1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. 6 * Copyright (c) 2004 The FreeBSD Foundation 7 * Copyright (c) 2004-2008 Robert N. M. Watson 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 35 */ 36 37 /* 38 * Comments on the socket life cycle: 39 * 40 * soalloc() sets of socket layer state for a socket, called only by 41 * socreate() and sonewconn(). Socket layer private. 42 * 43 * sodealloc() tears down socket layer state for a socket, called only by 44 * sofree() and sonewconn(). Socket layer private. 45 * 46 * pru_attach() associates protocol layer state with an allocated socket; 47 * called only once, may fail, aborting socket allocation. This is called 48 * from socreate() and sonewconn(). Socket layer private. 49 * 50 * pru_detach() disassociates protocol layer state from an attached socket, 51 * and will be called exactly once for sockets in which pru_attach() has 52 * been successfully called. If pru_attach() returned an error, 53 * pru_detach() will not be called. Socket layer private. 54 * 55 * pru_abort() and pru_close() notify the protocol layer that the last 56 * consumer of a socket is starting to tear down the socket, and that the 57 * protocol should terminate the connection. Historically, pru_abort() also 58 * detached protocol state from the socket state, but this is no longer the 59 * case. 60 * 61 * socreate() creates a socket and attaches protocol state. This is a public 62 * interface that may be used by socket layer consumers to create new 63 * sockets. 64 * 65 * sonewconn() creates a socket and attaches protocol state. This is a 66 * public interface that may be used by protocols to create new sockets when 67 * a new connection is received and will be available for accept() on a 68 * listen socket. 69 * 70 * soclose() destroys a socket after possibly waiting for it to disconnect. 71 * This is a public interface that socket consumers should use to close and 72 * release a socket when done with it. 73 * 74 * soabort() destroys a socket without waiting for it to disconnect (used 75 * only for incoming connections that are already partially or fully 76 * connected). This is used internally by the socket layer when clearing 77 * listen socket queues (due to overflow or close on the listen socket), but 78 * is also a public interface protocols may use to abort connections in 79 * their incomplete listen queues should they no longer be required. Sockets 80 * placed in completed connection listen queues should not be aborted for 81 * reasons described in the comment above the soclose() implementation. This 82 * is not a general purpose close routine, and except in the specific 83 * circumstances described here, should not be used. 84 * 85 * sofree() will free a socket and its protocol state if all references on 86 * the socket have been released, and is the public interface to attempt to 87 * free a socket when a reference is removed. This is a socket layer private 88 * interface. 89 * 90 * NOTE: In addition to socreate() and soclose(), which provide a single 91 * socket reference to the consumer to be managed as required, there are two 92 * calls to explicitly manage socket references, soref(), and sorele(). 93 * Currently, these are generally required only when transitioning a socket 94 * from a listen queue to a file descriptor, in order to prevent garbage 95 * collection of the socket at an untimely moment. For a number of reasons, 96 * these interfaces are not preferred, and should be avoided. 97 * 98 * NOTE: With regard to VNETs the general rule is that callers do not set 99 * curvnet. Exceptions to this rule include soabort(), sodisconnect(), 100 * sofree() (and with that sorele(), sotryfree()), as well as sonewconn() 101 * and sorflush(), which are usually called from a pre-set VNET context. 102 * sopoll() currently does not need a VNET context to be set. 103 */ 104 105 #include <sys/cdefs.h> 106 __FBSDID("$FreeBSD$"); 107 108 #include "opt_inet.h" 109 #include "opt_inet6.h" 110 #include "opt_kern_tls.h" 111 #include "opt_sctp.h" 112 113 #include <sys/param.h> 114 #include <sys/systm.h> 115 #include <sys/capsicum.h> 116 #include <sys/fcntl.h> 117 #include <sys/limits.h> 118 #include <sys/lock.h> 119 #include <sys/mac.h> 120 #include <sys/malloc.h> 121 #include <sys/mbuf.h> 122 #include <sys/mutex.h> 123 #include <sys/domain.h> 124 #include <sys/file.h> /* for struct knote */ 125 #include <sys/hhook.h> 126 #include <sys/kernel.h> 127 #include <sys/khelp.h> 128 #include <sys/ktls.h> 129 #include <sys/event.h> 130 #include <sys/eventhandler.h> 131 #include <sys/poll.h> 132 #include <sys/proc.h> 133 #include <sys/protosw.h> 134 #include <sys/sbuf.h> 135 #include <sys/socket.h> 136 #include <sys/socketvar.h> 137 #include <sys/resourcevar.h> 138 #include <net/route.h> 139 #include <sys/signalvar.h> 140 #include <sys/stat.h> 141 #include <sys/sx.h> 142 #include <sys/sysctl.h> 143 #include <sys/taskqueue.h> 144 #include <sys/uio.h> 145 #include <sys/un.h> 146 #include <sys/unpcb.h> 147 #include <sys/jail.h> 148 #include <sys/syslog.h> 149 #include <netinet/in.h> 150 #include <netinet/in_pcb.h> 151 #include <netinet/tcp.h> 152 153 #include <net/vnet.h> 154 155 #include <security/mac/mac_framework.h> 156 157 #include <vm/uma.h> 158 159 #ifdef COMPAT_FREEBSD32 160 #include <sys/mount.h> 161 #include <sys/sysent.h> 162 #include <compat/freebsd32/freebsd32.h> 163 #endif 164 165 static int soreceive_rcvoob(struct socket *so, struct uio *uio, 166 int flags); 167 static void so_rdknl_lock(void *); 168 static void so_rdknl_unlock(void *); 169 static void so_rdknl_assert_lock(void *, int); 170 static void so_wrknl_lock(void *); 171 static void so_wrknl_unlock(void *); 172 static void so_wrknl_assert_lock(void *, int); 173 174 static void filt_sordetach(struct knote *kn); 175 static int filt_soread(struct knote *kn, long hint); 176 static void filt_sowdetach(struct knote *kn); 177 static int filt_sowrite(struct knote *kn, long hint); 178 static int filt_soempty(struct knote *kn, long hint); 179 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id); 180 fo_kqfilter_t soo_kqfilter; 181 182 static struct filterops soread_filtops = { 183 .f_isfd = 1, 184 .f_detach = filt_sordetach, 185 .f_event = filt_soread, 186 }; 187 static struct filterops sowrite_filtops = { 188 .f_isfd = 1, 189 .f_detach = filt_sowdetach, 190 .f_event = filt_sowrite, 191 }; 192 static struct filterops soempty_filtops = { 193 .f_isfd = 1, 194 .f_detach = filt_sowdetach, 195 .f_event = filt_soempty, 196 }; 197 198 so_gen_t so_gencnt; /* generation count for sockets */ 199 200 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 201 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 202 203 #define VNET_SO_ASSERT(so) \ 204 VNET_ASSERT(curvnet != NULL, \ 205 ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so))); 206 207 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]); 208 #define V_socket_hhh VNET(socket_hhh) 209 210 /* 211 * Limit on the number of connections in the listen queue waiting 212 * for accept(2). 213 * NB: The original sysctl somaxconn is still available but hidden 214 * to prevent confusion about the actual purpose of this number. 215 */ 216 static u_int somaxconn = SOMAXCONN; 217 218 static int 219 sysctl_somaxconn(SYSCTL_HANDLER_ARGS) 220 { 221 int error; 222 int val; 223 224 val = somaxconn; 225 error = sysctl_handle_int(oidp, &val, 0, req); 226 if (error || !req->newptr ) 227 return (error); 228 229 /* 230 * The purpose of the UINT_MAX / 3 limit, is so that the formula 231 * 3 * so_qlimit / 2 232 * below, will not overflow. 233 */ 234 235 if (val < 1 || val > UINT_MAX / 3) 236 return (EINVAL); 237 238 somaxconn = val; 239 return (0); 240 } 241 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue, 242 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, sizeof(int), 243 sysctl_somaxconn, "I", 244 "Maximum listen socket pending connection accept queue size"); 245 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, 246 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE, 0, 247 sizeof(int), sysctl_somaxconn, "I", 248 "Maximum listen socket pending connection accept queue size (compat)"); 249 250 static int numopensockets; 251 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, 252 &numopensockets, 0, "Number of open sockets"); 253 254 /* 255 * accept_mtx locks down per-socket fields relating to accept queues. See 256 * socketvar.h for an annotation of the protected fields of struct socket. 257 */ 258 struct mtx accept_mtx; 259 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF); 260 261 /* 262 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket 263 * so_gencnt field. 264 */ 265 static struct mtx so_global_mtx; 266 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); 267 268 /* 269 * General IPC sysctl name space, used by sockets and a variety of other IPC 270 * types. 271 */ 272 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 273 "IPC"); 274 275 /* 276 * Initialize the socket subsystem and set up the socket 277 * memory allocator. 278 */ 279 static uma_zone_t socket_zone; 280 int maxsockets; 281 282 static void 283 socket_zone_change(void *tag) 284 { 285 286 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 287 } 288 289 static void 290 socket_hhook_register(int subtype) 291 { 292 293 if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype, 294 &V_socket_hhh[subtype], 295 HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 296 printf("%s: WARNING: unable to register hook\n", __func__); 297 } 298 299 static void 300 socket_hhook_deregister(int subtype) 301 { 302 303 if (hhook_head_deregister(V_socket_hhh[subtype]) != 0) 304 printf("%s: WARNING: unable to deregister hook\n", __func__); 305 } 306 307 static void 308 socket_init(void *tag) 309 { 310 311 socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL, 312 NULL, NULL, UMA_ALIGN_PTR, 0); 313 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 314 uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached"); 315 EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL, 316 EVENTHANDLER_PRI_FIRST); 317 } 318 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL); 319 320 static void 321 socket_vnet_init(const void *unused __unused) 322 { 323 int i; 324 325 /* We expect a contiguous range */ 326 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 327 socket_hhook_register(i); 328 } 329 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 330 socket_vnet_init, NULL); 331 332 static void 333 socket_vnet_uninit(const void *unused __unused) 334 { 335 int i; 336 337 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 338 socket_hhook_deregister(i); 339 } 340 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 341 socket_vnet_uninit, NULL); 342 343 /* 344 * Initialise maxsockets. This SYSINIT must be run after 345 * tunable_mbinit(). 346 */ 347 static void 348 init_maxsockets(void *ignored) 349 { 350 351 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 352 maxsockets = imax(maxsockets, maxfiles); 353 } 354 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 355 356 /* 357 * Sysctl to get and set the maximum global sockets limit. Notify protocols 358 * of the change so that they can update their dependent limits as required. 359 */ 360 static int 361 sysctl_maxsockets(SYSCTL_HANDLER_ARGS) 362 { 363 int error, newmaxsockets; 364 365 newmaxsockets = maxsockets; 366 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req); 367 if (error == 0 && req->newptr && newmaxsockets != maxsockets) { 368 if (newmaxsockets > maxsockets && 369 newmaxsockets <= maxfiles) { 370 maxsockets = newmaxsockets; 371 EVENTHANDLER_INVOKE(maxsockets_change); 372 } else 373 error = EINVAL; 374 } 375 return (error); 376 } 377 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, 378 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, &maxsockets, 0, 379 sysctl_maxsockets, "IU", 380 "Maximum number of sockets available"); 381 382 /* 383 * Socket operation routines. These routines are called by the routines in 384 * sys_socket.c or from a system process, and implement the semantics of 385 * socket operations by switching out to the protocol specific routines. 386 */ 387 388 /* 389 * Get a socket structure from our zone, and initialize it. Note that it 390 * would probably be better to allocate socket and PCB at the same time, but 391 * I'm not convinced that all the protocols can be easily modified to do 392 * this. 393 * 394 * soalloc() returns a socket with a ref count of 0. 395 */ 396 static struct socket * 397 soalloc(struct vnet *vnet) 398 { 399 struct socket *so; 400 401 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO); 402 if (so == NULL) 403 return (NULL); 404 #ifdef MAC 405 if (mac_socket_init(so, M_NOWAIT) != 0) { 406 uma_zfree(socket_zone, so); 407 return (NULL); 408 } 409 #endif 410 if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) { 411 uma_zfree(socket_zone, so); 412 return (NULL); 413 } 414 415 /* 416 * The socket locking protocol allows to lock 2 sockets at a time, 417 * however, the first one must be a listening socket. WITNESS lacks 418 * a feature to change class of an existing lock, so we use DUPOK. 419 */ 420 mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK); 421 mtx_init(&so->so_snd_mtx, "so_snd", NULL, MTX_DEF); 422 mtx_init(&so->so_rcv_mtx, "so_rcv", NULL, MTX_DEF); 423 so->so_rcv.sb_sel = &so->so_rdsel; 424 so->so_snd.sb_sel = &so->so_wrsel; 425 sx_init(&so->so_snd_sx, "so_snd_sx"); 426 sx_init(&so->so_rcv_sx, "so_rcv_sx"); 427 TAILQ_INIT(&so->so_snd.sb_aiojobq); 428 TAILQ_INIT(&so->so_rcv.sb_aiojobq); 429 TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so); 430 TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so); 431 #ifdef VIMAGE 432 VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p", 433 __func__, __LINE__, so)); 434 so->so_vnet = vnet; 435 #endif 436 /* We shouldn't need the so_global_mtx */ 437 if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) { 438 /* Do we need more comprehensive error returns? */ 439 uma_zfree(socket_zone, so); 440 return (NULL); 441 } 442 mtx_lock(&so_global_mtx); 443 so->so_gencnt = ++so_gencnt; 444 ++numopensockets; 445 #ifdef VIMAGE 446 vnet->vnet_sockcnt++; 447 #endif 448 mtx_unlock(&so_global_mtx); 449 450 return (so); 451 } 452 453 /* 454 * Free the storage associated with a socket at the socket layer, tear down 455 * locks, labels, etc. All protocol state is assumed already to have been 456 * torn down (and possibly never set up) by the caller. 457 */ 458 static void 459 sodealloc(struct socket *so) 460 { 461 462 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); 463 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL")); 464 465 mtx_lock(&so_global_mtx); 466 so->so_gencnt = ++so_gencnt; 467 --numopensockets; /* Could be below, but faster here. */ 468 #ifdef VIMAGE 469 VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p", 470 __func__, __LINE__, so)); 471 so->so_vnet->vnet_sockcnt--; 472 #endif 473 mtx_unlock(&so_global_mtx); 474 #ifdef MAC 475 mac_socket_destroy(so); 476 #endif 477 hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE); 478 479 khelp_destroy_osd(&so->osd); 480 if (SOLISTENING(so)) { 481 if (so->sol_accept_filter != NULL) 482 accept_filt_setopt(so, NULL); 483 } else { 484 if (so->so_rcv.sb_hiwat) 485 (void)chgsbsize(so->so_cred->cr_uidinfo, 486 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 487 if (so->so_snd.sb_hiwat) 488 (void)chgsbsize(so->so_cred->cr_uidinfo, 489 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 490 sx_destroy(&so->so_snd_sx); 491 sx_destroy(&so->so_rcv_sx); 492 mtx_destroy(&so->so_snd_mtx); 493 mtx_destroy(&so->so_rcv_mtx); 494 } 495 crfree(so->so_cred); 496 mtx_destroy(&so->so_lock); 497 uma_zfree(socket_zone, so); 498 } 499 500 /* 501 * socreate returns a socket with a ref count of 1. The socket should be 502 * closed with soclose(). 503 */ 504 int 505 socreate(int dom, struct socket **aso, int type, int proto, 506 struct ucred *cred, struct thread *td) 507 { 508 struct protosw *prp; 509 struct socket *so; 510 int error; 511 512 if (proto) 513 prp = pffindproto(dom, proto, type); 514 else 515 prp = pffindtype(dom, type); 516 517 if (prp == NULL) { 518 /* No support for domain. */ 519 if (pffinddomain(dom) == NULL) 520 return (EAFNOSUPPORT); 521 /* No support for socket type. */ 522 if (proto == 0 && type != 0) 523 return (EPROTOTYPE); 524 return (EPROTONOSUPPORT); 525 } 526 if (prp->pr_usrreqs->pru_attach == NULL || 527 prp->pr_usrreqs->pru_attach == pru_attach_notsupp) 528 return (EPROTONOSUPPORT); 529 530 if (IN_CAPABILITY_MODE(td) && (prp->pr_flags & PR_CAPATTACH) == 0) 531 return (ECAPMODE); 532 533 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0) 534 return (EPROTONOSUPPORT); 535 536 if (prp->pr_type != type) 537 return (EPROTOTYPE); 538 so = soalloc(CRED_TO_VNET(cred)); 539 if (so == NULL) 540 return (ENOBUFS); 541 542 so->so_type = type; 543 so->so_cred = crhold(cred); 544 if ((prp->pr_domain->dom_family == PF_INET) || 545 (prp->pr_domain->dom_family == PF_INET6) || 546 (prp->pr_domain->dom_family == PF_ROUTE)) 547 so->so_fibnum = td->td_proc->p_fibnum; 548 else 549 so->so_fibnum = 0; 550 so->so_proto = prp; 551 #ifdef MAC 552 mac_socket_create(cred, so); 553 #endif 554 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 555 so_rdknl_assert_lock); 556 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 557 so_wrknl_assert_lock); 558 if ((prp->pr_flags & PR_SOCKBUF) == 0) { 559 so->so_snd.sb_mtx = &so->so_snd_mtx; 560 so->so_rcv.sb_mtx = &so->so_rcv_mtx; 561 } 562 /* 563 * Auto-sizing of socket buffers is managed by the protocols and 564 * the appropriate flags must be set in the pru_attach function. 565 */ 566 CURVNET_SET(so->so_vnet); 567 error = (*prp->pr_usrreqs->pru_attach)(so, proto, td); 568 CURVNET_RESTORE(); 569 if (error) { 570 sodealloc(so); 571 return (error); 572 } 573 soref(so); 574 *aso = so; 575 return (0); 576 } 577 578 #ifdef REGRESSION 579 static int regression_sonewconn_earlytest = 1; 580 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW, 581 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test"); 582 #endif 583 584 static struct timeval overinterval = { 60, 0 }; 585 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW, 586 &overinterval, 587 "Delay in seconds between warnings for listen socket overflows"); 588 589 /* 590 * When an attempt at a new connection is noted on a socket which accepts 591 * connections, sonewconn is called. If the connection is possible (subject 592 * to space constraints, etc.) then we allocate a new structure, properly 593 * linked into the data structure of the original socket, and return this. 594 * Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED. 595 * 596 * Note: the ref count on the socket is 0 on return. 597 */ 598 struct socket * 599 sonewconn(struct socket *head, int connstatus) 600 { 601 struct sbuf descrsb; 602 struct socket *so; 603 int len, overcount; 604 u_int qlen; 605 const char localprefix[] = "local:"; 606 char descrbuf[SUNPATHLEN + sizeof(localprefix)]; 607 #if defined(INET6) 608 char addrbuf[INET6_ADDRSTRLEN]; 609 #elif defined(INET) 610 char addrbuf[INET_ADDRSTRLEN]; 611 #endif 612 bool dolog, over; 613 614 SOLISTEN_LOCK(head); 615 over = (head->sol_qlen > 3 * head->sol_qlimit / 2); 616 #ifdef REGRESSION 617 if (regression_sonewconn_earlytest && over) { 618 #else 619 if (over) { 620 #endif 621 head->sol_overcount++; 622 dolog = !!ratecheck(&head->sol_lastover, &overinterval); 623 624 /* 625 * If we're going to log, copy the overflow count and queue 626 * length from the listen socket before dropping the lock. 627 * Also, reset the overflow count. 628 */ 629 if (dolog) { 630 overcount = head->sol_overcount; 631 head->sol_overcount = 0; 632 qlen = head->sol_qlen; 633 } 634 SOLISTEN_UNLOCK(head); 635 636 if (dolog) { 637 /* 638 * Try to print something descriptive about the 639 * socket for the error message. 640 */ 641 sbuf_new(&descrsb, descrbuf, sizeof(descrbuf), 642 SBUF_FIXEDLEN); 643 switch (head->so_proto->pr_domain->dom_family) { 644 #if defined(INET) || defined(INET6) 645 #ifdef INET 646 case AF_INET: 647 #endif 648 #ifdef INET6 649 case AF_INET6: 650 if (head->so_proto->pr_domain->dom_family == 651 AF_INET6 || 652 (sotoinpcb(head)->inp_inc.inc_flags & 653 INC_ISIPV6)) { 654 ip6_sprintf(addrbuf, 655 &sotoinpcb(head)->inp_inc.inc6_laddr); 656 sbuf_printf(&descrsb, "[%s]", addrbuf); 657 } else 658 #endif 659 { 660 #ifdef INET 661 inet_ntoa_r( 662 sotoinpcb(head)->inp_inc.inc_laddr, 663 addrbuf); 664 sbuf_cat(&descrsb, addrbuf); 665 #endif 666 } 667 sbuf_printf(&descrsb, ":%hu (proto %u)", 668 ntohs(sotoinpcb(head)->inp_inc.inc_lport), 669 head->so_proto->pr_protocol); 670 break; 671 #endif /* INET || INET6 */ 672 case AF_UNIX: 673 sbuf_cat(&descrsb, localprefix); 674 if (sotounpcb(head)->unp_addr != NULL) 675 len = 676 sotounpcb(head)->unp_addr->sun_len - 677 offsetof(struct sockaddr_un, 678 sun_path); 679 else 680 len = 0; 681 if (len > 0) 682 sbuf_bcat(&descrsb, 683 sotounpcb(head)->unp_addr->sun_path, 684 len); 685 else 686 sbuf_cat(&descrsb, "(unknown)"); 687 break; 688 } 689 690 /* 691 * If we can't print something more specific, at least 692 * print the domain name. 693 */ 694 if (sbuf_finish(&descrsb) != 0 || 695 sbuf_len(&descrsb) <= 0) { 696 sbuf_clear(&descrsb); 697 sbuf_cat(&descrsb, 698 head->so_proto->pr_domain->dom_name ?: 699 "unknown"); 700 sbuf_finish(&descrsb); 701 } 702 KASSERT(sbuf_len(&descrsb) > 0, 703 ("%s: sbuf creation failed", __func__)); 704 if (head->so_cred == 0) { 705 log(LOG_DEBUG, 706 "%s: pcb %p (%s): Listen queue overflow: " 707 "%i already in queue awaiting acceptance " 708 "(%d occurrences)\n", 709 __func__, head->so_pcb, sbuf_data(&descrsb), 710 qlen, overcount); 711 } else { 712 log(LOG_DEBUG, "%s: pcb %p (%s): Listen queue overflow: " 713 "%i already in queue awaiting acceptance " 714 "(%d occurrences), euid %d, rgid %d, jail %s\n", 715 __func__, head->so_pcb, sbuf_data(&descrsb), 716 qlen, overcount, 717 head->so_cred->cr_uid, head->so_cred->cr_rgid, 718 head->so_cred->cr_prison ? 719 head->so_cred->cr_prison->pr_name : 720 "not_jailed"); 721 } 722 sbuf_delete(&descrsb); 723 724 overcount = 0; 725 } 726 727 return (NULL); 728 } 729 SOLISTEN_UNLOCK(head); 730 VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL", 731 __func__, head)); 732 so = soalloc(head->so_vnet); 733 if (so == NULL) { 734 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 735 "limit reached or out of memory\n", 736 __func__, head->so_pcb); 737 return (NULL); 738 } 739 so->so_listen = head; 740 so->so_type = head->so_type; 741 so->so_options = head->so_options & ~SO_ACCEPTCONN; 742 so->so_linger = head->so_linger; 743 so->so_state = head->so_state | SS_NOFDREF; 744 so->so_fibnum = head->so_fibnum; 745 so->so_proto = head->so_proto; 746 so->so_cred = crhold(head->so_cred); 747 #ifdef MAC 748 mac_socket_newconn(head, so); 749 #endif 750 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 751 so_rdknl_assert_lock); 752 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 753 so_wrknl_assert_lock); 754 VNET_SO_ASSERT(head); 755 if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) { 756 sodealloc(so); 757 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 758 __func__, head->so_pcb); 759 return (NULL); 760 } 761 if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) { 762 so->so_snd.sb_mtx = &so->so_snd_mtx; 763 so->so_rcv.sb_mtx = &so->so_rcv_mtx; 764 } 765 if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 766 sodealloc(so); 767 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", 768 __func__, head->so_pcb); 769 return (NULL); 770 } 771 so->so_rcv.sb_lowat = head->sol_sbrcv_lowat; 772 so->so_snd.sb_lowat = head->sol_sbsnd_lowat; 773 so->so_rcv.sb_timeo = head->sol_sbrcv_timeo; 774 so->so_snd.sb_timeo = head->sol_sbsnd_timeo; 775 so->so_rcv.sb_flags |= head->sol_sbrcv_flags & SB_AUTOSIZE; 776 so->so_snd.sb_flags |= head->sol_sbsnd_flags & SB_AUTOSIZE; 777 778 SOLISTEN_LOCK(head); 779 if (head->sol_accept_filter != NULL) 780 connstatus = 0; 781 so->so_state |= connstatus; 782 soref(head); /* A socket on (in)complete queue refs head. */ 783 if (connstatus) { 784 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 785 so->so_qstate = SQ_COMP; 786 head->sol_qlen++; 787 solisten_wakeup(head); /* unlocks */ 788 } else { 789 /* 790 * Keep removing sockets from the head until there's room for 791 * us to insert on the tail. In pre-locking revisions, this 792 * was a simple if(), but as we could be racing with other 793 * threads and soabort() requires dropping locks, we must 794 * loop waiting for the condition to be true. 795 */ 796 while (head->sol_incqlen > head->sol_qlimit) { 797 struct socket *sp; 798 799 sp = TAILQ_FIRST(&head->sol_incomp); 800 TAILQ_REMOVE(&head->sol_incomp, sp, so_list); 801 head->sol_incqlen--; 802 SOCK_LOCK(sp); 803 sp->so_qstate = SQ_NONE; 804 sp->so_listen = NULL; 805 SOCK_UNLOCK(sp); 806 sorele_locked(head); /* does SOLISTEN_UNLOCK, head stays */ 807 soabort(sp); 808 SOLISTEN_LOCK(head); 809 } 810 TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list); 811 so->so_qstate = SQ_INCOMP; 812 head->sol_incqlen++; 813 SOLISTEN_UNLOCK(head); 814 } 815 return (so); 816 } 817 818 #if defined(SCTP) || defined(SCTP_SUPPORT) 819 /* 820 * Socket part of sctp_peeloff(). Detach a new socket from an 821 * association. The new socket is returned with a reference. 822 */ 823 struct socket * 824 sopeeloff(struct socket *head) 825 { 826 struct socket *so; 827 828 VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p", 829 __func__, __LINE__, head)); 830 so = soalloc(head->so_vnet); 831 if (so == NULL) { 832 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 833 "limit reached or out of memory\n", 834 __func__, head->so_pcb); 835 return (NULL); 836 } 837 so->so_type = head->so_type; 838 so->so_options = head->so_options; 839 so->so_linger = head->so_linger; 840 so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED; 841 so->so_fibnum = head->so_fibnum; 842 so->so_proto = head->so_proto; 843 so->so_cred = crhold(head->so_cred); 844 #ifdef MAC 845 mac_socket_newconn(head, so); 846 #endif 847 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 848 so_rdknl_assert_lock); 849 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 850 so_wrknl_assert_lock); 851 VNET_SO_ASSERT(head); 852 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) { 853 sodealloc(so); 854 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 855 __func__, head->so_pcb); 856 return (NULL); 857 } 858 if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 859 sodealloc(so); 860 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", 861 __func__, head->so_pcb); 862 return (NULL); 863 } 864 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; 865 so->so_snd.sb_lowat = head->so_snd.sb_lowat; 866 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; 867 so->so_snd.sb_timeo = head->so_snd.sb_timeo; 868 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE; 869 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE; 870 871 soref(so); 872 873 return (so); 874 } 875 #endif /* SCTP */ 876 877 int 878 sobind(struct socket *so, struct sockaddr *nam, struct thread *td) 879 { 880 int error; 881 882 CURVNET_SET(so->so_vnet); 883 error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td); 884 CURVNET_RESTORE(); 885 return (error); 886 } 887 888 int 889 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 890 { 891 int error; 892 893 CURVNET_SET(so->so_vnet); 894 error = (*so->so_proto->pr_usrreqs->pru_bindat)(fd, so, nam, td); 895 CURVNET_RESTORE(); 896 return (error); 897 } 898 899 /* 900 * solisten() transitions a socket from a non-listening state to a listening 901 * state, but can also be used to update the listen queue depth on an 902 * existing listen socket. The protocol will call back into the sockets 903 * layer using solisten_proto_check() and solisten_proto() to check and set 904 * socket-layer listen state. Call backs are used so that the protocol can 905 * acquire both protocol and socket layer locks in whatever order is required 906 * by the protocol. 907 * 908 * Protocol implementors are advised to hold the socket lock across the 909 * socket-layer test and set to avoid races at the socket layer. 910 */ 911 int 912 solisten(struct socket *so, int backlog, struct thread *td) 913 { 914 int error; 915 916 CURVNET_SET(so->so_vnet); 917 error = (*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td); 918 CURVNET_RESTORE(); 919 return (error); 920 } 921 922 /* 923 * Prepare for a call to solisten_proto(). Acquire all socket buffer locks in 924 * order to interlock with socket I/O. 925 */ 926 int 927 solisten_proto_check(struct socket *so) 928 { 929 SOCK_LOCK_ASSERT(so); 930 931 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 932 SS_ISDISCONNECTING)) != 0) 933 return (EINVAL); 934 935 /* 936 * Sleeping is not permitted here, so simply fail if userspace is 937 * attempting to transmit or receive on the socket. This kind of 938 * transient failure is not ideal, but it should occur only if userspace 939 * is misusing the socket interfaces. 940 */ 941 if (!sx_try_xlock(&so->so_snd_sx)) 942 return (EAGAIN); 943 if (!sx_try_xlock(&so->so_rcv_sx)) { 944 sx_xunlock(&so->so_snd_sx); 945 return (EAGAIN); 946 } 947 mtx_lock(&so->so_snd_mtx); 948 mtx_lock(&so->so_rcv_mtx); 949 950 /* Interlock with soo_aio_queue(). */ 951 if ((so->so_snd.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0 || 952 (so->so_rcv.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0) { 953 solisten_proto_abort(so); 954 return (EINVAL); 955 } 956 return (0); 957 } 958 959 /* 960 * Undo the setup done by solisten_proto_check(). 961 */ 962 void 963 solisten_proto_abort(struct socket *so) 964 { 965 mtx_unlock(&so->so_snd_mtx); 966 mtx_unlock(&so->so_rcv_mtx); 967 sx_xunlock(&so->so_snd_sx); 968 sx_xunlock(&so->so_rcv_sx); 969 } 970 971 void 972 solisten_proto(struct socket *so, int backlog) 973 { 974 int sbrcv_lowat, sbsnd_lowat; 975 u_int sbrcv_hiwat, sbsnd_hiwat; 976 short sbrcv_flags, sbsnd_flags; 977 sbintime_t sbrcv_timeo, sbsnd_timeo; 978 979 SOCK_LOCK_ASSERT(so); 980 KASSERT((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 981 SS_ISDISCONNECTING)) == 0, 982 ("%s: bad socket state %p", __func__, so)); 983 984 if (SOLISTENING(so)) 985 goto listening; 986 987 /* 988 * Change this socket to listening state. 989 */ 990 sbrcv_lowat = so->so_rcv.sb_lowat; 991 sbsnd_lowat = so->so_snd.sb_lowat; 992 sbrcv_hiwat = so->so_rcv.sb_hiwat; 993 sbsnd_hiwat = so->so_snd.sb_hiwat; 994 sbrcv_flags = so->so_rcv.sb_flags; 995 sbsnd_flags = so->so_snd.sb_flags; 996 sbrcv_timeo = so->so_rcv.sb_timeo; 997 sbsnd_timeo = so->so_snd.sb_timeo; 998 999 sbdestroy(so, SO_SND); 1000 sbdestroy(so, SO_RCV); 1001 1002 #ifdef INVARIANTS 1003 bzero(&so->so_rcv, 1004 sizeof(struct socket) - offsetof(struct socket, so_rcv)); 1005 #endif 1006 1007 so->sol_sbrcv_lowat = sbrcv_lowat; 1008 so->sol_sbsnd_lowat = sbsnd_lowat; 1009 so->sol_sbrcv_hiwat = sbrcv_hiwat; 1010 so->sol_sbsnd_hiwat = sbsnd_hiwat; 1011 so->sol_sbrcv_flags = sbrcv_flags; 1012 so->sol_sbsnd_flags = sbsnd_flags; 1013 so->sol_sbrcv_timeo = sbrcv_timeo; 1014 so->sol_sbsnd_timeo = sbsnd_timeo; 1015 1016 so->sol_qlen = so->sol_incqlen = 0; 1017 TAILQ_INIT(&so->sol_incomp); 1018 TAILQ_INIT(&so->sol_comp); 1019 1020 so->sol_accept_filter = NULL; 1021 so->sol_accept_filter_arg = NULL; 1022 so->sol_accept_filter_str = NULL; 1023 1024 so->sol_upcall = NULL; 1025 so->sol_upcallarg = NULL; 1026 1027 so->so_options |= SO_ACCEPTCONN; 1028 1029 listening: 1030 if (backlog < 0 || backlog > somaxconn) 1031 backlog = somaxconn; 1032 so->sol_qlimit = backlog; 1033 1034 mtx_unlock(&so->so_snd_mtx); 1035 mtx_unlock(&so->so_rcv_mtx); 1036 sx_xunlock(&so->so_snd_sx); 1037 sx_xunlock(&so->so_rcv_sx); 1038 } 1039 1040 /* 1041 * Wakeup listeners/subsystems once we have a complete connection. 1042 * Enters with lock, returns unlocked. 1043 */ 1044 void 1045 solisten_wakeup(struct socket *sol) 1046 { 1047 1048 if (sol->sol_upcall != NULL) 1049 (void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT); 1050 else { 1051 selwakeuppri(&sol->so_rdsel, PSOCK); 1052 KNOTE_LOCKED(&sol->so_rdsel.si_note, 0); 1053 } 1054 SOLISTEN_UNLOCK(sol); 1055 wakeup_one(&sol->sol_comp); 1056 if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL) 1057 pgsigio(&sol->so_sigio, SIGIO, 0); 1058 } 1059 1060 /* 1061 * Return single connection off a listening socket queue. Main consumer of 1062 * the function is kern_accept4(). Some modules, that do their own accept 1063 * management also use the function. 1064 * 1065 * Listening socket must be locked on entry and is returned unlocked on 1066 * return. 1067 * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT. 1068 */ 1069 int 1070 solisten_dequeue(struct socket *head, struct socket **ret, int flags) 1071 { 1072 struct socket *so; 1073 int error; 1074 1075 SOLISTEN_LOCK_ASSERT(head); 1076 1077 while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) && 1078 head->so_error == 0) { 1079 error = msleep(&head->sol_comp, SOCK_MTX(head), PSOCK | PCATCH, 1080 "accept", 0); 1081 if (error != 0) { 1082 SOLISTEN_UNLOCK(head); 1083 return (error); 1084 } 1085 } 1086 if (head->so_error) { 1087 error = head->so_error; 1088 head->so_error = 0; 1089 } else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp)) 1090 error = EWOULDBLOCK; 1091 else 1092 error = 0; 1093 if (error) { 1094 SOLISTEN_UNLOCK(head); 1095 return (error); 1096 } 1097 so = TAILQ_FIRST(&head->sol_comp); 1098 SOCK_LOCK(so); 1099 KASSERT(so->so_qstate == SQ_COMP, 1100 ("%s: so %p not SQ_COMP", __func__, so)); 1101 soref(so); 1102 head->sol_qlen--; 1103 so->so_qstate = SQ_NONE; 1104 so->so_listen = NULL; 1105 TAILQ_REMOVE(&head->sol_comp, so, so_list); 1106 if (flags & ACCEPT4_INHERIT) 1107 so->so_state |= (head->so_state & SS_NBIO); 1108 else 1109 so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0; 1110 SOCK_UNLOCK(so); 1111 sorele_locked(head); 1112 1113 *ret = so; 1114 return (0); 1115 } 1116 1117 /* 1118 * Evaluate the reference count and named references on a socket; if no 1119 * references remain, free it. This should be called whenever a reference is 1120 * released, such as in sorele(), but also when named reference flags are 1121 * cleared in socket or protocol code. 1122 * 1123 * sofree() will free the socket if: 1124 * 1125 * - There are no outstanding file descriptor references or related consumers 1126 * (so_count == 0). 1127 * 1128 * - The socket has been closed by user space, if ever open (SS_NOFDREF). 1129 * 1130 * - The protocol does not have an outstanding strong reference on the socket 1131 * (SS_PROTOREF). 1132 * 1133 * - The socket is not in a completed connection queue, so a process has been 1134 * notified that it is present. If it is removed, the user process may 1135 * block in accept() despite select() saying the socket was ready. 1136 */ 1137 void 1138 sofree(struct socket *so) 1139 { 1140 struct protosw *pr = so->so_proto; 1141 bool last __diagused; 1142 1143 SOCK_LOCK_ASSERT(so); 1144 1145 if ((so->so_state & (SS_NOFDREF | SS_PROTOREF)) != SS_NOFDREF || 1146 refcount_load(&so->so_count) != 0 || so->so_qstate == SQ_COMP) { 1147 SOCK_UNLOCK(so); 1148 return; 1149 } 1150 1151 if (!SOLISTENING(so) && so->so_qstate == SQ_INCOMP) { 1152 struct socket *sol; 1153 1154 sol = so->so_listen; 1155 KASSERT(sol, ("%s: so %p on incomp of NULL", __func__, so)); 1156 1157 /* 1158 * To solve race between close of a listening socket and 1159 * a socket on its incomplete queue, we need to lock both. 1160 * The order is first listening socket, then regular. 1161 * Since we don't have SS_NOFDREF neither SS_PROTOREF, this 1162 * function and the listening socket are the only pointers 1163 * to so. To preserve so and sol, we reference both and then 1164 * relock. 1165 * After relock the socket may not move to so_comp since it 1166 * doesn't have PCB already, but it may be removed from 1167 * so_incomp. If that happens, we share responsiblity on 1168 * freeing the socket, but soclose() has already removed 1169 * it from queue. 1170 */ 1171 soref(sol); 1172 soref(so); 1173 SOCK_UNLOCK(so); 1174 SOLISTEN_LOCK(sol); 1175 SOCK_LOCK(so); 1176 if (so->so_qstate == SQ_INCOMP) { 1177 KASSERT(so->so_listen == sol, 1178 ("%s: so %p migrated out of sol %p", 1179 __func__, so, sol)); 1180 TAILQ_REMOVE(&sol->sol_incomp, so, so_list); 1181 sol->sol_incqlen--; 1182 last = refcount_release(&sol->so_count); 1183 KASSERT(!last, ("%s: released last reference for %p", 1184 __func__, sol)); 1185 so->so_qstate = SQ_NONE; 1186 so->so_listen = NULL; 1187 } else 1188 KASSERT(so->so_listen == NULL, 1189 ("%s: so %p not on (in)comp with so_listen", 1190 __func__, so)); 1191 sorele_locked(sol); 1192 KASSERT(refcount_load(&so->so_count) == 1, 1193 ("%s: so %p count %u", __func__, so, so->so_count)); 1194 so->so_count = 0; 1195 } 1196 if (SOLISTENING(so)) 1197 so->so_error = ECONNABORTED; 1198 SOCK_UNLOCK(so); 1199 1200 if (so->so_dtor != NULL) 1201 so->so_dtor(so); 1202 1203 VNET_SO_ASSERT(so); 1204 if ((pr->pr_flags & PR_RIGHTS) && !SOLISTENING(so)) { 1205 MPASS(pr->pr_domain->dom_dispose != NULL); 1206 (*pr->pr_domain->dom_dispose)(so); 1207 } 1208 if (pr->pr_usrreqs->pru_detach != NULL) 1209 (*pr->pr_usrreqs->pru_detach)(so); 1210 1211 /* 1212 * From this point on, we assume that no other references to this 1213 * socket exist anywhere else in the stack. Therefore, no locks need 1214 * to be acquired or held. 1215 */ 1216 if (!(pr->pr_flags & PR_SOCKBUF) && !SOLISTENING(so)) { 1217 sbdestroy(so, SO_SND); 1218 sbdestroy(so, SO_RCV); 1219 } 1220 seldrain(&so->so_rdsel); 1221 seldrain(&so->so_wrsel); 1222 knlist_destroy(&so->so_rdsel.si_note); 1223 knlist_destroy(&so->so_wrsel.si_note); 1224 sodealloc(so); 1225 } 1226 1227 /* 1228 * Release a reference on a socket while holding the socket lock. 1229 * Unlocks the socket lock before returning. 1230 */ 1231 void 1232 sorele_locked(struct socket *so) 1233 { 1234 SOCK_LOCK_ASSERT(so); 1235 if (refcount_release(&so->so_count)) 1236 sofree(so); 1237 else 1238 SOCK_UNLOCK(so); 1239 } 1240 1241 /* 1242 * Close a socket on last file table reference removal. Initiate disconnect 1243 * if connected. Free socket when disconnect complete. 1244 * 1245 * This function will sorele() the socket. Note that soclose() may be called 1246 * prior to the ref count reaching zero. The actual socket structure will 1247 * not be freed until the ref count reaches zero. 1248 */ 1249 int 1250 soclose(struct socket *so) 1251 { 1252 struct accept_queue lqueue; 1253 int error = 0; 1254 bool listening, last __diagused; 1255 1256 KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter")); 1257 1258 CURVNET_SET(so->so_vnet); 1259 funsetown(&so->so_sigio); 1260 if (so->so_state & SS_ISCONNECTED) { 1261 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 1262 error = sodisconnect(so); 1263 if (error) { 1264 if (error == ENOTCONN) 1265 error = 0; 1266 goto drop; 1267 } 1268 } 1269 1270 if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) { 1271 if ((so->so_state & SS_ISDISCONNECTING) && 1272 (so->so_state & SS_NBIO)) 1273 goto drop; 1274 while (so->so_state & SS_ISCONNECTED) { 1275 error = tsleep(&so->so_timeo, 1276 PSOCK | PCATCH, "soclos", 1277 so->so_linger * hz); 1278 if (error) 1279 break; 1280 } 1281 } 1282 } 1283 1284 drop: 1285 if (so->so_proto->pr_usrreqs->pru_close != NULL) 1286 (*so->so_proto->pr_usrreqs->pru_close)(so); 1287 1288 SOCK_LOCK(so); 1289 if ((listening = SOLISTENING(so))) { 1290 struct socket *sp; 1291 1292 TAILQ_INIT(&lqueue); 1293 TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list); 1294 TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list); 1295 1296 so->sol_qlen = so->sol_incqlen = 0; 1297 1298 TAILQ_FOREACH(sp, &lqueue, so_list) { 1299 SOCK_LOCK(sp); 1300 sp->so_qstate = SQ_NONE; 1301 sp->so_listen = NULL; 1302 SOCK_UNLOCK(sp); 1303 last = refcount_release(&so->so_count); 1304 KASSERT(!last, ("%s: released last reference for %p", 1305 __func__, so)); 1306 } 1307 } 1308 KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF")); 1309 so->so_state |= SS_NOFDREF; 1310 sorele_locked(so); 1311 if (listening) { 1312 struct socket *sp, *tsp; 1313 1314 TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp) { 1315 SOCK_LOCK(sp); 1316 if (refcount_load(&sp->so_count) == 0) { 1317 SOCK_UNLOCK(sp); 1318 soabort(sp); 1319 } else { 1320 /* See the handling of queued sockets 1321 in sofree(). */ 1322 SOCK_UNLOCK(sp); 1323 } 1324 } 1325 } 1326 CURVNET_RESTORE(); 1327 return (error); 1328 } 1329 1330 /* 1331 * soabort() is used to abruptly tear down a connection, such as when a 1332 * resource limit is reached (listen queue depth exceeded), or if a listen 1333 * socket is closed while there are sockets waiting to be accepted. 1334 * 1335 * This interface is tricky, because it is called on an unreferenced socket, 1336 * and must be called only by a thread that has actually removed the socket 1337 * from the listen queue it was on, or races with other threads are risked. 1338 * 1339 * This interface will call into the protocol code, so must not be called 1340 * with any socket locks held. Protocols do call it while holding their own 1341 * recursible protocol mutexes, but this is something that should be subject 1342 * to review in the future. 1343 */ 1344 void 1345 soabort(struct socket *so) 1346 { 1347 1348 /* 1349 * In as much as is possible, assert that no references to this 1350 * socket are held. This is not quite the same as asserting that the 1351 * current thread is responsible for arranging for no references, but 1352 * is as close as we can get for now. 1353 */ 1354 KASSERT(so->so_count == 0, ("soabort: so_count")); 1355 KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF")); 1356 KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF")); 1357 VNET_SO_ASSERT(so); 1358 1359 if (so->so_proto->pr_usrreqs->pru_abort != NULL) 1360 (*so->so_proto->pr_usrreqs->pru_abort)(so); 1361 SOCK_LOCK(so); 1362 sofree(so); 1363 } 1364 1365 int 1366 soaccept(struct socket *so, struct sockaddr **nam) 1367 { 1368 int error; 1369 1370 SOCK_LOCK(so); 1371 KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF")); 1372 so->so_state &= ~SS_NOFDREF; 1373 SOCK_UNLOCK(so); 1374 1375 CURVNET_SET(so->so_vnet); 1376 error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam); 1377 CURVNET_RESTORE(); 1378 return (error); 1379 } 1380 1381 int 1382 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td) 1383 { 1384 1385 return (soconnectat(AT_FDCWD, so, nam, td)); 1386 } 1387 1388 int 1389 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 1390 { 1391 int error; 1392 1393 CURVNET_SET(so->so_vnet); 1394 /* 1395 * If protocol is connection-based, can only connect once. 1396 * Otherwise, if connected, try to disconnect first. This allows 1397 * user to disconnect by connecting to, e.g., a null address. 1398 */ 1399 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 1400 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 1401 (error = sodisconnect(so)))) { 1402 error = EISCONN; 1403 } else { 1404 /* 1405 * Prevent accumulated error from previous connection from 1406 * biting us. 1407 */ 1408 so->so_error = 0; 1409 if (fd == AT_FDCWD) { 1410 error = (*so->so_proto->pr_usrreqs->pru_connect)(so, 1411 nam, td); 1412 } else { 1413 error = (*so->so_proto->pr_usrreqs->pru_connectat)(fd, 1414 so, nam, td); 1415 } 1416 } 1417 CURVNET_RESTORE(); 1418 1419 return (error); 1420 } 1421 1422 int 1423 soconnect2(struct socket *so1, struct socket *so2) 1424 { 1425 int error; 1426 1427 CURVNET_SET(so1->so_vnet); 1428 error = (*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2); 1429 CURVNET_RESTORE(); 1430 return (error); 1431 } 1432 1433 int 1434 sodisconnect(struct socket *so) 1435 { 1436 int error; 1437 1438 if ((so->so_state & SS_ISCONNECTED) == 0) 1439 return (ENOTCONN); 1440 if (so->so_state & SS_ISDISCONNECTING) 1441 return (EALREADY); 1442 VNET_SO_ASSERT(so); 1443 error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so); 1444 return (error); 1445 } 1446 1447 int 1448 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, 1449 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1450 { 1451 long space; 1452 ssize_t resid; 1453 int clen = 0, error, dontroute; 1454 1455 KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM")); 1456 KASSERT(so->so_proto->pr_flags & PR_ATOMIC, 1457 ("sosend_dgram: !PR_ATOMIC")); 1458 1459 if (uio != NULL) 1460 resid = uio->uio_resid; 1461 else 1462 resid = top->m_pkthdr.len; 1463 /* 1464 * In theory resid should be unsigned. However, space must be 1465 * signed, as it might be less than 0 if we over-committed, and we 1466 * must use a signed comparison of space and resid. On the other 1467 * hand, a negative resid causes us to loop sending 0-length 1468 * segments to the protocol. 1469 */ 1470 if (resid < 0) { 1471 error = EINVAL; 1472 goto out; 1473 } 1474 1475 dontroute = 1476 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0; 1477 if (td != NULL) 1478 td->td_ru.ru_msgsnd++; 1479 if (control != NULL) 1480 clen = control->m_len; 1481 1482 SOCKBUF_LOCK(&so->so_snd); 1483 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1484 SOCKBUF_UNLOCK(&so->so_snd); 1485 error = EPIPE; 1486 goto out; 1487 } 1488 if (so->so_error) { 1489 error = so->so_error; 1490 so->so_error = 0; 1491 SOCKBUF_UNLOCK(&so->so_snd); 1492 goto out; 1493 } 1494 if ((so->so_state & SS_ISCONNECTED) == 0) { 1495 /* 1496 * `sendto' and `sendmsg' is allowed on a connection-based 1497 * socket if it supports implied connect. Return ENOTCONN if 1498 * not connected and no address is supplied. 1499 */ 1500 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1501 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1502 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1503 !(resid == 0 && clen != 0)) { 1504 SOCKBUF_UNLOCK(&so->so_snd); 1505 error = ENOTCONN; 1506 goto out; 1507 } 1508 } else if (addr == NULL) { 1509 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1510 error = ENOTCONN; 1511 else 1512 error = EDESTADDRREQ; 1513 SOCKBUF_UNLOCK(&so->so_snd); 1514 goto out; 1515 } 1516 } 1517 1518 /* 1519 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a 1520 * problem and need fixing. 1521 */ 1522 space = sbspace(&so->so_snd); 1523 if (flags & MSG_OOB) 1524 space += 1024; 1525 space -= clen; 1526 SOCKBUF_UNLOCK(&so->so_snd); 1527 if (resid > space) { 1528 error = EMSGSIZE; 1529 goto out; 1530 } 1531 if (uio == NULL) { 1532 resid = 0; 1533 if (flags & MSG_EOR) 1534 top->m_flags |= M_EOR; 1535 } else { 1536 /* 1537 * Copy the data from userland into a mbuf chain. 1538 * If no data is to be copied in, a single empty mbuf 1539 * is returned. 1540 */ 1541 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr, 1542 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0))); 1543 if (top == NULL) { 1544 error = EFAULT; /* only possible error */ 1545 goto out; 1546 } 1547 space -= resid - uio->uio_resid; 1548 resid = uio->uio_resid; 1549 } 1550 KASSERT(resid == 0, ("sosend_dgram: resid != 0")); 1551 /* 1552 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock 1553 * than with. 1554 */ 1555 if (dontroute) { 1556 SOCK_LOCK(so); 1557 so->so_options |= SO_DONTROUTE; 1558 SOCK_UNLOCK(so); 1559 } 1560 /* 1561 * XXX all the SBS_CANTSENDMORE checks previously done could be out 1562 * of date. We could have received a reset packet in an interrupt or 1563 * maybe we slept while doing page faults in uiomove() etc. We could 1564 * probably recheck again inside the locking protection here, but 1565 * there are probably other places that this also happens. We must 1566 * rethink this. 1567 */ 1568 VNET_SO_ASSERT(so); 1569 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1570 (flags & MSG_OOB) ? PRUS_OOB : 1571 /* 1572 * If the user set MSG_EOF, the protocol understands this flag and 1573 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND. 1574 */ 1575 ((flags & MSG_EOF) && 1576 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1577 (resid <= 0)) ? 1578 PRUS_EOF : 1579 /* If there is more to send set PRUS_MORETOCOME */ 1580 (flags & MSG_MORETOCOME) || 1581 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1582 top, addr, control, td); 1583 if (dontroute) { 1584 SOCK_LOCK(so); 1585 so->so_options &= ~SO_DONTROUTE; 1586 SOCK_UNLOCK(so); 1587 } 1588 clen = 0; 1589 control = NULL; 1590 top = NULL; 1591 out: 1592 if (top != NULL) 1593 m_freem(top); 1594 if (control != NULL) 1595 m_freem(control); 1596 return (error); 1597 } 1598 1599 /* 1600 * Send on a socket. If send must go all at once and message is larger than 1601 * send buffering, then hard error. Lock against other senders. If must go 1602 * all at once and not enough room now, then inform user that this would 1603 * block and do nothing. Otherwise, if nonblocking, send as much as 1604 * possible. The data to be sent is described by "uio" if nonzero, otherwise 1605 * by the mbuf chain "top" (which must be null if uio is not). Data provided 1606 * in mbuf chain must be small enough to send all at once. 1607 * 1608 * Returns nonzero on error, timeout or signal; callers must check for short 1609 * counts if EINTR/ERESTART are returned. Data and control buffers are freed 1610 * on return. 1611 */ 1612 int 1613 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio, 1614 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1615 { 1616 long space; 1617 ssize_t resid; 1618 int clen = 0, error, dontroute; 1619 int atomic = sosendallatonce(so) || top; 1620 int pru_flag; 1621 #ifdef KERN_TLS 1622 struct ktls_session *tls; 1623 int tls_enq_cnt, tls_pruflag; 1624 uint8_t tls_rtype; 1625 1626 tls = NULL; 1627 tls_rtype = TLS_RLTYPE_APP; 1628 #endif 1629 if (uio != NULL) 1630 resid = uio->uio_resid; 1631 else if ((top->m_flags & M_PKTHDR) != 0) 1632 resid = top->m_pkthdr.len; 1633 else 1634 resid = m_length(top, NULL); 1635 /* 1636 * In theory resid should be unsigned. However, space must be 1637 * signed, as it might be less than 0 if we over-committed, and we 1638 * must use a signed comparison of space and resid. On the other 1639 * hand, a negative resid causes us to loop sending 0-length 1640 * segments to the protocol. 1641 * 1642 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 1643 * type sockets since that's an error. 1644 */ 1645 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 1646 error = EINVAL; 1647 goto out; 1648 } 1649 1650 dontroute = 1651 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 1652 (so->so_proto->pr_flags & PR_ATOMIC); 1653 if (td != NULL) 1654 td->td_ru.ru_msgsnd++; 1655 if (control != NULL) 1656 clen = control->m_len; 1657 1658 error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags)); 1659 if (error) 1660 goto out; 1661 1662 #ifdef KERN_TLS 1663 tls_pruflag = 0; 1664 tls = ktls_hold(so->so_snd.sb_tls_info); 1665 if (tls != NULL) { 1666 if (tls->mode == TCP_TLS_MODE_SW) 1667 tls_pruflag = PRUS_NOTREADY; 1668 1669 if (control != NULL) { 1670 struct cmsghdr *cm = mtod(control, struct cmsghdr *); 1671 1672 if (clen >= sizeof(*cm) && 1673 cm->cmsg_type == TLS_SET_RECORD_TYPE) { 1674 tls_rtype = *((uint8_t *)CMSG_DATA(cm)); 1675 clen = 0; 1676 m_freem(control); 1677 control = NULL; 1678 atomic = 1; 1679 } 1680 } 1681 1682 if (resid == 0 && !ktls_permit_empty_frames(tls)) { 1683 error = EINVAL; 1684 goto release; 1685 } 1686 } 1687 #endif 1688 1689 restart: 1690 do { 1691 SOCKBUF_LOCK(&so->so_snd); 1692 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1693 SOCKBUF_UNLOCK(&so->so_snd); 1694 error = EPIPE; 1695 goto release; 1696 } 1697 if (so->so_error) { 1698 error = so->so_error; 1699 so->so_error = 0; 1700 SOCKBUF_UNLOCK(&so->so_snd); 1701 goto release; 1702 } 1703 if ((so->so_state & SS_ISCONNECTED) == 0) { 1704 /* 1705 * `sendto' and `sendmsg' is allowed on a connection- 1706 * based socket if it supports implied connect. 1707 * Return ENOTCONN if not connected and no address is 1708 * supplied. 1709 */ 1710 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1711 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1712 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1713 !(resid == 0 && clen != 0)) { 1714 SOCKBUF_UNLOCK(&so->so_snd); 1715 error = ENOTCONN; 1716 goto release; 1717 } 1718 } else if (addr == NULL) { 1719 SOCKBUF_UNLOCK(&so->so_snd); 1720 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1721 error = ENOTCONN; 1722 else 1723 error = EDESTADDRREQ; 1724 goto release; 1725 } 1726 } 1727 space = sbspace(&so->so_snd); 1728 if (flags & MSG_OOB) 1729 space += 1024; 1730 if ((atomic && resid > so->so_snd.sb_hiwat) || 1731 clen > so->so_snd.sb_hiwat) { 1732 SOCKBUF_UNLOCK(&so->so_snd); 1733 error = EMSGSIZE; 1734 goto release; 1735 } 1736 if (space < resid + clen && 1737 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 1738 if ((so->so_state & SS_NBIO) || 1739 (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) { 1740 SOCKBUF_UNLOCK(&so->so_snd); 1741 error = EWOULDBLOCK; 1742 goto release; 1743 } 1744 error = sbwait(so, SO_SND); 1745 SOCKBUF_UNLOCK(&so->so_snd); 1746 if (error) 1747 goto release; 1748 goto restart; 1749 } 1750 SOCKBUF_UNLOCK(&so->so_snd); 1751 space -= clen; 1752 do { 1753 if (uio == NULL) { 1754 resid = 0; 1755 if (flags & MSG_EOR) 1756 top->m_flags |= M_EOR; 1757 #ifdef KERN_TLS 1758 if (tls != NULL) { 1759 ktls_frame(top, tls, &tls_enq_cnt, 1760 tls_rtype); 1761 tls_rtype = TLS_RLTYPE_APP; 1762 } 1763 #endif 1764 } else { 1765 /* 1766 * Copy the data from userland into a mbuf 1767 * chain. If resid is 0, which can happen 1768 * only if we have control to send, then 1769 * a single empty mbuf is returned. This 1770 * is a workaround to prevent protocol send 1771 * methods to panic. 1772 */ 1773 #ifdef KERN_TLS 1774 if (tls != NULL) { 1775 top = m_uiotombuf(uio, M_WAITOK, space, 1776 tls->params.max_frame_len, 1777 M_EXTPG | 1778 ((flags & MSG_EOR) ? M_EOR : 0)); 1779 if (top != NULL) { 1780 ktls_frame(top, tls, 1781 &tls_enq_cnt, tls_rtype); 1782 } 1783 tls_rtype = TLS_RLTYPE_APP; 1784 } else 1785 #endif 1786 top = m_uiotombuf(uio, M_WAITOK, space, 1787 (atomic ? max_hdr : 0), 1788 (atomic ? M_PKTHDR : 0) | 1789 ((flags & MSG_EOR) ? M_EOR : 0)); 1790 if (top == NULL) { 1791 error = EFAULT; /* only possible error */ 1792 goto release; 1793 } 1794 space -= resid - uio->uio_resid; 1795 resid = uio->uio_resid; 1796 } 1797 if (dontroute) { 1798 SOCK_LOCK(so); 1799 so->so_options |= SO_DONTROUTE; 1800 SOCK_UNLOCK(so); 1801 } 1802 /* 1803 * XXX all the SBS_CANTSENDMORE checks previously 1804 * done could be out of date. We could have received 1805 * a reset packet in an interrupt or maybe we slept 1806 * while doing page faults in uiomove() etc. We 1807 * could probably recheck again inside the locking 1808 * protection here, but there are probably other 1809 * places that this also happens. We must rethink 1810 * this. 1811 */ 1812 VNET_SO_ASSERT(so); 1813 1814 pru_flag = (flags & MSG_OOB) ? PRUS_OOB : 1815 /* 1816 * If the user set MSG_EOF, the protocol understands 1817 * this flag and nothing left to send then use 1818 * PRU_SEND_EOF instead of PRU_SEND. 1819 */ 1820 ((flags & MSG_EOF) && 1821 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1822 (resid <= 0)) ? 1823 PRUS_EOF : 1824 /* If there is more to send set PRUS_MORETOCOME. */ 1825 (flags & MSG_MORETOCOME) || 1826 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0; 1827 1828 #ifdef KERN_TLS 1829 pru_flag |= tls_pruflag; 1830 #endif 1831 1832 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1833 pru_flag, top, addr, control, td); 1834 1835 if (dontroute) { 1836 SOCK_LOCK(so); 1837 so->so_options &= ~SO_DONTROUTE; 1838 SOCK_UNLOCK(so); 1839 } 1840 1841 #ifdef KERN_TLS 1842 if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) { 1843 if (error != 0) { 1844 m_freem(top); 1845 top = NULL; 1846 } else { 1847 soref(so); 1848 ktls_enqueue(top, so, tls_enq_cnt); 1849 } 1850 } 1851 #endif 1852 clen = 0; 1853 control = NULL; 1854 top = NULL; 1855 if (error) 1856 goto release; 1857 } while (resid && space > 0); 1858 } while (resid); 1859 1860 release: 1861 SOCK_IO_SEND_UNLOCK(so); 1862 out: 1863 #ifdef KERN_TLS 1864 if (tls != NULL) 1865 ktls_free(tls); 1866 #endif 1867 if (top != NULL) 1868 m_freem(top); 1869 if (control != NULL) 1870 m_freem(control); 1871 return (error); 1872 } 1873 1874 int 1875 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, 1876 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1877 { 1878 int error; 1879 1880 CURVNET_SET(so->so_vnet); 1881 error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, 1882 top, control, flags, td); 1883 CURVNET_RESTORE(); 1884 return (error); 1885 } 1886 1887 /* 1888 * The part of soreceive() that implements reading non-inline out-of-band 1889 * data from a socket. For more complete comments, see soreceive(), from 1890 * which this code originated. 1891 * 1892 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is 1893 * unable to return an mbuf chain to the caller. 1894 */ 1895 static int 1896 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags) 1897 { 1898 struct protosw *pr = so->so_proto; 1899 struct mbuf *m; 1900 int error; 1901 1902 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); 1903 VNET_SO_ASSERT(so); 1904 1905 m = m_get(M_WAITOK, MT_DATA); 1906 error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK); 1907 if (error) 1908 goto bad; 1909 do { 1910 error = uiomove(mtod(m, void *), 1911 (int) min(uio->uio_resid, m->m_len), uio); 1912 m = m_free(m); 1913 } while (uio->uio_resid && error == 0 && m); 1914 bad: 1915 if (m != NULL) 1916 m_freem(m); 1917 return (error); 1918 } 1919 1920 /* 1921 * Following replacement or removal of the first mbuf on the first mbuf chain 1922 * of a socket buffer, push necessary state changes back into the socket 1923 * buffer so that other consumers see the values consistently. 'nextrecord' 1924 * is the callers locally stored value of the original value of 1925 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. 1926 * NOTE: 'nextrecord' may be NULL. 1927 */ 1928 static __inline void 1929 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) 1930 { 1931 1932 SOCKBUF_LOCK_ASSERT(sb); 1933 /* 1934 * First, update for the new value of nextrecord. If necessary, make 1935 * it the first record. 1936 */ 1937 if (sb->sb_mb != NULL) 1938 sb->sb_mb->m_nextpkt = nextrecord; 1939 else 1940 sb->sb_mb = nextrecord; 1941 1942 /* 1943 * Now update any dependent socket buffer fields to reflect the new 1944 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the 1945 * addition of a second clause that takes care of the case where 1946 * sb_mb has been updated, but remains the last record. 1947 */ 1948 if (sb->sb_mb == NULL) { 1949 sb->sb_mbtail = NULL; 1950 sb->sb_lastrecord = NULL; 1951 } else if (sb->sb_mb->m_nextpkt == NULL) 1952 sb->sb_lastrecord = sb->sb_mb; 1953 } 1954 1955 /* 1956 * Implement receive operations on a socket. We depend on the way that 1957 * records are added to the sockbuf by sbappend. In particular, each record 1958 * (mbufs linked through m_next) must begin with an address if the protocol 1959 * so specifies, followed by an optional mbuf or mbufs containing ancillary 1960 * data, and then zero or more mbufs of data. In order to allow parallelism 1961 * between network receive and copying to user space, as well as avoid 1962 * sleeping with a mutex held, we release the socket buffer mutex during the 1963 * user space copy. Although the sockbuf is locked, new data may still be 1964 * appended, and thus we must maintain consistency of the sockbuf during that 1965 * time. 1966 * 1967 * The caller may receive the data as a single mbuf chain by supplying an 1968 * mbuf **mp0 for use in returning the chain. The uio is then used only for 1969 * the count in uio_resid. 1970 */ 1971 int 1972 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio, 1973 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1974 { 1975 struct mbuf *m, **mp; 1976 int flags, error, offset; 1977 ssize_t len; 1978 struct protosw *pr = so->so_proto; 1979 struct mbuf *nextrecord; 1980 int moff, type = 0; 1981 ssize_t orig_resid = uio->uio_resid; 1982 1983 mp = mp0; 1984 if (psa != NULL) 1985 *psa = NULL; 1986 if (controlp != NULL) 1987 *controlp = NULL; 1988 if (flagsp != NULL) 1989 flags = *flagsp &~ MSG_EOR; 1990 else 1991 flags = 0; 1992 if (flags & MSG_OOB) 1993 return (soreceive_rcvoob(so, uio, flags)); 1994 if (mp != NULL) 1995 *mp = NULL; 1996 if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING) 1997 && uio->uio_resid) { 1998 VNET_SO_ASSERT(so); 1999 (*pr->pr_usrreqs->pru_rcvd)(so, 0); 2000 } 2001 2002 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags)); 2003 if (error) 2004 return (error); 2005 2006 restart: 2007 SOCKBUF_LOCK(&so->so_rcv); 2008 m = so->so_rcv.sb_mb; 2009 /* 2010 * If we have less data than requested, block awaiting more (subject 2011 * to any timeout) if: 2012 * 1. the current count is less than the low water mark, or 2013 * 2. MSG_DONTWAIT is not set 2014 */ 2015 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 2016 sbavail(&so->so_rcv) < uio->uio_resid) && 2017 sbavail(&so->so_rcv) < so->so_rcv.sb_lowat && 2018 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 2019 KASSERT(m != NULL || !sbavail(&so->so_rcv), 2020 ("receive: m == %p sbavail == %u", 2021 m, sbavail(&so->so_rcv))); 2022 if (so->so_error || so->so_rerror) { 2023 if (m != NULL) 2024 goto dontblock; 2025 if (so->so_error) 2026 error = so->so_error; 2027 else 2028 error = so->so_rerror; 2029 if ((flags & MSG_PEEK) == 0) { 2030 if (so->so_error) 2031 so->so_error = 0; 2032 else 2033 so->so_rerror = 0; 2034 } 2035 SOCKBUF_UNLOCK(&so->so_rcv); 2036 goto release; 2037 } 2038 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2039 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 2040 if (m != NULL) 2041 goto dontblock; 2042 #ifdef KERN_TLS 2043 else if (so->so_rcv.sb_tlsdcc == 0 && 2044 so->so_rcv.sb_tlscc == 0) { 2045 #else 2046 else { 2047 #endif 2048 SOCKBUF_UNLOCK(&so->so_rcv); 2049 goto release; 2050 } 2051 } 2052 for (; m != NULL; m = m->m_next) 2053 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 2054 m = so->so_rcv.sb_mb; 2055 goto dontblock; 2056 } 2057 if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED | 2058 SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 && 2059 (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) { 2060 SOCKBUF_UNLOCK(&so->so_rcv); 2061 error = ENOTCONN; 2062 goto release; 2063 } 2064 if (uio->uio_resid == 0) { 2065 SOCKBUF_UNLOCK(&so->so_rcv); 2066 goto release; 2067 } 2068 if ((so->so_state & SS_NBIO) || 2069 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2070 SOCKBUF_UNLOCK(&so->so_rcv); 2071 error = EWOULDBLOCK; 2072 goto release; 2073 } 2074 SBLASTRECORDCHK(&so->so_rcv); 2075 SBLASTMBUFCHK(&so->so_rcv); 2076 error = sbwait(so, SO_RCV); 2077 SOCKBUF_UNLOCK(&so->so_rcv); 2078 if (error) 2079 goto release; 2080 goto restart; 2081 } 2082 dontblock: 2083 /* 2084 * From this point onward, we maintain 'nextrecord' as a cache of the 2085 * pointer to the next record in the socket buffer. We must keep the 2086 * various socket buffer pointers and local stack versions of the 2087 * pointers in sync, pushing out modifications before dropping the 2088 * socket buffer mutex, and re-reading them when picking it up. 2089 * 2090 * Otherwise, we will race with the network stack appending new data 2091 * or records onto the socket buffer by using inconsistent/stale 2092 * versions of the field, possibly resulting in socket buffer 2093 * corruption. 2094 * 2095 * By holding the high-level sblock(), we prevent simultaneous 2096 * readers from pulling off the front of the socket buffer. 2097 */ 2098 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2099 if (uio->uio_td) 2100 uio->uio_td->td_ru.ru_msgrcv++; 2101 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); 2102 SBLASTRECORDCHK(&so->so_rcv); 2103 SBLASTMBUFCHK(&so->so_rcv); 2104 nextrecord = m->m_nextpkt; 2105 if (pr->pr_flags & PR_ADDR) { 2106 KASSERT(m->m_type == MT_SONAME, 2107 ("m->m_type == %d", m->m_type)); 2108 orig_resid = 0; 2109 if (psa != NULL) 2110 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2111 M_NOWAIT); 2112 if (flags & MSG_PEEK) { 2113 m = m->m_next; 2114 } else { 2115 sbfree(&so->so_rcv, m); 2116 so->so_rcv.sb_mb = m_free(m); 2117 m = so->so_rcv.sb_mb; 2118 sockbuf_pushsync(&so->so_rcv, nextrecord); 2119 } 2120 } 2121 2122 /* 2123 * Process one or more MT_CONTROL mbufs present before any data mbufs 2124 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 2125 * just copy the data; if !MSG_PEEK, we call into the protocol to 2126 * perform externalization (or freeing if controlp == NULL). 2127 */ 2128 if (m != NULL && m->m_type == MT_CONTROL) { 2129 struct mbuf *cm = NULL, *cmn; 2130 struct mbuf **cme = &cm; 2131 #ifdef KERN_TLS 2132 struct cmsghdr *cmsg; 2133 struct tls_get_record tgr; 2134 2135 /* 2136 * For MSG_TLSAPPDATA, check for an alert record. 2137 * If found, return ENXIO without removing 2138 * it from the receive queue. This allows a subsequent 2139 * call without MSG_TLSAPPDATA to receive it. 2140 * Note that, for TLS, there should only be a single 2141 * control mbuf with the TLS_GET_RECORD message in it. 2142 */ 2143 if (flags & MSG_TLSAPPDATA) { 2144 cmsg = mtod(m, struct cmsghdr *); 2145 if (cmsg->cmsg_type == TLS_GET_RECORD && 2146 cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) { 2147 memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr)); 2148 if (__predict_false(tgr.tls_type == 2149 TLS_RLTYPE_ALERT)) { 2150 SOCKBUF_UNLOCK(&so->so_rcv); 2151 error = ENXIO; 2152 goto release; 2153 } 2154 } 2155 } 2156 #endif 2157 2158 do { 2159 if (flags & MSG_PEEK) { 2160 if (controlp != NULL) { 2161 *controlp = m_copym(m, 0, m->m_len, 2162 M_NOWAIT); 2163 controlp = &(*controlp)->m_next; 2164 } 2165 m = m->m_next; 2166 } else { 2167 sbfree(&so->so_rcv, m); 2168 so->so_rcv.sb_mb = m->m_next; 2169 m->m_next = NULL; 2170 *cme = m; 2171 cme = &(*cme)->m_next; 2172 m = so->so_rcv.sb_mb; 2173 } 2174 } while (m != NULL && m->m_type == MT_CONTROL); 2175 if ((flags & MSG_PEEK) == 0) 2176 sockbuf_pushsync(&so->so_rcv, nextrecord); 2177 while (cm != NULL) { 2178 cmn = cm->m_next; 2179 cm->m_next = NULL; 2180 if (pr->pr_domain->dom_externalize != NULL) { 2181 SOCKBUF_UNLOCK(&so->so_rcv); 2182 VNET_SO_ASSERT(so); 2183 error = (*pr->pr_domain->dom_externalize) 2184 (cm, controlp, flags); 2185 SOCKBUF_LOCK(&so->so_rcv); 2186 } else if (controlp != NULL) 2187 *controlp = cm; 2188 else 2189 m_freem(cm); 2190 if (controlp != NULL) { 2191 while (*controlp != NULL) 2192 controlp = &(*controlp)->m_next; 2193 } 2194 cm = cmn; 2195 } 2196 if (m != NULL) 2197 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 2198 else 2199 nextrecord = so->so_rcv.sb_mb; 2200 orig_resid = 0; 2201 } 2202 if (m != NULL) { 2203 if ((flags & MSG_PEEK) == 0) { 2204 KASSERT(m->m_nextpkt == nextrecord, 2205 ("soreceive: post-control, nextrecord !sync")); 2206 if (nextrecord == NULL) { 2207 KASSERT(so->so_rcv.sb_mb == m, 2208 ("soreceive: post-control, sb_mb!=m")); 2209 KASSERT(so->so_rcv.sb_lastrecord == m, 2210 ("soreceive: post-control, lastrecord!=m")); 2211 } 2212 } 2213 type = m->m_type; 2214 if (type == MT_OOBDATA) 2215 flags |= MSG_OOB; 2216 } else { 2217 if ((flags & MSG_PEEK) == 0) { 2218 KASSERT(so->so_rcv.sb_mb == nextrecord, 2219 ("soreceive: sb_mb != nextrecord")); 2220 if (so->so_rcv.sb_mb == NULL) { 2221 KASSERT(so->so_rcv.sb_lastrecord == NULL, 2222 ("soreceive: sb_lastercord != NULL")); 2223 } 2224 } 2225 } 2226 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2227 SBLASTRECORDCHK(&so->so_rcv); 2228 SBLASTMBUFCHK(&so->so_rcv); 2229 2230 /* 2231 * Now continue to read any data mbufs off of the head of the socket 2232 * buffer until the read request is satisfied. Note that 'type' is 2233 * used to store the type of any mbuf reads that have happened so far 2234 * such that soreceive() can stop reading if the type changes, which 2235 * causes soreceive() to return only one of regular data and inline 2236 * out-of-band data in a single socket receive operation. 2237 */ 2238 moff = 0; 2239 offset = 0; 2240 while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0 2241 && error == 0) { 2242 /* 2243 * If the type of mbuf has changed since the last mbuf 2244 * examined ('type'), end the receive operation. 2245 */ 2246 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2247 if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) { 2248 if (type != m->m_type) 2249 break; 2250 } else if (type == MT_OOBDATA) 2251 break; 2252 else 2253 KASSERT(m->m_type == MT_DATA, 2254 ("m->m_type == %d", m->m_type)); 2255 so->so_rcv.sb_state &= ~SBS_RCVATMARK; 2256 len = uio->uio_resid; 2257 if (so->so_oobmark && len > so->so_oobmark - offset) 2258 len = so->so_oobmark - offset; 2259 if (len > m->m_len - moff) 2260 len = m->m_len - moff; 2261 /* 2262 * If mp is set, just pass back the mbufs. Otherwise copy 2263 * them out via the uio, then free. Sockbuf must be 2264 * consistent here (points to current mbuf, it points to next 2265 * record) when we drop priority; we must note any additions 2266 * to the sockbuf when we block interrupts again. 2267 */ 2268 if (mp == NULL) { 2269 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2270 SBLASTRECORDCHK(&so->so_rcv); 2271 SBLASTMBUFCHK(&so->so_rcv); 2272 SOCKBUF_UNLOCK(&so->so_rcv); 2273 if ((m->m_flags & M_EXTPG) != 0) 2274 error = m_unmapped_uiomove(m, moff, uio, 2275 (int)len); 2276 else 2277 error = uiomove(mtod(m, char *) + moff, 2278 (int)len, uio); 2279 SOCKBUF_LOCK(&so->so_rcv); 2280 if (error) { 2281 /* 2282 * The MT_SONAME mbuf has already been removed 2283 * from the record, so it is necessary to 2284 * remove the data mbufs, if any, to preserve 2285 * the invariant in the case of PR_ADDR that 2286 * requires MT_SONAME mbufs at the head of 2287 * each record. 2288 */ 2289 if (pr->pr_flags & PR_ATOMIC && 2290 ((flags & MSG_PEEK) == 0)) 2291 (void)sbdroprecord_locked(&so->so_rcv); 2292 SOCKBUF_UNLOCK(&so->so_rcv); 2293 goto release; 2294 } 2295 } else 2296 uio->uio_resid -= len; 2297 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2298 if (len == m->m_len - moff) { 2299 if (m->m_flags & M_EOR) 2300 flags |= MSG_EOR; 2301 if (flags & MSG_PEEK) { 2302 m = m->m_next; 2303 moff = 0; 2304 } else { 2305 nextrecord = m->m_nextpkt; 2306 sbfree(&so->so_rcv, m); 2307 if (mp != NULL) { 2308 m->m_nextpkt = NULL; 2309 *mp = m; 2310 mp = &m->m_next; 2311 so->so_rcv.sb_mb = m = m->m_next; 2312 *mp = NULL; 2313 } else { 2314 so->so_rcv.sb_mb = m_free(m); 2315 m = so->so_rcv.sb_mb; 2316 } 2317 sockbuf_pushsync(&so->so_rcv, nextrecord); 2318 SBLASTRECORDCHK(&so->so_rcv); 2319 SBLASTMBUFCHK(&so->so_rcv); 2320 } 2321 } else { 2322 if (flags & MSG_PEEK) 2323 moff += len; 2324 else { 2325 if (mp != NULL) { 2326 if (flags & MSG_DONTWAIT) { 2327 *mp = m_copym(m, 0, len, 2328 M_NOWAIT); 2329 if (*mp == NULL) { 2330 /* 2331 * m_copym() couldn't 2332 * allocate an mbuf. 2333 * Adjust uio_resid back 2334 * (it was adjusted 2335 * down by len bytes, 2336 * which we didn't end 2337 * up "copying" over). 2338 */ 2339 uio->uio_resid += len; 2340 break; 2341 } 2342 } else { 2343 SOCKBUF_UNLOCK(&so->so_rcv); 2344 *mp = m_copym(m, 0, len, 2345 M_WAITOK); 2346 SOCKBUF_LOCK(&so->so_rcv); 2347 } 2348 } 2349 sbcut_locked(&so->so_rcv, len); 2350 } 2351 } 2352 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2353 if (so->so_oobmark) { 2354 if ((flags & MSG_PEEK) == 0) { 2355 so->so_oobmark -= len; 2356 if (so->so_oobmark == 0) { 2357 so->so_rcv.sb_state |= SBS_RCVATMARK; 2358 break; 2359 } 2360 } else { 2361 offset += len; 2362 if (offset == so->so_oobmark) 2363 break; 2364 } 2365 } 2366 if (flags & MSG_EOR) 2367 break; 2368 /* 2369 * If the MSG_WAITALL flag is set (for non-atomic socket), we 2370 * must not quit until "uio->uio_resid == 0" or an error 2371 * termination. If a signal/timeout occurs, return with a 2372 * short count but without error. Keep sockbuf locked 2373 * against other readers. 2374 */ 2375 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 2376 !sosendallatonce(so) && nextrecord == NULL) { 2377 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2378 if (so->so_error || so->so_rerror || 2379 so->so_rcv.sb_state & SBS_CANTRCVMORE) 2380 break; 2381 /* 2382 * Notify the protocol that some data has been 2383 * drained before blocking. 2384 */ 2385 if (pr->pr_flags & PR_WANTRCVD) { 2386 SOCKBUF_UNLOCK(&so->so_rcv); 2387 VNET_SO_ASSERT(so); 2388 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 2389 SOCKBUF_LOCK(&so->so_rcv); 2390 } 2391 SBLASTRECORDCHK(&so->so_rcv); 2392 SBLASTMBUFCHK(&so->so_rcv); 2393 /* 2394 * We could receive some data while was notifying 2395 * the protocol. Skip blocking in this case. 2396 */ 2397 if (so->so_rcv.sb_mb == NULL) { 2398 error = sbwait(so, SO_RCV); 2399 if (error) { 2400 SOCKBUF_UNLOCK(&so->so_rcv); 2401 goto release; 2402 } 2403 } 2404 m = so->so_rcv.sb_mb; 2405 if (m != NULL) 2406 nextrecord = m->m_nextpkt; 2407 } 2408 } 2409 2410 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2411 if (m != NULL && pr->pr_flags & PR_ATOMIC) { 2412 flags |= MSG_TRUNC; 2413 if ((flags & MSG_PEEK) == 0) 2414 (void) sbdroprecord_locked(&so->so_rcv); 2415 } 2416 if ((flags & MSG_PEEK) == 0) { 2417 if (m == NULL) { 2418 /* 2419 * First part is an inline SB_EMPTY_FIXUP(). Second 2420 * part makes sure sb_lastrecord is up-to-date if 2421 * there is still data in the socket buffer. 2422 */ 2423 so->so_rcv.sb_mb = nextrecord; 2424 if (so->so_rcv.sb_mb == NULL) { 2425 so->so_rcv.sb_mbtail = NULL; 2426 so->so_rcv.sb_lastrecord = NULL; 2427 } else if (nextrecord->m_nextpkt == NULL) 2428 so->so_rcv.sb_lastrecord = nextrecord; 2429 } 2430 SBLASTRECORDCHK(&so->so_rcv); 2431 SBLASTMBUFCHK(&so->so_rcv); 2432 /* 2433 * If soreceive() is being done from the socket callback, 2434 * then don't need to generate ACK to peer to update window, 2435 * since ACK will be generated on return to TCP. 2436 */ 2437 if (!(flags & MSG_SOCALLBCK) && 2438 (pr->pr_flags & PR_WANTRCVD)) { 2439 SOCKBUF_UNLOCK(&so->so_rcv); 2440 VNET_SO_ASSERT(so); 2441 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 2442 SOCKBUF_LOCK(&so->so_rcv); 2443 } 2444 } 2445 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2446 if (orig_resid == uio->uio_resid && orig_resid && 2447 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { 2448 SOCKBUF_UNLOCK(&so->so_rcv); 2449 goto restart; 2450 } 2451 SOCKBUF_UNLOCK(&so->so_rcv); 2452 2453 if (flagsp != NULL) 2454 *flagsp |= flags; 2455 release: 2456 SOCK_IO_RECV_UNLOCK(so); 2457 return (error); 2458 } 2459 2460 /* 2461 * Optimized version of soreceive() for stream (TCP) sockets. 2462 */ 2463 int 2464 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio, 2465 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2466 { 2467 int len = 0, error = 0, flags, oresid; 2468 struct sockbuf *sb; 2469 struct mbuf *m, *n = NULL; 2470 2471 /* We only do stream sockets. */ 2472 if (so->so_type != SOCK_STREAM) 2473 return (EINVAL); 2474 if (psa != NULL) 2475 *psa = NULL; 2476 if (flagsp != NULL) 2477 flags = *flagsp &~ MSG_EOR; 2478 else 2479 flags = 0; 2480 if (controlp != NULL) 2481 *controlp = NULL; 2482 if (flags & MSG_OOB) 2483 return (soreceive_rcvoob(so, uio, flags)); 2484 if (mp0 != NULL) 2485 *mp0 = NULL; 2486 2487 sb = &so->so_rcv; 2488 2489 #ifdef KERN_TLS 2490 /* 2491 * KTLS store TLS records as records with a control message to 2492 * describe the framing. 2493 * 2494 * We check once here before acquiring locks to optimize the 2495 * common case. 2496 */ 2497 if (sb->sb_tls_info != NULL) 2498 return (soreceive_generic(so, psa, uio, mp0, controlp, 2499 flagsp)); 2500 #endif 2501 2502 /* Prevent other readers from entering the socket. */ 2503 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags)); 2504 if (error) 2505 return (error); 2506 SOCKBUF_LOCK(sb); 2507 2508 #ifdef KERN_TLS 2509 if (sb->sb_tls_info != NULL) { 2510 SOCKBUF_UNLOCK(sb); 2511 SOCK_IO_RECV_UNLOCK(so); 2512 return (soreceive_generic(so, psa, uio, mp0, controlp, 2513 flagsp)); 2514 } 2515 #endif 2516 2517 /* Easy one, no space to copyout anything. */ 2518 if (uio->uio_resid == 0) { 2519 error = EINVAL; 2520 goto out; 2521 } 2522 oresid = uio->uio_resid; 2523 2524 /* We will never ever get anything unless we are or were connected. */ 2525 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 2526 error = ENOTCONN; 2527 goto out; 2528 } 2529 2530 restart: 2531 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2532 2533 /* Abort if socket has reported problems. */ 2534 if (so->so_error) { 2535 if (sbavail(sb) > 0) 2536 goto deliver; 2537 if (oresid > uio->uio_resid) 2538 goto out; 2539 error = so->so_error; 2540 if (!(flags & MSG_PEEK)) 2541 so->so_error = 0; 2542 goto out; 2543 } 2544 2545 /* Door is closed. Deliver what is left, if any. */ 2546 if (sb->sb_state & SBS_CANTRCVMORE) { 2547 if (sbavail(sb) > 0) 2548 goto deliver; 2549 else 2550 goto out; 2551 } 2552 2553 /* Socket buffer is empty and we shall not block. */ 2554 if (sbavail(sb) == 0 && 2555 ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) { 2556 error = EAGAIN; 2557 goto out; 2558 } 2559 2560 /* Socket buffer got some data that we shall deliver now. */ 2561 if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) && 2562 ((so->so_state & SS_NBIO) || 2563 (flags & (MSG_DONTWAIT|MSG_NBIO)) || 2564 sbavail(sb) >= sb->sb_lowat || 2565 sbavail(sb) >= uio->uio_resid || 2566 sbavail(sb) >= sb->sb_hiwat) ) { 2567 goto deliver; 2568 } 2569 2570 /* On MSG_WAITALL we must wait until all data or error arrives. */ 2571 if ((flags & MSG_WAITALL) && 2572 (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat)) 2573 goto deliver; 2574 2575 /* 2576 * Wait and block until (more) data comes in. 2577 * NB: Drops the sockbuf lock during wait. 2578 */ 2579 error = sbwait(so, SO_RCV); 2580 if (error) 2581 goto out; 2582 goto restart; 2583 2584 deliver: 2585 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2586 KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__)); 2587 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__)); 2588 2589 /* Statistics. */ 2590 if (uio->uio_td) 2591 uio->uio_td->td_ru.ru_msgrcv++; 2592 2593 /* Fill uio until full or current end of socket buffer is reached. */ 2594 len = min(uio->uio_resid, sbavail(sb)); 2595 if (mp0 != NULL) { 2596 /* Dequeue as many mbufs as possible. */ 2597 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) { 2598 if (*mp0 == NULL) 2599 *mp0 = sb->sb_mb; 2600 else 2601 m_cat(*mp0, sb->sb_mb); 2602 for (m = sb->sb_mb; 2603 m != NULL && m->m_len <= len; 2604 m = m->m_next) { 2605 KASSERT(!(m->m_flags & M_NOTAVAIL), 2606 ("%s: m %p not available", __func__, m)); 2607 len -= m->m_len; 2608 uio->uio_resid -= m->m_len; 2609 sbfree(sb, m); 2610 n = m; 2611 } 2612 n->m_next = NULL; 2613 sb->sb_mb = m; 2614 sb->sb_lastrecord = sb->sb_mb; 2615 if (sb->sb_mb == NULL) 2616 SB_EMPTY_FIXUP(sb); 2617 } 2618 /* Copy the remainder. */ 2619 if (len > 0) { 2620 KASSERT(sb->sb_mb != NULL, 2621 ("%s: len > 0 && sb->sb_mb empty", __func__)); 2622 2623 m = m_copym(sb->sb_mb, 0, len, M_NOWAIT); 2624 if (m == NULL) 2625 len = 0; /* Don't flush data from sockbuf. */ 2626 else 2627 uio->uio_resid -= len; 2628 if (*mp0 != NULL) 2629 m_cat(*mp0, m); 2630 else 2631 *mp0 = m; 2632 if (*mp0 == NULL) { 2633 error = ENOBUFS; 2634 goto out; 2635 } 2636 } 2637 } else { 2638 /* NB: Must unlock socket buffer as uiomove may sleep. */ 2639 SOCKBUF_UNLOCK(sb); 2640 error = m_mbuftouio(uio, sb->sb_mb, len); 2641 SOCKBUF_LOCK(sb); 2642 if (error) 2643 goto out; 2644 } 2645 SBLASTRECORDCHK(sb); 2646 SBLASTMBUFCHK(sb); 2647 2648 /* 2649 * Remove the delivered data from the socket buffer unless we 2650 * were only peeking. 2651 */ 2652 if (!(flags & MSG_PEEK)) { 2653 if (len > 0) 2654 sbdrop_locked(sb, len); 2655 2656 /* Notify protocol that we drained some data. */ 2657 if ((so->so_proto->pr_flags & PR_WANTRCVD) && 2658 (((flags & MSG_WAITALL) && uio->uio_resid > 0) || 2659 !(flags & MSG_SOCALLBCK))) { 2660 SOCKBUF_UNLOCK(sb); 2661 VNET_SO_ASSERT(so); 2662 (*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags); 2663 SOCKBUF_LOCK(sb); 2664 } 2665 } 2666 2667 /* 2668 * For MSG_WAITALL we may have to loop again and wait for 2669 * more data to come in. 2670 */ 2671 if ((flags & MSG_WAITALL) && uio->uio_resid > 0) 2672 goto restart; 2673 out: 2674 SBLASTRECORDCHK(sb); 2675 SBLASTMBUFCHK(sb); 2676 SOCKBUF_UNLOCK(sb); 2677 SOCK_IO_RECV_UNLOCK(so); 2678 return (error); 2679 } 2680 2681 /* 2682 * Optimized version of soreceive() for simple datagram cases from userspace. 2683 * Unlike in the stream case, we're able to drop a datagram if copyout() 2684 * fails, and because we handle datagrams atomically, we don't need to use a 2685 * sleep lock to prevent I/O interlacing. 2686 */ 2687 int 2688 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio, 2689 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2690 { 2691 struct mbuf *m, *m2; 2692 int flags, error; 2693 ssize_t len; 2694 struct protosw *pr = so->so_proto; 2695 struct mbuf *nextrecord; 2696 2697 if (psa != NULL) 2698 *psa = NULL; 2699 if (controlp != NULL) 2700 *controlp = NULL; 2701 if (flagsp != NULL) 2702 flags = *flagsp &~ MSG_EOR; 2703 else 2704 flags = 0; 2705 2706 /* 2707 * For any complicated cases, fall back to the full 2708 * soreceive_generic(). 2709 */ 2710 if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB)) 2711 return (soreceive_generic(so, psa, uio, mp0, controlp, 2712 flagsp)); 2713 2714 /* 2715 * Enforce restrictions on use. 2716 */ 2717 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0, 2718 ("soreceive_dgram: wantrcvd")); 2719 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic")); 2720 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0, 2721 ("soreceive_dgram: SBS_RCVATMARK")); 2722 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0, 2723 ("soreceive_dgram: P_CONNREQUIRED")); 2724 2725 /* 2726 * Loop blocking while waiting for a datagram. 2727 */ 2728 SOCKBUF_LOCK(&so->so_rcv); 2729 while ((m = so->so_rcv.sb_mb) == NULL) { 2730 KASSERT(sbavail(&so->so_rcv) == 0, 2731 ("soreceive_dgram: sb_mb NULL but sbavail %u", 2732 sbavail(&so->so_rcv))); 2733 if (so->so_error) { 2734 error = so->so_error; 2735 so->so_error = 0; 2736 SOCKBUF_UNLOCK(&so->so_rcv); 2737 return (error); 2738 } 2739 if (so->so_rcv.sb_state & SBS_CANTRCVMORE || 2740 uio->uio_resid == 0) { 2741 SOCKBUF_UNLOCK(&so->so_rcv); 2742 return (0); 2743 } 2744 if ((so->so_state & SS_NBIO) || 2745 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2746 SOCKBUF_UNLOCK(&so->so_rcv); 2747 return (EWOULDBLOCK); 2748 } 2749 SBLASTRECORDCHK(&so->so_rcv); 2750 SBLASTMBUFCHK(&so->so_rcv); 2751 error = sbwait(so, SO_RCV); 2752 if (error) { 2753 SOCKBUF_UNLOCK(&so->so_rcv); 2754 return (error); 2755 } 2756 } 2757 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2758 2759 if (uio->uio_td) 2760 uio->uio_td->td_ru.ru_msgrcv++; 2761 SBLASTRECORDCHK(&so->so_rcv); 2762 SBLASTMBUFCHK(&so->so_rcv); 2763 nextrecord = m->m_nextpkt; 2764 if (nextrecord == NULL) { 2765 KASSERT(so->so_rcv.sb_lastrecord == m, 2766 ("soreceive_dgram: lastrecord != m")); 2767 } 2768 2769 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord, 2770 ("soreceive_dgram: m_nextpkt != nextrecord")); 2771 2772 /* 2773 * Pull 'm' and its chain off the front of the packet queue. 2774 */ 2775 so->so_rcv.sb_mb = NULL; 2776 sockbuf_pushsync(&so->so_rcv, nextrecord); 2777 2778 /* 2779 * Walk 'm's chain and free that many bytes from the socket buffer. 2780 */ 2781 for (m2 = m; m2 != NULL; m2 = m2->m_next) 2782 sbfree(&so->so_rcv, m2); 2783 2784 /* 2785 * Do a few last checks before we let go of the lock. 2786 */ 2787 SBLASTRECORDCHK(&so->so_rcv); 2788 SBLASTMBUFCHK(&so->so_rcv); 2789 SOCKBUF_UNLOCK(&so->so_rcv); 2790 2791 if (pr->pr_flags & PR_ADDR) { 2792 KASSERT(m->m_type == MT_SONAME, 2793 ("m->m_type == %d", m->m_type)); 2794 if (psa != NULL) 2795 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2796 M_NOWAIT); 2797 m = m_free(m); 2798 } 2799 if (m == NULL) { 2800 /* XXXRW: Can this happen? */ 2801 return (0); 2802 } 2803 2804 /* 2805 * Packet to copyout() is now in 'm' and it is disconnected from the 2806 * queue. 2807 * 2808 * Process one or more MT_CONTROL mbufs present before any data mbufs 2809 * in the first mbuf chain on the socket buffer. We call into the 2810 * protocol to perform externalization (or freeing if controlp == 2811 * NULL). In some cases there can be only MT_CONTROL mbufs without 2812 * MT_DATA mbufs. 2813 */ 2814 if (m->m_type == MT_CONTROL) { 2815 struct mbuf *cm = NULL, *cmn; 2816 struct mbuf **cme = &cm; 2817 2818 do { 2819 m2 = m->m_next; 2820 m->m_next = NULL; 2821 *cme = m; 2822 cme = &(*cme)->m_next; 2823 m = m2; 2824 } while (m != NULL && m->m_type == MT_CONTROL); 2825 while (cm != NULL) { 2826 cmn = cm->m_next; 2827 cm->m_next = NULL; 2828 if (pr->pr_domain->dom_externalize != NULL) { 2829 error = (*pr->pr_domain->dom_externalize) 2830 (cm, controlp, flags); 2831 } else if (controlp != NULL) 2832 *controlp = cm; 2833 else 2834 m_freem(cm); 2835 if (controlp != NULL) { 2836 while (*controlp != NULL) 2837 controlp = &(*controlp)->m_next; 2838 } 2839 cm = cmn; 2840 } 2841 } 2842 KASSERT(m == NULL || m->m_type == MT_DATA, 2843 ("soreceive_dgram: !data")); 2844 while (m != NULL && uio->uio_resid > 0) { 2845 len = uio->uio_resid; 2846 if (len > m->m_len) 2847 len = m->m_len; 2848 error = uiomove(mtod(m, char *), (int)len, uio); 2849 if (error) { 2850 m_freem(m); 2851 return (error); 2852 } 2853 if (len == m->m_len) 2854 m = m_free(m); 2855 else { 2856 m->m_data += len; 2857 m->m_len -= len; 2858 } 2859 } 2860 if (m != NULL) { 2861 flags |= MSG_TRUNC; 2862 m_freem(m); 2863 } 2864 if (flagsp != NULL) 2865 *flagsp |= flags; 2866 return (0); 2867 } 2868 2869 int 2870 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, 2871 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2872 { 2873 int error; 2874 2875 CURVNET_SET(so->so_vnet); 2876 error = (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, 2877 mp0, controlp, flagsp)); 2878 CURVNET_RESTORE(); 2879 return (error); 2880 } 2881 2882 int 2883 soshutdown(struct socket *so, int how) 2884 { 2885 struct protosw *pr; 2886 int error, soerror_enotconn; 2887 2888 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 2889 return (EINVAL); 2890 2891 soerror_enotconn = 0; 2892 SOCK_LOCK(so); 2893 if ((so->so_state & 2894 (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) { 2895 /* 2896 * POSIX mandates us to return ENOTCONN when shutdown(2) is 2897 * invoked on a datagram sockets, however historically we would 2898 * actually tear socket down. This is known to be leveraged by 2899 * some applications to unblock process waiting in recvXXX(2) 2900 * by other process that it shares that socket with. Try to meet 2901 * both backward-compatibility and POSIX requirements by forcing 2902 * ENOTCONN but still asking protocol to perform pru_shutdown(). 2903 */ 2904 if (so->so_type != SOCK_DGRAM && !SOLISTENING(so)) { 2905 SOCK_UNLOCK(so); 2906 return (ENOTCONN); 2907 } 2908 soerror_enotconn = 1; 2909 } 2910 2911 if (SOLISTENING(so)) { 2912 if (how != SHUT_WR) { 2913 so->so_error = ECONNABORTED; 2914 solisten_wakeup(so); /* unlocks so */ 2915 } else { 2916 SOCK_UNLOCK(so); 2917 } 2918 goto done; 2919 } 2920 SOCK_UNLOCK(so); 2921 2922 CURVNET_SET(so->so_vnet); 2923 pr = so->so_proto; 2924 if (pr->pr_usrreqs->pru_flush != NULL) 2925 (*pr->pr_usrreqs->pru_flush)(so, how); 2926 if (how != SHUT_WR) 2927 sorflush(so); 2928 if (how != SHUT_RD) { 2929 error = (*pr->pr_usrreqs->pru_shutdown)(so); 2930 wakeup(&so->so_timeo); 2931 CURVNET_RESTORE(); 2932 return ((error == 0 && soerror_enotconn) ? ENOTCONN : error); 2933 } 2934 wakeup(&so->so_timeo); 2935 CURVNET_RESTORE(); 2936 2937 done: 2938 return (soerror_enotconn ? ENOTCONN : 0); 2939 } 2940 2941 void 2942 sorflush(struct socket *so) 2943 { 2944 struct protosw *pr; 2945 int error; 2946 2947 VNET_SO_ASSERT(so); 2948 2949 /* 2950 * Dislodge threads currently blocked in receive and wait to acquire 2951 * a lock against other simultaneous readers before clearing the 2952 * socket buffer. Don't let our acquire be interrupted by a signal 2953 * despite any existing socket disposition on interruptable waiting. 2954 */ 2955 socantrcvmore(so); 2956 2957 error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR); 2958 if (error != 0) { 2959 KASSERT(SOLISTENING(so), 2960 ("%s: soiolock(%p) failed", __func__, so)); 2961 return; 2962 } 2963 2964 pr = so->so_proto; 2965 if (pr->pr_flags & PR_RIGHTS) { 2966 MPASS(pr->pr_domain->dom_dispose != NULL); 2967 (*pr->pr_domain->dom_dispose)(so); 2968 } else { 2969 sbrelease(so, SO_RCV); 2970 SOCK_IO_RECV_UNLOCK(so); 2971 } 2972 2973 } 2974 2975 /* 2976 * Wrapper for Socket established helper hook. 2977 * Parameters: socket, context of the hook point, hook id. 2978 */ 2979 static int inline 2980 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id) 2981 { 2982 struct socket_hhook_data hhook_data = { 2983 .so = so, 2984 .hctx = hctx, 2985 .m = NULL, 2986 .status = 0 2987 }; 2988 2989 CURVNET_SET(so->so_vnet); 2990 HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd); 2991 CURVNET_RESTORE(); 2992 2993 /* Ugly but needed, since hhooks return void for now */ 2994 return (hhook_data.status); 2995 } 2996 2997 /* 2998 * Perhaps this routine, and sooptcopyout(), below, ought to come in an 2999 * additional variant to handle the case where the option value needs to be 3000 * some kind of integer, but not a specific size. In addition to their use 3001 * here, these functions are also called by the protocol-level pr_ctloutput() 3002 * routines. 3003 */ 3004 int 3005 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen) 3006 { 3007 size_t valsize; 3008 3009 /* 3010 * If the user gives us more than we wanted, we ignore it, but if we 3011 * don't get the minimum length the caller wants, we return EINVAL. 3012 * On success, sopt->sopt_valsize is set to however much we actually 3013 * retrieved. 3014 */ 3015 if ((valsize = sopt->sopt_valsize) < minlen) 3016 return EINVAL; 3017 if (valsize > len) 3018 sopt->sopt_valsize = valsize = len; 3019 3020 if (sopt->sopt_td != NULL) 3021 return (copyin(sopt->sopt_val, buf, valsize)); 3022 3023 bcopy(sopt->sopt_val, buf, valsize); 3024 return (0); 3025 } 3026 3027 /* 3028 * Kernel version of setsockopt(2). 3029 * 3030 * XXX: optlen is size_t, not socklen_t 3031 */ 3032 int 3033 so_setsockopt(struct socket *so, int level, int optname, void *optval, 3034 size_t optlen) 3035 { 3036 struct sockopt sopt; 3037 3038 sopt.sopt_level = level; 3039 sopt.sopt_name = optname; 3040 sopt.sopt_dir = SOPT_SET; 3041 sopt.sopt_val = optval; 3042 sopt.sopt_valsize = optlen; 3043 sopt.sopt_td = NULL; 3044 return (sosetopt(so, &sopt)); 3045 } 3046 3047 int 3048 sosetopt(struct socket *so, struct sockopt *sopt) 3049 { 3050 int error, optval; 3051 struct linger l; 3052 struct timeval tv; 3053 sbintime_t val; 3054 uint32_t val32; 3055 #ifdef MAC 3056 struct mac extmac; 3057 #endif 3058 3059 CURVNET_SET(so->so_vnet); 3060 error = 0; 3061 if (sopt->sopt_level != SOL_SOCKET) { 3062 if (so->so_proto->pr_ctloutput != NULL) 3063 error = (*so->so_proto->pr_ctloutput)(so, sopt); 3064 else 3065 error = ENOPROTOOPT; 3066 } else { 3067 switch (sopt->sopt_name) { 3068 case SO_ACCEPTFILTER: 3069 error = accept_filt_setopt(so, sopt); 3070 if (error) 3071 goto bad; 3072 break; 3073 3074 case SO_LINGER: 3075 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 3076 if (error) 3077 goto bad; 3078 if (l.l_linger < 0 || 3079 l.l_linger > USHRT_MAX || 3080 l.l_linger > (INT_MAX / hz)) { 3081 error = EDOM; 3082 goto bad; 3083 } 3084 SOCK_LOCK(so); 3085 so->so_linger = l.l_linger; 3086 if (l.l_onoff) 3087 so->so_options |= SO_LINGER; 3088 else 3089 so->so_options &= ~SO_LINGER; 3090 SOCK_UNLOCK(so); 3091 break; 3092 3093 case SO_DEBUG: 3094 case SO_KEEPALIVE: 3095 case SO_DONTROUTE: 3096 case SO_USELOOPBACK: 3097 case SO_BROADCAST: 3098 case SO_REUSEADDR: 3099 case SO_REUSEPORT: 3100 case SO_REUSEPORT_LB: 3101 case SO_OOBINLINE: 3102 case SO_TIMESTAMP: 3103 case SO_BINTIME: 3104 case SO_NOSIGPIPE: 3105 case SO_NO_DDP: 3106 case SO_NO_OFFLOAD: 3107 case SO_RERROR: 3108 error = sooptcopyin(sopt, &optval, sizeof optval, 3109 sizeof optval); 3110 if (error) 3111 goto bad; 3112 SOCK_LOCK(so); 3113 if (optval) 3114 so->so_options |= sopt->sopt_name; 3115 else 3116 so->so_options &= ~sopt->sopt_name; 3117 SOCK_UNLOCK(so); 3118 break; 3119 3120 case SO_SETFIB: 3121 error = sooptcopyin(sopt, &optval, sizeof optval, 3122 sizeof optval); 3123 if (error) 3124 goto bad; 3125 3126 if (optval < 0 || optval >= rt_numfibs) { 3127 error = EINVAL; 3128 goto bad; 3129 } 3130 if (((so->so_proto->pr_domain->dom_family == PF_INET) || 3131 (so->so_proto->pr_domain->dom_family == PF_INET6) || 3132 (so->so_proto->pr_domain->dom_family == PF_ROUTE))) 3133 so->so_fibnum = optval; 3134 else 3135 so->so_fibnum = 0; 3136 break; 3137 3138 case SO_USER_COOKIE: 3139 error = sooptcopyin(sopt, &val32, sizeof val32, 3140 sizeof val32); 3141 if (error) 3142 goto bad; 3143 so->so_user_cookie = val32; 3144 break; 3145 3146 case SO_SNDBUF: 3147 case SO_RCVBUF: 3148 case SO_SNDLOWAT: 3149 case SO_RCVLOWAT: 3150 error = sooptcopyin(sopt, &optval, sizeof optval, 3151 sizeof optval); 3152 if (error) 3153 goto bad; 3154 3155 /* 3156 * Values < 1 make no sense for any of these options, 3157 * so disallow them. 3158 */ 3159 if (optval < 1) { 3160 error = EINVAL; 3161 goto bad; 3162 } 3163 3164 error = sbsetopt(so, sopt->sopt_name, optval); 3165 break; 3166 3167 case SO_SNDTIMEO: 3168 case SO_RCVTIMEO: 3169 #ifdef COMPAT_FREEBSD32 3170 if (SV_CURPROC_FLAG(SV_ILP32)) { 3171 struct timeval32 tv32; 3172 3173 error = sooptcopyin(sopt, &tv32, sizeof tv32, 3174 sizeof tv32); 3175 CP(tv32, tv, tv_sec); 3176 CP(tv32, tv, tv_usec); 3177 } else 3178 #endif 3179 error = sooptcopyin(sopt, &tv, sizeof tv, 3180 sizeof tv); 3181 if (error) 3182 goto bad; 3183 if (tv.tv_sec < 0 || tv.tv_usec < 0 || 3184 tv.tv_usec >= 1000000) { 3185 error = EDOM; 3186 goto bad; 3187 } 3188 if (tv.tv_sec > INT32_MAX) 3189 val = SBT_MAX; 3190 else 3191 val = tvtosbt(tv); 3192 switch (sopt->sopt_name) { 3193 case SO_SNDTIMEO: 3194 so->so_snd.sb_timeo = val; 3195 break; 3196 case SO_RCVTIMEO: 3197 so->so_rcv.sb_timeo = val; 3198 break; 3199 } 3200 break; 3201 3202 case SO_LABEL: 3203 #ifdef MAC 3204 error = sooptcopyin(sopt, &extmac, sizeof extmac, 3205 sizeof extmac); 3206 if (error) 3207 goto bad; 3208 error = mac_setsockopt_label(sopt->sopt_td->td_ucred, 3209 so, &extmac); 3210 #else 3211 error = EOPNOTSUPP; 3212 #endif 3213 break; 3214 3215 case SO_TS_CLOCK: 3216 error = sooptcopyin(sopt, &optval, sizeof optval, 3217 sizeof optval); 3218 if (error) 3219 goto bad; 3220 if (optval < 0 || optval > SO_TS_CLOCK_MAX) { 3221 error = EINVAL; 3222 goto bad; 3223 } 3224 so->so_ts_clock = optval; 3225 break; 3226 3227 case SO_MAX_PACING_RATE: 3228 error = sooptcopyin(sopt, &val32, sizeof(val32), 3229 sizeof(val32)); 3230 if (error) 3231 goto bad; 3232 so->so_max_pacing_rate = val32; 3233 break; 3234 3235 default: 3236 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 3237 error = hhook_run_socket(so, sopt, 3238 HHOOK_SOCKET_OPT); 3239 else 3240 error = ENOPROTOOPT; 3241 break; 3242 } 3243 if (error == 0 && so->so_proto->pr_ctloutput != NULL) 3244 (void)(*so->so_proto->pr_ctloutput)(so, sopt); 3245 } 3246 bad: 3247 CURVNET_RESTORE(); 3248 return (error); 3249 } 3250 3251 /* 3252 * Helper routine for getsockopt. 3253 */ 3254 int 3255 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 3256 { 3257 int error; 3258 size_t valsize; 3259 3260 error = 0; 3261 3262 /* 3263 * Documented get behavior is that we always return a value, possibly 3264 * truncated to fit in the user's buffer. Traditional behavior is 3265 * that we always tell the user precisely how much we copied, rather 3266 * than something useful like the total amount we had available for 3267 * her. Note that this interface is not idempotent; the entire 3268 * answer must be generated ahead of time. 3269 */ 3270 valsize = min(len, sopt->sopt_valsize); 3271 sopt->sopt_valsize = valsize; 3272 if (sopt->sopt_val != NULL) { 3273 if (sopt->sopt_td != NULL) 3274 error = copyout(buf, sopt->sopt_val, valsize); 3275 else 3276 bcopy(buf, sopt->sopt_val, valsize); 3277 } 3278 return (error); 3279 } 3280 3281 int 3282 sogetopt(struct socket *so, struct sockopt *sopt) 3283 { 3284 int error, optval; 3285 struct linger l; 3286 struct timeval tv; 3287 #ifdef MAC 3288 struct mac extmac; 3289 #endif 3290 3291 CURVNET_SET(so->so_vnet); 3292 error = 0; 3293 if (sopt->sopt_level != SOL_SOCKET) { 3294 if (so->so_proto->pr_ctloutput != NULL) 3295 error = (*so->so_proto->pr_ctloutput)(so, sopt); 3296 else 3297 error = ENOPROTOOPT; 3298 CURVNET_RESTORE(); 3299 return (error); 3300 } else { 3301 switch (sopt->sopt_name) { 3302 case SO_ACCEPTFILTER: 3303 error = accept_filt_getopt(so, sopt); 3304 break; 3305 3306 case SO_LINGER: 3307 SOCK_LOCK(so); 3308 l.l_onoff = so->so_options & SO_LINGER; 3309 l.l_linger = so->so_linger; 3310 SOCK_UNLOCK(so); 3311 error = sooptcopyout(sopt, &l, sizeof l); 3312 break; 3313 3314 case SO_USELOOPBACK: 3315 case SO_DONTROUTE: 3316 case SO_DEBUG: 3317 case SO_KEEPALIVE: 3318 case SO_REUSEADDR: 3319 case SO_REUSEPORT: 3320 case SO_REUSEPORT_LB: 3321 case SO_BROADCAST: 3322 case SO_OOBINLINE: 3323 case SO_ACCEPTCONN: 3324 case SO_TIMESTAMP: 3325 case SO_BINTIME: 3326 case SO_NOSIGPIPE: 3327 case SO_NO_DDP: 3328 case SO_NO_OFFLOAD: 3329 case SO_RERROR: 3330 optval = so->so_options & sopt->sopt_name; 3331 integer: 3332 error = sooptcopyout(sopt, &optval, sizeof optval); 3333 break; 3334 3335 case SO_DOMAIN: 3336 optval = so->so_proto->pr_domain->dom_family; 3337 goto integer; 3338 3339 case SO_TYPE: 3340 optval = so->so_type; 3341 goto integer; 3342 3343 case SO_PROTOCOL: 3344 optval = so->so_proto->pr_protocol; 3345 goto integer; 3346 3347 case SO_ERROR: 3348 SOCK_LOCK(so); 3349 if (so->so_error) { 3350 optval = so->so_error; 3351 so->so_error = 0; 3352 } else { 3353 optval = so->so_rerror; 3354 so->so_rerror = 0; 3355 } 3356 SOCK_UNLOCK(so); 3357 goto integer; 3358 3359 case SO_SNDBUF: 3360 optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat : 3361 so->so_snd.sb_hiwat; 3362 goto integer; 3363 3364 case SO_RCVBUF: 3365 optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat : 3366 so->so_rcv.sb_hiwat; 3367 goto integer; 3368 3369 case SO_SNDLOWAT: 3370 optval = SOLISTENING(so) ? so->sol_sbsnd_lowat : 3371 so->so_snd.sb_lowat; 3372 goto integer; 3373 3374 case SO_RCVLOWAT: 3375 optval = SOLISTENING(so) ? so->sol_sbrcv_lowat : 3376 so->so_rcv.sb_lowat; 3377 goto integer; 3378 3379 case SO_SNDTIMEO: 3380 case SO_RCVTIMEO: 3381 tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ? 3382 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 3383 #ifdef COMPAT_FREEBSD32 3384 if (SV_CURPROC_FLAG(SV_ILP32)) { 3385 struct timeval32 tv32; 3386 3387 CP(tv, tv32, tv_sec); 3388 CP(tv, tv32, tv_usec); 3389 error = sooptcopyout(sopt, &tv32, sizeof tv32); 3390 } else 3391 #endif 3392 error = sooptcopyout(sopt, &tv, sizeof tv); 3393 break; 3394 3395 case SO_LABEL: 3396 #ifdef MAC 3397 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 3398 sizeof(extmac)); 3399 if (error) 3400 goto bad; 3401 error = mac_getsockopt_label(sopt->sopt_td->td_ucred, 3402 so, &extmac); 3403 if (error) 3404 goto bad; 3405 error = sooptcopyout(sopt, &extmac, sizeof extmac); 3406 #else 3407 error = EOPNOTSUPP; 3408 #endif 3409 break; 3410 3411 case SO_PEERLABEL: 3412 #ifdef MAC 3413 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 3414 sizeof(extmac)); 3415 if (error) 3416 goto bad; 3417 error = mac_getsockopt_peerlabel( 3418 sopt->sopt_td->td_ucred, so, &extmac); 3419 if (error) 3420 goto bad; 3421 error = sooptcopyout(sopt, &extmac, sizeof extmac); 3422 #else 3423 error = EOPNOTSUPP; 3424 #endif 3425 break; 3426 3427 case SO_LISTENQLIMIT: 3428 optval = SOLISTENING(so) ? so->sol_qlimit : 0; 3429 goto integer; 3430 3431 case SO_LISTENQLEN: 3432 optval = SOLISTENING(so) ? so->sol_qlen : 0; 3433 goto integer; 3434 3435 case SO_LISTENINCQLEN: 3436 optval = SOLISTENING(so) ? so->sol_incqlen : 0; 3437 goto integer; 3438 3439 case SO_TS_CLOCK: 3440 optval = so->so_ts_clock; 3441 goto integer; 3442 3443 case SO_MAX_PACING_RATE: 3444 optval = so->so_max_pacing_rate; 3445 goto integer; 3446 3447 default: 3448 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 3449 error = hhook_run_socket(so, sopt, 3450 HHOOK_SOCKET_OPT); 3451 else 3452 error = ENOPROTOOPT; 3453 break; 3454 } 3455 } 3456 #ifdef MAC 3457 bad: 3458 #endif 3459 CURVNET_RESTORE(); 3460 return (error); 3461 } 3462 3463 int 3464 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 3465 { 3466 struct mbuf *m, *m_prev; 3467 int sopt_size = sopt->sopt_valsize; 3468 3469 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 3470 if (m == NULL) 3471 return ENOBUFS; 3472 if (sopt_size > MLEN) { 3473 MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT); 3474 if ((m->m_flags & M_EXT) == 0) { 3475 m_free(m); 3476 return ENOBUFS; 3477 } 3478 m->m_len = min(MCLBYTES, sopt_size); 3479 } else { 3480 m->m_len = min(MLEN, sopt_size); 3481 } 3482 sopt_size -= m->m_len; 3483 *mp = m; 3484 m_prev = m; 3485 3486 while (sopt_size) { 3487 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 3488 if (m == NULL) { 3489 m_freem(*mp); 3490 return ENOBUFS; 3491 } 3492 if (sopt_size > MLEN) { 3493 MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK : 3494 M_NOWAIT); 3495 if ((m->m_flags & M_EXT) == 0) { 3496 m_freem(m); 3497 m_freem(*mp); 3498 return ENOBUFS; 3499 } 3500 m->m_len = min(MCLBYTES, sopt_size); 3501 } else { 3502 m->m_len = min(MLEN, sopt_size); 3503 } 3504 sopt_size -= m->m_len; 3505 m_prev->m_next = m; 3506 m_prev = m; 3507 } 3508 return (0); 3509 } 3510 3511 int 3512 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 3513 { 3514 struct mbuf *m0 = m; 3515 3516 if (sopt->sopt_val == NULL) 3517 return (0); 3518 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 3519 if (sopt->sopt_td != NULL) { 3520 int error; 3521 3522 error = copyin(sopt->sopt_val, mtod(m, char *), 3523 m->m_len); 3524 if (error != 0) { 3525 m_freem(m0); 3526 return(error); 3527 } 3528 } else 3529 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 3530 sopt->sopt_valsize -= m->m_len; 3531 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 3532 m = m->m_next; 3533 } 3534 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 3535 panic("ip6_sooptmcopyin"); 3536 return (0); 3537 } 3538 3539 int 3540 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 3541 { 3542 struct mbuf *m0 = m; 3543 size_t valsize = 0; 3544 3545 if (sopt->sopt_val == NULL) 3546 return (0); 3547 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 3548 if (sopt->sopt_td != NULL) { 3549 int error; 3550 3551 error = copyout(mtod(m, char *), sopt->sopt_val, 3552 m->m_len); 3553 if (error != 0) { 3554 m_freem(m0); 3555 return(error); 3556 } 3557 } else 3558 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 3559 sopt->sopt_valsize -= m->m_len; 3560 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 3561 valsize += m->m_len; 3562 m = m->m_next; 3563 } 3564 if (m != NULL) { 3565 /* enough soopt buffer should be given from user-land */ 3566 m_freem(m0); 3567 return(EINVAL); 3568 } 3569 sopt->sopt_valsize = valsize; 3570 return (0); 3571 } 3572 3573 /* 3574 * sohasoutofband(): protocol notifies socket layer of the arrival of new 3575 * out-of-band data, which will then notify socket consumers. 3576 */ 3577 void 3578 sohasoutofband(struct socket *so) 3579 { 3580 3581 if (so->so_sigio != NULL) 3582 pgsigio(&so->so_sigio, SIGURG, 0); 3583 selwakeuppri(&so->so_rdsel, PSOCK); 3584 } 3585 3586 int 3587 sopoll(struct socket *so, int events, struct ucred *active_cred, 3588 struct thread *td) 3589 { 3590 3591 /* 3592 * We do not need to set or assert curvnet as long as everyone uses 3593 * sopoll_generic(). 3594 */ 3595 return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred, 3596 td)); 3597 } 3598 3599 int 3600 sopoll_generic(struct socket *so, int events, struct ucred *active_cred, 3601 struct thread *td) 3602 { 3603 int revents; 3604 3605 SOCK_LOCK(so); 3606 if (SOLISTENING(so)) { 3607 if (!(events & (POLLIN | POLLRDNORM))) 3608 revents = 0; 3609 else if (!TAILQ_EMPTY(&so->sol_comp)) 3610 revents = events & (POLLIN | POLLRDNORM); 3611 else if ((events & POLLINIGNEOF) == 0 && so->so_error) 3612 revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP; 3613 else { 3614 selrecord(td, &so->so_rdsel); 3615 revents = 0; 3616 } 3617 } else { 3618 revents = 0; 3619 SOCK_SENDBUF_LOCK(so); 3620 SOCK_RECVBUF_LOCK(so); 3621 if (events & (POLLIN | POLLRDNORM)) 3622 if (soreadabledata(so)) 3623 revents |= events & (POLLIN | POLLRDNORM); 3624 if (events & (POLLOUT | POLLWRNORM)) 3625 if (sowriteable(so)) 3626 revents |= events & (POLLOUT | POLLWRNORM); 3627 if (events & (POLLPRI | POLLRDBAND)) 3628 if (so->so_oobmark || 3629 (so->so_rcv.sb_state & SBS_RCVATMARK)) 3630 revents |= events & (POLLPRI | POLLRDBAND); 3631 if ((events & POLLINIGNEOF) == 0) { 3632 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3633 revents |= events & (POLLIN | POLLRDNORM); 3634 if (so->so_snd.sb_state & SBS_CANTSENDMORE) 3635 revents |= POLLHUP; 3636 } 3637 } 3638 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) 3639 revents |= events & POLLRDHUP; 3640 if (revents == 0) { 3641 if (events & 3642 (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND | POLLRDHUP)) { 3643 selrecord(td, &so->so_rdsel); 3644 so->so_rcv.sb_flags |= SB_SEL; 3645 } 3646 if (events & (POLLOUT | POLLWRNORM)) { 3647 selrecord(td, &so->so_wrsel); 3648 so->so_snd.sb_flags |= SB_SEL; 3649 } 3650 } 3651 SOCK_RECVBUF_UNLOCK(so); 3652 SOCK_SENDBUF_UNLOCK(so); 3653 } 3654 SOCK_UNLOCK(so); 3655 return (revents); 3656 } 3657 3658 int 3659 soo_kqfilter(struct file *fp, struct knote *kn) 3660 { 3661 struct socket *so = kn->kn_fp->f_data; 3662 struct sockbuf *sb; 3663 sb_which which; 3664 struct knlist *knl; 3665 3666 switch (kn->kn_filter) { 3667 case EVFILT_READ: 3668 kn->kn_fop = &soread_filtops; 3669 knl = &so->so_rdsel.si_note; 3670 sb = &so->so_rcv; 3671 which = SO_RCV; 3672 break; 3673 case EVFILT_WRITE: 3674 kn->kn_fop = &sowrite_filtops; 3675 knl = &so->so_wrsel.si_note; 3676 sb = &so->so_snd; 3677 which = SO_SND; 3678 break; 3679 case EVFILT_EMPTY: 3680 kn->kn_fop = &soempty_filtops; 3681 knl = &so->so_wrsel.si_note; 3682 sb = &so->so_snd; 3683 which = SO_SND; 3684 break; 3685 default: 3686 return (EINVAL); 3687 } 3688 3689 SOCK_LOCK(so); 3690 if (SOLISTENING(so)) { 3691 knlist_add(knl, kn, 1); 3692 } else { 3693 SOCK_BUF_LOCK(so, which); 3694 knlist_add(knl, kn, 1); 3695 sb->sb_flags |= SB_KNOTE; 3696 SOCK_BUF_UNLOCK(so, which); 3697 } 3698 SOCK_UNLOCK(so); 3699 return (0); 3700 } 3701 3702 /* 3703 * Some routines that return EOPNOTSUPP for entry points that are not 3704 * supported by a protocol. Fill in as needed. 3705 */ 3706 int 3707 pru_accept_notsupp(struct socket *so, struct sockaddr **nam) 3708 { 3709 3710 return EOPNOTSUPP; 3711 } 3712 3713 int 3714 pru_aio_queue_notsupp(struct socket *so, struct kaiocb *job) 3715 { 3716 3717 return EOPNOTSUPP; 3718 } 3719 3720 int 3721 pru_attach_notsupp(struct socket *so, int proto, struct thread *td) 3722 { 3723 3724 return EOPNOTSUPP; 3725 } 3726 3727 int 3728 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 3729 { 3730 3731 return EOPNOTSUPP; 3732 } 3733 3734 int 3735 pru_bindat_notsupp(int fd, struct socket *so, struct sockaddr *nam, 3736 struct thread *td) 3737 { 3738 3739 return EOPNOTSUPP; 3740 } 3741 3742 int 3743 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 3744 { 3745 3746 return EOPNOTSUPP; 3747 } 3748 3749 int 3750 pru_connectat_notsupp(int fd, struct socket *so, struct sockaddr *nam, 3751 struct thread *td) 3752 { 3753 3754 return EOPNOTSUPP; 3755 } 3756 3757 int 3758 pru_connect2_notsupp(struct socket *so1, struct socket *so2) 3759 { 3760 3761 return EOPNOTSUPP; 3762 } 3763 3764 int 3765 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, 3766 struct ifnet *ifp, struct thread *td) 3767 { 3768 3769 return EOPNOTSUPP; 3770 } 3771 3772 int 3773 pru_disconnect_notsupp(struct socket *so) 3774 { 3775 3776 return EOPNOTSUPP; 3777 } 3778 3779 int 3780 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td) 3781 { 3782 3783 return EOPNOTSUPP; 3784 } 3785 3786 int 3787 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam) 3788 { 3789 3790 return EOPNOTSUPP; 3791 } 3792 3793 int 3794 pru_rcvd_notsupp(struct socket *so, int flags) 3795 { 3796 3797 return EOPNOTSUPP; 3798 } 3799 3800 int 3801 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) 3802 { 3803 3804 return EOPNOTSUPP; 3805 } 3806 3807 int 3808 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m, 3809 struct sockaddr *addr, struct mbuf *control, struct thread *td) 3810 { 3811 3812 if (control != NULL) 3813 m_freem(control); 3814 if ((flags & PRUS_NOTREADY) == 0) 3815 m_freem(m); 3816 return (EOPNOTSUPP); 3817 } 3818 3819 int 3820 pru_ready_notsupp(struct socket *so, struct mbuf *m, int count) 3821 { 3822 3823 return (EOPNOTSUPP); 3824 } 3825 3826 /* 3827 * This isn't really a ``null'' operation, but it's the default one and 3828 * doesn't do anything destructive. 3829 */ 3830 int 3831 pru_sense_null(struct socket *so, struct stat *sb) 3832 { 3833 3834 sb->st_blksize = so->so_snd.sb_hiwat; 3835 return 0; 3836 } 3837 3838 int 3839 pru_shutdown_notsupp(struct socket *so) 3840 { 3841 3842 return EOPNOTSUPP; 3843 } 3844 3845 int 3846 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam) 3847 { 3848 3849 return EOPNOTSUPP; 3850 } 3851 3852 int 3853 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio, 3854 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 3855 { 3856 3857 return EOPNOTSUPP; 3858 } 3859 3860 int 3861 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr, 3862 struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 3863 { 3864 3865 return EOPNOTSUPP; 3866 } 3867 3868 int 3869 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred, 3870 struct thread *td) 3871 { 3872 3873 return EOPNOTSUPP; 3874 } 3875 3876 static void 3877 filt_sordetach(struct knote *kn) 3878 { 3879 struct socket *so = kn->kn_fp->f_data; 3880 3881 so_rdknl_lock(so); 3882 knlist_remove(&so->so_rdsel.si_note, kn, 1); 3883 if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note)) 3884 so->so_rcv.sb_flags &= ~SB_KNOTE; 3885 so_rdknl_unlock(so); 3886 } 3887 3888 /*ARGSUSED*/ 3889 static int 3890 filt_soread(struct knote *kn, long hint) 3891 { 3892 struct socket *so; 3893 3894 so = kn->kn_fp->f_data; 3895 3896 if (SOLISTENING(so)) { 3897 SOCK_LOCK_ASSERT(so); 3898 kn->kn_data = so->sol_qlen; 3899 if (so->so_error) { 3900 kn->kn_flags |= EV_EOF; 3901 kn->kn_fflags = so->so_error; 3902 return (1); 3903 } 3904 return (!TAILQ_EMPTY(&so->sol_comp)); 3905 } 3906 3907 SOCK_RECVBUF_LOCK_ASSERT(so); 3908 3909 kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl; 3910 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3911 kn->kn_flags |= EV_EOF; 3912 kn->kn_fflags = so->so_error; 3913 return (1); 3914 } else if (so->so_error || so->so_rerror) 3915 return (1); 3916 3917 if (kn->kn_sfflags & NOTE_LOWAT) { 3918 if (kn->kn_data >= kn->kn_sdata) 3919 return (1); 3920 } else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat) 3921 return (1); 3922 3923 /* This hook returning non-zero indicates an event, not error */ 3924 return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD)); 3925 } 3926 3927 static void 3928 filt_sowdetach(struct knote *kn) 3929 { 3930 struct socket *so = kn->kn_fp->f_data; 3931 3932 so_wrknl_lock(so); 3933 knlist_remove(&so->so_wrsel.si_note, kn, 1); 3934 if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note)) 3935 so->so_snd.sb_flags &= ~SB_KNOTE; 3936 so_wrknl_unlock(so); 3937 } 3938 3939 /*ARGSUSED*/ 3940 static int 3941 filt_sowrite(struct knote *kn, long hint) 3942 { 3943 struct socket *so; 3944 3945 so = kn->kn_fp->f_data; 3946 3947 if (SOLISTENING(so)) 3948 return (0); 3949 3950 SOCK_SENDBUF_LOCK_ASSERT(so); 3951 kn->kn_data = sbspace(&so->so_snd); 3952 3953 hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE); 3954 3955 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 3956 kn->kn_flags |= EV_EOF; 3957 kn->kn_fflags = so->so_error; 3958 return (1); 3959 } else if (so->so_error) /* temporary udp error */ 3960 return (1); 3961 else if (((so->so_state & SS_ISCONNECTED) == 0) && 3962 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 3963 return (0); 3964 else if (kn->kn_sfflags & NOTE_LOWAT) 3965 return (kn->kn_data >= kn->kn_sdata); 3966 else 3967 return (kn->kn_data >= so->so_snd.sb_lowat); 3968 } 3969 3970 static int 3971 filt_soempty(struct knote *kn, long hint) 3972 { 3973 struct socket *so; 3974 3975 so = kn->kn_fp->f_data; 3976 3977 if (SOLISTENING(so)) 3978 return (1); 3979 3980 SOCK_SENDBUF_LOCK_ASSERT(so); 3981 kn->kn_data = sbused(&so->so_snd); 3982 3983 if (kn->kn_data == 0) 3984 return (1); 3985 else 3986 return (0); 3987 } 3988 3989 int 3990 socheckuid(struct socket *so, uid_t uid) 3991 { 3992 3993 if (so == NULL) 3994 return (EPERM); 3995 if (so->so_cred->cr_uid != uid) 3996 return (EPERM); 3997 return (0); 3998 } 3999 4000 /* 4001 * These functions are used by protocols to notify the socket layer (and its 4002 * consumers) of state changes in the sockets driven by protocol-side events. 4003 */ 4004 4005 /* 4006 * Procedures to manipulate state flags of socket and do appropriate wakeups. 4007 * 4008 * Normal sequence from the active (originating) side is that 4009 * soisconnecting() is called during processing of connect() call, resulting 4010 * in an eventual call to soisconnected() if/when the connection is 4011 * established. When the connection is torn down soisdisconnecting() is 4012 * called during processing of disconnect() call, and soisdisconnected() is 4013 * called when the connection to the peer is totally severed. The semantics 4014 * of these routines are such that connectionless protocols can call 4015 * soisconnected() and soisdisconnected() only, bypassing the in-progress 4016 * calls when setting up a ``connection'' takes no time. 4017 * 4018 * From the passive side, a socket is created with two queues of sockets: 4019 * so_incomp for connections in progress and so_comp for connections already 4020 * made and awaiting user acceptance. As a protocol is preparing incoming 4021 * connections, it creates a socket structure queued on so_incomp by calling 4022 * sonewconn(). When the connection is established, soisconnected() is 4023 * called, and transfers the socket structure to so_comp, making it available 4024 * to accept(). 4025 * 4026 * If a socket is closed with sockets on either so_incomp or so_comp, these 4027 * sockets are dropped. 4028 * 4029 * If higher-level protocols are implemented in the kernel, the wakeups done 4030 * here will sometimes cause software-interrupt process scheduling. 4031 */ 4032 void 4033 soisconnecting(struct socket *so) 4034 { 4035 4036 SOCK_LOCK(so); 4037 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 4038 so->so_state |= SS_ISCONNECTING; 4039 SOCK_UNLOCK(so); 4040 } 4041 4042 void 4043 soisconnected(struct socket *so) 4044 { 4045 bool last __diagused; 4046 4047 SOCK_LOCK(so); 4048 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 4049 so->so_state |= SS_ISCONNECTED; 4050 4051 if (so->so_qstate == SQ_INCOMP) { 4052 struct socket *head = so->so_listen; 4053 int ret; 4054 4055 KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so)); 4056 /* 4057 * Promoting a socket from incomplete queue to complete, we 4058 * need to go through reverse order of locking. We first do 4059 * trylock, and if that doesn't succeed, we go the hard way 4060 * leaving a reference and rechecking consistency after proper 4061 * locking. 4062 */ 4063 if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) { 4064 soref(head); 4065 SOCK_UNLOCK(so); 4066 SOLISTEN_LOCK(head); 4067 SOCK_LOCK(so); 4068 if (__predict_false(head != so->so_listen)) { 4069 /* 4070 * The socket went off the listen queue, 4071 * should be lost race to close(2) of sol. 4072 * The socket is about to soabort(). 4073 */ 4074 SOCK_UNLOCK(so); 4075 sorele_locked(head); 4076 return; 4077 } 4078 last = refcount_release(&head->so_count); 4079 KASSERT(!last, ("%s: released last reference for %p", 4080 __func__, head)); 4081 } 4082 again: 4083 if ((so->so_options & SO_ACCEPTFILTER) == 0) { 4084 TAILQ_REMOVE(&head->sol_incomp, so, so_list); 4085 head->sol_incqlen--; 4086 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 4087 head->sol_qlen++; 4088 so->so_qstate = SQ_COMP; 4089 SOCK_UNLOCK(so); 4090 solisten_wakeup(head); /* unlocks */ 4091 } else { 4092 SOCK_RECVBUF_LOCK(so); 4093 soupcall_set(so, SO_RCV, 4094 head->sol_accept_filter->accf_callback, 4095 head->sol_accept_filter_arg); 4096 so->so_options &= ~SO_ACCEPTFILTER; 4097 ret = head->sol_accept_filter->accf_callback(so, 4098 head->sol_accept_filter_arg, M_NOWAIT); 4099 if (ret == SU_ISCONNECTED) { 4100 soupcall_clear(so, SO_RCV); 4101 SOCK_RECVBUF_UNLOCK(so); 4102 goto again; 4103 } 4104 SOCK_RECVBUF_UNLOCK(so); 4105 SOCK_UNLOCK(so); 4106 SOLISTEN_UNLOCK(head); 4107 } 4108 return; 4109 } 4110 SOCK_UNLOCK(so); 4111 wakeup(&so->so_timeo); 4112 sorwakeup(so); 4113 sowwakeup(so); 4114 } 4115 4116 void 4117 soisdisconnecting(struct socket *so) 4118 { 4119 4120 SOCK_LOCK(so); 4121 so->so_state &= ~SS_ISCONNECTING; 4122 so->so_state |= SS_ISDISCONNECTING; 4123 4124 if (!SOLISTENING(so)) { 4125 SOCK_RECVBUF_LOCK(so); 4126 socantrcvmore_locked(so); 4127 SOCK_SENDBUF_LOCK(so); 4128 socantsendmore_locked(so); 4129 } 4130 SOCK_UNLOCK(so); 4131 wakeup(&so->so_timeo); 4132 } 4133 4134 void 4135 soisdisconnected(struct socket *so) 4136 { 4137 4138 SOCK_LOCK(so); 4139 4140 /* 4141 * There is at least one reader of so_state that does not 4142 * acquire socket lock, namely soreceive_generic(). Ensure 4143 * that it never sees all flags that track connection status 4144 * cleared, by ordering the update with a barrier semantic of 4145 * our release thread fence. 4146 */ 4147 so->so_state |= SS_ISDISCONNECTED; 4148 atomic_thread_fence_rel(); 4149 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 4150 4151 if (!SOLISTENING(so)) { 4152 SOCK_UNLOCK(so); 4153 SOCK_RECVBUF_LOCK(so); 4154 socantrcvmore_locked(so); 4155 SOCK_SENDBUF_LOCK(so); 4156 sbdrop_locked(&so->so_snd, sbused(&so->so_snd)); 4157 socantsendmore_locked(so); 4158 } else 4159 SOCK_UNLOCK(so); 4160 wakeup(&so->so_timeo); 4161 } 4162 4163 int 4164 soiolock(struct socket *so, struct sx *sx, int flags) 4165 { 4166 int error; 4167 4168 KASSERT((flags & SBL_VALID) == flags, 4169 ("soiolock: invalid flags %#x", flags)); 4170 4171 if ((flags & SBL_WAIT) != 0) { 4172 if ((flags & SBL_NOINTR) != 0) { 4173 sx_xlock(sx); 4174 } else { 4175 error = sx_xlock_sig(sx); 4176 if (error != 0) 4177 return (error); 4178 } 4179 } else if (!sx_try_xlock(sx)) { 4180 return (EWOULDBLOCK); 4181 } 4182 4183 if (__predict_false(SOLISTENING(so))) { 4184 sx_xunlock(sx); 4185 return (ENOTCONN); 4186 } 4187 return (0); 4188 } 4189 4190 void 4191 soiounlock(struct sx *sx) 4192 { 4193 sx_xunlock(sx); 4194 } 4195 4196 /* 4197 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 4198 */ 4199 struct sockaddr * 4200 sodupsockaddr(const struct sockaddr *sa, int mflags) 4201 { 4202 struct sockaddr *sa2; 4203 4204 sa2 = malloc(sa->sa_len, M_SONAME, mflags); 4205 if (sa2) 4206 bcopy(sa, sa2, sa->sa_len); 4207 return sa2; 4208 } 4209 4210 /* 4211 * Register per-socket destructor. 4212 */ 4213 void 4214 sodtor_set(struct socket *so, so_dtor_t *func) 4215 { 4216 4217 SOCK_LOCK_ASSERT(so); 4218 so->so_dtor = func; 4219 } 4220 4221 /* 4222 * Register per-socket buffer upcalls. 4223 */ 4224 void 4225 soupcall_set(struct socket *so, sb_which which, so_upcall_t func, void *arg) 4226 { 4227 struct sockbuf *sb; 4228 4229 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 4230 4231 switch (which) { 4232 case SO_RCV: 4233 sb = &so->so_rcv; 4234 break; 4235 case SO_SND: 4236 sb = &so->so_snd; 4237 break; 4238 } 4239 SOCK_BUF_LOCK_ASSERT(so, which); 4240 sb->sb_upcall = func; 4241 sb->sb_upcallarg = arg; 4242 sb->sb_flags |= SB_UPCALL; 4243 } 4244 4245 void 4246 soupcall_clear(struct socket *so, sb_which which) 4247 { 4248 struct sockbuf *sb; 4249 4250 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 4251 4252 switch (which) { 4253 case SO_RCV: 4254 sb = &so->so_rcv; 4255 break; 4256 case SO_SND: 4257 sb = &so->so_snd; 4258 break; 4259 } 4260 SOCK_BUF_LOCK_ASSERT(so, which); 4261 KASSERT(sb->sb_upcall != NULL, 4262 ("%s: so %p no upcall to clear", __func__, so)); 4263 sb->sb_upcall = NULL; 4264 sb->sb_upcallarg = NULL; 4265 sb->sb_flags &= ~SB_UPCALL; 4266 } 4267 4268 void 4269 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg) 4270 { 4271 4272 SOLISTEN_LOCK_ASSERT(so); 4273 so->sol_upcall = func; 4274 so->sol_upcallarg = arg; 4275 } 4276 4277 static void 4278 so_rdknl_lock(void *arg) 4279 { 4280 struct socket *so = arg; 4281 4282 retry: 4283 if (SOLISTENING(so)) { 4284 SOLISTEN_LOCK(so); 4285 } else { 4286 SOCK_RECVBUF_LOCK(so); 4287 if (__predict_false(SOLISTENING(so))) { 4288 SOCK_RECVBUF_UNLOCK(so); 4289 goto retry; 4290 } 4291 } 4292 } 4293 4294 static void 4295 so_rdknl_unlock(void *arg) 4296 { 4297 struct socket *so = arg; 4298 4299 if (SOLISTENING(so)) 4300 SOLISTEN_UNLOCK(so); 4301 else 4302 SOCK_RECVBUF_UNLOCK(so); 4303 } 4304 4305 static void 4306 so_rdknl_assert_lock(void *arg, int what) 4307 { 4308 struct socket *so = arg; 4309 4310 if (what == LA_LOCKED) { 4311 if (SOLISTENING(so)) 4312 SOLISTEN_LOCK_ASSERT(so); 4313 else 4314 SOCK_RECVBUF_LOCK_ASSERT(so); 4315 } else { 4316 if (SOLISTENING(so)) 4317 SOLISTEN_UNLOCK_ASSERT(so); 4318 else 4319 SOCK_RECVBUF_UNLOCK_ASSERT(so); 4320 } 4321 } 4322 4323 static void 4324 so_wrknl_lock(void *arg) 4325 { 4326 struct socket *so = arg; 4327 4328 retry: 4329 if (SOLISTENING(so)) { 4330 SOLISTEN_LOCK(so); 4331 } else { 4332 SOCK_SENDBUF_LOCK(so); 4333 if (__predict_false(SOLISTENING(so))) { 4334 SOCK_SENDBUF_UNLOCK(so); 4335 goto retry; 4336 } 4337 } 4338 } 4339 4340 static void 4341 so_wrknl_unlock(void *arg) 4342 { 4343 struct socket *so = arg; 4344 4345 if (SOLISTENING(so)) 4346 SOLISTEN_UNLOCK(so); 4347 else 4348 SOCK_SENDBUF_UNLOCK(so); 4349 } 4350 4351 static void 4352 so_wrknl_assert_lock(void *arg, int what) 4353 { 4354 struct socket *so = arg; 4355 4356 if (what == LA_LOCKED) { 4357 if (SOLISTENING(so)) 4358 SOLISTEN_LOCK_ASSERT(so); 4359 else 4360 SOCK_SENDBUF_LOCK_ASSERT(so); 4361 } else { 4362 if (SOLISTENING(so)) 4363 SOLISTEN_UNLOCK_ASSERT(so); 4364 else 4365 SOCK_SENDBUF_UNLOCK_ASSERT(so); 4366 } 4367 } 4368 4369 /* 4370 * Create an external-format (``xsocket'') structure using the information in 4371 * the kernel-format socket structure pointed to by so. This is done to 4372 * reduce the spew of irrelevant information over this interface, to isolate 4373 * user code from changes in the kernel structure, and potentially to provide 4374 * information-hiding if we decide that some of this information should be 4375 * hidden from users. 4376 */ 4377 void 4378 sotoxsocket(struct socket *so, struct xsocket *xso) 4379 { 4380 4381 bzero(xso, sizeof(*xso)); 4382 xso->xso_len = sizeof *xso; 4383 xso->xso_so = (uintptr_t)so; 4384 xso->so_type = so->so_type; 4385 xso->so_options = so->so_options; 4386 xso->so_linger = so->so_linger; 4387 xso->so_state = so->so_state; 4388 xso->so_pcb = (uintptr_t)so->so_pcb; 4389 xso->xso_protocol = so->so_proto->pr_protocol; 4390 xso->xso_family = so->so_proto->pr_domain->dom_family; 4391 xso->so_timeo = so->so_timeo; 4392 xso->so_error = so->so_error; 4393 xso->so_uid = so->so_cred->cr_uid; 4394 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 4395 if (SOLISTENING(so)) { 4396 xso->so_qlen = so->sol_qlen; 4397 xso->so_incqlen = so->sol_incqlen; 4398 xso->so_qlimit = so->sol_qlimit; 4399 xso->so_oobmark = 0; 4400 } else { 4401 xso->so_state |= so->so_qstate; 4402 xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0; 4403 xso->so_oobmark = so->so_oobmark; 4404 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 4405 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 4406 } 4407 } 4408 4409 struct sockbuf * 4410 so_sockbuf_rcv(struct socket *so) 4411 { 4412 4413 return (&so->so_rcv); 4414 } 4415 4416 struct sockbuf * 4417 so_sockbuf_snd(struct socket *so) 4418 { 4419 4420 return (&so->so_snd); 4421 } 4422 4423 int 4424 so_state_get(const struct socket *so) 4425 { 4426 4427 return (so->so_state); 4428 } 4429 4430 void 4431 so_state_set(struct socket *so, int val) 4432 { 4433 4434 so->so_state = val; 4435 } 4436 4437 int 4438 so_options_get(const struct socket *so) 4439 { 4440 4441 return (so->so_options); 4442 } 4443 4444 void 4445 so_options_set(struct socket *so, int val) 4446 { 4447 4448 so->so_options = val; 4449 } 4450 4451 int 4452 so_error_get(const struct socket *so) 4453 { 4454 4455 return (so->so_error); 4456 } 4457 4458 void 4459 so_error_set(struct socket *so, int val) 4460 { 4461 4462 so->so_error = val; 4463 } 4464 4465 int 4466 so_linger_get(const struct socket *so) 4467 { 4468 4469 return (so->so_linger); 4470 } 4471 4472 void 4473 so_linger_set(struct socket *so, int val) 4474 { 4475 4476 KASSERT(val >= 0 && val <= USHRT_MAX && val <= (INT_MAX / hz), 4477 ("%s: val %d out of range", __func__, val)); 4478 4479 so->so_linger = val; 4480 } 4481 4482 struct protosw * 4483 so_protosw_get(const struct socket *so) 4484 { 4485 4486 return (so->so_proto); 4487 } 4488 4489 void 4490 so_protosw_set(struct socket *so, struct protosw *val) 4491 { 4492 4493 so->so_proto = val; 4494 } 4495 4496 void 4497 so_sorwakeup(struct socket *so) 4498 { 4499 4500 sorwakeup(so); 4501 } 4502 4503 void 4504 so_sowwakeup(struct socket *so) 4505 { 4506 4507 sowwakeup(so); 4508 } 4509 4510 void 4511 so_sorwakeup_locked(struct socket *so) 4512 { 4513 4514 sorwakeup_locked(so); 4515 } 4516 4517 void 4518 so_sowwakeup_locked(struct socket *so) 4519 { 4520 4521 sowwakeup_locked(so); 4522 } 4523 4524 void 4525 so_lock(struct socket *so) 4526 { 4527 4528 SOCK_LOCK(so); 4529 } 4530 4531 void 4532 so_unlock(struct socket *so) 4533 { 4534 4535 SOCK_UNLOCK(so); 4536 } 4537