xref: /freebsd/sys/kern/uipc_socket.c (revision 9729f076e4d93c5a37e78d427bfe0f1ab99bbcc6)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
5  *	The Regents of the University of California.
6  * Copyright (c) 2004 The FreeBSD Foundation
7  * Copyright (c) 2004-2008 Robert N. M. Watson
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)uipc_socket.c	8.3 (Berkeley) 4/15/94
35  */
36 
37 /*
38  * Comments on the socket life cycle:
39  *
40  * soalloc() sets of socket layer state for a socket, called only by
41  * socreate() and sonewconn().  Socket layer private.
42  *
43  * sodealloc() tears down socket layer state for a socket, called only by
44  * sofree() and sonewconn().  Socket layer private.
45  *
46  * pru_attach() associates protocol layer state with an allocated socket;
47  * called only once, may fail, aborting socket allocation.  This is called
48  * from socreate() and sonewconn().  Socket layer private.
49  *
50  * pru_detach() disassociates protocol layer state from an attached socket,
51  * and will be called exactly once for sockets in which pru_attach() has
52  * been successfully called.  If pru_attach() returned an error,
53  * pru_detach() will not be called.  Socket layer private.
54  *
55  * pru_abort() and pru_close() notify the protocol layer that the last
56  * consumer of a socket is starting to tear down the socket, and that the
57  * protocol should terminate the connection.  Historically, pru_abort() also
58  * detached protocol state from the socket state, but this is no longer the
59  * case.
60  *
61  * socreate() creates a socket and attaches protocol state.  This is a public
62  * interface that may be used by socket layer consumers to create new
63  * sockets.
64  *
65  * sonewconn() creates a socket and attaches protocol state.  This is a
66  * public interface  that may be used by protocols to create new sockets when
67  * a new connection is received and will be available for accept() on a
68  * listen socket.
69  *
70  * soclose() destroys a socket after possibly waiting for it to disconnect.
71  * This is a public interface that socket consumers should use to close and
72  * release a socket when done with it.
73  *
74  * soabort() destroys a socket without waiting for it to disconnect (used
75  * only for incoming connections that are already partially or fully
76  * connected).  This is used internally by the socket layer when clearing
77  * listen socket queues (due to overflow or close on the listen socket), but
78  * is also a public interface protocols may use to abort connections in
79  * their incomplete listen queues should they no longer be required.  Sockets
80  * placed in completed connection listen queues should not be aborted for
81  * reasons described in the comment above the soclose() implementation.  This
82  * is not a general purpose close routine, and except in the specific
83  * circumstances described here, should not be used.
84  *
85  * sofree() will free a socket and its protocol state if all references on
86  * the socket have been released, and is the public interface to attempt to
87  * free a socket when a reference is removed.  This is a socket layer private
88  * interface.
89  *
90  * NOTE: In addition to socreate() and soclose(), which provide a single
91  * socket reference to the consumer to be managed as required, there are two
92  * calls to explicitly manage socket references, soref(), and sorele().
93  * Currently, these are generally required only when transitioning a socket
94  * from a listen queue to a file descriptor, in order to prevent garbage
95  * collection of the socket at an untimely moment.  For a number of reasons,
96  * these interfaces are not preferred, and should be avoided.
97  *
98  * NOTE: With regard to VNETs the general rule is that callers do not set
99  * curvnet. Exceptions to this rule include soabort(), sodisconnect(),
100  * sofree() (and with that sorele(), sotryfree()), as well as sonewconn()
101  * and sorflush(), which are usually called from a pre-set VNET context.
102  * sopoll() currently does not need a VNET context to be set.
103  */
104 
105 #include <sys/cdefs.h>
106 __FBSDID("$FreeBSD$");
107 
108 #include "opt_inet.h"
109 #include "opt_inet6.h"
110 #include "opt_kern_tls.h"
111 #include "opt_sctp.h"
112 
113 #include <sys/param.h>
114 #include <sys/systm.h>
115 #include <sys/capsicum.h>
116 #include <sys/fcntl.h>
117 #include <sys/limits.h>
118 #include <sys/lock.h>
119 #include <sys/mac.h>
120 #include <sys/malloc.h>
121 #include <sys/mbuf.h>
122 #include <sys/mutex.h>
123 #include <sys/domain.h>
124 #include <sys/file.h>			/* for struct knote */
125 #include <sys/hhook.h>
126 #include <sys/kernel.h>
127 #include <sys/khelp.h>
128 #include <sys/ktls.h>
129 #include <sys/event.h>
130 #include <sys/eventhandler.h>
131 #include <sys/poll.h>
132 #include <sys/proc.h>
133 #include <sys/protosw.h>
134 #include <sys/sbuf.h>
135 #include <sys/socket.h>
136 #include <sys/socketvar.h>
137 #include <sys/resourcevar.h>
138 #include <net/route.h>
139 #include <sys/signalvar.h>
140 #include <sys/stat.h>
141 #include <sys/sx.h>
142 #include <sys/sysctl.h>
143 #include <sys/taskqueue.h>
144 #include <sys/uio.h>
145 #include <sys/un.h>
146 #include <sys/unpcb.h>
147 #include <sys/jail.h>
148 #include <sys/syslog.h>
149 #include <netinet/in.h>
150 #include <netinet/in_pcb.h>
151 #include <netinet/tcp.h>
152 
153 #include <net/vnet.h>
154 
155 #include <security/mac/mac_framework.h>
156 
157 #include <vm/uma.h>
158 
159 #ifdef COMPAT_FREEBSD32
160 #include <sys/mount.h>
161 #include <sys/sysent.h>
162 #include <compat/freebsd32/freebsd32.h>
163 #endif
164 
165 static int	soreceive_rcvoob(struct socket *so, struct uio *uio,
166 		    int flags);
167 static void	so_rdknl_lock(void *);
168 static void	so_rdknl_unlock(void *);
169 static void	so_rdknl_assert_lock(void *, int);
170 static void	so_wrknl_lock(void *);
171 static void	so_wrknl_unlock(void *);
172 static void	so_wrknl_assert_lock(void *, int);
173 
174 static void	filt_sordetach(struct knote *kn);
175 static int	filt_soread(struct knote *kn, long hint);
176 static void	filt_sowdetach(struct knote *kn);
177 static int	filt_sowrite(struct knote *kn, long hint);
178 static int	filt_soempty(struct knote *kn, long hint);
179 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id);
180 fo_kqfilter_t	soo_kqfilter;
181 
182 static struct filterops soread_filtops = {
183 	.f_isfd = 1,
184 	.f_detach = filt_sordetach,
185 	.f_event = filt_soread,
186 };
187 static struct filterops sowrite_filtops = {
188 	.f_isfd = 1,
189 	.f_detach = filt_sowdetach,
190 	.f_event = filt_sowrite,
191 };
192 static struct filterops soempty_filtops = {
193 	.f_isfd = 1,
194 	.f_detach = filt_sowdetach,
195 	.f_event = filt_soempty,
196 };
197 
198 so_gen_t	so_gencnt;	/* generation count for sockets */
199 
200 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
201 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
202 
203 #define	VNET_SO_ASSERT(so)						\
204 	VNET_ASSERT(curvnet != NULL,					\
205 	    ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so)));
206 
207 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]);
208 #define	V_socket_hhh		VNET(socket_hhh)
209 
210 /*
211  * Limit on the number of connections in the listen queue waiting
212  * for accept(2).
213  * NB: The original sysctl somaxconn is still available but hidden
214  * to prevent confusion about the actual purpose of this number.
215  */
216 static u_int somaxconn = SOMAXCONN;
217 
218 static int
219 sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
220 {
221 	int error;
222 	int val;
223 
224 	val = somaxconn;
225 	error = sysctl_handle_int(oidp, &val, 0, req);
226 	if (error || !req->newptr )
227 		return (error);
228 
229 	/*
230 	 * The purpose of the UINT_MAX / 3 limit, is so that the formula
231 	 *   3 * so_qlimit / 2
232 	 * below, will not overflow.
233          */
234 
235 	if (val < 1 || val > UINT_MAX / 3)
236 		return (EINVAL);
237 
238 	somaxconn = val;
239 	return (0);
240 }
241 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue,
242     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, sizeof(int),
243     sysctl_somaxconn, "I",
244     "Maximum listen socket pending connection accept queue size");
245 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn,
246     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE, 0,
247     sizeof(int), sysctl_somaxconn, "I",
248     "Maximum listen socket pending connection accept queue size (compat)");
249 
250 static int numopensockets;
251 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,
252     &numopensockets, 0, "Number of open sockets");
253 
254 /*
255  * accept_mtx locks down per-socket fields relating to accept queues.  See
256  * socketvar.h for an annotation of the protected fields of struct socket.
257  */
258 struct mtx accept_mtx;
259 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF);
260 
261 /*
262  * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
263  * so_gencnt field.
264  */
265 static struct mtx so_global_mtx;
266 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
267 
268 /*
269  * General IPC sysctl name space, used by sockets and a variety of other IPC
270  * types.
271  */
272 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
273     "IPC");
274 
275 /*
276  * Initialize the socket subsystem and set up the socket
277  * memory allocator.
278  */
279 static uma_zone_t socket_zone;
280 int	maxsockets;
281 
282 static void
283 socket_zone_change(void *tag)
284 {
285 
286 	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
287 }
288 
289 static void
290 socket_hhook_register(int subtype)
291 {
292 
293 	if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype,
294 	    &V_socket_hhh[subtype],
295 	    HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
296 		printf("%s: WARNING: unable to register hook\n", __func__);
297 }
298 
299 static void
300 socket_hhook_deregister(int subtype)
301 {
302 
303 	if (hhook_head_deregister(V_socket_hhh[subtype]) != 0)
304 		printf("%s: WARNING: unable to deregister hook\n", __func__);
305 }
306 
307 static void
308 socket_init(void *tag)
309 {
310 
311 	socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL,
312 	    NULL, NULL, UMA_ALIGN_PTR, 0);
313 	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
314 	uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached");
315 	EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL,
316 	    EVENTHANDLER_PRI_FIRST);
317 }
318 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL);
319 
320 static void
321 socket_vnet_init(const void *unused __unused)
322 {
323 	int i;
324 
325 	/* We expect a contiguous range */
326 	for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
327 		socket_hhook_register(i);
328 }
329 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
330     socket_vnet_init, NULL);
331 
332 static void
333 socket_vnet_uninit(const void *unused __unused)
334 {
335 	int i;
336 
337 	for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
338 		socket_hhook_deregister(i);
339 }
340 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
341     socket_vnet_uninit, NULL);
342 
343 /*
344  * Initialise maxsockets.  This SYSINIT must be run after
345  * tunable_mbinit().
346  */
347 static void
348 init_maxsockets(void *ignored)
349 {
350 
351 	TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
352 	maxsockets = imax(maxsockets, maxfiles);
353 }
354 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
355 
356 /*
357  * Sysctl to get and set the maximum global sockets limit.  Notify protocols
358  * of the change so that they can update their dependent limits as required.
359  */
360 static int
361 sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
362 {
363 	int error, newmaxsockets;
364 
365 	newmaxsockets = maxsockets;
366 	error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
367 	if (error == 0 && req->newptr && newmaxsockets != maxsockets) {
368 		if (newmaxsockets > maxsockets &&
369 		    newmaxsockets <= maxfiles) {
370 			maxsockets = newmaxsockets;
371 			EVENTHANDLER_INVOKE(maxsockets_change);
372 		} else
373 			error = EINVAL;
374 	}
375 	return (error);
376 }
377 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets,
378     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, &maxsockets, 0,
379     sysctl_maxsockets, "IU",
380     "Maximum number of sockets available");
381 
382 /*
383  * Socket operation routines.  These routines are called by the routines in
384  * sys_socket.c or from a system process, and implement the semantics of
385  * socket operations by switching out to the protocol specific routines.
386  */
387 
388 /*
389  * Get a socket structure from our zone, and initialize it.  Note that it
390  * would probably be better to allocate socket and PCB at the same time, but
391  * I'm not convinced that all the protocols can be easily modified to do
392  * this.
393  *
394  * soalloc() returns a socket with a ref count of 0.
395  */
396 static struct socket *
397 soalloc(struct vnet *vnet)
398 {
399 	struct socket *so;
400 
401 	so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
402 	if (so == NULL)
403 		return (NULL);
404 #ifdef MAC
405 	if (mac_socket_init(so, M_NOWAIT) != 0) {
406 		uma_zfree(socket_zone, so);
407 		return (NULL);
408 	}
409 #endif
410 	if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) {
411 		uma_zfree(socket_zone, so);
412 		return (NULL);
413 	}
414 
415 	/*
416 	 * The socket locking protocol allows to lock 2 sockets at a time,
417 	 * however, the first one must be a listening socket.  WITNESS lacks
418 	 * a feature to change class of an existing lock, so we use DUPOK.
419 	 */
420 	mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK);
421 	mtx_init(&so->so_snd_mtx, "so_snd", NULL, MTX_DEF);
422 	mtx_init(&so->so_rcv_mtx, "so_rcv", NULL, MTX_DEF);
423 	so->so_rcv.sb_sel = &so->so_rdsel;
424 	so->so_snd.sb_sel = &so->so_wrsel;
425 	sx_init(&so->so_snd_sx, "so_snd_sx");
426 	sx_init(&so->so_rcv_sx, "so_rcv_sx");
427 	TAILQ_INIT(&so->so_snd.sb_aiojobq);
428 	TAILQ_INIT(&so->so_rcv.sb_aiojobq);
429 	TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so);
430 	TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so);
431 #ifdef VIMAGE
432 	VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p",
433 	    __func__, __LINE__, so));
434 	so->so_vnet = vnet;
435 #endif
436 	/* We shouldn't need the so_global_mtx */
437 	if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) {
438 		/* Do we need more comprehensive error returns? */
439 		uma_zfree(socket_zone, so);
440 		return (NULL);
441 	}
442 	mtx_lock(&so_global_mtx);
443 	so->so_gencnt = ++so_gencnt;
444 	++numopensockets;
445 #ifdef VIMAGE
446 	vnet->vnet_sockcnt++;
447 #endif
448 	mtx_unlock(&so_global_mtx);
449 
450 	return (so);
451 }
452 
453 /*
454  * Free the storage associated with a socket at the socket layer, tear down
455  * locks, labels, etc.  All protocol state is assumed already to have been
456  * torn down (and possibly never set up) by the caller.
457  */
458 void
459 sodealloc(struct socket *so)
460 {
461 
462 	KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
463 	KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
464 
465 	mtx_lock(&so_global_mtx);
466 	so->so_gencnt = ++so_gencnt;
467 	--numopensockets;	/* Could be below, but faster here. */
468 #ifdef VIMAGE
469 	VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p",
470 	    __func__, __LINE__, so));
471 	so->so_vnet->vnet_sockcnt--;
472 #endif
473 	mtx_unlock(&so_global_mtx);
474 #ifdef MAC
475 	mac_socket_destroy(so);
476 #endif
477 	hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE);
478 
479 	khelp_destroy_osd(&so->osd);
480 	if (SOLISTENING(so)) {
481 		if (so->sol_accept_filter != NULL)
482 			accept_filt_setopt(so, NULL);
483 	} else {
484 		if (so->so_rcv.sb_hiwat)
485 			(void)chgsbsize(so->so_cred->cr_uidinfo,
486 			    &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
487 		if (so->so_snd.sb_hiwat)
488 			(void)chgsbsize(so->so_cred->cr_uidinfo,
489 			    &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
490 		sx_destroy(&so->so_snd_sx);
491 		sx_destroy(&so->so_rcv_sx);
492 		mtx_destroy(&so->so_snd_mtx);
493 		mtx_destroy(&so->so_rcv_mtx);
494 	}
495 	crfree(so->so_cred);
496 	mtx_destroy(&so->so_lock);
497 	uma_zfree(socket_zone, so);
498 }
499 
500 /*
501  * socreate returns a socket with a ref count of 1 and a file descriptor
502  * reference.  The socket should be closed with soclose().
503  */
504 int
505 socreate(int dom, struct socket **aso, int type, int proto,
506     struct ucred *cred, struct thread *td)
507 {
508 	struct protosw *prp;
509 	struct socket *so;
510 	int error;
511 
512 	/*
513 	 * XXX: divert(4) historically abused PF_INET.  Keep this compatibility
514 	 * shim until all applications have been updated.
515 	 */
516 	if (__predict_false(dom == PF_INET && type == SOCK_RAW &&
517 	    proto == IPPROTO_DIVERT)) {
518 		dom = PF_DIVERT;
519 		printf("%s uses obsolete way to create divert(4) socket\n",
520 		    td->td_proc->p_comm);
521 	}
522 
523 	prp = pffindproto(dom, type, proto);
524 	if (prp == NULL) {
525 		/* No support for domain. */
526 		if (pffinddomain(dom) == NULL)
527 			return (EAFNOSUPPORT);
528 		/* No support for socket type. */
529 		if (proto == 0 && type != 0)
530 			return (EPROTOTYPE);
531 		return (EPROTONOSUPPORT);
532 	}
533 
534 	MPASS(prp->pr_attach);
535 
536 	if (IN_CAPABILITY_MODE(td) && (prp->pr_flags & PR_CAPATTACH) == 0)
537 		return (ECAPMODE);
538 
539 	if (prison_check_af(cred, prp->pr_domain->dom_family) != 0)
540 		return (EPROTONOSUPPORT);
541 
542 	so = soalloc(CRED_TO_VNET(cred));
543 	if (so == NULL)
544 		return (ENOBUFS);
545 
546 	so->so_type = type;
547 	so->so_cred = crhold(cred);
548 	if ((prp->pr_domain->dom_family == PF_INET) ||
549 	    (prp->pr_domain->dom_family == PF_INET6) ||
550 	    (prp->pr_domain->dom_family == PF_ROUTE))
551 		so->so_fibnum = td->td_proc->p_fibnum;
552 	else
553 		so->so_fibnum = 0;
554 	so->so_proto = prp;
555 #ifdef MAC
556 	mac_socket_create(cred, so);
557 #endif
558 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
559 	    so_rdknl_assert_lock);
560 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
561 	    so_wrknl_assert_lock);
562 	if ((prp->pr_flags & PR_SOCKBUF) == 0) {
563 		so->so_snd.sb_mtx = &so->so_snd_mtx;
564 		so->so_rcv.sb_mtx = &so->so_rcv_mtx;
565 	}
566 	/*
567 	 * Auto-sizing of socket buffers is managed by the protocols and
568 	 * the appropriate flags must be set in the pru_attach function.
569 	 */
570 	CURVNET_SET(so->so_vnet);
571 	error = prp->pr_attach(so, proto, td);
572 	CURVNET_RESTORE();
573 	if (error) {
574 		sodealloc(so);
575 		return (error);
576 	}
577 	soref(so);
578 	*aso = so;
579 	return (0);
580 }
581 
582 #ifdef REGRESSION
583 static int regression_sonewconn_earlytest = 1;
584 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
585     &regression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
586 #endif
587 
588 static struct timeval overinterval = { 60, 0 };
589 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW,
590     &overinterval,
591     "Delay in seconds between warnings for listen socket overflows");
592 
593 /*
594  * When an attempt at a new connection is noted on a socket which supports
595  * accept(2), the protocol has two options:
596  * 1) Call legacy sonewconn() function, which would call protocol attach
597  *    method, same as used for socket(2).
598  * 2) Call solisten_clone(), do attach that is specific to a cloned connection,
599  *    and then call solisten_enqueue().
600  *
601  * Note: the ref count on the socket is 0 on return.
602  */
603 struct socket *
604 solisten_clone(struct socket *head)
605 {
606 	struct sbuf descrsb;
607 	struct socket *so;
608 	int len, overcount;
609 	u_int qlen;
610 	const char localprefix[] = "local:";
611 	char descrbuf[SUNPATHLEN + sizeof(localprefix)];
612 #if defined(INET6)
613 	char addrbuf[INET6_ADDRSTRLEN];
614 #elif defined(INET)
615 	char addrbuf[INET_ADDRSTRLEN];
616 #endif
617 	bool dolog, over;
618 
619 	SOLISTEN_LOCK(head);
620 	over = (head->sol_qlen > 3 * head->sol_qlimit / 2);
621 #ifdef REGRESSION
622 	if (regression_sonewconn_earlytest && over) {
623 #else
624 	if (over) {
625 #endif
626 		head->sol_overcount++;
627 		dolog = !!ratecheck(&head->sol_lastover, &overinterval);
628 
629 		/*
630 		 * If we're going to log, copy the overflow count and queue
631 		 * length from the listen socket before dropping the lock.
632 		 * Also, reset the overflow count.
633 		 */
634 		if (dolog) {
635 			overcount = head->sol_overcount;
636 			head->sol_overcount = 0;
637 			qlen = head->sol_qlen;
638 		}
639 		SOLISTEN_UNLOCK(head);
640 
641 		if (dolog) {
642 			/*
643 			 * Try to print something descriptive about the
644 			 * socket for the error message.
645 			 */
646 			sbuf_new(&descrsb, descrbuf, sizeof(descrbuf),
647 			    SBUF_FIXEDLEN);
648 			switch (head->so_proto->pr_domain->dom_family) {
649 #if defined(INET) || defined(INET6)
650 #ifdef INET
651 			case AF_INET:
652 #endif
653 #ifdef INET6
654 			case AF_INET6:
655 				if (head->so_proto->pr_domain->dom_family ==
656 				    AF_INET6 ||
657 				    (sotoinpcb(head)->inp_inc.inc_flags &
658 				    INC_ISIPV6)) {
659 					ip6_sprintf(addrbuf,
660 					    &sotoinpcb(head)->inp_inc.inc6_laddr);
661 					sbuf_printf(&descrsb, "[%s]", addrbuf);
662 				} else
663 #endif
664 				{
665 #ifdef INET
666 					inet_ntoa_r(
667 					    sotoinpcb(head)->inp_inc.inc_laddr,
668 					    addrbuf);
669 					sbuf_cat(&descrsb, addrbuf);
670 #endif
671 				}
672 				sbuf_printf(&descrsb, ":%hu (proto %u)",
673 				    ntohs(sotoinpcb(head)->inp_inc.inc_lport),
674 				    head->so_proto->pr_protocol);
675 				break;
676 #endif /* INET || INET6 */
677 			case AF_UNIX:
678 				sbuf_cat(&descrsb, localprefix);
679 				if (sotounpcb(head)->unp_addr != NULL)
680 					len =
681 					    sotounpcb(head)->unp_addr->sun_len -
682 					    offsetof(struct sockaddr_un,
683 					    sun_path);
684 				else
685 					len = 0;
686 				if (len > 0)
687 					sbuf_bcat(&descrsb,
688 					    sotounpcb(head)->unp_addr->sun_path,
689 					    len);
690 				else
691 					sbuf_cat(&descrsb, "(unknown)");
692 				break;
693 			}
694 
695 			/*
696 			 * If we can't print something more specific, at least
697 			 * print the domain name.
698 			 */
699 			if (sbuf_finish(&descrsb) != 0 ||
700 			    sbuf_len(&descrsb) <= 0) {
701 				sbuf_clear(&descrsb);
702 				sbuf_cat(&descrsb,
703 				    head->so_proto->pr_domain->dom_name ?:
704 				    "unknown");
705 				sbuf_finish(&descrsb);
706 			}
707 			KASSERT(sbuf_len(&descrsb) > 0,
708 			    ("%s: sbuf creation failed", __func__));
709 			/*
710 			 * Preserve the historic listen queue overflow log
711 			 * message, that starts with "sonewconn:".  It has
712 			 * been known to sysadmins for years and also test
713 			 * sys/kern/sonewconn_overflow checks for it.
714 			 */
715 			if (head->so_cred == 0) {
716 				log(LOG_DEBUG, "sonewconn: pcb %p (%s): "
717 				    "Listen queue overflow: %i already in "
718 				    "queue awaiting acceptance (%d "
719 				    "occurrences)\n", head->so_pcb,
720 				    sbuf_data(&descrsb),
721 			    	qlen, overcount);
722 			} else {
723 				log(LOG_DEBUG, "sonewconn: pcb %p (%s): "
724 				    "Listen queue overflow: "
725 				    "%i already in queue awaiting acceptance "
726 				    "(%d occurrences), euid %d, rgid %d, jail %s\n",
727 				    head->so_pcb, sbuf_data(&descrsb), qlen,
728 				    overcount, head->so_cred->cr_uid,
729 				    head->so_cred->cr_rgid,
730 				    head->so_cred->cr_prison ?
731 					head->so_cred->cr_prison->pr_name :
732 					"not_jailed");
733 			}
734 			sbuf_delete(&descrsb);
735 
736 			overcount = 0;
737 		}
738 
739 		return (NULL);
740 	}
741 	SOLISTEN_UNLOCK(head);
742 	VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL",
743 	    __func__, head));
744 	so = soalloc(head->so_vnet);
745 	if (so == NULL) {
746 		log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
747 		    "limit reached or out of memory\n",
748 		    __func__, head->so_pcb);
749 		return (NULL);
750 	}
751 	so->so_listen = head;
752 	so->so_type = head->so_type;
753 	so->so_options = head->so_options & ~SO_ACCEPTCONN;
754 	so->so_linger = head->so_linger;
755 	so->so_state = head->so_state;
756 	so->so_fibnum = head->so_fibnum;
757 	so->so_proto = head->so_proto;
758 	so->so_cred = crhold(head->so_cred);
759 #ifdef MAC
760 	mac_socket_newconn(head, so);
761 #endif
762 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
763 	    so_rdknl_assert_lock);
764 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
765 	    so_wrknl_assert_lock);
766 	VNET_SO_ASSERT(head);
767 	if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) {
768 		sodealloc(so);
769 		log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
770 		    __func__, head->so_pcb);
771 		return (NULL);
772 	}
773 	so->so_rcv.sb_lowat = head->sol_sbrcv_lowat;
774 	so->so_snd.sb_lowat = head->sol_sbsnd_lowat;
775 	so->so_rcv.sb_timeo = head->sol_sbrcv_timeo;
776 	so->so_snd.sb_timeo = head->sol_sbsnd_timeo;
777 	so->so_rcv.sb_flags = head->sol_sbrcv_flags & SB_AUTOSIZE;
778 	so->so_snd.sb_flags = head->sol_sbsnd_flags & SB_AUTOSIZE;
779 	if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) {
780 		so->so_snd.sb_mtx = &so->so_snd_mtx;
781 		so->so_rcv.sb_mtx = &so->so_rcv_mtx;
782 	}
783 
784 	return (so);
785 }
786 
787 /* Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED. */
788 struct socket *
789 sonewconn(struct socket *head, int connstatus)
790 {
791 	struct socket *so;
792 
793 	if ((so = solisten_clone(head)) == NULL)
794 		return (NULL);
795 
796 	if (so->so_proto->pr_attach(so, 0, NULL) != 0) {
797 		sodealloc(so);
798 		log(LOG_DEBUG, "%s: pcb %p: pr_attach() failed\n",
799 		    __func__, head->so_pcb);
800 		return (NULL);
801 	}
802 
803 	(void)solisten_enqueue(so, connstatus);
804 
805 	return (so);
806 }
807 
808 /*
809  * Enqueue socket cloned by solisten_clone() to the listen queue of the
810  * listener it has been cloned from.
811  *
812  * Return 'true' if socket landed on complete queue, otherwise 'false'.
813  */
814 bool
815 solisten_enqueue(struct socket *so, int connstatus)
816 {
817 	struct socket *head = so->so_listen;
818 
819 	MPASS(refcount_load(&so->so_count) == 0);
820 	refcount_init(&so->so_count, 1);
821 
822 	SOLISTEN_LOCK(head);
823 	if (head->sol_accept_filter != NULL)
824 		connstatus = 0;
825 	so->so_state |= connstatus;
826 	soref(head); /* A socket on (in)complete queue refs head. */
827 	if (connstatus) {
828 		TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
829 		so->so_qstate = SQ_COMP;
830 		head->sol_qlen++;
831 		solisten_wakeup(head);	/* unlocks */
832 		return (true);
833 	} else {
834 		/*
835 		 * Keep removing sockets from the head until there's room for
836 		 * us to insert on the tail.  In pre-locking revisions, this
837 		 * was a simple if(), but as we could be racing with other
838 		 * threads and soabort() requires dropping locks, we must
839 		 * loop waiting for the condition to be true.
840 		 */
841 		while (head->sol_incqlen > head->sol_qlimit) {
842 			struct socket *sp;
843 
844 			sp = TAILQ_FIRST(&head->sol_incomp);
845 			TAILQ_REMOVE(&head->sol_incomp, sp, so_list);
846 			head->sol_incqlen--;
847 			SOCK_LOCK(sp);
848 			sp->so_qstate = SQ_NONE;
849 			sp->so_listen = NULL;
850 			SOCK_UNLOCK(sp);
851 			sorele_locked(head);	/* does SOLISTEN_UNLOCK, head stays */
852 			soabort(sp);
853 			SOLISTEN_LOCK(head);
854 		}
855 		TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list);
856 		so->so_qstate = SQ_INCOMP;
857 		head->sol_incqlen++;
858 		SOLISTEN_UNLOCK(head);
859 		return (false);
860 	}
861 }
862 
863 #if defined(SCTP) || defined(SCTP_SUPPORT)
864 /*
865  * Socket part of sctp_peeloff().  Detach a new socket from an
866  * association.  The new socket is returned with a reference.
867  *
868  * XXXGL: reduce copy-paste with solisten_clone().
869  */
870 struct socket *
871 sopeeloff(struct socket *head)
872 {
873 	struct socket *so;
874 
875 	VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p",
876 	    __func__, __LINE__, head));
877 	so = soalloc(head->so_vnet);
878 	if (so == NULL) {
879 		log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
880 		    "limit reached or out of memory\n",
881 		    __func__, head->so_pcb);
882 		return (NULL);
883 	}
884 	so->so_type = head->so_type;
885 	so->so_options = head->so_options;
886 	so->so_linger = head->so_linger;
887 	so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED;
888 	so->so_fibnum = head->so_fibnum;
889 	so->so_proto = head->so_proto;
890 	so->so_cred = crhold(head->so_cred);
891 #ifdef MAC
892 	mac_socket_newconn(head, so);
893 #endif
894 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
895 	    so_rdknl_assert_lock);
896 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
897 	    so_wrknl_assert_lock);
898 	VNET_SO_ASSERT(head);
899 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
900 		sodealloc(so);
901 		log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
902 		    __func__, head->so_pcb);
903 		return (NULL);
904 	}
905 	if ((*so->so_proto->pr_attach)(so, 0, NULL)) {
906 		sodealloc(so);
907 		log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n",
908 		    __func__, head->so_pcb);
909 		return (NULL);
910 	}
911 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
912 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
913 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
914 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
915 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
916 	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
917 
918 	soref(so);
919 
920 	return (so);
921 }
922 #endif	/* SCTP */
923 
924 int
925 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
926 {
927 	int error;
928 
929 	CURVNET_SET(so->so_vnet);
930 	error = so->so_proto->pr_bind(so, nam, td);
931 	CURVNET_RESTORE();
932 	return (error);
933 }
934 
935 int
936 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
937 {
938 	int error;
939 
940 	CURVNET_SET(so->so_vnet);
941 	error = so->so_proto->pr_bindat(fd, so, nam, td);
942 	CURVNET_RESTORE();
943 	return (error);
944 }
945 
946 /*
947  * solisten() transitions a socket from a non-listening state to a listening
948  * state, but can also be used to update the listen queue depth on an
949  * existing listen socket.  The protocol will call back into the sockets
950  * layer using solisten_proto_check() and solisten_proto() to check and set
951  * socket-layer listen state.  Call backs are used so that the protocol can
952  * acquire both protocol and socket layer locks in whatever order is required
953  * by the protocol.
954  *
955  * Protocol implementors are advised to hold the socket lock across the
956  * socket-layer test and set to avoid races at the socket layer.
957  */
958 int
959 solisten(struct socket *so, int backlog, struct thread *td)
960 {
961 	int error;
962 
963 	CURVNET_SET(so->so_vnet);
964 	error = so->so_proto->pr_listen(so, backlog, td);
965 	CURVNET_RESTORE();
966 	return (error);
967 }
968 
969 /*
970  * Prepare for a call to solisten_proto().  Acquire all socket buffer locks in
971  * order to interlock with socket I/O.
972  */
973 int
974 solisten_proto_check(struct socket *so)
975 {
976 	SOCK_LOCK_ASSERT(so);
977 
978 	if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
979 	    SS_ISDISCONNECTING)) != 0)
980 		return (EINVAL);
981 
982 	/*
983 	 * Sleeping is not permitted here, so simply fail if userspace is
984 	 * attempting to transmit or receive on the socket.  This kind of
985 	 * transient failure is not ideal, but it should occur only if userspace
986 	 * is misusing the socket interfaces.
987 	 */
988 	if (!sx_try_xlock(&so->so_snd_sx))
989 		return (EAGAIN);
990 	if (!sx_try_xlock(&so->so_rcv_sx)) {
991 		sx_xunlock(&so->so_snd_sx);
992 		return (EAGAIN);
993 	}
994 	mtx_lock(&so->so_snd_mtx);
995 	mtx_lock(&so->so_rcv_mtx);
996 
997 	/* Interlock with soo_aio_queue(). */
998 	if (!SOLISTENING(so) &&
999 	   ((so->so_snd.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0 ||
1000 	   (so->so_rcv.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0)) {
1001 		solisten_proto_abort(so);
1002 		return (EINVAL);
1003 	}
1004 	return (0);
1005 }
1006 
1007 /*
1008  * Undo the setup done by solisten_proto_check().
1009  */
1010 void
1011 solisten_proto_abort(struct socket *so)
1012 {
1013 	mtx_unlock(&so->so_snd_mtx);
1014 	mtx_unlock(&so->so_rcv_mtx);
1015 	sx_xunlock(&so->so_snd_sx);
1016 	sx_xunlock(&so->so_rcv_sx);
1017 }
1018 
1019 void
1020 solisten_proto(struct socket *so, int backlog)
1021 {
1022 	int sbrcv_lowat, sbsnd_lowat;
1023 	u_int sbrcv_hiwat, sbsnd_hiwat;
1024 	short sbrcv_flags, sbsnd_flags;
1025 	sbintime_t sbrcv_timeo, sbsnd_timeo;
1026 
1027 	SOCK_LOCK_ASSERT(so);
1028 	KASSERT((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
1029 	    SS_ISDISCONNECTING)) == 0,
1030 	    ("%s: bad socket state %p", __func__, so));
1031 
1032 	if (SOLISTENING(so))
1033 		goto listening;
1034 
1035 	/*
1036 	 * Change this socket to listening state.
1037 	 */
1038 	sbrcv_lowat = so->so_rcv.sb_lowat;
1039 	sbsnd_lowat = so->so_snd.sb_lowat;
1040 	sbrcv_hiwat = so->so_rcv.sb_hiwat;
1041 	sbsnd_hiwat = so->so_snd.sb_hiwat;
1042 	sbrcv_flags = so->so_rcv.sb_flags;
1043 	sbsnd_flags = so->so_snd.sb_flags;
1044 	sbrcv_timeo = so->so_rcv.sb_timeo;
1045 	sbsnd_timeo = so->so_snd.sb_timeo;
1046 
1047 	sbdestroy(so, SO_SND);
1048 	sbdestroy(so, SO_RCV);
1049 
1050 #ifdef INVARIANTS
1051 	bzero(&so->so_rcv,
1052 	    sizeof(struct socket) - offsetof(struct socket, so_rcv));
1053 #endif
1054 
1055 	so->sol_sbrcv_lowat = sbrcv_lowat;
1056 	so->sol_sbsnd_lowat = sbsnd_lowat;
1057 	so->sol_sbrcv_hiwat = sbrcv_hiwat;
1058 	so->sol_sbsnd_hiwat = sbsnd_hiwat;
1059 	so->sol_sbrcv_flags = sbrcv_flags;
1060 	so->sol_sbsnd_flags = sbsnd_flags;
1061 	so->sol_sbrcv_timeo = sbrcv_timeo;
1062 	so->sol_sbsnd_timeo = sbsnd_timeo;
1063 
1064 	so->sol_qlen = so->sol_incqlen = 0;
1065 	TAILQ_INIT(&so->sol_incomp);
1066 	TAILQ_INIT(&so->sol_comp);
1067 
1068 	so->sol_accept_filter = NULL;
1069 	so->sol_accept_filter_arg = NULL;
1070 	so->sol_accept_filter_str = NULL;
1071 
1072 	so->sol_upcall = NULL;
1073 	so->sol_upcallarg = NULL;
1074 
1075 	so->so_options |= SO_ACCEPTCONN;
1076 
1077 listening:
1078 	if (backlog < 0 || backlog > somaxconn)
1079 		backlog = somaxconn;
1080 	so->sol_qlimit = backlog;
1081 
1082 	mtx_unlock(&so->so_snd_mtx);
1083 	mtx_unlock(&so->so_rcv_mtx);
1084 	sx_xunlock(&so->so_snd_sx);
1085 	sx_xunlock(&so->so_rcv_sx);
1086 }
1087 
1088 /*
1089  * Wakeup listeners/subsystems once we have a complete connection.
1090  * Enters with lock, returns unlocked.
1091  */
1092 void
1093 solisten_wakeup(struct socket *sol)
1094 {
1095 
1096 	if (sol->sol_upcall != NULL)
1097 		(void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT);
1098 	else {
1099 		selwakeuppri(&sol->so_rdsel, PSOCK);
1100 		KNOTE_LOCKED(&sol->so_rdsel.si_note, 0);
1101 	}
1102 	SOLISTEN_UNLOCK(sol);
1103 	wakeup_one(&sol->sol_comp);
1104 	if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL)
1105 		pgsigio(&sol->so_sigio, SIGIO, 0);
1106 }
1107 
1108 /*
1109  * Return single connection off a listening socket queue.  Main consumer of
1110  * the function is kern_accept4().  Some modules, that do their own accept
1111  * management also use the function.  The socket reference held by the
1112  * listen queue is handed to the caller.
1113  *
1114  * Listening socket must be locked on entry and is returned unlocked on
1115  * return.
1116  * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT.
1117  */
1118 int
1119 solisten_dequeue(struct socket *head, struct socket **ret, int flags)
1120 {
1121 	struct socket *so;
1122 	int error;
1123 
1124 	SOLISTEN_LOCK_ASSERT(head);
1125 
1126 	while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) &&
1127 	    head->so_error == 0) {
1128 		error = msleep(&head->sol_comp, SOCK_MTX(head), PSOCK | PCATCH,
1129 		    "accept", 0);
1130 		if (error != 0) {
1131 			SOLISTEN_UNLOCK(head);
1132 			return (error);
1133 		}
1134 	}
1135 	if (head->so_error) {
1136 		error = head->so_error;
1137 		head->so_error = 0;
1138 	} else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp))
1139 		error = EWOULDBLOCK;
1140 	else
1141 		error = 0;
1142 	if (error) {
1143 		SOLISTEN_UNLOCK(head);
1144 		return (error);
1145 	}
1146 	so = TAILQ_FIRST(&head->sol_comp);
1147 	SOCK_LOCK(so);
1148 	KASSERT(so->so_qstate == SQ_COMP,
1149 	    ("%s: so %p not SQ_COMP", __func__, so));
1150 	head->sol_qlen--;
1151 	so->so_qstate = SQ_NONE;
1152 	so->so_listen = NULL;
1153 	TAILQ_REMOVE(&head->sol_comp, so, so_list);
1154 	if (flags & ACCEPT4_INHERIT)
1155 		so->so_state |= (head->so_state & SS_NBIO);
1156 	else
1157 		so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0;
1158 	SOCK_UNLOCK(so);
1159 	sorele_locked(head);
1160 
1161 	*ret = so;
1162 	return (0);
1163 }
1164 
1165 /*
1166  * Free socket upon release of the very last reference.
1167  */
1168 static void
1169 sofree(struct socket *so)
1170 {
1171 	struct protosw *pr = so->so_proto;
1172 
1173 	SOCK_LOCK_ASSERT(so);
1174 	KASSERT(refcount_load(&so->so_count) == 0,
1175 	    ("%s: so %p has references", __func__, so));
1176 	KASSERT(SOLISTENING(so) || so->so_qstate == SQ_NONE,
1177 	    ("%s: so %p is on listen queue", __func__, so));
1178 
1179 	SOCK_UNLOCK(so);
1180 
1181 	if (so->so_dtor != NULL)
1182 		so->so_dtor(so);
1183 
1184 	VNET_SO_ASSERT(so);
1185 	if ((pr->pr_flags & PR_RIGHTS) && !SOLISTENING(so)) {
1186 		MPASS(pr->pr_domain->dom_dispose != NULL);
1187 		(*pr->pr_domain->dom_dispose)(so);
1188 	}
1189 	if (pr->pr_detach != NULL)
1190 		pr->pr_detach(so);
1191 
1192 	/*
1193 	 * From this point on, we assume that no other references to this
1194 	 * socket exist anywhere else in the stack.  Therefore, no locks need
1195 	 * to be acquired or held.
1196 	 */
1197 	if (!(pr->pr_flags & PR_SOCKBUF) && !SOLISTENING(so)) {
1198 		sbdestroy(so, SO_SND);
1199 		sbdestroy(so, SO_RCV);
1200 	}
1201 	seldrain(&so->so_rdsel);
1202 	seldrain(&so->so_wrsel);
1203 	knlist_destroy(&so->so_rdsel.si_note);
1204 	knlist_destroy(&so->so_wrsel.si_note);
1205 	sodealloc(so);
1206 }
1207 
1208 /*
1209  * Release a reference on a socket while holding the socket lock.
1210  * Unlocks the socket lock before returning.
1211  */
1212 void
1213 sorele_locked(struct socket *so)
1214 {
1215 	SOCK_LOCK_ASSERT(so);
1216 	if (refcount_release(&so->so_count))
1217 		sofree(so);
1218 	else
1219 		SOCK_UNLOCK(so);
1220 }
1221 
1222 /*
1223  * Close a socket on last file table reference removal.  Initiate disconnect
1224  * if connected.  Free socket when disconnect complete.
1225  *
1226  * This function will sorele() the socket.  Note that soclose() may be called
1227  * prior to the ref count reaching zero.  The actual socket structure will
1228  * not be freed until the ref count reaches zero.
1229  */
1230 int
1231 soclose(struct socket *so)
1232 {
1233 	struct accept_queue lqueue;
1234 	int error = 0;
1235 	bool listening, last __diagused;
1236 
1237 	CURVNET_SET(so->so_vnet);
1238 	funsetown(&so->so_sigio);
1239 	if (so->so_state & SS_ISCONNECTED) {
1240 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
1241 			error = sodisconnect(so);
1242 			if (error) {
1243 				if (error == ENOTCONN)
1244 					error = 0;
1245 				goto drop;
1246 			}
1247 		}
1248 
1249 		if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) {
1250 			if ((so->so_state & SS_ISDISCONNECTING) &&
1251 			    (so->so_state & SS_NBIO))
1252 				goto drop;
1253 			while (so->so_state & SS_ISCONNECTED) {
1254 				error = tsleep(&so->so_timeo,
1255 				    PSOCK | PCATCH, "soclos",
1256 				    so->so_linger * hz);
1257 				if (error)
1258 					break;
1259 			}
1260 		}
1261 	}
1262 
1263 drop:
1264 	if (so->so_proto->pr_close != NULL)
1265 		so->so_proto->pr_close(so);
1266 
1267 	SOCK_LOCK(so);
1268 	if ((listening = SOLISTENING(so))) {
1269 		struct socket *sp;
1270 
1271 		TAILQ_INIT(&lqueue);
1272 		TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list);
1273 		TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list);
1274 
1275 		so->sol_qlen = so->sol_incqlen = 0;
1276 
1277 		TAILQ_FOREACH(sp, &lqueue, so_list) {
1278 			SOCK_LOCK(sp);
1279 			sp->so_qstate = SQ_NONE;
1280 			sp->so_listen = NULL;
1281 			SOCK_UNLOCK(sp);
1282 			last = refcount_release(&so->so_count);
1283 			KASSERT(!last, ("%s: released last reference for %p",
1284 			    __func__, so));
1285 		}
1286 	}
1287 	sorele_locked(so);
1288 	if (listening) {
1289 		struct socket *sp, *tsp;
1290 
1291 		TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp)
1292 			soabort(sp);
1293 	}
1294 	CURVNET_RESTORE();
1295 	return (error);
1296 }
1297 
1298 /*
1299  * soabort() is used to abruptly tear down a connection, such as when a
1300  * resource limit is reached (listen queue depth exceeded), or if a listen
1301  * socket is closed while there are sockets waiting to be accepted.
1302  *
1303  * This interface is tricky, because it is called on an unreferenced socket,
1304  * and must be called only by a thread that has actually removed the socket
1305  * from the listen queue it was on.  Likely this thread holds the last
1306  * reference on the socket and soabort() will proceed with sofree().  But
1307  * it might be not the last, as the sockets on the listen queues are seen
1308  * from the protocol side.
1309  *
1310  * This interface will call into the protocol code, so must not be called
1311  * with any socket locks held.  Protocols do call it while holding their own
1312  * recursible protocol mutexes, but this is something that should be subject
1313  * to review in the future.
1314  *
1315  * Usually socket should have a single reference left, but this is not a
1316  * requirement.  In the past, when we have had named references for file
1317  * descriptor and protocol, we asserted that none of them are being held.
1318  */
1319 void
1320 soabort(struct socket *so)
1321 {
1322 
1323 	VNET_SO_ASSERT(so);
1324 
1325 	if (so->so_proto->pr_abort != NULL)
1326 		so->so_proto->pr_abort(so);
1327 	SOCK_LOCK(so);
1328 	sorele_locked(so);
1329 }
1330 
1331 int
1332 soaccept(struct socket *so, struct sockaddr **nam)
1333 {
1334 	int error;
1335 
1336 	CURVNET_SET(so->so_vnet);
1337 	error = so->so_proto->pr_accept(so, nam);
1338 	CURVNET_RESTORE();
1339 	return (error);
1340 }
1341 
1342 int
1343 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
1344 {
1345 
1346 	return (soconnectat(AT_FDCWD, so, nam, td));
1347 }
1348 
1349 int
1350 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
1351 {
1352 	int error;
1353 
1354 	CURVNET_SET(so->so_vnet);
1355 	/*
1356 	 * If protocol is connection-based, can only connect once.
1357 	 * Otherwise, if connected, try to disconnect first.  This allows
1358 	 * user to disconnect by connecting to, e.g., a null address.
1359 	 */
1360 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
1361 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
1362 	    (error = sodisconnect(so)))) {
1363 		error = EISCONN;
1364 	} else {
1365 		/*
1366 		 * Prevent accumulated error from previous connection from
1367 		 * biting us.
1368 		 */
1369 		so->so_error = 0;
1370 		if (fd == AT_FDCWD) {
1371 			error = so->so_proto->pr_connect(so, nam, td);
1372 		} else {
1373 			error = so->so_proto->pr_connectat(fd, so, nam, td);
1374 		}
1375 	}
1376 	CURVNET_RESTORE();
1377 
1378 	return (error);
1379 }
1380 
1381 int
1382 soconnect2(struct socket *so1, struct socket *so2)
1383 {
1384 	int error;
1385 
1386 	CURVNET_SET(so1->so_vnet);
1387 	error = so1->so_proto->pr_connect2(so1, so2);
1388 	CURVNET_RESTORE();
1389 	return (error);
1390 }
1391 
1392 int
1393 sodisconnect(struct socket *so)
1394 {
1395 	int error;
1396 
1397 	if ((so->so_state & SS_ISCONNECTED) == 0)
1398 		return (ENOTCONN);
1399 	if (so->so_state & SS_ISDISCONNECTING)
1400 		return (EALREADY);
1401 	VNET_SO_ASSERT(so);
1402 	error = so->so_proto->pr_disconnect(so);
1403 	return (error);
1404 }
1405 
1406 int
1407 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
1408     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1409 {
1410 	long space;
1411 	ssize_t resid;
1412 	int clen = 0, error, dontroute;
1413 
1414 	KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM"));
1415 	KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
1416 	    ("sosend_dgram: !PR_ATOMIC"));
1417 
1418 	if (uio != NULL)
1419 		resid = uio->uio_resid;
1420 	else
1421 		resid = top->m_pkthdr.len;
1422 	/*
1423 	 * In theory resid should be unsigned.  However, space must be
1424 	 * signed, as it might be less than 0 if we over-committed, and we
1425 	 * must use a signed comparison of space and resid.  On the other
1426 	 * hand, a negative resid causes us to loop sending 0-length
1427 	 * segments to the protocol.
1428 	 */
1429 	if (resid < 0) {
1430 		error = EINVAL;
1431 		goto out;
1432 	}
1433 
1434 	dontroute =
1435 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
1436 	if (td != NULL)
1437 		td->td_ru.ru_msgsnd++;
1438 	if (control != NULL)
1439 		clen = control->m_len;
1440 
1441 	SOCKBUF_LOCK(&so->so_snd);
1442 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1443 		SOCKBUF_UNLOCK(&so->so_snd);
1444 		error = EPIPE;
1445 		goto out;
1446 	}
1447 	if (so->so_error) {
1448 		error = so->so_error;
1449 		so->so_error = 0;
1450 		SOCKBUF_UNLOCK(&so->so_snd);
1451 		goto out;
1452 	}
1453 	if ((so->so_state & SS_ISCONNECTED) == 0) {
1454 		/*
1455 		 * `sendto' and `sendmsg' is allowed on a connection-based
1456 		 * socket if it supports implied connect.  Return ENOTCONN if
1457 		 * not connected and no address is supplied.
1458 		 */
1459 		if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1460 		    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1461 			if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1462 			    !(resid == 0 && clen != 0)) {
1463 				SOCKBUF_UNLOCK(&so->so_snd);
1464 				error = ENOTCONN;
1465 				goto out;
1466 			}
1467 		} else if (addr == NULL) {
1468 			if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1469 				error = ENOTCONN;
1470 			else
1471 				error = EDESTADDRREQ;
1472 			SOCKBUF_UNLOCK(&so->so_snd);
1473 			goto out;
1474 		}
1475 	}
1476 
1477 	/*
1478 	 * Do we need MSG_OOB support in SOCK_DGRAM?  Signs here may be a
1479 	 * problem and need fixing.
1480 	 */
1481 	space = sbspace(&so->so_snd);
1482 	if (flags & MSG_OOB)
1483 		space += 1024;
1484 	space -= clen;
1485 	SOCKBUF_UNLOCK(&so->so_snd);
1486 	if (resid > space) {
1487 		error = EMSGSIZE;
1488 		goto out;
1489 	}
1490 	if (uio == NULL) {
1491 		resid = 0;
1492 		if (flags & MSG_EOR)
1493 			top->m_flags |= M_EOR;
1494 	} else {
1495 		/*
1496 		 * Copy the data from userland into a mbuf chain.
1497 		 * If no data is to be copied in, a single empty mbuf
1498 		 * is returned.
1499 		 */
1500 		top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
1501 		    (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
1502 		if (top == NULL) {
1503 			error = EFAULT;	/* only possible error */
1504 			goto out;
1505 		}
1506 		space -= resid - uio->uio_resid;
1507 		resid = uio->uio_resid;
1508 	}
1509 	KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
1510 	/*
1511 	 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
1512 	 * than with.
1513 	 */
1514 	if (dontroute) {
1515 		SOCK_LOCK(so);
1516 		so->so_options |= SO_DONTROUTE;
1517 		SOCK_UNLOCK(so);
1518 	}
1519 	/*
1520 	 * XXX all the SBS_CANTSENDMORE checks previously done could be out
1521 	 * of date.  We could have received a reset packet in an interrupt or
1522 	 * maybe we slept while doing page faults in uiomove() etc.  We could
1523 	 * probably recheck again inside the locking protection here, but
1524 	 * there are probably other places that this also happens.  We must
1525 	 * rethink this.
1526 	 */
1527 	VNET_SO_ASSERT(so);
1528 	error = so->so_proto->pr_send(so, (flags & MSG_OOB) ? PRUS_OOB :
1529 	/*
1530 	 * If the user set MSG_EOF, the protocol understands this flag and
1531 	 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
1532 	 */
1533 	    ((flags & MSG_EOF) &&
1534 	     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1535 	     (resid <= 0)) ?
1536 		PRUS_EOF :
1537 		/* If there is more to send set PRUS_MORETOCOME */
1538 		(flags & MSG_MORETOCOME) ||
1539 		(resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1540 		top, addr, control, td);
1541 	if (dontroute) {
1542 		SOCK_LOCK(so);
1543 		so->so_options &= ~SO_DONTROUTE;
1544 		SOCK_UNLOCK(so);
1545 	}
1546 	clen = 0;
1547 	control = NULL;
1548 	top = NULL;
1549 out:
1550 	if (top != NULL)
1551 		m_freem(top);
1552 	if (control != NULL)
1553 		m_freem(control);
1554 	return (error);
1555 }
1556 
1557 /*
1558  * Send on a socket.  If send must go all at once and message is larger than
1559  * send buffering, then hard error.  Lock against other senders.  If must go
1560  * all at once and not enough room now, then inform user that this would
1561  * block and do nothing.  Otherwise, if nonblocking, send as much as
1562  * possible.  The data to be sent is described by "uio" if nonzero, otherwise
1563  * by the mbuf chain "top" (which must be null if uio is not).  Data provided
1564  * in mbuf chain must be small enough to send all at once.
1565  *
1566  * Returns nonzero on error, timeout or signal; callers must check for short
1567  * counts if EINTR/ERESTART are returned.  Data and control buffers are freed
1568  * on return.
1569  */
1570 int
1571 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
1572     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1573 {
1574 	long space;
1575 	ssize_t resid;
1576 	int clen = 0, error, dontroute;
1577 	int atomic = sosendallatonce(so) || top;
1578 	int pr_send_flag;
1579 #ifdef KERN_TLS
1580 	struct ktls_session *tls;
1581 	int tls_enq_cnt, tls_send_flag;
1582 	uint8_t tls_rtype;
1583 
1584 	tls = NULL;
1585 	tls_rtype = TLS_RLTYPE_APP;
1586 #endif
1587 	if (uio != NULL)
1588 		resid = uio->uio_resid;
1589 	else if ((top->m_flags & M_PKTHDR) != 0)
1590 		resid = top->m_pkthdr.len;
1591 	else
1592 		resid = m_length(top, NULL);
1593 	/*
1594 	 * In theory resid should be unsigned.  However, space must be
1595 	 * signed, as it might be less than 0 if we over-committed, and we
1596 	 * must use a signed comparison of space and resid.  On the other
1597 	 * hand, a negative resid causes us to loop sending 0-length
1598 	 * segments to the protocol.
1599 	 *
1600 	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
1601 	 * type sockets since that's an error.
1602 	 */
1603 	if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
1604 		error = EINVAL;
1605 		goto out;
1606 	}
1607 
1608 	dontroute =
1609 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
1610 	    (so->so_proto->pr_flags & PR_ATOMIC);
1611 	if (td != NULL)
1612 		td->td_ru.ru_msgsnd++;
1613 	if (control != NULL)
1614 		clen = control->m_len;
1615 
1616 	error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags));
1617 	if (error)
1618 		goto out;
1619 
1620 #ifdef KERN_TLS
1621 	tls_send_flag = 0;
1622 	tls = ktls_hold(so->so_snd.sb_tls_info);
1623 	if (tls != NULL) {
1624 		if (tls->mode == TCP_TLS_MODE_SW)
1625 			tls_send_flag = PRUS_NOTREADY;
1626 
1627 		if (control != NULL) {
1628 			struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1629 
1630 			if (clen >= sizeof(*cm) &&
1631 			    cm->cmsg_type == TLS_SET_RECORD_TYPE) {
1632 				tls_rtype = *((uint8_t *)CMSG_DATA(cm));
1633 				clen = 0;
1634 				m_freem(control);
1635 				control = NULL;
1636 				atomic = 1;
1637 			}
1638 		}
1639 
1640 		if (resid == 0 && !ktls_permit_empty_frames(tls)) {
1641 			error = EINVAL;
1642 			goto release;
1643 		}
1644 	}
1645 #endif
1646 
1647 restart:
1648 	do {
1649 		SOCKBUF_LOCK(&so->so_snd);
1650 		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1651 			SOCKBUF_UNLOCK(&so->so_snd);
1652 			error = EPIPE;
1653 			goto release;
1654 		}
1655 		if (so->so_error) {
1656 			error = so->so_error;
1657 			so->so_error = 0;
1658 			SOCKBUF_UNLOCK(&so->so_snd);
1659 			goto release;
1660 		}
1661 		if ((so->so_state & SS_ISCONNECTED) == 0) {
1662 			/*
1663 			 * `sendto' and `sendmsg' is allowed on a connection-
1664 			 * based socket if it supports implied connect.
1665 			 * Return ENOTCONN if not connected and no address is
1666 			 * supplied.
1667 			 */
1668 			if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1669 			    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1670 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1671 				    !(resid == 0 && clen != 0)) {
1672 					SOCKBUF_UNLOCK(&so->so_snd);
1673 					error = ENOTCONN;
1674 					goto release;
1675 				}
1676 			} else if (addr == NULL) {
1677 				SOCKBUF_UNLOCK(&so->so_snd);
1678 				if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1679 					error = ENOTCONN;
1680 				else
1681 					error = EDESTADDRREQ;
1682 				goto release;
1683 			}
1684 		}
1685 		space = sbspace(&so->so_snd);
1686 		if (flags & MSG_OOB)
1687 			space += 1024;
1688 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
1689 		    clen > so->so_snd.sb_hiwat) {
1690 			SOCKBUF_UNLOCK(&so->so_snd);
1691 			error = EMSGSIZE;
1692 			goto release;
1693 		}
1694 		if (space < resid + clen &&
1695 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
1696 			if ((so->so_state & SS_NBIO) ||
1697 			    (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) {
1698 				SOCKBUF_UNLOCK(&so->so_snd);
1699 				error = EWOULDBLOCK;
1700 				goto release;
1701 			}
1702 			error = sbwait(so, SO_SND);
1703 			SOCKBUF_UNLOCK(&so->so_snd);
1704 			if (error)
1705 				goto release;
1706 			goto restart;
1707 		}
1708 		SOCKBUF_UNLOCK(&so->so_snd);
1709 		space -= clen;
1710 		do {
1711 			if (uio == NULL) {
1712 				resid = 0;
1713 				if (flags & MSG_EOR)
1714 					top->m_flags |= M_EOR;
1715 #ifdef KERN_TLS
1716 				if (tls != NULL) {
1717 					ktls_frame(top, tls, &tls_enq_cnt,
1718 					    tls_rtype);
1719 					tls_rtype = TLS_RLTYPE_APP;
1720 				}
1721 #endif
1722 			} else {
1723 				/*
1724 				 * Copy the data from userland into a mbuf
1725 				 * chain.  If resid is 0, which can happen
1726 				 * only if we have control to send, then
1727 				 * a single empty mbuf is returned.  This
1728 				 * is a workaround to prevent protocol send
1729 				 * methods to panic.
1730 				 */
1731 #ifdef KERN_TLS
1732 				if (tls != NULL) {
1733 					top = m_uiotombuf(uio, M_WAITOK, space,
1734 					    tls->params.max_frame_len,
1735 					    M_EXTPG |
1736 					    ((flags & MSG_EOR) ? M_EOR : 0));
1737 					if (top != NULL) {
1738 						ktls_frame(top, tls,
1739 						    &tls_enq_cnt, tls_rtype);
1740 					}
1741 					tls_rtype = TLS_RLTYPE_APP;
1742 				} else
1743 #endif
1744 					top = m_uiotombuf(uio, M_WAITOK, space,
1745 					    (atomic ? max_hdr : 0),
1746 					    (atomic ? M_PKTHDR : 0) |
1747 					    ((flags & MSG_EOR) ? M_EOR : 0));
1748 				if (top == NULL) {
1749 					error = EFAULT; /* only possible error */
1750 					goto release;
1751 				}
1752 				space -= resid - uio->uio_resid;
1753 				resid = uio->uio_resid;
1754 			}
1755 			if (dontroute) {
1756 				SOCK_LOCK(so);
1757 				so->so_options |= SO_DONTROUTE;
1758 				SOCK_UNLOCK(so);
1759 			}
1760 			/*
1761 			 * XXX all the SBS_CANTSENDMORE checks previously
1762 			 * done could be out of date.  We could have received
1763 			 * a reset packet in an interrupt or maybe we slept
1764 			 * while doing page faults in uiomove() etc.  We
1765 			 * could probably recheck again inside the locking
1766 			 * protection here, but there are probably other
1767 			 * places that this also happens.  We must rethink
1768 			 * this.
1769 			 */
1770 			VNET_SO_ASSERT(so);
1771 
1772 			pr_send_flag = (flags & MSG_OOB) ? PRUS_OOB :
1773 			/*
1774 			 * If the user set MSG_EOF, the protocol understands
1775 			 * this flag and nothing left to send then use
1776 			 * PRU_SEND_EOF instead of PRU_SEND.
1777 			 */
1778 			    ((flags & MSG_EOF) &&
1779 			     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1780 			     (resid <= 0)) ?
1781 				PRUS_EOF :
1782 			/* If there is more to send set PRUS_MORETOCOME. */
1783 			    (flags & MSG_MORETOCOME) ||
1784 			    (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0;
1785 
1786 #ifdef KERN_TLS
1787 			pr_send_flag |= tls_send_flag;
1788 #endif
1789 
1790 			error = so->so_proto->pr_send(so, pr_send_flag, top,
1791 			    addr, control, td);
1792 
1793 			if (dontroute) {
1794 				SOCK_LOCK(so);
1795 				so->so_options &= ~SO_DONTROUTE;
1796 				SOCK_UNLOCK(so);
1797 			}
1798 
1799 #ifdef KERN_TLS
1800 			if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) {
1801 				if (error != 0) {
1802 					m_freem(top);
1803 					top = NULL;
1804 				} else {
1805 					soref(so);
1806 					ktls_enqueue(top, so, tls_enq_cnt);
1807 				}
1808 			}
1809 #endif
1810 			clen = 0;
1811 			control = NULL;
1812 			top = NULL;
1813 			if (error)
1814 				goto release;
1815 		} while (resid && space > 0);
1816 	} while (resid);
1817 
1818 release:
1819 	SOCK_IO_SEND_UNLOCK(so);
1820 out:
1821 #ifdef KERN_TLS
1822 	if (tls != NULL)
1823 		ktls_free(tls);
1824 #endif
1825 	if (top != NULL)
1826 		m_freem(top);
1827 	if (control != NULL)
1828 		m_freem(control);
1829 	return (error);
1830 }
1831 
1832 int
1833 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
1834     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1835 {
1836 	int error;
1837 
1838 	CURVNET_SET(so->so_vnet);
1839 	error = so->so_proto->pr_sosend(so, addr, uio,
1840 	    top, control, flags, td);
1841 	CURVNET_RESTORE();
1842 	return (error);
1843 }
1844 
1845 /*
1846  * The part of soreceive() that implements reading non-inline out-of-band
1847  * data from a socket.  For more complete comments, see soreceive(), from
1848  * which this code originated.
1849  *
1850  * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
1851  * unable to return an mbuf chain to the caller.
1852  */
1853 static int
1854 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
1855 {
1856 	struct protosw *pr = so->so_proto;
1857 	struct mbuf *m;
1858 	int error;
1859 
1860 	KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
1861 	VNET_SO_ASSERT(so);
1862 
1863 	m = m_get(M_WAITOK, MT_DATA);
1864 	error = pr->pr_rcvoob(so, m, flags & MSG_PEEK);
1865 	if (error)
1866 		goto bad;
1867 	do {
1868 		error = uiomove(mtod(m, void *),
1869 		    (int) min(uio->uio_resid, m->m_len), uio);
1870 		m = m_free(m);
1871 	} while (uio->uio_resid && error == 0 && m);
1872 bad:
1873 	if (m != NULL)
1874 		m_freem(m);
1875 	return (error);
1876 }
1877 
1878 /*
1879  * Following replacement or removal of the first mbuf on the first mbuf chain
1880  * of a socket buffer, push necessary state changes back into the socket
1881  * buffer so that other consumers see the values consistently.  'nextrecord'
1882  * is the callers locally stored value of the original value of
1883  * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
1884  * NOTE: 'nextrecord' may be NULL.
1885  */
1886 static __inline void
1887 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
1888 {
1889 
1890 	SOCKBUF_LOCK_ASSERT(sb);
1891 	/*
1892 	 * First, update for the new value of nextrecord.  If necessary, make
1893 	 * it the first record.
1894 	 */
1895 	if (sb->sb_mb != NULL)
1896 		sb->sb_mb->m_nextpkt = nextrecord;
1897 	else
1898 		sb->sb_mb = nextrecord;
1899 
1900 	/*
1901 	 * Now update any dependent socket buffer fields to reflect the new
1902 	 * state.  This is an expanded inline of SB_EMPTY_FIXUP(), with the
1903 	 * addition of a second clause that takes care of the case where
1904 	 * sb_mb has been updated, but remains the last record.
1905 	 */
1906 	if (sb->sb_mb == NULL) {
1907 		sb->sb_mbtail = NULL;
1908 		sb->sb_lastrecord = NULL;
1909 	} else if (sb->sb_mb->m_nextpkt == NULL)
1910 		sb->sb_lastrecord = sb->sb_mb;
1911 }
1912 
1913 /*
1914  * Implement receive operations on a socket.  We depend on the way that
1915  * records are added to the sockbuf by sbappend.  In particular, each record
1916  * (mbufs linked through m_next) must begin with an address if the protocol
1917  * so specifies, followed by an optional mbuf or mbufs containing ancillary
1918  * data, and then zero or more mbufs of data.  In order to allow parallelism
1919  * between network receive and copying to user space, as well as avoid
1920  * sleeping with a mutex held, we release the socket buffer mutex during the
1921  * user space copy.  Although the sockbuf is locked, new data may still be
1922  * appended, and thus we must maintain consistency of the sockbuf during that
1923  * time.
1924  *
1925  * The caller may receive the data as a single mbuf chain by supplying an
1926  * mbuf **mp0 for use in returning the chain.  The uio is then used only for
1927  * the count in uio_resid.
1928  */
1929 int
1930 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
1931     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1932 {
1933 	struct mbuf *m, **mp;
1934 	int flags, error, offset;
1935 	ssize_t len;
1936 	struct protosw *pr = so->so_proto;
1937 	struct mbuf *nextrecord;
1938 	int moff, type = 0;
1939 	ssize_t orig_resid = uio->uio_resid;
1940 	bool report_real_len = false;
1941 
1942 	mp = mp0;
1943 	if (psa != NULL)
1944 		*psa = NULL;
1945 	if (controlp != NULL)
1946 		*controlp = NULL;
1947 	if (flagsp != NULL) {
1948 		report_real_len = *flagsp & MSG_TRUNC;
1949 		*flagsp &= ~MSG_TRUNC;
1950 		flags = *flagsp &~ MSG_EOR;
1951 	} else
1952 		flags = 0;
1953 	if (flags & MSG_OOB)
1954 		return (soreceive_rcvoob(so, uio, flags));
1955 	if (mp != NULL)
1956 		*mp = NULL;
1957 	if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING)
1958 	    && uio->uio_resid) {
1959 		VNET_SO_ASSERT(so);
1960 		pr->pr_rcvd(so, 0);
1961 	}
1962 
1963 	error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
1964 	if (error)
1965 		return (error);
1966 
1967 restart:
1968 	SOCKBUF_LOCK(&so->so_rcv);
1969 	m = so->so_rcv.sb_mb;
1970 	/*
1971 	 * If we have less data than requested, block awaiting more (subject
1972 	 * to any timeout) if:
1973 	 *   1. the current count is less than the low water mark, or
1974 	 *   2. MSG_DONTWAIT is not set
1975 	 */
1976 	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
1977 	    sbavail(&so->so_rcv) < uio->uio_resid) &&
1978 	    sbavail(&so->so_rcv) < so->so_rcv.sb_lowat &&
1979 	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
1980 		KASSERT(m != NULL || !sbavail(&so->so_rcv),
1981 		    ("receive: m == %p sbavail == %u",
1982 		    m, sbavail(&so->so_rcv)));
1983 		if (so->so_error || so->so_rerror) {
1984 			if (m != NULL)
1985 				goto dontblock;
1986 			if (so->so_error)
1987 				error = so->so_error;
1988 			else
1989 				error = so->so_rerror;
1990 			if ((flags & MSG_PEEK) == 0) {
1991 				if (so->so_error)
1992 					so->so_error = 0;
1993 				else
1994 					so->so_rerror = 0;
1995 			}
1996 			SOCKBUF_UNLOCK(&so->so_rcv);
1997 			goto release;
1998 		}
1999 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2000 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2001 			if (m != NULL)
2002 				goto dontblock;
2003 #ifdef KERN_TLS
2004 			else if (so->so_rcv.sb_tlsdcc == 0 &&
2005 			    so->so_rcv.sb_tlscc == 0) {
2006 #else
2007 			else {
2008 #endif
2009 				SOCKBUF_UNLOCK(&so->so_rcv);
2010 				goto release;
2011 			}
2012 		}
2013 		for (; m != NULL; m = m->m_next)
2014 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
2015 				m = so->so_rcv.sb_mb;
2016 				goto dontblock;
2017 			}
2018 		if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED |
2019 		    SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 &&
2020 		    (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
2021 			SOCKBUF_UNLOCK(&so->so_rcv);
2022 			error = ENOTCONN;
2023 			goto release;
2024 		}
2025 		if (uio->uio_resid == 0 && !report_real_len) {
2026 			SOCKBUF_UNLOCK(&so->so_rcv);
2027 			goto release;
2028 		}
2029 		if ((so->so_state & SS_NBIO) ||
2030 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
2031 			SOCKBUF_UNLOCK(&so->so_rcv);
2032 			error = EWOULDBLOCK;
2033 			goto release;
2034 		}
2035 		SBLASTRECORDCHK(&so->so_rcv);
2036 		SBLASTMBUFCHK(&so->so_rcv);
2037 		error = sbwait(so, SO_RCV);
2038 		SOCKBUF_UNLOCK(&so->so_rcv);
2039 		if (error)
2040 			goto release;
2041 		goto restart;
2042 	}
2043 dontblock:
2044 	/*
2045 	 * From this point onward, we maintain 'nextrecord' as a cache of the
2046 	 * pointer to the next record in the socket buffer.  We must keep the
2047 	 * various socket buffer pointers and local stack versions of the
2048 	 * pointers in sync, pushing out modifications before dropping the
2049 	 * socket buffer mutex, and re-reading them when picking it up.
2050 	 *
2051 	 * Otherwise, we will race with the network stack appending new data
2052 	 * or records onto the socket buffer by using inconsistent/stale
2053 	 * versions of the field, possibly resulting in socket buffer
2054 	 * corruption.
2055 	 *
2056 	 * By holding the high-level sblock(), we prevent simultaneous
2057 	 * readers from pulling off the front of the socket buffer.
2058 	 */
2059 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2060 	if (uio->uio_td)
2061 		uio->uio_td->td_ru.ru_msgrcv++;
2062 	KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
2063 	SBLASTRECORDCHK(&so->so_rcv);
2064 	SBLASTMBUFCHK(&so->so_rcv);
2065 	nextrecord = m->m_nextpkt;
2066 	if (pr->pr_flags & PR_ADDR) {
2067 		KASSERT(m->m_type == MT_SONAME,
2068 		    ("m->m_type == %d", m->m_type));
2069 		orig_resid = 0;
2070 		if (psa != NULL)
2071 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
2072 			    M_NOWAIT);
2073 		if (flags & MSG_PEEK) {
2074 			m = m->m_next;
2075 		} else {
2076 			sbfree(&so->so_rcv, m);
2077 			so->so_rcv.sb_mb = m_free(m);
2078 			m = so->so_rcv.sb_mb;
2079 			sockbuf_pushsync(&so->so_rcv, nextrecord);
2080 		}
2081 	}
2082 
2083 	/*
2084 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
2085 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
2086 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
2087 	 * perform externalization (or freeing if controlp == NULL).
2088 	 */
2089 	if (m != NULL && m->m_type == MT_CONTROL) {
2090 		struct mbuf *cm = NULL, *cmn;
2091 		struct mbuf **cme = &cm;
2092 #ifdef KERN_TLS
2093 		struct cmsghdr *cmsg;
2094 		struct tls_get_record tgr;
2095 
2096 		/*
2097 		 * For MSG_TLSAPPDATA, check for an alert record.
2098 		 * If found, return ENXIO without removing
2099 		 * it from the receive queue.  This allows a subsequent
2100 		 * call without MSG_TLSAPPDATA to receive it.
2101 		 * Note that, for TLS, there should only be a single
2102 		 * control mbuf with the TLS_GET_RECORD message in it.
2103 		 */
2104 		if (flags & MSG_TLSAPPDATA) {
2105 			cmsg = mtod(m, struct cmsghdr *);
2106 			if (cmsg->cmsg_type == TLS_GET_RECORD &&
2107 			    cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) {
2108 				memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr));
2109 				if (__predict_false(tgr.tls_type ==
2110 				    TLS_RLTYPE_ALERT)) {
2111 					SOCKBUF_UNLOCK(&so->so_rcv);
2112 					error = ENXIO;
2113 					goto release;
2114 				}
2115 			}
2116 		}
2117 #endif
2118 
2119 		do {
2120 			if (flags & MSG_PEEK) {
2121 				if (controlp != NULL) {
2122 					*controlp = m_copym(m, 0, m->m_len,
2123 					    M_NOWAIT);
2124 					controlp = &(*controlp)->m_next;
2125 				}
2126 				m = m->m_next;
2127 			} else {
2128 				sbfree(&so->so_rcv, m);
2129 				so->so_rcv.sb_mb = m->m_next;
2130 				m->m_next = NULL;
2131 				*cme = m;
2132 				cme = &(*cme)->m_next;
2133 				m = so->so_rcv.sb_mb;
2134 			}
2135 		} while (m != NULL && m->m_type == MT_CONTROL);
2136 		if ((flags & MSG_PEEK) == 0)
2137 			sockbuf_pushsync(&so->so_rcv, nextrecord);
2138 		while (cm != NULL) {
2139 			cmn = cm->m_next;
2140 			cm->m_next = NULL;
2141 			if (pr->pr_domain->dom_externalize != NULL) {
2142 				SOCKBUF_UNLOCK(&so->so_rcv);
2143 				VNET_SO_ASSERT(so);
2144 				error = (*pr->pr_domain->dom_externalize)
2145 				    (cm, controlp, flags);
2146 				SOCKBUF_LOCK(&so->so_rcv);
2147 			} else if (controlp != NULL)
2148 				*controlp = cm;
2149 			else
2150 				m_freem(cm);
2151 			if (controlp != NULL) {
2152 				while (*controlp != NULL)
2153 					controlp = &(*controlp)->m_next;
2154 			}
2155 			cm = cmn;
2156 		}
2157 		if (m != NULL)
2158 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
2159 		else
2160 			nextrecord = so->so_rcv.sb_mb;
2161 		orig_resid = 0;
2162 	}
2163 	if (m != NULL) {
2164 		if ((flags & MSG_PEEK) == 0) {
2165 			KASSERT(m->m_nextpkt == nextrecord,
2166 			    ("soreceive: post-control, nextrecord !sync"));
2167 			if (nextrecord == NULL) {
2168 				KASSERT(so->so_rcv.sb_mb == m,
2169 				    ("soreceive: post-control, sb_mb!=m"));
2170 				KASSERT(so->so_rcv.sb_lastrecord == m,
2171 				    ("soreceive: post-control, lastrecord!=m"));
2172 			}
2173 		}
2174 		type = m->m_type;
2175 		if (type == MT_OOBDATA)
2176 			flags |= MSG_OOB;
2177 	} else {
2178 		if ((flags & MSG_PEEK) == 0) {
2179 			KASSERT(so->so_rcv.sb_mb == nextrecord,
2180 			    ("soreceive: sb_mb != nextrecord"));
2181 			if (so->so_rcv.sb_mb == NULL) {
2182 				KASSERT(so->so_rcv.sb_lastrecord == NULL,
2183 				    ("soreceive: sb_lastercord != NULL"));
2184 			}
2185 		}
2186 	}
2187 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2188 	SBLASTRECORDCHK(&so->so_rcv);
2189 	SBLASTMBUFCHK(&so->so_rcv);
2190 
2191 	/*
2192 	 * Now continue to read any data mbufs off of the head of the socket
2193 	 * buffer until the read request is satisfied.  Note that 'type' is
2194 	 * used to store the type of any mbuf reads that have happened so far
2195 	 * such that soreceive() can stop reading if the type changes, which
2196 	 * causes soreceive() to return only one of regular data and inline
2197 	 * out-of-band data in a single socket receive operation.
2198 	 */
2199 	moff = 0;
2200 	offset = 0;
2201 	while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0
2202 	    && error == 0) {
2203 		/*
2204 		 * If the type of mbuf has changed since the last mbuf
2205 		 * examined ('type'), end the receive operation.
2206 		 */
2207 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2208 		if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) {
2209 			if (type != m->m_type)
2210 				break;
2211 		} else if (type == MT_OOBDATA)
2212 			break;
2213 		else
2214 		    KASSERT(m->m_type == MT_DATA,
2215 			("m->m_type == %d", m->m_type));
2216 		so->so_rcv.sb_state &= ~SBS_RCVATMARK;
2217 		len = uio->uio_resid;
2218 		if (so->so_oobmark && len > so->so_oobmark - offset)
2219 			len = so->so_oobmark - offset;
2220 		if (len > m->m_len - moff)
2221 			len = m->m_len - moff;
2222 		/*
2223 		 * If mp is set, just pass back the mbufs.  Otherwise copy
2224 		 * them out via the uio, then free.  Sockbuf must be
2225 		 * consistent here (points to current mbuf, it points to next
2226 		 * record) when we drop priority; we must note any additions
2227 		 * to the sockbuf when we block interrupts again.
2228 		 */
2229 		if (mp == NULL) {
2230 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2231 			SBLASTRECORDCHK(&so->so_rcv);
2232 			SBLASTMBUFCHK(&so->so_rcv);
2233 			SOCKBUF_UNLOCK(&so->so_rcv);
2234 			if ((m->m_flags & M_EXTPG) != 0)
2235 				error = m_unmapped_uiomove(m, moff, uio,
2236 				    (int)len);
2237 			else
2238 				error = uiomove(mtod(m, char *) + moff,
2239 				    (int)len, uio);
2240 			SOCKBUF_LOCK(&so->so_rcv);
2241 			if (error) {
2242 				/*
2243 				 * The MT_SONAME mbuf has already been removed
2244 				 * from the record, so it is necessary to
2245 				 * remove the data mbufs, if any, to preserve
2246 				 * the invariant in the case of PR_ADDR that
2247 				 * requires MT_SONAME mbufs at the head of
2248 				 * each record.
2249 				 */
2250 				if (pr->pr_flags & PR_ATOMIC &&
2251 				    ((flags & MSG_PEEK) == 0))
2252 					(void)sbdroprecord_locked(&so->so_rcv);
2253 				SOCKBUF_UNLOCK(&so->so_rcv);
2254 				goto release;
2255 			}
2256 		} else
2257 			uio->uio_resid -= len;
2258 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2259 		if (len == m->m_len - moff) {
2260 			if (m->m_flags & M_EOR)
2261 				flags |= MSG_EOR;
2262 			if (flags & MSG_PEEK) {
2263 				m = m->m_next;
2264 				moff = 0;
2265 			} else {
2266 				nextrecord = m->m_nextpkt;
2267 				sbfree(&so->so_rcv, m);
2268 				if (mp != NULL) {
2269 					m->m_nextpkt = NULL;
2270 					*mp = m;
2271 					mp = &m->m_next;
2272 					so->so_rcv.sb_mb = m = m->m_next;
2273 					*mp = NULL;
2274 				} else {
2275 					so->so_rcv.sb_mb = m_free(m);
2276 					m = so->so_rcv.sb_mb;
2277 				}
2278 				sockbuf_pushsync(&so->so_rcv, nextrecord);
2279 				SBLASTRECORDCHK(&so->so_rcv);
2280 				SBLASTMBUFCHK(&so->so_rcv);
2281 			}
2282 		} else {
2283 			if (flags & MSG_PEEK)
2284 				moff += len;
2285 			else {
2286 				if (mp != NULL) {
2287 					if (flags & MSG_DONTWAIT) {
2288 						*mp = m_copym(m, 0, len,
2289 						    M_NOWAIT);
2290 						if (*mp == NULL) {
2291 							/*
2292 							 * m_copym() couldn't
2293 							 * allocate an mbuf.
2294 							 * Adjust uio_resid back
2295 							 * (it was adjusted
2296 							 * down by len bytes,
2297 							 * which we didn't end
2298 							 * up "copying" over).
2299 							 */
2300 							uio->uio_resid += len;
2301 							break;
2302 						}
2303 					} else {
2304 						SOCKBUF_UNLOCK(&so->so_rcv);
2305 						*mp = m_copym(m, 0, len,
2306 						    M_WAITOK);
2307 						SOCKBUF_LOCK(&so->so_rcv);
2308 					}
2309 				}
2310 				sbcut_locked(&so->so_rcv, len);
2311 			}
2312 		}
2313 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2314 		if (so->so_oobmark) {
2315 			if ((flags & MSG_PEEK) == 0) {
2316 				so->so_oobmark -= len;
2317 				if (so->so_oobmark == 0) {
2318 					so->so_rcv.sb_state |= SBS_RCVATMARK;
2319 					break;
2320 				}
2321 			} else {
2322 				offset += len;
2323 				if (offset == so->so_oobmark)
2324 					break;
2325 			}
2326 		}
2327 		if (flags & MSG_EOR)
2328 			break;
2329 		/*
2330 		 * If the MSG_WAITALL flag is set (for non-atomic socket), we
2331 		 * must not quit until "uio->uio_resid == 0" or an error
2332 		 * termination.  If a signal/timeout occurs, return with a
2333 		 * short count but without error.  Keep sockbuf locked
2334 		 * against other readers.
2335 		 */
2336 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
2337 		    !sosendallatonce(so) && nextrecord == NULL) {
2338 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2339 			if (so->so_error || so->so_rerror ||
2340 			    so->so_rcv.sb_state & SBS_CANTRCVMORE)
2341 				break;
2342 			/*
2343 			 * Notify the protocol that some data has been
2344 			 * drained before blocking.
2345 			 */
2346 			if (pr->pr_flags & PR_WANTRCVD) {
2347 				SOCKBUF_UNLOCK(&so->so_rcv);
2348 				VNET_SO_ASSERT(so);
2349 				pr->pr_rcvd(so, flags);
2350 				SOCKBUF_LOCK(&so->so_rcv);
2351 			}
2352 			SBLASTRECORDCHK(&so->so_rcv);
2353 			SBLASTMBUFCHK(&so->so_rcv);
2354 			/*
2355 			 * We could receive some data while was notifying
2356 			 * the protocol. Skip blocking in this case.
2357 			 */
2358 			if (so->so_rcv.sb_mb == NULL) {
2359 				error = sbwait(so, SO_RCV);
2360 				if (error) {
2361 					SOCKBUF_UNLOCK(&so->so_rcv);
2362 					goto release;
2363 				}
2364 			}
2365 			m = so->so_rcv.sb_mb;
2366 			if (m != NULL)
2367 				nextrecord = m->m_nextpkt;
2368 		}
2369 	}
2370 
2371 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2372 	if (m != NULL && pr->pr_flags & PR_ATOMIC) {
2373 		if (report_real_len)
2374 			uio->uio_resid -= m_length(m, NULL) - moff;
2375 		flags |= MSG_TRUNC;
2376 		if ((flags & MSG_PEEK) == 0)
2377 			(void) sbdroprecord_locked(&so->so_rcv);
2378 	}
2379 	if ((flags & MSG_PEEK) == 0) {
2380 		if (m == NULL) {
2381 			/*
2382 			 * First part is an inline SB_EMPTY_FIXUP().  Second
2383 			 * part makes sure sb_lastrecord is up-to-date if
2384 			 * there is still data in the socket buffer.
2385 			 */
2386 			so->so_rcv.sb_mb = nextrecord;
2387 			if (so->so_rcv.sb_mb == NULL) {
2388 				so->so_rcv.sb_mbtail = NULL;
2389 				so->so_rcv.sb_lastrecord = NULL;
2390 			} else if (nextrecord->m_nextpkt == NULL)
2391 				so->so_rcv.sb_lastrecord = nextrecord;
2392 		}
2393 		SBLASTRECORDCHK(&so->so_rcv);
2394 		SBLASTMBUFCHK(&so->so_rcv);
2395 		/*
2396 		 * If soreceive() is being done from the socket callback,
2397 		 * then don't need to generate ACK to peer to update window,
2398 		 * since ACK will be generated on return to TCP.
2399 		 */
2400 		if (!(flags & MSG_SOCALLBCK) &&
2401 		    (pr->pr_flags & PR_WANTRCVD)) {
2402 			SOCKBUF_UNLOCK(&so->so_rcv);
2403 			VNET_SO_ASSERT(so);
2404 			pr->pr_rcvd(so, flags);
2405 			SOCKBUF_LOCK(&so->so_rcv);
2406 		}
2407 	}
2408 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2409 	if (orig_resid == uio->uio_resid && orig_resid &&
2410 	    (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
2411 		SOCKBUF_UNLOCK(&so->so_rcv);
2412 		goto restart;
2413 	}
2414 	SOCKBUF_UNLOCK(&so->so_rcv);
2415 
2416 	if (flagsp != NULL)
2417 		*flagsp |= flags;
2418 release:
2419 	SOCK_IO_RECV_UNLOCK(so);
2420 	return (error);
2421 }
2422 
2423 /*
2424  * Optimized version of soreceive() for stream (TCP) sockets.
2425  */
2426 int
2427 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio,
2428     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2429 {
2430 	int len = 0, error = 0, flags, oresid;
2431 	struct sockbuf *sb;
2432 	struct mbuf *m, *n = NULL;
2433 
2434 	/* We only do stream sockets. */
2435 	if (so->so_type != SOCK_STREAM)
2436 		return (EINVAL);
2437 	if (psa != NULL)
2438 		*psa = NULL;
2439 	if (flagsp != NULL)
2440 		flags = *flagsp &~ MSG_EOR;
2441 	else
2442 		flags = 0;
2443 	if (controlp != NULL)
2444 		*controlp = NULL;
2445 	if (flags & MSG_OOB)
2446 		return (soreceive_rcvoob(so, uio, flags));
2447 	if (mp0 != NULL)
2448 		*mp0 = NULL;
2449 
2450 	sb = &so->so_rcv;
2451 
2452 #ifdef KERN_TLS
2453 	/*
2454 	 * KTLS store TLS records as records with a control message to
2455 	 * describe the framing.
2456 	 *
2457 	 * We check once here before acquiring locks to optimize the
2458 	 * common case.
2459 	 */
2460 	if (sb->sb_tls_info != NULL)
2461 		return (soreceive_generic(so, psa, uio, mp0, controlp,
2462 		    flagsp));
2463 #endif
2464 
2465 	/* Prevent other readers from entering the socket. */
2466 	error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
2467 	if (error)
2468 		return (error);
2469 	SOCKBUF_LOCK(sb);
2470 
2471 #ifdef KERN_TLS
2472 	if (sb->sb_tls_info != NULL) {
2473 		SOCKBUF_UNLOCK(sb);
2474 		SOCK_IO_RECV_UNLOCK(so);
2475 		return (soreceive_generic(so, psa, uio, mp0, controlp,
2476 		    flagsp));
2477 	}
2478 #endif
2479 
2480 	/* Easy one, no space to copyout anything. */
2481 	if (uio->uio_resid == 0) {
2482 		error = EINVAL;
2483 		goto out;
2484 	}
2485 	oresid = uio->uio_resid;
2486 
2487 	/* We will never ever get anything unless we are or were connected. */
2488 	if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
2489 		error = ENOTCONN;
2490 		goto out;
2491 	}
2492 
2493 restart:
2494 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2495 
2496 	/* Abort if socket has reported problems. */
2497 	if (so->so_error) {
2498 		if (sbavail(sb) > 0)
2499 			goto deliver;
2500 		if (oresid > uio->uio_resid)
2501 			goto out;
2502 		error = so->so_error;
2503 		if (!(flags & MSG_PEEK))
2504 			so->so_error = 0;
2505 		goto out;
2506 	}
2507 
2508 	/* Door is closed.  Deliver what is left, if any. */
2509 	if (sb->sb_state & SBS_CANTRCVMORE) {
2510 		if (sbavail(sb) > 0)
2511 			goto deliver;
2512 		else
2513 			goto out;
2514 	}
2515 
2516 	/* Socket buffer is empty and we shall not block. */
2517 	if (sbavail(sb) == 0 &&
2518 	    ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) {
2519 		error = EAGAIN;
2520 		goto out;
2521 	}
2522 
2523 	/* Socket buffer got some data that we shall deliver now. */
2524 	if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) &&
2525 	    ((so->so_state & SS_NBIO) ||
2526 	     (flags & (MSG_DONTWAIT|MSG_NBIO)) ||
2527 	     sbavail(sb) >= sb->sb_lowat ||
2528 	     sbavail(sb) >= uio->uio_resid ||
2529 	     sbavail(sb) >= sb->sb_hiwat) ) {
2530 		goto deliver;
2531 	}
2532 
2533 	/* On MSG_WAITALL we must wait until all data or error arrives. */
2534 	if ((flags & MSG_WAITALL) &&
2535 	    (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat))
2536 		goto deliver;
2537 
2538 	/*
2539 	 * Wait and block until (more) data comes in.
2540 	 * NB: Drops the sockbuf lock during wait.
2541 	 */
2542 	error = sbwait(so, SO_RCV);
2543 	if (error)
2544 		goto out;
2545 	goto restart;
2546 
2547 deliver:
2548 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2549 	KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__));
2550 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__));
2551 
2552 	/* Statistics. */
2553 	if (uio->uio_td)
2554 		uio->uio_td->td_ru.ru_msgrcv++;
2555 
2556 	/* Fill uio until full or current end of socket buffer is reached. */
2557 	len = min(uio->uio_resid, sbavail(sb));
2558 	if (mp0 != NULL) {
2559 		/* Dequeue as many mbufs as possible. */
2560 		if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) {
2561 			if (*mp0 == NULL)
2562 				*mp0 = sb->sb_mb;
2563 			else
2564 				m_cat(*mp0, sb->sb_mb);
2565 			for (m = sb->sb_mb;
2566 			     m != NULL && m->m_len <= len;
2567 			     m = m->m_next) {
2568 				KASSERT(!(m->m_flags & M_NOTAVAIL),
2569 				    ("%s: m %p not available", __func__, m));
2570 				len -= m->m_len;
2571 				uio->uio_resid -= m->m_len;
2572 				sbfree(sb, m);
2573 				n = m;
2574 			}
2575 			n->m_next = NULL;
2576 			sb->sb_mb = m;
2577 			sb->sb_lastrecord = sb->sb_mb;
2578 			if (sb->sb_mb == NULL)
2579 				SB_EMPTY_FIXUP(sb);
2580 		}
2581 		/* Copy the remainder. */
2582 		if (len > 0) {
2583 			KASSERT(sb->sb_mb != NULL,
2584 			    ("%s: len > 0 && sb->sb_mb empty", __func__));
2585 
2586 			m = m_copym(sb->sb_mb, 0, len, M_NOWAIT);
2587 			if (m == NULL)
2588 				len = 0;	/* Don't flush data from sockbuf. */
2589 			else
2590 				uio->uio_resid -= len;
2591 			if (*mp0 != NULL)
2592 				m_cat(*mp0, m);
2593 			else
2594 				*mp0 = m;
2595 			if (*mp0 == NULL) {
2596 				error = ENOBUFS;
2597 				goto out;
2598 			}
2599 		}
2600 	} else {
2601 		/* NB: Must unlock socket buffer as uiomove may sleep. */
2602 		SOCKBUF_UNLOCK(sb);
2603 		error = m_mbuftouio(uio, sb->sb_mb, len);
2604 		SOCKBUF_LOCK(sb);
2605 		if (error)
2606 			goto out;
2607 	}
2608 	SBLASTRECORDCHK(sb);
2609 	SBLASTMBUFCHK(sb);
2610 
2611 	/*
2612 	 * Remove the delivered data from the socket buffer unless we
2613 	 * were only peeking.
2614 	 */
2615 	if (!(flags & MSG_PEEK)) {
2616 		if (len > 0)
2617 			sbdrop_locked(sb, len);
2618 
2619 		/* Notify protocol that we drained some data. */
2620 		if ((so->so_proto->pr_flags & PR_WANTRCVD) &&
2621 		    (((flags & MSG_WAITALL) && uio->uio_resid > 0) ||
2622 		     !(flags & MSG_SOCALLBCK))) {
2623 			SOCKBUF_UNLOCK(sb);
2624 			VNET_SO_ASSERT(so);
2625 			so->so_proto->pr_rcvd(so, flags);
2626 			SOCKBUF_LOCK(sb);
2627 		}
2628 	}
2629 
2630 	/*
2631 	 * For MSG_WAITALL we may have to loop again and wait for
2632 	 * more data to come in.
2633 	 */
2634 	if ((flags & MSG_WAITALL) && uio->uio_resid > 0)
2635 		goto restart;
2636 out:
2637 	SBLASTRECORDCHK(sb);
2638 	SBLASTMBUFCHK(sb);
2639 	SOCKBUF_UNLOCK(sb);
2640 	SOCK_IO_RECV_UNLOCK(so);
2641 	return (error);
2642 }
2643 
2644 /*
2645  * Optimized version of soreceive() for simple datagram cases from userspace.
2646  * Unlike in the stream case, we're able to drop a datagram if copyout()
2647  * fails, and because we handle datagrams atomically, we don't need to use a
2648  * sleep lock to prevent I/O interlacing.
2649  */
2650 int
2651 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
2652     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2653 {
2654 	struct mbuf *m, *m2;
2655 	int flags, error;
2656 	ssize_t len;
2657 	struct protosw *pr = so->so_proto;
2658 	struct mbuf *nextrecord;
2659 
2660 	if (psa != NULL)
2661 		*psa = NULL;
2662 	if (controlp != NULL)
2663 		*controlp = NULL;
2664 	if (flagsp != NULL)
2665 		flags = *flagsp &~ MSG_EOR;
2666 	else
2667 		flags = 0;
2668 
2669 	/*
2670 	 * For any complicated cases, fall back to the full
2671 	 * soreceive_generic().
2672 	 */
2673 	if (mp0 != NULL || (flags & (MSG_PEEK | MSG_OOB | MSG_TRUNC)))
2674 		return (soreceive_generic(so, psa, uio, mp0, controlp,
2675 		    flagsp));
2676 
2677 	/*
2678 	 * Enforce restrictions on use.
2679 	 */
2680 	KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
2681 	    ("soreceive_dgram: wantrcvd"));
2682 	KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
2683 	KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
2684 	    ("soreceive_dgram: SBS_RCVATMARK"));
2685 	KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
2686 	    ("soreceive_dgram: P_CONNREQUIRED"));
2687 
2688 	/*
2689 	 * Loop blocking while waiting for a datagram.
2690 	 */
2691 	SOCKBUF_LOCK(&so->so_rcv);
2692 	while ((m = so->so_rcv.sb_mb) == NULL) {
2693 		KASSERT(sbavail(&so->so_rcv) == 0,
2694 		    ("soreceive_dgram: sb_mb NULL but sbavail %u",
2695 		    sbavail(&so->so_rcv)));
2696 		if (so->so_error) {
2697 			error = so->so_error;
2698 			so->so_error = 0;
2699 			SOCKBUF_UNLOCK(&so->so_rcv);
2700 			return (error);
2701 		}
2702 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
2703 		    uio->uio_resid == 0) {
2704 			SOCKBUF_UNLOCK(&so->so_rcv);
2705 			return (0);
2706 		}
2707 		if ((so->so_state & SS_NBIO) ||
2708 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
2709 			SOCKBUF_UNLOCK(&so->so_rcv);
2710 			return (EWOULDBLOCK);
2711 		}
2712 		SBLASTRECORDCHK(&so->so_rcv);
2713 		SBLASTMBUFCHK(&so->so_rcv);
2714 		error = sbwait(so, SO_RCV);
2715 		if (error) {
2716 			SOCKBUF_UNLOCK(&so->so_rcv);
2717 			return (error);
2718 		}
2719 	}
2720 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2721 
2722 	if (uio->uio_td)
2723 		uio->uio_td->td_ru.ru_msgrcv++;
2724 	SBLASTRECORDCHK(&so->so_rcv);
2725 	SBLASTMBUFCHK(&so->so_rcv);
2726 	nextrecord = m->m_nextpkt;
2727 	if (nextrecord == NULL) {
2728 		KASSERT(so->so_rcv.sb_lastrecord == m,
2729 		    ("soreceive_dgram: lastrecord != m"));
2730 	}
2731 
2732 	KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
2733 	    ("soreceive_dgram: m_nextpkt != nextrecord"));
2734 
2735 	/*
2736 	 * Pull 'm' and its chain off the front of the packet queue.
2737 	 */
2738 	so->so_rcv.sb_mb = NULL;
2739 	sockbuf_pushsync(&so->so_rcv, nextrecord);
2740 
2741 	/*
2742 	 * Walk 'm's chain and free that many bytes from the socket buffer.
2743 	 */
2744 	for (m2 = m; m2 != NULL; m2 = m2->m_next)
2745 		sbfree(&so->so_rcv, m2);
2746 
2747 	/*
2748 	 * Do a few last checks before we let go of the lock.
2749 	 */
2750 	SBLASTRECORDCHK(&so->so_rcv);
2751 	SBLASTMBUFCHK(&so->so_rcv);
2752 	SOCKBUF_UNLOCK(&so->so_rcv);
2753 
2754 	if (pr->pr_flags & PR_ADDR) {
2755 		KASSERT(m->m_type == MT_SONAME,
2756 		    ("m->m_type == %d", m->m_type));
2757 		if (psa != NULL)
2758 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
2759 			    M_NOWAIT);
2760 		m = m_free(m);
2761 	}
2762 	if (m == NULL) {
2763 		/* XXXRW: Can this happen? */
2764 		return (0);
2765 	}
2766 
2767 	/*
2768 	 * Packet to copyout() is now in 'm' and it is disconnected from the
2769 	 * queue.
2770 	 *
2771 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
2772 	 * in the first mbuf chain on the socket buffer.  We call into the
2773 	 * protocol to perform externalization (or freeing if controlp ==
2774 	 * NULL). In some cases there can be only MT_CONTROL mbufs without
2775 	 * MT_DATA mbufs.
2776 	 */
2777 	if (m->m_type == MT_CONTROL) {
2778 		struct mbuf *cm = NULL, *cmn;
2779 		struct mbuf **cme = &cm;
2780 
2781 		do {
2782 			m2 = m->m_next;
2783 			m->m_next = NULL;
2784 			*cme = m;
2785 			cme = &(*cme)->m_next;
2786 			m = m2;
2787 		} while (m != NULL && m->m_type == MT_CONTROL);
2788 		while (cm != NULL) {
2789 			cmn = cm->m_next;
2790 			cm->m_next = NULL;
2791 			if (pr->pr_domain->dom_externalize != NULL) {
2792 				error = (*pr->pr_domain->dom_externalize)
2793 				    (cm, controlp, flags);
2794 			} else if (controlp != NULL)
2795 				*controlp = cm;
2796 			else
2797 				m_freem(cm);
2798 			if (controlp != NULL) {
2799 				while (*controlp != NULL)
2800 					controlp = &(*controlp)->m_next;
2801 			}
2802 			cm = cmn;
2803 		}
2804 	}
2805 	KASSERT(m == NULL || m->m_type == MT_DATA,
2806 	    ("soreceive_dgram: !data"));
2807 	while (m != NULL && uio->uio_resid > 0) {
2808 		len = uio->uio_resid;
2809 		if (len > m->m_len)
2810 			len = m->m_len;
2811 		error = uiomove(mtod(m, char *), (int)len, uio);
2812 		if (error) {
2813 			m_freem(m);
2814 			return (error);
2815 		}
2816 		if (len == m->m_len)
2817 			m = m_free(m);
2818 		else {
2819 			m->m_data += len;
2820 			m->m_len -= len;
2821 		}
2822 	}
2823 	if (m != NULL) {
2824 		flags |= MSG_TRUNC;
2825 		m_freem(m);
2826 	}
2827 	if (flagsp != NULL)
2828 		*flagsp |= flags;
2829 	return (0);
2830 }
2831 
2832 int
2833 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
2834     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2835 {
2836 	int error;
2837 
2838 	CURVNET_SET(so->so_vnet);
2839 	error = so->so_proto->pr_soreceive(so, psa, uio, mp0, controlp, flagsp);
2840 	CURVNET_RESTORE();
2841 	return (error);
2842 }
2843 
2844 int
2845 soshutdown(struct socket *so, int how)
2846 {
2847 	struct protosw *pr;
2848 	int error, soerror_enotconn;
2849 
2850 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
2851 		return (EINVAL);
2852 
2853 	soerror_enotconn = 0;
2854 	SOCK_LOCK(so);
2855 	if ((so->so_state &
2856 	    (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) {
2857 		/*
2858 		 * POSIX mandates us to return ENOTCONN when shutdown(2) is
2859 		 * invoked on a datagram sockets, however historically we would
2860 		 * actually tear socket down. This is known to be leveraged by
2861 		 * some applications to unblock process waiting in recvXXX(2)
2862 		 * by other process that it shares that socket with. Try to meet
2863 		 * both backward-compatibility and POSIX requirements by forcing
2864 		 * ENOTCONN but still asking protocol to perform pru_shutdown().
2865 		 */
2866 		if (so->so_type != SOCK_DGRAM && !SOLISTENING(so)) {
2867 			SOCK_UNLOCK(so);
2868 			return (ENOTCONN);
2869 		}
2870 		soerror_enotconn = 1;
2871 	}
2872 
2873 	if (SOLISTENING(so)) {
2874 		if (how != SHUT_WR) {
2875 			so->so_error = ECONNABORTED;
2876 			solisten_wakeup(so);	/* unlocks so */
2877 		} else {
2878 			SOCK_UNLOCK(so);
2879 		}
2880 		goto done;
2881 	}
2882 	SOCK_UNLOCK(so);
2883 
2884 	CURVNET_SET(so->so_vnet);
2885 	pr = so->so_proto;
2886 	if (pr->pr_flush != NULL)
2887 		pr->pr_flush(so, how);
2888 	if (how != SHUT_WR)
2889 		sorflush(so);
2890 	if (how != SHUT_RD) {
2891 		error = pr->pr_shutdown(so);
2892 		wakeup(&so->so_timeo);
2893 		CURVNET_RESTORE();
2894 		return ((error == 0 && soerror_enotconn) ? ENOTCONN : error);
2895 	}
2896 	wakeup(&so->so_timeo);
2897 	CURVNET_RESTORE();
2898 
2899 done:
2900 	return (soerror_enotconn ? ENOTCONN : 0);
2901 }
2902 
2903 void
2904 sorflush(struct socket *so)
2905 {
2906 	struct protosw *pr;
2907 	int error;
2908 
2909 	VNET_SO_ASSERT(so);
2910 
2911 	/*
2912 	 * Dislodge threads currently blocked in receive and wait to acquire
2913 	 * a lock against other simultaneous readers before clearing the
2914 	 * socket buffer.  Don't let our acquire be interrupted by a signal
2915 	 * despite any existing socket disposition on interruptable waiting.
2916 	 */
2917 	socantrcvmore(so);
2918 
2919 	error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR);
2920 	if (error != 0) {
2921 		KASSERT(SOLISTENING(so),
2922 		    ("%s: soiolock(%p) failed", __func__, so));
2923 		return;
2924 	}
2925 
2926 	pr = so->so_proto;
2927 	if (pr->pr_flags & PR_RIGHTS) {
2928 		MPASS(pr->pr_domain->dom_dispose != NULL);
2929 		(*pr->pr_domain->dom_dispose)(so);
2930 	} else {
2931 		sbrelease(so, SO_RCV);
2932 		SOCK_IO_RECV_UNLOCK(so);
2933 	}
2934 
2935 }
2936 
2937 /*
2938  * Wrapper for Socket established helper hook.
2939  * Parameters: socket, context of the hook point, hook id.
2940  */
2941 static int inline
2942 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id)
2943 {
2944 	struct socket_hhook_data hhook_data = {
2945 		.so = so,
2946 		.hctx = hctx,
2947 		.m = NULL,
2948 		.status = 0
2949 	};
2950 
2951 	CURVNET_SET(so->so_vnet);
2952 	HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd);
2953 	CURVNET_RESTORE();
2954 
2955 	/* Ugly but needed, since hhooks return void for now */
2956 	return (hhook_data.status);
2957 }
2958 
2959 /*
2960  * Perhaps this routine, and sooptcopyout(), below, ought to come in an
2961  * additional variant to handle the case where the option value needs to be
2962  * some kind of integer, but not a specific size.  In addition to their use
2963  * here, these functions are also called by the protocol-level pr_ctloutput()
2964  * routines.
2965  */
2966 int
2967 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
2968 {
2969 	size_t	valsize;
2970 
2971 	/*
2972 	 * If the user gives us more than we wanted, we ignore it, but if we
2973 	 * don't get the minimum length the caller wants, we return EINVAL.
2974 	 * On success, sopt->sopt_valsize is set to however much we actually
2975 	 * retrieved.
2976 	 */
2977 	if ((valsize = sopt->sopt_valsize) < minlen)
2978 		return EINVAL;
2979 	if (valsize > len)
2980 		sopt->sopt_valsize = valsize = len;
2981 
2982 	if (sopt->sopt_td != NULL)
2983 		return (copyin(sopt->sopt_val, buf, valsize));
2984 
2985 	bcopy(sopt->sopt_val, buf, valsize);
2986 	return (0);
2987 }
2988 
2989 /*
2990  * Kernel version of setsockopt(2).
2991  *
2992  * XXX: optlen is size_t, not socklen_t
2993  */
2994 int
2995 so_setsockopt(struct socket *so, int level, int optname, void *optval,
2996     size_t optlen)
2997 {
2998 	struct sockopt sopt;
2999 
3000 	sopt.sopt_level = level;
3001 	sopt.sopt_name = optname;
3002 	sopt.sopt_dir = SOPT_SET;
3003 	sopt.sopt_val = optval;
3004 	sopt.sopt_valsize = optlen;
3005 	sopt.sopt_td = NULL;
3006 	return (sosetopt(so, &sopt));
3007 }
3008 
3009 int
3010 sosetopt(struct socket *so, struct sockopt *sopt)
3011 {
3012 	int	error, optval;
3013 	struct	linger l;
3014 	struct	timeval tv;
3015 	sbintime_t val, *valp;
3016 	uint32_t val32;
3017 #ifdef MAC
3018 	struct mac extmac;
3019 #endif
3020 
3021 	CURVNET_SET(so->so_vnet);
3022 	error = 0;
3023 	if (sopt->sopt_level != SOL_SOCKET) {
3024 		if (so->so_proto->pr_ctloutput != NULL)
3025 			error = (*so->so_proto->pr_ctloutput)(so, sopt);
3026 		else
3027 			error = ENOPROTOOPT;
3028 	} else {
3029 		switch (sopt->sopt_name) {
3030 		case SO_ACCEPTFILTER:
3031 			error = accept_filt_setopt(so, sopt);
3032 			if (error)
3033 				goto bad;
3034 			break;
3035 
3036 		case SO_LINGER:
3037 			error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
3038 			if (error)
3039 				goto bad;
3040 			if (l.l_linger < 0 ||
3041 			    l.l_linger > USHRT_MAX ||
3042 			    l.l_linger > (INT_MAX / hz)) {
3043 				error = EDOM;
3044 				goto bad;
3045 			}
3046 			SOCK_LOCK(so);
3047 			so->so_linger = l.l_linger;
3048 			if (l.l_onoff)
3049 				so->so_options |= SO_LINGER;
3050 			else
3051 				so->so_options &= ~SO_LINGER;
3052 			SOCK_UNLOCK(so);
3053 			break;
3054 
3055 		case SO_DEBUG:
3056 		case SO_KEEPALIVE:
3057 		case SO_DONTROUTE:
3058 		case SO_USELOOPBACK:
3059 		case SO_BROADCAST:
3060 		case SO_REUSEADDR:
3061 		case SO_REUSEPORT:
3062 		case SO_REUSEPORT_LB:
3063 		case SO_OOBINLINE:
3064 		case SO_TIMESTAMP:
3065 		case SO_BINTIME:
3066 		case SO_NOSIGPIPE:
3067 		case SO_NO_DDP:
3068 		case SO_NO_OFFLOAD:
3069 		case SO_RERROR:
3070 			error = sooptcopyin(sopt, &optval, sizeof optval,
3071 			    sizeof optval);
3072 			if (error)
3073 				goto bad;
3074 			SOCK_LOCK(so);
3075 			if (optval)
3076 				so->so_options |= sopt->sopt_name;
3077 			else
3078 				so->so_options &= ~sopt->sopt_name;
3079 			SOCK_UNLOCK(so);
3080 			break;
3081 
3082 		case SO_SETFIB:
3083 			error = sooptcopyin(sopt, &optval, sizeof optval,
3084 			    sizeof optval);
3085 			if (error)
3086 				goto bad;
3087 
3088 			if (optval < 0 || optval >= rt_numfibs) {
3089 				error = EINVAL;
3090 				goto bad;
3091 			}
3092 			if (((so->so_proto->pr_domain->dom_family == PF_INET) ||
3093 			   (so->so_proto->pr_domain->dom_family == PF_INET6) ||
3094 			   (so->so_proto->pr_domain->dom_family == PF_ROUTE)))
3095 				so->so_fibnum = optval;
3096 			else
3097 				so->so_fibnum = 0;
3098 			break;
3099 
3100 		case SO_USER_COOKIE:
3101 			error = sooptcopyin(sopt, &val32, sizeof val32,
3102 			    sizeof val32);
3103 			if (error)
3104 				goto bad;
3105 			so->so_user_cookie = val32;
3106 			break;
3107 
3108 		case SO_SNDBUF:
3109 		case SO_RCVBUF:
3110 		case SO_SNDLOWAT:
3111 		case SO_RCVLOWAT:
3112 			error = so->so_proto->pr_setsbopt(so, sopt);
3113 			if (error)
3114 				goto bad;
3115 			break;
3116 
3117 		case SO_SNDTIMEO:
3118 		case SO_RCVTIMEO:
3119 #ifdef COMPAT_FREEBSD32
3120 			if (SV_CURPROC_FLAG(SV_ILP32)) {
3121 				struct timeval32 tv32;
3122 
3123 				error = sooptcopyin(sopt, &tv32, sizeof tv32,
3124 				    sizeof tv32);
3125 				CP(tv32, tv, tv_sec);
3126 				CP(tv32, tv, tv_usec);
3127 			} else
3128 #endif
3129 				error = sooptcopyin(sopt, &tv, sizeof tv,
3130 				    sizeof tv);
3131 			if (error)
3132 				goto bad;
3133 			if (tv.tv_sec < 0 || tv.tv_usec < 0 ||
3134 			    tv.tv_usec >= 1000000) {
3135 				error = EDOM;
3136 				goto bad;
3137 			}
3138 			if (tv.tv_sec > INT32_MAX)
3139 				val = SBT_MAX;
3140 			else
3141 				val = tvtosbt(tv);
3142 			SOCK_LOCK(so);
3143 			valp = sopt->sopt_name == SO_SNDTIMEO ?
3144 			    (SOLISTENING(so) ? &so->sol_sbsnd_timeo :
3145 			    &so->so_snd.sb_timeo) :
3146 			    (SOLISTENING(so) ? &so->sol_sbrcv_timeo :
3147 			    &so->so_rcv.sb_timeo);
3148 			*valp = val;
3149 			SOCK_UNLOCK(so);
3150 			break;
3151 
3152 		case SO_LABEL:
3153 #ifdef MAC
3154 			error = sooptcopyin(sopt, &extmac, sizeof extmac,
3155 			    sizeof extmac);
3156 			if (error)
3157 				goto bad;
3158 			error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
3159 			    so, &extmac);
3160 #else
3161 			error = EOPNOTSUPP;
3162 #endif
3163 			break;
3164 
3165 		case SO_TS_CLOCK:
3166 			error = sooptcopyin(sopt, &optval, sizeof optval,
3167 			    sizeof optval);
3168 			if (error)
3169 				goto bad;
3170 			if (optval < 0 || optval > SO_TS_CLOCK_MAX) {
3171 				error = EINVAL;
3172 				goto bad;
3173 			}
3174 			so->so_ts_clock = optval;
3175 			break;
3176 
3177 		case SO_MAX_PACING_RATE:
3178 			error = sooptcopyin(sopt, &val32, sizeof(val32),
3179 			    sizeof(val32));
3180 			if (error)
3181 				goto bad;
3182 			so->so_max_pacing_rate = val32;
3183 			break;
3184 
3185 		default:
3186 			if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
3187 				error = hhook_run_socket(so, sopt,
3188 				    HHOOK_SOCKET_OPT);
3189 			else
3190 				error = ENOPROTOOPT;
3191 			break;
3192 		}
3193 		if (error == 0 && so->so_proto->pr_ctloutput != NULL)
3194 			(void)(*so->so_proto->pr_ctloutput)(so, sopt);
3195 	}
3196 bad:
3197 	CURVNET_RESTORE();
3198 	return (error);
3199 }
3200 
3201 /*
3202  * Helper routine for getsockopt.
3203  */
3204 int
3205 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
3206 {
3207 	int	error;
3208 	size_t	valsize;
3209 
3210 	error = 0;
3211 
3212 	/*
3213 	 * Documented get behavior is that we always return a value, possibly
3214 	 * truncated to fit in the user's buffer.  Traditional behavior is
3215 	 * that we always tell the user precisely how much we copied, rather
3216 	 * than something useful like the total amount we had available for
3217 	 * her.  Note that this interface is not idempotent; the entire
3218 	 * answer must be generated ahead of time.
3219 	 */
3220 	valsize = min(len, sopt->sopt_valsize);
3221 	sopt->sopt_valsize = valsize;
3222 	if (sopt->sopt_val != NULL) {
3223 		if (sopt->sopt_td != NULL)
3224 			error = copyout(buf, sopt->sopt_val, valsize);
3225 		else
3226 			bcopy(buf, sopt->sopt_val, valsize);
3227 	}
3228 	return (error);
3229 }
3230 
3231 int
3232 sogetopt(struct socket *so, struct sockopt *sopt)
3233 {
3234 	int	error, optval;
3235 	struct	linger l;
3236 	struct	timeval tv;
3237 #ifdef MAC
3238 	struct mac extmac;
3239 #endif
3240 
3241 	CURVNET_SET(so->so_vnet);
3242 	error = 0;
3243 	if (sopt->sopt_level != SOL_SOCKET) {
3244 		if (so->so_proto->pr_ctloutput != NULL)
3245 			error = (*so->so_proto->pr_ctloutput)(so, sopt);
3246 		else
3247 			error = ENOPROTOOPT;
3248 		CURVNET_RESTORE();
3249 		return (error);
3250 	} else {
3251 		switch (sopt->sopt_name) {
3252 		case SO_ACCEPTFILTER:
3253 			error = accept_filt_getopt(so, sopt);
3254 			break;
3255 
3256 		case SO_LINGER:
3257 			SOCK_LOCK(so);
3258 			l.l_onoff = so->so_options & SO_LINGER;
3259 			l.l_linger = so->so_linger;
3260 			SOCK_UNLOCK(so);
3261 			error = sooptcopyout(sopt, &l, sizeof l);
3262 			break;
3263 
3264 		case SO_USELOOPBACK:
3265 		case SO_DONTROUTE:
3266 		case SO_DEBUG:
3267 		case SO_KEEPALIVE:
3268 		case SO_REUSEADDR:
3269 		case SO_REUSEPORT:
3270 		case SO_REUSEPORT_LB:
3271 		case SO_BROADCAST:
3272 		case SO_OOBINLINE:
3273 		case SO_ACCEPTCONN:
3274 		case SO_TIMESTAMP:
3275 		case SO_BINTIME:
3276 		case SO_NOSIGPIPE:
3277 		case SO_NO_DDP:
3278 		case SO_NO_OFFLOAD:
3279 		case SO_RERROR:
3280 			optval = so->so_options & sopt->sopt_name;
3281 integer:
3282 			error = sooptcopyout(sopt, &optval, sizeof optval);
3283 			break;
3284 
3285 		case SO_DOMAIN:
3286 			optval = so->so_proto->pr_domain->dom_family;
3287 			goto integer;
3288 
3289 		case SO_TYPE:
3290 			optval = so->so_type;
3291 			goto integer;
3292 
3293 		case SO_PROTOCOL:
3294 			optval = so->so_proto->pr_protocol;
3295 			goto integer;
3296 
3297 		case SO_ERROR:
3298 			SOCK_LOCK(so);
3299 			if (so->so_error) {
3300 				optval = so->so_error;
3301 				so->so_error = 0;
3302 			} else {
3303 				optval = so->so_rerror;
3304 				so->so_rerror = 0;
3305 			}
3306 			SOCK_UNLOCK(so);
3307 			goto integer;
3308 
3309 		case SO_SNDBUF:
3310 			optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat :
3311 			    so->so_snd.sb_hiwat;
3312 			goto integer;
3313 
3314 		case SO_RCVBUF:
3315 			optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat :
3316 			    so->so_rcv.sb_hiwat;
3317 			goto integer;
3318 
3319 		case SO_SNDLOWAT:
3320 			optval = SOLISTENING(so) ? so->sol_sbsnd_lowat :
3321 			    so->so_snd.sb_lowat;
3322 			goto integer;
3323 
3324 		case SO_RCVLOWAT:
3325 			optval = SOLISTENING(so) ? so->sol_sbrcv_lowat :
3326 			    so->so_rcv.sb_lowat;
3327 			goto integer;
3328 
3329 		case SO_SNDTIMEO:
3330 		case SO_RCVTIMEO:
3331 			SOCK_LOCK(so);
3332 			tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ?
3333 			    (SOLISTENING(so) ? so->sol_sbsnd_timeo :
3334 			    so->so_snd.sb_timeo) :
3335 			    (SOLISTENING(so) ? so->sol_sbrcv_timeo :
3336 			    so->so_rcv.sb_timeo));
3337 			SOCK_UNLOCK(so);
3338 #ifdef COMPAT_FREEBSD32
3339 			if (SV_CURPROC_FLAG(SV_ILP32)) {
3340 				struct timeval32 tv32;
3341 
3342 				CP(tv, tv32, tv_sec);
3343 				CP(tv, tv32, tv_usec);
3344 				error = sooptcopyout(sopt, &tv32, sizeof tv32);
3345 			} else
3346 #endif
3347 				error = sooptcopyout(sopt, &tv, sizeof tv);
3348 			break;
3349 
3350 		case SO_LABEL:
3351 #ifdef MAC
3352 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
3353 			    sizeof(extmac));
3354 			if (error)
3355 				goto bad;
3356 			error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
3357 			    so, &extmac);
3358 			if (error)
3359 				goto bad;
3360 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
3361 #else
3362 			error = EOPNOTSUPP;
3363 #endif
3364 			break;
3365 
3366 		case SO_PEERLABEL:
3367 #ifdef MAC
3368 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
3369 			    sizeof(extmac));
3370 			if (error)
3371 				goto bad;
3372 			error = mac_getsockopt_peerlabel(
3373 			    sopt->sopt_td->td_ucred, so, &extmac);
3374 			if (error)
3375 				goto bad;
3376 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
3377 #else
3378 			error = EOPNOTSUPP;
3379 #endif
3380 			break;
3381 
3382 		case SO_LISTENQLIMIT:
3383 			optval = SOLISTENING(so) ? so->sol_qlimit : 0;
3384 			goto integer;
3385 
3386 		case SO_LISTENQLEN:
3387 			optval = SOLISTENING(so) ? so->sol_qlen : 0;
3388 			goto integer;
3389 
3390 		case SO_LISTENINCQLEN:
3391 			optval = SOLISTENING(so) ? so->sol_incqlen : 0;
3392 			goto integer;
3393 
3394 		case SO_TS_CLOCK:
3395 			optval = so->so_ts_clock;
3396 			goto integer;
3397 
3398 		case SO_MAX_PACING_RATE:
3399 			optval = so->so_max_pacing_rate;
3400 			goto integer;
3401 
3402 		default:
3403 			if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
3404 				error = hhook_run_socket(so, sopt,
3405 				    HHOOK_SOCKET_OPT);
3406 			else
3407 				error = ENOPROTOOPT;
3408 			break;
3409 		}
3410 	}
3411 #ifdef MAC
3412 bad:
3413 #endif
3414 	CURVNET_RESTORE();
3415 	return (error);
3416 }
3417 
3418 int
3419 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
3420 {
3421 	struct mbuf *m, *m_prev;
3422 	int sopt_size = sopt->sopt_valsize;
3423 
3424 	MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
3425 	if (m == NULL)
3426 		return ENOBUFS;
3427 	if (sopt_size > MLEN) {
3428 		MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT);
3429 		if ((m->m_flags & M_EXT) == 0) {
3430 			m_free(m);
3431 			return ENOBUFS;
3432 		}
3433 		m->m_len = min(MCLBYTES, sopt_size);
3434 	} else {
3435 		m->m_len = min(MLEN, sopt_size);
3436 	}
3437 	sopt_size -= m->m_len;
3438 	*mp = m;
3439 	m_prev = m;
3440 
3441 	while (sopt_size) {
3442 		MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
3443 		if (m == NULL) {
3444 			m_freem(*mp);
3445 			return ENOBUFS;
3446 		}
3447 		if (sopt_size > MLEN) {
3448 			MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK :
3449 			    M_NOWAIT);
3450 			if ((m->m_flags & M_EXT) == 0) {
3451 				m_freem(m);
3452 				m_freem(*mp);
3453 				return ENOBUFS;
3454 			}
3455 			m->m_len = min(MCLBYTES, sopt_size);
3456 		} else {
3457 			m->m_len = min(MLEN, sopt_size);
3458 		}
3459 		sopt_size -= m->m_len;
3460 		m_prev->m_next = m;
3461 		m_prev = m;
3462 	}
3463 	return (0);
3464 }
3465 
3466 int
3467 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
3468 {
3469 	struct mbuf *m0 = m;
3470 
3471 	if (sopt->sopt_val == NULL)
3472 		return (0);
3473 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
3474 		if (sopt->sopt_td != NULL) {
3475 			int error;
3476 
3477 			error = copyin(sopt->sopt_val, mtod(m, char *),
3478 			    m->m_len);
3479 			if (error != 0) {
3480 				m_freem(m0);
3481 				return(error);
3482 			}
3483 		} else
3484 			bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
3485 		sopt->sopt_valsize -= m->m_len;
3486 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
3487 		m = m->m_next;
3488 	}
3489 	if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
3490 		panic("ip6_sooptmcopyin");
3491 	return (0);
3492 }
3493 
3494 int
3495 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
3496 {
3497 	struct mbuf *m0 = m;
3498 	size_t valsize = 0;
3499 
3500 	if (sopt->sopt_val == NULL)
3501 		return (0);
3502 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
3503 		if (sopt->sopt_td != NULL) {
3504 			int error;
3505 
3506 			error = copyout(mtod(m, char *), sopt->sopt_val,
3507 			    m->m_len);
3508 			if (error != 0) {
3509 				m_freem(m0);
3510 				return(error);
3511 			}
3512 		} else
3513 			bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
3514 		sopt->sopt_valsize -= m->m_len;
3515 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
3516 		valsize += m->m_len;
3517 		m = m->m_next;
3518 	}
3519 	if (m != NULL) {
3520 		/* enough soopt buffer should be given from user-land */
3521 		m_freem(m0);
3522 		return(EINVAL);
3523 	}
3524 	sopt->sopt_valsize = valsize;
3525 	return (0);
3526 }
3527 
3528 /*
3529  * sohasoutofband(): protocol notifies socket layer of the arrival of new
3530  * out-of-band data, which will then notify socket consumers.
3531  */
3532 void
3533 sohasoutofband(struct socket *so)
3534 {
3535 
3536 	if (so->so_sigio != NULL)
3537 		pgsigio(&so->so_sigio, SIGURG, 0);
3538 	selwakeuppri(&so->so_rdsel, PSOCK);
3539 }
3540 
3541 int
3542 sopoll(struct socket *so, int events, struct ucred *active_cred,
3543     struct thread *td)
3544 {
3545 
3546 	/*
3547 	 * We do not need to set or assert curvnet as long as everyone uses
3548 	 * sopoll_generic().
3549 	 */
3550 	return (so->so_proto->pr_sopoll(so, events, active_cred, td));
3551 }
3552 
3553 int
3554 sopoll_generic(struct socket *so, int events, struct ucred *active_cred,
3555     struct thread *td)
3556 {
3557 	int revents;
3558 
3559 	SOCK_LOCK(so);
3560 	if (SOLISTENING(so)) {
3561 		if (!(events & (POLLIN | POLLRDNORM)))
3562 			revents = 0;
3563 		else if (!TAILQ_EMPTY(&so->sol_comp))
3564 			revents = events & (POLLIN | POLLRDNORM);
3565 		else if ((events & POLLINIGNEOF) == 0 && so->so_error)
3566 			revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP;
3567 		else {
3568 			selrecord(td, &so->so_rdsel);
3569 			revents = 0;
3570 		}
3571 	} else {
3572 		revents = 0;
3573 		SOCK_SENDBUF_LOCK(so);
3574 		SOCK_RECVBUF_LOCK(so);
3575 		if (events & (POLLIN | POLLRDNORM))
3576 			if (soreadabledata(so))
3577 				revents |= events & (POLLIN | POLLRDNORM);
3578 		if (events & (POLLOUT | POLLWRNORM))
3579 			if (sowriteable(so))
3580 				revents |= events & (POLLOUT | POLLWRNORM);
3581 		if (events & (POLLPRI | POLLRDBAND))
3582 			if (so->so_oobmark ||
3583 			    (so->so_rcv.sb_state & SBS_RCVATMARK))
3584 				revents |= events & (POLLPRI | POLLRDBAND);
3585 		if ((events & POLLINIGNEOF) == 0) {
3586 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3587 				revents |= events & (POLLIN | POLLRDNORM);
3588 				if (so->so_snd.sb_state & SBS_CANTSENDMORE)
3589 					revents |= POLLHUP;
3590 			}
3591 		}
3592 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
3593 			revents |= events & POLLRDHUP;
3594 		if (revents == 0) {
3595 			if (events &
3596 			    (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND | POLLRDHUP)) {
3597 				selrecord(td, &so->so_rdsel);
3598 				so->so_rcv.sb_flags |= SB_SEL;
3599 			}
3600 			if (events & (POLLOUT | POLLWRNORM)) {
3601 				selrecord(td, &so->so_wrsel);
3602 				so->so_snd.sb_flags |= SB_SEL;
3603 			}
3604 		}
3605 		SOCK_RECVBUF_UNLOCK(so);
3606 		SOCK_SENDBUF_UNLOCK(so);
3607 	}
3608 	SOCK_UNLOCK(so);
3609 	return (revents);
3610 }
3611 
3612 int
3613 soo_kqfilter(struct file *fp, struct knote *kn)
3614 {
3615 	struct socket *so = kn->kn_fp->f_data;
3616 	struct sockbuf *sb;
3617 	sb_which which;
3618 	struct knlist *knl;
3619 
3620 	switch (kn->kn_filter) {
3621 	case EVFILT_READ:
3622 		kn->kn_fop = &soread_filtops;
3623 		knl = &so->so_rdsel.si_note;
3624 		sb = &so->so_rcv;
3625 		which = SO_RCV;
3626 		break;
3627 	case EVFILT_WRITE:
3628 		kn->kn_fop = &sowrite_filtops;
3629 		knl = &so->so_wrsel.si_note;
3630 		sb = &so->so_snd;
3631 		which = SO_SND;
3632 		break;
3633 	case EVFILT_EMPTY:
3634 		kn->kn_fop = &soempty_filtops;
3635 		knl = &so->so_wrsel.si_note;
3636 		sb = &so->so_snd;
3637 		which = SO_SND;
3638 		break;
3639 	default:
3640 		return (EINVAL);
3641 	}
3642 
3643 	SOCK_LOCK(so);
3644 	if (SOLISTENING(so)) {
3645 		knlist_add(knl, kn, 1);
3646 	} else {
3647 		SOCK_BUF_LOCK(so, which);
3648 		knlist_add(knl, kn, 1);
3649 		sb->sb_flags |= SB_KNOTE;
3650 		SOCK_BUF_UNLOCK(so, which);
3651 	}
3652 	SOCK_UNLOCK(so);
3653 	return (0);
3654 }
3655 
3656 static void
3657 filt_sordetach(struct knote *kn)
3658 {
3659 	struct socket *so = kn->kn_fp->f_data;
3660 
3661 	so_rdknl_lock(so);
3662 	knlist_remove(&so->so_rdsel.si_note, kn, 1);
3663 	if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note))
3664 		so->so_rcv.sb_flags &= ~SB_KNOTE;
3665 	so_rdknl_unlock(so);
3666 }
3667 
3668 /*ARGSUSED*/
3669 static int
3670 filt_soread(struct knote *kn, long hint)
3671 {
3672 	struct socket *so;
3673 
3674 	so = kn->kn_fp->f_data;
3675 
3676 	if (SOLISTENING(so)) {
3677 		SOCK_LOCK_ASSERT(so);
3678 		kn->kn_data = so->sol_qlen;
3679 		if (so->so_error) {
3680 			kn->kn_flags |= EV_EOF;
3681 			kn->kn_fflags = so->so_error;
3682 			return (1);
3683 		}
3684 		return (!TAILQ_EMPTY(&so->sol_comp));
3685 	}
3686 
3687 	SOCK_RECVBUF_LOCK_ASSERT(so);
3688 
3689 	kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl;
3690 	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3691 		kn->kn_flags |= EV_EOF;
3692 		kn->kn_fflags = so->so_error;
3693 		return (1);
3694 	} else if (so->so_error || so->so_rerror)
3695 		return (1);
3696 
3697 	if (kn->kn_sfflags & NOTE_LOWAT) {
3698 		if (kn->kn_data >= kn->kn_sdata)
3699 			return (1);
3700 	} else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat)
3701 		return (1);
3702 
3703 	/* This hook returning non-zero indicates an event, not error */
3704 	return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD));
3705 }
3706 
3707 static void
3708 filt_sowdetach(struct knote *kn)
3709 {
3710 	struct socket *so = kn->kn_fp->f_data;
3711 
3712 	so_wrknl_lock(so);
3713 	knlist_remove(&so->so_wrsel.si_note, kn, 1);
3714 	if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note))
3715 		so->so_snd.sb_flags &= ~SB_KNOTE;
3716 	so_wrknl_unlock(so);
3717 }
3718 
3719 /*ARGSUSED*/
3720 static int
3721 filt_sowrite(struct knote *kn, long hint)
3722 {
3723 	struct socket *so;
3724 
3725 	so = kn->kn_fp->f_data;
3726 
3727 	if (SOLISTENING(so))
3728 		return (0);
3729 
3730 	SOCK_SENDBUF_LOCK_ASSERT(so);
3731 	kn->kn_data = sbspace(&so->so_snd);
3732 
3733 	hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE);
3734 
3735 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
3736 		kn->kn_flags |= EV_EOF;
3737 		kn->kn_fflags = so->so_error;
3738 		return (1);
3739 	} else if (so->so_error)	/* temporary udp error */
3740 		return (1);
3741 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
3742 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
3743 		return (0);
3744 	else if (kn->kn_sfflags & NOTE_LOWAT)
3745 		return (kn->kn_data >= kn->kn_sdata);
3746 	else
3747 		return (kn->kn_data >= so->so_snd.sb_lowat);
3748 }
3749 
3750 static int
3751 filt_soempty(struct knote *kn, long hint)
3752 {
3753 	struct socket *so;
3754 
3755 	so = kn->kn_fp->f_data;
3756 
3757 	if (SOLISTENING(so))
3758 		return (1);
3759 
3760 	SOCK_SENDBUF_LOCK_ASSERT(so);
3761 	kn->kn_data = sbused(&so->so_snd);
3762 
3763 	if (kn->kn_data == 0)
3764 		return (1);
3765 	else
3766 		return (0);
3767 }
3768 
3769 int
3770 socheckuid(struct socket *so, uid_t uid)
3771 {
3772 
3773 	if (so == NULL)
3774 		return (EPERM);
3775 	if (so->so_cred->cr_uid != uid)
3776 		return (EPERM);
3777 	return (0);
3778 }
3779 
3780 /*
3781  * These functions are used by protocols to notify the socket layer (and its
3782  * consumers) of state changes in the sockets driven by protocol-side events.
3783  */
3784 
3785 /*
3786  * Procedures to manipulate state flags of socket and do appropriate wakeups.
3787  *
3788  * Normal sequence from the active (originating) side is that
3789  * soisconnecting() is called during processing of connect() call, resulting
3790  * in an eventual call to soisconnected() if/when the connection is
3791  * established.  When the connection is torn down soisdisconnecting() is
3792  * called during processing of disconnect() call, and soisdisconnected() is
3793  * called when the connection to the peer is totally severed.  The semantics
3794  * of these routines are such that connectionless protocols can call
3795  * soisconnected() and soisdisconnected() only, bypassing the in-progress
3796  * calls when setting up a ``connection'' takes no time.
3797  *
3798  * From the passive side, a socket is created with two queues of sockets:
3799  * so_incomp for connections in progress and so_comp for connections already
3800  * made and awaiting user acceptance.  As a protocol is preparing incoming
3801  * connections, it creates a socket structure queued on so_incomp by calling
3802  * sonewconn().  When the connection is established, soisconnected() is
3803  * called, and transfers the socket structure to so_comp, making it available
3804  * to accept().
3805  *
3806  * If a socket is closed with sockets on either so_incomp or so_comp, these
3807  * sockets are dropped.
3808  *
3809  * If higher-level protocols are implemented in the kernel, the wakeups done
3810  * here will sometimes cause software-interrupt process scheduling.
3811  */
3812 void
3813 soisconnecting(struct socket *so)
3814 {
3815 
3816 	SOCK_LOCK(so);
3817 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
3818 	so->so_state |= SS_ISCONNECTING;
3819 	SOCK_UNLOCK(so);
3820 }
3821 
3822 void
3823 soisconnected(struct socket *so)
3824 {
3825 	bool last __diagused;
3826 
3827 	SOCK_LOCK(so);
3828 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
3829 	so->so_state |= SS_ISCONNECTED;
3830 
3831 	if (so->so_qstate == SQ_INCOMP) {
3832 		struct socket *head = so->so_listen;
3833 		int ret;
3834 
3835 		KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so));
3836 		/*
3837 		 * Promoting a socket from incomplete queue to complete, we
3838 		 * need to go through reverse order of locking.  We first do
3839 		 * trylock, and if that doesn't succeed, we go the hard way
3840 		 * leaving a reference and rechecking consistency after proper
3841 		 * locking.
3842 		 */
3843 		if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) {
3844 			soref(head);
3845 			SOCK_UNLOCK(so);
3846 			SOLISTEN_LOCK(head);
3847 			SOCK_LOCK(so);
3848 			if (__predict_false(head != so->so_listen)) {
3849 				/*
3850 				 * The socket went off the listen queue,
3851 				 * should be lost race to close(2) of sol.
3852 				 * The socket is about to soabort().
3853 				 */
3854 				SOCK_UNLOCK(so);
3855 				sorele_locked(head);
3856 				return;
3857 			}
3858 			last = refcount_release(&head->so_count);
3859 			KASSERT(!last, ("%s: released last reference for %p",
3860 			    __func__, head));
3861 		}
3862 again:
3863 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
3864 			TAILQ_REMOVE(&head->sol_incomp, so, so_list);
3865 			head->sol_incqlen--;
3866 			TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
3867 			head->sol_qlen++;
3868 			so->so_qstate = SQ_COMP;
3869 			SOCK_UNLOCK(so);
3870 			solisten_wakeup(head);	/* unlocks */
3871 		} else {
3872 			SOCK_RECVBUF_LOCK(so);
3873 			soupcall_set(so, SO_RCV,
3874 			    head->sol_accept_filter->accf_callback,
3875 			    head->sol_accept_filter_arg);
3876 			so->so_options &= ~SO_ACCEPTFILTER;
3877 			ret = head->sol_accept_filter->accf_callback(so,
3878 			    head->sol_accept_filter_arg, M_NOWAIT);
3879 			if (ret == SU_ISCONNECTED) {
3880 				soupcall_clear(so, SO_RCV);
3881 				SOCK_RECVBUF_UNLOCK(so);
3882 				goto again;
3883 			}
3884 			SOCK_RECVBUF_UNLOCK(so);
3885 			SOCK_UNLOCK(so);
3886 			SOLISTEN_UNLOCK(head);
3887 		}
3888 		return;
3889 	}
3890 	SOCK_UNLOCK(so);
3891 	wakeup(&so->so_timeo);
3892 	sorwakeup(so);
3893 	sowwakeup(so);
3894 }
3895 
3896 void
3897 soisdisconnecting(struct socket *so)
3898 {
3899 
3900 	SOCK_LOCK(so);
3901 	so->so_state &= ~SS_ISCONNECTING;
3902 	so->so_state |= SS_ISDISCONNECTING;
3903 
3904 	if (!SOLISTENING(so)) {
3905 		SOCK_RECVBUF_LOCK(so);
3906 		socantrcvmore_locked(so);
3907 		SOCK_SENDBUF_LOCK(so);
3908 		socantsendmore_locked(so);
3909 	}
3910 	SOCK_UNLOCK(so);
3911 	wakeup(&so->so_timeo);
3912 }
3913 
3914 void
3915 soisdisconnected(struct socket *so)
3916 {
3917 
3918 	SOCK_LOCK(so);
3919 
3920 	/*
3921 	 * There is at least one reader of so_state that does not
3922 	 * acquire socket lock, namely soreceive_generic().  Ensure
3923 	 * that it never sees all flags that track connection status
3924 	 * cleared, by ordering the update with a barrier semantic of
3925 	 * our release thread fence.
3926 	 */
3927 	so->so_state |= SS_ISDISCONNECTED;
3928 	atomic_thread_fence_rel();
3929 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
3930 
3931 	if (!SOLISTENING(so)) {
3932 		SOCK_UNLOCK(so);
3933 		SOCK_RECVBUF_LOCK(so);
3934 		socantrcvmore_locked(so);
3935 		SOCK_SENDBUF_LOCK(so);
3936 		sbdrop_locked(&so->so_snd, sbused(&so->so_snd));
3937 		socantsendmore_locked(so);
3938 	} else
3939 		SOCK_UNLOCK(so);
3940 	wakeup(&so->so_timeo);
3941 }
3942 
3943 int
3944 soiolock(struct socket *so, struct sx *sx, int flags)
3945 {
3946 	int error;
3947 
3948 	KASSERT((flags & SBL_VALID) == flags,
3949 	    ("soiolock: invalid flags %#x", flags));
3950 
3951 	if ((flags & SBL_WAIT) != 0) {
3952 		if ((flags & SBL_NOINTR) != 0) {
3953 			sx_xlock(sx);
3954 		} else {
3955 			error = sx_xlock_sig(sx);
3956 			if (error != 0)
3957 				return (error);
3958 		}
3959 	} else if (!sx_try_xlock(sx)) {
3960 		return (EWOULDBLOCK);
3961 	}
3962 
3963 	if (__predict_false(SOLISTENING(so))) {
3964 		sx_xunlock(sx);
3965 		return (ENOTCONN);
3966 	}
3967 	return (0);
3968 }
3969 
3970 void
3971 soiounlock(struct sx *sx)
3972 {
3973 	sx_xunlock(sx);
3974 }
3975 
3976 /*
3977  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
3978  */
3979 struct sockaddr *
3980 sodupsockaddr(const struct sockaddr *sa, int mflags)
3981 {
3982 	struct sockaddr *sa2;
3983 
3984 	sa2 = malloc(sa->sa_len, M_SONAME, mflags);
3985 	if (sa2)
3986 		bcopy(sa, sa2, sa->sa_len);
3987 	return sa2;
3988 }
3989 
3990 /*
3991  * Register per-socket destructor.
3992  */
3993 void
3994 sodtor_set(struct socket *so, so_dtor_t *func)
3995 {
3996 
3997 	SOCK_LOCK_ASSERT(so);
3998 	so->so_dtor = func;
3999 }
4000 
4001 /*
4002  * Register per-socket buffer upcalls.
4003  */
4004 void
4005 soupcall_set(struct socket *so, sb_which which, so_upcall_t func, void *arg)
4006 {
4007 	struct sockbuf *sb;
4008 
4009 	KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4010 
4011 	switch (which) {
4012 	case SO_RCV:
4013 		sb = &so->so_rcv;
4014 		break;
4015 	case SO_SND:
4016 		sb = &so->so_snd;
4017 		break;
4018 	}
4019 	SOCK_BUF_LOCK_ASSERT(so, which);
4020 	sb->sb_upcall = func;
4021 	sb->sb_upcallarg = arg;
4022 	sb->sb_flags |= SB_UPCALL;
4023 }
4024 
4025 void
4026 soupcall_clear(struct socket *so, sb_which which)
4027 {
4028 	struct sockbuf *sb;
4029 
4030 	KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4031 
4032 	switch (which) {
4033 	case SO_RCV:
4034 		sb = &so->so_rcv;
4035 		break;
4036 	case SO_SND:
4037 		sb = &so->so_snd;
4038 		break;
4039 	}
4040 	SOCK_BUF_LOCK_ASSERT(so, which);
4041 	KASSERT(sb->sb_upcall != NULL,
4042 	    ("%s: so %p no upcall to clear", __func__, so));
4043 	sb->sb_upcall = NULL;
4044 	sb->sb_upcallarg = NULL;
4045 	sb->sb_flags &= ~SB_UPCALL;
4046 }
4047 
4048 void
4049 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg)
4050 {
4051 
4052 	SOLISTEN_LOCK_ASSERT(so);
4053 	so->sol_upcall = func;
4054 	so->sol_upcallarg = arg;
4055 }
4056 
4057 static void
4058 so_rdknl_lock(void *arg)
4059 {
4060 	struct socket *so = arg;
4061 
4062 retry:
4063 	if (SOLISTENING(so)) {
4064 		SOLISTEN_LOCK(so);
4065 	} else {
4066 		SOCK_RECVBUF_LOCK(so);
4067 		if (__predict_false(SOLISTENING(so))) {
4068 			SOCK_RECVBUF_UNLOCK(so);
4069 			goto retry;
4070 		}
4071 	}
4072 }
4073 
4074 static void
4075 so_rdknl_unlock(void *arg)
4076 {
4077 	struct socket *so = arg;
4078 
4079 	if (SOLISTENING(so))
4080 		SOLISTEN_UNLOCK(so);
4081 	else
4082 		SOCK_RECVBUF_UNLOCK(so);
4083 }
4084 
4085 static void
4086 so_rdknl_assert_lock(void *arg, int what)
4087 {
4088 	struct socket *so = arg;
4089 
4090 	if (what == LA_LOCKED) {
4091 		if (SOLISTENING(so))
4092 			SOLISTEN_LOCK_ASSERT(so);
4093 		else
4094 			SOCK_RECVBUF_LOCK_ASSERT(so);
4095 	} else {
4096 		if (SOLISTENING(so))
4097 			SOLISTEN_UNLOCK_ASSERT(so);
4098 		else
4099 			SOCK_RECVBUF_UNLOCK_ASSERT(so);
4100 	}
4101 }
4102 
4103 static void
4104 so_wrknl_lock(void *arg)
4105 {
4106 	struct socket *so = arg;
4107 
4108 retry:
4109 	if (SOLISTENING(so)) {
4110 		SOLISTEN_LOCK(so);
4111 	} else {
4112 		SOCK_SENDBUF_LOCK(so);
4113 		if (__predict_false(SOLISTENING(so))) {
4114 			SOCK_SENDBUF_UNLOCK(so);
4115 			goto retry;
4116 		}
4117 	}
4118 }
4119 
4120 static void
4121 so_wrknl_unlock(void *arg)
4122 {
4123 	struct socket *so = arg;
4124 
4125 	if (SOLISTENING(so))
4126 		SOLISTEN_UNLOCK(so);
4127 	else
4128 		SOCK_SENDBUF_UNLOCK(so);
4129 }
4130 
4131 static void
4132 so_wrknl_assert_lock(void *arg, int what)
4133 {
4134 	struct socket *so = arg;
4135 
4136 	if (what == LA_LOCKED) {
4137 		if (SOLISTENING(so))
4138 			SOLISTEN_LOCK_ASSERT(so);
4139 		else
4140 			SOCK_SENDBUF_LOCK_ASSERT(so);
4141 	} else {
4142 		if (SOLISTENING(so))
4143 			SOLISTEN_UNLOCK_ASSERT(so);
4144 		else
4145 			SOCK_SENDBUF_UNLOCK_ASSERT(so);
4146 	}
4147 }
4148 
4149 /*
4150  * Create an external-format (``xsocket'') structure using the information in
4151  * the kernel-format socket structure pointed to by so.  This is done to
4152  * reduce the spew of irrelevant information over this interface, to isolate
4153  * user code from changes in the kernel structure, and potentially to provide
4154  * information-hiding if we decide that some of this information should be
4155  * hidden from users.
4156  */
4157 void
4158 sotoxsocket(struct socket *so, struct xsocket *xso)
4159 {
4160 
4161 	bzero(xso, sizeof(*xso));
4162 	xso->xso_len = sizeof *xso;
4163 	xso->xso_so = (uintptr_t)so;
4164 	xso->so_type = so->so_type;
4165 	xso->so_options = so->so_options;
4166 	xso->so_linger = so->so_linger;
4167 	xso->so_state = so->so_state;
4168 	xso->so_pcb = (uintptr_t)so->so_pcb;
4169 	xso->xso_protocol = so->so_proto->pr_protocol;
4170 	xso->xso_family = so->so_proto->pr_domain->dom_family;
4171 	xso->so_timeo = so->so_timeo;
4172 	xso->so_error = so->so_error;
4173 	xso->so_uid = so->so_cred->cr_uid;
4174 	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
4175 	if (SOLISTENING(so)) {
4176 		xso->so_qlen = so->sol_qlen;
4177 		xso->so_incqlen = so->sol_incqlen;
4178 		xso->so_qlimit = so->sol_qlimit;
4179 		xso->so_oobmark = 0;
4180 	} else {
4181 		xso->so_state |= so->so_qstate;
4182 		xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0;
4183 		xso->so_oobmark = so->so_oobmark;
4184 		sbtoxsockbuf(&so->so_snd, &xso->so_snd);
4185 		sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
4186 	}
4187 }
4188 
4189 struct sockbuf *
4190 so_sockbuf_rcv(struct socket *so)
4191 {
4192 
4193 	return (&so->so_rcv);
4194 }
4195 
4196 struct sockbuf *
4197 so_sockbuf_snd(struct socket *so)
4198 {
4199 
4200 	return (&so->so_snd);
4201 }
4202 
4203 int
4204 so_state_get(const struct socket *so)
4205 {
4206 
4207 	return (so->so_state);
4208 }
4209 
4210 void
4211 so_state_set(struct socket *so, int val)
4212 {
4213 
4214 	so->so_state = val;
4215 }
4216 
4217 int
4218 so_options_get(const struct socket *so)
4219 {
4220 
4221 	return (so->so_options);
4222 }
4223 
4224 void
4225 so_options_set(struct socket *so, int val)
4226 {
4227 
4228 	so->so_options = val;
4229 }
4230 
4231 int
4232 so_error_get(const struct socket *so)
4233 {
4234 
4235 	return (so->so_error);
4236 }
4237 
4238 void
4239 so_error_set(struct socket *so, int val)
4240 {
4241 
4242 	so->so_error = val;
4243 }
4244 
4245 int
4246 so_linger_get(const struct socket *so)
4247 {
4248 
4249 	return (so->so_linger);
4250 }
4251 
4252 void
4253 so_linger_set(struct socket *so, int val)
4254 {
4255 
4256 	KASSERT(val >= 0 && val <= USHRT_MAX && val <= (INT_MAX / hz),
4257 	    ("%s: val %d out of range", __func__, val));
4258 
4259 	so->so_linger = val;
4260 }
4261 
4262 struct protosw *
4263 so_protosw_get(const struct socket *so)
4264 {
4265 
4266 	return (so->so_proto);
4267 }
4268 
4269 void
4270 so_protosw_set(struct socket *so, struct protosw *val)
4271 {
4272 
4273 	so->so_proto = val;
4274 }
4275 
4276 void
4277 so_sorwakeup(struct socket *so)
4278 {
4279 
4280 	sorwakeup(so);
4281 }
4282 
4283 void
4284 so_sowwakeup(struct socket *so)
4285 {
4286 
4287 	sowwakeup(so);
4288 }
4289 
4290 void
4291 so_sorwakeup_locked(struct socket *so)
4292 {
4293 
4294 	sorwakeup_locked(so);
4295 }
4296 
4297 void
4298 so_sowwakeup_locked(struct socket *so)
4299 {
4300 
4301 	sowwakeup_locked(so);
4302 }
4303 
4304 void
4305 so_lock(struct socket *so)
4306 {
4307 
4308 	SOCK_LOCK(so);
4309 }
4310 
4311 void
4312 so_unlock(struct socket *so)
4313 {
4314 
4315 	SOCK_UNLOCK(so);
4316 }
4317