1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993 3 * The Regents of the University of California. 4 * Copyright (c) 2004 The FreeBSD Foundation 5 * Copyright (c) 2004-2008 Robert N. M. Watson 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 33 */ 34 35 /* 36 * Comments on the socket life cycle: 37 * 38 * soalloc() sets of socket layer state for a socket, called only by 39 * socreate() and sonewconn(). Socket layer private. 40 * 41 * sodealloc() tears down socket layer state for a socket, called only by 42 * sofree() and sonewconn(). Socket layer private. 43 * 44 * pru_attach() associates protocol layer state with an allocated socket; 45 * called only once, may fail, aborting socket allocation. This is called 46 * from socreate() and sonewconn(). Socket layer private. 47 * 48 * pru_detach() disassociates protocol layer state from an attached socket, 49 * and will be called exactly once for sockets in which pru_attach() has 50 * been successfully called. If pru_attach() returned an error, 51 * pru_detach() will not be called. Socket layer private. 52 * 53 * pru_abort() and pru_close() notify the protocol layer that the last 54 * consumer of a socket is starting to tear down the socket, and that the 55 * protocol should terminate the connection. Historically, pru_abort() also 56 * detached protocol state from the socket state, but this is no longer the 57 * case. 58 * 59 * socreate() creates a socket and attaches protocol state. This is a public 60 * interface that may be used by socket layer consumers to create new 61 * sockets. 62 * 63 * sonewconn() creates a socket and attaches protocol state. This is a 64 * public interface that may be used by protocols to create new sockets when 65 * a new connection is received and will be available for accept() on a 66 * listen socket. 67 * 68 * soclose() destroys a socket after possibly waiting for it to disconnect. 69 * This is a public interface that socket consumers should use to close and 70 * release a socket when done with it. 71 * 72 * soabort() destroys a socket without waiting for it to disconnect (used 73 * only for incoming connections that are already partially or fully 74 * connected). This is used internally by the socket layer when clearing 75 * listen socket queues (due to overflow or close on the listen socket), but 76 * is also a public interface protocols may use to abort connections in 77 * their incomplete listen queues should they no longer be required. Sockets 78 * placed in completed connection listen queues should not be aborted for 79 * reasons described in the comment above the soclose() implementation. This 80 * is not a general purpose close routine, and except in the specific 81 * circumstances described here, should not be used. 82 * 83 * sofree() will free a socket and its protocol state if all references on 84 * the socket have been released, and is the public interface to attempt to 85 * free a socket when a reference is removed. This is a socket layer private 86 * interface. 87 * 88 * NOTE: In addition to socreate() and soclose(), which provide a single 89 * socket reference to the consumer to be managed as required, there are two 90 * calls to explicitly manage socket references, soref(), and sorele(). 91 * Currently, these are generally required only when transitioning a socket 92 * from a listen queue to a file descriptor, in order to prevent garbage 93 * collection of the socket at an untimely moment. For a number of reasons, 94 * these interfaces are not preferred, and should be avoided. 95 */ 96 97 #include <sys/cdefs.h> 98 __FBSDID("$FreeBSD$"); 99 100 #include "opt_inet.h" 101 #include "opt_inet6.h" 102 #include "opt_zero.h" 103 #include "opt_compat.h" 104 105 #include <sys/param.h> 106 #include <sys/systm.h> 107 #include <sys/fcntl.h> 108 #include <sys/limits.h> 109 #include <sys/lock.h> 110 #include <sys/mac.h> 111 #include <sys/malloc.h> 112 #include <sys/mbuf.h> 113 #include <sys/mutex.h> 114 #include <sys/domain.h> 115 #include <sys/file.h> /* for struct knote */ 116 #include <sys/kernel.h> 117 #include <sys/event.h> 118 #include <sys/eventhandler.h> 119 #include <sys/poll.h> 120 #include <sys/proc.h> 121 #include <sys/protosw.h> 122 #include <sys/socket.h> 123 #include <sys/socketvar.h> 124 #include <sys/resourcevar.h> 125 #include <net/route.h> 126 #include <sys/signalvar.h> 127 #include <sys/stat.h> 128 #include <sys/sx.h> 129 #include <sys/sysctl.h> 130 #include <sys/uio.h> 131 #include <sys/jail.h> 132 133 #include <net/vnet.h> 134 135 #include <security/mac/mac_framework.h> 136 137 #include <vm/uma.h> 138 139 #ifdef COMPAT_IA32 140 #include <sys/mount.h> 141 #include <sys/sysent.h> 142 #include <compat/freebsd32/freebsd32.h> 143 #endif 144 145 static int soreceive_rcvoob(struct socket *so, struct uio *uio, 146 int flags); 147 148 static void filt_sordetach(struct knote *kn); 149 static int filt_soread(struct knote *kn, long hint); 150 static void filt_sowdetach(struct knote *kn); 151 static int filt_sowrite(struct knote *kn, long hint); 152 static int filt_solisten(struct knote *kn, long hint); 153 154 static struct filterops solisten_filtops = { 155 .f_isfd = 1, 156 .f_detach = filt_sordetach, 157 .f_event = filt_solisten, 158 }; 159 static struct filterops soread_filtops = { 160 .f_isfd = 1, 161 .f_detach = filt_sordetach, 162 .f_event = filt_soread, 163 }; 164 static struct filterops sowrite_filtops = { 165 .f_isfd = 1, 166 .f_detach = filt_sowdetach, 167 .f_event = filt_sowrite, 168 }; 169 170 uma_zone_t socket_zone; 171 so_gen_t so_gencnt; /* generation count for sockets */ 172 173 int maxsockets; 174 175 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 176 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 177 178 static int somaxconn = SOMAXCONN; 179 static int sysctl_somaxconn(SYSCTL_HANDLER_ARGS); 180 /* XXX: we dont have SYSCTL_USHORT */ 181 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLTYPE_UINT | CTLFLAG_RW, 182 0, sizeof(int), sysctl_somaxconn, "I", "Maximum pending socket connection " 183 "queue size"); 184 static int numopensockets; 185 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, 186 &numopensockets, 0, "Number of open sockets"); 187 #ifdef ZERO_COPY_SOCKETS 188 /* These aren't static because they're used in other files. */ 189 int so_zero_copy_send = 1; 190 int so_zero_copy_receive = 1; 191 SYSCTL_NODE(_kern_ipc, OID_AUTO, zero_copy, CTLFLAG_RD, 0, 192 "Zero copy controls"); 193 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, receive, CTLFLAG_RW, 194 &so_zero_copy_receive, 0, "Enable zero copy receive"); 195 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, send, CTLFLAG_RW, 196 &so_zero_copy_send, 0, "Enable zero copy send"); 197 #endif /* ZERO_COPY_SOCKETS */ 198 199 /* 200 * accept_mtx locks down per-socket fields relating to accept queues. See 201 * socketvar.h for an annotation of the protected fields of struct socket. 202 */ 203 struct mtx accept_mtx; 204 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF); 205 206 /* 207 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket 208 * so_gencnt field. 209 */ 210 static struct mtx so_global_mtx; 211 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); 212 213 /* 214 * General IPC sysctl name space, used by sockets and a variety of other IPC 215 * types. 216 */ 217 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC"); 218 219 /* 220 * Sysctl to get and set the maximum global sockets limit. Notify protocols 221 * of the change so that they can update their dependent limits as required. 222 */ 223 static int 224 sysctl_maxsockets(SYSCTL_HANDLER_ARGS) 225 { 226 int error, newmaxsockets; 227 228 newmaxsockets = maxsockets; 229 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req); 230 if (error == 0 && req->newptr) { 231 if (newmaxsockets > maxsockets) { 232 maxsockets = newmaxsockets; 233 if (maxsockets > ((maxfiles / 4) * 3)) { 234 maxfiles = (maxsockets * 5) / 4; 235 maxfilesperproc = (maxfiles * 9) / 10; 236 } 237 EVENTHANDLER_INVOKE(maxsockets_change); 238 } else 239 error = EINVAL; 240 } 241 return (error); 242 } 243 244 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, CTLTYPE_INT|CTLFLAG_RW, 245 &maxsockets, 0, sysctl_maxsockets, "IU", 246 "Maximum number of sockets avaliable"); 247 248 /* 249 * Initialise maxsockets. This SYSINIT must be run after 250 * tunable_mbinit(). 251 */ 252 static void 253 init_maxsockets(void *ignored) 254 { 255 256 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 257 maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters)); 258 } 259 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 260 261 /* 262 * Socket operation routines. These routines are called by the routines in 263 * sys_socket.c or from a system process, and implement the semantics of 264 * socket operations by switching out to the protocol specific routines. 265 */ 266 267 /* 268 * Get a socket structure from our zone, and initialize it. Note that it 269 * would probably be better to allocate socket and PCB at the same time, but 270 * I'm not convinced that all the protocols can be easily modified to do 271 * this. 272 * 273 * soalloc() returns a socket with a ref count of 0. 274 */ 275 static struct socket * 276 soalloc(struct vnet *vnet) 277 { 278 struct socket *so; 279 280 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO); 281 if (so == NULL) 282 return (NULL); 283 #ifdef MAC 284 if (mac_socket_init(so, M_NOWAIT) != 0) { 285 uma_zfree(socket_zone, so); 286 return (NULL); 287 } 288 #endif 289 SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd"); 290 SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv"); 291 sx_init(&so->so_snd.sb_sx, "so_snd_sx"); 292 sx_init(&so->so_rcv.sb_sx, "so_rcv_sx"); 293 TAILQ_INIT(&so->so_aiojobq); 294 mtx_lock(&so_global_mtx); 295 so->so_gencnt = ++so_gencnt; 296 ++numopensockets; 297 #ifdef VIMAGE 298 vnet->vnet_sockcnt++; 299 so->so_vnet = vnet; 300 #endif 301 mtx_unlock(&so_global_mtx); 302 return (so); 303 } 304 305 /* 306 * Free the storage associated with a socket at the socket layer, tear down 307 * locks, labels, etc. All protocol state is assumed already to have been 308 * torn down (and possibly never set up) by the caller. 309 */ 310 static void 311 sodealloc(struct socket *so) 312 { 313 314 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); 315 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL")); 316 317 mtx_lock(&so_global_mtx); 318 so->so_gencnt = ++so_gencnt; 319 --numopensockets; /* Could be below, but faster here. */ 320 #ifdef VIMAGE 321 so->so_vnet->vnet_sockcnt--; 322 #endif 323 mtx_unlock(&so_global_mtx); 324 if (so->so_rcv.sb_hiwat) 325 (void)chgsbsize(so->so_cred->cr_uidinfo, 326 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 327 if (so->so_snd.sb_hiwat) 328 (void)chgsbsize(so->so_cred->cr_uidinfo, 329 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 330 #ifdef INET 331 /* remove acccept filter if one is present. */ 332 if (so->so_accf != NULL) 333 do_setopt_accept_filter(so, NULL); 334 #endif 335 #ifdef MAC 336 mac_socket_destroy(so); 337 #endif 338 crfree(so->so_cred); 339 sx_destroy(&so->so_snd.sb_sx); 340 sx_destroy(&so->so_rcv.sb_sx); 341 SOCKBUF_LOCK_DESTROY(&so->so_snd); 342 SOCKBUF_LOCK_DESTROY(&so->so_rcv); 343 uma_zfree(socket_zone, so); 344 } 345 346 /* 347 * socreate returns a socket with a ref count of 1. The socket should be 348 * closed with soclose(). 349 */ 350 int 351 socreate(int dom, struct socket **aso, int type, int proto, 352 struct ucred *cred, struct thread *td) 353 { 354 struct protosw *prp; 355 struct socket *so; 356 int error; 357 358 if (proto) 359 prp = pffindproto(dom, proto, type); 360 else 361 prp = pffindtype(dom, type); 362 363 if (prp == NULL || prp->pr_usrreqs->pru_attach == NULL || 364 prp->pr_usrreqs->pru_attach == pru_attach_notsupp) 365 return (EPROTONOSUPPORT); 366 367 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0) 368 return (EPROTONOSUPPORT); 369 370 if (prp->pr_type != type) 371 return (EPROTOTYPE); 372 so = soalloc(CRED_TO_VNET(cred)); 373 if (so == NULL) 374 return (ENOBUFS); 375 376 TAILQ_INIT(&so->so_incomp); 377 TAILQ_INIT(&so->so_comp); 378 so->so_type = type; 379 so->so_cred = crhold(cred); 380 if ((prp->pr_domain->dom_family == PF_INET) || 381 (prp->pr_domain->dom_family == PF_ROUTE)) 382 so->so_fibnum = td->td_proc->p_fibnum; 383 else 384 so->so_fibnum = 0; 385 so->so_proto = prp; 386 #ifdef MAC 387 mac_socket_create(cred, so); 388 #endif 389 knlist_init_mtx(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv)); 390 knlist_init_mtx(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd)); 391 so->so_count = 1; 392 /* 393 * Auto-sizing of socket buffers is managed by the protocols and 394 * the appropriate flags must be set in the pru_attach function. 395 */ 396 CURVNET_SET(so->so_vnet); 397 error = (*prp->pr_usrreqs->pru_attach)(so, proto, td); 398 CURVNET_RESTORE(); 399 if (error) { 400 KASSERT(so->so_count == 1, ("socreate: so_count %d", 401 so->so_count)); 402 so->so_count = 0; 403 sodealloc(so); 404 return (error); 405 } 406 *aso = so; 407 return (0); 408 } 409 410 #ifdef REGRESSION 411 static int regression_sonewconn_earlytest = 1; 412 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW, 413 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test"); 414 #endif 415 416 /* 417 * When an attempt at a new connection is noted on a socket which accepts 418 * connections, sonewconn is called. If the connection is possible (subject 419 * to space constraints, etc.) then we allocate a new structure, propoerly 420 * linked into the data structure of the original socket, and return this. 421 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED. 422 * 423 * Note: the ref count on the socket is 0 on return. 424 */ 425 struct socket * 426 sonewconn(struct socket *head, int connstatus) 427 { 428 struct socket *so; 429 int over; 430 431 ACCEPT_LOCK(); 432 over = (head->so_qlen > 3 * head->so_qlimit / 2); 433 ACCEPT_UNLOCK(); 434 #ifdef REGRESSION 435 if (regression_sonewconn_earlytest && over) 436 #else 437 if (over) 438 #endif 439 return (NULL); 440 VNET_ASSERT(head->so_vnet); 441 so = soalloc(head->so_vnet); 442 if (so == NULL) 443 return (NULL); 444 if ((head->so_options & SO_ACCEPTFILTER) != 0) 445 connstatus = 0; 446 so->so_head = head; 447 so->so_type = head->so_type; 448 so->so_options = head->so_options &~ SO_ACCEPTCONN; 449 so->so_linger = head->so_linger; 450 so->so_state = head->so_state | SS_NOFDREF; 451 so->so_fibnum = head->so_fibnum; 452 so->so_proto = head->so_proto; 453 so->so_cred = crhold(head->so_cred); 454 #ifdef MAC 455 mac_socket_newconn(head, so); 456 #endif 457 knlist_init_mtx(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv)); 458 knlist_init_mtx(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd)); 459 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) || 460 (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 461 sodealloc(so); 462 return (NULL); 463 } 464 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; 465 so->so_snd.sb_lowat = head->so_snd.sb_lowat; 466 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; 467 so->so_snd.sb_timeo = head->so_snd.sb_timeo; 468 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE; 469 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE; 470 so->so_state |= connstatus; 471 ACCEPT_LOCK(); 472 if (connstatus) { 473 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 474 so->so_qstate |= SQ_COMP; 475 head->so_qlen++; 476 } else { 477 /* 478 * Keep removing sockets from the head until there's room for 479 * us to insert on the tail. In pre-locking revisions, this 480 * was a simple if(), but as we could be racing with other 481 * threads and soabort() requires dropping locks, we must 482 * loop waiting for the condition to be true. 483 */ 484 while (head->so_incqlen > head->so_qlimit) { 485 struct socket *sp; 486 sp = TAILQ_FIRST(&head->so_incomp); 487 TAILQ_REMOVE(&head->so_incomp, sp, so_list); 488 head->so_incqlen--; 489 sp->so_qstate &= ~SQ_INCOMP; 490 sp->so_head = NULL; 491 ACCEPT_UNLOCK(); 492 soabort(sp); 493 ACCEPT_LOCK(); 494 } 495 TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list); 496 so->so_qstate |= SQ_INCOMP; 497 head->so_incqlen++; 498 } 499 ACCEPT_UNLOCK(); 500 if (connstatus) { 501 sorwakeup(head); 502 wakeup_one(&head->so_timeo); 503 } 504 return (so); 505 } 506 507 int 508 sobind(struct socket *so, struct sockaddr *nam, struct thread *td) 509 { 510 int error; 511 512 CURVNET_SET(so->so_vnet); 513 error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td); 514 CURVNET_RESTORE(); 515 return error; 516 } 517 518 /* 519 * solisten() transitions a socket from a non-listening state to a listening 520 * state, but can also be used to update the listen queue depth on an 521 * existing listen socket. The protocol will call back into the sockets 522 * layer using solisten_proto_check() and solisten_proto() to check and set 523 * socket-layer listen state. Call backs are used so that the protocol can 524 * acquire both protocol and socket layer locks in whatever order is required 525 * by the protocol. 526 * 527 * Protocol implementors are advised to hold the socket lock across the 528 * socket-layer test and set to avoid races at the socket layer. 529 */ 530 int 531 solisten(struct socket *so, int backlog, struct thread *td) 532 { 533 534 return ((*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td)); 535 } 536 537 int 538 solisten_proto_check(struct socket *so) 539 { 540 541 SOCK_LOCK_ASSERT(so); 542 543 if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 544 SS_ISDISCONNECTING)) 545 return (EINVAL); 546 return (0); 547 } 548 549 void 550 solisten_proto(struct socket *so, int backlog) 551 { 552 553 SOCK_LOCK_ASSERT(so); 554 555 if (backlog < 0 || backlog > somaxconn) 556 backlog = somaxconn; 557 so->so_qlimit = backlog; 558 so->so_options |= SO_ACCEPTCONN; 559 } 560 561 /* 562 * Attempt to free a socket. This should really be sotryfree(). 563 * 564 * sofree() will succeed if: 565 * 566 * - There are no outstanding file descriptor references or related consumers 567 * (so_count == 0). 568 * 569 * - The socket has been closed by user space, if ever open (SS_NOFDREF). 570 * 571 * - The protocol does not have an outstanding strong reference on the socket 572 * (SS_PROTOREF). 573 * 574 * - The socket is not in a completed connection queue, so a process has been 575 * notified that it is present. If it is removed, the user process may 576 * block in accept() despite select() saying the socket was ready. 577 * 578 * Otherwise, it will quietly abort so that a future call to sofree(), when 579 * conditions are right, can succeed. 580 */ 581 void 582 sofree(struct socket *so) 583 { 584 struct protosw *pr = so->so_proto; 585 struct socket *head; 586 587 ACCEPT_LOCK_ASSERT(); 588 SOCK_LOCK_ASSERT(so); 589 590 if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 || 591 (so->so_state & SS_PROTOREF) || (so->so_qstate & SQ_COMP)) { 592 SOCK_UNLOCK(so); 593 ACCEPT_UNLOCK(); 594 return; 595 } 596 597 head = so->so_head; 598 if (head != NULL) { 599 KASSERT((so->so_qstate & SQ_COMP) != 0 || 600 (so->so_qstate & SQ_INCOMP) != 0, 601 ("sofree: so_head != NULL, but neither SQ_COMP nor " 602 "SQ_INCOMP")); 603 KASSERT((so->so_qstate & SQ_COMP) == 0 || 604 (so->so_qstate & SQ_INCOMP) == 0, 605 ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP")); 606 TAILQ_REMOVE(&head->so_incomp, so, so_list); 607 head->so_incqlen--; 608 so->so_qstate &= ~SQ_INCOMP; 609 so->so_head = NULL; 610 } 611 KASSERT((so->so_qstate & SQ_COMP) == 0 && 612 (so->so_qstate & SQ_INCOMP) == 0, 613 ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)", 614 so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP)); 615 if (so->so_options & SO_ACCEPTCONN) { 616 KASSERT((TAILQ_EMPTY(&so->so_comp)), ("sofree: so_comp populated")); 617 KASSERT((TAILQ_EMPTY(&so->so_incomp)), ("sofree: so_comp populated")); 618 } 619 SOCK_UNLOCK(so); 620 ACCEPT_UNLOCK(); 621 622 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 623 (*pr->pr_domain->dom_dispose)(so->so_rcv.sb_mb); 624 if (pr->pr_usrreqs->pru_detach != NULL) 625 (*pr->pr_usrreqs->pru_detach)(so); 626 627 /* 628 * From this point on, we assume that no other references to this 629 * socket exist anywhere else in the stack. Therefore, no locks need 630 * to be acquired or held. 631 * 632 * We used to do a lot of socket buffer and socket locking here, as 633 * well as invoke sorflush() and perform wakeups. The direct call to 634 * dom_dispose() and sbrelease_internal() are an inlining of what was 635 * necessary from sorflush(). 636 * 637 * Notice that the socket buffer and kqueue state are torn down 638 * before calling pru_detach. This means that protocols shold not 639 * assume they can perform socket wakeups, etc, in their detach code. 640 */ 641 sbdestroy(&so->so_snd, so); 642 sbdestroy(&so->so_rcv, so); 643 knlist_destroy(&so->so_rcv.sb_sel.si_note); 644 knlist_destroy(&so->so_snd.sb_sel.si_note); 645 sodealloc(so); 646 } 647 648 /* 649 * Close a socket on last file table reference removal. Initiate disconnect 650 * if connected. Free socket when disconnect complete. 651 * 652 * This function will sorele() the socket. Note that soclose() may be called 653 * prior to the ref count reaching zero. The actual socket structure will 654 * not be freed until the ref count reaches zero. 655 */ 656 int 657 soclose(struct socket *so) 658 { 659 int error = 0; 660 661 KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter")); 662 663 CURVNET_SET(so->so_vnet); 664 funsetown(&so->so_sigio); 665 if (so->so_state & SS_ISCONNECTED) { 666 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 667 error = sodisconnect(so); 668 if (error) 669 goto drop; 670 } 671 if (so->so_options & SO_LINGER) { 672 if ((so->so_state & SS_ISDISCONNECTING) && 673 (so->so_state & SS_NBIO)) 674 goto drop; 675 while (so->so_state & SS_ISCONNECTED) { 676 error = tsleep(&so->so_timeo, 677 PSOCK | PCATCH, "soclos", so->so_linger * hz); 678 if (error) 679 break; 680 } 681 } 682 } 683 684 drop: 685 if (so->so_proto->pr_usrreqs->pru_close != NULL) 686 (*so->so_proto->pr_usrreqs->pru_close)(so); 687 if (so->so_options & SO_ACCEPTCONN) { 688 struct socket *sp; 689 ACCEPT_LOCK(); 690 while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) { 691 TAILQ_REMOVE(&so->so_incomp, sp, so_list); 692 so->so_incqlen--; 693 sp->so_qstate &= ~SQ_INCOMP; 694 sp->so_head = NULL; 695 ACCEPT_UNLOCK(); 696 soabort(sp); 697 ACCEPT_LOCK(); 698 } 699 while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) { 700 TAILQ_REMOVE(&so->so_comp, sp, so_list); 701 so->so_qlen--; 702 sp->so_qstate &= ~SQ_COMP; 703 sp->so_head = NULL; 704 ACCEPT_UNLOCK(); 705 soabort(sp); 706 ACCEPT_LOCK(); 707 } 708 ACCEPT_UNLOCK(); 709 } 710 ACCEPT_LOCK(); 711 SOCK_LOCK(so); 712 KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF")); 713 so->so_state |= SS_NOFDREF; 714 sorele(so); 715 CURVNET_RESTORE(); 716 return (error); 717 } 718 719 /* 720 * soabort() is used to abruptly tear down a connection, such as when a 721 * resource limit is reached (listen queue depth exceeded), or if a listen 722 * socket is closed while there are sockets waiting to be accepted. 723 * 724 * This interface is tricky, because it is called on an unreferenced socket, 725 * and must be called only by a thread that has actually removed the socket 726 * from the listen queue it was on, or races with other threads are risked. 727 * 728 * This interface will call into the protocol code, so must not be called 729 * with any socket locks held. Protocols do call it while holding their own 730 * recursible protocol mutexes, but this is something that should be subject 731 * to review in the future. 732 */ 733 void 734 soabort(struct socket *so) 735 { 736 737 /* 738 * In as much as is possible, assert that no references to this 739 * socket are held. This is not quite the same as asserting that the 740 * current thread is responsible for arranging for no references, but 741 * is as close as we can get for now. 742 */ 743 KASSERT(so->so_count == 0, ("soabort: so_count")); 744 KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF")); 745 KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF")); 746 KASSERT((so->so_state & SQ_COMP) == 0, ("soabort: SQ_COMP")); 747 KASSERT((so->so_state & SQ_INCOMP) == 0, ("soabort: SQ_INCOMP")); 748 749 if (so->so_proto->pr_usrreqs->pru_abort != NULL) 750 (*so->so_proto->pr_usrreqs->pru_abort)(so); 751 ACCEPT_LOCK(); 752 SOCK_LOCK(so); 753 sofree(so); 754 } 755 756 int 757 soaccept(struct socket *so, struct sockaddr **nam) 758 { 759 int error; 760 761 SOCK_LOCK(so); 762 KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF")); 763 so->so_state &= ~SS_NOFDREF; 764 SOCK_UNLOCK(so); 765 error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam); 766 return (error); 767 } 768 769 int 770 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td) 771 { 772 int error; 773 774 if (so->so_options & SO_ACCEPTCONN) 775 return (EOPNOTSUPP); 776 777 CURVNET_SET(so->so_vnet); 778 /* 779 * If protocol is connection-based, can only connect once. 780 * Otherwise, if connected, try to disconnect first. This allows 781 * user to disconnect by connecting to, e.g., a null address. 782 */ 783 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 784 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 785 (error = sodisconnect(so)))) { 786 error = EISCONN; 787 } else { 788 /* 789 * Prevent accumulated error from previous connection from 790 * biting us. 791 */ 792 so->so_error = 0; 793 error = (*so->so_proto->pr_usrreqs->pru_connect)(so, nam, td); 794 } 795 CURVNET_RESTORE(); 796 797 return (error); 798 } 799 800 int 801 soconnect2(struct socket *so1, struct socket *so2) 802 { 803 804 return ((*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2)); 805 } 806 807 int 808 sodisconnect(struct socket *so) 809 { 810 int error; 811 812 if ((so->so_state & SS_ISCONNECTED) == 0) 813 return (ENOTCONN); 814 if (so->so_state & SS_ISDISCONNECTING) 815 return (EALREADY); 816 error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so); 817 return (error); 818 } 819 820 #ifdef ZERO_COPY_SOCKETS 821 struct so_zerocopy_stats{ 822 int size_ok; 823 int align_ok; 824 int found_ifp; 825 }; 826 struct so_zerocopy_stats so_zerocp_stats = {0,0,0}; 827 #include <netinet/in.h> 828 #include <net/route.h> 829 #include <netinet/in_pcb.h> 830 #include <vm/vm.h> 831 #include <vm/vm_page.h> 832 #include <vm/vm_object.h> 833 834 /* 835 * sosend_copyin() is only used if zero copy sockets are enabled. Otherwise 836 * sosend_dgram() and sosend_generic() use m_uiotombuf(). 837 * 838 * sosend_copyin() accepts a uio and prepares an mbuf chain holding part or 839 * all of the data referenced by the uio. If desired, it uses zero-copy. 840 * *space will be updated to reflect data copied in. 841 * 842 * NB: If atomic I/O is requested, the caller must already have checked that 843 * space can hold resid bytes. 844 * 845 * NB: In the event of an error, the caller may need to free the partial 846 * chain pointed to by *mpp. The contents of both *uio and *space may be 847 * modified even in the case of an error. 848 */ 849 static int 850 sosend_copyin(struct uio *uio, struct mbuf **retmp, int atomic, long *space, 851 int flags) 852 { 853 struct mbuf *m, **mp, *top; 854 long len, resid; 855 int error; 856 #ifdef ZERO_COPY_SOCKETS 857 int cow_send; 858 #endif 859 860 *retmp = top = NULL; 861 mp = ⊤ 862 len = 0; 863 resid = uio->uio_resid; 864 error = 0; 865 do { 866 #ifdef ZERO_COPY_SOCKETS 867 cow_send = 0; 868 #endif /* ZERO_COPY_SOCKETS */ 869 if (resid >= MINCLSIZE) { 870 #ifdef ZERO_COPY_SOCKETS 871 if (top == NULL) { 872 m = m_gethdr(M_WAITOK, MT_DATA); 873 m->m_pkthdr.len = 0; 874 m->m_pkthdr.rcvif = NULL; 875 } else 876 m = m_get(M_WAITOK, MT_DATA); 877 if (so_zero_copy_send && 878 resid>=PAGE_SIZE && 879 *space>=PAGE_SIZE && 880 uio->uio_iov->iov_len>=PAGE_SIZE) { 881 so_zerocp_stats.size_ok++; 882 so_zerocp_stats.align_ok++; 883 cow_send = socow_setup(m, uio); 884 len = cow_send; 885 } 886 if (!cow_send) { 887 m_clget(m, M_WAITOK); 888 len = min(min(MCLBYTES, resid), *space); 889 } 890 #else /* ZERO_COPY_SOCKETS */ 891 if (top == NULL) { 892 m = m_getcl(M_WAIT, MT_DATA, M_PKTHDR); 893 m->m_pkthdr.len = 0; 894 m->m_pkthdr.rcvif = NULL; 895 } else 896 m = m_getcl(M_WAIT, MT_DATA, 0); 897 len = min(min(MCLBYTES, resid), *space); 898 #endif /* ZERO_COPY_SOCKETS */ 899 } else { 900 if (top == NULL) { 901 m = m_gethdr(M_WAIT, MT_DATA); 902 m->m_pkthdr.len = 0; 903 m->m_pkthdr.rcvif = NULL; 904 905 len = min(min(MHLEN, resid), *space); 906 /* 907 * For datagram protocols, leave room 908 * for protocol headers in first mbuf. 909 */ 910 if (atomic && m && len < MHLEN) 911 MH_ALIGN(m, len); 912 } else { 913 m = m_get(M_WAIT, MT_DATA); 914 len = min(min(MLEN, resid), *space); 915 } 916 } 917 if (m == NULL) { 918 error = ENOBUFS; 919 goto out; 920 } 921 922 *space -= len; 923 #ifdef ZERO_COPY_SOCKETS 924 if (cow_send) 925 error = 0; 926 else 927 #endif /* ZERO_COPY_SOCKETS */ 928 error = uiomove(mtod(m, void *), (int)len, uio); 929 resid = uio->uio_resid; 930 m->m_len = len; 931 *mp = m; 932 top->m_pkthdr.len += len; 933 if (error) 934 goto out; 935 mp = &m->m_next; 936 if (resid <= 0) { 937 if (flags & MSG_EOR) 938 top->m_flags |= M_EOR; 939 break; 940 } 941 } while (*space > 0 && atomic); 942 out: 943 *retmp = top; 944 return (error); 945 } 946 #endif /*ZERO_COPY_SOCKETS*/ 947 948 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT) 949 950 int 951 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, 952 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 953 { 954 long space, resid; 955 int clen = 0, error, dontroute; 956 #ifdef ZERO_COPY_SOCKETS 957 int atomic = sosendallatonce(so) || top; 958 #endif 959 960 KASSERT(so->so_type == SOCK_DGRAM, ("sodgram_send: !SOCK_DGRAM")); 961 KASSERT(so->so_proto->pr_flags & PR_ATOMIC, 962 ("sodgram_send: !PR_ATOMIC")); 963 964 if (uio != NULL) 965 resid = uio->uio_resid; 966 else 967 resid = top->m_pkthdr.len; 968 /* 969 * In theory resid should be unsigned. However, space must be 970 * signed, as it might be less than 0 if we over-committed, and we 971 * must use a signed comparison of space and resid. On the other 972 * hand, a negative resid causes us to loop sending 0-length 973 * segments to the protocol. 974 */ 975 if (resid < 0) { 976 error = EINVAL; 977 goto out; 978 } 979 980 dontroute = 981 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0; 982 if (td != NULL) 983 td->td_ru.ru_msgsnd++; 984 if (control != NULL) 985 clen = control->m_len; 986 987 SOCKBUF_LOCK(&so->so_snd); 988 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 989 SOCKBUF_UNLOCK(&so->so_snd); 990 error = EPIPE; 991 goto out; 992 } 993 if (so->so_error) { 994 error = so->so_error; 995 so->so_error = 0; 996 SOCKBUF_UNLOCK(&so->so_snd); 997 goto out; 998 } 999 if ((so->so_state & SS_ISCONNECTED) == 0) { 1000 /* 1001 * `sendto' and `sendmsg' is allowed on a connection-based 1002 * socket if it supports implied connect. Return ENOTCONN if 1003 * not connected and no address is supplied. 1004 */ 1005 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1006 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1007 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1008 !(resid == 0 && clen != 0)) { 1009 SOCKBUF_UNLOCK(&so->so_snd); 1010 error = ENOTCONN; 1011 goto out; 1012 } 1013 } else if (addr == NULL) { 1014 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1015 error = ENOTCONN; 1016 else 1017 error = EDESTADDRREQ; 1018 SOCKBUF_UNLOCK(&so->so_snd); 1019 goto out; 1020 } 1021 } 1022 1023 /* 1024 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a 1025 * problem and need fixing. 1026 */ 1027 space = sbspace(&so->so_snd); 1028 if (flags & MSG_OOB) 1029 space += 1024; 1030 space -= clen; 1031 SOCKBUF_UNLOCK(&so->so_snd); 1032 if (resid > space) { 1033 error = EMSGSIZE; 1034 goto out; 1035 } 1036 if (uio == NULL) { 1037 resid = 0; 1038 if (flags & MSG_EOR) 1039 top->m_flags |= M_EOR; 1040 } else { 1041 #ifdef ZERO_COPY_SOCKETS 1042 error = sosend_copyin(uio, &top, atomic, &space, flags); 1043 if (error) 1044 goto out; 1045 #else 1046 /* 1047 * Copy the data from userland into a mbuf chain. 1048 * If no data is to be copied in, a single empty mbuf 1049 * is returned. 1050 */ 1051 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr, 1052 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0))); 1053 if (top == NULL) { 1054 error = EFAULT; /* only possible error */ 1055 goto out; 1056 } 1057 space -= resid - uio->uio_resid; 1058 #endif 1059 resid = uio->uio_resid; 1060 } 1061 KASSERT(resid == 0, ("sosend_dgram: resid != 0")); 1062 /* 1063 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock 1064 * than with. 1065 */ 1066 if (dontroute) { 1067 SOCK_LOCK(so); 1068 so->so_options |= SO_DONTROUTE; 1069 SOCK_UNLOCK(so); 1070 } 1071 /* 1072 * XXX all the SBS_CANTSENDMORE checks previously done could be out 1073 * of date. We could have recieved a reset packet in an interrupt or 1074 * maybe we slept while doing page faults in uiomove() etc. We could 1075 * probably recheck again inside the locking protection here, but 1076 * there are probably other places that this also happens. We must 1077 * rethink this. 1078 */ 1079 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1080 (flags & MSG_OOB) ? PRUS_OOB : 1081 /* 1082 * If the user set MSG_EOF, the protocol understands this flag and 1083 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND. 1084 */ 1085 ((flags & MSG_EOF) && 1086 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1087 (resid <= 0)) ? 1088 PRUS_EOF : 1089 /* If there is more to send set PRUS_MORETOCOME */ 1090 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1091 top, addr, control, td); 1092 if (dontroute) { 1093 SOCK_LOCK(so); 1094 so->so_options &= ~SO_DONTROUTE; 1095 SOCK_UNLOCK(so); 1096 } 1097 clen = 0; 1098 control = NULL; 1099 top = NULL; 1100 out: 1101 if (top != NULL) 1102 m_freem(top); 1103 if (control != NULL) 1104 m_freem(control); 1105 return (error); 1106 } 1107 1108 /* 1109 * Send on a socket. If send must go all at once and message is larger than 1110 * send buffering, then hard error. Lock against other senders. If must go 1111 * all at once and not enough room now, then inform user that this would 1112 * block and do nothing. Otherwise, if nonblocking, send as much as 1113 * possible. The data to be sent is described by "uio" if nonzero, otherwise 1114 * by the mbuf chain "top" (which must be null if uio is not). Data provided 1115 * in mbuf chain must be small enough to send all at once. 1116 * 1117 * Returns nonzero on error, timeout or signal; callers must check for short 1118 * counts if EINTR/ERESTART are returned. Data and control buffers are freed 1119 * on return. 1120 */ 1121 int 1122 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio, 1123 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1124 { 1125 long space, resid; 1126 int clen = 0, error, dontroute; 1127 int atomic = sosendallatonce(so) || top; 1128 1129 if (uio != NULL) 1130 resid = uio->uio_resid; 1131 else 1132 resid = top->m_pkthdr.len; 1133 /* 1134 * In theory resid should be unsigned. However, space must be 1135 * signed, as it might be less than 0 if we over-committed, and we 1136 * must use a signed comparison of space and resid. On the other 1137 * hand, a negative resid causes us to loop sending 0-length 1138 * segments to the protocol. 1139 * 1140 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 1141 * type sockets since that's an error. 1142 */ 1143 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 1144 error = EINVAL; 1145 goto out; 1146 } 1147 1148 dontroute = 1149 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 1150 (so->so_proto->pr_flags & PR_ATOMIC); 1151 if (td != NULL) 1152 td->td_ru.ru_msgsnd++; 1153 if (control != NULL) 1154 clen = control->m_len; 1155 1156 error = sblock(&so->so_snd, SBLOCKWAIT(flags)); 1157 if (error) 1158 goto out; 1159 1160 restart: 1161 do { 1162 SOCKBUF_LOCK(&so->so_snd); 1163 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1164 SOCKBUF_UNLOCK(&so->so_snd); 1165 error = EPIPE; 1166 goto release; 1167 } 1168 if (so->so_error) { 1169 error = so->so_error; 1170 so->so_error = 0; 1171 SOCKBUF_UNLOCK(&so->so_snd); 1172 goto release; 1173 } 1174 if ((so->so_state & SS_ISCONNECTED) == 0) { 1175 /* 1176 * `sendto' and `sendmsg' is allowed on a connection- 1177 * based socket if it supports implied connect. 1178 * Return ENOTCONN if not connected and no address is 1179 * supplied. 1180 */ 1181 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1182 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1183 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1184 !(resid == 0 && clen != 0)) { 1185 SOCKBUF_UNLOCK(&so->so_snd); 1186 error = ENOTCONN; 1187 goto release; 1188 } 1189 } else if (addr == NULL) { 1190 SOCKBUF_UNLOCK(&so->so_snd); 1191 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1192 error = ENOTCONN; 1193 else 1194 error = EDESTADDRREQ; 1195 goto release; 1196 } 1197 } 1198 space = sbspace(&so->so_snd); 1199 if (flags & MSG_OOB) 1200 space += 1024; 1201 if ((atomic && resid > so->so_snd.sb_hiwat) || 1202 clen > so->so_snd.sb_hiwat) { 1203 SOCKBUF_UNLOCK(&so->so_snd); 1204 error = EMSGSIZE; 1205 goto release; 1206 } 1207 if (space < resid + clen && 1208 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 1209 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) { 1210 SOCKBUF_UNLOCK(&so->so_snd); 1211 error = EWOULDBLOCK; 1212 goto release; 1213 } 1214 error = sbwait(&so->so_snd); 1215 SOCKBUF_UNLOCK(&so->so_snd); 1216 if (error) 1217 goto release; 1218 goto restart; 1219 } 1220 SOCKBUF_UNLOCK(&so->so_snd); 1221 space -= clen; 1222 do { 1223 if (uio == NULL) { 1224 resid = 0; 1225 if (flags & MSG_EOR) 1226 top->m_flags |= M_EOR; 1227 } else { 1228 #ifdef ZERO_COPY_SOCKETS 1229 error = sosend_copyin(uio, &top, atomic, 1230 &space, flags); 1231 if (error != 0) 1232 goto release; 1233 #else 1234 /* 1235 * Copy the data from userland into a mbuf 1236 * chain. If no data is to be copied in, 1237 * a single empty mbuf is returned. 1238 */ 1239 top = m_uiotombuf(uio, M_WAITOK, space, 1240 (atomic ? max_hdr : 0), 1241 (atomic ? M_PKTHDR : 0) | 1242 ((flags & MSG_EOR) ? M_EOR : 0)); 1243 if (top == NULL) { 1244 error = EFAULT; /* only possible error */ 1245 goto release; 1246 } 1247 space -= resid - uio->uio_resid; 1248 #endif 1249 resid = uio->uio_resid; 1250 } 1251 if (dontroute) { 1252 SOCK_LOCK(so); 1253 so->so_options |= SO_DONTROUTE; 1254 SOCK_UNLOCK(so); 1255 } 1256 /* 1257 * XXX all the SBS_CANTSENDMORE checks previously 1258 * done could be out of date. We could have recieved 1259 * a reset packet in an interrupt or maybe we slept 1260 * while doing page faults in uiomove() etc. We 1261 * could probably recheck again inside the locking 1262 * protection here, but there are probably other 1263 * places that this also happens. We must rethink 1264 * this. 1265 */ 1266 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1267 (flags & MSG_OOB) ? PRUS_OOB : 1268 /* 1269 * If the user set MSG_EOF, the protocol understands 1270 * this flag and nothing left to send then use 1271 * PRU_SEND_EOF instead of PRU_SEND. 1272 */ 1273 ((flags & MSG_EOF) && 1274 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1275 (resid <= 0)) ? 1276 PRUS_EOF : 1277 /* If there is more to send set PRUS_MORETOCOME. */ 1278 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1279 top, addr, control, td); 1280 if (dontroute) { 1281 SOCK_LOCK(so); 1282 so->so_options &= ~SO_DONTROUTE; 1283 SOCK_UNLOCK(so); 1284 } 1285 clen = 0; 1286 control = NULL; 1287 top = NULL; 1288 if (error) 1289 goto release; 1290 } while (resid && space > 0); 1291 } while (resid); 1292 1293 release: 1294 sbunlock(&so->so_snd); 1295 out: 1296 if (top != NULL) 1297 m_freem(top); 1298 if (control != NULL) 1299 m_freem(control); 1300 return (error); 1301 } 1302 1303 int 1304 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, 1305 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1306 { 1307 int error; 1308 1309 CURVNET_SET(so->so_vnet); 1310 error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, top, 1311 control, flags, td); 1312 CURVNET_RESTORE(); 1313 return (error); 1314 } 1315 1316 /* 1317 * The part of soreceive() that implements reading non-inline out-of-band 1318 * data from a socket. For more complete comments, see soreceive(), from 1319 * which this code originated. 1320 * 1321 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is 1322 * unable to return an mbuf chain to the caller. 1323 */ 1324 static int 1325 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags) 1326 { 1327 struct protosw *pr = so->so_proto; 1328 struct mbuf *m; 1329 int error; 1330 1331 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); 1332 1333 m = m_get(M_WAIT, MT_DATA); 1334 error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK); 1335 if (error) 1336 goto bad; 1337 do { 1338 #ifdef ZERO_COPY_SOCKETS 1339 if (so_zero_copy_receive) { 1340 int disposable; 1341 1342 if ((m->m_flags & M_EXT) 1343 && (m->m_ext.ext_type == EXT_DISPOSABLE)) 1344 disposable = 1; 1345 else 1346 disposable = 0; 1347 1348 error = uiomoveco(mtod(m, void *), 1349 min(uio->uio_resid, m->m_len), 1350 uio, disposable); 1351 } else 1352 #endif /* ZERO_COPY_SOCKETS */ 1353 error = uiomove(mtod(m, void *), 1354 (int) min(uio->uio_resid, m->m_len), uio); 1355 m = m_free(m); 1356 } while (uio->uio_resid && error == 0 && m); 1357 bad: 1358 if (m != NULL) 1359 m_freem(m); 1360 return (error); 1361 } 1362 1363 /* 1364 * Following replacement or removal of the first mbuf on the first mbuf chain 1365 * of a socket buffer, push necessary state changes back into the socket 1366 * buffer so that other consumers see the values consistently. 'nextrecord' 1367 * is the callers locally stored value of the original value of 1368 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. 1369 * NOTE: 'nextrecord' may be NULL. 1370 */ 1371 static __inline void 1372 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) 1373 { 1374 1375 SOCKBUF_LOCK_ASSERT(sb); 1376 /* 1377 * First, update for the new value of nextrecord. If necessary, make 1378 * it the first record. 1379 */ 1380 if (sb->sb_mb != NULL) 1381 sb->sb_mb->m_nextpkt = nextrecord; 1382 else 1383 sb->sb_mb = nextrecord; 1384 1385 /* 1386 * Now update any dependent socket buffer fields to reflect the new 1387 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the 1388 * addition of a second clause that takes care of the case where 1389 * sb_mb has been updated, but remains the last record. 1390 */ 1391 if (sb->sb_mb == NULL) { 1392 sb->sb_mbtail = NULL; 1393 sb->sb_lastrecord = NULL; 1394 } else if (sb->sb_mb->m_nextpkt == NULL) 1395 sb->sb_lastrecord = sb->sb_mb; 1396 } 1397 1398 1399 /* 1400 * Implement receive operations on a socket. We depend on the way that 1401 * records are added to the sockbuf by sbappend. In particular, each record 1402 * (mbufs linked through m_next) must begin with an address if the protocol 1403 * so specifies, followed by an optional mbuf or mbufs containing ancillary 1404 * data, and then zero or more mbufs of data. In order to allow parallelism 1405 * between network receive and copying to user space, as well as avoid 1406 * sleeping with a mutex held, we release the socket buffer mutex during the 1407 * user space copy. Although the sockbuf is locked, new data may still be 1408 * appended, and thus we must maintain consistency of the sockbuf during that 1409 * time. 1410 * 1411 * The caller may receive the data as a single mbuf chain by supplying an 1412 * mbuf **mp0 for use in returning the chain. The uio is then used only for 1413 * the count in uio_resid. 1414 */ 1415 int 1416 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio, 1417 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1418 { 1419 struct mbuf *m, **mp; 1420 int flags, len, error, offset; 1421 struct protosw *pr = so->so_proto; 1422 struct mbuf *nextrecord; 1423 int moff, type = 0; 1424 int orig_resid = uio->uio_resid; 1425 1426 mp = mp0; 1427 if (psa != NULL) 1428 *psa = NULL; 1429 if (controlp != NULL) 1430 *controlp = NULL; 1431 if (flagsp != NULL) 1432 flags = *flagsp &~ MSG_EOR; 1433 else 1434 flags = 0; 1435 if (flags & MSG_OOB) 1436 return (soreceive_rcvoob(so, uio, flags)); 1437 if (mp != NULL) 1438 *mp = NULL; 1439 if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING) 1440 && uio->uio_resid) 1441 (*pr->pr_usrreqs->pru_rcvd)(so, 0); 1442 1443 error = sblock(&so->so_rcv, SBLOCKWAIT(flags)); 1444 if (error) 1445 return (error); 1446 1447 restart: 1448 SOCKBUF_LOCK(&so->so_rcv); 1449 m = so->so_rcv.sb_mb; 1450 /* 1451 * If we have less data than requested, block awaiting more (subject 1452 * to any timeout) if: 1453 * 1. the current count is less than the low water mark, or 1454 * 2. MSG_WAITALL is set, and it is possible to do the entire 1455 * receive operation at once if we block (resid <= hiwat). 1456 * 3. MSG_DONTWAIT is not set 1457 * If MSG_WAITALL is set but resid is larger than the receive buffer, 1458 * we have to do the receive in sections, and thus risk returning a 1459 * short count if a timeout or signal occurs after we start. 1460 */ 1461 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 1462 so->so_rcv.sb_cc < uio->uio_resid) && 1463 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat || 1464 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) && 1465 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 1466 KASSERT(m != NULL || !so->so_rcv.sb_cc, 1467 ("receive: m == %p so->so_rcv.sb_cc == %u", 1468 m, so->so_rcv.sb_cc)); 1469 if (so->so_error) { 1470 if (m != NULL) 1471 goto dontblock; 1472 error = so->so_error; 1473 if ((flags & MSG_PEEK) == 0) 1474 so->so_error = 0; 1475 SOCKBUF_UNLOCK(&so->so_rcv); 1476 goto release; 1477 } 1478 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1479 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 1480 if (m == NULL) { 1481 SOCKBUF_UNLOCK(&so->so_rcv); 1482 goto release; 1483 } else 1484 goto dontblock; 1485 } 1486 for (; m != NULL; m = m->m_next) 1487 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 1488 m = so->so_rcv.sb_mb; 1489 goto dontblock; 1490 } 1491 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 1492 (so->so_proto->pr_flags & PR_CONNREQUIRED)) { 1493 SOCKBUF_UNLOCK(&so->so_rcv); 1494 error = ENOTCONN; 1495 goto release; 1496 } 1497 if (uio->uio_resid == 0) { 1498 SOCKBUF_UNLOCK(&so->so_rcv); 1499 goto release; 1500 } 1501 if ((so->so_state & SS_NBIO) || 1502 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 1503 SOCKBUF_UNLOCK(&so->so_rcv); 1504 error = EWOULDBLOCK; 1505 goto release; 1506 } 1507 SBLASTRECORDCHK(&so->so_rcv); 1508 SBLASTMBUFCHK(&so->so_rcv); 1509 error = sbwait(&so->so_rcv); 1510 SOCKBUF_UNLOCK(&so->so_rcv); 1511 if (error) 1512 goto release; 1513 goto restart; 1514 } 1515 dontblock: 1516 /* 1517 * From this point onward, we maintain 'nextrecord' as a cache of the 1518 * pointer to the next record in the socket buffer. We must keep the 1519 * various socket buffer pointers and local stack versions of the 1520 * pointers in sync, pushing out modifications before dropping the 1521 * socket buffer mutex, and re-reading them when picking it up. 1522 * 1523 * Otherwise, we will race with the network stack appending new data 1524 * or records onto the socket buffer by using inconsistent/stale 1525 * versions of the field, possibly resulting in socket buffer 1526 * corruption. 1527 * 1528 * By holding the high-level sblock(), we prevent simultaneous 1529 * readers from pulling off the front of the socket buffer. 1530 */ 1531 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1532 if (uio->uio_td) 1533 uio->uio_td->td_ru.ru_msgrcv++; 1534 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); 1535 SBLASTRECORDCHK(&so->so_rcv); 1536 SBLASTMBUFCHK(&so->so_rcv); 1537 nextrecord = m->m_nextpkt; 1538 if (pr->pr_flags & PR_ADDR) { 1539 KASSERT(m->m_type == MT_SONAME, 1540 ("m->m_type == %d", m->m_type)); 1541 orig_resid = 0; 1542 if (psa != NULL) 1543 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 1544 M_NOWAIT); 1545 if (flags & MSG_PEEK) { 1546 m = m->m_next; 1547 } else { 1548 sbfree(&so->so_rcv, m); 1549 so->so_rcv.sb_mb = m_free(m); 1550 m = so->so_rcv.sb_mb; 1551 sockbuf_pushsync(&so->so_rcv, nextrecord); 1552 } 1553 } 1554 1555 /* 1556 * Process one or more MT_CONTROL mbufs present before any data mbufs 1557 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 1558 * just copy the data; if !MSG_PEEK, we call into the protocol to 1559 * perform externalization (or freeing if controlp == NULL). 1560 */ 1561 if (m != NULL && m->m_type == MT_CONTROL) { 1562 struct mbuf *cm = NULL, *cmn; 1563 struct mbuf **cme = &cm; 1564 1565 do { 1566 if (flags & MSG_PEEK) { 1567 if (controlp != NULL) { 1568 *controlp = m_copy(m, 0, m->m_len); 1569 controlp = &(*controlp)->m_next; 1570 } 1571 m = m->m_next; 1572 } else { 1573 sbfree(&so->so_rcv, m); 1574 so->so_rcv.sb_mb = m->m_next; 1575 m->m_next = NULL; 1576 *cme = m; 1577 cme = &(*cme)->m_next; 1578 m = so->so_rcv.sb_mb; 1579 } 1580 } while (m != NULL && m->m_type == MT_CONTROL); 1581 if ((flags & MSG_PEEK) == 0) 1582 sockbuf_pushsync(&so->so_rcv, nextrecord); 1583 while (cm != NULL) { 1584 cmn = cm->m_next; 1585 cm->m_next = NULL; 1586 if (pr->pr_domain->dom_externalize != NULL) { 1587 SOCKBUF_UNLOCK(&so->so_rcv); 1588 error = (*pr->pr_domain->dom_externalize) 1589 (cm, controlp); 1590 SOCKBUF_LOCK(&so->so_rcv); 1591 } else if (controlp != NULL) 1592 *controlp = cm; 1593 else 1594 m_freem(cm); 1595 if (controlp != NULL) { 1596 orig_resid = 0; 1597 while (*controlp != NULL) 1598 controlp = &(*controlp)->m_next; 1599 } 1600 cm = cmn; 1601 } 1602 if (m != NULL) 1603 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 1604 else 1605 nextrecord = so->so_rcv.sb_mb; 1606 orig_resid = 0; 1607 } 1608 if (m != NULL) { 1609 if ((flags & MSG_PEEK) == 0) { 1610 KASSERT(m->m_nextpkt == nextrecord, 1611 ("soreceive: post-control, nextrecord !sync")); 1612 if (nextrecord == NULL) { 1613 KASSERT(so->so_rcv.sb_mb == m, 1614 ("soreceive: post-control, sb_mb!=m")); 1615 KASSERT(so->so_rcv.sb_lastrecord == m, 1616 ("soreceive: post-control, lastrecord!=m")); 1617 } 1618 } 1619 type = m->m_type; 1620 if (type == MT_OOBDATA) 1621 flags |= MSG_OOB; 1622 } else { 1623 if ((flags & MSG_PEEK) == 0) { 1624 KASSERT(so->so_rcv.sb_mb == nextrecord, 1625 ("soreceive: sb_mb != nextrecord")); 1626 if (so->so_rcv.sb_mb == NULL) { 1627 KASSERT(so->so_rcv.sb_lastrecord == NULL, 1628 ("soreceive: sb_lastercord != NULL")); 1629 } 1630 } 1631 } 1632 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1633 SBLASTRECORDCHK(&so->so_rcv); 1634 SBLASTMBUFCHK(&so->so_rcv); 1635 1636 /* 1637 * Now continue to read any data mbufs off of the head of the socket 1638 * buffer until the read request is satisfied. Note that 'type' is 1639 * used to store the type of any mbuf reads that have happened so far 1640 * such that soreceive() can stop reading if the type changes, which 1641 * causes soreceive() to return only one of regular data and inline 1642 * out-of-band data in a single socket receive operation. 1643 */ 1644 moff = 0; 1645 offset = 0; 1646 while (m != NULL && uio->uio_resid > 0 && error == 0) { 1647 /* 1648 * If the type of mbuf has changed since the last mbuf 1649 * examined ('type'), end the receive operation. 1650 */ 1651 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1652 if (m->m_type == MT_OOBDATA) { 1653 if (type != MT_OOBDATA) 1654 break; 1655 } else if (type == MT_OOBDATA) 1656 break; 1657 else 1658 KASSERT(m->m_type == MT_DATA, 1659 ("m->m_type == %d", m->m_type)); 1660 so->so_rcv.sb_state &= ~SBS_RCVATMARK; 1661 len = uio->uio_resid; 1662 if (so->so_oobmark && len > so->so_oobmark - offset) 1663 len = so->so_oobmark - offset; 1664 if (len > m->m_len - moff) 1665 len = m->m_len - moff; 1666 /* 1667 * If mp is set, just pass back the mbufs. Otherwise copy 1668 * them out via the uio, then free. Sockbuf must be 1669 * consistent here (points to current mbuf, it points to next 1670 * record) when we drop priority; we must note any additions 1671 * to the sockbuf when we block interrupts again. 1672 */ 1673 if (mp == NULL) { 1674 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1675 SBLASTRECORDCHK(&so->so_rcv); 1676 SBLASTMBUFCHK(&so->so_rcv); 1677 SOCKBUF_UNLOCK(&so->so_rcv); 1678 #ifdef ZERO_COPY_SOCKETS 1679 if (so_zero_copy_receive) { 1680 int disposable; 1681 1682 if ((m->m_flags & M_EXT) 1683 && (m->m_ext.ext_type == EXT_DISPOSABLE)) 1684 disposable = 1; 1685 else 1686 disposable = 0; 1687 1688 error = uiomoveco(mtod(m, char *) + moff, 1689 (int)len, uio, 1690 disposable); 1691 } else 1692 #endif /* ZERO_COPY_SOCKETS */ 1693 error = uiomove(mtod(m, char *) + moff, (int)len, uio); 1694 SOCKBUF_LOCK(&so->so_rcv); 1695 if (error) { 1696 /* 1697 * The MT_SONAME mbuf has already been removed 1698 * from the record, so it is necessary to 1699 * remove the data mbufs, if any, to preserve 1700 * the invariant in the case of PR_ADDR that 1701 * requires MT_SONAME mbufs at the head of 1702 * each record. 1703 */ 1704 if (m && pr->pr_flags & PR_ATOMIC && 1705 ((flags & MSG_PEEK) == 0)) 1706 (void)sbdroprecord_locked(&so->so_rcv); 1707 SOCKBUF_UNLOCK(&so->so_rcv); 1708 goto release; 1709 } 1710 } else 1711 uio->uio_resid -= len; 1712 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1713 if (len == m->m_len - moff) { 1714 if (m->m_flags & M_EOR) 1715 flags |= MSG_EOR; 1716 if (flags & MSG_PEEK) { 1717 m = m->m_next; 1718 moff = 0; 1719 } else { 1720 nextrecord = m->m_nextpkt; 1721 sbfree(&so->so_rcv, m); 1722 if (mp != NULL) { 1723 *mp = m; 1724 mp = &m->m_next; 1725 so->so_rcv.sb_mb = m = m->m_next; 1726 *mp = NULL; 1727 } else { 1728 so->so_rcv.sb_mb = m_free(m); 1729 m = so->so_rcv.sb_mb; 1730 } 1731 sockbuf_pushsync(&so->so_rcv, nextrecord); 1732 SBLASTRECORDCHK(&so->so_rcv); 1733 SBLASTMBUFCHK(&so->so_rcv); 1734 } 1735 } else { 1736 if (flags & MSG_PEEK) 1737 moff += len; 1738 else { 1739 if (mp != NULL) { 1740 int copy_flag; 1741 1742 if (flags & MSG_DONTWAIT) 1743 copy_flag = M_DONTWAIT; 1744 else 1745 copy_flag = M_WAIT; 1746 if (copy_flag == M_WAIT) 1747 SOCKBUF_UNLOCK(&so->so_rcv); 1748 *mp = m_copym(m, 0, len, copy_flag); 1749 if (copy_flag == M_WAIT) 1750 SOCKBUF_LOCK(&so->so_rcv); 1751 if (*mp == NULL) { 1752 /* 1753 * m_copym() couldn't 1754 * allocate an mbuf. Adjust 1755 * uio_resid back (it was 1756 * adjusted down by len 1757 * bytes, which we didn't end 1758 * up "copying" over). 1759 */ 1760 uio->uio_resid += len; 1761 break; 1762 } 1763 } 1764 m->m_data += len; 1765 m->m_len -= len; 1766 so->so_rcv.sb_cc -= len; 1767 } 1768 } 1769 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1770 if (so->so_oobmark) { 1771 if ((flags & MSG_PEEK) == 0) { 1772 so->so_oobmark -= len; 1773 if (so->so_oobmark == 0) { 1774 so->so_rcv.sb_state |= SBS_RCVATMARK; 1775 break; 1776 } 1777 } else { 1778 offset += len; 1779 if (offset == so->so_oobmark) 1780 break; 1781 } 1782 } 1783 if (flags & MSG_EOR) 1784 break; 1785 /* 1786 * If the MSG_WAITALL flag is set (for non-atomic socket), we 1787 * must not quit until "uio->uio_resid == 0" or an error 1788 * termination. If a signal/timeout occurs, return with a 1789 * short count but without error. Keep sockbuf locked 1790 * against other readers. 1791 */ 1792 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 1793 !sosendallatonce(so) && nextrecord == NULL) { 1794 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1795 if (so->so_error || so->so_rcv.sb_state & SBS_CANTRCVMORE) 1796 break; 1797 /* 1798 * Notify the protocol that some data has been 1799 * drained before blocking. 1800 */ 1801 if (pr->pr_flags & PR_WANTRCVD) { 1802 SOCKBUF_UNLOCK(&so->so_rcv); 1803 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 1804 SOCKBUF_LOCK(&so->so_rcv); 1805 } 1806 SBLASTRECORDCHK(&so->so_rcv); 1807 SBLASTMBUFCHK(&so->so_rcv); 1808 error = sbwait(&so->so_rcv); 1809 if (error) { 1810 SOCKBUF_UNLOCK(&so->so_rcv); 1811 goto release; 1812 } 1813 m = so->so_rcv.sb_mb; 1814 if (m != NULL) 1815 nextrecord = m->m_nextpkt; 1816 } 1817 } 1818 1819 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1820 if (m != NULL && pr->pr_flags & PR_ATOMIC) { 1821 flags |= MSG_TRUNC; 1822 if ((flags & MSG_PEEK) == 0) 1823 (void) sbdroprecord_locked(&so->so_rcv); 1824 } 1825 if ((flags & MSG_PEEK) == 0) { 1826 if (m == NULL) { 1827 /* 1828 * First part is an inline SB_EMPTY_FIXUP(). Second 1829 * part makes sure sb_lastrecord is up-to-date if 1830 * there is still data in the socket buffer. 1831 */ 1832 so->so_rcv.sb_mb = nextrecord; 1833 if (so->so_rcv.sb_mb == NULL) { 1834 so->so_rcv.sb_mbtail = NULL; 1835 so->so_rcv.sb_lastrecord = NULL; 1836 } else if (nextrecord->m_nextpkt == NULL) 1837 so->so_rcv.sb_lastrecord = nextrecord; 1838 } 1839 SBLASTRECORDCHK(&so->so_rcv); 1840 SBLASTMBUFCHK(&so->so_rcv); 1841 /* 1842 * If soreceive() is being done from the socket callback, 1843 * then don't need to generate ACK to peer to update window, 1844 * since ACK will be generated on return to TCP. 1845 */ 1846 if (!(flags & MSG_SOCALLBCK) && 1847 (pr->pr_flags & PR_WANTRCVD)) { 1848 SOCKBUF_UNLOCK(&so->so_rcv); 1849 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 1850 SOCKBUF_LOCK(&so->so_rcv); 1851 } 1852 } 1853 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1854 if (orig_resid == uio->uio_resid && orig_resid && 1855 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { 1856 SOCKBUF_UNLOCK(&so->so_rcv); 1857 goto restart; 1858 } 1859 SOCKBUF_UNLOCK(&so->so_rcv); 1860 1861 if (flagsp != NULL) 1862 *flagsp |= flags; 1863 release: 1864 sbunlock(&so->so_rcv); 1865 return (error); 1866 } 1867 1868 /* 1869 * Optimized version of soreceive() for stream (TCP) sockets. 1870 */ 1871 #ifdef TCP_SORECEIVE_STREAM 1872 int 1873 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio, 1874 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1875 { 1876 int len = 0, error = 0, flags, oresid; 1877 struct sockbuf *sb; 1878 struct mbuf *m, *n = NULL; 1879 1880 /* We only do stream sockets. */ 1881 if (so->so_type != SOCK_STREAM) 1882 return (EINVAL); 1883 if (psa != NULL) 1884 *psa = NULL; 1885 if (controlp != NULL) 1886 return (EINVAL); 1887 if (flagsp != NULL) 1888 flags = *flagsp &~ MSG_EOR; 1889 else 1890 flags = 0; 1891 if (flags & MSG_OOB) 1892 return (soreceive_rcvoob(so, uio, flags)); 1893 if (mp0 != NULL) 1894 *mp0 = NULL; 1895 1896 sb = &so->so_rcv; 1897 1898 /* Prevent other readers from entering the socket. */ 1899 error = sblock(sb, SBLOCKWAIT(flags)); 1900 if (error) 1901 goto out; 1902 SOCKBUF_LOCK(sb); 1903 1904 /* Easy one, no space to copyout anything. */ 1905 if (uio->uio_resid == 0) { 1906 error = EINVAL; 1907 goto out; 1908 } 1909 oresid = uio->uio_resid; 1910 1911 /* We will never ever get anything unless we are connected. */ 1912 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 1913 /* When disconnecting there may be still some data left. */ 1914 if (sb->sb_cc > 0) 1915 goto deliver; 1916 if (!(so->so_state & SS_ISDISCONNECTED)) 1917 error = ENOTCONN; 1918 goto out; 1919 } 1920 1921 /* Socket buffer is empty and we shall not block. */ 1922 if (sb->sb_cc == 0 && 1923 ((sb->sb_flags & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) { 1924 error = EAGAIN; 1925 goto out; 1926 } 1927 1928 restart: 1929 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1930 1931 /* Abort if socket has reported problems. */ 1932 if (so->so_error) { 1933 if (sb->sb_cc > 0) 1934 goto deliver; 1935 if (oresid > uio->uio_resid) 1936 goto out; 1937 error = so->so_error; 1938 if (!(flags & MSG_PEEK)) 1939 so->so_error = 0; 1940 goto out; 1941 } 1942 1943 /* Door is closed. Deliver what is left, if any. */ 1944 if (sb->sb_state & SBS_CANTRCVMORE) { 1945 if (sb->sb_cc > 0) 1946 goto deliver; 1947 else 1948 goto out; 1949 } 1950 1951 /* Socket buffer got some data that we shall deliver now. */ 1952 if (sb->sb_cc > 0 && !(flags & MSG_WAITALL) && 1953 ((sb->sb_flags & SS_NBIO) || 1954 (flags & (MSG_DONTWAIT|MSG_NBIO)) || 1955 sb->sb_cc >= sb->sb_lowat || 1956 sb->sb_cc >= uio->uio_resid || 1957 sb->sb_cc >= sb->sb_hiwat) ) { 1958 goto deliver; 1959 } 1960 1961 /* On MSG_WAITALL we must wait until all data or error arrives. */ 1962 if ((flags & MSG_WAITALL) && 1963 (sb->sb_cc >= uio->uio_resid || sb->sb_cc >= sb->sb_lowat)) 1964 goto deliver; 1965 1966 /* 1967 * Wait and block until (more) data comes in. 1968 * NB: Drops the sockbuf lock during wait. 1969 */ 1970 error = sbwait(sb); 1971 if (error) 1972 goto out; 1973 goto restart; 1974 1975 deliver: 1976 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1977 KASSERT(sb->sb_cc > 0, ("%s: sockbuf empty", __func__)); 1978 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__)); 1979 1980 /* Statistics. */ 1981 if (uio->uio_td) 1982 uio->uio_td->td_ru.ru_msgrcv++; 1983 1984 /* Fill uio until full or current end of socket buffer is reached. */ 1985 len = min(uio->uio_resid, sb->sb_cc); 1986 if (mp0 != NULL) { 1987 /* Dequeue as many mbufs as possible. */ 1988 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) { 1989 for (*mp0 = m = sb->sb_mb; 1990 m != NULL && m->m_len <= len; 1991 m = m->m_next) { 1992 len -= m->m_len; 1993 uio->uio_resid -= m->m_len; 1994 sbfree(sb, m); 1995 n = m; 1996 } 1997 sb->sb_mb = m; 1998 if (sb->sb_mb == NULL) 1999 SB_EMPTY_FIXUP(sb); 2000 n->m_next = NULL; 2001 } 2002 /* Copy the remainder. */ 2003 if (len > 0) { 2004 KASSERT(sb->sb_mb != NULL, 2005 ("%s: len > 0 && sb->sb_mb empty", __func__)); 2006 2007 m = m_copym(sb->sb_mb, 0, len, M_DONTWAIT); 2008 if (m == NULL) 2009 len = 0; /* Don't flush data from sockbuf. */ 2010 else 2011 uio->uio_resid -= m->m_len; 2012 if (*mp0 != NULL) 2013 n->m_next = m; 2014 else 2015 *mp0 = m; 2016 if (*mp0 == NULL) { 2017 error = ENOBUFS; 2018 goto out; 2019 } 2020 } 2021 } else { 2022 /* NB: Must unlock socket buffer as uiomove may sleep. */ 2023 SOCKBUF_UNLOCK(sb); 2024 error = m_mbuftouio(uio, sb->sb_mb, len); 2025 SOCKBUF_LOCK(sb); 2026 if (error) 2027 goto out; 2028 } 2029 SBLASTRECORDCHK(sb); 2030 SBLASTMBUFCHK(sb); 2031 2032 /* 2033 * Remove the delivered data from the socket buffer unless we 2034 * were only peeking. 2035 */ 2036 if (!(flags & MSG_PEEK)) { 2037 if (len > 0) 2038 sbdrop_locked(sb, len); 2039 2040 /* Notify protocol that we drained some data. */ 2041 if ((so->so_proto->pr_flags & PR_WANTRCVD) && 2042 (((flags & MSG_WAITALL) && uio->uio_resid > 0) || 2043 !(flags & MSG_SOCALLBCK))) { 2044 SOCKBUF_UNLOCK(sb); 2045 (*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags); 2046 SOCKBUF_LOCK(sb); 2047 } 2048 } 2049 2050 /* 2051 * For MSG_WAITALL we may have to loop again and wait for 2052 * more data to come in. 2053 */ 2054 if ((flags & MSG_WAITALL) && uio->uio_resid > 0) 2055 goto restart; 2056 out: 2057 SOCKBUF_LOCK_ASSERT(sb); 2058 SBLASTRECORDCHK(sb); 2059 SBLASTMBUFCHK(sb); 2060 SOCKBUF_UNLOCK(sb); 2061 sbunlock(sb); 2062 return (error); 2063 } 2064 #endif /* TCP_SORECEIVE_STREAM */ 2065 2066 /* 2067 * Optimized version of soreceive() for simple datagram cases from userspace. 2068 * Unlike in the stream case, we're able to drop a datagram if copyout() 2069 * fails, and because we handle datagrams atomically, we don't need to use a 2070 * sleep lock to prevent I/O interlacing. 2071 */ 2072 int 2073 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio, 2074 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2075 { 2076 struct mbuf *m, *m2; 2077 int flags, len, error; 2078 struct protosw *pr = so->so_proto; 2079 struct mbuf *nextrecord; 2080 2081 if (psa != NULL) 2082 *psa = NULL; 2083 if (controlp != NULL) 2084 *controlp = NULL; 2085 if (flagsp != NULL) 2086 flags = *flagsp &~ MSG_EOR; 2087 else 2088 flags = 0; 2089 2090 /* 2091 * For any complicated cases, fall back to the full 2092 * soreceive_generic(). 2093 */ 2094 if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB)) 2095 return (soreceive_generic(so, psa, uio, mp0, controlp, 2096 flagsp)); 2097 2098 /* 2099 * Enforce restrictions on use. 2100 */ 2101 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0, 2102 ("soreceive_dgram: wantrcvd")); 2103 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic")); 2104 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0, 2105 ("soreceive_dgram: SBS_RCVATMARK")); 2106 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0, 2107 ("soreceive_dgram: P_CONNREQUIRED")); 2108 2109 /* 2110 * Loop blocking while waiting for a datagram. 2111 */ 2112 SOCKBUF_LOCK(&so->so_rcv); 2113 while ((m = so->so_rcv.sb_mb) == NULL) { 2114 KASSERT(so->so_rcv.sb_cc == 0, 2115 ("soreceive_dgram: sb_mb NULL but sb_cc %u", 2116 so->so_rcv.sb_cc)); 2117 if (so->so_error) { 2118 error = so->so_error; 2119 so->so_error = 0; 2120 SOCKBUF_UNLOCK(&so->so_rcv); 2121 return (error); 2122 } 2123 if (so->so_rcv.sb_state & SBS_CANTRCVMORE || 2124 uio->uio_resid == 0) { 2125 SOCKBUF_UNLOCK(&so->so_rcv); 2126 return (0); 2127 } 2128 if ((so->so_state & SS_NBIO) || 2129 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2130 SOCKBUF_UNLOCK(&so->so_rcv); 2131 return (EWOULDBLOCK); 2132 } 2133 SBLASTRECORDCHK(&so->so_rcv); 2134 SBLASTMBUFCHK(&so->so_rcv); 2135 error = sbwait(&so->so_rcv); 2136 if (error) { 2137 SOCKBUF_UNLOCK(&so->so_rcv); 2138 return (error); 2139 } 2140 } 2141 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2142 2143 if (uio->uio_td) 2144 uio->uio_td->td_ru.ru_msgrcv++; 2145 SBLASTRECORDCHK(&so->so_rcv); 2146 SBLASTMBUFCHK(&so->so_rcv); 2147 nextrecord = m->m_nextpkt; 2148 if (nextrecord == NULL) { 2149 KASSERT(so->so_rcv.sb_lastrecord == m, 2150 ("soreceive_dgram: lastrecord != m")); 2151 } 2152 2153 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord, 2154 ("soreceive_dgram: m_nextpkt != nextrecord")); 2155 2156 /* 2157 * Pull 'm' and its chain off the front of the packet queue. 2158 */ 2159 so->so_rcv.sb_mb = NULL; 2160 sockbuf_pushsync(&so->so_rcv, nextrecord); 2161 2162 /* 2163 * Walk 'm's chain and free that many bytes from the socket buffer. 2164 */ 2165 for (m2 = m; m2 != NULL; m2 = m2->m_next) 2166 sbfree(&so->so_rcv, m2); 2167 2168 /* 2169 * Do a few last checks before we let go of the lock. 2170 */ 2171 SBLASTRECORDCHK(&so->so_rcv); 2172 SBLASTMBUFCHK(&so->so_rcv); 2173 SOCKBUF_UNLOCK(&so->so_rcv); 2174 2175 if (pr->pr_flags & PR_ADDR) { 2176 KASSERT(m->m_type == MT_SONAME, 2177 ("m->m_type == %d", m->m_type)); 2178 if (psa != NULL) 2179 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2180 M_NOWAIT); 2181 m = m_free(m); 2182 } 2183 if (m == NULL) { 2184 /* XXXRW: Can this happen? */ 2185 return (0); 2186 } 2187 2188 /* 2189 * Packet to copyout() is now in 'm' and it is disconnected from the 2190 * queue. 2191 * 2192 * Process one or more MT_CONTROL mbufs present before any data mbufs 2193 * in the first mbuf chain on the socket buffer. We call into the 2194 * protocol to perform externalization (or freeing if controlp == 2195 * NULL). 2196 */ 2197 if (m->m_type == MT_CONTROL) { 2198 struct mbuf *cm = NULL, *cmn; 2199 struct mbuf **cme = &cm; 2200 2201 do { 2202 m2 = m->m_next; 2203 m->m_next = NULL; 2204 *cme = m; 2205 cme = &(*cme)->m_next; 2206 m = m2; 2207 } while (m != NULL && m->m_type == MT_CONTROL); 2208 while (cm != NULL) { 2209 cmn = cm->m_next; 2210 cm->m_next = NULL; 2211 if (pr->pr_domain->dom_externalize != NULL) { 2212 error = (*pr->pr_domain->dom_externalize) 2213 (cm, controlp); 2214 } else if (controlp != NULL) 2215 *controlp = cm; 2216 else 2217 m_freem(cm); 2218 if (controlp != NULL) { 2219 while (*controlp != NULL) 2220 controlp = &(*controlp)->m_next; 2221 } 2222 cm = cmn; 2223 } 2224 } 2225 KASSERT(m->m_type == MT_DATA, ("soreceive_dgram: !data")); 2226 2227 while (m != NULL && uio->uio_resid > 0) { 2228 len = uio->uio_resid; 2229 if (len > m->m_len) 2230 len = m->m_len; 2231 error = uiomove(mtod(m, char *), (int)len, uio); 2232 if (error) { 2233 m_freem(m); 2234 return (error); 2235 } 2236 m = m_free(m); 2237 } 2238 if (m != NULL) 2239 flags |= MSG_TRUNC; 2240 m_freem(m); 2241 if (flagsp != NULL) 2242 *flagsp |= flags; 2243 return (0); 2244 } 2245 2246 int 2247 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, 2248 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2249 { 2250 2251 return (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, mp0, 2252 controlp, flagsp)); 2253 } 2254 2255 int 2256 soshutdown(struct socket *so, int how) 2257 { 2258 struct protosw *pr = so->so_proto; 2259 int error; 2260 2261 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 2262 return (EINVAL); 2263 if (pr->pr_usrreqs->pru_flush != NULL) { 2264 (*pr->pr_usrreqs->pru_flush)(so, how); 2265 } 2266 if (how != SHUT_WR) 2267 sorflush(so); 2268 if (how != SHUT_RD) { 2269 CURVNET_SET(so->so_vnet); 2270 error = (*pr->pr_usrreqs->pru_shutdown)(so); 2271 CURVNET_RESTORE(); 2272 return (error); 2273 } 2274 return (0); 2275 } 2276 2277 void 2278 sorflush(struct socket *so) 2279 { 2280 struct sockbuf *sb = &so->so_rcv; 2281 struct protosw *pr = so->so_proto; 2282 struct sockbuf asb; 2283 2284 /* 2285 * In order to avoid calling dom_dispose with the socket buffer mutex 2286 * held, and in order to generally avoid holding the lock for a long 2287 * time, we make a copy of the socket buffer and clear the original 2288 * (except locks, state). The new socket buffer copy won't have 2289 * initialized locks so we can only call routines that won't use or 2290 * assert those locks. 2291 * 2292 * Dislodge threads currently blocked in receive and wait to acquire 2293 * a lock against other simultaneous readers before clearing the 2294 * socket buffer. Don't let our acquire be interrupted by a signal 2295 * despite any existing socket disposition on interruptable waiting. 2296 */ 2297 CURVNET_SET(so->so_vnet); 2298 socantrcvmore(so); 2299 (void) sblock(sb, SBL_WAIT | SBL_NOINTR); 2300 2301 /* 2302 * Invalidate/clear most of the sockbuf structure, but leave selinfo 2303 * and mutex data unchanged. 2304 */ 2305 SOCKBUF_LOCK(sb); 2306 bzero(&asb, offsetof(struct sockbuf, sb_startzero)); 2307 bcopy(&sb->sb_startzero, &asb.sb_startzero, 2308 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 2309 bzero(&sb->sb_startzero, 2310 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 2311 SOCKBUF_UNLOCK(sb); 2312 sbunlock(sb); 2313 2314 /* 2315 * Dispose of special rights and flush the socket buffer. Don't call 2316 * any unsafe routines (that rely on locks being initialized) on asb. 2317 */ 2318 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 2319 (*pr->pr_domain->dom_dispose)(asb.sb_mb); 2320 sbrelease_internal(&asb, so); 2321 CURVNET_RESTORE(); 2322 } 2323 2324 /* 2325 * Perhaps this routine, and sooptcopyout(), below, ought to come in an 2326 * additional variant to handle the case where the option value needs to be 2327 * some kind of integer, but not a specific size. In addition to their use 2328 * here, these functions are also called by the protocol-level pr_ctloutput() 2329 * routines. 2330 */ 2331 int 2332 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen) 2333 { 2334 size_t valsize; 2335 2336 /* 2337 * If the user gives us more than we wanted, we ignore it, but if we 2338 * don't get the minimum length the caller wants, we return EINVAL. 2339 * On success, sopt->sopt_valsize is set to however much we actually 2340 * retrieved. 2341 */ 2342 if ((valsize = sopt->sopt_valsize) < minlen) 2343 return EINVAL; 2344 if (valsize > len) 2345 sopt->sopt_valsize = valsize = len; 2346 2347 if (sopt->sopt_td != NULL) 2348 return (copyin(sopt->sopt_val, buf, valsize)); 2349 2350 bcopy(sopt->sopt_val, buf, valsize); 2351 return (0); 2352 } 2353 2354 /* 2355 * Kernel version of setsockopt(2). 2356 * 2357 * XXX: optlen is size_t, not socklen_t 2358 */ 2359 int 2360 so_setsockopt(struct socket *so, int level, int optname, void *optval, 2361 size_t optlen) 2362 { 2363 struct sockopt sopt; 2364 2365 sopt.sopt_level = level; 2366 sopt.sopt_name = optname; 2367 sopt.sopt_dir = SOPT_SET; 2368 sopt.sopt_val = optval; 2369 sopt.sopt_valsize = optlen; 2370 sopt.sopt_td = NULL; 2371 return (sosetopt(so, &sopt)); 2372 } 2373 2374 int 2375 sosetopt(struct socket *so, struct sockopt *sopt) 2376 { 2377 int error, optval; 2378 struct linger l; 2379 struct timeval tv; 2380 u_long val; 2381 #ifdef MAC 2382 struct mac extmac; 2383 #endif 2384 2385 error = 0; 2386 if (sopt->sopt_level != SOL_SOCKET) { 2387 if (so->so_proto && so->so_proto->pr_ctloutput) 2388 return ((*so->so_proto->pr_ctloutput) 2389 (so, sopt)); 2390 error = ENOPROTOOPT; 2391 } else { 2392 switch (sopt->sopt_name) { 2393 #ifdef INET 2394 case SO_ACCEPTFILTER: 2395 error = do_setopt_accept_filter(so, sopt); 2396 if (error) 2397 goto bad; 2398 break; 2399 #endif 2400 case SO_LINGER: 2401 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 2402 if (error) 2403 goto bad; 2404 2405 SOCK_LOCK(so); 2406 so->so_linger = l.l_linger; 2407 if (l.l_onoff) 2408 so->so_options |= SO_LINGER; 2409 else 2410 so->so_options &= ~SO_LINGER; 2411 SOCK_UNLOCK(so); 2412 break; 2413 2414 case SO_DEBUG: 2415 case SO_KEEPALIVE: 2416 case SO_DONTROUTE: 2417 case SO_USELOOPBACK: 2418 case SO_BROADCAST: 2419 case SO_REUSEADDR: 2420 case SO_REUSEPORT: 2421 case SO_OOBINLINE: 2422 case SO_TIMESTAMP: 2423 case SO_BINTIME: 2424 case SO_NOSIGPIPE: 2425 case SO_NO_DDP: 2426 case SO_NO_OFFLOAD: 2427 error = sooptcopyin(sopt, &optval, sizeof optval, 2428 sizeof optval); 2429 if (error) 2430 goto bad; 2431 SOCK_LOCK(so); 2432 if (optval) 2433 so->so_options |= sopt->sopt_name; 2434 else 2435 so->so_options &= ~sopt->sopt_name; 2436 SOCK_UNLOCK(so); 2437 break; 2438 2439 case SO_SETFIB: 2440 error = sooptcopyin(sopt, &optval, sizeof optval, 2441 sizeof optval); 2442 if (optval < 1 || optval > rt_numfibs) { 2443 error = EINVAL; 2444 goto bad; 2445 } 2446 if ((so->so_proto->pr_domain->dom_family == PF_INET) || 2447 (so->so_proto->pr_domain->dom_family == PF_ROUTE)) { 2448 so->so_fibnum = optval; 2449 /* Note: ignore error */ 2450 if (so->so_proto && so->so_proto->pr_ctloutput) 2451 (*so->so_proto->pr_ctloutput)(so, sopt); 2452 } else { 2453 so->so_fibnum = 0; 2454 } 2455 break; 2456 case SO_SNDBUF: 2457 case SO_RCVBUF: 2458 case SO_SNDLOWAT: 2459 case SO_RCVLOWAT: 2460 error = sooptcopyin(sopt, &optval, sizeof optval, 2461 sizeof optval); 2462 if (error) 2463 goto bad; 2464 2465 /* 2466 * Values < 1 make no sense for any of these options, 2467 * so disallow them. 2468 */ 2469 if (optval < 1) { 2470 error = EINVAL; 2471 goto bad; 2472 } 2473 2474 switch (sopt->sopt_name) { 2475 case SO_SNDBUF: 2476 case SO_RCVBUF: 2477 if (sbreserve(sopt->sopt_name == SO_SNDBUF ? 2478 &so->so_snd : &so->so_rcv, (u_long)optval, 2479 so, curthread) == 0) { 2480 error = ENOBUFS; 2481 goto bad; 2482 } 2483 (sopt->sopt_name == SO_SNDBUF ? &so->so_snd : 2484 &so->so_rcv)->sb_flags &= ~SB_AUTOSIZE; 2485 break; 2486 2487 /* 2488 * Make sure the low-water is never greater than the 2489 * high-water. 2490 */ 2491 case SO_SNDLOWAT: 2492 SOCKBUF_LOCK(&so->so_snd); 2493 so->so_snd.sb_lowat = 2494 (optval > so->so_snd.sb_hiwat) ? 2495 so->so_snd.sb_hiwat : optval; 2496 SOCKBUF_UNLOCK(&so->so_snd); 2497 break; 2498 case SO_RCVLOWAT: 2499 SOCKBUF_LOCK(&so->so_rcv); 2500 so->so_rcv.sb_lowat = 2501 (optval > so->so_rcv.sb_hiwat) ? 2502 so->so_rcv.sb_hiwat : optval; 2503 SOCKBUF_UNLOCK(&so->so_rcv); 2504 break; 2505 } 2506 break; 2507 2508 case SO_SNDTIMEO: 2509 case SO_RCVTIMEO: 2510 #ifdef COMPAT_IA32 2511 if (SV_CURPROC_FLAG(SV_ILP32)) { 2512 struct timeval32 tv32; 2513 2514 error = sooptcopyin(sopt, &tv32, sizeof tv32, 2515 sizeof tv32); 2516 CP(tv32, tv, tv_sec); 2517 CP(tv32, tv, tv_usec); 2518 } else 2519 #endif 2520 error = sooptcopyin(sopt, &tv, sizeof tv, 2521 sizeof tv); 2522 if (error) 2523 goto bad; 2524 2525 /* assert(hz > 0); */ 2526 if (tv.tv_sec < 0 || tv.tv_sec > INT_MAX / hz || 2527 tv.tv_usec < 0 || tv.tv_usec >= 1000000) { 2528 error = EDOM; 2529 goto bad; 2530 } 2531 /* assert(tick > 0); */ 2532 /* assert(ULONG_MAX - INT_MAX >= 1000000); */ 2533 val = (u_long)(tv.tv_sec * hz) + tv.tv_usec / tick; 2534 if (val > INT_MAX) { 2535 error = EDOM; 2536 goto bad; 2537 } 2538 if (val == 0 && tv.tv_usec != 0) 2539 val = 1; 2540 2541 switch (sopt->sopt_name) { 2542 case SO_SNDTIMEO: 2543 so->so_snd.sb_timeo = val; 2544 break; 2545 case SO_RCVTIMEO: 2546 so->so_rcv.sb_timeo = val; 2547 break; 2548 } 2549 break; 2550 2551 case SO_LABEL: 2552 #ifdef MAC 2553 error = sooptcopyin(sopt, &extmac, sizeof extmac, 2554 sizeof extmac); 2555 if (error) 2556 goto bad; 2557 error = mac_setsockopt_label(sopt->sopt_td->td_ucred, 2558 so, &extmac); 2559 #else 2560 error = EOPNOTSUPP; 2561 #endif 2562 break; 2563 2564 default: 2565 error = ENOPROTOOPT; 2566 break; 2567 } 2568 if (error == 0 && so->so_proto != NULL && 2569 so->so_proto->pr_ctloutput != NULL) { 2570 (void) ((*so->so_proto->pr_ctloutput) 2571 (so, sopt)); 2572 } 2573 } 2574 bad: 2575 return (error); 2576 } 2577 2578 /* 2579 * Helper routine for getsockopt. 2580 */ 2581 int 2582 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 2583 { 2584 int error; 2585 size_t valsize; 2586 2587 error = 0; 2588 2589 /* 2590 * Documented get behavior is that we always return a value, possibly 2591 * truncated to fit in the user's buffer. Traditional behavior is 2592 * that we always tell the user precisely how much we copied, rather 2593 * than something useful like the total amount we had available for 2594 * her. Note that this interface is not idempotent; the entire 2595 * answer must generated ahead of time. 2596 */ 2597 valsize = min(len, sopt->sopt_valsize); 2598 sopt->sopt_valsize = valsize; 2599 if (sopt->sopt_val != NULL) { 2600 if (sopt->sopt_td != NULL) 2601 error = copyout(buf, sopt->sopt_val, valsize); 2602 else 2603 bcopy(buf, sopt->sopt_val, valsize); 2604 } 2605 return (error); 2606 } 2607 2608 int 2609 sogetopt(struct socket *so, struct sockopt *sopt) 2610 { 2611 int error, optval; 2612 struct linger l; 2613 struct timeval tv; 2614 #ifdef MAC 2615 struct mac extmac; 2616 #endif 2617 2618 error = 0; 2619 if (sopt->sopt_level != SOL_SOCKET) { 2620 if (so->so_proto && so->so_proto->pr_ctloutput) { 2621 return ((*so->so_proto->pr_ctloutput) 2622 (so, sopt)); 2623 } else 2624 return (ENOPROTOOPT); 2625 } else { 2626 switch (sopt->sopt_name) { 2627 #ifdef INET 2628 case SO_ACCEPTFILTER: 2629 error = do_getopt_accept_filter(so, sopt); 2630 break; 2631 #endif 2632 case SO_LINGER: 2633 SOCK_LOCK(so); 2634 l.l_onoff = so->so_options & SO_LINGER; 2635 l.l_linger = so->so_linger; 2636 SOCK_UNLOCK(so); 2637 error = sooptcopyout(sopt, &l, sizeof l); 2638 break; 2639 2640 case SO_USELOOPBACK: 2641 case SO_DONTROUTE: 2642 case SO_DEBUG: 2643 case SO_KEEPALIVE: 2644 case SO_REUSEADDR: 2645 case SO_REUSEPORT: 2646 case SO_BROADCAST: 2647 case SO_OOBINLINE: 2648 case SO_ACCEPTCONN: 2649 case SO_TIMESTAMP: 2650 case SO_BINTIME: 2651 case SO_NOSIGPIPE: 2652 optval = so->so_options & sopt->sopt_name; 2653 integer: 2654 error = sooptcopyout(sopt, &optval, sizeof optval); 2655 break; 2656 2657 case SO_TYPE: 2658 optval = so->so_type; 2659 goto integer; 2660 2661 case SO_ERROR: 2662 SOCK_LOCK(so); 2663 optval = so->so_error; 2664 so->so_error = 0; 2665 SOCK_UNLOCK(so); 2666 goto integer; 2667 2668 case SO_SNDBUF: 2669 optval = so->so_snd.sb_hiwat; 2670 goto integer; 2671 2672 case SO_RCVBUF: 2673 optval = so->so_rcv.sb_hiwat; 2674 goto integer; 2675 2676 case SO_SNDLOWAT: 2677 optval = so->so_snd.sb_lowat; 2678 goto integer; 2679 2680 case SO_RCVLOWAT: 2681 optval = so->so_rcv.sb_lowat; 2682 goto integer; 2683 2684 case SO_SNDTIMEO: 2685 case SO_RCVTIMEO: 2686 optval = (sopt->sopt_name == SO_SNDTIMEO ? 2687 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 2688 2689 tv.tv_sec = optval / hz; 2690 tv.tv_usec = (optval % hz) * tick; 2691 #ifdef COMPAT_IA32 2692 if (SV_CURPROC_FLAG(SV_ILP32)) { 2693 struct timeval32 tv32; 2694 2695 CP(tv, tv32, tv_sec); 2696 CP(tv, tv32, tv_usec); 2697 error = sooptcopyout(sopt, &tv32, sizeof tv32); 2698 } else 2699 #endif 2700 error = sooptcopyout(sopt, &tv, sizeof tv); 2701 break; 2702 2703 case SO_LABEL: 2704 #ifdef MAC 2705 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 2706 sizeof(extmac)); 2707 if (error) 2708 return (error); 2709 error = mac_getsockopt_label(sopt->sopt_td->td_ucred, 2710 so, &extmac); 2711 if (error) 2712 return (error); 2713 error = sooptcopyout(sopt, &extmac, sizeof extmac); 2714 #else 2715 error = EOPNOTSUPP; 2716 #endif 2717 break; 2718 2719 case SO_PEERLABEL: 2720 #ifdef MAC 2721 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 2722 sizeof(extmac)); 2723 if (error) 2724 return (error); 2725 error = mac_getsockopt_peerlabel( 2726 sopt->sopt_td->td_ucred, so, &extmac); 2727 if (error) 2728 return (error); 2729 error = sooptcopyout(sopt, &extmac, sizeof extmac); 2730 #else 2731 error = EOPNOTSUPP; 2732 #endif 2733 break; 2734 2735 case SO_LISTENQLIMIT: 2736 optval = so->so_qlimit; 2737 goto integer; 2738 2739 case SO_LISTENQLEN: 2740 optval = so->so_qlen; 2741 goto integer; 2742 2743 case SO_LISTENINCQLEN: 2744 optval = so->so_incqlen; 2745 goto integer; 2746 2747 default: 2748 error = ENOPROTOOPT; 2749 break; 2750 } 2751 return (error); 2752 } 2753 } 2754 2755 /* XXX; prepare mbuf for (__FreeBSD__ < 3) routines. */ 2756 int 2757 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 2758 { 2759 struct mbuf *m, *m_prev; 2760 int sopt_size = sopt->sopt_valsize; 2761 2762 MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA); 2763 if (m == NULL) 2764 return ENOBUFS; 2765 if (sopt_size > MLEN) { 2766 MCLGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT); 2767 if ((m->m_flags & M_EXT) == 0) { 2768 m_free(m); 2769 return ENOBUFS; 2770 } 2771 m->m_len = min(MCLBYTES, sopt_size); 2772 } else { 2773 m->m_len = min(MLEN, sopt_size); 2774 } 2775 sopt_size -= m->m_len; 2776 *mp = m; 2777 m_prev = m; 2778 2779 while (sopt_size) { 2780 MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA); 2781 if (m == NULL) { 2782 m_freem(*mp); 2783 return ENOBUFS; 2784 } 2785 if (sopt_size > MLEN) { 2786 MCLGET(m, sopt->sopt_td != NULL ? M_WAIT : 2787 M_DONTWAIT); 2788 if ((m->m_flags & M_EXT) == 0) { 2789 m_freem(m); 2790 m_freem(*mp); 2791 return ENOBUFS; 2792 } 2793 m->m_len = min(MCLBYTES, sopt_size); 2794 } else { 2795 m->m_len = min(MLEN, sopt_size); 2796 } 2797 sopt_size -= m->m_len; 2798 m_prev->m_next = m; 2799 m_prev = m; 2800 } 2801 return (0); 2802 } 2803 2804 /* XXX; copyin sopt data into mbuf chain for (__FreeBSD__ < 3) routines. */ 2805 int 2806 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 2807 { 2808 struct mbuf *m0 = m; 2809 2810 if (sopt->sopt_val == NULL) 2811 return (0); 2812 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 2813 if (sopt->sopt_td != NULL) { 2814 int error; 2815 2816 error = copyin(sopt->sopt_val, mtod(m, char *), 2817 m->m_len); 2818 if (error != 0) { 2819 m_freem(m0); 2820 return(error); 2821 } 2822 } else 2823 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 2824 sopt->sopt_valsize -= m->m_len; 2825 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 2826 m = m->m_next; 2827 } 2828 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 2829 panic("ip6_sooptmcopyin"); 2830 return (0); 2831 } 2832 2833 /* XXX; copyout mbuf chain data into soopt for (__FreeBSD__ < 3) routines. */ 2834 int 2835 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 2836 { 2837 struct mbuf *m0 = m; 2838 size_t valsize = 0; 2839 2840 if (sopt->sopt_val == NULL) 2841 return (0); 2842 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 2843 if (sopt->sopt_td != NULL) { 2844 int error; 2845 2846 error = copyout(mtod(m, char *), sopt->sopt_val, 2847 m->m_len); 2848 if (error != 0) { 2849 m_freem(m0); 2850 return(error); 2851 } 2852 } else 2853 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 2854 sopt->sopt_valsize -= m->m_len; 2855 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 2856 valsize += m->m_len; 2857 m = m->m_next; 2858 } 2859 if (m != NULL) { 2860 /* enough soopt buffer should be given from user-land */ 2861 m_freem(m0); 2862 return(EINVAL); 2863 } 2864 sopt->sopt_valsize = valsize; 2865 return (0); 2866 } 2867 2868 /* 2869 * sohasoutofband(): protocol notifies socket layer of the arrival of new 2870 * out-of-band data, which will then notify socket consumers. 2871 */ 2872 void 2873 sohasoutofband(struct socket *so) 2874 { 2875 2876 if (so->so_sigio != NULL) 2877 pgsigio(&so->so_sigio, SIGURG, 0); 2878 selwakeuppri(&so->so_rcv.sb_sel, PSOCK); 2879 } 2880 2881 int 2882 sopoll(struct socket *so, int events, struct ucred *active_cred, 2883 struct thread *td) 2884 { 2885 2886 return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred, 2887 td)); 2888 } 2889 2890 int 2891 sopoll_generic(struct socket *so, int events, struct ucred *active_cred, 2892 struct thread *td) 2893 { 2894 int revents = 0; 2895 2896 SOCKBUF_LOCK(&so->so_snd); 2897 SOCKBUF_LOCK(&so->so_rcv); 2898 if (events & (POLLIN | POLLRDNORM)) 2899 if (soreadabledata(so)) 2900 revents |= events & (POLLIN | POLLRDNORM); 2901 2902 if (events & (POLLOUT | POLLWRNORM)) 2903 if (sowriteable(so)) 2904 revents |= events & (POLLOUT | POLLWRNORM); 2905 2906 if (events & (POLLPRI | POLLRDBAND)) 2907 if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK)) 2908 revents |= events & (POLLPRI | POLLRDBAND); 2909 2910 if ((events & POLLINIGNEOF) == 0) { 2911 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 2912 revents |= events & (POLLIN | POLLRDNORM); 2913 if (so->so_snd.sb_state & SBS_CANTSENDMORE) 2914 revents |= POLLHUP; 2915 } 2916 } 2917 2918 if (revents == 0) { 2919 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) { 2920 selrecord(td, &so->so_rcv.sb_sel); 2921 so->so_rcv.sb_flags |= SB_SEL; 2922 } 2923 2924 if (events & (POLLOUT | POLLWRNORM)) { 2925 selrecord(td, &so->so_snd.sb_sel); 2926 so->so_snd.sb_flags |= SB_SEL; 2927 } 2928 } 2929 2930 SOCKBUF_UNLOCK(&so->so_rcv); 2931 SOCKBUF_UNLOCK(&so->so_snd); 2932 return (revents); 2933 } 2934 2935 int 2936 soo_kqfilter(struct file *fp, struct knote *kn) 2937 { 2938 struct socket *so = kn->kn_fp->f_data; 2939 struct sockbuf *sb; 2940 2941 switch (kn->kn_filter) { 2942 case EVFILT_READ: 2943 if (so->so_options & SO_ACCEPTCONN) 2944 kn->kn_fop = &solisten_filtops; 2945 else 2946 kn->kn_fop = &soread_filtops; 2947 sb = &so->so_rcv; 2948 break; 2949 case EVFILT_WRITE: 2950 kn->kn_fop = &sowrite_filtops; 2951 sb = &so->so_snd; 2952 break; 2953 default: 2954 return (EINVAL); 2955 } 2956 2957 SOCKBUF_LOCK(sb); 2958 knlist_add(&sb->sb_sel.si_note, kn, 1); 2959 sb->sb_flags |= SB_KNOTE; 2960 SOCKBUF_UNLOCK(sb); 2961 return (0); 2962 } 2963 2964 /* 2965 * Some routines that return EOPNOTSUPP for entry points that are not 2966 * supported by a protocol. Fill in as needed. 2967 */ 2968 int 2969 pru_accept_notsupp(struct socket *so, struct sockaddr **nam) 2970 { 2971 2972 return EOPNOTSUPP; 2973 } 2974 2975 int 2976 pru_attach_notsupp(struct socket *so, int proto, struct thread *td) 2977 { 2978 2979 return EOPNOTSUPP; 2980 } 2981 2982 int 2983 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 2984 { 2985 2986 return EOPNOTSUPP; 2987 } 2988 2989 int 2990 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 2991 { 2992 2993 return EOPNOTSUPP; 2994 } 2995 2996 int 2997 pru_connect2_notsupp(struct socket *so1, struct socket *so2) 2998 { 2999 3000 return EOPNOTSUPP; 3001 } 3002 3003 int 3004 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, 3005 struct ifnet *ifp, struct thread *td) 3006 { 3007 3008 return EOPNOTSUPP; 3009 } 3010 3011 int 3012 pru_disconnect_notsupp(struct socket *so) 3013 { 3014 3015 return EOPNOTSUPP; 3016 } 3017 3018 int 3019 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td) 3020 { 3021 3022 return EOPNOTSUPP; 3023 } 3024 3025 int 3026 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam) 3027 { 3028 3029 return EOPNOTSUPP; 3030 } 3031 3032 int 3033 pru_rcvd_notsupp(struct socket *so, int flags) 3034 { 3035 3036 return EOPNOTSUPP; 3037 } 3038 3039 int 3040 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) 3041 { 3042 3043 return EOPNOTSUPP; 3044 } 3045 3046 int 3047 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m, 3048 struct sockaddr *addr, struct mbuf *control, struct thread *td) 3049 { 3050 3051 return EOPNOTSUPP; 3052 } 3053 3054 /* 3055 * This isn't really a ``null'' operation, but it's the default one and 3056 * doesn't do anything destructive. 3057 */ 3058 int 3059 pru_sense_null(struct socket *so, struct stat *sb) 3060 { 3061 3062 sb->st_blksize = so->so_snd.sb_hiwat; 3063 return 0; 3064 } 3065 3066 int 3067 pru_shutdown_notsupp(struct socket *so) 3068 { 3069 3070 return EOPNOTSUPP; 3071 } 3072 3073 int 3074 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam) 3075 { 3076 3077 return EOPNOTSUPP; 3078 } 3079 3080 int 3081 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio, 3082 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 3083 { 3084 3085 return EOPNOTSUPP; 3086 } 3087 3088 int 3089 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr, 3090 struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 3091 { 3092 3093 return EOPNOTSUPP; 3094 } 3095 3096 int 3097 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred, 3098 struct thread *td) 3099 { 3100 3101 return EOPNOTSUPP; 3102 } 3103 3104 static void 3105 filt_sordetach(struct knote *kn) 3106 { 3107 struct socket *so = kn->kn_fp->f_data; 3108 3109 SOCKBUF_LOCK(&so->so_rcv); 3110 knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1); 3111 if (knlist_empty(&so->so_rcv.sb_sel.si_note)) 3112 so->so_rcv.sb_flags &= ~SB_KNOTE; 3113 SOCKBUF_UNLOCK(&so->so_rcv); 3114 } 3115 3116 /*ARGSUSED*/ 3117 static int 3118 filt_soread(struct knote *kn, long hint) 3119 { 3120 struct socket *so; 3121 3122 so = kn->kn_fp->f_data; 3123 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 3124 3125 kn->kn_data = so->so_rcv.sb_cc - so->so_rcv.sb_ctl; 3126 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3127 kn->kn_flags |= EV_EOF; 3128 kn->kn_fflags = so->so_error; 3129 return (1); 3130 } else if (so->so_error) /* temporary udp error */ 3131 return (1); 3132 else if (kn->kn_sfflags & NOTE_LOWAT) 3133 return (kn->kn_data >= kn->kn_sdata); 3134 else 3135 return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat); 3136 } 3137 3138 static void 3139 filt_sowdetach(struct knote *kn) 3140 { 3141 struct socket *so = kn->kn_fp->f_data; 3142 3143 SOCKBUF_LOCK(&so->so_snd); 3144 knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1); 3145 if (knlist_empty(&so->so_snd.sb_sel.si_note)) 3146 so->so_snd.sb_flags &= ~SB_KNOTE; 3147 SOCKBUF_UNLOCK(&so->so_snd); 3148 } 3149 3150 /*ARGSUSED*/ 3151 static int 3152 filt_sowrite(struct knote *kn, long hint) 3153 { 3154 struct socket *so; 3155 3156 so = kn->kn_fp->f_data; 3157 SOCKBUF_LOCK_ASSERT(&so->so_snd); 3158 kn->kn_data = sbspace(&so->so_snd); 3159 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 3160 kn->kn_flags |= EV_EOF; 3161 kn->kn_fflags = so->so_error; 3162 return (1); 3163 } else if (so->so_error) /* temporary udp error */ 3164 return (1); 3165 else if (((so->so_state & SS_ISCONNECTED) == 0) && 3166 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 3167 return (0); 3168 else if (kn->kn_sfflags & NOTE_LOWAT) 3169 return (kn->kn_data >= kn->kn_sdata); 3170 else 3171 return (kn->kn_data >= so->so_snd.sb_lowat); 3172 } 3173 3174 /*ARGSUSED*/ 3175 static int 3176 filt_solisten(struct knote *kn, long hint) 3177 { 3178 struct socket *so = kn->kn_fp->f_data; 3179 3180 kn->kn_data = so->so_qlen; 3181 return (! TAILQ_EMPTY(&so->so_comp)); 3182 } 3183 3184 int 3185 socheckuid(struct socket *so, uid_t uid) 3186 { 3187 3188 if (so == NULL) 3189 return (EPERM); 3190 if (so->so_cred->cr_uid != uid) 3191 return (EPERM); 3192 return (0); 3193 } 3194 3195 static int 3196 sysctl_somaxconn(SYSCTL_HANDLER_ARGS) 3197 { 3198 int error; 3199 int val; 3200 3201 val = somaxconn; 3202 error = sysctl_handle_int(oidp, &val, 0, req); 3203 if (error || !req->newptr ) 3204 return (error); 3205 3206 if (val < 1 || val > USHRT_MAX) 3207 return (EINVAL); 3208 3209 somaxconn = val; 3210 return (0); 3211 } 3212 3213 /* 3214 * These functions are used by protocols to notify the socket layer (and its 3215 * consumers) of state changes in the sockets driven by protocol-side events. 3216 */ 3217 3218 /* 3219 * Procedures to manipulate state flags of socket and do appropriate wakeups. 3220 * 3221 * Normal sequence from the active (originating) side is that 3222 * soisconnecting() is called during processing of connect() call, resulting 3223 * in an eventual call to soisconnected() if/when the connection is 3224 * established. When the connection is torn down soisdisconnecting() is 3225 * called during processing of disconnect() call, and soisdisconnected() is 3226 * called when the connection to the peer is totally severed. The semantics 3227 * of these routines are such that connectionless protocols can call 3228 * soisconnected() and soisdisconnected() only, bypassing the in-progress 3229 * calls when setting up a ``connection'' takes no time. 3230 * 3231 * From the passive side, a socket is created with two queues of sockets: 3232 * so_incomp for connections in progress and so_comp for connections already 3233 * made and awaiting user acceptance. As a protocol is preparing incoming 3234 * connections, it creates a socket structure queued on so_incomp by calling 3235 * sonewconn(). When the connection is established, soisconnected() is 3236 * called, and transfers the socket structure to so_comp, making it available 3237 * to accept(). 3238 * 3239 * If a socket is closed with sockets on either so_incomp or so_comp, these 3240 * sockets are dropped. 3241 * 3242 * If higher-level protocols are implemented in the kernel, the wakeups done 3243 * here will sometimes cause software-interrupt process scheduling. 3244 */ 3245 void 3246 soisconnecting(struct socket *so) 3247 { 3248 3249 SOCK_LOCK(so); 3250 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 3251 so->so_state |= SS_ISCONNECTING; 3252 SOCK_UNLOCK(so); 3253 } 3254 3255 void 3256 soisconnected(struct socket *so) 3257 { 3258 struct socket *head; 3259 int ret; 3260 3261 restart: 3262 ACCEPT_LOCK(); 3263 SOCK_LOCK(so); 3264 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 3265 so->so_state |= SS_ISCONNECTED; 3266 head = so->so_head; 3267 if (head != NULL && (so->so_qstate & SQ_INCOMP)) { 3268 if ((so->so_options & SO_ACCEPTFILTER) == 0) { 3269 SOCK_UNLOCK(so); 3270 TAILQ_REMOVE(&head->so_incomp, so, so_list); 3271 head->so_incqlen--; 3272 so->so_qstate &= ~SQ_INCOMP; 3273 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 3274 head->so_qlen++; 3275 so->so_qstate |= SQ_COMP; 3276 ACCEPT_UNLOCK(); 3277 sorwakeup(head); 3278 wakeup_one(&head->so_timeo); 3279 } else { 3280 ACCEPT_UNLOCK(); 3281 soupcall_set(so, SO_RCV, 3282 head->so_accf->so_accept_filter->accf_callback, 3283 head->so_accf->so_accept_filter_arg); 3284 so->so_options &= ~SO_ACCEPTFILTER; 3285 ret = head->so_accf->so_accept_filter->accf_callback(so, 3286 head->so_accf->so_accept_filter_arg, M_DONTWAIT); 3287 if (ret == SU_ISCONNECTED) 3288 soupcall_clear(so, SO_RCV); 3289 SOCK_UNLOCK(so); 3290 if (ret == SU_ISCONNECTED) 3291 goto restart; 3292 } 3293 return; 3294 } 3295 SOCK_UNLOCK(so); 3296 ACCEPT_UNLOCK(); 3297 wakeup(&so->so_timeo); 3298 sorwakeup(so); 3299 sowwakeup(so); 3300 } 3301 3302 void 3303 soisdisconnecting(struct socket *so) 3304 { 3305 3306 /* 3307 * Note: This code assumes that SOCK_LOCK(so) and 3308 * SOCKBUF_LOCK(&so->so_rcv) are the same. 3309 */ 3310 SOCKBUF_LOCK(&so->so_rcv); 3311 so->so_state &= ~SS_ISCONNECTING; 3312 so->so_state |= SS_ISDISCONNECTING; 3313 so->so_rcv.sb_state |= SBS_CANTRCVMORE; 3314 sorwakeup_locked(so); 3315 SOCKBUF_LOCK(&so->so_snd); 3316 so->so_snd.sb_state |= SBS_CANTSENDMORE; 3317 sowwakeup_locked(so); 3318 wakeup(&so->so_timeo); 3319 } 3320 3321 void 3322 soisdisconnected(struct socket *so) 3323 { 3324 3325 /* 3326 * Note: This code assumes that SOCK_LOCK(so) and 3327 * SOCKBUF_LOCK(&so->so_rcv) are the same. 3328 */ 3329 SOCKBUF_LOCK(&so->so_rcv); 3330 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 3331 so->so_state |= SS_ISDISCONNECTED; 3332 so->so_rcv.sb_state |= SBS_CANTRCVMORE; 3333 sorwakeup_locked(so); 3334 SOCKBUF_LOCK(&so->so_snd); 3335 so->so_snd.sb_state |= SBS_CANTSENDMORE; 3336 sbdrop_locked(&so->so_snd, so->so_snd.sb_cc); 3337 sowwakeup_locked(so); 3338 wakeup(&so->so_timeo); 3339 } 3340 3341 /* 3342 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 3343 */ 3344 struct sockaddr * 3345 sodupsockaddr(const struct sockaddr *sa, int mflags) 3346 { 3347 struct sockaddr *sa2; 3348 3349 sa2 = malloc(sa->sa_len, M_SONAME, mflags); 3350 if (sa2) 3351 bcopy(sa, sa2, sa->sa_len); 3352 return sa2; 3353 } 3354 3355 /* 3356 * Register per-socket buffer upcalls. 3357 */ 3358 void 3359 soupcall_set(struct socket *so, int which, 3360 int (*func)(struct socket *, void *, int), void *arg) 3361 { 3362 struct sockbuf *sb; 3363 3364 switch (which) { 3365 case SO_RCV: 3366 sb = &so->so_rcv; 3367 break; 3368 case SO_SND: 3369 sb = &so->so_snd; 3370 break; 3371 default: 3372 panic("soupcall_set: bad which"); 3373 } 3374 SOCKBUF_LOCK_ASSERT(sb); 3375 #if 0 3376 /* XXX: accf_http actually wants to do this on purpose. */ 3377 KASSERT(sb->sb_upcall == NULL, ("soupcall_set: overwriting upcall")); 3378 #endif 3379 sb->sb_upcall = func; 3380 sb->sb_upcallarg = arg; 3381 sb->sb_flags |= SB_UPCALL; 3382 } 3383 3384 void 3385 soupcall_clear(struct socket *so, int which) 3386 { 3387 struct sockbuf *sb; 3388 3389 switch (which) { 3390 case SO_RCV: 3391 sb = &so->so_rcv; 3392 break; 3393 case SO_SND: 3394 sb = &so->so_snd; 3395 break; 3396 default: 3397 panic("soupcall_clear: bad which"); 3398 } 3399 SOCKBUF_LOCK_ASSERT(sb); 3400 KASSERT(sb->sb_upcall != NULL, ("soupcall_clear: no upcall to clear")); 3401 sb->sb_upcall = NULL; 3402 sb->sb_upcallarg = NULL; 3403 sb->sb_flags &= ~SB_UPCALL; 3404 } 3405 3406 /* 3407 * Create an external-format (``xsocket'') structure using the information in 3408 * the kernel-format socket structure pointed to by so. This is done to 3409 * reduce the spew of irrelevant information over this interface, to isolate 3410 * user code from changes in the kernel structure, and potentially to provide 3411 * information-hiding if we decide that some of this information should be 3412 * hidden from users. 3413 */ 3414 void 3415 sotoxsocket(struct socket *so, struct xsocket *xso) 3416 { 3417 3418 xso->xso_len = sizeof *xso; 3419 xso->xso_so = so; 3420 xso->so_type = so->so_type; 3421 xso->so_options = so->so_options; 3422 xso->so_linger = so->so_linger; 3423 xso->so_state = so->so_state; 3424 xso->so_pcb = so->so_pcb; 3425 xso->xso_protocol = so->so_proto->pr_protocol; 3426 xso->xso_family = so->so_proto->pr_domain->dom_family; 3427 xso->so_qlen = so->so_qlen; 3428 xso->so_incqlen = so->so_incqlen; 3429 xso->so_qlimit = so->so_qlimit; 3430 xso->so_timeo = so->so_timeo; 3431 xso->so_error = so->so_error; 3432 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 3433 xso->so_oobmark = so->so_oobmark; 3434 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 3435 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 3436 xso->so_uid = so->so_cred->cr_uid; 3437 } 3438 3439 3440 /* 3441 * Socket accessor functions to provide external consumers with 3442 * a safe interface to socket state 3443 * 3444 */ 3445 3446 void 3447 so_listeners_apply_all(struct socket *so, void (*func)(struct socket *, void *), void *arg) 3448 { 3449 3450 TAILQ_FOREACH(so, &so->so_comp, so_list) 3451 func(so, arg); 3452 } 3453 3454 struct sockbuf * 3455 so_sockbuf_rcv(struct socket *so) 3456 { 3457 3458 return (&so->so_rcv); 3459 } 3460 3461 struct sockbuf * 3462 so_sockbuf_snd(struct socket *so) 3463 { 3464 3465 return (&so->so_snd); 3466 } 3467 3468 int 3469 so_state_get(const struct socket *so) 3470 { 3471 3472 return (so->so_state); 3473 } 3474 3475 void 3476 so_state_set(struct socket *so, int val) 3477 { 3478 3479 so->so_state = val; 3480 } 3481 3482 int 3483 so_options_get(const struct socket *so) 3484 { 3485 3486 return (so->so_options); 3487 } 3488 3489 void 3490 so_options_set(struct socket *so, int val) 3491 { 3492 3493 so->so_options = val; 3494 } 3495 3496 int 3497 so_error_get(const struct socket *so) 3498 { 3499 3500 return (so->so_error); 3501 } 3502 3503 void 3504 so_error_set(struct socket *so, int val) 3505 { 3506 3507 so->so_error = val; 3508 } 3509 3510 int 3511 so_linger_get(const struct socket *so) 3512 { 3513 3514 return (so->so_linger); 3515 } 3516 3517 void 3518 so_linger_set(struct socket *so, int val) 3519 { 3520 3521 so->so_linger = val; 3522 } 3523 3524 struct protosw * 3525 so_protosw_get(const struct socket *so) 3526 { 3527 3528 return (so->so_proto); 3529 } 3530 3531 void 3532 so_protosw_set(struct socket *so, struct protosw *val) 3533 { 3534 3535 so->so_proto = val; 3536 } 3537 3538 void 3539 so_sorwakeup(struct socket *so) 3540 { 3541 3542 sorwakeup(so); 3543 } 3544 3545 void 3546 so_sowwakeup(struct socket *so) 3547 { 3548 3549 sowwakeup(so); 3550 } 3551 3552 void 3553 so_sorwakeup_locked(struct socket *so) 3554 { 3555 3556 sorwakeup_locked(so); 3557 } 3558 3559 void 3560 so_sowwakeup_locked(struct socket *so) 3561 { 3562 3563 sowwakeup_locked(so); 3564 } 3565 3566 void 3567 so_lock(struct socket *so) 3568 { 3569 SOCK_LOCK(so); 3570 } 3571 3572 void 3573 so_unlock(struct socket *so) 3574 { 3575 SOCK_UNLOCK(so); 3576 } 3577