1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. 6 * Copyright (c) 2004 The FreeBSD Foundation 7 * Copyright (c) 2004-2008 Robert N. M. Watson 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 35 */ 36 37 /* 38 * Comments on the socket life cycle: 39 * 40 * soalloc() sets of socket layer state for a socket, called only by 41 * socreate() and sonewconn(). Socket layer private. 42 * 43 * sodealloc() tears down socket layer state for a socket, called only by 44 * sofree() and sonewconn(). Socket layer private. 45 * 46 * pru_attach() associates protocol layer state with an allocated socket; 47 * called only once, may fail, aborting socket allocation. This is called 48 * from socreate() and sonewconn(). Socket layer private. 49 * 50 * pru_detach() disassociates protocol layer state from an attached socket, 51 * and will be called exactly once for sockets in which pru_attach() has 52 * been successfully called. If pru_attach() returned an error, 53 * pru_detach() will not be called. Socket layer private. 54 * 55 * pru_abort() and pru_close() notify the protocol layer that the last 56 * consumer of a socket is starting to tear down the socket, and that the 57 * protocol should terminate the connection. Historically, pru_abort() also 58 * detached protocol state from the socket state, but this is no longer the 59 * case. 60 * 61 * socreate() creates a socket and attaches protocol state. This is a public 62 * interface that may be used by socket layer consumers to create new 63 * sockets. 64 * 65 * sonewconn() creates a socket and attaches protocol state. This is a 66 * public interface that may be used by protocols to create new sockets when 67 * a new connection is received and will be available for accept() on a 68 * listen socket. 69 * 70 * soclose() destroys a socket after possibly waiting for it to disconnect. 71 * This is a public interface that socket consumers should use to close and 72 * release a socket when done with it. 73 * 74 * soabort() destroys a socket without waiting for it to disconnect (used 75 * only for incoming connections that are already partially or fully 76 * connected). This is used internally by the socket layer when clearing 77 * listen socket queues (due to overflow or close on the listen socket), but 78 * is also a public interface protocols may use to abort connections in 79 * their incomplete listen queues should they no longer be required. Sockets 80 * placed in completed connection listen queues should not be aborted for 81 * reasons described in the comment above the soclose() implementation. This 82 * is not a general purpose close routine, and except in the specific 83 * circumstances described here, should not be used. 84 * 85 * sofree() will free a socket and its protocol state if all references on 86 * the socket have been released, and is the public interface to attempt to 87 * free a socket when a reference is removed. This is a socket layer private 88 * interface. 89 * 90 * NOTE: In addition to socreate() and soclose(), which provide a single 91 * socket reference to the consumer to be managed as required, there are two 92 * calls to explicitly manage socket references, soref(), and sorele(). 93 * Currently, these are generally required only when transitioning a socket 94 * from a listen queue to a file descriptor, in order to prevent garbage 95 * collection of the socket at an untimely moment. For a number of reasons, 96 * these interfaces are not preferred, and should be avoided. 97 * 98 * NOTE: With regard to VNETs the general rule is that callers do not set 99 * curvnet. Exceptions to this rule include soabort(), sodisconnect(), 100 * sofree() (and with that sorele(), sotryfree()), as well as sonewconn() 101 * and sorflush(), which are usually called from a pre-set VNET context. 102 * sopoll() currently does not need a VNET context to be set. 103 */ 104 105 #include <sys/cdefs.h> 106 __FBSDID("$FreeBSD$"); 107 108 #include "opt_inet.h" 109 #include "opt_inet6.h" 110 #include "opt_kern_tls.h" 111 #include "opt_sctp.h" 112 113 #include <sys/param.h> 114 #include <sys/systm.h> 115 #include <sys/capsicum.h> 116 #include <sys/fcntl.h> 117 #include <sys/limits.h> 118 #include <sys/lock.h> 119 #include <sys/mac.h> 120 #include <sys/malloc.h> 121 #include <sys/mbuf.h> 122 #include <sys/mutex.h> 123 #include <sys/domain.h> 124 #include <sys/file.h> /* for struct knote */ 125 #include <sys/hhook.h> 126 #include <sys/kernel.h> 127 #include <sys/khelp.h> 128 #include <sys/ktls.h> 129 #include <sys/event.h> 130 #include <sys/eventhandler.h> 131 #include <sys/poll.h> 132 #include <sys/proc.h> 133 #include <sys/protosw.h> 134 #include <sys/sbuf.h> 135 #include <sys/socket.h> 136 #include <sys/socketvar.h> 137 #include <sys/resourcevar.h> 138 #include <net/route.h> 139 #include <sys/signalvar.h> 140 #include <sys/stat.h> 141 #include <sys/sx.h> 142 #include <sys/sysctl.h> 143 #include <sys/taskqueue.h> 144 #include <sys/uio.h> 145 #include <sys/un.h> 146 #include <sys/unpcb.h> 147 #include <sys/jail.h> 148 #include <sys/syslog.h> 149 #include <netinet/in.h> 150 #include <netinet/in_pcb.h> 151 #include <netinet/tcp.h> 152 153 #include <net/vnet.h> 154 155 #include <security/mac/mac_framework.h> 156 157 #include <vm/uma.h> 158 159 #ifdef COMPAT_FREEBSD32 160 #include <sys/mount.h> 161 #include <sys/sysent.h> 162 #include <compat/freebsd32/freebsd32.h> 163 #endif 164 165 static int soreceive_rcvoob(struct socket *so, struct uio *uio, 166 int flags); 167 static void so_rdknl_lock(void *); 168 static void so_rdknl_unlock(void *); 169 static void so_rdknl_assert_lock(void *, int); 170 static void so_wrknl_lock(void *); 171 static void so_wrknl_unlock(void *); 172 static void so_wrknl_assert_lock(void *, int); 173 174 static void filt_sordetach(struct knote *kn); 175 static int filt_soread(struct knote *kn, long hint); 176 static void filt_sowdetach(struct knote *kn); 177 static int filt_sowrite(struct knote *kn, long hint); 178 static int filt_soempty(struct knote *kn, long hint); 179 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id); 180 fo_kqfilter_t soo_kqfilter; 181 182 static struct filterops soread_filtops = { 183 .f_isfd = 1, 184 .f_detach = filt_sordetach, 185 .f_event = filt_soread, 186 }; 187 static struct filterops sowrite_filtops = { 188 .f_isfd = 1, 189 .f_detach = filt_sowdetach, 190 .f_event = filt_sowrite, 191 }; 192 static struct filterops soempty_filtops = { 193 .f_isfd = 1, 194 .f_detach = filt_sowdetach, 195 .f_event = filt_soempty, 196 }; 197 198 so_gen_t so_gencnt; /* generation count for sockets */ 199 200 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 201 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 202 203 #define VNET_SO_ASSERT(so) \ 204 VNET_ASSERT(curvnet != NULL, \ 205 ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so))); 206 207 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]); 208 #define V_socket_hhh VNET(socket_hhh) 209 210 /* 211 * Limit on the number of connections in the listen queue waiting 212 * for accept(2). 213 * NB: The original sysctl somaxconn is still available but hidden 214 * to prevent confusion about the actual purpose of this number. 215 */ 216 static u_int somaxconn = SOMAXCONN; 217 218 static int 219 sysctl_somaxconn(SYSCTL_HANDLER_ARGS) 220 { 221 int error; 222 int val; 223 224 val = somaxconn; 225 error = sysctl_handle_int(oidp, &val, 0, req); 226 if (error || !req->newptr ) 227 return (error); 228 229 /* 230 * The purpose of the UINT_MAX / 3 limit, is so that the formula 231 * 3 * so_qlimit / 2 232 * below, will not overflow. 233 */ 234 235 if (val < 1 || val > UINT_MAX / 3) 236 return (EINVAL); 237 238 somaxconn = val; 239 return (0); 240 } 241 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue, 242 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, sizeof(int), 243 sysctl_somaxconn, "I", 244 "Maximum listen socket pending connection accept queue size"); 245 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, 246 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE, 0, 247 sizeof(int), sysctl_somaxconn, "I", 248 "Maximum listen socket pending connection accept queue size (compat)"); 249 250 static int numopensockets; 251 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, 252 &numopensockets, 0, "Number of open sockets"); 253 254 /* 255 * accept_mtx locks down per-socket fields relating to accept queues. See 256 * socketvar.h for an annotation of the protected fields of struct socket. 257 */ 258 struct mtx accept_mtx; 259 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF); 260 261 /* 262 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket 263 * so_gencnt field. 264 */ 265 static struct mtx so_global_mtx; 266 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); 267 268 /* 269 * General IPC sysctl name space, used by sockets and a variety of other IPC 270 * types. 271 */ 272 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 273 "IPC"); 274 275 /* 276 * Initialize the socket subsystem and set up the socket 277 * memory allocator. 278 */ 279 static uma_zone_t socket_zone; 280 int maxsockets; 281 282 static void 283 socket_zone_change(void *tag) 284 { 285 286 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 287 } 288 289 static void 290 socket_hhook_register(int subtype) 291 { 292 293 if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype, 294 &V_socket_hhh[subtype], 295 HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 296 printf("%s: WARNING: unable to register hook\n", __func__); 297 } 298 299 static void 300 socket_hhook_deregister(int subtype) 301 { 302 303 if (hhook_head_deregister(V_socket_hhh[subtype]) != 0) 304 printf("%s: WARNING: unable to deregister hook\n", __func__); 305 } 306 307 static void 308 socket_init(void *tag) 309 { 310 311 socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL, 312 NULL, NULL, UMA_ALIGN_PTR, 0); 313 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 314 uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached"); 315 EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL, 316 EVENTHANDLER_PRI_FIRST); 317 } 318 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL); 319 320 static void 321 socket_vnet_init(const void *unused __unused) 322 { 323 int i; 324 325 /* We expect a contiguous range */ 326 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 327 socket_hhook_register(i); 328 } 329 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 330 socket_vnet_init, NULL); 331 332 static void 333 socket_vnet_uninit(const void *unused __unused) 334 { 335 int i; 336 337 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 338 socket_hhook_deregister(i); 339 } 340 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 341 socket_vnet_uninit, NULL); 342 343 /* 344 * Initialise maxsockets. This SYSINIT must be run after 345 * tunable_mbinit(). 346 */ 347 static void 348 init_maxsockets(void *ignored) 349 { 350 351 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 352 maxsockets = imax(maxsockets, maxfiles); 353 } 354 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 355 356 /* 357 * Sysctl to get and set the maximum global sockets limit. Notify protocols 358 * of the change so that they can update their dependent limits as required. 359 */ 360 static int 361 sysctl_maxsockets(SYSCTL_HANDLER_ARGS) 362 { 363 int error, newmaxsockets; 364 365 newmaxsockets = maxsockets; 366 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req); 367 if (error == 0 && req->newptr && newmaxsockets != maxsockets) { 368 if (newmaxsockets > maxsockets && 369 newmaxsockets <= maxfiles) { 370 maxsockets = newmaxsockets; 371 EVENTHANDLER_INVOKE(maxsockets_change); 372 } else 373 error = EINVAL; 374 } 375 return (error); 376 } 377 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, 378 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, &maxsockets, 0, 379 sysctl_maxsockets, "IU", 380 "Maximum number of sockets available"); 381 382 /* 383 * Socket operation routines. These routines are called by the routines in 384 * sys_socket.c or from a system process, and implement the semantics of 385 * socket operations by switching out to the protocol specific routines. 386 */ 387 388 /* 389 * Get a socket structure from our zone, and initialize it. Note that it 390 * would probably be better to allocate socket and PCB at the same time, but 391 * I'm not convinced that all the protocols can be easily modified to do 392 * this. 393 * 394 * soalloc() returns a socket with a ref count of 0. 395 */ 396 static struct socket * 397 soalloc(struct vnet *vnet) 398 { 399 struct socket *so; 400 401 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO); 402 if (so == NULL) 403 return (NULL); 404 #ifdef MAC 405 if (mac_socket_init(so, M_NOWAIT) != 0) { 406 uma_zfree(socket_zone, so); 407 return (NULL); 408 } 409 #endif 410 if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) { 411 uma_zfree(socket_zone, so); 412 return (NULL); 413 } 414 415 /* 416 * The socket locking protocol allows to lock 2 sockets at a time, 417 * however, the first one must be a listening socket. WITNESS lacks 418 * a feature to change class of an existing lock, so we use DUPOK. 419 */ 420 mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK); 421 mtx_init(&so->so_snd_mtx, "so_snd", NULL, MTX_DEF); 422 mtx_init(&so->so_rcv_mtx, "so_rcv", NULL, MTX_DEF); 423 so->so_rcv.sb_sel = &so->so_rdsel; 424 so->so_snd.sb_sel = &so->so_wrsel; 425 sx_init(&so->so_snd_sx, "so_snd_sx"); 426 sx_init(&so->so_rcv_sx, "so_rcv_sx"); 427 TAILQ_INIT(&so->so_snd.sb_aiojobq); 428 TAILQ_INIT(&so->so_rcv.sb_aiojobq); 429 TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so); 430 TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so); 431 #ifdef VIMAGE 432 VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p", 433 __func__, __LINE__, so)); 434 so->so_vnet = vnet; 435 #endif 436 /* We shouldn't need the so_global_mtx */ 437 if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) { 438 /* Do we need more comprehensive error returns? */ 439 uma_zfree(socket_zone, so); 440 return (NULL); 441 } 442 mtx_lock(&so_global_mtx); 443 so->so_gencnt = ++so_gencnt; 444 ++numopensockets; 445 #ifdef VIMAGE 446 vnet->vnet_sockcnt++; 447 #endif 448 mtx_unlock(&so_global_mtx); 449 450 return (so); 451 } 452 453 /* 454 * Free the storage associated with a socket at the socket layer, tear down 455 * locks, labels, etc. All protocol state is assumed already to have been 456 * torn down (and possibly never set up) by the caller. 457 */ 458 static void 459 sodealloc(struct socket *so) 460 { 461 462 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); 463 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL")); 464 465 mtx_lock(&so_global_mtx); 466 so->so_gencnt = ++so_gencnt; 467 --numopensockets; /* Could be below, but faster here. */ 468 #ifdef VIMAGE 469 VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p", 470 __func__, __LINE__, so)); 471 so->so_vnet->vnet_sockcnt--; 472 #endif 473 mtx_unlock(&so_global_mtx); 474 #ifdef MAC 475 mac_socket_destroy(so); 476 #endif 477 hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE); 478 479 khelp_destroy_osd(&so->osd); 480 if (SOLISTENING(so)) { 481 if (so->sol_accept_filter != NULL) 482 accept_filt_setopt(so, NULL); 483 } else { 484 if (so->so_rcv.sb_hiwat) 485 (void)chgsbsize(so->so_cred->cr_uidinfo, 486 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 487 if (so->so_snd.sb_hiwat) 488 (void)chgsbsize(so->so_cred->cr_uidinfo, 489 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 490 sx_destroy(&so->so_snd_sx); 491 sx_destroy(&so->so_rcv_sx); 492 mtx_destroy(&so->so_snd_mtx); 493 mtx_destroy(&so->so_rcv_mtx); 494 } 495 crfree(so->so_cred); 496 mtx_destroy(&so->so_lock); 497 uma_zfree(socket_zone, so); 498 } 499 500 /* 501 * socreate returns a socket with a ref count of 1. The socket should be 502 * closed with soclose(). 503 */ 504 int 505 socreate(int dom, struct socket **aso, int type, int proto, 506 struct ucred *cred, struct thread *td) 507 { 508 struct protosw *prp; 509 struct socket *so; 510 int error; 511 512 if (proto) 513 prp = pffindproto(dom, proto, type); 514 else 515 prp = pffindtype(dom, type); 516 517 if (prp == NULL) { 518 /* No support for domain. */ 519 if (pffinddomain(dom) == NULL) 520 return (EAFNOSUPPORT); 521 /* No support for socket type. */ 522 if (proto == 0 && type != 0) 523 return (EPROTOTYPE); 524 return (EPROTONOSUPPORT); 525 } 526 if (prp->pr_usrreqs->pru_attach == NULL || 527 prp->pr_usrreqs->pru_attach == pru_attach_notsupp) 528 return (EPROTONOSUPPORT); 529 530 if (IN_CAPABILITY_MODE(td) && (prp->pr_flags & PR_CAPATTACH) == 0) 531 return (ECAPMODE); 532 533 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0) 534 return (EPROTONOSUPPORT); 535 536 if (prp->pr_type != type) 537 return (EPROTOTYPE); 538 so = soalloc(CRED_TO_VNET(cred)); 539 if (so == NULL) 540 return (ENOBUFS); 541 542 so->so_type = type; 543 so->so_cred = crhold(cred); 544 if ((prp->pr_domain->dom_family == PF_INET) || 545 (prp->pr_domain->dom_family == PF_INET6) || 546 (prp->pr_domain->dom_family == PF_ROUTE)) 547 so->so_fibnum = td->td_proc->p_fibnum; 548 else 549 so->so_fibnum = 0; 550 so->so_proto = prp; 551 #ifdef MAC 552 mac_socket_create(cred, so); 553 #endif 554 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 555 so_rdknl_assert_lock); 556 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 557 so_wrknl_assert_lock); 558 if ((prp->pr_flags & PR_SOCKBUF) == 0) { 559 so->so_snd.sb_mtx = &so->so_snd_mtx; 560 so->so_rcv.sb_mtx = &so->so_rcv_mtx; 561 } 562 /* 563 * Auto-sizing of socket buffers is managed by the protocols and 564 * the appropriate flags must be set in the pru_attach function. 565 */ 566 CURVNET_SET(so->so_vnet); 567 error = (*prp->pr_usrreqs->pru_attach)(so, proto, td); 568 CURVNET_RESTORE(); 569 if (error) { 570 sodealloc(so); 571 return (error); 572 } 573 soref(so); 574 *aso = so; 575 return (0); 576 } 577 578 #ifdef REGRESSION 579 static int regression_sonewconn_earlytest = 1; 580 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW, 581 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test"); 582 #endif 583 584 static struct timeval overinterval = { 60, 0 }; 585 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW, 586 &overinterval, 587 "Delay in seconds between warnings for listen socket overflows"); 588 589 /* 590 * When an attempt at a new connection is noted on a socket which accepts 591 * connections, sonewconn is called. If the connection is possible (subject 592 * to space constraints, etc.) then we allocate a new structure, properly 593 * linked into the data structure of the original socket, and return this. 594 * Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED. 595 * 596 * Note: the ref count on the socket is 0 on return. 597 */ 598 struct socket * 599 sonewconn(struct socket *head, int connstatus) 600 { 601 struct sbuf descrsb; 602 struct socket *so; 603 int len, overcount; 604 u_int qlen; 605 const char localprefix[] = "local:"; 606 char descrbuf[SUNPATHLEN + sizeof(localprefix)]; 607 #if defined(INET6) 608 char addrbuf[INET6_ADDRSTRLEN]; 609 #elif defined(INET) 610 char addrbuf[INET_ADDRSTRLEN]; 611 #endif 612 bool dolog, over; 613 614 SOLISTEN_LOCK(head); 615 over = (head->sol_qlen > 3 * head->sol_qlimit / 2); 616 #ifdef REGRESSION 617 if (regression_sonewconn_earlytest && over) { 618 #else 619 if (over) { 620 #endif 621 head->sol_overcount++; 622 dolog = !!ratecheck(&head->sol_lastover, &overinterval); 623 624 /* 625 * If we're going to log, copy the overflow count and queue 626 * length from the listen socket before dropping the lock. 627 * Also, reset the overflow count. 628 */ 629 if (dolog) { 630 overcount = head->sol_overcount; 631 head->sol_overcount = 0; 632 qlen = head->sol_qlen; 633 } 634 SOLISTEN_UNLOCK(head); 635 636 if (dolog) { 637 /* 638 * Try to print something descriptive about the 639 * socket for the error message. 640 */ 641 sbuf_new(&descrsb, descrbuf, sizeof(descrbuf), 642 SBUF_FIXEDLEN); 643 switch (head->so_proto->pr_domain->dom_family) { 644 #if defined(INET) || defined(INET6) 645 #ifdef INET 646 case AF_INET: 647 #endif 648 #ifdef INET6 649 case AF_INET6: 650 if (head->so_proto->pr_domain->dom_family == 651 AF_INET6 || 652 (sotoinpcb(head)->inp_inc.inc_flags & 653 INC_ISIPV6)) { 654 ip6_sprintf(addrbuf, 655 &sotoinpcb(head)->inp_inc.inc6_laddr); 656 sbuf_printf(&descrsb, "[%s]", addrbuf); 657 } else 658 #endif 659 { 660 #ifdef INET 661 inet_ntoa_r( 662 sotoinpcb(head)->inp_inc.inc_laddr, 663 addrbuf); 664 sbuf_cat(&descrsb, addrbuf); 665 #endif 666 } 667 sbuf_printf(&descrsb, ":%hu (proto %u)", 668 ntohs(sotoinpcb(head)->inp_inc.inc_lport), 669 head->so_proto->pr_protocol); 670 break; 671 #endif /* INET || INET6 */ 672 case AF_UNIX: 673 sbuf_cat(&descrsb, localprefix); 674 if (sotounpcb(head)->unp_addr != NULL) 675 len = 676 sotounpcb(head)->unp_addr->sun_len - 677 offsetof(struct sockaddr_un, 678 sun_path); 679 else 680 len = 0; 681 if (len > 0) 682 sbuf_bcat(&descrsb, 683 sotounpcb(head)->unp_addr->sun_path, 684 len); 685 else 686 sbuf_cat(&descrsb, "(unknown)"); 687 break; 688 } 689 690 /* 691 * If we can't print something more specific, at least 692 * print the domain name. 693 */ 694 if (sbuf_finish(&descrsb) != 0 || 695 sbuf_len(&descrsb) <= 0) { 696 sbuf_clear(&descrsb); 697 sbuf_cat(&descrsb, 698 head->so_proto->pr_domain->dom_name ?: 699 "unknown"); 700 sbuf_finish(&descrsb); 701 } 702 KASSERT(sbuf_len(&descrsb) > 0, 703 ("%s: sbuf creation failed", __func__)); 704 if (head->so_cred == 0) { 705 log(LOG_DEBUG, 706 "%s: pcb %p (%s): Listen queue overflow: " 707 "%i already in queue awaiting acceptance " 708 "(%d occurrences)\n", 709 __func__, head->so_pcb, sbuf_data(&descrsb), 710 qlen, overcount); 711 } else { 712 log(LOG_DEBUG, "%s: pcb %p (%s): Listen queue overflow: " 713 "%i already in queue awaiting acceptance " 714 "(%d occurrences), euid %d, rgid %d, jail %s\n", 715 __func__, head->so_pcb, sbuf_data(&descrsb), 716 qlen, overcount, 717 head->so_cred->cr_uid, head->so_cred->cr_rgid, 718 head->so_cred->cr_prison ? 719 head->so_cred->cr_prison->pr_name : 720 "not_jailed"); 721 } 722 sbuf_delete(&descrsb); 723 724 overcount = 0; 725 } 726 727 return (NULL); 728 } 729 SOLISTEN_UNLOCK(head); 730 VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL", 731 __func__, head)); 732 so = soalloc(head->so_vnet); 733 if (so == NULL) { 734 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 735 "limit reached or out of memory\n", 736 __func__, head->so_pcb); 737 return (NULL); 738 } 739 so->so_listen = head; 740 so->so_type = head->so_type; 741 so->so_options = head->so_options & ~SO_ACCEPTCONN; 742 so->so_linger = head->so_linger; 743 so->so_state = head->so_state | SS_NOFDREF; 744 so->so_fibnum = head->so_fibnum; 745 so->so_proto = head->so_proto; 746 so->so_cred = crhold(head->so_cred); 747 #ifdef MAC 748 mac_socket_newconn(head, so); 749 #endif 750 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 751 so_rdknl_assert_lock); 752 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 753 so_wrknl_assert_lock); 754 VNET_SO_ASSERT(head); 755 if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) { 756 sodealloc(so); 757 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 758 __func__, head->so_pcb); 759 return (NULL); 760 } 761 if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) { 762 so->so_snd.sb_mtx = &so->so_snd_mtx; 763 so->so_rcv.sb_mtx = &so->so_rcv_mtx; 764 } 765 if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 766 sodealloc(so); 767 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", 768 __func__, head->so_pcb); 769 return (NULL); 770 } 771 so->so_rcv.sb_lowat = head->sol_sbrcv_lowat; 772 so->so_snd.sb_lowat = head->sol_sbsnd_lowat; 773 so->so_rcv.sb_timeo = head->sol_sbrcv_timeo; 774 so->so_snd.sb_timeo = head->sol_sbsnd_timeo; 775 so->so_rcv.sb_flags |= head->sol_sbrcv_flags & SB_AUTOSIZE; 776 so->so_snd.sb_flags |= head->sol_sbsnd_flags & SB_AUTOSIZE; 777 778 SOLISTEN_LOCK(head); 779 if (head->sol_accept_filter != NULL) 780 connstatus = 0; 781 so->so_state |= connstatus; 782 soref(head); /* A socket on (in)complete queue refs head. */ 783 if (connstatus) { 784 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 785 so->so_qstate = SQ_COMP; 786 head->sol_qlen++; 787 solisten_wakeup(head); /* unlocks */ 788 } else { 789 /* 790 * Keep removing sockets from the head until there's room for 791 * us to insert on the tail. In pre-locking revisions, this 792 * was a simple if(), but as we could be racing with other 793 * threads and soabort() requires dropping locks, we must 794 * loop waiting for the condition to be true. 795 */ 796 while (head->sol_incqlen > head->sol_qlimit) { 797 struct socket *sp; 798 799 sp = TAILQ_FIRST(&head->sol_incomp); 800 TAILQ_REMOVE(&head->sol_incomp, sp, so_list); 801 head->sol_incqlen--; 802 SOCK_LOCK(sp); 803 sp->so_qstate = SQ_NONE; 804 sp->so_listen = NULL; 805 SOCK_UNLOCK(sp); 806 sorele_locked(head); /* does SOLISTEN_UNLOCK, head stays */ 807 soabort(sp); 808 SOLISTEN_LOCK(head); 809 } 810 TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list); 811 so->so_qstate = SQ_INCOMP; 812 head->sol_incqlen++; 813 SOLISTEN_UNLOCK(head); 814 } 815 return (so); 816 } 817 818 #if defined(SCTP) || defined(SCTP_SUPPORT) 819 /* 820 * Socket part of sctp_peeloff(). Detach a new socket from an 821 * association. The new socket is returned with a reference. 822 */ 823 struct socket * 824 sopeeloff(struct socket *head) 825 { 826 struct socket *so; 827 828 VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p", 829 __func__, __LINE__, head)); 830 so = soalloc(head->so_vnet); 831 if (so == NULL) { 832 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 833 "limit reached or out of memory\n", 834 __func__, head->so_pcb); 835 return (NULL); 836 } 837 so->so_type = head->so_type; 838 so->so_options = head->so_options; 839 so->so_linger = head->so_linger; 840 so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED; 841 so->so_fibnum = head->so_fibnum; 842 so->so_proto = head->so_proto; 843 so->so_cred = crhold(head->so_cred); 844 #ifdef MAC 845 mac_socket_newconn(head, so); 846 #endif 847 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 848 so_rdknl_assert_lock); 849 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 850 so_wrknl_assert_lock); 851 VNET_SO_ASSERT(head); 852 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) { 853 sodealloc(so); 854 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 855 __func__, head->so_pcb); 856 return (NULL); 857 } 858 if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 859 sodealloc(so); 860 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", 861 __func__, head->so_pcb); 862 return (NULL); 863 } 864 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; 865 so->so_snd.sb_lowat = head->so_snd.sb_lowat; 866 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; 867 so->so_snd.sb_timeo = head->so_snd.sb_timeo; 868 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE; 869 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE; 870 871 soref(so); 872 873 return (so); 874 } 875 #endif /* SCTP */ 876 877 int 878 sobind(struct socket *so, struct sockaddr *nam, struct thread *td) 879 { 880 int error; 881 882 CURVNET_SET(so->so_vnet); 883 error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td); 884 CURVNET_RESTORE(); 885 return (error); 886 } 887 888 int 889 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 890 { 891 int error; 892 893 CURVNET_SET(so->so_vnet); 894 error = (*so->so_proto->pr_usrreqs->pru_bindat)(fd, so, nam, td); 895 CURVNET_RESTORE(); 896 return (error); 897 } 898 899 /* 900 * solisten() transitions a socket from a non-listening state to a listening 901 * state, but can also be used to update the listen queue depth on an 902 * existing listen socket. The protocol will call back into the sockets 903 * layer using solisten_proto_check() and solisten_proto() to check and set 904 * socket-layer listen state. Call backs are used so that the protocol can 905 * acquire both protocol and socket layer locks in whatever order is required 906 * by the protocol. 907 * 908 * Protocol implementors are advised to hold the socket lock across the 909 * socket-layer test and set to avoid races at the socket layer. 910 */ 911 int 912 solisten(struct socket *so, int backlog, struct thread *td) 913 { 914 int error; 915 916 CURVNET_SET(so->so_vnet); 917 error = (*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td); 918 CURVNET_RESTORE(); 919 return (error); 920 } 921 922 /* 923 * Prepare for a call to solisten_proto(). Acquire all socket buffer locks in 924 * order to interlock with socket I/O. 925 */ 926 int 927 solisten_proto_check(struct socket *so) 928 { 929 SOCK_LOCK_ASSERT(so); 930 931 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 932 SS_ISDISCONNECTING)) != 0) 933 return (EINVAL); 934 935 /* 936 * Sleeping is not permitted here, so simply fail if userspace is 937 * attempting to transmit or receive on the socket. This kind of 938 * transient failure is not ideal, but it should occur only if userspace 939 * is misusing the socket interfaces. 940 */ 941 if (!sx_try_xlock(&so->so_snd_sx)) 942 return (EAGAIN); 943 if (!sx_try_xlock(&so->so_rcv_sx)) { 944 sx_xunlock(&so->so_snd_sx); 945 return (EAGAIN); 946 } 947 mtx_lock(&so->so_snd_mtx); 948 mtx_lock(&so->so_rcv_mtx); 949 950 /* Interlock with soo_aio_queue(). */ 951 if (!SOLISTENING(so) && 952 ((so->so_snd.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0 || 953 (so->so_rcv.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0)) { 954 solisten_proto_abort(so); 955 return (EINVAL); 956 } 957 return (0); 958 } 959 960 /* 961 * Undo the setup done by solisten_proto_check(). 962 */ 963 void 964 solisten_proto_abort(struct socket *so) 965 { 966 mtx_unlock(&so->so_snd_mtx); 967 mtx_unlock(&so->so_rcv_mtx); 968 sx_xunlock(&so->so_snd_sx); 969 sx_xunlock(&so->so_rcv_sx); 970 } 971 972 void 973 solisten_proto(struct socket *so, int backlog) 974 { 975 int sbrcv_lowat, sbsnd_lowat; 976 u_int sbrcv_hiwat, sbsnd_hiwat; 977 short sbrcv_flags, sbsnd_flags; 978 sbintime_t sbrcv_timeo, sbsnd_timeo; 979 980 SOCK_LOCK_ASSERT(so); 981 KASSERT((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 982 SS_ISDISCONNECTING)) == 0, 983 ("%s: bad socket state %p", __func__, so)); 984 985 if (SOLISTENING(so)) 986 goto listening; 987 988 /* 989 * Change this socket to listening state. 990 */ 991 sbrcv_lowat = so->so_rcv.sb_lowat; 992 sbsnd_lowat = so->so_snd.sb_lowat; 993 sbrcv_hiwat = so->so_rcv.sb_hiwat; 994 sbsnd_hiwat = so->so_snd.sb_hiwat; 995 sbrcv_flags = so->so_rcv.sb_flags; 996 sbsnd_flags = so->so_snd.sb_flags; 997 sbrcv_timeo = so->so_rcv.sb_timeo; 998 sbsnd_timeo = so->so_snd.sb_timeo; 999 1000 sbdestroy(so, SO_SND); 1001 sbdestroy(so, SO_RCV); 1002 1003 #ifdef INVARIANTS 1004 bzero(&so->so_rcv, 1005 sizeof(struct socket) - offsetof(struct socket, so_rcv)); 1006 #endif 1007 1008 so->sol_sbrcv_lowat = sbrcv_lowat; 1009 so->sol_sbsnd_lowat = sbsnd_lowat; 1010 so->sol_sbrcv_hiwat = sbrcv_hiwat; 1011 so->sol_sbsnd_hiwat = sbsnd_hiwat; 1012 so->sol_sbrcv_flags = sbrcv_flags; 1013 so->sol_sbsnd_flags = sbsnd_flags; 1014 so->sol_sbrcv_timeo = sbrcv_timeo; 1015 so->sol_sbsnd_timeo = sbsnd_timeo; 1016 1017 so->sol_qlen = so->sol_incqlen = 0; 1018 TAILQ_INIT(&so->sol_incomp); 1019 TAILQ_INIT(&so->sol_comp); 1020 1021 so->sol_accept_filter = NULL; 1022 so->sol_accept_filter_arg = NULL; 1023 so->sol_accept_filter_str = NULL; 1024 1025 so->sol_upcall = NULL; 1026 so->sol_upcallarg = NULL; 1027 1028 so->so_options |= SO_ACCEPTCONN; 1029 1030 listening: 1031 if (backlog < 0 || backlog > somaxconn) 1032 backlog = somaxconn; 1033 so->sol_qlimit = backlog; 1034 1035 mtx_unlock(&so->so_snd_mtx); 1036 mtx_unlock(&so->so_rcv_mtx); 1037 sx_xunlock(&so->so_snd_sx); 1038 sx_xunlock(&so->so_rcv_sx); 1039 } 1040 1041 /* 1042 * Wakeup listeners/subsystems once we have a complete connection. 1043 * Enters with lock, returns unlocked. 1044 */ 1045 void 1046 solisten_wakeup(struct socket *sol) 1047 { 1048 1049 if (sol->sol_upcall != NULL) 1050 (void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT); 1051 else { 1052 selwakeuppri(&sol->so_rdsel, PSOCK); 1053 KNOTE_LOCKED(&sol->so_rdsel.si_note, 0); 1054 } 1055 SOLISTEN_UNLOCK(sol); 1056 wakeup_one(&sol->sol_comp); 1057 if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL) 1058 pgsigio(&sol->so_sigio, SIGIO, 0); 1059 } 1060 1061 /* 1062 * Return single connection off a listening socket queue. Main consumer of 1063 * the function is kern_accept4(). Some modules, that do their own accept 1064 * management also use the function. 1065 * 1066 * Listening socket must be locked on entry and is returned unlocked on 1067 * return. 1068 * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT. 1069 */ 1070 int 1071 solisten_dequeue(struct socket *head, struct socket **ret, int flags) 1072 { 1073 struct socket *so; 1074 int error; 1075 1076 SOLISTEN_LOCK_ASSERT(head); 1077 1078 while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) && 1079 head->so_error == 0) { 1080 error = msleep(&head->sol_comp, SOCK_MTX(head), PSOCK | PCATCH, 1081 "accept", 0); 1082 if (error != 0) { 1083 SOLISTEN_UNLOCK(head); 1084 return (error); 1085 } 1086 } 1087 if (head->so_error) { 1088 error = head->so_error; 1089 head->so_error = 0; 1090 } else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp)) 1091 error = EWOULDBLOCK; 1092 else 1093 error = 0; 1094 if (error) { 1095 SOLISTEN_UNLOCK(head); 1096 return (error); 1097 } 1098 so = TAILQ_FIRST(&head->sol_comp); 1099 SOCK_LOCK(so); 1100 KASSERT(so->so_qstate == SQ_COMP, 1101 ("%s: so %p not SQ_COMP", __func__, so)); 1102 soref(so); 1103 head->sol_qlen--; 1104 so->so_qstate = SQ_NONE; 1105 so->so_listen = NULL; 1106 TAILQ_REMOVE(&head->sol_comp, so, so_list); 1107 if (flags & ACCEPT4_INHERIT) 1108 so->so_state |= (head->so_state & SS_NBIO); 1109 else 1110 so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0; 1111 SOCK_UNLOCK(so); 1112 sorele_locked(head); 1113 1114 *ret = so; 1115 return (0); 1116 } 1117 1118 /* 1119 * Evaluate the reference count and named references on a socket; if no 1120 * references remain, free it. This should be called whenever a reference is 1121 * released, such as in sorele(), but also when named reference flags are 1122 * cleared in socket or protocol code. 1123 * 1124 * sofree() will free the socket if: 1125 * 1126 * - There are no outstanding file descriptor references or related consumers 1127 * (so_count == 0). 1128 * 1129 * - The socket has been closed by user space, if ever open (SS_NOFDREF). 1130 * 1131 * - The protocol does not have an outstanding strong reference on the socket 1132 * (SS_PROTOREF). 1133 * 1134 * - The socket is not in a completed connection queue, so a process has been 1135 * notified that it is present. If it is removed, the user process may 1136 * block in accept() despite select() saying the socket was ready. 1137 */ 1138 void 1139 sofree(struct socket *so) 1140 { 1141 struct protosw *pr = so->so_proto; 1142 bool last __diagused; 1143 1144 SOCK_LOCK_ASSERT(so); 1145 1146 if ((so->so_state & (SS_NOFDREF | SS_PROTOREF)) != SS_NOFDREF || 1147 refcount_load(&so->so_count) != 0 || so->so_qstate == SQ_COMP) { 1148 SOCK_UNLOCK(so); 1149 return; 1150 } 1151 1152 if (!SOLISTENING(so) && so->so_qstate == SQ_INCOMP) { 1153 struct socket *sol; 1154 1155 sol = so->so_listen; 1156 KASSERT(sol, ("%s: so %p on incomp of NULL", __func__, so)); 1157 1158 /* 1159 * To solve race between close of a listening socket and 1160 * a socket on its incomplete queue, we need to lock both. 1161 * The order is first listening socket, then regular. 1162 * Since we don't have SS_NOFDREF neither SS_PROTOREF, this 1163 * function and the listening socket are the only pointers 1164 * to so. To preserve so and sol, we reference both and then 1165 * relock. 1166 * After relock the socket may not move to so_comp since it 1167 * doesn't have PCB already, but it may be removed from 1168 * so_incomp. If that happens, we share responsiblity on 1169 * freeing the socket, but soclose() has already removed 1170 * it from queue. 1171 */ 1172 soref(sol); 1173 soref(so); 1174 SOCK_UNLOCK(so); 1175 SOLISTEN_LOCK(sol); 1176 SOCK_LOCK(so); 1177 if (so->so_qstate == SQ_INCOMP) { 1178 KASSERT(so->so_listen == sol, 1179 ("%s: so %p migrated out of sol %p", 1180 __func__, so, sol)); 1181 TAILQ_REMOVE(&sol->sol_incomp, so, so_list); 1182 sol->sol_incqlen--; 1183 last = refcount_release(&sol->so_count); 1184 KASSERT(!last, ("%s: released last reference for %p", 1185 __func__, sol)); 1186 so->so_qstate = SQ_NONE; 1187 so->so_listen = NULL; 1188 } else 1189 KASSERT(so->so_listen == NULL, 1190 ("%s: so %p not on (in)comp with so_listen", 1191 __func__, so)); 1192 sorele_locked(sol); 1193 KASSERT(refcount_load(&so->so_count) == 1, 1194 ("%s: so %p count %u", __func__, so, so->so_count)); 1195 so->so_count = 0; 1196 } 1197 if (SOLISTENING(so)) 1198 so->so_error = ECONNABORTED; 1199 SOCK_UNLOCK(so); 1200 1201 if (so->so_dtor != NULL) 1202 so->so_dtor(so); 1203 1204 VNET_SO_ASSERT(so); 1205 if ((pr->pr_flags & PR_RIGHTS) && !SOLISTENING(so)) { 1206 MPASS(pr->pr_domain->dom_dispose != NULL); 1207 (*pr->pr_domain->dom_dispose)(so); 1208 } 1209 if (pr->pr_usrreqs->pru_detach != NULL) 1210 (*pr->pr_usrreqs->pru_detach)(so); 1211 1212 /* 1213 * From this point on, we assume that no other references to this 1214 * socket exist anywhere else in the stack. Therefore, no locks need 1215 * to be acquired or held. 1216 */ 1217 if (!(pr->pr_flags & PR_SOCKBUF) && !SOLISTENING(so)) { 1218 sbdestroy(so, SO_SND); 1219 sbdestroy(so, SO_RCV); 1220 } 1221 seldrain(&so->so_rdsel); 1222 seldrain(&so->so_wrsel); 1223 knlist_destroy(&so->so_rdsel.si_note); 1224 knlist_destroy(&so->so_wrsel.si_note); 1225 sodealloc(so); 1226 } 1227 1228 /* 1229 * Release a reference on a socket while holding the socket lock. 1230 * Unlocks the socket lock before returning. 1231 */ 1232 void 1233 sorele_locked(struct socket *so) 1234 { 1235 SOCK_LOCK_ASSERT(so); 1236 if (refcount_release(&so->so_count)) 1237 sofree(so); 1238 else 1239 SOCK_UNLOCK(so); 1240 } 1241 1242 /* 1243 * Close a socket on last file table reference removal. Initiate disconnect 1244 * if connected. Free socket when disconnect complete. 1245 * 1246 * This function will sorele() the socket. Note that soclose() may be called 1247 * prior to the ref count reaching zero. The actual socket structure will 1248 * not be freed until the ref count reaches zero. 1249 */ 1250 int 1251 soclose(struct socket *so) 1252 { 1253 struct accept_queue lqueue; 1254 int error = 0; 1255 bool listening, last __diagused; 1256 1257 KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter")); 1258 1259 CURVNET_SET(so->so_vnet); 1260 funsetown(&so->so_sigio); 1261 if (so->so_state & SS_ISCONNECTED) { 1262 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 1263 error = sodisconnect(so); 1264 if (error) { 1265 if (error == ENOTCONN) 1266 error = 0; 1267 goto drop; 1268 } 1269 } 1270 1271 if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) { 1272 if ((so->so_state & SS_ISDISCONNECTING) && 1273 (so->so_state & SS_NBIO)) 1274 goto drop; 1275 while (so->so_state & SS_ISCONNECTED) { 1276 error = tsleep(&so->so_timeo, 1277 PSOCK | PCATCH, "soclos", 1278 so->so_linger * hz); 1279 if (error) 1280 break; 1281 } 1282 } 1283 } 1284 1285 drop: 1286 if (so->so_proto->pr_usrreqs->pru_close != NULL) 1287 (*so->so_proto->pr_usrreqs->pru_close)(so); 1288 1289 SOCK_LOCK(so); 1290 if ((listening = SOLISTENING(so))) { 1291 struct socket *sp; 1292 1293 TAILQ_INIT(&lqueue); 1294 TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list); 1295 TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list); 1296 1297 so->sol_qlen = so->sol_incqlen = 0; 1298 1299 TAILQ_FOREACH(sp, &lqueue, so_list) { 1300 SOCK_LOCK(sp); 1301 sp->so_qstate = SQ_NONE; 1302 sp->so_listen = NULL; 1303 SOCK_UNLOCK(sp); 1304 last = refcount_release(&so->so_count); 1305 KASSERT(!last, ("%s: released last reference for %p", 1306 __func__, so)); 1307 } 1308 } 1309 KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF")); 1310 so->so_state |= SS_NOFDREF; 1311 sorele_locked(so); 1312 if (listening) { 1313 struct socket *sp, *tsp; 1314 1315 TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp) { 1316 SOCK_LOCK(sp); 1317 if (refcount_load(&sp->so_count) == 0) { 1318 SOCK_UNLOCK(sp); 1319 soabort(sp); 1320 } else { 1321 /* See the handling of queued sockets 1322 in sofree(). */ 1323 SOCK_UNLOCK(sp); 1324 } 1325 } 1326 } 1327 CURVNET_RESTORE(); 1328 return (error); 1329 } 1330 1331 /* 1332 * soabort() is used to abruptly tear down a connection, such as when a 1333 * resource limit is reached (listen queue depth exceeded), or if a listen 1334 * socket is closed while there are sockets waiting to be accepted. 1335 * 1336 * This interface is tricky, because it is called on an unreferenced socket, 1337 * and must be called only by a thread that has actually removed the socket 1338 * from the listen queue it was on, or races with other threads are risked. 1339 * 1340 * This interface will call into the protocol code, so must not be called 1341 * with any socket locks held. Protocols do call it while holding their own 1342 * recursible protocol mutexes, but this is something that should be subject 1343 * to review in the future. 1344 */ 1345 void 1346 soabort(struct socket *so) 1347 { 1348 1349 /* 1350 * In as much as is possible, assert that no references to this 1351 * socket are held. This is not quite the same as asserting that the 1352 * current thread is responsible for arranging for no references, but 1353 * is as close as we can get for now. 1354 */ 1355 KASSERT(so->so_count == 0, ("soabort: so_count")); 1356 KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF")); 1357 KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF")); 1358 VNET_SO_ASSERT(so); 1359 1360 if (so->so_proto->pr_usrreqs->pru_abort != NULL) 1361 (*so->so_proto->pr_usrreqs->pru_abort)(so); 1362 SOCK_LOCK(so); 1363 sofree(so); 1364 } 1365 1366 int 1367 soaccept(struct socket *so, struct sockaddr **nam) 1368 { 1369 int error; 1370 1371 SOCK_LOCK(so); 1372 KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF")); 1373 so->so_state &= ~SS_NOFDREF; 1374 SOCK_UNLOCK(so); 1375 1376 CURVNET_SET(so->so_vnet); 1377 error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam); 1378 CURVNET_RESTORE(); 1379 return (error); 1380 } 1381 1382 int 1383 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td) 1384 { 1385 1386 return (soconnectat(AT_FDCWD, so, nam, td)); 1387 } 1388 1389 int 1390 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 1391 { 1392 int error; 1393 1394 CURVNET_SET(so->so_vnet); 1395 /* 1396 * If protocol is connection-based, can only connect once. 1397 * Otherwise, if connected, try to disconnect first. This allows 1398 * user to disconnect by connecting to, e.g., a null address. 1399 */ 1400 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 1401 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 1402 (error = sodisconnect(so)))) { 1403 error = EISCONN; 1404 } else { 1405 /* 1406 * Prevent accumulated error from previous connection from 1407 * biting us. 1408 */ 1409 so->so_error = 0; 1410 if (fd == AT_FDCWD) { 1411 error = (*so->so_proto->pr_usrreqs->pru_connect)(so, 1412 nam, td); 1413 } else { 1414 error = (*so->so_proto->pr_usrreqs->pru_connectat)(fd, 1415 so, nam, td); 1416 } 1417 } 1418 CURVNET_RESTORE(); 1419 1420 return (error); 1421 } 1422 1423 int 1424 soconnect2(struct socket *so1, struct socket *so2) 1425 { 1426 int error; 1427 1428 CURVNET_SET(so1->so_vnet); 1429 error = (*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2); 1430 CURVNET_RESTORE(); 1431 return (error); 1432 } 1433 1434 int 1435 sodisconnect(struct socket *so) 1436 { 1437 int error; 1438 1439 if ((so->so_state & SS_ISCONNECTED) == 0) 1440 return (ENOTCONN); 1441 if (so->so_state & SS_ISDISCONNECTING) 1442 return (EALREADY); 1443 VNET_SO_ASSERT(so); 1444 error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so); 1445 return (error); 1446 } 1447 1448 int 1449 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, 1450 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1451 { 1452 long space; 1453 ssize_t resid; 1454 int clen = 0, error, dontroute; 1455 1456 KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM")); 1457 KASSERT(so->so_proto->pr_flags & PR_ATOMIC, 1458 ("sosend_dgram: !PR_ATOMIC")); 1459 1460 if (uio != NULL) 1461 resid = uio->uio_resid; 1462 else 1463 resid = top->m_pkthdr.len; 1464 /* 1465 * In theory resid should be unsigned. However, space must be 1466 * signed, as it might be less than 0 if we over-committed, and we 1467 * must use a signed comparison of space and resid. On the other 1468 * hand, a negative resid causes us to loop sending 0-length 1469 * segments to the protocol. 1470 */ 1471 if (resid < 0) { 1472 error = EINVAL; 1473 goto out; 1474 } 1475 1476 dontroute = 1477 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0; 1478 if (td != NULL) 1479 td->td_ru.ru_msgsnd++; 1480 if (control != NULL) 1481 clen = control->m_len; 1482 1483 SOCKBUF_LOCK(&so->so_snd); 1484 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1485 SOCKBUF_UNLOCK(&so->so_snd); 1486 error = EPIPE; 1487 goto out; 1488 } 1489 if (so->so_error) { 1490 error = so->so_error; 1491 so->so_error = 0; 1492 SOCKBUF_UNLOCK(&so->so_snd); 1493 goto out; 1494 } 1495 if ((so->so_state & SS_ISCONNECTED) == 0) { 1496 /* 1497 * `sendto' and `sendmsg' is allowed on a connection-based 1498 * socket if it supports implied connect. Return ENOTCONN if 1499 * not connected and no address is supplied. 1500 */ 1501 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1502 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1503 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1504 !(resid == 0 && clen != 0)) { 1505 SOCKBUF_UNLOCK(&so->so_snd); 1506 error = ENOTCONN; 1507 goto out; 1508 } 1509 } else if (addr == NULL) { 1510 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1511 error = ENOTCONN; 1512 else 1513 error = EDESTADDRREQ; 1514 SOCKBUF_UNLOCK(&so->so_snd); 1515 goto out; 1516 } 1517 } 1518 1519 /* 1520 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a 1521 * problem and need fixing. 1522 */ 1523 space = sbspace(&so->so_snd); 1524 if (flags & MSG_OOB) 1525 space += 1024; 1526 space -= clen; 1527 SOCKBUF_UNLOCK(&so->so_snd); 1528 if (resid > space) { 1529 error = EMSGSIZE; 1530 goto out; 1531 } 1532 if (uio == NULL) { 1533 resid = 0; 1534 if (flags & MSG_EOR) 1535 top->m_flags |= M_EOR; 1536 } else { 1537 /* 1538 * Copy the data from userland into a mbuf chain. 1539 * If no data is to be copied in, a single empty mbuf 1540 * is returned. 1541 */ 1542 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr, 1543 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0))); 1544 if (top == NULL) { 1545 error = EFAULT; /* only possible error */ 1546 goto out; 1547 } 1548 space -= resid - uio->uio_resid; 1549 resid = uio->uio_resid; 1550 } 1551 KASSERT(resid == 0, ("sosend_dgram: resid != 0")); 1552 /* 1553 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock 1554 * than with. 1555 */ 1556 if (dontroute) { 1557 SOCK_LOCK(so); 1558 so->so_options |= SO_DONTROUTE; 1559 SOCK_UNLOCK(so); 1560 } 1561 /* 1562 * XXX all the SBS_CANTSENDMORE checks previously done could be out 1563 * of date. We could have received a reset packet in an interrupt or 1564 * maybe we slept while doing page faults in uiomove() etc. We could 1565 * probably recheck again inside the locking protection here, but 1566 * there are probably other places that this also happens. We must 1567 * rethink this. 1568 */ 1569 VNET_SO_ASSERT(so); 1570 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1571 (flags & MSG_OOB) ? PRUS_OOB : 1572 /* 1573 * If the user set MSG_EOF, the protocol understands this flag and 1574 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND. 1575 */ 1576 ((flags & MSG_EOF) && 1577 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1578 (resid <= 0)) ? 1579 PRUS_EOF : 1580 /* If there is more to send set PRUS_MORETOCOME */ 1581 (flags & MSG_MORETOCOME) || 1582 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1583 top, addr, control, td); 1584 if (dontroute) { 1585 SOCK_LOCK(so); 1586 so->so_options &= ~SO_DONTROUTE; 1587 SOCK_UNLOCK(so); 1588 } 1589 clen = 0; 1590 control = NULL; 1591 top = NULL; 1592 out: 1593 if (top != NULL) 1594 m_freem(top); 1595 if (control != NULL) 1596 m_freem(control); 1597 return (error); 1598 } 1599 1600 /* 1601 * Send on a socket. If send must go all at once and message is larger than 1602 * send buffering, then hard error. Lock against other senders. If must go 1603 * all at once and not enough room now, then inform user that this would 1604 * block and do nothing. Otherwise, if nonblocking, send as much as 1605 * possible. The data to be sent is described by "uio" if nonzero, otherwise 1606 * by the mbuf chain "top" (which must be null if uio is not). Data provided 1607 * in mbuf chain must be small enough to send all at once. 1608 * 1609 * Returns nonzero on error, timeout or signal; callers must check for short 1610 * counts if EINTR/ERESTART are returned. Data and control buffers are freed 1611 * on return. 1612 */ 1613 int 1614 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio, 1615 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1616 { 1617 long space; 1618 ssize_t resid; 1619 int clen = 0, error, dontroute; 1620 int atomic = sosendallatonce(so) || top; 1621 int pru_flag; 1622 #ifdef KERN_TLS 1623 struct ktls_session *tls; 1624 int tls_enq_cnt, tls_pruflag; 1625 uint8_t tls_rtype; 1626 1627 tls = NULL; 1628 tls_rtype = TLS_RLTYPE_APP; 1629 #endif 1630 if (uio != NULL) 1631 resid = uio->uio_resid; 1632 else if ((top->m_flags & M_PKTHDR) != 0) 1633 resid = top->m_pkthdr.len; 1634 else 1635 resid = m_length(top, NULL); 1636 /* 1637 * In theory resid should be unsigned. However, space must be 1638 * signed, as it might be less than 0 if we over-committed, and we 1639 * must use a signed comparison of space and resid. On the other 1640 * hand, a negative resid causes us to loop sending 0-length 1641 * segments to the protocol. 1642 * 1643 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 1644 * type sockets since that's an error. 1645 */ 1646 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 1647 error = EINVAL; 1648 goto out; 1649 } 1650 1651 dontroute = 1652 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 1653 (so->so_proto->pr_flags & PR_ATOMIC); 1654 if (td != NULL) 1655 td->td_ru.ru_msgsnd++; 1656 if (control != NULL) 1657 clen = control->m_len; 1658 1659 error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags)); 1660 if (error) 1661 goto out; 1662 1663 #ifdef KERN_TLS 1664 tls_pruflag = 0; 1665 tls = ktls_hold(so->so_snd.sb_tls_info); 1666 if (tls != NULL) { 1667 if (tls->mode == TCP_TLS_MODE_SW) 1668 tls_pruflag = PRUS_NOTREADY; 1669 1670 if (control != NULL) { 1671 struct cmsghdr *cm = mtod(control, struct cmsghdr *); 1672 1673 if (clen >= sizeof(*cm) && 1674 cm->cmsg_type == TLS_SET_RECORD_TYPE) { 1675 tls_rtype = *((uint8_t *)CMSG_DATA(cm)); 1676 clen = 0; 1677 m_freem(control); 1678 control = NULL; 1679 atomic = 1; 1680 } 1681 } 1682 1683 if (resid == 0 && !ktls_permit_empty_frames(tls)) { 1684 error = EINVAL; 1685 goto release; 1686 } 1687 } 1688 #endif 1689 1690 restart: 1691 do { 1692 SOCKBUF_LOCK(&so->so_snd); 1693 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1694 SOCKBUF_UNLOCK(&so->so_snd); 1695 error = EPIPE; 1696 goto release; 1697 } 1698 if (so->so_error) { 1699 error = so->so_error; 1700 so->so_error = 0; 1701 SOCKBUF_UNLOCK(&so->so_snd); 1702 goto release; 1703 } 1704 if ((so->so_state & SS_ISCONNECTED) == 0) { 1705 /* 1706 * `sendto' and `sendmsg' is allowed on a connection- 1707 * based socket if it supports implied connect. 1708 * Return ENOTCONN if not connected and no address is 1709 * supplied. 1710 */ 1711 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1712 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1713 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1714 !(resid == 0 && clen != 0)) { 1715 SOCKBUF_UNLOCK(&so->so_snd); 1716 error = ENOTCONN; 1717 goto release; 1718 } 1719 } else if (addr == NULL) { 1720 SOCKBUF_UNLOCK(&so->so_snd); 1721 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1722 error = ENOTCONN; 1723 else 1724 error = EDESTADDRREQ; 1725 goto release; 1726 } 1727 } 1728 space = sbspace(&so->so_snd); 1729 if (flags & MSG_OOB) 1730 space += 1024; 1731 if ((atomic && resid > so->so_snd.sb_hiwat) || 1732 clen > so->so_snd.sb_hiwat) { 1733 SOCKBUF_UNLOCK(&so->so_snd); 1734 error = EMSGSIZE; 1735 goto release; 1736 } 1737 if (space < resid + clen && 1738 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 1739 if ((so->so_state & SS_NBIO) || 1740 (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) { 1741 SOCKBUF_UNLOCK(&so->so_snd); 1742 error = EWOULDBLOCK; 1743 goto release; 1744 } 1745 error = sbwait(so, SO_SND); 1746 SOCKBUF_UNLOCK(&so->so_snd); 1747 if (error) 1748 goto release; 1749 goto restart; 1750 } 1751 SOCKBUF_UNLOCK(&so->so_snd); 1752 space -= clen; 1753 do { 1754 if (uio == NULL) { 1755 resid = 0; 1756 if (flags & MSG_EOR) 1757 top->m_flags |= M_EOR; 1758 #ifdef KERN_TLS 1759 if (tls != NULL) { 1760 ktls_frame(top, tls, &tls_enq_cnt, 1761 tls_rtype); 1762 tls_rtype = TLS_RLTYPE_APP; 1763 } 1764 #endif 1765 } else { 1766 /* 1767 * Copy the data from userland into a mbuf 1768 * chain. If resid is 0, which can happen 1769 * only if we have control to send, then 1770 * a single empty mbuf is returned. This 1771 * is a workaround to prevent protocol send 1772 * methods to panic. 1773 */ 1774 #ifdef KERN_TLS 1775 if (tls != NULL) { 1776 top = m_uiotombuf(uio, M_WAITOK, space, 1777 tls->params.max_frame_len, 1778 M_EXTPG | 1779 ((flags & MSG_EOR) ? M_EOR : 0)); 1780 if (top != NULL) { 1781 ktls_frame(top, tls, 1782 &tls_enq_cnt, tls_rtype); 1783 } 1784 tls_rtype = TLS_RLTYPE_APP; 1785 } else 1786 #endif 1787 top = m_uiotombuf(uio, M_WAITOK, space, 1788 (atomic ? max_hdr : 0), 1789 (atomic ? M_PKTHDR : 0) | 1790 ((flags & MSG_EOR) ? M_EOR : 0)); 1791 if (top == NULL) { 1792 error = EFAULT; /* only possible error */ 1793 goto release; 1794 } 1795 space -= resid - uio->uio_resid; 1796 resid = uio->uio_resid; 1797 } 1798 if (dontroute) { 1799 SOCK_LOCK(so); 1800 so->so_options |= SO_DONTROUTE; 1801 SOCK_UNLOCK(so); 1802 } 1803 /* 1804 * XXX all the SBS_CANTSENDMORE checks previously 1805 * done could be out of date. We could have received 1806 * a reset packet in an interrupt or maybe we slept 1807 * while doing page faults in uiomove() etc. We 1808 * could probably recheck again inside the locking 1809 * protection here, but there are probably other 1810 * places that this also happens. We must rethink 1811 * this. 1812 */ 1813 VNET_SO_ASSERT(so); 1814 1815 pru_flag = (flags & MSG_OOB) ? PRUS_OOB : 1816 /* 1817 * If the user set MSG_EOF, the protocol understands 1818 * this flag and nothing left to send then use 1819 * PRU_SEND_EOF instead of PRU_SEND. 1820 */ 1821 ((flags & MSG_EOF) && 1822 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1823 (resid <= 0)) ? 1824 PRUS_EOF : 1825 /* If there is more to send set PRUS_MORETOCOME. */ 1826 (flags & MSG_MORETOCOME) || 1827 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0; 1828 1829 #ifdef KERN_TLS 1830 pru_flag |= tls_pruflag; 1831 #endif 1832 1833 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1834 pru_flag, top, addr, control, td); 1835 1836 if (dontroute) { 1837 SOCK_LOCK(so); 1838 so->so_options &= ~SO_DONTROUTE; 1839 SOCK_UNLOCK(so); 1840 } 1841 1842 #ifdef KERN_TLS 1843 if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) { 1844 if (error != 0) { 1845 m_freem(top); 1846 top = NULL; 1847 } else { 1848 soref(so); 1849 ktls_enqueue(top, so, tls_enq_cnt); 1850 } 1851 } 1852 #endif 1853 clen = 0; 1854 control = NULL; 1855 top = NULL; 1856 if (error) 1857 goto release; 1858 } while (resid && space > 0); 1859 } while (resid); 1860 1861 release: 1862 SOCK_IO_SEND_UNLOCK(so); 1863 out: 1864 #ifdef KERN_TLS 1865 if (tls != NULL) 1866 ktls_free(tls); 1867 #endif 1868 if (top != NULL) 1869 m_freem(top); 1870 if (control != NULL) 1871 m_freem(control); 1872 return (error); 1873 } 1874 1875 int 1876 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, 1877 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1878 { 1879 int error; 1880 1881 CURVNET_SET(so->so_vnet); 1882 error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, 1883 top, control, flags, td); 1884 CURVNET_RESTORE(); 1885 return (error); 1886 } 1887 1888 /* 1889 * The part of soreceive() that implements reading non-inline out-of-band 1890 * data from a socket. For more complete comments, see soreceive(), from 1891 * which this code originated. 1892 * 1893 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is 1894 * unable to return an mbuf chain to the caller. 1895 */ 1896 static int 1897 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags) 1898 { 1899 struct protosw *pr = so->so_proto; 1900 struct mbuf *m; 1901 int error; 1902 1903 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); 1904 VNET_SO_ASSERT(so); 1905 1906 m = m_get(M_WAITOK, MT_DATA); 1907 error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK); 1908 if (error) 1909 goto bad; 1910 do { 1911 error = uiomove(mtod(m, void *), 1912 (int) min(uio->uio_resid, m->m_len), uio); 1913 m = m_free(m); 1914 } while (uio->uio_resid && error == 0 && m); 1915 bad: 1916 if (m != NULL) 1917 m_freem(m); 1918 return (error); 1919 } 1920 1921 /* 1922 * Following replacement or removal of the first mbuf on the first mbuf chain 1923 * of a socket buffer, push necessary state changes back into the socket 1924 * buffer so that other consumers see the values consistently. 'nextrecord' 1925 * is the callers locally stored value of the original value of 1926 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. 1927 * NOTE: 'nextrecord' may be NULL. 1928 */ 1929 static __inline void 1930 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) 1931 { 1932 1933 SOCKBUF_LOCK_ASSERT(sb); 1934 /* 1935 * First, update for the new value of nextrecord. If necessary, make 1936 * it the first record. 1937 */ 1938 if (sb->sb_mb != NULL) 1939 sb->sb_mb->m_nextpkt = nextrecord; 1940 else 1941 sb->sb_mb = nextrecord; 1942 1943 /* 1944 * Now update any dependent socket buffer fields to reflect the new 1945 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the 1946 * addition of a second clause that takes care of the case where 1947 * sb_mb has been updated, but remains the last record. 1948 */ 1949 if (sb->sb_mb == NULL) { 1950 sb->sb_mbtail = NULL; 1951 sb->sb_lastrecord = NULL; 1952 } else if (sb->sb_mb->m_nextpkt == NULL) 1953 sb->sb_lastrecord = sb->sb_mb; 1954 } 1955 1956 /* 1957 * Implement receive operations on a socket. We depend on the way that 1958 * records are added to the sockbuf by sbappend. In particular, each record 1959 * (mbufs linked through m_next) must begin with an address if the protocol 1960 * so specifies, followed by an optional mbuf or mbufs containing ancillary 1961 * data, and then zero or more mbufs of data. In order to allow parallelism 1962 * between network receive and copying to user space, as well as avoid 1963 * sleeping with a mutex held, we release the socket buffer mutex during the 1964 * user space copy. Although the sockbuf is locked, new data may still be 1965 * appended, and thus we must maintain consistency of the sockbuf during that 1966 * time. 1967 * 1968 * The caller may receive the data as a single mbuf chain by supplying an 1969 * mbuf **mp0 for use in returning the chain. The uio is then used only for 1970 * the count in uio_resid. 1971 */ 1972 int 1973 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio, 1974 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1975 { 1976 struct mbuf *m, **mp; 1977 int flags, error, offset; 1978 ssize_t len; 1979 struct protosw *pr = so->so_proto; 1980 struct mbuf *nextrecord; 1981 int moff, type = 0; 1982 ssize_t orig_resid = uio->uio_resid; 1983 1984 mp = mp0; 1985 if (psa != NULL) 1986 *psa = NULL; 1987 if (controlp != NULL) 1988 *controlp = NULL; 1989 if (flagsp != NULL) 1990 flags = *flagsp &~ MSG_EOR; 1991 else 1992 flags = 0; 1993 if (flags & MSG_OOB) 1994 return (soreceive_rcvoob(so, uio, flags)); 1995 if (mp != NULL) 1996 *mp = NULL; 1997 if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING) 1998 && uio->uio_resid) { 1999 VNET_SO_ASSERT(so); 2000 (*pr->pr_usrreqs->pru_rcvd)(so, 0); 2001 } 2002 2003 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags)); 2004 if (error) 2005 return (error); 2006 2007 restart: 2008 SOCKBUF_LOCK(&so->so_rcv); 2009 m = so->so_rcv.sb_mb; 2010 /* 2011 * If we have less data than requested, block awaiting more (subject 2012 * to any timeout) if: 2013 * 1. the current count is less than the low water mark, or 2014 * 2. MSG_DONTWAIT is not set 2015 */ 2016 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 2017 sbavail(&so->so_rcv) < uio->uio_resid) && 2018 sbavail(&so->so_rcv) < so->so_rcv.sb_lowat && 2019 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 2020 KASSERT(m != NULL || !sbavail(&so->so_rcv), 2021 ("receive: m == %p sbavail == %u", 2022 m, sbavail(&so->so_rcv))); 2023 if (so->so_error || so->so_rerror) { 2024 if (m != NULL) 2025 goto dontblock; 2026 if (so->so_error) 2027 error = so->so_error; 2028 else 2029 error = so->so_rerror; 2030 if ((flags & MSG_PEEK) == 0) { 2031 if (so->so_error) 2032 so->so_error = 0; 2033 else 2034 so->so_rerror = 0; 2035 } 2036 SOCKBUF_UNLOCK(&so->so_rcv); 2037 goto release; 2038 } 2039 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2040 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 2041 if (m != NULL) 2042 goto dontblock; 2043 #ifdef KERN_TLS 2044 else if (so->so_rcv.sb_tlsdcc == 0 && 2045 so->so_rcv.sb_tlscc == 0) { 2046 #else 2047 else { 2048 #endif 2049 SOCKBUF_UNLOCK(&so->so_rcv); 2050 goto release; 2051 } 2052 } 2053 for (; m != NULL; m = m->m_next) 2054 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 2055 m = so->so_rcv.sb_mb; 2056 goto dontblock; 2057 } 2058 if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED | 2059 SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 && 2060 (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) { 2061 SOCKBUF_UNLOCK(&so->so_rcv); 2062 error = ENOTCONN; 2063 goto release; 2064 } 2065 if (uio->uio_resid == 0) { 2066 SOCKBUF_UNLOCK(&so->so_rcv); 2067 goto release; 2068 } 2069 if ((so->so_state & SS_NBIO) || 2070 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2071 SOCKBUF_UNLOCK(&so->so_rcv); 2072 error = EWOULDBLOCK; 2073 goto release; 2074 } 2075 SBLASTRECORDCHK(&so->so_rcv); 2076 SBLASTMBUFCHK(&so->so_rcv); 2077 error = sbwait(so, SO_RCV); 2078 SOCKBUF_UNLOCK(&so->so_rcv); 2079 if (error) 2080 goto release; 2081 goto restart; 2082 } 2083 dontblock: 2084 /* 2085 * From this point onward, we maintain 'nextrecord' as a cache of the 2086 * pointer to the next record in the socket buffer. We must keep the 2087 * various socket buffer pointers and local stack versions of the 2088 * pointers in sync, pushing out modifications before dropping the 2089 * socket buffer mutex, and re-reading them when picking it up. 2090 * 2091 * Otherwise, we will race with the network stack appending new data 2092 * or records onto the socket buffer by using inconsistent/stale 2093 * versions of the field, possibly resulting in socket buffer 2094 * corruption. 2095 * 2096 * By holding the high-level sblock(), we prevent simultaneous 2097 * readers from pulling off the front of the socket buffer. 2098 */ 2099 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2100 if (uio->uio_td) 2101 uio->uio_td->td_ru.ru_msgrcv++; 2102 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); 2103 SBLASTRECORDCHK(&so->so_rcv); 2104 SBLASTMBUFCHK(&so->so_rcv); 2105 nextrecord = m->m_nextpkt; 2106 if (pr->pr_flags & PR_ADDR) { 2107 KASSERT(m->m_type == MT_SONAME, 2108 ("m->m_type == %d", m->m_type)); 2109 orig_resid = 0; 2110 if (psa != NULL) 2111 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2112 M_NOWAIT); 2113 if (flags & MSG_PEEK) { 2114 m = m->m_next; 2115 } else { 2116 sbfree(&so->so_rcv, m); 2117 so->so_rcv.sb_mb = m_free(m); 2118 m = so->so_rcv.sb_mb; 2119 sockbuf_pushsync(&so->so_rcv, nextrecord); 2120 } 2121 } 2122 2123 /* 2124 * Process one or more MT_CONTROL mbufs present before any data mbufs 2125 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 2126 * just copy the data; if !MSG_PEEK, we call into the protocol to 2127 * perform externalization (or freeing if controlp == NULL). 2128 */ 2129 if (m != NULL && m->m_type == MT_CONTROL) { 2130 struct mbuf *cm = NULL, *cmn; 2131 struct mbuf **cme = &cm; 2132 #ifdef KERN_TLS 2133 struct cmsghdr *cmsg; 2134 struct tls_get_record tgr; 2135 2136 /* 2137 * For MSG_TLSAPPDATA, check for an alert record. 2138 * If found, return ENXIO without removing 2139 * it from the receive queue. This allows a subsequent 2140 * call without MSG_TLSAPPDATA to receive it. 2141 * Note that, for TLS, there should only be a single 2142 * control mbuf with the TLS_GET_RECORD message in it. 2143 */ 2144 if (flags & MSG_TLSAPPDATA) { 2145 cmsg = mtod(m, struct cmsghdr *); 2146 if (cmsg->cmsg_type == TLS_GET_RECORD && 2147 cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) { 2148 memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr)); 2149 if (__predict_false(tgr.tls_type == 2150 TLS_RLTYPE_ALERT)) { 2151 SOCKBUF_UNLOCK(&so->so_rcv); 2152 error = ENXIO; 2153 goto release; 2154 } 2155 } 2156 } 2157 #endif 2158 2159 do { 2160 if (flags & MSG_PEEK) { 2161 if (controlp != NULL) { 2162 *controlp = m_copym(m, 0, m->m_len, 2163 M_NOWAIT); 2164 controlp = &(*controlp)->m_next; 2165 } 2166 m = m->m_next; 2167 } else { 2168 sbfree(&so->so_rcv, m); 2169 so->so_rcv.sb_mb = m->m_next; 2170 m->m_next = NULL; 2171 *cme = m; 2172 cme = &(*cme)->m_next; 2173 m = so->so_rcv.sb_mb; 2174 } 2175 } while (m != NULL && m->m_type == MT_CONTROL); 2176 if ((flags & MSG_PEEK) == 0) 2177 sockbuf_pushsync(&so->so_rcv, nextrecord); 2178 while (cm != NULL) { 2179 cmn = cm->m_next; 2180 cm->m_next = NULL; 2181 if (pr->pr_domain->dom_externalize != NULL) { 2182 SOCKBUF_UNLOCK(&so->so_rcv); 2183 VNET_SO_ASSERT(so); 2184 error = (*pr->pr_domain->dom_externalize) 2185 (cm, controlp, flags); 2186 SOCKBUF_LOCK(&so->so_rcv); 2187 } else if (controlp != NULL) 2188 *controlp = cm; 2189 else 2190 m_freem(cm); 2191 if (controlp != NULL) { 2192 while (*controlp != NULL) 2193 controlp = &(*controlp)->m_next; 2194 } 2195 cm = cmn; 2196 } 2197 if (m != NULL) 2198 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 2199 else 2200 nextrecord = so->so_rcv.sb_mb; 2201 orig_resid = 0; 2202 } 2203 if (m != NULL) { 2204 if ((flags & MSG_PEEK) == 0) { 2205 KASSERT(m->m_nextpkt == nextrecord, 2206 ("soreceive: post-control, nextrecord !sync")); 2207 if (nextrecord == NULL) { 2208 KASSERT(so->so_rcv.sb_mb == m, 2209 ("soreceive: post-control, sb_mb!=m")); 2210 KASSERT(so->so_rcv.sb_lastrecord == m, 2211 ("soreceive: post-control, lastrecord!=m")); 2212 } 2213 } 2214 type = m->m_type; 2215 if (type == MT_OOBDATA) 2216 flags |= MSG_OOB; 2217 } else { 2218 if ((flags & MSG_PEEK) == 0) { 2219 KASSERT(so->so_rcv.sb_mb == nextrecord, 2220 ("soreceive: sb_mb != nextrecord")); 2221 if (so->so_rcv.sb_mb == NULL) { 2222 KASSERT(so->so_rcv.sb_lastrecord == NULL, 2223 ("soreceive: sb_lastercord != NULL")); 2224 } 2225 } 2226 } 2227 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2228 SBLASTRECORDCHK(&so->so_rcv); 2229 SBLASTMBUFCHK(&so->so_rcv); 2230 2231 /* 2232 * Now continue to read any data mbufs off of the head of the socket 2233 * buffer until the read request is satisfied. Note that 'type' is 2234 * used to store the type of any mbuf reads that have happened so far 2235 * such that soreceive() can stop reading if the type changes, which 2236 * causes soreceive() to return only one of regular data and inline 2237 * out-of-band data in a single socket receive operation. 2238 */ 2239 moff = 0; 2240 offset = 0; 2241 while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0 2242 && error == 0) { 2243 /* 2244 * If the type of mbuf has changed since the last mbuf 2245 * examined ('type'), end the receive operation. 2246 */ 2247 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2248 if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) { 2249 if (type != m->m_type) 2250 break; 2251 } else if (type == MT_OOBDATA) 2252 break; 2253 else 2254 KASSERT(m->m_type == MT_DATA, 2255 ("m->m_type == %d", m->m_type)); 2256 so->so_rcv.sb_state &= ~SBS_RCVATMARK; 2257 len = uio->uio_resid; 2258 if (so->so_oobmark && len > so->so_oobmark - offset) 2259 len = so->so_oobmark - offset; 2260 if (len > m->m_len - moff) 2261 len = m->m_len - moff; 2262 /* 2263 * If mp is set, just pass back the mbufs. Otherwise copy 2264 * them out via the uio, then free. Sockbuf must be 2265 * consistent here (points to current mbuf, it points to next 2266 * record) when we drop priority; we must note any additions 2267 * to the sockbuf when we block interrupts again. 2268 */ 2269 if (mp == NULL) { 2270 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2271 SBLASTRECORDCHK(&so->so_rcv); 2272 SBLASTMBUFCHK(&so->so_rcv); 2273 SOCKBUF_UNLOCK(&so->so_rcv); 2274 if ((m->m_flags & M_EXTPG) != 0) 2275 error = m_unmapped_uiomove(m, moff, uio, 2276 (int)len); 2277 else 2278 error = uiomove(mtod(m, char *) + moff, 2279 (int)len, uio); 2280 SOCKBUF_LOCK(&so->so_rcv); 2281 if (error) { 2282 /* 2283 * The MT_SONAME mbuf has already been removed 2284 * from the record, so it is necessary to 2285 * remove the data mbufs, if any, to preserve 2286 * the invariant in the case of PR_ADDR that 2287 * requires MT_SONAME mbufs at the head of 2288 * each record. 2289 */ 2290 if (pr->pr_flags & PR_ATOMIC && 2291 ((flags & MSG_PEEK) == 0)) 2292 (void)sbdroprecord_locked(&so->so_rcv); 2293 SOCKBUF_UNLOCK(&so->so_rcv); 2294 goto release; 2295 } 2296 } else 2297 uio->uio_resid -= len; 2298 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2299 if (len == m->m_len - moff) { 2300 if (m->m_flags & M_EOR) 2301 flags |= MSG_EOR; 2302 if (flags & MSG_PEEK) { 2303 m = m->m_next; 2304 moff = 0; 2305 } else { 2306 nextrecord = m->m_nextpkt; 2307 sbfree(&so->so_rcv, m); 2308 if (mp != NULL) { 2309 m->m_nextpkt = NULL; 2310 *mp = m; 2311 mp = &m->m_next; 2312 so->so_rcv.sb_mb = m = m->m_next; 2313 *mp = NULL; 2314 } else { 2315 so->so_rcv.sb_mb = m_free(m); 2316 m = so->so_rcv.sb_mb; 2317 } 2318 sockbuf_pushsync(&so->so_rcv, nextrecord); 2319 SBLASTRECORDCHK(&so->so_rcv); 2320 SBLASTMBUFCHK(&so->so_rcv); 2321 } 2322 } else { 2323 if (flags & MSG_PEEK) 2324 moff += len; 2325 else { 2326 if (mp != NULL) { 2327 if (flags & MSG_DONTWAIT) { 2328 *mp = m_copym(m, 0, len, 2329 M_NOWAIT); 2330 if (*mp == NULL) { 2331 /* 2332 * m_copym() couldn't 2333 * allocate an mbuf. 2334 * Adjust uio_resid back 2335 * (it was adjusted 2336 * down by len bytes, 2337 * which we didn't end 2338 * up "copying" over). 2339 */ 2340 uio->uio_resid += len; 2341 break; 2342 } 2343 } else { 2344 SOCKBUF_UNLOCK(&so->so_rcv); 2345 *mp = m_copym(m, 0, len, 2346 M_WAITOK); 2347 SOCKBUF_LOCK(&so->so_rcv); 2348 } 2349 } 2350 sbcut_locked(&so->so_rcv, len); 2351 } 2352 } 2353 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2354 if (so->so_oobmark) { 2355 if ((flags & MSG_PEEK) == 0) { 2356 so->so_oobmark -= len; 2357 if (so->so_oobmark == 0) { 2358 so->so_rcv.sb_state |= SBS_RCVATMARK; 2359 break; 2360 } 2361 } else { 2362 offset += len; 2363 if (offset == so->so_oobmark) 2364 break; 2365 } 2366 } 2367 if (flags & MSG_EOR) 2368 break; 2369 /* 2370 * If the MSG_WAITALL flag is set (for non-atomic socket), we 2371 * must not quit until "uio->uio_resid == 0" or an error 2372 * termination. If a signal/timeout occurs, return with a 2373 * short count but without error. Keep sockbuf locked 2374 * against other readers. 2375 */ 2376 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 2377 !sosendallatonce(so) && nextrecord == NULL) { 2378 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2379 if (so->so_error || so->so_rerror || 2380 so->so_rcv.sb_state & SBS_CANTRCVMORE) 2381 break; 2382 /* 2383 * Notify the protocol that some data has been 2384 * drained before blocking. 2385 */ 2386 if (pr->pr_flags & PR_WANTRCVD) { 2387 SOCKBUF_UNLOCK(&so->so_rcv); 2388 VNET_SO_ASSERT(so); 2389 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 2390 SOCKBUF_LOCK(&so->so_rcv); 2391 } 2392 SBLASTRECORDCHK(&so->so_rcv); 2393 SBLASTMBUFCHK(&so->so_rcv); 2394 /* 2395 * We could receive some data while was notifying 2396 * the protocol. Skip blocking in this case. 2397 */ 2398 if (so->so_rcv.sb_mb == NULL) { 2399 error = sbwait(so, SO_RCV); 2400 if (error) { 2401 SOCKBUF_UNLOCK(&so->so_rcv); 2402 goto release; 2403 } 2404 } 2405 m = so->so_rcv.sb_mb; 2406 if (m != NULL) 2407 nextrecord = m->m_nextpkt; 2408 } 2409 } 2410 2411 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2412 if (m != NULL && pr->pr_flags & PR_ATOMIC) { 2413 flags |= MSG_TRUNC; 2414 if ((flags & MSG_PEEK) == 0) 2415 (void) sbdroprecord_locked(&so->so_rcv); 2416 } 2417 if ((flags & MSG_PEEK) == 0) { 2418 if (m == NULL) { 2419 /* 2420 * First part is an inline SB_EMPTY_FIXUP(). Second 2421 * part makes sure sb_lastrecord is up-to-date if 2422 * there is still data in the socket buffer. 2423 */ 2424 so->so_rcv.sb_mb = nextrecord; 2425 if (so->so_rcv.sb_mb == NULL) { 2426 so->so_rcv.sb_mbtail = NULL; 2427 so->so_rcv.sb_lastrecord = NULL; 2428 } else if (nextrecord->m_nextpkt == NULL) 2429 so->so_rcv.sb_lastrecord = nextrecord; 2430 } 2431 SBLASTRECORDCHK(&so->so_rcv); 2432 SBLASTMBUFCHK(&so->so_rcv); 2433 /* 2434 * If soreceive() is being done from the socket callback, 2435 * then don't need to generate ACK to peer to update window, 2436 * since ACK will be generated on return to TCP. 2437 */ 2438 if (!(flags & MSG_SOCALLBCK) && 2439 (pr->pr_flags & PR_WANTRCVD)) { 2440 SOCKBUF_UNLOCK(&so->so_rcv); 2441 VNET_SO_ASSERT(so); 2442 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 2443 SOCKBUF_LOCK(&so->so_rcv); 2444 } 2445 } 2446 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2447 if (orig_resid == uio->uio_resid && orig_resid && 2448 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { 2449 SOCKBUF_UNLOCK(&so->so_rcv); 2450 goto restart; 2451 } 2452 SOCKBUF_UNLOCK(&so->so_rcv); 2453 2454 if (flagsp != NULL) 2455 *flagsp |= flags; 2456 release: 2457 SOCK_IO_RECV_UNLOCK(so); 2458 return (error); 2459 } 2460 2461 /* 2462 * Optimized version of soreceive() for stream (TCP) sockets. 2463 */ 2464 int 2465 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio, 2466 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2467 { 2468 int len = 0, error = 0, flags, oresid; 2469 struct sockbuf *sb; 2470 struct mbuf *m, *n = NULL; 2471 2472 /* We only do stream sockets. */ 2473 if (so->so_type != SOCK_STREAM) 2474 return (EINVAL); 2475 if (psa != NULL) 2476 *psa = NULL; 2477 if (flagsp != NULL) 2478 flags = *flagsp &~ MSG_EOR; 2479 else 2480 flags = 0; 2481 if (controlp != NULL) 2482 *controlp = NULL; 2483 if (flags & MSG_OOB) 2484 return (soreceive_rcvoob(so, uio, flags)); 2485 if (mp0 != NULL) 2486 *mp0 = NULL; 2487 2488 sb = &so->so_rcv; 2489 2490 #ifdef KERN_TLS 2491 /* 2492 * KTLS store TLS records as records with a control message to 2493 * describe the framing. 2494 * 2495 * We check once here before acquiring locks to optimize the 2496 * common case. 2497 */ 2498 if (sb->sb_tls_info != NULL) 2499 return (soreceive_generic(so, psa, uio, mp0, controlp, 2500 flagsp)); 2501 #endif 2502 2503 /* Prevent other readers from entering the socket. */ 2504 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags)); 2505 if (error) 2506 return (error); 2507 SOCKBUF_LOCK(sb); 2508 2509 #ifdef KERN_TLS 2510 if (sb->sb_tls_info != NULL) { 2511 SOCKBUF_UNLOCK(sb); 2512 SOCK_IO_RECV_UNLOCK(so); 2513 return (soreceive_generic(so, psa, uio, mp0, controlp, 2514 flagsp)); 2515 } 2516 #endif 2517 2518 /* Easy one, no space to copyout anything. */ 2519 if (uio->uio_resid == 0) { 2520 error = EINVAL; 2521 goto out; 2522 } 2523 oresid = uio->uio_resid; 2524 2525 /* We will never ever get anything unless we are or were connected. */ 2526 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 2527 error = ENOTCONN; 2528 goto out; 2529 } 2530 2531 restart: 2532 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2533 2534 /* Abort if socket has reported problems. */ 2535 if (so->so_error) { 2536 if (sbavail(sb) > 0) 2537 goto deliver; 2538 if (oresid > uio->uio_resid) 2539 goto out; 2540 error = so->so_error; 2541 if (!(flags & MSG_PEEK)) 2542 so->so_error = 0; 2543 goto out; 2544 } 2545 2546 /* Door is closed. Deliver what is left, if any. */ 2547 if (sb->sb_state & SBS_CANTRCVMORE) { 2548 if (sbavail(sb) > 0) 2549 goto deliver; 2550 else 2551 goto out; 2552 } 2553 2554 /* Socket buffer is empty and we shall not block. */ 2555 if (sbavail(sb) == 0 && 2556 ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) { 2557 error = EAGAIN; 2558 goto out; 2559 } 2560 2561 /* Socket buffer got some data that we shall deliver now. */ 2562 if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) && 2563 ((so->so_state & SS_NBIO) || 2564 (flags & (MSG_DONTWAIT|MSG_NBIO)) || 2565 sbavail(sb) >= sb->sb_lowat || 2566 sbavail(sb) >= uio->uio_resid || 2567 sbavail(sb) >= sb->sb_hiwat) ) { 2568 goto deliver; 2569 } 2570 2571 /* On MSG_WAITALL we must wait until all data or error arrives. */ 2572 if ((flags & MSG_WAITALL) && 2573 (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat)) 2574 goto deliver; 2575 2576 /* 2577 * Wait and block until (more) data comes in. 2578 * NB: Drops the sockbuf lock during wait. 2579 */ 2580 error = sbwait(so, SO_RCV); 2581 if (error) 2582 goto out; 2583 goto restart; 2584 2585 deliver: 2586 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2587 KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__)); 2588 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__)); 2589 2590 /* Statistics. */ 2591 if (uio->uio_td) 2592 uio->uio_td->td_ru.ru_msgrcv++; 2593 2594 /* Fill uio until full or current end of socket buffer is reached. */ 2595 len = min(uio->uio_resid, sbavail(sb)); 2596 if (mp0 != NULL) { 2597 /* Dequeue as many mbufs as possible. */ 2598 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) { 2599 if (*mp0 == NULL) 2600 *mp0 = sb->sb_mb; 2601 else 2602 m_cat(*mp0, sb->sb_mb); 2603 for (m = sb->sb_mb; 2604 m != NULL && m->m_len <= len; 2605 m = m->m_next) { 2606 KASSERT(!(m->m_flags & M_NOTAVAIL), 2607 ("%s: m %p not available", __func__, m)); 2608 len -= m->m_len; 2609 uio->uio_resid -= m->m_len; 2610 sbfree(sb, m); 2611 n = m; 2612 } 2613 n->m_next = NULL; 2614 sb->sb_mb = m; 2615 sb->sb_lastrecord = sb->sb_mb; 2616 if (sb->sb_mb == NULL) 2617 SB_EMPTY_FIXUP(sb); 2618 } 2619 /* Copy the remainder. */ 2620 if (len > 0) { 2621 KASSERT(sb->sb_mb != NULL, 2622 ("%s: len > 0 && sb->sb_mb empty", __func__)); 2623 2624 m = m_copym(sb->sb_mb, 0, len, M_NOWAIT); 2625 if (m == NULL) 2626 len = 0; /* Don't flush data from sockbuf. */ 2627 else 2628 uio->uio_resid -= len; 2629 if (*mp0 != NULL) 2630 m_cat(*mp0, m); 2631 else 2632 *mp0 = m; 2633 if (*mp0 == NULL) { 2634 error = ENOBUFS; 2635 goto out; 2636 } 2637 } 2638 } else { 2639 /* NB: Must unlock socket buffer as uiomove may sleep. */ 2640 SOCKBUF_UNLOCK(sb); 2641 error = m_mbuftouio(uio, sb->sb_mb, len); 2642 SOCKBUF_LOCK(sb); 2643 if (error) 2644 goto out; 2645 } 2646 SBLASTRECORDCHK(sb); 2647 SBLASTMBUFCHK(sb); 2648 2649 /* 2650 * Remove the delivered data from the socket buffer unless we 2651 * were only peeking. 2652 */ 2653 if (!(flags & MSG_PEEK)) { 2654 if (len > 0) 2655 sbdrop_locked(sb, len); 2656 2657 /* Notify protocol that we drained some data. */ 2658 if ((so->so_proto->pr_flags & PR_WANTRCVD) && 2659 (((flags & MSG_WAITALL) && uio->uio_resid > 0) || 2660 !(flags & MSG_SOCALLBCK))) { 2661 SOCKBUF_UNLOCK(sb); 2662 VNET_SO_ASSERT(so); 2663 (*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags); 2664 SOCKBUF_LOCK(sb); 2665 } 2666 } 2667 2668 /* 2669 * For MSG_WAITALL we may have to loop again and wait for 2670 * more data to come in. 2671 */ 2672 if ((flags & MSG_WAITALL) && uio->uio_resid > 0) 2673 goto restart; 2674 out: 2675 SBLASTRECORDCHK(sb); 2676 SBLASTMBUFCHK(sb); 2677 SOCKBUF_UNLOCK(sb); 2678 SOCK_IO_RECV_UNLOCK(so); 2679 return (error); 2680 } 2681 2682 /* 2683 * Optimized version of soreceive() for simple datagram cases from userspace. 2684 * Unlike in the stream case, we're able to drop a datagram if copyout() 2685 * fails, and because we handle datagrams atomically, we don't need to use a 2686 * sleep lock to prevent I/O interlacing. 2687 */ 2688 int 2689 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio, 2690 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2691 { 2692 struct mbuf *m, *m2; 2693 int flags, error; 2694 ssize_t len; 2695 struct protosw *pr = so->so_proto; 2696 struct mbuf *nextrecord; 2697 2698 if (psa != NULL) 2699 *psa = NULL; 2700 if (controlp != NULL) 2701 *controlp = NULL; 2702 if (flagsp != NULL) 2703 flags = *flagsp &~ MSG_EOR; 2704 else 2705 flags = 0; 2706 2707 /* 2708 * For any complicated cases, fall back to the full 2709 * soreceive_generic(). 2710 */ 2711 if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB)) 2712 return (soreceive_generic(so, psa, uio, mp0, controlp, 2713 flagsp)); 2714 2715 /* 2716 * Enforce restrictions on use. 2717 */ 2718 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0, 2719 ("soreceive_dgram: wantrcvd")); 2720 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic")); 2721 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0, 2722 ("soreceive_dgram: SBS_RCVATMARK")); 2723 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0, 2724 ("soreceive_dgram: P_CONNREQUIRED")); 2725 2726 /* 2727 * Loop blocking while waiting for a datagram. 2728 */ 2729 SOCKBUF_LOCK(&so->so_rcv); 2730 while ((m = so->so_rcv.sb_mb) == NULL) { 2731 KASSERT(sbavail(&so->so_rcv) == 0, 2732 ("soreceive_dgram: sb_mb NULL but sbavail %u", 2733 sbavail(&so->so_rcv))); 2734 if (so->so_error) { 2735 error = so->so_error; 2736 so->so_error = 0; 2737 SOCKBUF_UNLOCK(&so->so_rcv); 2738 return (error); 2739 } 2740 if (so->so_rcv.sb_state & SBS_CANTRCVMORE || 2741 uio->uio_resid == 0) { 2742 SOCKBUF_UNLOCK(&so->so_rcv); 2743 return (0); 2744 } 2745 if ((so->so_state & SS_NBIO) || 2746 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2747 SOCKBUF_UNLOCK(&so->so_rcv); 2748 return (EWOULDBLOCK); 2749 } 2750 SBLASTRECORDCHK(&so->so_rcv); 2751 SBLASTMBUFCHK(&so->so_rcv); 2752 error = sbwait(so, SO_RCV); 2753 if (error) { 2754 SOCKBUF_UNLOCK(&so->so_rcv); 2755 return (error); 2756 } 2757 } 2758 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2759 2760 if (uio->uio_td) 2761 uio->uio_td->td_ru.ru_msgrcv++; 2762 SBLASTRECORDCHK(&so->so_rcv); 2763 SBLASTMBUFCHK(&so->so_rcv); 2764 nextrecord = m->m_nextpkt; 2765 if (nextrecord == NULL) { 2766 KASSERT(so->so_rcv.sb_lastrecord == m, 2767 ("soreceive_dgram: lastrecord != m")); 2768 } 2769 2770 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord, 2771 ("soreceive_dgram: m_nextpkt != nextrecord")); 2772 2773 /* 2774 * Pull 'm' and its chain off the front of the packet queue. 2775 */ 2776 so->so_rcv.sb_mb = NULL; 2777 sockbuf_pushsync(&so->so_rcv, nextrecord); 2778 2779 /* 2780 * Walk 'm's chain and free that many bytes from the socket buffer. 2781 */ 2782 for (m2 = m; m2 != NULL; m2 = m2->m_next) 2783 sbfree(&so->so_rcv, m2); 2784 2785 /* 2786 * Do a few last checks before we let go of the lock. 2787 */ 2788 SBLASTRECORDCHK(&so->so_rcv); 2789 SBLASTMBUFCHK(&so->so_rcv); 2790 SOCKBUF_UNLOCK(&so->so_rcv); 2791 2792 if (pr->pr_flags & PR_ADDR) { 2793 KASSERT(m->m_type == MT_SONAME, 2794 ("m->m_type == %d", m->m_type)); 2795 if (psa != NULL) 2796 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2797 M_NOWAIT); 2798 m = m_free(m); 2799 } 2800 if (m == NULL) { 2801 /* XXXRW: Can this happen? */ 2802 return (0); 2803 } 2804 2805 /* 2806 * Packet to copyout() is now in 'm' and it is disconnected from the 2807 * queue. 2808 * 2809 * Process one or more MT_CONTROL mbufs present before any data mbufs 2810 * in the first mbuf chain on the socket buffer. We call into the 2811 * protocol to perform externalization (or freeing if controlp == 2812 * NULL). In some cases there can be only MT_CONTROL mbufs without 2813 * MT_DATA mbufs. 2814 */ 2815 if (m->m_type == MT_CONTROL) { 2816 struct mbuf *cm = NULL, *cmn; 2817 struct mbuf **cme = &cm; 2818 2819 do { 2820 m2 = m->m_next; 2821 m->m_next = NULL; 2822 *cme = m; 2823 cme = &(*cme)->m_next; 2824 m = m2; 2825 } while (m != NULL && m->m_type == MT_CONTROL); 2826 while (cm != NULL) { 2827 cmn = cm->m_next; 2828 cm->m_next = NULL; 2829 if (pr->pr_domain->dom_externalize != NULL) { 2830 error = (*pr->pr_domain->dom_externalize) 2831 (cm, controlp, flags); 2832 } else if (controlp != NULL) 2833 *controlp = cm; 2834 else 2835 m_freem(cm); 2836 if (controlp != NULL) { 2837 while (*controlp != NULL) 2838 controlp = &(*controlp)->m_next; 2839 } 2840 cm = cmn; 2841 } 2842 } 2843 KASSERT(m == NULL || m->m_type == MT_DATA, 2844 ("soreceive_dgram: !data")); 2845 while (m != NULL && uio->uio_resid > 0) { 2846 len = uio->uio_resid; 2847 if (len > m->m_len) 2848 len = m->m_len; 2849 error = uiomove(mtod(m, char *), (int)len, uio); 2850 if (error) { 2851 m_freem(m); 2852 return (error); 2853 } 2854 if (len == m->m_len) 2855 m = m_free(m); 2856 else { 2857 m->m_data += len; 2858 m->m_len -= len; 2859 } 2860 } 2861 if (m != NULL) { 2862 flags |= MSG_TRUNC; 2863 m_freem(m); 2864 } 2865 if (flagsp != NULL) 2866 *flagsp |= flags; 2867 return (0); 2868 } 2869 2870 int 2871 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, 2872 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2873 { 2874 int error; 2875 2876 CURVNET_SET(so->so_vnet); 2877 error = (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, 2878 mp0, controlp, flagsp)); 2879 CURVNET_RESTORE(); 2880 return (error); 2881 } 2882 2883 int 2884 soshutdown(struct socket *so, int how) 2885 { 2886 struct protosw *pr; 2887 int error, soerror_enotconn; 2888 2889 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 2890 return (EINVAL); 2891 2892 soerror_enotconn = 0; 2893 SOCK_LOCK(so); 2894 if ((so->so_state & 2895 (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) { 2896 /* 2897 * POSIX mandates us to return ENOTCONN when shutdown(2) is 2898 * invoked on a datagram sockets, however historically we would 2899 * actually tear socket down. This is known to be leveraged by 2900 * some applications to unblock process waiting in recvXXX(2) 2901 * by other process that it shares that socket with. Try to meet 2902 * both backward-compatibility and POSIX requirements by forcing 2903 * ENOTCONN but still asking protocol to perform pru_shutdown(). 2904 */ 2905 if (so->so_type != SOCK_DGRAM && !SOLISTENING(so)) { 2906 SOCK_UNLOCK(so); 2907 return (ENOTCONN); 2908 } 2909 soerror_enotconn = 1; 2910 } 2911 2912 if (SOLISTENING(so)) { 2913 if (how != SHUT_WR) { 2914 so->so_error = ECONNABORTED; 2915 solisten_wakeup(so); /* unlocks so */ 2916 } else { 2917 SOCK_UNLOCK(so); 2918 } 2919 goto done; 2920 } 2921 SOCK_UNLOCK(so); 2922 2923 CURVNET_SET(so->so_vnet); 2924 pr = so->so_proto; 2925 if (pr->pr_usrreqs->pru_flush != NULL) 2926 (*pr->pr_usrreqs->pru_flush)(so, how); 2927 if (how != SHUT_WR) 2928 sorflush(so); 2929 if (how != SHUT_RD) { 2930 error = (*pr->pr_usrreqs->pru_shutdown)(so); 2931 wakeup(&so->so_timeo); 2932 CURVNET_RESTORE(); 2933 return ((error == 0 && soerror_enotconn) ? ENOTCONN : error); 2934 } 2935 wakeup(&so->so_timeo); 2936 CURVNET_RESTORE(); 2937 2938 done: 2939 return (soerror_enotconn ? ENOTCONN : 0); 2940 } 2941 2942 void 2943 sorflush(struct socket *so) 2944 { 2945 struct protosw *pr; 2946 int error; 2947 2948 VNET_SO_ASSERT(so); 2949 2950 /* 2951 * Dislodge threads currently blocked in receive and wait to acquire 2952 * a lock against other simultaneous readers before clearing the 2953 * socket buffer. Don't let our acquire be interrupted by a signal 2954 * despite any existing socket disposition on interruptable waiting. 2955 */ 2956 socantrcvmore(so); 2957 2958 error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR); 2959 if (error != 0) { 2960 KASSERT(SOLISTENING(so), 2961 ("%s: soiolock(%p) failed", __func__, so)); 2962 return; 2963 } 2964 2965 pr = so->so_proto; 2966 if (pr->pr_flags & PR_RIGHTS) { 2967 MPASS(pr->pr_domain->dom_dispose != NULL); 2968 (*pr->pr_domain->dom_dispose)(so); 2969 } else { 2970 sbrelease(so, SO_RCV); 2971 SOCK_IO_RECV_UNLOCK(so); 2972 } 2973 2974 } 2975 2976 /* 2977 * Wrapper for Socket established helper hook. 2978 * Parameters: socket, context of the hook point, hook id. 2979 */ 2980 static int inline 2981 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id) 2982 { 2983 struct socket_hhook_data hhook_data = { 2984 .so = so, 2985 .hctx = hctx, 2986 .m = NULL, 2987 .status = 0 2988 }; 2989 2990 CURVNET_SET(so->so_vnet); 2991 HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd); 2992 CURVNET_RESTORE(); 2993 2994 /* Ugly but needed, since hhooks return void for now */ 2995 return (hhook_data.status); 2996 } 2997 2998 /* 2999 * Perhaps this routine, and sooptcopyout(), below, ought to come in an 3000 * additional variant to handle the case where the option value needs to be 3001 * some kind of integer, but not a specific size. In addition to their use 3002 * here, these functions are also called by the protocol-level pr_ctloutput() 3003 * routines. 3004 */ 3005 int 3006 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen) 3007 { 3008 size_t valsize; 3009 3010 /* 3011 * If the user gives us more than we wanted, we ignore it, but if we 3012 * don't get the minimum length the caller wants, we return EINVAL. 3013 * On success, sopt->sopt_valsize is set to however much we actually 3014 * retrieved. 3015 */ 3016 if ((valsize = sopt->sopt_valsize) < minlen) 3017 return EINVAL; 3018 if (valsize > len) 3019 sopt->sopt_valsize = valsize = len; 3020 3021 if (sopt->sopt_td != NULL) 3022 return (copyin(sopt->sopt_val, buf, valsize)); 3023 3024 bcopy(sopt->sopt_val, buf, valsize); 3025 return (0); 3026 } 3027 3028 /* 3029 * Kernel version of setsockopt(2). 3030 * 3031 * XXX: optlen is size_t, not socklen_t 3032 */ 3033 int 3034 so_setsockopt(struct socket *so, int level, int optname, void *optval, 3035 size_t optlen) 3036 { 3037 struct sockopt sopt; 3038 3039 sopt.sopt_level = level; 3040 sopt.sopt_name = optname; 3041 sopt.sopt_dir = SOPT_SET; 3042 sopt.sopt_val = optval; 3043 sopt.sopt_valsize = optlen; 3044 sopt.sopt_td = NULL; 3045 return (sosetopt(so, &sopt)); 3046 } 3047 3048 int 3049 sosetopt(struct socket *so, struct sockopt *sopt) 3050 { 3051 int error, optval; 3052 struct linger l; 3053 struct timeval tv; 3054 sbintime_t val; 3055 uint32_t val32; 3056 #ifdef MAC 3057 struct mac extmac; 3058 #endif 3059 3060 CURVNET_SET(so->so_vnet); 3061 error = 0; 3062 if (sopt->sopt_level != SOL_SOCKET) { 3063 if (so->so_proto->pr_ctloutput != NULL) 3064 error = (*so->so_proto->pr_ctloutput)(so, sopt); 3065 else 3066 error = ENOPROTOOPT; 3067 } else { 3068 switch (sopt->sopt_name) { 3069 case SO_ACCEPTFILTER: 3070 error = accept_filt_setopt(so, sopt); 3071 if (error) 3072 goto bad; 3073 break; 3074 3075 case SO_LINGER: 3076 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 3077 if (error) 3078 goto bad; 3079 if (l.l_linger < 0 || 3080 l.l_linger > USHRT_MAX || 3081 l.l_linger > (INT_MAX / hz)) { 3082 error = EDOM; 3083 goto bad; 3084 } 3085 SOCK_LOCK(so); 3086 so->so_linger = l.l_linger; 3087 if (l.l_onoff) 3088 so->so_options |= SO_LINGER; 3089 else 3090 so->so_options &= ~SO_LINGER; 3091 SOCK_UNLOCK(so); 3092 break; 3093 3094 case SO_DEBUG: 3095 case SO_KEEPALIVE: 3096 case SO_DONTROUTE: 3097 case SO_USELOOPBACK: 3098 case SO_BROADCAST: 3099 case SO_REUSEADDR: 3100 case SO_REUSEPORT: 3101 case SO_REUSEPORT_LB: 3102 case SO_OOBINLINE: 3103 case SO_TIMESTAMP: 3104 case SO_BINTIME: 3105 case SO_NOSIGPIPE: 3106 case SO_NO_DDP: 3107 case SO_NO_OFFLOAD: 3108 case SO_RERROR: 3109 error = sooptcopyin(sopt, &optval, sizeof optval, 3110 sizeof optval); 3111 if (error) 3112 goto bad; 3113 SOCK_LOCK(so); 3114 if (optval) 3115 so->so_options |= sopt->sopt_name; 3116 else 3117 so->so_options &= ~sopt->sopt_name; 3118 SOCK_UNLOCK(so); 3119 break; 3120 3121 case SO_SETFIB: 3122 error = sooptcopyin(sopt, &optval, sizeof optval, 3123 sizeof optval); 3124 if (error) 3125 goto bad; 3126 3127 if (optval < 0 || optval >= rt_numfibs) { 3128 error = EINVAL; 3129 goto bad; 3130 } 3131 if (((so->so_proto->pr_domain->dom_family == PF_INET) || 3132 (so->so_proto->pr_domain->dom_family == PF_INET6) || 3133 (so->so_proto->pr_domain->dom_family == PF_ROUTE))) 3134 so->so_fibnum = optval; 3135 else 3136 so->so_fibnum = 0; 3137 break; 3138 3139 case SO_USER_COOKIE: 3140 error = sooptcopyin(sopt, &val32, sizeof val32, 3141 sizeof val32); 3142 if (error) 3143 goto bad; 3144 so->so_user_cookie = val32; 3145 break; 3146 3147 case SO_SNDBUF: 3148 case SO_RCVBUF: 3149 case SO_SNDLOWAT: 3150 case SO_RCVLOWAT: 3151 error = sooptcopyin(sopt, &optval, sizeof optval, 3152 sizeof optval); 3153 if (error) 3154 goto bad; 3155 3156 /* 3157 * Values < 1 make no sense for any of these options, 3158 * so disallow them. 3159 */ 3160 if (optval < 1) { 3161 error = EINVAL; 3162 goto bad; 3163 } 3164 3165 error = sbsetopt(so, sopt->sopt_name, optval); 3166 break; 3167 3168 case SO_SNDTIMEO: 3169 case SO_RCVTIMEO: 3170 #ifdef COMPAT_FREEBSD32 3171 if (SV_CURPROC_FLAG(SV_ILP32)) { 3172 struct timeval32 tv32; 3173 3174 error = sooptcopyin(sopt, &tv32, sizeof tv32, 3175 sizeof tv32); 3176 CP(tv32, tv, tv_sec); 3177 CP(tv32, tv, tv_usec); 3178 } else 3179 #endif 3180 error = sooptcopyin(sopt, &tv, sizeof tv, 3181 sizeof tv); 3182 if (error) 3183 goto bad; 3184 if (tv.tv_sec < 0 || tv.tv_usec < 0 || 3185 tv.tv_usec >= 1000000) { 3186 error = EDOM; 3187 goto bad; 3188 } 3189 if (tv.tv_sec > INT32_MAX) 3190 val = SBT_MAX; 3191 else 3192 val = tvtosbt(tv); 3193 switch (sopt->sopt_name) { 3194 case SO_SNDTIMEO: 3195 so->so_snd.sb_timeo = val; 3196 break; 3197 case SO_RCVTIMEO: 3198 so->so_rcv.sb_timeo = val; 3199 break; 3200 } 3201 break; 3202 3203 case SO_LABEL: 3204 #ifdef MAC 3205 error = sooptcopyin(sopt, &extmac, sizeof extmac, 3206 sizeof extmac); 3207 if (error) 3208 goto bad; 3209 error = mac_setsockopt_label(sopt->sopt_td->td_ucred, 3210 so, &extmac); 3211 #else 3212 error = EOPNOTSUPP; 3213 #endif 3214 break; 3215 3216 case SO_TS_CLOCK: 3217 error = sooptcopyin(sopt, &optval, sizeof optval, 3218 sizeof optval); 3219 if (error) 3220 goto bad; 3221 if (optval < 0 || optval > SO_TS_CLOCK_MAX) { 3222 error = EINVAL; 3223 goto bad; 3224 } 3225 so->so_ts_clock = optval; 3226 break; 3227 3228 case SO_MAX_PACING_RATE: 3229 error = sooptcopyin(sopt, &val32, sizeof(val32), 3230 sizeof(val32)); 3231 if (error) 3232 goto bad; 3233 so->so_max_pacing_rate = val32; 3234 break; 3235 3236 default: 3237 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 3238 error = hhook_run_socket(so, sopt, 3239 HHOOK_SOCKET_OPT); 3240 else 3241 error = ENOPROTOOPT; 3242 break; 3243 } 3244 if (error == 0 && so->so_proto->pr_ctloutput != NULL) 3245 (void)(*so->so_proto->pr_ctloutput)(so, sopt); 3246 } 3247 bad: 3248 CURVNET_RESTORE(); 3249 return (error); 3250 } 3251 3252 /* 3253 * Helper routine for getsockopt. 3254 */ 3255 int 3256 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 3257 { 3258 int error; 3259 size_t valsize; 3260 3261 error = 0; 3262 3263 /* 3264 * Documented get behavior is that we always return a value, possibly 3265 * truncated to fit in the user's buffer. Traditional behavior is 3266 * that we always tell the user precisely how much we copied, rather 3267 * than something useful like the total amount we had available for 3268 * her. Note that this interface is not idempotent; the entire 3269 * answer must be generated ahead of time. 3270 */ 3271 valsize = min(len, sopt->sopt_valsize); 3272 sopt->sopt_valsize = valsize; 3273 if (sopt->sopt_val != NULL) { 3274 if (sopt->sopt_td != NULL) 3275 error = copyout(buf, sopt->sopt_val, valsize); 3276 else 3277 bcopy(buf, sopt->sopt_val, valsize); 3278 } 3279 return (error); 3280 } 3281 3282 int 3283 sogetopt(struct socket *so, struct sockopt *sopt) 3284 { 3285 int error, optval; 3286 struct linger l; 3287 struct timeval tv; 3288 #ifdef MAC 3289 struct mac extmac; 3290 #endif 3291 3292 CURVNET_SET(so->so_vnet); 3293 error = 0; 3294 if (sopt->sopt_level != SOL_SOCKET) { 3295 if (so->so_proto->pr_ctloutput != NULL) 3296 error = (*so->so_proto->pr_ctloutput)(so, sopt); 3297 else 3298 error = ENOPROTOOPT; 3299 CURVNET_RESTORE(); 3300 return (error); 3301 } else { 3302 switch (sopt->sopt_name) { 3303 case SO_ACCEPTFILTER: 3304 error = accept_filt_getopt(so, sopt); 3305 break; 3306 3307 case SO_LINGER: 3308 SOCK_LOCK(so); 3309 l.l_onoff = so->so_options & SO_LINGER; 3310 l.l_linger = so->so_linger; 3311 SOCK_UNLOCK(so); 3312 error = sooptcopyout(sopt, &l, sizeof l); 3313 break; 3314 3315 case SO_USELOOPBACK: 3316 case SO_DONTROUTE: 3317 case SO_DEBUG: 3318 case SO_KEEPALIVE: 3319 case SO_REUSEADDR: 3320 case SO_REUSEPORT: 3321 case SO_REUSEPORT_LB: 3322 case SO_BROADCAST: 3323 case SO_OOBINLINE: 3324 case SO_ACCEPTCONN: 3325 case SO_TIMESTAMP: 3326 case SO_BINTIME: 3327 case SO_NOSIGPIPE: 3328 case SO_NO_DDP: 3329 case SO_NO_OFFLOAD: 3330 case SO_RERROR: 3331 optval = so->so_options & sopt->sopt_name; 3332 integer: 3333 error = sooptcopyout(sopt, &optval, sizeof optval); 3334 break; 3335 3336 case SO_DOMAIN: 3337 optval = so->so_proto->pr_domain->dom_family; 3338 goto integer; 3339 3340 case SO_TYPE: 3341 optval = so->so_type; 3342 goto integer; 3343 3344 case SO_PROTOCOL: 3345 optval = so->so_proto->pr_protocol; 3346 goto integer; 3347 3348 case SO_ERROR: 3349 SOCK_LOCK(so); 3350 if (so->so_error) { 3351 optval = so->so_error; 3352 so->so_error = 0; 3353 } else { 3354 optval = so->so_rerror; 3355 so->so_rerror = 0; 3356 } 3357 SOCK_UNLOCK(so); 3358 goto integer; 3359 3360 case SO_SNDBUF: 3361 optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat : 3362 so->so_snd.sb_hiwat; 3363 goto integer; 3364 3365 case SO_RCVBUF: 3366 optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat : 3367 so->so_rcv.sb_hiwat; 3368 goto integer; 3369 3370 case SO_SNDLOWAT: 3371 optval = SOLISTENING(so) ? so->sol_sbsnd_lowat : 3372 so->so_snd.sb_lowat; 3373 goto integer; 3374 3375 case SO_RCVLOWAT: 3376 optval = SOLISTENING(so) ? so->sol_sbrcv_lowat : 3377 so->so_rcv.sb_lowat; 3378 goto integer; 3379 3380 case SO_SNDTIMEO: 3381 case SO_RCVTIMEO: 3382 tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ? 3383 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 3384 #ifdef COMPAT_FREEBSD32 3385 if (SV_CURPROC_FLAG(SV_ILP32)) { 3386 struct timeval32 tv32; 3387 3388 CP(tv, tv32, tv_sec); 3389 CP(tv, tv32, tv_usec); 3390 error = sooptcopyout(sopt, &tv32, sizeof tv32); 3391 } else 3392 #endif 3393 error = sooptcopyout(sopt, &tv, sizeof tv); 3394 break; 3395 3396 case SO_LABEL: 3397 #ifdef MAC 3398 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 3399 sizeof(extmac)); 3400 if (error) 3401 goto bad; 3402 error = mac_getsockopt_label(sopt->sopt_td->td_ucred, 3403 so, &extmac); 3404 if (error) 3405 goto bad; 3406 error = sooptcopyout(sopt, &extmac, sizeof extmac); 3407 #else 3408 error = EOPNOTSUPP; 3409 #endif 3410 break; 3411 3412 case SO_PEERLABEL: 3413 #ifdef MAC 3414 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 3415 sizeof(extmac)); 3416 if (error) 3417 goto bad; 3418 error = mac_getsockopt_peerlabel( 3419 sopt->sopt_td->td_ucred, so, &extmac); 3420 if (error) 3421 goto bad; 3422 error = sooptcopyout(sopt, &extmac, sizeof extmac); 3423 #else 3424 error = EOPNOTSUPP; 3425 #endif 3426 break; 3427 3428 case SO_LISTENQLIMIT: 3429 optval = SOLISTENING(so) ? so->sol_qlimit : 0; 3430 goto integer; 3431 3432 case SO_LISTENQLEN: 3433 optval = SOLISTENING(so) ? so->sol_qlen : 0; 3434 goto integer; 3435 3436 case SO_LISTENINCQLEN: 3437 optval = SOLISTENING(so) ? so->sol_incqlen : 0; 3438 goto integer; 3439 3440 case SO_TS_CLOCK: 3441 optval = so->so_ts_clock; 3442 goto integer; 3443 3444 case SO_MAX_PACING_RATE: 3445 optval = so->so_max_pacing_rate; 3446 goto integer; 3447 3448 default: 3449 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 3450 error = hhook_run_socket(so, sopt, 3451 HHOOK_SOCKET_OPT); 3452 else 3453 error = ENOPROTOOPT; 3454 break; 3455 } 3456 } 3457 #ifdef MAC 3458 bad: 3459 #endif 3460 CURVNET_RESTORE(); 3461 return (error); 3462 } 3463 3464 int 3465 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 3466 { 3467 struct mbuf *m, *m_prev; 3468 int sopt_size = sopt->sopt_valsize; 3469 3470 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 3471 if (m == NULL) 3472 return ENOBUFS; 3473 if (sopt_size > MLEN) { 3474 MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT); 3475 if ((m->m_flags & M_EXT) == 0) { 3476 m_free(m); 3477 return ENOBUFS; 3478 } 3479 m->m_len = min(MCLBYTES, sopt_size); 3480 } else { 3481 m->m_len = min(MLEN, sopt_size); 3482 } 3483 sopt_size -= m->m_len; 3484 *mp = m; 3485 m_prev = m; 3486 3487 while (sopt_size) { 3488 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 3489 if (m == NULL) { 3490 m_freem(*mp); 3491 return ENOBUFS; 3492 } 3493 if (sopt_size > MLEN) { 3494 MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK : 3495 M_NOWAIT); 3496 if ((m->m_flags & M_EXT) == 0) { 3497 m_freem(m); 3498 m_freem(*mp); 3499 return ENOBUFS; 3500 } 3501 m->m_len = min(MCLBYTES, sopt_size); 3502 } else { 3503 m->m_len = min(MLEN, sopt_size); 3504 } 3505 sopt_size -= m->m_len; 3506 m_prev->m_next = m; 3507 m_prev = m; 3508 } 3509 return (0); 3510 } 3511 3512 int 3513 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 3514 { 3515 struct mbuf *m0 = m; 3516 3517 if (sopt->sopt_val == NULL) 3518 return (0); 3519 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 3520 if (sopt->sopt_td != NULL) { 3521 int error; 3522 3523 error = copyin(sopt->sopt_val, mtod(m, char *), 3524 m->m_len); 3525 if (error != 0) { 3526 m_freem(m0); 3527 return(error); 3528 } 3529 } else 3530 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 3531 sopt->sopt_valsize -= m->m_len; 3532 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 3533 m = m->m_next; 3534 } 3535 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 3536 panic("ip6_sooptmcopyin"); 3537 return (0); 3538 } 3539 3540 int 3541 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 3542 { 3543 struct mbuf *m0 = m; 3544 size_t valsize = 0; 3545 3546 if (sopt->sopt_val == NULL) 3547 return (0); 3548 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 3549 if (sopt->sopt_td != NULL) { 3550 int error; 3551 3552 error = copyout(mtod(m, char *), sopt->sopt_val, 3553 m->m_len); 3554 if (error != 0) { 3555 m_freem(m0); 3556 return(error); 3557 } 3558 } else 3559 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 3560 sopt->sopt_valsize -= m->m_len; 3561 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 3562 valsize += m->m_len; 3563 m = m->m_next; 3564 } 3565 if (m != NULL) { 3566 /* enough soopt buffer should be given from user-land */ 3567 m_freem(m0); 3568 return(EINVAL); 3569 } 3570 sopt->sopt_valsize = valsize; 3571 return (0); 3572 } 3573 3574 /* 3575 * sohasoutofband(): protocol notifies socket layer of the arrival of new 3576 * out-of-band data, which will then notify socket consumers. 3577 */ 3578 void 3579 sohasoutofband(struct socket *so) 3580 { 3581 3582 if (so->so_sigio != NULL) 3583 pgsigio(&so->so_sigio, SIGURG, 0); 3584 selwakeuppri(&so->so_rdsel, PSOCK); 3585 } 3586 3587 int 3588 sopoll(struct socket *so, int events, struct ucred *active_cred, 3589 struct thread *td) 3590 { 3591 3592 /* 3593 * We do not need to set or assert curvnet as long as everyone uses 3594 * sopoll_generic(). 3595 */ 3596 return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred, 3597 td)); 3598 } 3599 3600 int 3601 sopoll_generic(struct socket *so, int events, struct ucred *active_cred, 3602 struct thread *td) 3603 { 3604 int revents; 3605 3606 SOCK_LOCK(so); 3607 if (SOLISTENING(so)) { 3608 if (!(events & (POLLIN | POLLRDNORM))) 3609 revents = 0; 3610 else if (!TAILQ_EMPTY(&so->sol_comp)) 3611 revents = events & (POLLIN | POLLRDNORM); 3612 else if ((events & POLLINIGNEOF) == 0 && so->so_error) 3613 revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP; 3614 else { 3615 selrecord(td, &so->so_rdsel); 3616 revents = 0; 3617 } 3618 } else { 3619 revents = 0; 3620 SOCK_SENDBUF_LOCK(so); 3621 SOCK_RECVBUF_LOCK(so); 3622 if (events & (POLLIN | POLLRDNORM)) 3623 if (soreadabledata(so)) 3624 revents |= events & (POLLIN | POLLRDNORM); 3625 if (events & (POLLOUT | POLLWRNORM)) 3626 if (sowriteable(so)) 3627 revents |= events & (POLLOUT | POLLWRNORM); 3628 if (events & (POLLPRI | POLLRDBAND)) 3629 if (so->so_oobmark || 3630 (so->so_rcv.sb_state & SBS_RCVATMARK)) 3631 revents |= events & (POLLPRI | POLLRDBAND); 3632 if ((events & POLLINIGNEOF) == 0) { 3633 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3634 revents |= events & (POLLIN | POLLRDNORM); 3635 if (so->so_snd.sb_state & SBS_CANTSENDMORE) 3636 revents |= POLLHUP; 3637 } 3638 } 3639 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) 3640 revents |= events & POLLRDHUP; 3641 if (revents == 0) { 3642 if (events & 3643 (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND | POLLRDHUP)) { 3644 selrecord(td, &so->so_rdsel); 3645 so->so_rcv.sb_flags |= SB_SEL; 3646 } 3647 if (events & (POLLOUT | POLLWRNORM)) { 3648 selrecord(td, &so->so_wrsel); 3649 so->so_snd.sb_flags |= SB_SEL; 3650 } 3651 } 3652 SOCK_RECVBUF_UNLOCK(so); 3653 SOCK_SENDBUF_UNLOCK(so); 3654 } 3655 SOCK_UNLOCK(so); 3656 return (revents); 3657 } 3658 3659 int 3660 soo_kqfilter(struct file *fp, struct knote *kn) 3661 { 3662 struct socket *so = kn->kn_fp->f_data; 3663 struct sockbuf *sb; 3664 sb_which which; 3665 struct knlist *knl; 3666 3667 switch (kn->kn_filter) { 3668 case EVFILT_READ: 3669 kn->kn_fop = &soread_filtops; 3670 knl = &so->so_rdsel.si_note; 3671 sb = &so->so_rcv; 3672 which = SO_RCV; 3673 break; 3674 case EVFILT_WRITE: 3675 kn->kn_fop = &sowrite_filtops; 3676 knl = &so->so_wrsel.si_note; 3677 sb = &so->so_snd; 3678 which = SO_SND; 3679 break; 3680 case EVFILT_EMPTY: 3681 kn->kn_fop = &soempty_filtops; 3682 knl = &so->so_wrsel.si_note; 3683 sb = &so->so_snd; 3684 which = SO_SND; 3685 break; 3686 default: 3687 return (EINVAL); 3688 } 3689 3690 SOCK_LOCK(so); 3691 if (SOLISTENING(so)) { 3692 knlist_add(knl, kn, 1); 3693 } else { 3694 SOCK_BUF_LOCK(so, which); 3695 knlist_add(knl, kn, 1); 3696 sb->sb_flags |= SB_KNOTE; 3697 SOCK_BUF_UNLOCK(so, which); 3698 } 3699 SOCK_UNLOCK(so); 3700 return (0); 3701 } 3702 3703 /* 3704 * Some routines that return EOPNOTSUPP for entry points that are not 3705 * supported by a protocol. Fill in as needed. 3706 */ 3707 int 3708 pru_accept_notsupp(struct socket *so, struct sockaddr **nam) 3709 { 3710 3711 return EOPNOTSUPP; 3712 } 3713 3714 int 3715 pru_aio_queue_notsupp(struct socket *so, struct kaiocb *job) 3716 { 3717 3718 return EOPNOTSUPP; 3719 } 3720 3721 int 3722 pru_attach_notsupp(struct socket *so, int proto, struct thread *td) 3723 { 3724 3725 return EOPNOTSUPP; 3726 } 3727 3728 int 3729 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 3730 { 3731 3732 return EOPNOTSUPP; 3733 } 3734 3735 int 3736 pru_bindat_notsupp(int fd, struct socket *so, struct sockaddr *nam, 3737 struct thread *td) 3738 { 3739 3740 return EOPNOTSUPP; 3741 } 3742 3743 int 3744 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 3745 { 3746 3747 return EOPNOTSUPP; 3748 } 3749 3750 int 3751 pru_connectat_notsupp(int fd, struct socket *so, struct sockaddr *nam, 3752 struct thread *td) 3753 { 3754 3755 return EOPNOTSUPP; 3756 } 3757 3758 int 3759 pru_connect2_notsupp(struct socket *so1, struct socket *so2) 3760 { 3761 3762 return EOPNOTSUPP; 3763 } 3764 3765 int 3766 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, 3767 struct ifnet *ifp, struct thread *td) 3768 { 3769 3770 return EOPNOTSUPP; 3771 } 3772 3773 int 3774 pru_disconnect_notsupp(struct socket *so) 3775 { 3776 3777 return EOPNOTSUPP; 3778 } 3779 3780 int 3781 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td) 3782 { 3783 3784 return EOPNOTSUPP; 3785 } 3786 3787 int 3788 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam) 3789 { 3790 3791 return EOPNOTSUPP; 3792 } 3793 3794 int 3795 pru_rcvd_notsupp(struct socket *so, int flags) 3796 { 3797 3798 return EOPNOTSUPP; 3799 } 3800 3801 int 3802 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) 3803 { 3804 3805 return EOPNOTSUPP; 3806 } 3807 3808 int 3809 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m, 3810 struct sockaddr *addr, struct mbuf *control, struct thread *td) 3811 { 3812 3813 if (control != NULL) 3814 m_freem(control); 3815 if ((flags & PRUS_NOTREADY) == 0) 3816 m_freem(m); 3817 return (EOPNOTSUPP); 3818 } 3819 3820 int 3821 pru_ready_notsupp(struct socket *so, struct mbuf *m, int count) 3822 { 3823 3824 return (EOPNOTSUPP); 3825 } 3826 3827 /* 3828 * This isn't really a ``null'' operation, but it's the default one and 3829 * doesn't do anything destructive. 3830 */ 3831 int 3832 pru_sense_null(struct socket *so, struct stat *sb) 3833 { 3834 3835 sb->st_blksize = so->so_snd.sb_hiwat; 3836 return 0; 3837 } 3838 3839 int 3840 pru_shutdown_notsupp(struct socket *so) 3841 { 3842 3843 return EOPNOTSUPP; 3844 } 3845 3846 int 3847 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam) 3848 { 3849 3850 return EOPNOTSUPP; 3851 } 3852 3853 int 3854 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio, 3855 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 3856 { 3857 3858 return EOPNOTSUPP; 3859 } 3860 3861 int 3862 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr, 3863 struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 3864 { 3865 3866 return EOPNOTSUPP; 3867 } 3868 3869 int 3870 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred, 3871 struct thread *td) 3872 { 3873 3874 return EOPNOTSUPP; 3875 } 3876 3877 static void 3878 filt_sordetach(struct knote *kn) 3879 { 3880 struct socket *so = kn->kn_fp->f_data; 3881 3882 so_rdknl_lock(so); 3883 knlist_remove(&so->so_rdsel.si_note, kn, 1); 3884 if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note)) 3885 so->so_rcv.sb_flags &= ~SB_KNOTE; 3886 so_rdknl_unlock(so); 3887 } 3888 3889 /*ARGSUSED*/ 3890 static int 3891 filt_soread(struct knote *kn, long hint) 3892 { 3893 struct socket *so; 3894 3895 so = kn->kn_fp->f_data; 3896 3897 if (SOLISTENING(so)) { 3898 SOCK_LOCK_ASSERT(so); 3899 kn->kn_data = so->sol_qlen; 3900 if (so->so_error) { 3901 kn->kn_flags |= EV_EOF; 3902 kn->kn_fflags = so->so_error; 3903 return (1); 3904 } 3905 return (!TAILQ_EMPTY(&so->sol_comp)); 3906 } 3907 3908 SOCK_RECVBUF_LOCK_ASSERT(so); 3909 3910 kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl; 3911 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3912 kn->kn_flags |= EV_EOF; 3913 kn->kn_fflags = so->so_error; 3914 return (1); 3915 } else if (so->so_error || so->so_rerror) 3916 return (1); 3917 3918 if (kn->kn_sfflags & NOTE_LOWAT) { 3919 if (kn->kn_data >= kn->kn_sdata) 3920 return (1); 3921 } else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat) 3922 return (1); 3923 3924 /* This hook returning non-zero indicates an event, not error */ 3925 return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD)); 3926 } 3927 3928 static void 3929 filt_sowdetach(struct knote *kn) 3930 { 3931 struct socket *so = kn->kn_fp->f_data; 3932 3933 so_wrknl_lock(so); 3934 knlist_remove(&so->so_wrsel.si_note, kn, 1); 3935 if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note)) 3936 so->so_snd.sb_flags &= ~SB_KNOTE; 3937 so_wrknl_unlock(so); 3938 } 3939 3940 /*ARGSUSED*/ 3941 static int 3942 filt_sowrite(struct knote *kn, long hint) 3943 { 3944 struct socket *so; 3945 3946 so = kn->kn_fp->f_data; 3947 3948 if (SOLISTENING(so)) 3949 return (0); 3950 3951 SOCK_SENDBUF_LOCK_ASSERT(so); 3952 kn->kn_data = sbspace(&so->so_snd); 3953 3954 hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE); 3955 3956 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 3957 kn->kn_flags |= EV_EOF; 3958 kn->kn_fflags = so->so_error; 3959 return (1); 3960 } else if (so->so_error) /* temporary udp error */ 3961 return (1); 3962 else if (((so->so_state & SS_ISCONNECTED) == 0) && 3963 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 3964 return (0); 3965 else if (kn->kn_sfflags & NOTE_LOWAT) 3966 return (kn->kn_data >= kn->kn_sdata); 3967 else 3968 return (kn->kn_data >= so->so_snd.sb_lowat); 3969 } 3970 3971 static int 3972 filt_soempty(struct knote *kn, long hint) 3973 { 3974 struct socket *so; 3975 3976 so = kn->kn_fp->f_data; 3977 3978 if (SOLISTENING(so)) 3979 return (1); 3980 3981 SOCK_SENDBUF_LOCK_ASSERT(so); 3982 kn->kn_data = sbused(&so->so_snd); 3983 3984 if (kn->kn_data == 0) 3985 return (1); 3986 else 3987 return (0); 3988 } 3989 3990 int 3991 socheckuid(struct socket *so, uid_t uid) 3992 { 3993 3994 if (so == NULL) 3995 return (EPERM); 3996 if (so->so_cred->cr_uid != uid) 3997 return (EPERM); 3998 return (0); 3999 } 4000 4001 /* 4002 * These functions are used by protocols to notify the socket layer (and its 4003 * consumers) of state changes in the sockets driven by protocol-side events. 4004 */ 4005 4006 /* 4007 * Procedures to manipulate state flags of socket and do appropriate wakeups. 4008 * 4009 * Normal sequence from the active (originating) side is that 4010 * soisconnecting() is called during processing of connect() call, resulting 4011 * in an eventual call to soisconnected() if/when the connection is 4012 * established. When the connection is torn down soisdisconnecting() is 4013 * called during processing of disconnect() call, and soisdisconnected() is 4014 * called when the connection to the peer is totally severed. The semantics 4015 * of these routines are such that connectionless protocols can call 4016 * soisconnected() and soisdisconnected() only, bypassing the in-progress 4017 * calls when setting up a ``connection'' takes no time. 4018 * 4019 * From the passive side, a socket is created with two queues of sockets: 4020 * so_incomp for connections in progress and so_comp for connections already 4021 * made and awaiting user acceptance. As a protocol is preparing incoming 4022 * connections, it creates a socket structure queued on so_incomp by calling 4023 * sonewconn(). When the connection is established, soisconnected() is 4024 * called, and transfers the socket structure to so_comp, making it available 4025 * to accept(). 4026 * 4027 * If a socket is closed with sockets on either so_incomp or so_comp, these 4028 * sockets are dropped. 4029 * 4030 * If higher-level protocols are implemented in the kernel, the wakeups done 4031 * here will sometimes cause software-interrupt process scheduling. 4032 */ 4033 void 4034 soisconnecting(struct socket *so) 4035 { 4036 4037 SOCK_LOCK(so); 4038 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 4039 so->so_state |= SS_ISCONNECTING; 4040 SOCK_UNLOCK(so); 4041 } 4042 4043 void 4044 soisconnected(struct socket *so) 4045 { 4046 bool last __diagused; 4047 4048 SOCK_LOCK(so); 4049 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 4050 so->so_state |= SS_ISCONNECTED; 4051 4052 if (so->so_qstate == SQ_INCOMP) { 4053 struct socket *head = so->so_listen; 4054 int ret; 4055 4056 KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so)); 4057 /* 4058 * Promoting a socket from incomplete queue to complete, we 4059 * need to go through reverse order of locking. We first do 4060 * trylock, and if that doesn't succeed, we go the hard way 4061 * leaving a reference and rechecking consistency after proper 4062 * locking. 4063 */ 4064 if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) { 4065 soref(head); 4066 SOCK_UNLOCK(so); 4067 SOLISTEN_LOCK(head); 4068 SOCK_LOCK(so); 4069 if (__predict_false(head != so->so_listen)) { 4070 /* 4071 * The socket went off the listen queue, 4072 * should be lost race to close(2) of sol. 4073 * The socket is about to soabort(). 4074 */ 4075 SOCK_UNLOCK(so); 4076 sorele_locked(head); 4077 return; 4078 } 4079 last = refcount_release(&head->so_count); 4080 KASSERT(!last, ("%s: released last reference for %p", 4081 __func__, head)); 4082 } 4083 again: 4084 if ((so->so_options & SO_ACCEPTFILTER) == 0) { 4085 TAILQ_REMOVE(&head->sol_incomp, so, so_list); 4086 head->sol_incqlen--; 4087 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 4088 head->sol_qlen++; 4089 so->so_qstate = SQ_COMP; 4090 SOCK_UNLOCK(so); 4091 solisten_wakeup(head); /* unlocks */ 4092 } else { 4093 SOCK_RECVBUF_LOCK(so); 4094 soupcall_set(so, SO_RCV, 4095 head->sol_accept_filter->accf_callback, 4096 head->sol_accept_filter_arg); 4097 so->so_options &= ~SO_ACCEPTFILTER; 4098 ret = head->sol_accept_filter->accf_callback(so, 4099 head->sol_accept_filter_arg, M_NOWAIT); 4100 if (ret == SU_ISCONNECTED) { 4101 soupcall_clear(so, SO_RCV); 4102 SOCK_RECVBUF_UNLOCK(so); 4103 goto again; 4104 } 4105 SOCK_RECVBUF_UNLOCK(so); 4106 SOCK_UNLOCK(so); 4107 SOLISTEN_UNLOCK(head); 4108 } 4109 return; 4110 } 4111 SOCK_UNLOCK(so); 4112 wakeup(&so->so_timeo); 4113 sorwakeup(so); 4114 sowwakeup(so); 4115 } 4116 4117 void 4118 soisdisconnecting(struct socket *so) 4119 { 4120 4121 SOCK_LOCK(so); 4122 so->so_state &= ~SS_ISCONNECTING; 4123 so->so_state |= SS_ISDISCONNECTING; 4124 4125 if (!SOLISTENING(so)) { 4126 SOCK_RECVBUF_LOCK(so); 4127 socantrcvmore_locked(so); 4128 SOCK_SENDBUF_LOCK(so); 4129 socantsendmore_locked(so); 4130 } 4131 SOCK_UNLOCK(so); 4132 wakeup(&so->so_timeo); 4133 } 4134 4135 void 4136 soisdisconnected(struct socket *so) 4137 { 4138 4139 SOCK_LOCK(so); 4140 4141 /* 4142 * There is at least one reader of so_state that does not 4143 * acquire socket lock, namely soreceive_generic(). Ensure 4144 * that it never sees all flags that track connection status 4145 * cleared, by ordering the update with a barrier semantic of 4146 * our release thread fence. 4147 */ 4148 so->so_state |= SS_ISDISCONNECTED; 4149 atomic_thread_fence_rel(); 4150 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 4151 4152 if (!SOLISTENING(so)) { 4153 SOCK_UNLOCK(so); 4154 SOCK_RECVBUF_LOCK(so); 4155 socantrcvmore_locked(so); 4156 SOCK_SENDBUF_LOCK(so); 4157 sbdrop_locked(&so->so_snd, sbused(&so->so_snd)); 4158 socantsendmore_locked(so); 4159 } else 4160 SOCK_UNLOCK(so); 4161 wakeup(&so->so_timeo); 4162 } 4163 4164 int 4165 soiolock(struct socket *so, struct sx *sx, int flags) 4166 { 4167 int error; 4168 4169 KASSERT((flags & SBL_VALID) == flags, 4170 ("soiolock: invalid flags %#x", flags)); 4171 4172 if ((flags & SBL_WAIT) != 0) { 4173 if ((flags & SBL_NOINTR) != 0) { 4174 sx_xlock(sx); 4175 } else { 4176 error = sx_xlock_sig(sx); 4177 if (error != 0) 4178 return (error); 4179 } 4180 } else if (!sx_try_xlock(sx)) { 4181 return (EWOULDBLOCK); 4182 } 4183 4184 if (__predict_false(SOLISTENING(so))) { 4185 sx_xunlock(sx); 4186 return (ENOTCONN); 4187 } 4188 return (0); 4189 } 4190 4191 void 4192 soiounlock(struct sx *sx) 4193 { 4194 sx_xunlock(sx); 4195 } 4196 4197 /* 4198 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 4199 */ 4200 struct sockaddr * 4201 sodupsockaddr(const struct sockaddr *sa, int mflags) 4202 { 4203 struct sockaddr *sa2; 4204 4205 sa2 = malloc(sa->sa_len, M_SONAME, mflags); 4206 if (sa2) 4207 bcopy(sa, sa2, sa->sa_len); 4208 return sa2; 4209 } 4210 4211 /* 4212 * Register per-socket destructor. 4213 */ 4214 void 4215 sodtor_set(struct socket *so, so_dtor_t *func) 4216 { 4217 4218 SOCK_LOCK_ASSERT(so); 4219 so->so_dtor = func; 4220 } 4221 4222 /* 4223 * Register per-socket buffer upcalls. 4224 */ 4225 void 4226 soupcall_set(struct socket *so, sb_which which, so_upcall_t func, void *arg) 4227 { 4228 struct sockbuf *sb; 4229 4230 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 4231 4232 switch (which) { 4233 case SO_RCV: 4234 sb = &so->so_rcv; 4235 break; 4236 case SO_SND: 4237 sb = &so->so_snd; 4238 break; 4239 } 4240 SOCK_BUF_LOCK_ASSERT(so, which); 4241 sb->sb_upcall = func; 4242 sb->sb_upcallarg = arg; 4243 sb->sb_flags |= SB_UPCALL; 4244 } 4245 4246 void 4247 soupcall_clear(struct socket *so, sb_which which) 4248 { 4249 struct sockbuf *sb; 4250 4251 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 4252 4253 switch (which) { 4254 case SO_RCV: 4255 sb = &so->so_rcv; 4256 break; 4257 case SO_SND: 4258 sb = &so->so_snd; 4259 break; 4260 } 4261 SOCK_BUF_LOCK_ASSERT(so, which); 4262 KASSERT(sb->sb_upcall != NULL, 4263 ("%s: so %p no upcall to clear", __func__, so)); 4264 sb->sb_upcall = NULL; 4265 sb->sb_upcallarg = NULL; 4266 sb->sb_flags &= ~SB_UPCALL; 4267 } 4268 4269 void 4270 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg) 4271 { 4272 4273 SOLISTEN_LOCK_ASSERT(so); 4274 so->sol_upcall = func; 4275 so->sol_upcallarg = arg; 4276 } 4277 4278 static void 4279 so_rdknl_lock(void *arg) 4280 { 4281 struct socket *so = arg; 4282 4283 retry: 4284 if (SOLISTENING(so)) { 4285 SOLISTEN_LOCK(so); 4286 } else { 4287 SOCK_RECVBUF_LOCK(so); 4288 if (__predict_false(SOLISTENING(so))) { 4289 SOCK_RECVBUF_UNLOCK(so); 4290 goto retry; 4291 } 4292 } 4293 } 4294 4295 static void 4296 so_rdknl_unlock(void *arg) 4297 { 4298 struct socket *so = arg; 4299 4300 if (SOLISTENING(so)) 4301 SOLISTEN_UNLOCK(so); 4302 else 4303 SOCK_RECVBUF_UNLOCK(so); 4304 } 4305 4306 static void 4307 so_rdknl_assert_lock(void *arg, int what) 4308 { 4309 struct socket *so = arg; 4310 4311 if (what == LA_LOCKED) { 4312 if (SOLISTENING(so)) 4313 SOLISTEN_LOCK_ASSERT(so); 4314 else 4315 SOCK_RECVBUF_LOCK_ASSERT(so); 4316 } else { 4317 if (SOLISTENING(so)) 4318 SOLISTEN_UNLOCK_ASSERT(so); 4319 else 4320 SOCK_RECVBUF_UNLOCK_ASSERT(so); 4321 } 4322 } 4323 4324 static void 4325 so_wrknl_lock(void *arg) 4326 { 4327 struct socket *so = arg; 4328 4329 retry: 4330 if (SOLISTENING(so)) { 4331 SOLISTEN_LOCK(so); 4332 } else { 4333 SOCK_SENDBUF_LOCK(so); 4334 if (__predict_false(SOLISTENING(so))) { 4335 SOCK_SENDBUF_UNLOCK(so); 4336 goto retry; 4337 } 4338 } 4339 } 4340 4341 static void 4342 so_wrknl_unlock(void *arg) 4343 { 4344 struct socket *so = arg; 4345 4346 if (SOLISTENING(so)) 4347 SOLISTEN_UNLOCK(so); 4348 else 4349 SOCK_SENDBUF_UNLOCK(so); 4350 } 4351 4352 static void 4353 so_wrknl_assert_lock(void *arg, int what) 4354 { 4355 struct socket *so = arg; 4356 4357 if (what == LA_LOCKED) { 4358 if (SOLISTENING(so)) 4359 SOLISTEN_LOCK_ASSERT(so); 4360 else 4361 SOCK_SENDBUF_LOCK_ASSERT(so); 4362 } else { 4363 if (SOLISTENING(so)) 4364 SOLISTEN_UNLOCK_ASSERT(so); 4365 else 4366 SOCK_SENDBUF_UNLOCK_ASSERT(so); 4367 } 4368 } 4369 4370 /* 4371 * Create an external-format (``xsocket'') structure using the information in 4372 * the kernel-format socket structure pointed to by so. This is done to 4373 * reduce the spew of irrelevant information over this interface, to isolate 4374 * user code from changes in the kernel structure, and potentially to provide 4375 * information-hiding if we decide that some of this information should be 4376 * hidden from users. 4377 */ 4378 void 4379 sotoxsocket(struct socket *so, struct xsocket *xso) 4380 { 4381 4382 bzero(xso, sizeof(*xso)); 4383 xso->xso_len = sizeof *xso; 4384 xso->xso_so = (uintptr_t)so; 4385 xso->so_type = so->so_type; 4386 xso->so_options = so->so_options; 4387 xso->so_linger = so->so_linger; 4388 xso->so_state = so->so_state; 4389 xso->so_pcb = (uintptr_t)so->so_pcb; 4390 xso->xso_protocol = so->so_proto->pr_protocol; 4391 xso->xso_family = so->so_proto->pr_domain->dom_family; 4392 xso->so_timeo = so->so_timeo; 4393 xso->so_error = so->so_error; 4394 xso->so_uid = so->so_cred->cr_uid; 4395 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 4396 if (SOLISTENING(so)) { 4397 xso->so_qlen = so->sol_qlen; 4398 xso->so_incqlen = so->sol_incqlen; 4399 xso->so_qlimit = so->sol_qlimit; 4400 xso->so_oobmark = 0; 4401 } else { 4402 xso->so_state |= so->so_qstate; 4403 xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0; 4404 xso->so_oobmark = so->so_oobmark; 4405 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 4406 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 4407 } 4408 } 4409 4410 struct sockbuf * 4411 so_sockbuf_rcv(struct socket *so) 4412 { 4413 4414 return (&so->so_rcv); 4415 } 4416 4417 struct sockbuf * 4418 so_sockbuf_snd(struct socket *so) 4419 { 4420 4421 return (&so->so_snd); 4422 } 4423 4424 int 4425 so_state_get(const struct socket *so) 4426 { 4427 4428 return (so->so_state); 4429 } 4430 4431 void 4432 so_state_set(struct socket *so, int val) 4433 { 4434 4435 so->so_state = val; 4436 } 4437 4438 int 4439 so_options_get(const struct socket *so) 4440 { 4441 4442 return (so->so_options); 4443 } 4444 4445 void 4446 so_options_set(struct socket *so, int val) 4447 { 4448 4449 so->so_options = val; 4450 } 4451 4452 int 4453 so_error_get(const struct socket *so) 4454 { 4455 4456 return (so->so_error); 4457 } 4458 4459 void 4460 so_error_set(struct socket *so, int val) 4461 { 4462 4463 so->so_error = val; 4464 } 4465 4466 int 4467 so_linger_get(const struct socket *so) 4468 { 4469 4470 return (so->so_linger); 4471 } 4472 4473 void 4474 so_linger_set(struct socket *so, int val) 4475 { 4476 4477 KASSERT(val >= 0 && val <= USHRT_MAX && val <= (INT_MAX / hz), 4478 ("%s: val %d out of range", __func__, val)); 4479 4480 so->so_linger = val; 4481 } 4482 4483 struct protosw * 4484 so_protosw_get(const struct socket *so) 4485 { 4486 4487 return (so->so_proto); 4488 } 4489 4490 void 4491 so_protosw_set(struct socket *so, struct protosw *val) 4492 { 4493 4494 so->so_proto = val; 4495 } 4496 4497 void 4498 so_sorwakeup(struct socket *so) 4499 { 4500 4501 sorwakeup(so); 4502 } 4503 4504 void 4505 so_sowwakeup(struct socket *so) 4506 { 4507 4508 sowwakeup(so); 4509 } 4510 4511 void 4512 so_sorwakeup_locked(struct socket *so) 4513 { 4514 4515 sorwakeup_locked(so); 4516 } 4517 4518 void 4519 so_sowwakeup_locked(struct socket *so) 4520 { 4521 4522 sowwakeup_locked(so); 4523 } 4524 4525 void 4526 so_lock(struct socket *so) 4527 { 4528 4529 SOCK_LOCK(so); 4530 } 4531 4532 void 4533 so_unlock(struct socket *so) 4534 { 4535 4536 SOCK_UNLOCK(so); 4537 } 4538