1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993 3 * The Regents of the University of California. 4 * Copyright (c) 2004 The FreeBSD Foundation 5 * Copyright (c) 2004-2008 Robert N. M. Watson 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 33 */ 34 35 /* 36 * Comments on the socket life cycle: 37 * 38 * soalloc() sets of socket layer state for a socket, called only by 39 * socreate() and sonewconn(). Socket layer private. 40 * 41 * sodealloc() tears down socket layer state for a socket, called only by 42 * sofree() and sonewconn(). Socket layer private. 43 * 44 * pru_attach() associates protocol layer state with an allocated socket; 45 * called only once, may fail, aborting socket allocation. This is called 46 * from socreate() and sonewconn(). Socket layer private. 47 * 48 * pru_detach() disassociates protocol layer state from an attached socket, 49 * and will be called exactly once for sockets in which pru_attach() has 50 * been successfully called. If pru_attach() returned an error, 51 * pru_detach() will not be called. Socket layer private. 52 * 53 * pru_abort() and pru_close() notify the protocol layer that the last 54 * consumer of a socket is starting to tear down the socket, and that the 55 * protocol should terminate the connection. Historically, pru_abort() also 56 * detached protocol state from the socket state, but this is no longer the 57 * case. 58 * 59 * socreate() creates a socket and attaches protocol state. This is a public 60 * interface that may be used by socket layer consumers to create new 61 * sockets. 62 * 63 * sonewconn() creates a socket and attaches protocol state. This is a 64 * public interface that may be used by protocols to create new sockets when 65 * a new connection is received and will be available for accept() on a 66 * listen socket. 67 * 68 * soclose() destroys a socket after possibly waiting for it to disconnect. 69 * This is a public interface that socket consumers should use to close and 70 * release a socket when done with it. 71 * 72 * soabort() destroys a socket without waiting for it to disconnect (used 73 * only for incoming connections that are already partially or fully 74 * connected). This is used internally by the socket layer when clearing 75 * listen socket queues (due to overflow or close on the listen socket), but 76 * is also a public interface protocols may use to abort connections in 77 * their incomplete listen queues should they no longer be required. Sockets 78 * placed in completed connection listen queues should not be aborted for 79 * reasons described in the comment above the soclose() implementation. This 80 * is not a general purpose close routine, and except in the specific 81 * circumstances described here, should not be used. 82 * 83 * sofree() will free a socket and its protocol state if all references on 84 * the socket have been released, and is the public interface to attempt to 85 * free a socket when a reference is removed. This is a socket layer private 86 * interface. 87 * 88 * NOTE: In addition to socreate() and soclose(), which provide a single 89 * socket reference to the consumer to be managed as required, there are two 90 * calls to explicitly manage socket references, soref(), and sorele(). 91 * Currently, these are generally required only when transitioning a socket 92 * from a listen queue to a file descriptor, in order to prevent garbage 93 * collection of the socket at an untimely moment. For a number of reasons, 94 * these interfaces are not preferred, and should be avoided. 95 */ 96 97 #include <sys/cdefs.h> 98 __FBSDID("$FreeBSD$"); 99 100 #include "opt_inet.h" 101 #include "opt_inet6.h" 102 #include "opt_zero.h" 103 #include "opt_compat.h" 104 105 #include <sys/param.h> 106 #include <sys/systm.h> 107 #include <sys/fcntl.h> 108 #include <sys/limits.h> 109 #include <sys/lock.h> 110 #include <sys/mac.h> 111 #include <sys/malloc.h> 112 #include <sys/mbuf.h> 113 #include <sys/mutex.h> 114 #include <sys/domain.h> 115 #include <sys/file.h> /* for struct knote */ 116 #include <sys/kernel.h> 117 #include <sys/event.h> 118 #include <sys/eventhandler.h> 119 #include <sys/poll.h> 120 #include <sys/proc.h> 121 #include <sys/protosw.h> 122 #include <sys/socket.h> 123 #include <sys/socketvar.h> 124 #include <sys/resourcevar.h> 125 #include <net/route.h> 126 #include <sys/signalvar.h> 127 #include <sys/stat.h> 128 #include <sys/sx.h> 129 #include <sys/sysctl.h> 130 #include <sys/uio.h> 131 #include <sys/jail.h> 132 133 #include <net/vnet.h> 134 135 #include <security/mac/mac_framework.h> 136 137 #include <vm/uma.h> 138 139 #ifdef COMPAT_FREEBSD32 140 #include <sys/mount.h> 141 #include <sys/sysent.h> 142 #include <compat/freebsd32/freebsd32.h> 143 #endif 144 145 static int soreceive_rcvoob(struct socket *so, struct uio *uio, 146 int flags); 147 148 static void filt_sordetach(struct knote *kn); 149 static int filt_soread(struct knote *kn, long hint); 150 static void filt_sowdetach(struct knote *kn); 151 static int filt_sowrite(struct knote *kn, long hint); 152 static int filt_solisten(struct knote *kn, long hint); 153 154 static struct filterops solisten_filtops = { 155 .f_isfd = 1, 156 .f_detach = filt_sordetach, 157 .f_event = filt_solisten, 158 }; 159 static struct filterops soread_filtops = { 160 .f_isfd = 1, 161 .f_detach = filt_sordetach, 162 .f_event = filt_soread, 163 }; 164 static struct filterops sowrite_filtops = { 165 .f_isfd = 1, 166 .f_detach = filt_sowdetach, 167 .f_event = filt_sowrite, 168 }; 169 170 uma_zone_t socket_zone; 171 so_gen_t so_gencnt; /* generation count for sockets */ 172 173 int maxsockets; 174 175 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 176 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 177 178 static int somaxconn = SOMAXCONN; 179 static int sysctl_somaxconn(SYSCTL_HANDLER_ARGS); 180 /* XXX: we dont have SYSCTL_USHORT */ 181 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLTYPE_UINT | CTLFLAG_RW, 182 0, sizeof(int), sysctl_somaxconn, "I", "Maximum pending socket connection " 183 "queue size"); 184 static int numopensockets; 185 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, 186 &numopensockets, 0, "Number of open sockets"); 187 #ifdef ZERO_COPY_SOCKETS 188 /* These aren't static because they're used in other files. */ 189 int so_zero_copy_send = 1; 190 int so_zero_copy_receive = 1; 191 SYSCTL_NODE(_kern_ipc, OID_AUTO, zero_copy, CTLFLAG_RD, 0, 192 "Zero copy controls"); 193 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, receive, CTLFLAG_RW, 194 &so_zero_copy_receive, 0, "Enable zero copy receive"); 195 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, send, CTLFLAG_RW, 196 &so_zero_copy_send, 0, "Enable zero copy send"); 197 #endif /* ZERO_COPY_SOCKETS */ 198 199 /* 200 * accept_mtx locks down per-socket fields relating to accept queues. See 201 * socketvar.h for an annotation of the protected fields of struct socket. 202 */ 203 struct mtx accept_mtx; 204 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF); 205 206 /* 207 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket 208 * so_gencnt field. 209 */ 210 static struct mtx so_global_mtx; 211 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); 212 213 /* 214 * General IPC sysctl name space, used by sockets and a variety of other IPC 215 * types. 216 */ 217 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC"); 218 219 /* 220 * Sysctl to get and set the maximum global sockets limit. Notify protocols 221 * of the change so that they can update their dependent limits as required. 222 */ 223 static int 224 sysctl_maxsockets(SYSCTL_HANDLER_ARGS) 225 { 226 int error, newmaxsockets; 227 228 newmaxsockets = maxsockets; 229 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req); 230 if (error == 0 && req->newptr) { 231 if (newmaxsockets > maxsockets) { 232 maxsockets = newmaxsockets; 233 if (maxsockets > ((maxfiles / 4) * 3)) { 234 maxfiles = (maxsockets * 5) / 4; 235 maxfilesperproc = (maxfiles * 9) / 10; 236 } 237 EVENTHANDLER_INVOKE(maxsockets_change); 238 } else 239 error = EINVAL; 240 } 241 return (error); 242 } 243 244 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, CTLTYPE_INT|CTLFLAG_RW, 245 &maxsockets, 0, sysctl_maxsockets, "IU", 246 "Maximum number of sockets avaliable"); 247 248 /* 249 * Initialise maxsockets. This SYSINIT must be run after 250 * tunable_mbinit(). 251 */ 252 static void 253 init_maxsockets(void *ignored) 254 { 255 256 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 257 maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters)); 258 } 259 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 260 261 /* 262 * Socket operation routines. These routines are called by the routines in 263 * sys_socket.c or from a system process, and implement the semantics of 264 * socket operations by switching out to the protocol specific routines. 265 */ 266 267 /* 268 * Get a socket structure from our zone, and initialize it. Note that it 269 * would probably be better to allocate socket and PCB at the same time, but 270 * I'm not convinced that all the protocols can be easily modified to do 271 * this. 272 * 273 * soalloc() returns a socket with a ref count of 0. 274 */ 275 static struct socket * 276 soalloc(struct vnet *vnet) 277 { 278 struct socket *so; 279 280 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO); 281 if (so == NULL) 282 return (NULL); 283 #ifdef MAC 284 if (mac_socket_init(so, M_NOWAIT) != 0) { 285 uma_zfree(socket_zone, so); 286 return (NULL); 287 } 288 #endif 289 SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd"); 290 SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv"); 291 sx_init(&so->so_snd.sb_sx, "so_snd_sx"); 292 sx_init(&so->so_rcv.sb_sx, "so_rcv_sx"); 293 TAILQ_INIT(&so->so_aiojobq); 294 mtx_lock(&so_global_mtx); 295 so->so_gencnt = ++so_gencnt; 296 ++numopensockets; 297 #ifdef VIMAGE 298 vnet->vnet_sockcnt++; 299 so->so_vnet = vnet; 300 #endif 301 mtx_unlock(&so_global_mtx); 302 return (so); 303 } 304 305 /* 306 * Free the storage associated with a socket at the socket layer, tear down 307 * locks, labels, etc. All protocol state is assumed already to have been 308 * torn down (and possibly never set up) by the caller. 309 */ 310 static void 311 sodealloc(struct socket *so) 312 { 313 314 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); 315 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL")); 316 317 mtx_lock(&so_global_mtx); 318 so->so_gencnt = ++so_gencnt; 319 --numopensockets; /* Could be below, but faster here. */ 320 #ifdef VIMAGE 321 so->so_vnet->vnet_sockcnt--; 322 #endif 323 mtx_unlock(&so_global_mtx); 324 if (so->so_rcv.sb_hiwat) 325 (void)chgsbsize(so->so_cred->cr_uidinfo, 326 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 327 if (so->so_snd.sb_hiwat) 328 (void)chgsbsize(so->so_cred->cr_uidinfo, 329 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 330 #ifdef INET 331 /* remove acccept filter if one is present. */ 332 if (so->so_accf != NULL) 333 do_setopt_accept_filter(so, NULL); 334 #endif 335 #ifdef MAC 336 mac_socket_destroy(so); 337 #endif 338 crfree(so->so_cred); 339 sx_destroy(&so->so_snd.sb_sx); 340 sx_destroy(&so->so_rcv.sb_sx); 341 SOCKBUF_LOCK_DESTROY(&so->so_snd); 342 SOCKBUF_LOCK_DESTROY(&so->so_rcv); 343 uma_zfree(socket_zone, so); 344 } 345 346 /* 347 * socreate returns a socket with a ref count of 1. The socket should be 348 * closed with soclose(). 349 */ 350 int 351 socreate(int dom, struct socket **aso, int type, int proto, 352 struct ucred *cred, struct thread *td) 353 { 354 struct protosw *prp; 355 struct socket *so; 356 int error; 357 358 if (proto) 359 prp = pffindproto(dom, proto, type); 360 else 361 prp = pffindtype(dom, type); 362 363 if (prp == NULL || prp->pr_usrreqs->pru_attach == NULL || 364 prp->pr_usrreqs->pru_attach == pru_attach_notsupp) 365 return (EPROTONOSUPPORT); 366 367 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0) 368 return (EPROTONOSUPPORT); 369 370 if (prp->pr_type != type) 371 return (EPROTOTYPE); 372 so = soalloc(CRED_TO_VNET(cred)); 373 if (so == NULL) 374 return (ENOBUFS); 375 376 TAILQ_INIT(&so->so_incomp); 377 TAILQ_INIT(&so->so_comp); 378 so->so_type = type; 379 so->so_cred = crhold(cred); 380 if ((prp->pr_domain->dom_family == PF_INET) || 381 (prp->pr_domain->dom_family == PF_ROUTE)) 382 so->so_fibnum = td->td_proc->p_fibnum; 383 else 384 so->so_fibnum = 0; 385 so->so_proto = prp; 386 #ifdef MAC 387 mac_socket_create(cred, so); 388 #endif 389 knlist_init_mtx(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv)); 390 knlist_init_mtx(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd)); 391 so->so_count = 1; 392 /* 393 * Auto-sizing of socket buffers is managed by the protocols and 394 * the appropriate flags must be set in the pru_attach function. 395 */ 396 CURVNET_SET(so->so_vnet); 397 error = (*prp->pr_usrreqs->pru_attach)(so, proto, td); 398 CURVNET_RESTORE(); 399 if (error) { 400 KASSERT(so->so_count == 1, ("socreate: so_count %d", 401 so->so_count)); 402 so->so_count = 0; 403 sodealloc(so); 404 return (error); 405 } 406 *aso = so; 407 return (0); 408 } 409 410 #ifdef REGRESSION 411 static int regression_sonewconn_earlytest = 1; 412 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW, 413 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test"); 414 #endif 415 416 /* 417 * When an attempt at a new connection is noted on a socket which accepts 418 * connections, sonewconn is called. If the connection is possible (subject 419 * to space constraints, etc.) then we allocate a new structure, propoerly 420 * linked into the data structure of the original socket, and return this. 421 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED. 422 * 423 * Note: the ref count on the socket is 0 on return. 424 */ 425 struct socket * 426 sonewconn(struct socket *head, int connstatus) 427 { 428 struct socket *so; 429 int over; 430 431 ACCEPT_LOCK(); 432 over = (head->so_qlen > 3 * head->so_qlimit / 2); 433 ACCEPT_UNLOCK(); 434 #ifdef REGRESSION 435 if (regression_sonewconn_earlytest && over) 436 #else 437 if (over) 438 #endif 439 return (NULL); 440 VNET_ASSERT(head->so_vnet); 441 so = soalloc(head->so_vnet); 442 if (so == NULL) 443 return (NULL); 444 if ((head->so_options & SO_ACCEPTFILTER) != 0) 445 connstatus = 0; 446 so->so_head = head; 447 so->so_type = head->so_type; 448 so->so_options = head->so_options &~ SO_ACCEPTCONN; 449 so->so_linger = head->so_linger; 450 so->so_state = head->so_state | SS_NOFDREF; 451 so->so_fibnum = head->so_fibnum; 452 so->so_proto = head->so_proto; 453 so->so_cred = crhold(head->so_cred); 454 #ifdef MAC 455 mac_socket_newconn(head, so); 456 #endif 457 knlist_init_mtx(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv)); 458 knlist_init_mtx(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd)); 459 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) || 460 (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 461 sodealloc(so); 462 return (NULL); 463 } 464 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; 465 so->so_snd.sb_lowat = head->so_snd.sb_lowat; 466 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; 467 so->so_snd.sb_timeo = head->so_snd.sb_timeo; 468 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE; 469 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE; 470 so->so_state |= connstatus; 471 ACCEPT_LOCK(); 472 if (connstatus) { 473 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 474 so->so_qstate |= SQ_COMP; 475 head->so_qlen++; 476 } else { 477 /* 478 * Keep removing sockets from the head until there's room for 479 * us to insert on the tail. In pre-locking revisions, this 480 * was a simple if(), but as we could be racing with other 481 * threads and soabort() requires dropping locks, we must 482 * loop waiting for the condition to be true. 483 */ 484 while (head->so_incqlen > head->so_qlimit) { 485 struct socket *sp; 486 sp = TAILQ_FIRST(&head->so_incomp); 487 TAILQ_REMOVE(&head->so_incomp, sp, so_list); 488 head->so_incqlen--; 489 sp->so_qstate &= ~SQ_INCOMP; 490 sp->so_head = NULL; 491 ACCEPT_UNLOCK(); 492 soabort(sp); 493 ACCEPT_LOCK(); 494 } 495 TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list); 496 so->so_qstate |= SQ_INCOMP; 497 head->so_incqlen++; 498 } 499 ACCEPT_UNLOCK(); 500 if (connstatus) { 501 sorwakeup(head); 502 wakeup_one(&head->so_timeo); 503 } 504 return (so); 505 } 506 507 int 508 sobind(struct socket *so, struct sockaddr *nam, struct thread *td) 509 { 510 int error; 511 512 CURVNET_SET(so->so_vnet); 513 error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td); 514 CURVNET_RESTORE(); 515 return error; 516 } 517 518 /* 519 * solisten() transitions a socket from a non-listening state to a listening 520 * state, but can also be used to update the listen queue depth on an 521 * existing listen socket. The protocol will call back into the sockets 522 * layer using solisten_proto_check() and solisten_proto() to check and set 523 * socket-layer listen state. Call backs are used so that the protocol can 524 * acquire both protocol and socket layer locks in whatever order is required 525 * by the protocol. 526 * 527 * Protocol implementors are advised to hold the socket lock across the 528 * socket-layer test and set to avoid races at the socket layer. 529 */ 530 int 531 solisten(struct socket *so, int backlog, struct thread *td) 532 { 533 534 return ((*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td)); 535 } 536 537 int 538 solisten_proto_check(struct socket *so) 539 { 540 541 SOCK_LOCK_ASSERT(so); 542 543 if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 544 SS_ISDISCONNECTING)) 545 return (EINVAL); 546 return (0); 547 } 548 549 void 550 solisten_proto(struct socket *so, int backlog) 551 { 552 553 SOCK_LOCK_ASSERT(so); 554 555 if (backlog < 0 || backlog > somaxconn) 556 backlog = somaxconn; 557 so->so_qlimit = backlog; 558 so->so_options |= SO_ACCEPTCONN; 559 } 560 561 /* 562 * Evaluate the reference count and named references on a socket; if no 563 * references remain, free it. This should be called whenever a reference is 564 * released, such as in sorele(), but also when named reference flags are 565 * cleared in socket or protocol code. 566 * 567 * sofree() will free the socket if: 568 * 569 * - There are no outstanding file descriptor references or related consumers 570 * (so_count == 0). 571 * 572 * - The socket has been closed by user space, if ever open (SS_NOFDREF). 573 * 574 * - The protocol does not have an outstanding strong reference on the socket 575 * (SS_PROTOREF). 576 * 577 * - The socket is not in a completed connection queue, so a process has been 578 * notified that it is present. If it is removed, the user process may 579 * block in accept() despite select() saying the socket was ready. 580 */ 581 void 582 sofree(struct socket *so) 583 { 584 struct protosw *pr = so->so_proto; 585 struct socket *head; 586 587 ACCEPT_LOCK_ASSERT(); 588 SOCK_LOCK_ASSERT(so); 589 590 if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 || 591 (so->so_state & SS_PROTOREF) || (so->so_qstate & SQ_COMP)) { 592 SOCK_UNLOCK(so); 593 ACCEPT_UNLOCK(); 594 return; 595 } 596 597 head = so->so_head; 598 if (head != NULL) { 599 KASSERT((so->so_qstate & SQ_COMP) != 0 || 600 (so->so_qstate & SQ_INCOMP) != 0, 601 ("sofree: so_head != NULL, but neither SQ_COMP nor " 602 "SQ_INCOMP")); 603 KASSERT((so->so_qstate & SQ_COMP) == 0 || 604 (so->so_qstate & SQ_INCOMP) == 0, 605 ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP")); 606 TAILQ_REMOVE(&head->so_incomp, so, so_list); 607 head->so_incqlen--; 608 so->so_qstate &= ~SQ_INCOMP; 609 so->so_head = NULL; 610 } 611 KASSERT((so->so_qstate & SQ_COMP) == 0 && 612 (so->so_qstate & SQ_INCOMP) == 0, 613 ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)", 614 so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP)); 615 if (so->so_options & SO_ACCEPTCONN) { 616 KASSERT((TAILQ_EMPTY(&so->so_comp)), ("sofree: so_comp populated")); 617 KASSERT((TAILQ_EMPTY(&so->so_incomp)), ("sofree: so_comp populated")); 618 } 619 SOCK_UNLOCK(so); 620 ACCEPT_UNLOCK(); 621 622 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 623 (*pr->pr_domain->dom_dispose)(so->so_rcv.sb_mb); 624 if (pr->pr_usrreqs->pru_detach != NULL) 625 (*pr->pr_usrreqs->pru_detach)(so); 626 627 /* 628 * From this point on, we assume that no other references to this 629 * socket exist anywhere else in the stack. Therefore, no locks need 630 * to be acquired or held. 631 * 632 * We used to do a lot of socket buffer and socket locking here, as 633 * well as invoke sorflush() and perform wakeups. The direct call to 634 * dom_dispose() and sbrelease_internal() are an inlining of what was 635 * necessary from sorflush(). 636 * 637 * Notice that the socket buffer and kqueue state are torn down 638 * before calling pru_detach. This means that protocols shold not 639 * assume they can perform socket wakeups, etc, in their detach code. 640 */ 641 sbdestroy(&so->so_snd, so); 642 sbdestroy(&so->so_rcv, so); 643 knlist_destroy(&so->so_rcv.sb_sel.si_note); 644 knlist_destroy(&so->so_snd.sb_sel.si_note); 645 sodealloc(so); 646 } 647 648 /* 649 * Close a socket on last file table reference removal. Initiate disconnect 650 * if connected. Free socket when disconnect complete. 651 * 652 * This function will sorele() the socket. Note that soclose() may be called 653 * prior to the ref count reaching zero. The actual socket structure will 654 * not be freed until the ref count reaches zero. 655 */ 656 int 657 soclose(struct socket *so) 658 { 659 int error = 0; 660 661 KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter")); 662 663 CURVNET_SET(so->so_vnet); 664 funsetown(&so->so_sigio); 665 if (so->so_state & SS_ISCONNECTED) { 666 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 667 error = sodisconnect(so); 668 if (error) { 669 if (error == ENOTCONN) 670 error = 0; 671 goto drop; 672 } 673 } 674 if (so->so_options & SO_LINGER) { 675 if ((so->so_state & SS_ISDISCONNECTING) && 676 (so->so_state & SS_NBIO)) 677 goto drop; 678 while (so->so_state & SS_ISCONNECTED) { 679 error = tsleep(&so->so_timeo, 680 PSOCK | PCATCH, "soclos", so->so_linger * hz); 681 if (error) 682 break; 683 } 684 } 685 } 686 687 drop: 688 if (so->so_proto->pr_usrreqs->pru_close != NULL) 689 (*so->so_proto->pr_usrreqs->pru_close)(so); 690 if (so->so_options & SO_ACCEPTCONN) { 691 struct socket *sp; 692 ACCEPT_LOCK(); 693 while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) { 694 TAILQ_REMOVE(&so->so_incomp, sp, so_list); 695 so->so_incqlen--; 696 sp->so_qstate &= ~SQ_INCOMP; 697 sp->so_head = NULL; 698 ACCEPT_UNLOCK(); 699 soabort(sp); 700 ACCEPT_LOCK(); 701 } 702 while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) { 703 TAILQ_REMOVE(&so->so_comp, sp, so_list); 704 so->so_qlen--; 705 sp->so_qstate &= ~SQ_COMP; 706 sp->so_head = NULL; 707 ACCEPT_UNLOCK(); 708 soabort(sp); 709 ACCEPT_LOCK(); 710 } 711 ACCEPT_UNLOCK(); 712 } 713 ACCEPT_LOCK(); 714 SOCK_LOCK(so); 715 KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF")); 716 so->so_state |= SS_NOFDREF; 717 sorele(so); 718 CURVNET_RESTORE(); 719 return (error); 720 } 721 722 /* 723 * soabort() is used to abruptly tear down a connection, such as when a 724 * resource limit is reached (listen queue depth exceeded), or if a listen 725 * socket is closed while there are sockets waiting to be accepted. 726 * 727 * This interface is tricky, because it is called on an unreferenced socket, 728 * and must be called only by a thread that has actually removed the socket 729 * from the listen queue it was on, or races with other threads are risked. 730 * 731 * This interface will call into the protocol code, so must not be called 732 * with any socket locks held. Protocols do call it while holding their own 733 * recursible protocol mutexes, but this is something that should be subject 734 * to review in the future. 735 */ 736 void 737 soabort(struct socket *so) 738 { 739 740 /* 741 * In as much as is possible, assert that no references to this 742 * socket are held. This is not quite the same as asserting that the 743 * current thread is responsible for arranging for no references, but 744 * is as close as we can get for now. 745 */ 746 KASSERT(so->so_count == 0, ("soabort: so_count")); 747 KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF")); 748 KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF")); 749 KASSERT((so->so_state & SQ_COMP) == 0, ("soabort: SQ_COMP")); 750 KASSERT((so->so_state & SQ_INCOMP) == 0, ("soabort: SQ_INCOMP")); 751 752 if (so->so_proto->pr_usrreqs->pru_abort != NULL) 753 (*so->so_proto->pr_usrreqs->pru_abort)(so); 754 ACCEPT_LOCK(); 755 SOCK_LOCK(so); 756 sofree(so); 757 } 758 759 int 760 soaccept(struct socket *so, struct sockaddr **nam) 761 { 762 int error; 763 764 SOCK_LOCK(so); 765 KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF")); 766 so->so_state &= ~SS_NOFDREF; 767 SOCK_UNLOCK(so); 768 error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam); 769 return (error); 770 } 771 772 int 773 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td) 774 { 775 int error; 776 777 if (so->so_options & SO_ACCEPTCONN) 778 return (EOPNOTSUPP); 779 780 CURVNET_SET(so->so_vnet); 781 /* 782 * If protocol is connection-based, can only connect once. 783 * Otherwise, if connected, try to disconnect first. This allows 784 * user to disconnect by connecting to, e.g., a null address. 785 */ 786 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 787 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 788 (error = sodisconnect(so)))) { 789 error = EISCONN; 790 } else { 791 /* 792 * Prevent accumulated error from previous connection from 793 * biting us. 794 */ 795 so->so_error = 0; 796 error = (*so->so_proto->pr_usrreqs->pru_connect)(so, nam, td); 797 } 798 CURVNET_RESTORE(); 799 800 return (error); 801 } 802 803 int 804 soconnect2(struct socket *so1, struct socket *so2) 805 { 806 807 return ((*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2)); 808 } 809 810 int 811 sodisconnect(struct socket *so) 812 { 813 int error; 814 815 if ((so->so_state & SS_ISCONNECTED) == 0) 816 return (ENOTCONN); 817 if (so->so_state & SS_ISDISCONNECTING) 818 return (EALREADY); 819 error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so); 820 return (error); 821 } 822 823 #ifdef ZERO_COPY_SOCKETS 824 struct so_zerocopy_stats{ 825 int size_ok; 826 int align_ok; 827 int found_ifp; 828 }; 829 struct so_zerocopy_stats so_zerocp_stats = {0,0,0}; 830 #include <netinet/in.h> 831 #include <net/route.h> 832 #include <netinet/in_pcb.h> 833 #include <vm/vm.h> 834 #include <vm/vm_page.h> 835 #include <vm/vm_object.h> 836 837 /* 838 * sosend_copyin() is only used if zero copy sockets are enabled. Otherwise 839 * sosend_dgram() and sosend_generic() use m_uiotombuf(). 840 * 841 * sosend_copyin() accepts a uio and prepares an mbuf chain holding part or 842 * all of the data referenced by the uio. If desired, it uses zero-copy. 843 * *space will be updated to reflect data copied in. 844 * 845 * NB: If atomic I/O is requested, the caller must already have checked that 846 * space can hold resid bytes. 847 * 848 * NB: In the event of an error, the caller may need to free the partial 849 * chain pointed to by *mpp. The contents of both *uio and *space may be 850 * modified even in the case of an error. 851 */ 852 static int 853 sosend_copyin(struct uio *uio, struct mbuf **retmp, int atomic, long *space, 854 int flags) 855 { 856 struct mbuf *m, **mp, *top; 857 long len, resid; 858 int error; 859 #ifdef ZERO_COPY_SOCKETS 860 int cow_send; 861 #endif 862 863 *retmp = top = NULL; 864 mp = ⊤ 865 len = 0; 866 resid = uio->uio_resid; 867 error = 0; 868 do { 869 #ifdef ZERO_COPY_SOCKETS 870 cow_send = 0; 871 #endif /* ZERO_COPY_SOCKETS */ 872 if (resid >= MINCLSIZE) { 873 #ifdef ZERO_COPY_SOCKETS 874 if (top == NULL) { 875 m = m_gethdr(M_WAITOK, MT_DATA); 876 m->m_pkthdr.len = 0; 877 m->m_pkthdr.rcvif = NULL; 878 } else 879 m = m_get(M_WAITOK, MT_DATA); 880 if (so_zero_copy_send && 881 resid>=PAGE_SIZE && 882 *space>=PAGE_SIZE && 883 uio->uio_iov->iov_len>=PAGE_SIZE) { 884 so_zerocp_stats.size_ok++; 885 so_zerocp_stats.align_ok++; 886 cow_send = socow_setup(m, uio); 887 len = cow_send; 888 } 889 if (!cow_send) { 890 m_clget(m, M_WAITOK); 891 len = min(min(MCLBYTES, resid), *space); 892 } 893 #else /* ZERO_COPY_SOCKETS */ 894 if (top == NULL) { 895 m = m_getcl(M_WAIT, MT_DATA, M_PKTHDR); 896 m->m_pkthdr.len = 0; 897 m->m_pkthdr.rcvif = NULL; 898 } else 899 m = m_getcl(M_WAIT, MT_DATA, 0); 900 len = min(min(MCLBYTES, resid), *space); 901 #endif /* ZERO_COPY_SOCKETS */ 902 } else { 903 if (top == NULL) { 904 m = m_gethdr(M_WAIT, MT_DATA); 905 m->m_pkthdr.len = 0; 906 m->m_pkthdr.rcvif = NULL; 907 908 len = min(min(MHLEN, resid), *space); 909 /* 910 * For datagram protocols, leave room 911 * for protocol headers in first mbuf. 912 */ 913 if (atomic && m && len < MHLEN) 914 MH_ALIGN(m, len); 915 } else { 916 m = m_get(M_WAIT, MT_DATA); 917 len = min(min(MLEN, resid), *space); 918 } 919 } 920 if (m == NULL) { 921 error = ENOBUFS; 922 goto out; 923 } 924 925 *space -= len; 926 #ifdef ZERO_COPY_SOCKETS 927 if (cow_send) 928 error = 0; 929 else 930 #endif /* ZERO_COPY_SOCKETS */ 931 error = uiomove(mtod(m, void *), (int)len, uio); 932 resid = uio->uio_resid; 933 m->m_len = len; 934 *mp = m; 935 top->m_pkthdr.len += len; 936 if (error) 937 goto out; 938 mp = &m->m_next; 939 if (resid <= 0) { 940 if (flags & MSG_EOR) 941 top->m_flags |= M_EOR; 942 break; 943 } 944 } while (*space > 0 && atomic); 945 out: 946 *retmp = top; 947 return (error); 948 } 949 #endif /*ZERO_COPY_SOCKETS*/ 950 951 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT) 952 953 int 954 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, 955 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 956 { 957 long space, resid; 958 int clen = 0, error, dontroute; 959 #ifdef ZERO_COPY_SOCKETS 960 int atomic = sosendallatonce(so) || top; 961 #endif 962 963 KASSERT(so->so_type == SOCK_DGRAM, ("sodgram_send: !SOCK_DGRAM")); 964 KASSERT(so->so_proto->pr_flags & PR_ATOMIC, 965 ("sodgram_send: !PR_ATOMIC")); 966 967 if (uio != NULL) 968 resid = uio->uio_resid; 969 else 970 resid = top->m_pkthdr.len; 971 /* 972 * In theory resid should be unsigned. However, space must be 973 * signed, as it might be less than 0 if we over-committed, and we 974 * must use a signed comparison of space and resid. On the other 975 * hand, a negative resid causes us to loop sending 0-length 976 * segments to the protocol. 977 */ 978 if (resid < 0) { 979 error = EINVAL; 980 goto out; 981 } 982 983 dontroute = 984 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0; 985 if (td != NULL) 986 td->td_ru.ru_msgsnd++; 987 if (control != NULL) 988 clen = control->m_len; 989 990 SOCKBUF_LOCK(&so->so_snd); 991 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 992 SOCKBUF_UNLOCK(&so->so_snd); 993 error = EPIPE; 994 goto out; 995 } 996 if (so->so_error) { 997 error = so->so_error; 998 so->so_error = 0; 999 SOCKBUF_UNLOCK(&so->so_snd); 1000 goto out; 1001 } 1002 if ((so->so_state & SS_ISCONNECTED) == 0) { 1003 /* 1004 * `sendto' and `sendmsg' is allowed on a connection-based 1005 * socket if it supports implied connect. Return ENOTCONN if 1006 * not connected and no address is supplied. 1007 */ 1008 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1009 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1010 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1011 !(resid == 0 && clen != 0)) { 1012 SOCKBUF_UNLOCK(&so->so_snd); 1013 error = ENOTCONN; 1014 goto out; 1015 } 1016 } else if (addr == NULL) { 1017 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1018 error = ENOTCONN; 1019 else 1020 error = EDESTADDRREQ; 1021 SOCKBUF_UNLOCK(&so->so_snd); 1022 goto out; 1023 } 1024 } 1025 1026 /* 1027 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a 1028 * problem and need fixing. 1029 */ 1030 space = sbspace(&so->so_snd); 1031 if (flags & MSG_OOB) 1032 space += 1024; 1033 space -= clen; 1034 SOCKBUF_UNLOCK(&so->so_snd); 1035 if (resid > space) { 1036 error = EMSGSIZE; 1037 goto out; 1038 } 1039 if (uio == NULL) { 1040 resid = 0; 1041 if (flags & MSG_EOR) 1042 top->m_flags |= M_EOR; 1043 } else { 1044 #ifdef ZERO_COPY_SOCKETS 1045 error = sosend_copyin(uio, &top, atomic, &space, flags); 1046 if (error) 1047 goto out; 1048 #else 1049 /* 1050 * Copy the data from userland into a mbuf chain. 1051 * If no data is to be copied in, a single empty mbuf 1052 * is returned. 1053 */ 1054 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr, 1055 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0))); 1056 if (top == NULL) { 1057 error = EFAULT; /* only possible error */ 1058 goto out; 1059 } 1060 space -= resid - uio->uio_resid; 1061 #endif 1062 resid = uio->uio_resid; 1063 } 1064 KASSERT(resid == 0, ("sosend_dgram: resid != 0")); 1065 /* 1066 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock 1067 * than with. 1068 */ 1069 if (dontroute) { 1070 SOCK_LOCK(so); 1071 so->so_options |= SO_DONTROUTE; 1072 SOCK_UNLOCK(so); 1073 } 1074 /* 1075 * XXX all the SBS_CANTSENDMORE checks previously done could be out 1076 * of date. We could have recieved a reset packet in an interrupt or 1077 * maybe we slept while doing page faults in uiomove() etc. We could 1078 * probably recheck again inside the locking protection here, but 1079 * there are probably other places that this also happens. We must 1080 * rethink this. 1081 */ 1082 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1083 (flags & MSG_OOB) ? PRUS_OOB : 1084 /* 1085 * If the user set MSG_EOF, the protocol understands this flag and 1086 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND. 1087 */ 1088 ((flags & MSG_EOF) && 1089 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1090 (resid <= 0)) ? 1091 PRUS_EOF : 1092 /* If there is more to send set PRUS_MORETOCOME */ 1093 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1094 top, addr, control, td); 1095 if (dontroute) { 1096 SOCK_LOCK(so); 1097 so->so_options &= ~SO_DONTROUTE; 1098 SOCK_UNLOCK(so); 1099 } 1100 clen = 0; 1101 control = NULL; 1102 top = NULL; 1103 out: 1104 if (top != NULL) 1105 m_freem(top); 1106 if (control != NULL) 1107 m_freem(control); 1108 return (error); 1109 } 1110 1111 /* 1112 * Send on a socket. If send must go all at once and message is larger than 1113 * send buffering, then hard error. Lock against other senders. If must go 1114 * all at once and not enough room now, then inform user that this would 1115 * block and do nothing. Otherwise, if nonblocking, send as much as 1116 * possible. The data to be sent is described by "uio" if nonzero, otherwise 1117 * by the mbuf chain "top" (which must be null if uio is not). Data provided 1118 * in mbuf chain must be small enough to send all at once. 1119 * 1120 * Returns nonzero on error, timeout or signal; callers must check for short 1121 * counts if EINTR/ERESTART are returned. Data and control buffers are freed 1122 * on return. 1123 */ 1124 int 1125 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio, 1126 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1127 { 1128 long space, resid; 1129 int clen = 0, error, dontroute; 1130 int atomic = sosendallatonce(so) || top; 1131 1132 if (uio != NULL) 1133 resid = uio->uio_resid; 1134 else 1135 resid = top->m_pkthdr.len; 1136 /* 1137 * In theory resid should be unsigned. However, space must be 1138 * signed, as it might be less than 0 if we over-committed, and we 1139 * must use a signed comparison of space and resid. On the other 1140 * hand, a negative resid causes us to loop sending 0-length 1141 * segments to the protocol. 1142 * 1143 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 1144 * type sockets since that's an error. 1145 */ 1146 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 1147 error = EINVAL; 1148 goto out; 1149 } 1150 1151 dontroute = 1152 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 1153 (so->so_proto->pr_flags & PR_ATOMIC); 1154 if (td != NULL) 1155 td->td_ru.ru_msgsnd++; 1156 if (control != NULL) 1157 clen = control->m_len; 1158 1159 error = sblock(&so->so_snd, SBLOCKWAIT(flags)); 1160 if (error) 1161 goto out; 1162 1163 restart: 1164 do { 1165 SOCKBUF_LOCK(&so->so_snd); 1166 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1167 SOCKBUF_UNLOCK(&so->so_snd); 1168 error = EPIPE; 1169 goto release; 1170 } 1171 if (so->so_error) { 1172 error = so->so_error; 1173 so->so_error = 0; 1174 SOCKBUF_UNLOCK(&so->so_snd); 1175 goto release; 1176 } 1177 if ((so->so_state & SS_ISCONNECTED) == 0) { 1178 /* 1179 * `sendto' and `sendmsg' is allowed on a connection- 1180 * based socket if it supports implied connect. 1181 * Return ENOTCONN if not connected and no address is 1182 * supplied. 1183 */ 1184 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1185 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1186 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1187 !(resid == 0 && clen != 0)) { 1188 SOCKBUF_UNLOCK(&so->so_snd); 1189 error = ENOTCONN; 1190 goto release; 1191 } 1192 } else if (addr == NULL) { 1193 SOCKBUF_UNLOCK(&so->so_snd); 1194 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1195 error = ENOTCONN; 1196 else 1197 error = EDESTADDRREQ; 1198 goto release; 1199 } 1200 } 1201 space = sbspace(&so->so_snd); 1202 if (flags & MSG_OOB) 1203 space += 1024; 1204 if ((atomic && resid > so->so_snd.sb_hiwat) || 1205 clen > so->so_snd.sb_hiwat) { 1206 SOCKBUF_UNLOCK(&so->so_snd); 1207 error = EMSGSIZE; 1208 goto release; 1209 } 1210 if (space < resid + clen && 1211 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 1212 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) { 1213 SOCKBUF_UNLOCK(&so->so_snd); 1214 error = EWOULDBLOCK; 1215 goto release; 1216 } 1217 error = sbwait(&so->so_snd); 1218 SOCKBUF_UNLOCK(&so->so_snd); 1219 if (error) 1220 goto release; 1221 goto restart; 1222 } 1223 SOCKBUF_UNLOCK(&so->so_snd); 1224 space -= clen; 1225 do { 1226 if (uio == NULL) { 1227 resid = 0; 1228 if (flags & MSG_EOR) 1229 top->m_flags |= M_EOR; 1230 } else { 1231 #ifdef ZERO_COPY_SOCKETS 1232 error = sosend_copyin(uio, &top, atomic, 1233 &space, flags); 1234 if (error != 0) 1235 goto release; 1236 #else 1237 /* 1238 * Copy the data from userland into a mbuf 1239 * chain. If no data is to be copied in, 1240 * a single empty mbuf is returned. 1241 */ 1242 top = m_uiotombuf(uio, M_WAITOK, space, 1243 (atomic ? max_hdr : 0), 1244 (atomic ? M_PKTHDR : 0) | 1245 ((flags & MSG_EOR) ? M_EOR : 0)); 1246 if (top == NULL) { 1247 error = EFAULT; /* only possible error */ 1248 goto release; 1249 } 1250 space -= resid - uio->uio_resid; 1251 #endif 1252 resid = uio->uio_resid; 1253 } 1254 if (dontroute) { 1255 SOCK_LOCK(so); 1256 so->so_options |= SO_DONTROUTE; 1257 SOCK_UNLOCK(so); 1258 } 1259 /* 1260 * XXX all the SBS_CANTSENDMORE checks previously 1261 * done could be out of date. We could have recieved 1262 * a reset packet in an interrupt or maybe we slept 1263 * while doing page faults in uiomove() etc. We 1264 * could probably recheck again inside the locking 1265 * protection here, but there are probably other 1266 * places that this also happens. We must rethink 1267 * this. 1268 */ 1269 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1270 (flags & MSG_OOB) ? PRUS_OOB : 1271 /* 1272 * If the user set MSG_EOF, the protocol understands 1273 * this flag and nothing left to send then use 1274 * PRU_SEND_EOF instead of PRU_SEND. 1275 */ 1276 ((flags & MSG_EOF) && 1277 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1278 (resid <= 0)) ? 1279 PRUS_EOF : 1280 /* If there is more to send set PRUS_MORETOCOME. */ 1281 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1282 top, addr, control, td); 1283 if (dontroute) { 1284 SOCK_LOCK(so); 1285 so->so_options &= ~SO_DONTROUTE; 1286 SOCK_UNLOCK(so); 1287 } 1288 clen = 0; 1289 control = NULL; 1290 top = NULL; 1291 if (error) 1292 goto release; 1293 } while (resid && space > 0); 1294 } while (resid); 1295 1296 release: 1297 sbunlock(&so->so_snd); 1298 out: 1299 if (top != NULL) 1300 m_freem(top); 1301 if (control != NULL) 1302 m_freem(control); 1303 return (error); 1304 } 1305 1306 int 1307 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, 1308 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1309 { 1310 int error; 1311 1312 CURVNET_SET(so->so_vnet); 1313 error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, top, 1314 control, flags, td); 1315 CURVNET_RESTORE(); 1316 return (error); 1317 } 1318 1319 /* 1320 * The part of soreceive() that implements reading non-inline out-of-band 1321 * data from a socket. For more complete comments, see soreceive(), from 1322 * which this code originated. 1323 * 1324 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is 1325 * unable to return an mbuf chain to the caller. 1326 */ 1327 static int 1328 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags) 1329 { 1330 struct protosw *pr = so->so_proto; 1331 struct mbuf *m; 1332 int error; 1333 1334 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); 1335 1336 m = m_get(M_WAIT, MT_DATA); 1337 error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK); 1338 if (error) 1339 goto bad; 1340 do { 1341 #ifdef ZERO_COPY_SOCKETS 1342 if (so_zero_copy_receive) { 1343 int disposable; 1344 1345 if ((m->m_flags & M_EXT) 1346 && (m->m_ext.ext_type == EXT_DISPOSABLE)) 1347 disposable = 1; 1348 else 1349 disposable = 0; 1350 1351 error = uiomoveco(mtod(m, void *), 1352 min(uio->uio_resid, m->m_len), 1353 uio, disposable); 1354 } else 1355 #endif /* ZERO_COPY_SOCKETS */ 1356 error = uiomove(mtod(m, void *), 1357 (int) min(uio->uio_resid, m->m_len), uio); 1358 m = m_free(m); 1359 } while (uio->uio_resid && error == 0 && m); 1360 bad: 1361 if (m != NULL) 1362 m_freem(m); 1363 return (error); 1364 } 1365 1366 /* 1367 * Following replacement or removal of the first mbuf on the first mbuf chain 1368 * of a socket buffer, push necessary state changes back into the socket 1369 * buffer so that other consumers see the values consistently. 'nextrecord' 1370 * is the callers locally stored value of the original value of 1371 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. 1372 * NOTE: 'nextrecord' may be NULL. 1373 */ 1374 static __inline void 1375 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) 1376 { 1377 1378 SOCKBUF_LOCK_ASSERT(sb); 1379 /* 1380 * First, update for the new value of nextrecord. If necessary, make 1381 * it the first record. 1382 */ 1383 if (sb->sb_mb != NULL) 1384 sb->sb_mb->m_nextpkt = nextrecord; 1385 else 1386 sb->sb_mb = nextrecord; 1387 1388 /* 1389 * Now update any dependent socket buffer fields to reflect the new 1390 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the 1391 * addition of a second clause that takes care of the case where 1392 * sb_mb has been updated, but remains the last record. 1393 */ 1394 if (sb->sb_mb == NULL) { 1395 sb->sb_mbtail = NULL; 1396 sb->sb_lastrecord = NULL; 1397 } else if (sb->sb_mb->m_nextpkt == NULL) 1398 sb->sb_lastrecord = sb->sb_mb; 1399 } 1400 1401 1402 /* 1403 * Implement receive operations on a socket. We depend on the way that 1404 * records are added to the sockbuf by sbappend. In particular, each record 1405 * (mbufs linked through m_next) must begin with an address if the protocol 1406 * so specifies, followed by an optional mbuf or mbufs containing ancillary 1407 * data, and then zero or more mbufs of data. In order to allow parallelism 1408 * between network receive and copying to user space, as well as avoid 1409 * sleeping with a mutex held, we release the socket buffer mutex during the 1410 * user space copy. Although the sockbuf is locked, new data may still be 1411 * appended, and thus we must maintain consistency of the sockbuf during that 1412 * time. 1413 * 1414 * The caller may receive the data as a single mbuf chain by supplying an 1415 * mbuf **mp0 for use in returning the chain. The uio is then used only for 1416 * the count in uio_resid. 1417 */ 1418 int 1419 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio, 1420 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1421 { 1422 struct mbuf *m, **mp; 1423 int flags, len, error, offset; 1424 struct protosw *pr = so->so_proto; 1425 struct mbuf *nextrecord; 1426 int moff, type = 0; 1427 int orig_resid = uio->uio_resid; 1428 1429 mp = mp0; 1430 if (psa != NULL) 1431 *psa = NULL; 1432 if (controlp != NULL) 1433 *controlp = NULL; 1434 if (flagsp != NULL) 1435 flags = *flagsp &~ MSG_EOR; 1436 else 1437 flags = 0; 1438 if (flags & MSG_OOB) 1439 return (soreceive_rcvoob(so, uio, flags)); 1440 if (mp != NULL) 1441 *mp = NULL; 1442 if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING) 1443 && uio->uio_resid) 1444 (*pr->pr_usrreqs->pru_rcvd)(so, 0); 1445 1446 error = sblock(&so->so_rcv, SBLOCKWAIT(flags)); 1447 if (error) 1448 return (error); 1449 1450 restart: 1451 SOCKBUF_LOCK(&so->so_rcv); 1452 m = so->so_rcv.sb_mb; 1453 /* 1454 * If we have less data than requested, block awaiting more (subject 1455 * to any timeout) if: 1456 * 1. the current count is less than the low water mark, or 1457 * 2. MSG_WAITALL is set, and it is possible to do the entire 1458 * receive operation at once if we block (resid <= hiwat). 1459 * 3. MSG_DONTWAIT is not set 1460 * If MSG_WAITALL is set but resid is larger than the receive buffer, 1461 * we have to do the receive in sections, and thus risk returning a 1462 * short count if a timeout or signal occurs after we start. 1463 */ 1464 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 1465 so->so_rcv.sb_cc < uio->uio_resid) && 1466 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat || 1467 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) && 1468 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 1469 KASSERT(m != NULL || !so->so_rcv.sb_cc, 1470 ("receive: m == %p so->so_rcv.sb_cc == %u", 1471 m, so->so_rcv.sb_cc)); 1472 if (so->so_error) { 1473 if (m != NULL) 1474 goto dontblock; 1475 error = so->so_error; 1476 if ((flags & MSG_PEEK) == 0) 1477 so->so_error = 0; 1478 SOCKBUF_UNLOCK(&so->so_rcv); 1479 goto release; 1480 } 1481 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1482 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 1483 if (m == NULL) { 1484 SOCKBUF_UNLOCK(&so->so_rcv); 1485 goto release; 1486 } else 1487 goto dontblock; 1488 } 1489 for (; m != NULL; m = m->m_next) 1490 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 1491 m = so->so_rcv.sb_mb; 1492 goto dontblock; 1493 } 1494 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 1495 (so->so_proto->pr_flags & PR_CONNREQUIRED)) { 1496 SOCKBUF_UNLOCK(&so->so_rcv); 1497 error = ENOTCONN; 1498 goto release; 1499 } 1500 if (uio->uio_resid == 0) { 1501 SOCKBUF_UNLOCK(&so->so_rcv); 1502 goto release; 1503 } 1504 if ((so->so_state & SS_NBIO) || 1505 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 1506 SOCKBUF_UNLOCK(&so->so_rcv); 1507 error = EWOULDBLOCK; 1508 goto release; 1509 } 1510 SBLASTRECORDCHK(&so->so_rcv); 1511 SBLASTMBUFCHK(&so->so_rcv); 1512 error = sbwait(&so->so_rcv); 1513 SOCKBUF_UNLOCK(&so->so_rcv); 1514 if (error) 1515 goto release; 1516 goto restart; 1517 } 1518 dontblock: 1519 /* 1520 * From this point onward, we maintain 'nextrecord' as a cache of the 1521 * pointer to the next record in the socket buffer. We must keep the 1522 * various socket buffer pointers and local stack versions of the 1523 * pointers in sync, pushing out modifications before dropping the 1524 * socket buffer mutex, and re-reading them when picking it up. 1525 * 1526 * Otherwise, we will race with the network stack appending new data 1527 * or records onto the socket buffer by using inconsistent/stale 1528 * versions of the field, possibly resulting in socket buffer 1529 * corruption. 1530 * 1531 * By holding the high-level sblock(), we prevent simultaneous 1532 * readers from pulling off the front of the socket buffer. 1533 */ 1534 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1535 if (uio->uio_td) 1536 uio->uio_td->td_ru.ru_msgrcv++; 1537 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); 1538 SBLASTRECORDCHK(&so->so_rcv); 1539 SBLASTMBUFCHK(&so->so_rcv); 1540 nextrecord = m->m_nextpkt; 1541 if (pr->pr_flags & PR_ADDR) { 1542 KASSERT(m->m_type == MT_SONAME, 1543 ("m->m_type == %d", m->m_type)); 1544 orig_resid = 0; 1545 if (psa != NULL) 1546 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 1547 M_NOWAIT); 1548 if (flags & MSG_PEEK) { 1549 m = m->m_next; 1550 } else { 1551 sbfree(&so->so_rcv, m); 1552 so->so_rcv.sb_mb = m_free(m); 1553 m = so->so_rcv.sb_mb; 1554 sockbuf_pushsync(&so->so_rcv, nextrecord); 1555 } 1556 } 1557 1558 /* 1559 * Process one or more MT_CONTROL mbufs present before any data mbufs 1560 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 1561 * just copy the data; if !MSG_PEEK, we call into the protocol to 1562 * perform externalization (or freeing if controlp == NULL). 1563 */ 1564 if (m != NULL && m->m_type == MT_CONTROL) { 1565 struct mbuf *cm = NULL, *cmn; 1566 struct mbuf **cme = &cm; 1567 1568 do { 1569 if (flags & MSG_PEEK) { 1570 if (controlp != NULL) { 1571 *controlp = m_copy(m, 0, m->m_len); 1572 controlp = &(*controlp)->m_next; 1573 } 1574 m = m->m_next; 1575 } else { 1576 sbfree(&so->so_rcv, m); 1577 so->so_rcv.sb_mb = m->m_next; 1578 m->m_next = NULL; 1579 *cme = m; 1580 cme = &(*cme)->m_next; 1581 m = so->so_rcv.sb_mb; 1582 } 1583 } while (m != NULL && m->m_type == MT_CONTROL); 1584 if ((flags & MSG_PEEK) == 0) 1585 sockbuf_pushsync(&so->so_rcv, nextrecord); 1586 while (cm != NULL) { 1587 cmn = cm->m_next; 1588 cm->m_next = NULL; 1589 if (pr->pr_domain->dom_externalize != NULL) { 1590 SOCKBUF_UNLOCK(&so->so_rcv); 1591 error = (*pr->pr_domain->dom_externalize) 1592 (cm, controlp); 1593 SOCKBUF_LOCK(&so->so_rcv); 1594 } else if (controlp != NULL) 1595 *controlp = cm; 1596 else 1597 m_freem(cm); 1598 if (controlp != NULL) { 1599 orig_resid = 0; 1600 while (*controlp != NULL) 1601 controlp = &(*controlp)->m_next; 1602 } 1603 cm = cmn; 1604 } 1605 if (m != NULL) 1606 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 1607 else 1608 nextrecord = so->so_rcv.sb_mb; 1609 orig_resid = 0; 1610 } 1611 if (m != NULL) { 1612 if ((flags & MSG_PEEK) == 0) { 1613 KASSERT(m->m_nextpkt == nextrecord, 1614 ("soreceive: post-control, nextrecord !sync")); 1615 if (nextrecord == NULL) { 1616 KASSERT(so->so_rcv.sb_mb == m, 1617 ("soreceive: post-control, sb_mb!=m")); 1618 KASSERT(so->so_rcv.sb_lastrecord == m, 1619 ("soreceive: post-control, lastrecord!=m")); 1620 } 1621 } 1622 type = m->m_type; 1623 if (type == MT_OOBDATA) 1624 flags |= MSG_OOB; 1625 } else { 1626 if ((flags & MSG_PEEK) == 0) { 1627 KASSERT(so->so_rcv.sb_mb == nextrecord, 1628 ("soreceive: sb_mb != nextrecord")); 1629 if (so->so_rcv.sb_mb == NULL) { 1630 KASSERT(so->so_rcv.sb_lastrecord == NULL, 1631 ("soreceive: sb_lastercord != NULL")); 1632 } 1633 } 1634 } 1635 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1636 SBLASTRECORDCHK(&so->so_rcv); 1637 SBLASTMBUFCHK(&so->so_rcv); 1638 1639 /* 1640 * Now continue to read any data mbufs off of the head of the socket 1641 * buffer until the read request is satisfied. Note that 'type' is 1642 * used to store the type of any mbuf reads that have happened so far 1643 * such that soreceive() can stop reading if the type changes, which 1644 * causes soreceive() to return only one of regular data and inline 1645 * out-of-band data in a single socket receive operation. 1646 */ 1647 moff = 0; 1648 offset = 0; 1649 while (m != NULL && uio->uio_resid > 0 && error == 0) { 1650 /* 1651 * If the type of mbuf has changed since the last mbuf 1652 * examined ('type'), end the receive operation. 1653 */ 1654 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1655 if (m->m_type == MT_OOBDATA) { 1656 if (type != MT_OOBDATA) 1657 break; 1658 } else if (type == MT_OOBDATA) 1659 break; 1660 else 1661 KASSERT(m->m_type == MT_DATA, 1662 ("m->m_type == %d", m->m_type)); 1663 so->so_rcv.sb_state &= ~SBS_RCVATMARK; 1664 len = uio->uio_resid; 1665 if (so->so_oobmark && len > so->so_oobmark - offset) 1666 len = so->so_oobmark - offset; 1667 if (len > m->m_len - moff) 1668 len = m->m_len - moff; 1669 /* 1670 * If mp is set, just pass back the mbufs. Otherwise copy 1671 * them out via the uio, then free. Sockbuf must be 1672 * consistent here (points to current mbuf, it points to next 1673 * record) when we drop priority; we must note any additions 1674 * to the sockbuf when we block interrupts again. 1675 */ 1676 if (mp == NULL) { 1677 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1678 SBLASTRECORDCHK(&so->so_rcv); 1679 SBLASTMBUFCHK(&so->so_rcv); 1680 SOCKBUF_UNLOCK(&so->so_rcv); 1681 #ifdef ZERO_COPY_SOCKETS 1682 if (so_zero_copy_receive) { 1683 int disposable; 1684 1685 if ((m->m_flags & M_EXT) 1686 && (m->m_ext.ext_type == EXT_DISPOSABLE)) 1687 disposable = 1; 1688 else 1689 disposable = 0; 1690 1691 error = uiomoveco(mtod(m, char *) + moff, 1692 (int)len, uio, 1693 disposable); 1694 } else 1695 #endif /* ZERO_COPY_SOCKETS */ 1696 error = uiomove(mtod(m, char *) + moff, (int)len, uio); 1697 SOCKBUF_LOCK(&so->so_rcv); 1698 if (error) { 1699 /* 1700 * The MT_SONAME mbuf has already been removed 1701 * from the record, so it is necessary to 1702 * remove the data mbufs, if any, to preserve 1703 * the invariant in the case of PR_ADDR that 1704 * requires MT_SONAME mbufs at the head of 1705 * each record. 1706 */ 1707 if (m && pr->pr_flags & PR_ATOMIC && 1708 ((flags & MSG_PEEK) == 0)) 1709 (void)sbdroprecord_locked(&so->so_rcv); 1710 SOCKBUF_UNLOCK(&so->so_rcv); 1711 goto release; 1712 } 1713 } else 1714 uio->uio_resid -= len; 1715 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1716 if (len == m->m_len - moff) { 1717 if (m->m_flags & M_EOR) 1718 flags |= MSG_EOR; 1719 if (flags & MSG_PEEK) { 1720 m = m->m_next; 1721 moff = 0; 1722 } else { 1723 nextrecord = m->m_nextpkt; 1724 sbfree(&so->so_rcv, m); 1725 if (mp != NULL) { 1726 *mp = m; 1727 mp = &m->m_next; 1728 so->so_rcv.sb_mb = m = m->m_next; 1729 *mp = NULL; 1730 } else { 1731 so->so_rcv.sb_mb = m_free(m); 1732 m = so->so_rcv.sb_mb; 1733 } 1734 sockbuf_pushsync(&so->so_rcv, nextrecord); 1735 SBLASTRECORDCHK(&so->so_rcv); 1736 SBLASTMBUFCHK(&so->so_rcv); 1737 } 1738 } else { 1739 if (flags & MSG_PEEK) 1740 moff += len; 1741 else { 1742 if (mp != NULL) { 1743 int copy_flag; 1744 1745 if (flags & MSG_DONTWAIT) 1746 copy_flag = M_DONTWAIT; 1747 else 1748 copy_flag = M_WAIT; 1749 if (copy_flag == M_WAIT) 1750 SOCKBUF_UNLOCK(&so->so_rcv); 1751 *mp = m_copym(m, 0, len, copy_flag); 1752 if (copy_flag == M_WAIT) 1753 SOCKBUF_LOCK(&so->so_rcv); 1754 if (*mp == NULL) { 1755 /* 1756 * m_copym() couldn't 1757 * allocate an mbuf. Adjust 1758 * uio_resid back (it was 1759 * adjusted down by len 1760 * bytes, which we didn't end 1761 * up "copying" over). 1762 */ 1763 uio->uio_resid += len; 1764 break; 1765 } 1766 } 1767 m->m_data += len; 1768 m->m_len -= len; 1769 so->so_rcv.sb_cc -= len; 1770 } 1771 } 1772 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1773 if (so->so_oobmark) { 1774 if ((flags & MSG_PEEK) == 0) { 1775 so->so_oobmark -= len; 1776 if (so->so_oobmark == 0) { 1777 so->so_rcv.sb_state |= SBS_RCVATMARK; 1778 break; 1779 } 1780 } else { 1781 offset += len; 1782 if (offset == so->so_oobmark) 1783 break; 1784 } 1785 } 1786 if (flags & MSG_EOR) 1787 break; 1788 /* 1789 * If the MSG_WAITALL flag is set (for non-atomic socket), we 1790 * must not quit until "uio->uio_resid == 0" or an error 1791 * termination. If a signal/timeout occurs, return with a 1792 * short count but without error. Keep sockbuf locked 1793 * against other readers. 1794 */ 1795 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 1796 !sosendallatonce(so) && nextrecord == NULL) { 1797 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1798 if (so->so_error || so->so_rcv.sb_state & SBS_CANTRCVMORE) 1799 break; 1800 /* 1801 * Notify the protocol that some data has been 1802 * drained before blocking. 1803 */ 1804 if (pr->pr_flags & PR_WANTRCVD) { 1805 SOCKBUF_UNLOCK(&so->so_rcv); 1806 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 1807 SOCKBUF_LOCK(&so->so_rcv); 1808 } 1809 SBLASTRECORDCHK(&so->so_rcv); 1810 SBLASTMBUFCHK(&so->so_rcv); 1811 error = sbwait(&so->so_rcv); 1812 if (error) { 1813 SOCKBUF_UNLOCK(&so->so_rcv); 1814 goto release; 1815 } 1816 m = so->so_rcv.sb_mb; 1817 if (m != NULL) 1818 nextrecord = m->m_nextpkt; 1819 } 1820 } 1821 1822 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1823 if (m != NULL && pr->pr_flags & PR_ATOMIC) { 1824 flags |= MSG_TRUNC; 1825 if ((flags & MSG_PEEK) == 0) 1826 (void) sbdroprecord_locked(&so->so_rcv); 1827 } 1828 if ((flags & MSG_PEEK) == 0) { 1829 if (m == NULL) { 1830 /* 1831 * First part is an inline SB_EMPTY_FIXUP(). Second 1832 * part makes sure sb_lastrecord is up-to-date if 1833 * there is still data in the socket buffer. 1834 */ 1835 so->so_rcv.sb_mb = nextrecord; 1836 if (so->so_rcv.sb_mb == NULL) { 1837 so->so_rcv.sb_mbtail = NULL; 1838 so->so_rcv.sb_lastrecord = NULL; 1839 } else if (nextrecord->m_nextpkt == NULL) 1840 so->so_rcv.sb_lastrecord = nextrecord; 1841 } 1842 SBLASTRECORDCHK(&so->so_rcv); 1843 SBLASTMBUFCHK(&so->so_rcv); 1844 /* 1845 * If soreceive() is being done from the socket callback, 1846 * then don't need to generate ACK to peer to update window, 1847 * since ACK will be generated on return to TCP. 1848 */ 1849 if (!(flags & MSG_SOCALLBCK) && 1850 (pr->pr_flags & PR_WANTRCVD)) { 1851 SOCKBUF_UNLOCK(&so->so_rcv); 1852 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 1853 SOCKBUF_LOCK(&so->so_rcv); 1854 } 1855 } 1856 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1857 if (orig_resid == uio->uio_resid && orig_resid && 1858 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { 1859 SOCKBUF_UNLOCK(&so->so_rcv); 1860 goto restart; 1861 } 1862 SOCKBUF_UNLOCK(&so->so_rcv); 1863 1864 if (flagsp != NULL) 1865 *flagsp |= flags; 1866 release: 1867 sbunlock(&so->so_rcv); 1868 return (error); 1869 } 1870 1871 /* 1872 * Optimized version of soreceive() for stream (TCP) sockets. 1873 */ 1874 #ifdef TCP_SORECEIVE_STREAM 1875 int 1876 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio, 1877 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1878 { 1879 int len = 0, error = 0, flags, oresid; 1880 struct sockbuf *sb; 1881 struct mbuf *m, *n = NULL; 1882 1883 /* We only do stream sockets. */ 1884 if (so->so_type != SOCK_STREAM) 1885 return (EINVAL); 1886 if (psa != NULL) 1887 *psa = NULL; 1888 if (controlp != NULL) 1889 return (EINVAL); 1890 if (flagsp != NULL) 1891 flags = *flagsp &~ MSG_EOR; 1892 else 1893 flags = 0; 1894 if (flags & MSG_OOB) 1895 return (soreceive_rcvoob(so, uio, flags)); 1896 if (mp0 != NULL) 1897 *mp0 = NULL; 1898 1899 sb = &so->so_rcv; 1900 1901 /* Prevent other readers from entering the socket. */ 1902 error = sblock(sb, SBLOCKWAIT(flags)); 1903 if (error) 1904 goto out; 1905 SOCKBUF_LOCK(sb); 1906 1907 /* Easy one, no space to copyout anything. */ 1908 if (uio->uio_resid == 0) { 1909 error = EINVAL; 1910 goto out; 1911 } 1912 oresid = uio->uio_resid; 1913 1914 /* We will never ever get anything unless we are connected. */ 1915 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 1916 /* When disconnecting there may be still some data left. */ 1917 if (sb->sb_cc > 0) 1918 goto deliver; 1919 if (!(so->so_state & SS_ISDISCONNECTED)) 1920 error = ENOTCONN; 1921 goto out; 1922 } 1923 1924 /* Socket buffer is empty and we shall not block. */ 1925 if (sb->sb_cc == 0 && 1926 ((sb->sb_flags & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) { 1927 error = EAGAIN; 1928 goto out; 1929 } 1930 1931 restart: 1932 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1933 1934 /* Abort if socket has reported problems. */ 1935 if (so->so_error) { 1936 if (sb->sb_cc > 0) 1937 goto deliver; 1938 if (oresid > uio->uio_resid) 1939 goto out; 1940 error = so->so_error; 1941 if (!(flags & MSG_PEEK)) 1942 so->so_error = 0; 1943 goto out; 1944 } 1945 1946 /* Door is closed. Deliver what is left, if any. */ 1947 if (sb->sb_state & SBS_CANTRCVMORE) { 1948 if (sb->sb_cc > 0) 1949 goto deliver; 1950 else 1951 goto out; 1952 } 1953 1954 /* Socket buffer got some data that we shall deliver now. */ 1955 if (sb->sb_cc > 0 && !(flags & MSG_WAITALL) && 1956 ((sb->sb_flags & SS_NBIO) || 1957 (flags & (MSG_DONTWAIT|MSG_NBIO)) || 1958 sb->sb_cc >= sb->sb_lowat || 1959 sb->sb_cc >= uio->uio_resid || 1960 sb->sb_cc >= sb->sb_hiwat) ) { 1961 goto deliver; 1962 } 1963 1964 /* On MSG_WAITALL we must wait until all data or error arrives. */ 1965 if ((flags & MSG_WAITALL) && 1966 (sb->sb_cc >= uio->uio_resid || sb->sb_cc >= sb->sb_lowat)) 1967 goto deliver; 1968 1969 /* 1970 * Wait and block until (more) data comes in. 1971 * NB: Drops the sockbuf lock during wait. 1972 */ 1973 error = sbwait(sb); 1974 if (error) 1975 goto out; 1976 goto restart; 1977 1978 deliver: 1979 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1980 KASSERT(sb->sb_cc > 0, ("%s: sockbuf empty", __func__)); 1981 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__)); 1982 1983 /* Statistics. */ 1984 if (uio->uio_td) 1985 uio->uio_td->td_ru.ru_msgrcv++; 1986 1987 /* Fill uio until full or current end of socket buffer is reached. */ 1988 len = min(uio->uio_resid, sb->sb_cc); 1989 if (mp0 != NULL) { 1990 /* Dequeue as many mbufs as possible. */ 1991 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) { 1992 for (*mp0 = m = sb->sb_mb; 1993 m != NULL && m->m_len <= len; 1994 m = m->m_next) { 1995 len -= m->m_len; 1996 uio->uio_resid -= m->m_len; 1997 sbfree(sb, m); 1998 n = m; 1999 } 2000 sb->sb_mb = m; 2001 if (sb->sb_mb == NULL) 2002 SB_EMPTY_FIXUP(sb); 2003 n->m_next = NULL; 2004 } 2005 /* Copy the remainder. */ 2006 if (len > 0) { 2007 KASSERT(sb->sb_mb != NULL, 2008 ("%s: len > 0 && sb->sb_mb empty", __func__)); 2009 2010 m = m_copym(sb->sb_mb, 0, len, M_DONTWAIT); 2011 if (m == NULL) 2012 len = 0; /* Don't flush data from sockbuf. */ 2013 else 2014 uio->uio_resid -= m->m_len; 2015 if (*mp0 != NULL) 2016 n->m_next = m; 2017 else 2018 *mp0 = m; 2019 if (*mp0 == NULL) { 2020 error = ENOBUFS; 2021 goto out; 2022 } 2023 } 2024 } else { 2025 /* NB: Must unlock socket buffer as uiomove may sleep. */ 2026 SOCKBUF_UNLOCK(sb); 2027 error = m_mbuftouio(uio, sb->sb_mb, len); 2028 SOCKBUF_LOCK(sb); 2029 if (error) 2030 goto out; 2031 } 2032 SBLASTRECORDCHK(sb); 2033 SBLASTMBUFCHK(sb); 2034 2035 /* 2036 * Remove the delivered data from the socket buffer unless we 2037 * were only peeking. 2038 */ 2039 if (!(flags & MSG_PEEK)) { 2040 if (len > 0) 2041 sbdrop_locked(sb, len); 2042 2043 /* Notify protocol that we drained some data. */ 2044 if ((so->so_proto->pr_flags & PR_WANTRCVD) && 2045 (((flags & MSG_WAITALL) && uio->uio_resid > 0) || 2046 !(flags & MSG_SOCALLBCK))) { 2047 SOCKBUF_UNLOCK(sb); 2048 (*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags); 2049 SOCKBUF_LOCK(sb); 2050 } 2051 } 2052 2053 /* 2054 * For MSG_WAITALL we may have to loop again and wait for 2055 * more data to come in. 2056 */ 2057 if ((flags & MSG_WAITALL) && uio->uio_resid > 0) 2058 goto restart; 2059 out: 2060 SOCKBUF_LOCK_ASSERT(sb); 2061 SBLASTRECORDCHK(sb); 2062 SBLASTMBUFCHK(sb); 2063 SOCKBUF_UNLOCK(sb); 2064 sbunlock(sb); 2065 return (error); 2066 } 2067 #endif /* TCP_SORECEIVE_STREAM */ 2068 2069 /* 2070 * Optimized version of soreceive() for simple datagram cases from userspace. 2071 * Unlike in the stream case, we're able to drop a datagram if copyout() 2072 * fails, and because we handle datagrams atomically, we don't need to use a 2073 * sleep lock to prevent I/O interlacing. 2074 */ 2075 int 2076 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio, 2077 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2078 { 2079 struct mbuf *m, *m2; 2080 int flags, len, error; 2081 struct protosw *pr = so->so_proto; 2082 struct mbuf *nextrecord; 2083 2084 if (psa != NULL) 2085 *psa = NULL; 2086 if (controlp != NULL) 2087 *controlp = NULL; 2088 if (flagsp != NULL) 2089 flags = *flagsp &~ MSG_EOR; 2090 else 2091 flags = 0; 2092 2093 /* 2094 * For any complicated cases, fall back to the full 2095 * soreceive_generic(). 2096 */ 2097 if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB)) 2098 return (soreceive_generic(so, psa, uio, mp0, controlp, 2099 flagsp)); 2100 2101 /* 2102 * Enforce restrictions on use. 2103 */ 2104 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0, 2105 ("soreceive_dgram: wantrcvd")); 2106 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic")); 2107 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0, 2108 ("soreceive_dgram: SBS_RCVATMARK")); 2109 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0, 2110 ("soreceive_dgram: P_CONNREQUIRED")); 2111 2112 /* 2113 * Loop blocking while waiting for a datagram. 2114 */ 2115 SOCKBUF_LOCK(&so->so_rcv); 2116 while ((m = so->so_rcv.sb_mb) == NULL) { 2117 KASSERT(so->so_rcv.sb_cc == 0, 2118 ("soreceive_dgram: sb_mb NULL but sb_cc %u", 2119 so->so_rcv.sb_cc)); 2120 if (so->so_error) { 2121 error = so->so_error; 2122 so->so_error = 0; 2123 SOCKBUF_UNLOCK(&so->so_rcv); 2124 return (error); 2125 } 2126 if (so->so_rcv.sb_state & SBS_CANTRCVMORE || 2127 uio->uio_resid == 0) { 2128 SOCKBUF_UNLOCK(&so->so_rcv); 2129 return (0); 2130 } 2131 if ((so->so_state & SS_NBIO) || 2132 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2133 SOCKBUF_UNLOCK(&so->so_rcv); 2134 return (EWOULDBLOCK); 2135 } 2136 SBLASTRECORDCHK(&so->so_rcv); 2137 SBLASTMBUFCHK(&so->so_rcv); 2138 error = sbwait(&so->so_rcv); 2139 if (error) { 2140 SOCKBUF_UNLOCK(&so->so_rcv); 2141 return (error); 2142 } 2143 } 2144 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2145 2146 if (uio->uio_td) 2147 uio->uio_td->td_ru.ru_msgrcv++; 2148 SBLASTRECORDCHK(&so->so_rcv); 2149 SBLASTMBUFCHK(&so->so_rcv); 2150 nextrecord = m->m_nextpkt; 2151 if (nextrecord == NULL) { 2152 KASSERT(so->so_rcv.sb_lastrecord == m, 2153 ("soreceive_dgram: lastrecord != m")); 2154 } 2155 2156 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord, 2157 ("soreceive_dgram: m_nextpkt != nextrecord")); 2158 2159 /* 2160 * Pull 'm' and its chain off the front of the packet queue. 2161 */ 2162 so->so_rcv.sb_mb = NULL; 2163 sockbuf_pushsync(&so->so_rcv, nextrecord); 2164 2165 /* 2166 * Walk 'm's chain and free that many bytes from the socket buffer. 2167 */ 2168 for (m2 = m; m2 != NULL; m2 = m2->m_next) 2169 sbfree(&so->so_rcv, m2); 2170 2171 /* 2172 * Do a few last checks before we let go of the lock. 2173 */ 2174 SBLASTRECORDCHK(&so->so_rcv); 2175 SBLASTMBUFCHK(&so->so_rcv); 2176 SOCKBUF_UNLOCK(&so->so_rcv); 2177 2178 if (pr->pr_flags & PR_ADDR) { 2179 KASSERT(m->m_type == MT_SONAME, 2180 ("m->m_type == %d", m->m_type)); 2181 if (psa != NULL) 2182 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2183 M_NOWAIT); 2184 m = m_free(m); 2185 } 2186 if (m == NULL) { 2187 /* XXXRW: Can this happen? */ 2188 return (0); 2189 } 2190 2191 /* 2192 * Packet to copyout() is now in 'm' and it is disconnected from the 2193 * queue. 2194 * 2195 * Process one or more MT_CONTROL mbufs present before any data mbufs 2196 * in the first mbuf chain on the socket buffer. We call into the 2197 * protocol to perform externalization (or freeing if controlp == 2198 * NULL). 2199 */ 2200 if (m->m_type == MT_CONTROL) { 2201 struct mbuf *cm = NULL, *cmn; 2202 struct mbuf **cme = &cm; 2203 2204 do { 2205 m2 = m->m_next; 2206 m->m_next = NULL; 2207 *cme = m; 2208 cme = &(*cme)->m_next; 2209 m = m2; 2210 } while (m != NULL && m->m_type == MT_CONTROL); 2211 while (cm != NULL) { 2212 cmn = cm->m_next; 2213 cm->m_next = NULL; 2214 if (pr->pr_domain->dom_externalize != NULL) { 2215 error = (*pr->pr_domain->dom_externalize) 2216 (cm, controlp); 2217 } else if (controlp != NULL) 2218 *controlp = cm; 2219 else 2220 m_freem(cm); 2221 if (controlp != NULL) { 2222 while (*controlp != NULL) 2223 controlp = &(*controlp)->m_next; 2224 } 2225 cm = cmn; 2226 } 2227 } 2228 KASSERT(m->m_type == MT_DATA, ("soreceive_dgram: !data")); 2229 2230 while (m != NULL && uio->uio_resid > 0) { 2231 len = uio->uio_resid; 2232 if (len > m->m_len) 2233 len = m->m_len; 2234 error = uiomove(mtod(m, char *), (int)len, uio); 2235 if (error) { 2236 m_freem(m); 2237 return (error); 2238 } 2239 if (len == m->m_len) 2240 m = m_free(m); 2241 else { 2242 m->m_data += len; 2243 m->m_len -= len; 2244 } 2245 } 2246 if (m != NULL) 2247 flags |= MSG_TRUNC; 2248 m_freem(m); 2249 if (flagsp != NULL) 2250 *flagsp |= flags; 2251 return (0); 2252 } 2253 2254 int 2255 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, 2256 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2257 { 2258 2259 return (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, mp0, 2260 controlp, flagsp)); 2261 } 2262 2263 int 2264 soshutdown(struct socket *so, int how) 2265 { 2266 struct protosw *pr = so->so_proto; 2267 int error; 2268 2269 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 2270 return (EINVAL); 2271 if (pr->pr_usrreqs->pru_flush != NULL) { 2272 (*pr->pr_usrreqs->pru_flush)(so, how); 2273 } 2274 if (how != SHUT_WR) 2275 sorflush(so); 2276 if (how != SHUT_RD) { 2277 CURVNET_SET(so->so_vnet); 2278 error = (*pr->pr_usrreqs->pru_shutdown)(so); 2279 CURVNET_RESTORE(); 2280 return (error); 2281 } 2282 return (0); 2283 } 2284 2285 void 2286 sorflush(struct socket *so) 2287 { 2288 struct sockbuf *sb = &so->so_rcv; 2289 struct protosw *pr = so->so_proto; 2290 struct sockbuf asb; 2291 2292 /* 2293 * In order to avoid calling dom_dispose with the socket buffer mutex 2294 * held, and in order to generally avoid holding the lock for a long 2295 * time, we make a copy of the socket buffer and clear the original 2296 * (except locks, state). The new socket buffer copy won't have 2297 * initialized locks so we can only call routines that won't use or 2298 * assert those locks. 2299 * 2300 * Dislodge threads currently blocked in receive and wait to acquire 2301 * a lock against other simultaneous readers before clearing the 2302 * socket buffer. Don't let our acquire be interrupted by a signal 2303 * despite any existing socket disposition on interruptable waiting. 2304 */ 2305 CURVNET_SET(so->so_vnet); 2306 socantrcvmore(so); 2307 (void) sblock(sb, SBL_WAIT | SBL_NOINTR); 2308 2309 /* 2310 * Invalidate/clear most of the sockbuf structure, but leave selinfo 2311 * and mutex data unchanged. 2312 */ 2313 SOCKBUF_LOCK(sb); 2314 bzero(&asb, offsetof(struct sockbuf, sb_startzero)); 2315 bcopy(&sb->sb_startzero, &asb.sb_startzero, 2316 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 2317 bzero(&sb->sb_startzero, 2318 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 2319 SOCKBUF_UNLOCK(sb); 2320 sbunlock(sb); 2321 2322 /* 2323 * Dispose of special rights and flush the socket buffer. Don't call 2324 * any unsafe routines (that rely on locks being initialized) on asb. 2325 */ 2326 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 2327 (*pr->pr_domain->dom_dispose)(asb.sb_mb); 2328 sbrelease_internal(&asb, so); 2329 CURVNET_RESTORE(); 2330 } 2331 2332 /* 2333 * Perhaps this routine, and sooptcopyout(), below, ought to come in an 2334 * additional variant to handle the case where the option value needs to be 2335 * some kind of integer, but not a specific size. In addition to their use 2336 * here, these functions are also called by the protocol-level pr_ctloutput() 2337 * routines. 2338 */ 2339 int 2340 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen) 2341 { 2342 size_t valsize; 2343 2344 /* 2345 * If the user gives us more than we wanted, we ignore it, but if we 2346 * don't get the minimum length the caller wants, we return EINVAL. 2347 * On success, sopt->sopt_valsize is set to however much we actually 2348 * retrieved. 2349 */ 2350 if ((valsize = sopt->sopt_valsize) < minlen) 2351 return EINVAL; 2352 if (valsize > len) 2353 sopt->sopt_valsize = valsize = len; 2354 2355 if (sopt->sopt_td != NULL) 2356 return (copyin(sopt->sopt_val, buf, valsize)); 2357 2358 bcopy(sopt->sopt_val, buf, valsize); 2359 return (0); 2360 } 2361 2362 /* 2363 * Kernel version of setsockopt(2). 2364 * 2365 * XXX: optlen is size_t, not socklen_t 2366 */ 2367 int 2368 so_setsockopt(struct socket *so, int level, int optname, void *optval, 2369 size_t optlen) 2370 { 2371 struct sockopt sopt; 2372 2373 sopt.sopt_level = level; 2374 sopt.sopt_name = optname; 2375 sopt.sopt_dir = SOPT_SET; 2376 sopt.sopt_val = optval; 2377 sopt.sopt_valsize = optlen; 2378 sopt.sopt_td = NULL; 2379 return (sosetopt(so, &sopt)); 2380 } 2381 2382 int 2383 sosetopt(struct socket *so, struct sockopt *sopt) 2384 { 2385 int error, optval; 2386 struct linger l; 2387 struct timeval tv; 2388 u_long val; 2389 #ifdef MAC 2390 struct mac extmac; 2391 #endif 2392 2393 error = 0; 2394 if (sopt->sopt_level != SOL_SOCKET) { 2395 if (so->so_proto && so->so_proto->pr_ctloutput) 2396 return ((*so->so_proto->pr_ctloutput) 2397 (so, sopt)); 2398 error = ENOPROTOOPT; 2399 } else { 2400 switch (sopt->sopt_name) { 2401 #ifdef INET 2402 case SO_ACCEPTFILTER: 2403 error = do_setopt_accept_filter(so, sopt); 2404 if (error) 2405 goto bad; 2406 break; 2407 #endif 2408 case SO_LINGER: 2409 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 2410 if (error) 2411 goto bad; 2412 2413 SOCK_LOCK(so); 2414 so->so_linger = l.l_linger; 2415 if (l.l_onoff) 2416 so->so_options |= SO_LINGER; 2417 else 2418 so->so_options &= ~SO_LINGER; 2419 SOCK_UNLOCK(so); 2420 break; 2421 2422 case SO_DEBUG: 2423 case SO_KEEPALIVE: 2424 case SO_DONTROUTE: 2425 case SO_USELOOPBACK: 2426 case SO_BROADCAST: 2427 case SO_REUSEADDR: 2428 case SO_REUSEPORT: 2429 case SO_OOBINLINE: 2430 case SO_TIMESTAMP: 2431 case SO_BINTIME: 2432 case SO_NOSIGPIPE: 2433 case SO_NO_DDP: 2434 case SO_NO_OFFLOAD: 2435 error = sooptcopyin(sopt, &optval, sizeof optval, 2436 sizeof optval); 2437 if (error) 2438 goto bad; 2439 SOCK_LOCK(so); 2440 if (optval) 2441 so->so_options |= sopt->sopt_name; 2442 else 2443 so->so_options &= ~sopt->sopt_name; 2444 SOCK_UNLOCK(so); 2445 break; 2446 2447 case SO_SETFIB: 2448 error = sooptcopyin(sopt, &optval, sizeof optval, 2449 sizeof optval); 2450 if (optval < 1 || optval > rt_numfibs) { 2451 error = EINVAL; 2452 goto bad; 2453 } 2454 if ((so->so_proto->pr_domain->dom_family == PF_INET) || 2455 (so->so_proto->pr_domain->dom_family == PF_ROUTE)) { 2456 so->so_fibnum = optval; 2457 /* Note: ignore error */ 2458 if (so->so_proto && so->so_proto->pr_ctloutput) 2459 (*so->so_proto->pr_ctloutput)(so, sopt); 2460 } else { 2461 so->so_fibnum = 0; 2462 } 2463 break; 2464 case SO_SNDBUF: 2465 case SO_RCVBUF: 2466 case SO_SNDLOWAT: 2467 case SO_RCVLOWAT: 2468 error = sooptcopyin(sopt, &optval, sizeof optval, 2469 sizeof optval); 2470 if (error) 2471 goto bad; 2472 2473 /* 2474 * Values < 1 make no sense for any of these options, 2475 * so disallow them. 2476 */ 2477 if (optval < 1) { 2478 error = EINVAL; 2479 goto bad; 2480 } 2481 2482 switch (sopt->sopt_name) { 2483 case SO_SNDBUF: 2484 case SO_RCVBUF: 2485 if (sbreserve(sopt->sopt_name == SO_SNDBUF ? 2486 &so->so_snd : &so->so_rcv, (u_long)optval, 2487 so, curthread) == 0) { 2488 error = ENOBUFS; 2489 goto bad; 2490 } 2491 (sopt->sopt_name == SO_SNDBUF ? &so->so_snd : 2492 &so->so_rcv)->sb_flags &= ~SB_AUTOSIZE; 2493 break; 2494 2495 /* 2496 * Make sure the low-water is never greater than the 2497 * high-water. 2498 */ 2499 case SO_SNDLOWAT: 2500 SOCKBUF_LOCK(&so->so_snd); 2501 so->so_snd.sb_lowat = 2502 (optval > so->so_snd.sb_hiwat) ? 2503 so->so_snd.sb_hiwat : optval; 2504 SOCKBUF_UNLOCK(&so->so_snd); 2505 break; 2506 case SO_RCVLOWAT: 2507 SOCKBUF_LOCK(&so->so_rcv); 2508 so->so_rcv.sb_lowat = 2509 (optval > so->so_rcv.sb_hiwat) ? 2510 so->so_rcv.sb_hiwat : optval; 2511 SOCKBUF_UNLOCK(&so->so_rcv); 2512 break; 2513 } 2514 break; 2515 2516 case SO_SNDTIMEO: 2517 case SO_RCVTIMEO: 2518 #ifdef COMPAT_FREEBSD32 2519 if (SV_CURPROC_FLAG(SV_ILP32)) { 2520 struct timeval32 tv32; 2521 2522 error = sooptcopyin(sopt, &tv32, sizeof tv32, 2523 sizeof tv32); 2524 CP(tv32, tv, tv_sec); 2525 CP(tv32, tv, tv_usec); 2526 } else 2527 #endif 2528 error = sooptcopyin(sopt, &tv, sizeof tv, 2529 sizeof tv); 2530 if (error) 2531 goto bad; 2532 2533 /* assert(hz > 0); */ 2534 if (tv.tv_sec < 0 || tv.tv_sec > INT_MAX / hz || 2535 tv.tv_usec < 0 || tv.tv_usec >= 1000000) { 2536 error = EDOM; 2537 goto bad; 2538 } 2539 /* assert(tick > 0); */ 2540 /* assert(ULONG_MAX - INT_MAX >= 1000000); */ 2541 val = (u_long)(tv.tv_sec * hz) + tv.tv_usec / tick; 2542 if (val > INT_MAX) { 2543 error = EDOM; 2544 goto bad; 2545 } 2546 if (val == 0 && tv.tv_usec != 0) 2547 val = 1; 2548 2549 switch (sopt->sopt_name) { 2550 case SO_SNDTIMEO: 2551 so->so_snd.sb_timeo = val; 2552 break; 2553 case SO_RCVTIMEO: 2554 so->so_rcv.sb_timeo = val; 2555 break; 2556 } 2557 break; 2558 2559 case SO_LABEL: 2560 #ifdef MAC 2561 error = sooptcopyin(sopt, &extmac, sizeof extmac, 2562 sizeof extmac); 2563 if (error) 2564 goto bad; 2565 error = mac_setsockopt_label(sopt->sopt_td->td_ucred, 2566 so, &extmac); 2567 #else 2568 error = EOPNOTSUPP; 2569 #endif 2570 break; 2571 2572 default: 2573 error = ENOPROTOOPT; 2574 break; 2575 } 2576 if (error == 0 && so->so_proto != NULL && 2577 so->so_proto->pr_ctloutput != NULL) { 2578 (void) ((*so->so_proto->pr_ctloutput) 2579 (so, sopt)); 2580 } 2581 } 2582 bad: 2583 return (error); 2584 } 2585 2586 /* 2587 * Helper routine for getsockopt. 2588 */ 2589 int 2590 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 2591 { 2592 int error; 2593 size_t valsize; 2594 2595 error = 0; 2596 2597 /* 2598 * Documented get behavior is that we always return a value, possibly 2599 * truncated to fit in the user's buffer. Traditional behavior is 2600 * that we always tell the user precisely how much we copied, rather 2601 * than something useful like the total amount we had available for 2602 * her. Note that this interface is not idempotent; the entire 2603 * answer must generated ahead of time. 2604 */ 2605 valsize = min(len, sopt->sopt_valsize); 2606 sopt->sopt_valsize = valsize; 2607 if (sopt->sopt_val != NULL) { 2608 if (sopt->sopt_td != NULL) 2609 error = copyout(buf, sopt->sopt_val, valsize); 2610 else 2611 bcopy(buf, sopt->sopt_val, valsize); 2612 } 2613 return (error); 2614 } 2615 2616 int 2617 sogetopt(struct socket *so, struct sockopt *sopt) 2618 { 2619 int error, optval; 2620 struct linger l; 2621 struct timeval tv; 2622 #ifdef MAC 2623 struct mac extmac; 2624 #endif 2625 2626 error = 0; 2627 if (sopt->sopt_level != SOL_SOCKET) { 2628 if (so->so_proto && so->so_proto->pr_ctloutput) { 2629 return ((*so->so_proto->pr_ctloutput) 2630 (so, sopt)); 2631 } else 2632 return (ENOPROTOOPT); 2633 } else { 2634 switch (sopt->sopt_name) { 2635 #ifdef INET 2636 case SO_ACCEPTFILTER: 2637 error = do_getopt_accept_filter(so, sopt); 2638 break; 2639 #endif 2640 case SO_LINGER: 2641 SOCK_LOCK(so); 2642 l.l_onoff = so->so_options & SO_LINGER; 2643 l.l_linger = so->so_linger; 2644 SOCK_UNLOCK(so); 2645 error = sooptcopyout(sopt, &l, sizeof l); 2646 break; 2647 2648 case SO_USELOOPBACK: 2649 case SO_DONTROUTE: 2650 case SO_DEBUG: 2651 case SO_KEEPALIVE: 2652 case SO_REUSEADDR: 2653 case SO_REUSEPORT: 2654 case SO_BROADCAST: 2655 case SO_OOBINLINE: 2656 case SO_ACCEPTCONN: 2657 case SO_TIMESTAMP: 2658 case SO_BINTIME: 2659 case SO_NOSIGPIPE: 2660 optval = so->so_options & sopt->sopt_name; 2661 integer: 2662 error = sooptcopyout(sopt, &optval, sizeof optval); 2663 break; 2664 2665 case SO_TYPE: 2666 optval = so->so_type; 2667 goto integer; 2668 2669 case SO_ERROR: 2670 SOCK_LOCK(so); 2671 optval = so->so_error; 2672 so->so_error = 0; 2673 SOCK_UNLOCK(so); 2674 goto integer; 2675 2676 case SO_SNDBUF: 2677 optval = so->so_snd.sb_hiwat; 2678 goto integer; 2679 2680 case SO_RCVBUF: 2681 optval = so->so_rcv.sb_hiwat; 2682 goto integer; 2683 2684 case SO_SNDLOWAT: 2685 optval = so->so_snd.sb_lowat; 2686 goto integer; 2687 2688 case SO_RCVLOWAT: 2689 optval = so->so_rcv.sb_lowat; 2690 goto integer; 2691 2692 case SO_SNDTIMEO: 2693 case SO_RCVTIMEO: 2694 optval = (sopt->sopt_name == SO_SNDTIMEO ? 2695 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 2696 2697 tv.tv_sec = optval / hz; 2698 tv.tv_usec = (optval % hz) * tick; 2699 #ifdef COMPAT_FREEBSD32 2700 if (SV_CURPROC_FLAG(SV_ILP32)) { 2701 struct timeval32 tv32; 2702 2703 CP(tv, tv32, tv_sec); 2704 CP(tv, tv32, tv_usec); 2705 error = sooptcopyout(sopt, &tv32, sizeof tv32); 2706 } else 2707 #endif 2708 error = sooptcopyout(sopt, &tv, sizeof tv); 2709 break; 2710 2711 case SO_LABEL: 2712 #ifdef MAC 2713 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 2714 sizeof(extmac)); 2715 if (error) 2716 return (error); 2717 error = mac_getsockopt_label(sopt->sopt_td->td_ucred, 2718 so, &extmac); 2719 if (error) 2720 return (error); 2721 error = sooptcopyout(sopt, &extmac, sizeof extmac); 2722 #else 2723 error = EOPNOTSUPP; 2724 #endif 2725 break; 2726 2727 case SO_PEERLABEL: 2728 #ifdef MAC 2729 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 2730 sizeof(extmac)); 2731 if (error) 2732 return (error); 2733 error = mac_getsockopt_peerlabel( 2734 sopt->sopt_td->td_ucred, so, &extmac); 2735 if (error) 2736 return (error); 2737 error = sooptcopyout(sopt, &extmac, sizeof extmac); 2738 #else 2739 error = EOPNOTSUPP; 2740 #endif 2741 break; 2742 2743 case SO_LISTENQLIMIT: 2744 optval = so->so_qlimit; 2745 goto integer; 2746 2747 case SO_LISTENQLEN: 2748 optval = so->so_qlen; 2749 goto integer; 2750 2751 case SO_LISTENINCQLEN: 2752 optval = so->so_incqlen; 2753 goto integer; 2754 2755 default: 2756 error = ENOPROTOOPT; 2757 break; 2758 } 2759 return (error); 2760 } 2761 } 2762 2763 /* XXX; prepare mbuf for (__FreeBSD__ < 3) routines. */ 2764 int 2765 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 2766 { 2767 struct mbuf *m, *m_prev; 2768 int sopt_size = sopt->sopt_valsize; 2769 2770 MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA); 2771 if (m == NULL) 2772 return ENOBUFS; 2773 if (sopt_size > MLEN) { 2774 MCLGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT); 2775 if ((m->m_flags & M_EXT) == 0) { 2776 m_free(m); 2777 return ENOBUFS; 2778 } 2779 m->m_len = min(MCLBYTES, sopt_size); 2780 } else { 2781 m->m_len = min(MLEN, sopt_size); 2782 } 2783 sopt_size -= m->m_len; 2784 *mp = m; 2785 m_prev = m; 2786 2787 while (sopt_size) { 2788 MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA); 2789 if (m == NULL) { 2790 m_freem(*mp); 2791 return ENOBUFS; 2792 } 2793 if (sopt_size > MLEN) { 2794 MCLGET(m, sopt->sopt_td != NULL ? M_WAIT : 2795 M_DONTWAIT); 2796 if ((m->m_flags & M_EXT) == 0) { 2797 m_freem(m); 2798 m_freem(*mp); 2799 return ENOBUFS; 2800 } 2801 m->m_len = min(MCLBYTES, sopt_size); 2802 } else { 2803 m->m_len = min(MLEN, sopt_size); 2804 } 2805 sopt_size -= m->m_len; 2806 m_prev->m_next = m; 2807 m_prev = m; 2808 } 2809 return (0); 2810 } 2811 2812 /* XXX; copyin sopt data into mbuf chain for (__FreeBSD__ < 3) routines. */ 2813 int 2814 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 2815 { 2816 struct mbuf *m0 = m; 2817 2818 if (sopt->sopt_val == NULL) 2819 return (0); 2820 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 2821 if (sopt->sopt_td != NULL) { 2822 int error; 2823 2824 error = copyin(sopt->sopt_val, mtod(m, char *), 2825 m->m_len); 2826 if (error != 0) { 2827 m_freem(m0); 2828 return(error); 2829 } 2830 } else 2831 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 2832 sopt->sopt_valsize -= m->m_len; 2833 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 2834 m = m->m_next; 2835 } 2836 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 2837 panic("ip6_sooptmcopyin"); 2838 return (0); 2839 } 2840 2841 /* XXX; copyout mbuf chain data into soopt for (__FreeBSD__ < 3) routines. */ 2842 int 2843 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 2844 { 2845 struct mbuf *m0 = m; 2846 size_t valsize = 0; 2847 2848 if (sopt->sopt_val == NULL) 2849 return (0); 2850 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 2851 if (sopt->sopt_td != NULL) { 2852 int error; 2853 2854 error = copyout(mtod(m, char *), sopt->sopt_val, 2855 m->m_len); 2856 if (error != 0) { 2857 m_freem(m0); 2858 return(error); 2859 } 2860 } else 2861 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 2862 sopt->sopt_valsize -= m->m_len; 2863 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 2864 valsize += m->m_len; 2865 m = m->m_next; 2866 } 2867 if (m != NULL) { 2868 /* enough soopt buffer should be given from user-land */ 2869 m_freem(m0); 2870 return(EINVAL); 2871 } 2872 sopt->sopt_valsize = valsize; 2873 return (0); 2874 } 2875 2876 /* 2877 * sohasoutofband(): protocol notifies socket layer of the arrival of new 2878 * out-of-band data, which will then notify socket consumers. 2879 */ 2880 void 2881 sohasoutofband(struct socket *so) 2882 { 2883 2884 if (so->so_sigio != NULL) 2885 pgsigio(&so->so_sigio, SIGURG, 0); 2886 selwakeuppri(&so->so_rcv.sb_sel, PSOCK); 2887 } 2888 2889 int 2890 sopoll(struct socket *so, int events, struct ucred *active_cred, 2891 struct thread *td) 2892 { 2893 2894 return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred, 2895 td)); 2896 } 2897 2898 int 2899 sopoll_generic(struct socket *so, int events, struct ucred *active_cred, 2900 struct thread *td) 2901 { 2902 int revents = 0; 2903 2904 SOCKBUF_LOCK(&so->so_snd); 2905 SOCKBUF_LOCK(&so->so_rcv); 2906 if (events & (POLLIN | POLLRDNORM)) 2907 if (soreadabledata(so)) 2908 revents |= events & (POLLIN | POLLRDNORM); 2909 2910 if (events & (POLLOUT | POLLWRNORM)) 2911 if (sowriteable(so)) 2912 revents |= events & (POLLOUT | POLLWRNORM); 2913 2914 if (events & (POLLPRI | POLLRDBAND)) 2915 if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK)) 2916 revents |= events & (POLLPRI | POLLRDBAND); 2917 2918 if ((events & POLLINIGNEOF) == 0) { 2919 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 2920 revents |= events & (POLLIN | POLLRDNORM); 2921 if (so->so_snd.sb_state & SBS_CANTSENDMORE) 2922 revents |= POLLHUP; 2923 } 2924 } 2925 2926 if (revents == 0) { 2927 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) { 2928 selrecord(td, &so->so_rcv.sb_sel); 2929 so->so_rcv.sb_flags |= SB_SEL; 2930 } 2931 2932 if (events & (POLLOUT | POLLWRNORM)) { 2933 selrecord(td, &so->so_snd.sb_sel); 2934 so->so_snd.sb_flags |= SB_SEL; 2935 } 2936 } 2937 2938 SOCKBUF_UNLOCK(&so->so_rcv); 2939 SOCKBUF_UNLOCK(&so->so_snd); 2940 return (revents); 2941 } 2942 2943 int 2944 soo_kqfilter(struct file *fp, struct knote *kn) 2945 { 2946 struct socket *so = kn->kn_fp->f_data; 2947 struct sockbuf *sb; 2948 2949 switch (kn->kn_filter) { 2950 case EVFILT_READ: 2951 if (so->so_options & SO_ACCEPTCONN) 2952 kn->kn_fop = &solisten_filtops; 2953 else 2954 kn->kn_fop = &soread_filtops; 2955 sb = &so->so_rcv; 2956 break; 2957 case EVFILT_WRITE: 2958 kn->kn_fop = &sowrite_filtops; 2959 sb = &so->so_snd; 2960 break; 2961 default: 2962 return (EINVAL); 2963 } 2964 2965 SOCKBUF_LOCK(sb); 2966 knlist_add(&sb->sb_sel.si_note, kn, 1); 2967 sb->sb_flags |= SB_KNOTE; 2968 SOCKBUF_UNLOCK(sb); 2969 return (0); 2970 } 2971 2972 /* 2973 * Some routines that return EOPNOTSUPP for entry points that are not 2974 * supported by a protocol. Fill in as needed. 2975 */ 2976 int 2977 pru_accept_notsupp(struct socket *so, struct sockaddr **nam) 2978 { 2979 2980 return EOPNOTSUPP; 2981 } 2982 2983 int 2984 pru_attach_notsupp(struct socket *so, int proto, struct thread *td) 2985 { 2986 2987 return EOPNOTSUPP; 2988 } 2989 2990 int 2991 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 2992 { 2993 2994 return EOPNOTSUPP; 2995 } 2996 2997 int 2998 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 2999 { 3000 3001 return EOPNOTSUPP; 3002 } 3003 3004 int 3005 pru_connect2_notsupp(struct socket *so1, struct socket *so2) 3006 { 3007 3008 return EOPNOTSUPP; 3009 } 3010 3011 int 3012 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, 3013 struct ifnet *ifp, struct thread *td) 3014 { 3015 3016 return EOPNOTSUPP; 3017 } 3018 3019 int 3020 pru_disconnect_notsupp(struct socket *so) 3021 { 3022 3023 return EOPNOTSUPP; 3024 } 3025 3026 int 3027 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td) 3028 { 3029 3030 return EOPNOTSUPP; 3031 } 3032 3033 int 3034 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam) 3035 { 3036 3037 return EOPNOTSUPP; 3038 } 3039 3040 int 3041 pru_rcvd_notsupp(struct socket *so, int flags) 3042 { 3043 3044 return EOPNOTSUPP; 3045 } 3046 3047 int 3048 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) 3049 { 3050 3051 return EOPNOTSUPP; 3052 } 3053 3054 int 3055 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m, 3056 struct sockaddr *addr, struct mbuf *control, struct thread *td) 3057 { 3058 3059 return EOPNOTSUPP; 3060 } 3061 3062 /* 3063 * This isn't really a ``null'' operation, but it's the default one and 3064 * doesn't do anything destructive. 3065 */ 3066 int 3067 pru_sense_null(struct socket *so, struct stat *sb) 3068 { 3069 3070 sb->st_blksize = so->so_snd.sb_hiwat; 3071 return 0; 3072 } 3073 3074 int 3075 pru_shutdown_notsupp(struct socket *so) 3076 { 3077 3078 return EOPNOTSUPP; 3079 } 3080 3081 int 3082 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam) 3083 { 3084 3085 return EOPNOTSUPP; 3086 } 3087 3088 int 3089 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio, 3090 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 3091 { 3092 3093 return EOPNOTSUPP; 3094 } 3095 3096 int 3097 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr, 3098 struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 3099 { 3100 3101 return EOPNOTSUPP; 3102 } 3103 3104 int 3105 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred, 3106 struct thread *td) 3107 { 3108 3109 return EOPNOTSUPP; 3110 } 3111 3112 static void 3113 filt_sordetach(struct knote *kn) 3114 { 3115 struct socket *so = kn->kn_fp->f_data; 3116 3117 SOCKBUF_LOCK(&so->so_rcv); 3118 knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1); 3119 if (knlist_empty(&so->so_rcv.sb_sel.si_note)) 3120 so->so_rcv.sb_flags &= ~SB_KNOTE; 3121 SOCKBUF_UNLOCK(&so->so_rcv); 3122 } 3123 3124 /*ARGSUSED*/ 3125 static int 3126 filt_soread(struct knote *kn, long hint) 3127 { 3128 struct socket *so; 3129 3130 so = kn->kn_fp->f_data; 3131 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 3132 3133 kn->kn_data = so->so_rcv.sb_cc - so->so_rcv.sb_ctl; 3134 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3135 kn->kn_flags |= EV_EOF; 3136 kn->kn_fflags = so->so_error; 3137 return (1); 3138 } else if (so->so_error) /* temporary udp error */ 3139 return (1); 3140 else if (kn->kn_sfflags & NOTE_LOWAT) 3141 return (kn->kn_data >= kn->kn_sdata); 3142 else 3143 return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat); 3144 } 3145 3146 static void 3147 filt_sowdetach(struct knote *kn) 3148 { 3149 struct socket *so = kn->kn_fp->f_data; 3150 3151 SOCKBUF_LOCK(&so->so_snd); 3152 knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1); 3153 if (knlist_empty(&so->so_snd.sb_sel.si_note)) 3154 so->so_snd.sb_flags &= ~SB_KNOTE; 3155 SOCKBUF_UNLOCK(&so->so_snd); 3156 } 3157 3158 /*ARGSUSED*/ 3159 static int 3160 filt_sowrite(struct knote *kn, long hint) 3161 { 3162 struct socket *so; 3163 3164 so = kn->kn_fp->f_data; 3165 SOCKBUF_LOCK_ASSERT(&so->so_snd); 3166 kn->kn_data = sbspace(&so->so_snd); 3167 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 3168 kn->kn_flags |= EV_EOF; 3169 kn->kn_fflags = so->so_error; 3170 return (1); 3171 } else if (so->so_error) /* temporary udp error */ 3172 return (1); 3173 else if (((so->so_state & SS_ISCONNECTED) == 0) && 3174 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 3175 return (0); 3176 else if (kn->kn_sfflags & NOTE_LOWAT) 3177 return (kn->kn_data >= kn->kn_sdata); 3178 else 3179 return (kn->kn_data >= so->so_snd.sb_lowat); 3180 } 3181 3182 /*ARGSUSED*/ 3183 static int 3184 filt_solisten(struct knote *kn, long hint) 3185 { 3186 struct socket *so = kn->kn_fp->f_data; 3187 3188 kn->kn_data = so->so_qlen; 3189 return (! TAILQ_EMPTY(&so->so_comp)); 3190 } 3191 3192 int 3193 socheckuid(struct socket *so, uid_t uid) 3194 { 3195 3196 if (so == NULL) 3197 return (EPERM); 3198 if (so->so_cred->cr_uid != uid) 3199 return (EPERM); 3200 return (0); 3201 } 3202 3203 static int 3204 sysctl_somaxconn(SYSCTL_HANDLER_ARGS) 3205 { 3206 int error; 3207 int val; 3208 3209 val = somaxconn; 3210 error = sysctl_handle_int(oidp, &val, 0, req); 3211 if (error || !req->newptr ) 3212 return (error); 3213 3214 if (val < 1 || val > USHRT_MAX) 3215 return (EINVAL); 3216 3217 somaxconn = val; 3218 return (0); 3219 } 3220 3221 /* 3222 * These functions are used by protocols to notify the socket layer (and its 3223 * consumers) of state changes in the sockets driven by protocol-side events. 3224 */ 3225 3226 /* 3227 * Procedures to manipulate state flags of socket and do appropriate wakeups. 3228 * 3229 * Normal sequence from the active (originating) side is that 3230 * soisconnecting() is called during processing of connect() call, resulting 3231 * in an eventual call to soisconnected() if/when the connection is 3232 * established. When the connection is torn down soisdisconnecting() is 3233 * called during processing of disconnect() call, and soisdisconnected() is 3234 * called when the connection to the peer is totally severed. The semantics 3235 * of these routines are such that connectionless protocols can call 3236 * soisconnected() and soisdisconnected() only, bypassing the in-progress 3237 * calls when setting up a ``connection'' takes no time. 3238 * 3239 * From the passive side, a socket is created with two queues of sockets: 3240 * so_incomp for connections in progress and so_comp for connections already 3241 * made and awaiting user acceptance. As a protocol is preparing incoming 3242 * connections, it creates a socket structure queued on so_incomp by calling 3243 * sonewconn(). When the connection is established, soisconnected() is 3244 * called, and transfers the socket structure to so_comp, making it available 3245 * to accept(). 3246 * 3247 * If a socket is closed with sockets on either so_incomp or so_comp, these 3248 * sockets are dropped. 3249 * 3250 * If higher-level protocols are implemented in the kernel, the wakeups done 3251 * here will sometimes cause software-interrupt process scheduling. 3252 */ 3253 void 3254 soisconnecting(struct socket *so) 3255 { 3256 3257 SOCK_LOCK(so); 3258 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 3259 so->so_state |= SS_ISCONNECTING; 3260 SOCK_UNLOCK(so); 3261 } 3262 3263 void 3264 soisconnected(struct socket *so) 3265 { 3266 struct socket *head; 3267 int ret; 3268 3269 restart: 3270 ACCEPT_LOCK(); 3271 SOCK_LOCK(so); 3272 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 3273 so->so_state |= SS_ISCONNECTED; 3274 head = so->so_head; 3275 if (head != NULL && (so->so_qstate & SQ_INCOMP)) { 3276 if ((so->so_options & SO_ACCEPTFILTER) == 0) { 3277 SOCK_UNLOCK(so); 3278 TAILQ_REMOVE(&head->so_incomp, so, so_list); 3279 head->so_incqlen--; 3280 so->so_qstate &= ~SQ_INCOMP; 3281 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 3282 head->so_qlen++; 3283 so->so_qstate |= SQ_COMP; 3284 ACCEPT_UNLOCK(); 3285 sorwakeup(head); 3286 wakeup_one(&head->so_timeo); 3287 } else { 3288 ACCEPT_UNLOCK(); 3289 soupcall_set(so, SO_RCV, 3290 head->so_accf->so_accept_filter->accf_callback, 3291 head->so_accf->so_accept_filter_arg); 3292 so->so_options &= ~SO_ACCEPTFILTER; 3293 ret = head->so_accf->so_accept_filter->accf_callback(so, 3294 head->so_accf->so_accept_filter_arg, M_DONTWAIT); 3295 if (ret == SU_ISCONNECTED) 3296 soupcall_clear(so, SO_RCV); 3297 SOCK_UNLOCK(so); 3298 if (ret == SU_ISCONNECTED) 3299 goto restart; 3300 } 3301 return; 3302 } 3303 SOCK_UNLOCK(so); 3304 ACCEPT_UNLOCK(); 3305 wakeup(&so->so_timeo); 3306 sorwakeup(so); 3307 sowwakeup(so); 3308 } 3309 3310 void 3311 soisdisconnecting(struct socket *so) 3312 { 3313 3314 /* 3315 * Note: This code assumes that SOCK_LOCK(so) and 3316 * SOCKBUF_LOCK(&so->so_rcv) are the same. 3317 */ 3318 SOCKBUF_LOCK(&so->so_rcv); 3319 so->so_state &= ~SS_ISCONNECTING; 3320 so->so_state |= SS_ISDISCONNECTING; 3321 so->so_rcv.sb_state |= SBS_CANTRCVMORE; 3322 sorwakeup_locked(so); 3323 SOCKBUF_LOCK(&so->so_snd); 3324 so->so_snd.sb_state |= SBS_CANTSENDMORE; 3325 sowwakeup_locked(so); 3326 wakeup(&so->so_timeo); 3327 } 3328 3329 void 3330 soisdisconnected(struct socket *so) 3331 { 3332 3333 /* 3334 * Note: This code assumes that SOCK_LOCK(so) and 3335 * SOCKBUF_LOCK(&so->so_rcv) are the same. 3336 */ 3337 SOCKBUF_LOCK(&so->so_rcv); 3338 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 3339 so->so_state |= SS_ISDISCONNECTED; 3340 so->so_rcv.sb_state |= SBS_CANTRCVMORE; 3341 sorwakeup_locked(so); 3342 SOCKBUF_LOCK(&so->so_snd); 3343 so->so_snd.sb_state |= SBS_CANTSENDMORE; 3344 sbdrop_locked(&so->so_snd, so->so_snd.sb_cc); 3345 sowwakeup_locked(so); 3346 wakeup(&so->so_timeo); 3347 } 3348 3349 /* 3350 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 3351 */ 3352 struct sockaddr * 3353 sodupsockaddr(const struct sockaddr *sa, int mflags) 3354 { 3355 struct sockaddr *sa2; 3356 3357 sa2 = malloc(sa->sa_len, M_SONAME, mflags); 3358 if (sa2) 3359 bcopy(sa, sa2, sa->sa_len); 3360 return sa2; 3361 } 3362 3363 /* 3364 * Register per-socket buffer upcalls. 3365 */ 3366 void 3367 soupcall_set(struct socket *so, int which, 3368 int (*func)(struct socket *, void *, int), void *arg) 3369 { 3370 struct sockbuf *sb; 3371 3372 switch (which) { 3373 case SO_RCV: 3374 sb = &so->so_rcv; 3375 break; 3376 case SO_SND: 3377 sb = &so->so_snd; 3378 break; 3379 default: 3380 panic("soupcall_set: bad which"); 3381 } 3382 SOCKBUF_LOCK_ASSERT(sb); 3383 #if 0 3384 /* XXX: accf_http actually wants to do this on purpose. */ 3385 KASSERT(sb->sb_upcall == NULL, ("soupcall_set: overwriting upcall")); 3386 #endif 3387 sb->sb_upcall = func; 3388 sb->sb_upcallarg = arg; 3389 sb->sb_flags |= SB_UPCALL; 3390 } 3391 3392 void 3393 soupcall_clear(struct socket *so, int which) 3394 { 3395 struct sockbuf *sb; 3396 3397 switch (which) { 3398 case SO_RCV: 3399 sb = &so->so_rcv; 3400 break; 3401 case SO_SND: 3402 sb = &so->so_snd; 3403 break; 3404 default: 3405 panic("soupcall_clear: bad which"); 3406 } 3407 SOCKBUF_LOCK_ASSERT(sb); 3408 KASSERT(sb->sb_upcall != NULL, ("soupcall_clear: no upcall to clear")); 3409 sb->sb_upcall = NULL; 3410 sb->sb_upcallarg = NULL; 3411 sb->sb_flags &= ~SB_UPCALL; 3412 } 3413 3414 /* 3415 * Create an external-format (``xsocket'') structure using the information in 3416 * the kernel-format socket structure pointed to by so. This is done to 3417 * reduce the spew of irrelevant information over this interface, to isolate 3418 * user code from changes in the kernel structure, and potentially to provide 3419 * information-hiding if we decide that some of this information should be 3420 * hidden from users. 3421 */ 3422 void 3423 sotoxsocket(struct socket *so, struct xsocket *xso) 3424 { 3425 3426 xso->xso_len = sizeof *xso; 3427 xso->xso_so = so; 3428 xso->so_type = so->so_type; 3429 xso->so_options = so->so_options; 3430 xso->so_linger = so->so_linger; 3431 xso->so_state = so->so_state; 3432 xso->so_pcb = so->so_pcb; 3433 xso->xso_protocol = so->so_proto->pr_protocol; 3434 xso->xso_family = so->so_proto->pr_domain->dom_family; 3435 xso->so_qlen = so->so_qlen; 3436 xso->so_incqlen = so->so_incqlen; 3437 xso->so_qlimit = so->so_qlimit; 3438 xso->so_timeo = so->so_timeo; 3439 xso->so_error = so->so_error; 3440 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 3441 xso->so_oobmark = so->so_oobmark; 3442 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 3443 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 3444 xso->so_uid = so->so_cred->cr_uid; 3445 } 3446 3447 3448 /* 3449 * Socket accessor functions to provide external consumers with 3450 * a safe interface to socket state 3451 * 3452 */ 3453 3454 void 3455 so_listeners_apply_all(struct socket *so, void (*func)(struct socket *, void *), void *arg) 3456 { 3457 3458 TAILQ_FOREACH(so, &so->so_comp, so_list) 3459 func(so, arg); 3460 } 3461 3462 struct sockbuf * 3463 so_sockbuf_rcv(struct socket *so) 3464 { 3465 3466 return (&so->so_rcv); 3467 } 3468 3469 struct sockbuf * 3470 so_sockbuf_snd(struct socket *so) 3471 { 3472 3473 return (&so->so_snd); 3474 } 3475 3476 int 3477 so_state_get(const struct socket *so) 3478 { 3479 3480 return (so->so_state); 3481 } 3482 3483 void 3484 so_state_set(struct socket *so, int val) 3485 { 3486 3487 so->so_state = val; 3488 } 3489 3490 int 3491 so_options_get(const struct socket *so) 3492 { 3493 3494 return (so->so_options); 3495 } 3496 3497 void 3498 so_options_set(struct socket *so, int val) 3499 { 3500 3501 so->so_options = val; 3502 } 3503 3504 int 3505 so_error_get(const struct socket *so) 3506 { 3507 3508 return (so->so_error); 3509 } 3510 3511 void 3512 so_error_set(struct socket *so, int val) 3513 { 3514 3515 so->so_error = val; 3516 } 3517 3518 int 3519 so_linger_get(const struct socket *so) 3520 { 3521 3522 return (so->so_linger); 3523 } 3524 3525 void 3526 so_linger_set(struct socket *so, int val) 3527 { 3528 3529 so->so_linger = val; 3530 } 3531 3532 struct protosw * 3533 so_protosw_get(const struct socket *so) 3534 { 3535 3536 return (so->so_proto); 3537 } 3538 3539 void 3540 so_protosw_set(struct socket *so, struct protosw *val) 3541 { 3542 3543 so->so_proto = val; 3544 } 3545 3546 void 3547 so_sorwakeup(struct socket *so) 3548 { 3549 3550 sorwakeup(so); 3551 } 3552 3553 void 3554 so_sowwakeup(struct socket *so) 3555 { 3556 3557 sowwakeup(so); 3558 } 3559 3560 void 3561 so_sorwakeup_locked(struct socket *so) 3562 { 3563 3564 sorwakeup_locked(so); 3565 } 3566 3567 void 3568 so_sowwakeup_locked(struct socket *so) 3569 { 3570 3571 sowwakeup_locked(so); 3572 } 3573 3574 void 3575 so_lock(struct socket *so) 3576 { 3577 SOCK_LOCK(so); 3578 } 3579 3580 void 3581 so_unlock(struct socket *so) 3582 { 3583 SOCK_UNLOCK(so); 3584 } 3585