347 sizeof extmac); 2348 if (error) 2349 goto bad; 2350 error = mac_setsockopt_label(sopt->sopt_td->td_ucred, 2351 so, &extmac); 2352 #else 2353 error = EOPNOTSUPP; 2354 #endif 2355 break; 2356 2357 default: 2358 error = ENOPROTOOPT; 2359 break; 2360 } 2361 if (error == 0 && so->so_proto != NULL && 2362 so->so_proto->pr_ctloutput != NULL) { 2363 (void) ((*so->so_proto->pr_ctloutput) 2364 (so, sopt)); 2365 } 2366 } 2367 bad: 2368 return (error); 2369 } 2370 2371 /* 2372 * Helper routine for getsockopt. 2373 */ 2374 int 2375 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 2376 { 2377 int error; 2378 size_t valsize; 2379 2380 error = 0; 2381 2382 /* 2383 * Documented get behavior is that we always return a value, possibly 2384 * truncated to fit in the user's buffer. Traditional behavior is 2385 * that we always tell the user precisely how much we copied, rather 2386 * than something useful like the total amount we had available for 2387 * her. Note that this interface is not idempotent; the entire 2388 * answer must generated ahead of time. 2389 */ 2390 valsize = min(len, sopt->sopt_valsize); 2391 sopt->sopt_valsize = valsize; 2392 if (sopt->sopt_val != NULL) { 2393 if (sopt->sopt_td != NULL) 2394 error = copyout(buf, sopt->sopt_val, valsize); 2395 else 2396 bcopy(buf, sopt->sopt_val, valsize); 2397 } 2398 return (error); 2399 } 2400 2401 int 2402 sogetopt(struct socket *so, struct sockopt *sopt) 2403 { 2404 int error, optval; 2405 struct linger l; 2406 struct timeval tv; 2407 #ifdef MAC 2408 struct mac extmac; 2409 #endif 2410 2411 error = 0; 2412 if (sopt->sopt_level != SOL_SOCKET) { 2413 if (so->so_proto && so->so_proto->pr_ctloutput) { 2414 return ((*so->so_proto->pr_ctloutput) 2415 (so, sopt)); 2416 } else 2417 return (ENOPROTOOPT); 2418 } else { 2419 switch (sopt->sopt_name) { 2420 #ifdef INET 2421 case SO_ACCEPTFILTER: 2422 error = do_getopt_accept_filter(so, sopt); 2423 break; 2424 #endif 2425 case SO_LINGER: 2426 SOCK_LOCK(so); 2427 l.l_onoff = so->so_options & SO_LINGER; 2428 l.l_linger = so->so_linger; 2429 SOCK_UNLOCK(so); 2430 error = sooptcopyout(sopt, &l, sizeof l); 2431 break; 2432 2433 case SO_USELOOPBACK: 2434 case SO_DONTROUTE: 2435 case SO_DEBUG: 2436 case SO_KEEPALIVE: 2437 case SO_REUSEADDR: 2438 case SO_REUSEPORT: 2439 case SO_BROADCAST: 2440 case SO_OOBINLINE: 2441 case SO_ACCEPTCONN: 2442 case SO_TIMESTAMP: 2443 case SO_BINTIME: 2444 case SO_NOSIGPIPE: 2445 optval = so->so_options & sopt->sopt_name; 2446 integer: 2447 error = sooptcopyout(sopt, &optval, sizeof optval); 2448 break; 2449 2450 case SO_TYPE: 2451 optval = so->so_type; 2452 goto integer; 2453 2454 case SO_ERROR: 2455 SOCK_LOCK(so); 2456 optval = so->so_error; 2457 so->so_error = 0; 2458 SOCK_UNLOCK(so); 2459 goto integer; 2460 2461 case SO_SNDBUF: 2462 optval = so->so_snd.sb_hiwat; 2463 goto integer; 2464 2465 case SO_RCVBUF: 2466 optval = so->so_rcv.sb_hiwat; 2467 goto integer; 2468 2469 case SO_SNDLOWAT: 2470 optval = so->so_snd.sb_lowat; 2471 goto integer; 2472 2473 case SO_RCVLOWAT: 2474 optval = so->so_rcv.sb_lowat; 2475 goto integer; 2476 2477 case SO_SNDTIMEO: 2478 case SO_RCVTIMEO: 2479 optval = (sopt->sopt_name == SO_SNDTIMEO ? 2480 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 2481 2482 tv.tv_sec = optval / hz; 2483 tv.tv_usec = (optval % hz) * tick; 2484 #ifdef COMPAT_IA32 2485 if (SV_CURPROC_FLAG(SV_ILP32)) { 2486 struct timeval32 tv32; 2487 2488 CP(tv, tv32, tv_sec); 2489 CP(tv, tv32, tv_usec); 2490 error = sooptcopyout(sopt, &tv32, sizeof tv32); 2491 } else 2492 #endif 2493 error = sooptcopyout(sopt, &tv, sizeof tv); 2494 break; 2495 2496 case SO_LABEL: 2497 #ifdef MAC 2498 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 2499 sizeof(extmac)); 2500 if (error) 2501 return (error); 2502 error = mac_getsockopt_label(sopt->sopt_td->td_ucred, 2503 so, &extmac); 2504 if (error) 2505 return (error); 2506 error = sooptcopyout(sopt, &extmac, sizeof extmac); 2507 #else 2508 error = EOPNOTSUPP; 2509 #endif 2510 break; 2511 2512 case SO_PEERLABEL: 2513 #ifdef MAC 2514 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 2515 sizeof(extmac)); 2516 if (error) 2517 return (error); 2518 error = mac_getsockopt_peerlabel( 2519 sopt->sopt_td->td_ucred, so, &extmac); 2520 if (error) 2521 return (error); 2522 error = sooptcopyout(sopt, &extmac, sizeof extmac); 2523 #else 2524 error = EOPNOTSUPP; 2525 #endif 2526 break; 2527 2528 case SO_LISTENQLIMIT: 2529 optval = so->so_qlimit; 2530 goto integer; 2531 2532 case SO_LISTENQLEN: 2533 optval = so->so_qlen; 2534 goto integer; 2535 2536 case SO_LISTENINCQLEN: 2537 optval = so->so_incqlen; 2538 goto integer; 2539 2540 default: 2541 error = ENOPROTOOPT; 2542 break; 2543 } 2544 return (error); 2545 } 2546 } 2547 2548 /* XXX; prepare mbuf for (__FreeBSD__ < 3) routines. */ 2549 int 2550 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 2551 { 2552 struct mbuf *m, *m_prev; 2553 int sopt_size = sopt->sopt_valsize; 2554 2555 MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA); 2556 if (m == NULL) 2557 return ENOBUFS; 2558 if (sopt_size > MLEN) { 2559 MCLGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT); 2560 if ((m->m_flags & M_EXT) == 0) { 2561 m_free(m); 2562 return ENOBUFS; 2563 } 2564 m->m_len = min(MCLBYTES, sopt_size); 2565 } else { 2566 m->m_len = min(MLEN, sopt_size); 2567 } 2568 sopt_size -= m->m_len; 2569 *mp = m; 2570 m_prev = m; 2571 2572 while (sopt_size) { 2573 MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA); 2574 if (m == NULL) { 2575 m_freem(*mp); 2576 return ENOBUFS; 2577 } 2578 if (sopt_size > MLEN) { 2579 MCLGET(m, sopt->sopt_td != NULL ? M_WAIT : 2580 M_DONTWAIT); 2581 if ((m->m_flags & M_EXT) == 0) { 2582 m_freem(m); 2583 m_freem(*mp); 2584 return ENOBUFS; 2585 } 2586 m->m_len = min(MCLBYTES, sopt_size); 2587 } else { 2588 m->m_len = min(MLEN, sopt_size); 2589 } 2590 sopt_size -= m->m_len; 2591 m_prev->m_next = m; 2592 m_prev = m; 2593 } 2594 return (0); 2595 } 2596 2597 /* XXX; copyin sopt data into mbuf chain for (__FreeBSD__ < 3) routines. */ 2598 int 2599 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 2600 { 2601 struct mbuf *m0 = m; 2602 2603 if (sopt->sopt_val == NULL) 2604 return (0); 2605 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 2606 if (sopt->sopt_td != NULL) { 2607 int error; 2608 2609 error = copyin(sopt->sopt_val, mtod(m, char *), 2610 m->m_len); 2611 if (error != 0) { 2612 m_freem(m0); 2613 return(error); 2614 } 2615 } else 2616 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 2617 sopt->sopt_valsize -= m->m_len; 2618 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 2619 m = m->m_next; 2620 } 2621 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 2622 panic("ip6_sooptmcopyin"); 2623 return (0); 2624 } 2625 2626 /* XXX; copyout mbuf chain data into soopt for (__FreeBSD__ < 3) routines. */ 2627 int 2628 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 2629 { 2630 struct mbuf *m0 = m; 2631 size_t valsize = 0; 2632 2633 if (sopt->sopt_val == NULL) 2634 return (0); 2635 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 2636 if (sopt->sopt_td != NULL) { 2637 int error; 2638 2639 error = copyout(mtod(m, char *), sopt->sopt_val, 2640 m->m_len); 2641 if (error != 0) { 2642 m_freem(m0); 2643 return(error); 2644 } 2645 } else 2646 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 2647 sopt->sopt_valsize -= m->m_len; 2648 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 2649 valsize += m->m_len; 2650 m = m->m_next; 2651 } 2652 if (m != NULL) { 2653 /* enough soopt buffer should be given from user-land */ 2654 m_freem(m0); 2655 return(EINVAL); 2656 } 2657 sopt->sopt_valsize = valsize; 2658 return (0); 2659 } 2660 2661 /* 2662 * sohasoutofband(): protocol notifies socket layer of the arrival of new 2663 * out-of-band data, which will then notify socket consumers. 2664 */ 2665 void 2666 sohasoutofband(struct socket *so) 2667 { 2668 2669 if (so->so_sigio != NULL) 2670 pgsigio(&so->so_sigio, SIGURG, 0); 2671 selwakeuppri(&so->so_rcv.sb_sel, PSOCK); 2672 } 2673 2674 int 2675 sopoll(struct socket *so, int events, struct ucred *active_cred, 2676 struct thread *td) 2677 { 2678 2679 return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred, 2680 td)); 2681 } 2682 2683 int 2684 sopoll_generic(struct socket *so, int events, struct ucred *active_cred, 2685 struct thread *td) 2686 { 2687 int revents = 0; 2688 2689 SOCKBUF_LOCK(&so->so_snd); 2690 SOCKBUF_LOCK(&so->so_rcv); 2691 if (events & (POLLIN | POLLRDNORM)) 2692 if (soreadable(so)) 2693 revents |= events & (POLLIN | POLLRDNORM); 2694 2695 if (events & POLLINIGNEOF) 2696 if (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat || 2697 !TAILQ_EMPTY(&so->so_comp) || so->so_error) 2698 revents |= POLLINIGNEOF; 2699 2700 if (events & (POLLOUT | POLLWRNORM)) 2701 if (sowriteable(so)) 2702 revents |= events & (POLLOUT | POLLWRNORM); 2703 2704 if (events & (POLLPRI | POLLRDBAND)) 2705 if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK)) 2706 revents |= events & (POLLPRI | POLLRDBAND); 2707 2708 if (revents == 0) { 2709 if (events & 2710 (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | 2711 POLLRDBAND)) { 2712 selrecord(td, &so->so_rcv.sb_sel); 2713 so->so_rcv.sb_flags |= SB_SEL; 2714 } 2715 2716 if (events & (POLLOUT | POLLWRNORM)) { 2717 selrecord(td, &so->so_snd.sb_sel); 2718 so->so_snd.sb_flags |= SB_SEL; 2719 } 2720 } 2721 2722 SOCKBUF_UNLOCK(&so->so_rcv); 2723 SOCKBUF_UNLOCK(&so->so_snd); 2724 return (revents); 2725 } 2726 2727 int 2728 soo_kqfilter(struct file *fp, struct knote *kn) 2729 { 2730 struct socket *so = kn->kn_fp->f_data; 2731 struct sockbuf *sb; 2732 2733 switch (kn->kn_filter) { 2734 case EVFILT_READ: 2735 if (so->so_options & SO_ACCEPTCONN) 2736 kn->kn_fop = &solisten_filtops; 2737 else 2738 kn->kn_fop = &soread_filtops; 2739 sb = &so->so_rcv; 2740 break; 2741 case EVFILT_WRITE: 2742 kn->kn_fop = &sowrite_filtops; 2743 sb = &so->so_snd; 2744 break; 2745 default: 2746 return (EINVAL); 2747 } 2748 2749 SOCKBUF_LOCK(sb); 2750 knlist_add(&sb->sb_sel.si_note, kn, 1); 2751 sb->sb_flags |= SB_KNOTE; 2752 SOCKBUF_UNLOCK(sb); 2753 return (0); 2754 } 2755 2756 /* 2757 * Some routines that return EOPNOTSUPP for entry points that are not 2758 * supported by a protocol. Fill in as needed. 2759 */ 2760 int 2761 pru_accept_notsupp(struct socket *so, struct sockaddr **nam) 2762 { 2763 2764 return EOPNOTSUPP; 2765 } 2766 2767 int 2768 pru_attach_notsupp(struct socket *so, int proto, struct thread *td) 2769 { 2770 2771 return EOPNOTSUPP; 2772 } 2773 2774 int 2775 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 2776 { 2777 2778 return EOPNOTSUPP; 2779 } 2780 2781 int 2782 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 2783 { 2784 2785 return EOPNOTSUPP; 2786 } 2787 2788 int 2789 pru_connect2_notsupp(struct socket *so1, struct socket *so2) 2790 { 2791 2792 return EOPNOTSUPP; 2793 } 2794 2795 int 2796 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, 2797 struct ifnet *ifp, struct thread *td) 2798 { 2799 2800 return EOPNOTSUPP; 2801 } 2802 2803 int 2804 pru_disconnect_notsupp(struct socket *so) 2805 { 2806 2807 return EOPNOTSUPP; 2808 } 2809 2810 int 2811 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td) 2812 { 2813 2814 return EOPNOTSUPP; 2815 } 2816 2817 int 2818 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam) 2819 { 2820 2821 return EOPNOTSUPP; 2822 } 2823 2824 int 2825 pru_rcvd_notsupp(struct socket *so, int flags) 2826 { 2827 2828 return EOPNOTSUPP; 2829 } 2830 2831 int 2832 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) 2833 { 2834 2835 return EOPNOTSUPP; 2836 } 2837 2838 int 2839 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m, 2840 struct sockaddr *addr, struct mbuf *control, struct thread *td) 2841 { 2842 2843 return EOPNOTSUPP; 2844 } 2845 2846 /* 2847 * This isn't really a ``null'' operation, but it's the default one and 2848 * doesn't do anything destructive. 2849 */ 2850 int 2851 pru_sense_null(struct socket *so, struct stat *sb) 2852 { 2853 2854 sb->st_blksize = so->so_snd.sb_hiwat; 2855 return 0; 2856 } 2857 2858 int 2859 pru_shutdown_notsupp(struct socket *so) 2860 { 2861 2862 return EOPNOTSUPP; 2863 } 2864 2865 int 2866 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam) 2867 { 2868 2869 return EOPNOTSUPP; 2870 } 2871 2872 int 2873 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio, 2874 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 2875 { 2876 2877 return EOPNOTSUPP; 2878 } 2879 2880 int 2881 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr, 2882 struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2883 { 2884 2885 return EOPNOTSUPP; 2886 } 2887 2888 int 2889 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred, 2890 struct thread *td) 2891 { 2892 2893 return EOPNOTSUPP; 2894 } 2895 2896 static void 2897 filt_sordetach(struct knote *kn) 2898 { 2899 struct socket *so = kn->kn_fp->f_data; 2900 2901 SOCKBUF_LOCK(&so->so_rcv); 2902 knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1); 2903 if (knlist_empty(&so->so_rcv.sb_sel.si_note)) 2904 so->so_rcv.sb_flags &= ~SB_KNOTE; 2905 SOCKBUF_UNLOCK(&so->so_rcv); 2906 } 2907 2908 /*ARGSUSED*/ 2909 static int 2910 filt_soread(struct knote *kn, long hint) 2911 { 2912 struct socket *so; 2913 2914 so = kn->kn_fp->f_data; 2915 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2916 2917 kn->kn_data = so->so_rcv.sb_cc - so->so_rcv.sb_ctl; 2918 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 2919 kn->kn_flags |= EV_EOF; 2920 kn->kn_fflags = so->so_error; 2921 return (1); 2922 } else if (so->so_error) /* temporary udp error */ 2923 return (1); 2924 else if (kn->kn_sfflags & NOTE_LOWAT) 2925 return (kn->kn_data >= kn->kn_sdata); 2926 else 2927 return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat); 2928 } 2929 2930 static void 2931 filt_sowdetach(struct knote *kn) 2932 { 2933 struct socket *so = kn->kn_fp->f_data; 2934 2935 SOCKBUF_LOCK(&so->so_snd); 2936 knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1); 2937 if (knlist_empty(&so->so_snd.sb_sel.si_note)) 2938 so->so_snd.sb_flags &= ~SB_KNOTE; 2939 SOCKBUF_UNLOCK(&so->so_snd); 2940 } 2941 2942 /*ARGSUSED*/ 2943 static int 2944 filt_sowrite(struct knote *kn, long hint) 2945 { 2946 struct socket *so; 2947 2948 so = kn->kn_fp->f_data; 2949 SOCKBUF_LOCK_ASSERT(&so->so_snd); 2950 kn->kn_data = sbspace(&so->so_snd); 2951 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 2952 kn->kn_flags |= EV_EOF; 2953 kn->kn_fflags = so->so_error; 2954 return (1); 2955 } else if (so->so_error) /* temporary udp error */ 2956 return (1); 2957 else if (((so->so_state & SS_ISCONNECTED) == 0) && 2958 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 2959 return (0); 2960 else if (kn->kn_sfflags & NOTE_LOWAT) 2961 return (kn->kn_data >= kn->kn_sdata); 2962 else 2963 return (kn->kn_data >= so->so_snd.sb_lowat); 2964 } 2965 2966 /*ARGSUSED*/ 2967 static int 2968 filt_solisten(struct knote *kn, long hint) 2969 { 2970 struct socket *so = kn->kn_fp->f_data; 2971 2972 kn->kn_data = so->so_qlen; 2973 return (! TAILQ_EMPTY(&so->so_comp)); 2974 } 2975 2976 int 2977 socheckuid(struct socket *so, uid_t uid) 2978 { 2979 2980 if (so == NULL) 2981 return (EPERM); 2982 if (so->so_cred->cr_uid != uid) 2983 return (EPERM); 2984 return (0); 2985 } 2986 2987 static int 2988 sysctl_somaxconn(SYSCTL_HANDLER_ARGS) 2989 { 2990 int error; 2991 int val; 2992 2993 val = somaxconn; 2994 error = sysctl_handle_int(oidp, &val, 0, req); 2995 if (error || !req->newptr ) 2996 return (error); 2997 2998 if (val < 1 || val > USHRT_MAX) 2999 return (EINVAL); 3000 3001 somaxconn = val; 3002 return (0); 3003 } 3004 3005 /* 3006 * These functions are used by protocols to notify the socket layer (and its 3007 * consumers) of state changes in the sockets driven by protocol-side events. 3008 */ 3009 3010 /* 3011 * Procedures to manipulate state flags of socket and do appropriate wakeups. 3012 * 3013 * Normal sequence from the active (originating) side is that 3014 * soisconnecting() is called during processing of connect() call, resulting 3015 * in an eventual call to soisconnected() if/when the connection is 3016 * established. When the connection is torn down soisdisconnecting() is 3017 * called during processing of disconnect() call, and soisdisconnected() is 3018 * called when the connection to the peer is totally severed. The semantics 3019 * of these routines are such that connectionless protocols can call 3020 * soisconnected() and soisdisconnected() only, bypassing the in-progress 3021 * calls when setting up a ``connection'' takes no time. 3022 * 3023 * From the passive side, a socket is created with two queues of sockets: 3024 * so_incomp for connections in progress and so_comp for connections already 3025 * made and awaiting user acceptance. As a protocol is preparing incoming 3026 * connections, it creates a socket structure queued on so_incomp by calling 3027 * sonewconn(). When the connection is established, soisconnected() is 3028 * called, and transfers the socket structure to so_comp, making it available 3029 * to accept(). 3030 * 3031 * If a socket is closed with sockets on either so_incomp or so_comp, these 3032 * sockets are dropped. 3033 * 3034 * If higher-level protocols are implemented in the kernel, the wakeups done 3035 * here will sometimes cause software-interrupt process scheduling. 3036 */ 3037 void 3038 soisconnecting(struct socket *so) 3039 { 3040 3041 SOCK_LOCK(so); 3042 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 3043 so->so_state |= SS_ISCONNECTING; 3044 SOCK_UNLOCK(so); 3045 } 3046 3047 void 3048 soisconnected(struct socket *so) 3049 { 3050 struct socket *head; 3051 int ret; 3052 3053 restart: 3054 ACCEPT_LOCK(); 3055 SOCK_LOCK(so); 3056 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 3057 so->so_state |= SS_ISCONNECTED; 3058 head = so->so_head; 3059 if (head != NULL && (so->so_qstate & SQ_INCOMP)) { 3060 if ((so->so_options & SO_ACCEPTFILTER) == 0) { 3061 SOCK_UNLOCK(so); 3062 TAILQ_REMOVE(&head->so_incomp, so, so_list); 3063 head->so_incqlen--; 3064 so->so_qstate &= ~SQ_INCOMP; 3065 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 3066 head->so_qlen++; 3067 so->so_qstate |= SQ_COMP; 3068 ACCEPT_UNLOCK(); 3069 sorwakeup(head); 3070 wakeup_one(&head->so_timeo); 3071 } else { 3072 ACCEPT_UNLOCK(); 3073 soupcall_set(so, SO_RCV, 3074 head->so_accf->so_accept_filter->accf_callback, 3075 head->so_accf->so_accept_filter_arg); 3076 so->so_options &= ~SO_ACCEPTFILTER; 3077 ret = head->so_accf->so_accept_filter->accf_callback(so, 3078 head->so_accf->so_accept_filter_arg, M_DONTWAIT); 3079 if (ret == SU_ISCONNECTED) 3080 soupcall_clear(so, SO_RCV); 3081 SOCK_UNLOCK(so); 3082 if (ret == SU_ISCONNECTED) 3083 goto restart; 3084 } 3085 return; 3086 } 3087 SOCK_UNLOCK(so); 3088 ACCEPT_UNLOCK(); 3089 wakeup(&so->so_timeo); 3090 sorwakeup(so); 3091 sowwakeup(so); 3092 } 3093 3094 void 3095 soisdisconnecting(struct socket *so) 3096 { 3097 3098 /* 3099 * Note: This code assumes that SOCK_LOCK(so) and 3100 * SOCKBUF_LOCK(&so->so_rcv) are the same. 3101 */ 3102 SOCKBUF_LOCK(&so->so_rcv); 3103 so->so_state &= ~SS_ISCONNECTING; 3104 so->so_state |= SS_ISDISCONNECTING; 3105 so->so_rcv.sb_state |= SBS_CANTRCVMORE; 3106 sorwakeup_locked(so); 3107 SOCKBUF_LOCK(&so->so_snd); 3108 so->so_snd.sb_state |= SBS_CANTSENDMORE; 3109 sowwakeup_locked(so); 3110 wakeup(&so->so_timeo); 3111 } 3112 3113 void 3114 soisdisconnected(struct socket *so) 3115 { 3116 3117 /* 3118 * Note: This code assumes that SOCK_LOCK(so) and 3119 * SOCKBUF_LOCK(&so->so_rcv) are the same. 3120 */ 3121 SOCKBUF_LOCK(&so->so_rcv); 3122 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 3123 so->so_state |= SS_ISDISCONNECTED; 3124 so->so_rcv.sb_state |= SBS_CANTRCVMORE; 3125 sorwakeup_locked(so); 3126 SOCKBUF_LOCK(&so->so_snd); 3127 so->so_snd.sb_state |= SBS_CANTSENDMORE; 3128 sbdrop_locked(&so->so_snd, so->so_snd.sb_cc); 3129 sowwakeup_locked(so); 3130 wakeup(&so->so_timeo); 3131 } 3132 3133 /* 3134 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 3135 */ 3136 struct sockaddr * 3137 sodupsockaddr(const struct sockaddr *sa, int mflags) 3138 { 3139 struct sockaddr *sa2; 3140 3141 sa2 = malloc(sa->sa_len, M_SONAME, mflags); 3142 if (sa2) 3143 bcopy(sa, sa2, sa->sa_len); 3144 return sa2; 3145 } 3146 3147 /* 3148 * Register per-socket buffer upcalls. 3149 */ 3150 void 3151 soupcall_set(struct socket *so, int which, 3152 int (*func)(struct socket *, void *, int), void *arg) 3153 { 3154 struct sockbuf *sb; 3155 3156 switch (which) { 3157 case SO_RCV: 3158 sb = &so->so_rcv; 3159 break; 3160 case SO_SND: 3161 sb = &so->so_snd; 3162 break; 3163 default: 3164 panic("soupcall_set: bad which"); 3165 } 3166 SOCKBUF_LOCK_ASSERT(sb); 3167 #if 0 3168 /* XXX: accf_http actually wants to do this on purpose. */ 3169 KASSERT(sb->sb_upcall == NULL, ("soupcall_set: overwriting upcall")); 3170 #endif 3171 sb->sb_upcall = func; 3172 sb->sb_upcallarg = arg; 3173 sb->sb_flags |= SB_UPCALL; 3174 } 3175 3176 void 3177 soupcall_clear(struct socket *so, int which) 3178 { 3179 struct sockbuf *sb; 3180 3181 switch (which) { 3182 case SO_RCV: 3183 sb = &so->so_rcv; 3184 break; 3185 case SO_SND: 3186 sb = &so->so_snd; 3187 break; 3188 default: 3189 panic("soupcall_clear: bad which"); 3190 } 3191 SOCKBUF_LOCK_ASSERT(sb); 3192 KASSERT(sb->sb_upcall != NULL, ("soupcall_clear: no upcall to clear")); 3193 sb->sb_upcall = NULL; 3194 sb->sb_upcallarg = NULL; 3195 sb->sb_flags &= ~SB_UPCALL; 3196 } 3197 3198 /* 3199 * Create an external-format (``xsocket'') structure using the information in 3200 * the kernel-format socket structure pointed to by so. This is done to 3201 * reduce the spew of irrelevant information over this interface, to isolate 3202 * user code from changes in the kernel structure, and potentially to provide 3203 * information-hiding if we decide that some of this information should be 3204 * hidden from users. 3205 */ 3206 void 3207 sotoxsocket(struct socket *so, struct xsocket *xso) 3208 { 3209 3210 xso->xso_len = sizeof *xso; 3211 xso->xso_so = so; 3212 xso->so_type = so->so_type; 3213 xso->so_options = so->so_options; 3214 xso->so_linger = so->so_linger; 3215 xso->so_state = so->so_state; 3216 xso->so_pcb = so->so_pcb; 3217 xso->xso_protocol = so->so_proto->pr_protocol; 3218 xso->xso_family = so->so_proto->pr_domain->dom_family; 3219 xso->so_qlen = so->so_qlen; 3220 xso->so_incqlen = so->so_incqlen; 3221 xso->so_qlimit = so->so_qlimit; 3222 xso->so_timeo = so->so_timeo; 3223 xso->so_error = so->so_error; 3224 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 3225 xso->so_oobmark = so->so_oobmark; 3226 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 3227 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 3228 xso->so_uid = so->so_cred->cr_uid; 3229 } 3230 3231 3232 /* 3233 * Socket accessor functions to provide external consumers with 3234 * a safe interface to socket state 3235 * 3236 */ 3237 3238 void 3239 so_listeners_apply_all(struct socket *so, void (*func)(struct socket *, void *), void *arg) 3240 { 3241 3242 TAILQ_FOREACH(so, &so->so_comp, so_list) 3243 func(so, arg); 3244 } 3245 3246 struct sockbuf * 3247 so_sockbuf_rcv(struct socket *so) 3248 { 3249 3250 return (&so->so_rcv); 3251 } 3252 3253 struct sockbuf * 3254 so_sockbuf_snd(struct socket *so) 3255 { 3256 3257 return (&so->so_snd); 3258 } 3259 3260 int 3261 so_state_get(const struct socket *so) 3262 { 3263 3264 return (so->so_state); 3265 } 3266 3267 void 3268 so_state_set(struct socket *so, int val) 3269 { 3270 3271 so->so_state = val; 3272 } 3273 3274 int 3275 so_options_get(const struct socket *so) 3276 { 3277 3278 return (so->so_options); 3279 } 3280 3281 void 3282 so_options_set(struct socket *so, int val) 3283 { 3284 3285 so->so_options = val; 3286 } 3287 3288 int 3289 so_error_get(const struct socket *so) 3290 { 3291 3292 return (so->so_error); 3293 } 3294 3295 void 3296 so_error_set(struct socket *so, int val) 3297 { 3298 3299 so->so_error = val; 3300 } 3301 3302 int 3303 so_linger_get(const struct socket *so) 3304 { 3305 3306 return (so->so_linger); 3307 } 3308 3309 void 3310 so_linger_set(struct socket *so, int val) 3311 { 3312 3313 so->so_linger = val; 3314 } 3315 3316 struct protosw * 3317 so_protosw_get(const struct socket *so) 3318 { 3319 3320 return (so->so_proto); 3321 } 3322 3323 void 3324 so_protosw_set(struct socket *so, struct protosw *val) 3325 { 3326 3327 so->so_proto = val; 3328 } 3329 3330 void 3331 so_sorwakeup(struct socket *so) 3332 { 3333 3334 sorwakeup(so); 3335 } 3336 3337 void 3338 so_sowwakeup(struct socket *so) 3339 { 3340 3341 sowwakeup(so); 3342 } 3343 3344 void 3345 so_sorwakeup_locked(struct socket *so) 3346 { 3347 3348 sorwakeup_locked(so); 3349 } 3350 3351 void 3352 so_sowwakeup_locked(struct socket *so) 3353 { 3354 3355 sowwakeup_locked(so); 3356 } 3357 3358 void 3359 so_lock(struct socket *so) 3360 { 3361 SOCK_LOCK(so); 3362 } 3363 3364 void 3365 so_unlock(struct socket *so) 3366 { 3367 SOCK_UNLOCK(so); 3368 } 3369