1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993 3 * The Regents of the University of California. 4 * Copyright (c) 2004 The FreeBSD Foundation 5 * Copyright (c) 2004-2008 Robert N. M. Watson 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 33 */ 34 35 /* 36 * Comments on the socket life cycle: 37 * 38 * soalloc() sets of socket layer state for a socket, called only by 39 * socreate() and sonewconn(). Socket layer private. 40 * 41 * sodealloc() tears down socket layer state for a socket, called only by 42 * sofree() and sonewconn(). Socket layer private. 43 * 44 * pru_attach() associates protocol layer state with an allocated socket; 45 * called only once, may fail, aborting socket allocation. This is called 46 * from socreate() and sonewconn(). Socket layer private. 47 * 48 * pru_detach() disassociates protocol layer state from an attached socket, 49 * and will be called exactly once for sockets in which pru_attach() has 50 * been successfully called. If pru_attach() returned an error, 51 * pru_detach() will not be called. Socket layer private. 52 * 53 * pru_abort() and pru_close() notify the protocol layer that the last 54 * consumer of a socket is starting to tear down the socket, and that the 55 * protocol should terminate the connection. Historically, pru_abort() also 56 * detached protocol state from the socket state, but this is no longer the 57 * case. 58 * 59 * socreate() creates a socket and attaches protocol state. This is a public 60 * interface that may be used by socket layer consumers to create new 61 * sockets. 62 * 63 * sonewconn() creates a socket and attaches protocol state. This is a 64 * public interface that may be used by protocols to create new sockets when 65 * a new connection is received and will be available for accept() on a 66 * listen socket. 67 * 68 * soclose() destroys a socket after possibly waiting for it to disconnect. 69 * This is a public interface that socket consumers should use to close and 70 * release a socket when done with it. 71 * 72 * soabort() destroys a socket without waiting for it to disconnect (used 73 * only for incoming connections that are already partially or fully 74 * connected). This is used internally by the socket layer when clearing 75 * listen socket queues (due to overflow or close on the listen socket), but 76 * is also a public interface protocols may use to abort connections in 77 * their incomplete listen queues should they no longer be required. Sockets 78 * placed in completed connection listen queues should not be aborted for 79 * reasons described in the comment above the soclose() implementation. This 80 * is not a general purpose close routine, and except in the specific 81 * circumstances described here, should not be used. 82 * 83 * sofree() will free a socket and its protocol state if all references on 84 * the socket have been released, and is the public interface to attempt to 85 * free a socket when a reference is removed. This is a socket layer private 86 * interface. 87 * 88 * NOTE: In addition to socreate() and soclose(), which provide a single 89 * socket reference to the consumer to be managed as required, there are two 90 * calls to explicitly manage socket references, soref(), and sorele(). 91 * Currently, these are generally required only when transitioning a socket 92 * from a listen queue to a file descriptor, in order to prevent garbage 93 * collection of the socket at an untimely moment. For a number of reasons, 94 * these interfaces are not preferred, and should be avoided. 95 */ 96 97 #include <sys/cdefs.h> 98 __FBSDID("$FreeBSD$"); 99 100 #include "opt_inet.h" 101 #include "opt_inet6.h" 102 #include "opt_zero.h" 103 #include "opt_compat.h" 104 105 #include <sys/param.h> 106 #include <sys/systm.h> 107 #include <sys/fcntl.h> 108 #include <sys/limits.h> 109 #include <sys/lock.h> 110 #include <sys/mac.h> 111 #include <sys/malloc.h> 112 #include <sys/mbuf.h> 113 #include <sys/mutex.h> 114 #include <sys/domain.h> 115 #include <sys/file.h> /* for struct knote */ 116 #include <sys/kernel.h> 117 #include <sys/event.h> 118 #include <sys/eventhandler.h> 119 #include <sys/poll.h> 120 #include <sys/proc.h> 121 #include <sys/protosw.h> 122 #include <sys/socket.h> 123 #include <sys/socketvar.h> 124 #include <sys/resourcevar.h> 125 #include <net/route.h> 126 #include <sys/signalvar.h> 127 #include <sys/stat.h> 128 #include <sys/sx.h> 129 #include <sys/sysctl.h> 130 #include <sys/uio.h> 131 #include <sys/jail.h> 132 #include <sys/vimage.h> 133 134 #include <security/mac/mac_framework.h> 135 136 #include <vm/uma.h> 137 138 #ifdef COMPAT_IA32 139 #include <sys/mount.h> 140 #include <sys/sysent.h> 141 #include <compat/freebsd32/freebsd32.h> 142 #endif 143 144 static int soreceive_rcvoob(struct socket *so, struct uio *uio, 145 int flags); 146 147 static void filt_sordetach(struct knote *kn); 148 static int filt_soread(struct knote *kn, long hint); 149 static void filt_sowdetach(struct knote *kn); 150 static int filt_sowrite(struct knote *kn, long hint); 151 static int filt_solisten(struct knote *kn, long hint); 152 153 static struct filterops solisten_filtops = 154 { 1, NULL, filt_sordetach, filt_solisten }; 155 static struct filterops soread_filtops = 156 { 1, NULL, filt_sordetach, filt_soread }; 157 static struct filterops sowrite_filtops = 158 { 1, NULL, filt_sowdetach, filt_sowrite }; 159 160 uma_zone_t socket_zone; 161 so_gen_t so_gencnt; /* generation count for sockets */ 162 163 int maxsockets; 164 165 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 166 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 167 168 static int somaxconn = SOMAXCONN; 169 static int sysctl_somaxconn(SYSCTL_HANDLER_ARGS); 170 /* XXX: we dont have SYSCTL_USHORT */ 171 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLTYPE_UINT | CTLFLAG_RW, 172 0, sizeof(int), sysctl_somaxconn, "I", "Maximum pending socket connection " 173 "queue size"); 174 static int numopensockets; 175 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, 176 &numopensockets, 0, "Number of open sockets"); 177 #ifdef ZERO_COPY_SOCKETS 178 /* These aren't static because they're used in other files. */ 179 int so_zero_copy_send = 1; 180 int so_zero_copy_receive = 1; 181 SYSCTL_NODE(_kern_ipc, OID_AUTO, zero_copy, CTLFLAG_RD, 0, 182 "Zero copy controls"); 183 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, receive, CTLFLAG_RW, 184 &so_zero_copy_receive, 0, "Enable zero copy receive"); 185 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, send, CTLFLAG_RW, 186 &so_zero_copy_send, 0, "Enable zero copy send"); 187 #endif /* ZERO_COPY_SOCKETS */ 188 189 /* 190 * accept_mtx locks down per-socket fields relating to accept queues. See 191 * socketvar.h for an annotation of the protected fields of struct socket. 192 */ 193 struct mtx accept_mtx; 194 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF); 195 196 /* 197 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket 198 * so_gencnt field. 199 */ 200 static struct mtx so_global_mtx; 201 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); 202 203 /* 204 * General IPC sysctl name space, used by sockets and a variety of other IPC 205 * types. 206 */ 207 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC"); 208 209 /* 210 * Sysctl to get and set the maximum global sockets limit. Notify protocols 211 * of the change so that they can update their dependent limits as required. 212 */ 213 static int 214 sysctl_maxsockets(SYSCTL_HANDLER_ARGS) 215 { 216 int error, newmaxsockets; 217 218 newmaxsockets = maxsockets; 219 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req); 220 if (error == 0 && req->newptr) { 221 if (newmaxsockets > maxsockets) { 222 maxsockets = newmaxsockets; 223 if (maxsockets > ((maxfiles / 4) * 3)) { 224 maxfiles = (maxsockets * 5) / 4; 225 maxfilesperproc = (maxfiles * 9) / 10; 226 } 227 EVENTHANDLER_INVOKE(maxsockets_change); 228 } else 229 error = EINVAL; 230 } 231 return (error); 232 } 233 234 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, CTLTYPE_INT|CTLFLAG_RW, 235 &maxsockets, 0, sysctl_maxsockets, "IU", 236 "Maximum number of sockets avaliable"); 237 238 /* 239 * Initialise maxsockets. This SYSINIT must be run after 240 * tunable_mbinit(). 241 */ 242 static void 243 init_maxsockets(void *ignored) 244 { 245 246 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 247 maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters)); 248 } 249 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 250 251 /* 252 * Socket operation routines. These routines are called by the routines in 253 * sys_socket.c or from a system process, and implement the semantics of 254 * socket operations by switching out to the protocol specific routines. 255 */ 256 257 /* 258 * Get a socket structure from our zone, and initialize it. Note that it 259 * would probably be better to allocate socket and PCB at the same time, but 260 * I'm not convinced that all the protocols can be easily modified to do 261 * this. 262 * 263 * soalloc() returns a socket with a ref count of 0. 264 */ 265 static struct socket * 266 soalloc(struct vnet *vnet) 267 { 268 struct socket *so; 269 270 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO); 271 if (so == NULL) 272 return (NULL); 273 #ifdef MAC 274 if (mac_socket_init(so, M_NOWAIT) != 0) { 275 uma_zfree(socket_zone, so); 276 return (NULL); 277 } 278 #endif 279 SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd"); 280 SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv"); 281 sx_init(&so->so_snd.sb_sx, "so_snd_sx"); 282 sx_init(&so->so_rcv.sb_sx, "so_rcv_sx"); 283 TAILQ_INIT(&so->so_aiojobq); 284 mtx_lock(&so_global_mtx); 285 so->so_gencnt = ++so_gencnt; 286 ++numopensockets; 287 #ifdef VIMAGE 288 ++vnet->sockcnt; /* Locked with so_global_mtx. */ 289 so->so_vnet = vnet; 290 #endif 291 mtx_unlock(&so_global_mtx); 292 return (so); 293 } 294 295 /* 296 * Free the storage associated with a socket at the socket layer, tear down 297 * locks, labels, etc. All protocol state is assumed already to have been 298 * torn down (and possibly never set up) by the caller. 299 */ 300 static void 301 sodealloc(struct socket *so) 302 { 303 304 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); 305 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL")); 306 307 mtx_lock(&so_global_mtx); 308 so->so_gencnt = ++so_gencnt; 309 --numopensockets; /* Could be below, but faster here. */ 310 #ifdef VIMAGE 311 --so->so_vnet->sockcnt; 312 #endif 313 mtx_unlock(&so_global_mtx); 314 if (so->so_rcv.sb_hiwat) 315 (void)chgsbsize(so->so_cred->cr_uidinfo, 316 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 317 if (so->so_snd.sb_hiwat) 318 (void)chgsbsize(so->so_cred->cr_uidinfo, 319 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 320 #ifdef INET 321 /* remove acccept filter if one is present. */ 322 if (so->so_accf != NULL) 323 do_setopt_accept_filter(so, NULL); 324 #endif 325 #ifdef MAC 326 mac_socket_destroy(so); 327 #endif 328 crfree(so->so_cred); 329 sx_destroy(&so->so_snd.sb_sx); 330 sx_destroy(&so->so_rcv.sb_sx); 331 SOCKBUF_LOCK_DESTROY(&so->so_snd); 332 SOCKBUF_LOCK_DESTROY(&so->so_rcv); 333 uma_zfree(socket_zone, so); 334 } 335 336 /* 337 * socreate returns a socket with a ref count of 1. The socket should be 338 * closed with soclose(). 339 */ 340 int 341 socreate(int dom, struct socket **aso, int type, int proto, 342 struct ucred *cred, struct thread *td) 343 { 344 struct protosw *prp; 345 struct socket *so; 346 int error; 347 348 if (proto) 349 prp = pffindproto(dom, proto, type); 350 else 351 prp = pffindtype(dom, type); 352 353 if (prp == NULL || prp->pr_usrreqs->pru_attach == NULL || 354 prp->pr_usrreqs->pru_attach == pru_attach_notsupp) 355 return (EPROTONOSUPPORT); 356 357 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0) 358 return (EPROTONOSUPPORT); 359 360 if (prp->pr_type != type) 361 return (EPROTOTYPE); 362 so = soalloc(TD_TO_VNET(td)); 363 if (so == NULL) 364 return (ENOBUFS); 365 366 TAILQ_INIT(&so->so_incomp); 367 TAILQ_INIT(&so->so_comp); 368 so->so_type = type; 369 so->so_cred = crhold(cred); 370 if ((prp->pr_domain->dom_family == PF_INET) || 371 (prp->pr_domain->dom_family == PF_ROUTE)) 372 so->so_fibnum = td->td_proc->p_fibnum; 373 else 374 so->so_fibnum = 0; 375 so->so_proto = prp; 376 #ifdef MAC 377 mac_socket_create(cred, so); 378 #endif 379 knlist_init(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv), 380 NULL, NULL, NULL); 381 knlist_init(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd), 382 NULL, NULL, NULL); 383 so->so_count = 1; 384 /* 385 * Auto-sizing of socket buffers is managed by the protocols and 386 * the appropriate flags must be set in the pru_attach function. 387 */ 388 CURVNET_SET(so->so_vnet); 389 error = (*prp->pr_usrreqs->pru_attach)(so, proto, td); 390 CURVNET_RESTORE(); 391 if (error) { 392 KASSERT(so->so_count == 1, ("socreate: so_count %d", 393 so->so_count)); 394 so->so_count = 0; 395 sodealloc(so); 396 return (error); 397 } 398 *aso = so; 399 return (0); 400 } 401 402 #ifdef REGRESSION 403 static int regression_sonewconn_earlytest = 1; 404 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW, 405 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test"); 406 #endif 407 408 /* 409 * When an attempt at a new connection is noted on a socket which accepts 410 * connections, sonewconn is called. If the connection is possible (subject 411 * to space constraints, etc.) then we allocate a new structure, propoerly 412 * linked into the data structure of the original socket, and return this. 413 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED. 414 * 415 * Note: the ref count on the socket is 0 on return. 416 */ 417 struct socket * 418 sonewconn(struct socket *head, int connstatus) 419 { 420 struct socket *so; 421 int over; 422 423 ACCEPT_LOCK(); 424 over = (head->so_qlen > 3 * head->so_qlimit / 2); 425 ACCEPT_UNLOCK(); 426 #ifdef REGRESSION 427 if (regression_sonewconn_earlytest && over) 428 #else 429 if (over) 430 #endif 431 return (NULL); 432 VNET_ASSERT(head->so_vnet); 433 so = soalloc(head->so_vnet); 434 if (so == NULL) 435 return (NULL); 436 if ((head->so_options & SO_ACCEPTFILTER) != 0) 437 connstatus = 0; 438 so->so_head = head; 439 so->so_type = head->so_type; 440 so->so_options = head->so_options &~ SO_ACCEPTCONN; 441 so->so_linger = head->so_linger; 442 so->so_state = head->so_state | SS_NOFDREF; 443 so->so_proto = head->so_proto; 444 so->so_cred = crhold(head->so_cred); 445 #ifdef MAC 446 mac_socket_newconn(head, so); 447 #endif 448 knlist_init(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv), 449 NULL, NULL, NULL); 450 knlist_init(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd), 451 NULL, NULL, NULL); 452 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) || 453 (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 454 sodealloc(so); 455 return (NULL); 456 } 457 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; 458 so->so_snd.sb_lowat = head->so_snd.sb_lowat; 459 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; 460 so->so_snd.sb_timeo = head->so_snd.sb_timeo; 461 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE; 462 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE; 463 so->so_state |= connstatus; 464 ACCEPT_LOCK(); 465 if (connstatus) { 466 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 467 so->so_qstate |= SQ_COMP; 468 head->so_qlen++; 469 } else { 470 /* 471 * Keep removing sockets from the head until there's room for 472 * us to insert on the tail. In pre-locking revisions, this 473 * was a simple if(), but as we could be racing with other 474 * threads and soabort() requires dropping locks, we must 475 * loop waiting for the condition to be true. 476 */ 477 while (head->so_incqlen > head->so_qlimit) { 478 struct socket *sp; 479 sp = TAILQ_FIRST(&head->so_incomp); 480 TAILQ_REMOVE(&head->so_incomp, sp, so_list); 481 head->so_incqlen--; 482 sp->so_qstate &= ~SQ_INCOMP; 483 sp->so_head = NULL; 484 ACCEPT_UNLOCK(); 485 soabort(sp); 486 ACCEPT_LOCK(); 487 } 488 TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list); 489 so->so_qstate |= SQ_INCOMP; 490 head->so_incqlen++; 491 } 492 ACCEPT_UNLOCK(); 493 if (connstatus) { 494 sorwakeup(head); 495 wakeup_one(&head->so_timeo); 496 } 497 return (so); 498 } 499 500 int 501 sobind(struct socket *so, struct sockaddr *nam, struct thread *td) 502 { 503 int error; 504 505 CURVNET_SET(so->so_vnet); 506 error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td); 507 CURVNET_RESTORE(); 508 return error; 509 } 510 511 /* 512 * solisten() transitions a socket from a non-listening state to a listening 513 * state, but can also be used to update the listen queue depth on an 514 * existing listen socket. The protocol will call back into the sockets 515 * layer using solisten_proto_check() and solisten_proto() to check and set 516 * socket-layer listen state. Call backs are used so that the protocol can 517 * acquire both protocol and socket layer locks in whatever order is required 518 * by the protocol. 519 * 520 * Protocol implementors are advised to hold the socket lock across the 521 * socket-layer test and set to avoid races at the socket layer. 522 */ 523 int 524 solisten(struct socket *so, int backlog, struct thread *td) 525 { 526 527 return ((*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td)); 528 } 529 530 int 531 solisten_proto_check(struct socket *so) 532 { 533 534 SOCK_LOCK_ASSERT(so); 535 536 if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 537 SS_ISDISCONNECTING)) 538 return (EINVAL); 539 return (0); 540 } 541 542 void 543 solisten_proto(struct socket *so, int backlog) 544 { 545 546 SOCK_LOCK_ASSERT(so); 547 548 if (backlog < 0 || backlog > somaxconn) 549 backlog = somaxconn; 550 so->so_qlimit = backlog; 551 so->so_options |= SO_ACCEPTCONN; 552 } 553 554 /* 555 * Attempt to free a socket. This should really be sotryfree(). 556 * 557 * sofree() will succeed if: 558 * 559 * - There are no outstanding file descriptor references or related consumers 560 * (so_count == 0). 561 * 562 * - The socket has been closed by user space, if ever open (SS_NOFDREF). 563 * 564 * - The protocol does not have an outstanding strong reference on the socket 565 * (SS_PROTOREF). 566 * 567 * - The socket is not in a completed connection queue, so a process has been 568 * notified that it is present. If it is removed, the user process may 569 * block in accept() despite select() saying the socket was ready. 570 * 571 * Otherwise, it will quietly abort so that a future call to sofree(), when 572 * conditions are right, can succeed. 573 */ 574 void 575 sofree(struct socket *so) 576 { 577 struct protosw *pr = so->so_proto; 578 struct socket *head; 579 580 ACCEPT_LOCK_ASSERT(); 581 SOCK_LOCK_ASSERT(so); 582 583 if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 || 584 (so->so_state & SS_PROTOREF) || (so->so_qstate & SQ_COMP)) { 585 SOCK_UNLOCK(so); 586 ACCEPT_UNLOCK(); 587 return; 588 } 589 590 head = so->so_head; 591 if (head != NULL) { 592 KASSERT((so->so_qstate & SQ_COMP) != 0 || 593 (so->so_qstate & SQ_INCOMP) != 0, 594 ("sofree: so_head != NULL, but neither SQ_COMP nor " 595 "SQ_INCOMP")); 596 KASSERT((so->so_qstate & SQ_COMP) == 0 || 597 (so->so_qstate & SQ_INCOMP) == 0, 598 ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP")); 599 TAILQ_REMOVE(&head->so_incomp, so, so_list); 600 head->so_incqlen--; 601 so->so_qstate &= ~SQ_INCOMP; 602 so->so_head = NULL; 603 } 604 KASSERT((so->so_qstate & SQ_COMP) == 0 && 605 (so->so_qstate & SQ_INCOMP) == 0, 606 ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)", 607 so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP)); 608 if (so->so_options & SO_ACCEPTCONN) { 609 KASSERT((TAILQ_EMPTY(&so->so_comp)), ("sofree: so_comp populated")); 610 KASSERT((TAILQ_EMPTY(&so->so_incomp)), ("sofree: so_comp populated")); 611 } 612 SOCK_UNLOCK(so); 613 ACCEPT_UNLOCK(); 614 615 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 616 (*pr->pr_domain->dom_dispose)(so->so_rcv.sb_mb); 617 if (pr->pr_usrreqs->pru_detach != NULL) 618 (*pr->pr_usrreqs->pru_detach)(so); 619 620 /* 621 * From this point on, we assume that no other references to this 622 * socket exist anywhere else in the stack. Therefore, no locks need 623 * to be acquired or held. 624 * 625 * We used to do a lot of socket buffer and socket locking here, as 626 * well as invoke sorflush() and perform wakeups. The direct call to 627 * dom_dispose() and sbrelease_internal() are an inlining of what was 628 * necessary from sorflush(). 629 * 630 * Notice that the socket buffer and kqueue state are torn down 631 * before calling pru_detach. This means that protocols shold not 632 * assume they can perform socket wakeups, etc, in their detach code. 633 */ 634 sbdestroy(&so->so_snd, so); 635 sbdestroy(&so->so_rcv, so); 636 knlist_destroy(&so->so_rcv.sb_sel.si_note); 637 knlist_destroy(&so->so_snd.sb_sel.si_note); 638 sodealloc(so); 639 } 640 641 /* 642 * Close a socket on last file table reference removal. Initiate disconnect 643 * if connected. Free socket when disconnect complete. 644 * 645 * This function will sorele() the socket. Note that soclose() may be called 646 * prior to the ref count reaching zero. The actual socket structure will 647 * not be freed until the ref count reaches zero. 648 */ 649 int 650 soclose(struct socket *so) 651 { 652 int error = 0; 653 654 KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter")); 655 656 CURVNET_SET(so->so_vnet); 657 funsetown(&so->so_sigio); 658 if (so->so_state & SS_ISCONNECTED) { 659 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 660 error = sodisconnect(so); 661 if (error) 662 goto drop; 663 } 664 if (so->so_options & SO_LINGER) { 665 if ((so->so_state & SS_ISDISCONNECTING) && 666 (so->so_state & SS_NBIO)) 667 goto drop; 668 while (so->so_state & SS_ISCONNECTED) { 669 error = tsleep(&so->so_timeo, 670 PSOCK | PCATCH, "soclos", so->so_linger * hz); 671 if (error) 672 break; 673 } 674 } 675 } 676 677 drop: 678 if (so->so_proto->pr_usrreqs->pru_close != NULL) 679 (*so->so_proto->pr_usrreqs->pru_close)(so); 680 if (so->so_options & SO_ACCEPTCONN) { 681 struct socket *sp; 682 ACCEPT_LOCK(); 683 while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) { 684 TAILQ_REMOVE(&so->so_incomp, sp, so_list); 685 so->so_incqlen--; 686 sp->so_qstate &= ~SQ_INCOMP; 687 sp->so_head = NULL; 688 ACCEPT_UNLOCK(); 689 soabort(sp); 690 ACCEPT_LOCK(); 691 } 692 while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) { 693 TAILQ_REMOVE(&so->so_comp, sp, so_list); 694 so->so_qlen--; 695 sp->so_qstate &= ~SQ_COMP; 696 sp->so_head = NULL; 697 ACCEPT_UNLOCK(); 698 soabort(sp); 699 ACCEPT_LOCK(); 700 } 701 ACCEPT_UNLOCK(); 702 } 703 ACCEPT_LOCK(); 704 SOCK_LOCK(so); 705 KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF")); 706 so->so_state |= SS_NOFDREF; 707 sorele(so); 708 CURVNET_RESTORE(); 709 return (error); 710 } 711 712 /* 713 * soabort() is used to abruptly tear down a connection, such as when a 714 * resource limit is reached (listen queue depth exceeded), or if a listen 715 * socket is closed while there are sockets waiting to be accepted. 716 * 717 * This interface is tricky, because it is called on an unreferenced socket, 718 * and must be called only by a thread that has actually removed the socket 719 * from the listen queue it was on, or races with other threads are risked. 720 * 721 * This interface will call into the protocol code, so must not be called 722 * with any socket locks held. Protocols do call it while holding their own 723 * recursible protocol mutexes, but this is something that should be subject 724 * to review in the future. 725 */ 726 void 727 soabort(struct socket *so) 728 { 729 730 /* 731 * In as much as is possible, assert that no references to this 732 * socket are held. This is not quite the same as asserting that the 733 * current thread is responsible for arranging for no references, but 734 * is as close as we can get for now. 735 */ 736 KASSERT(so->so_count == 0, ("soabort: so_count")); 737 KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF")); 738 KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF")); 739 KASSERT((so->so_state & SQ_COMP) == 0, ("soabort: SQ_COMP")); 740 KASSERT((so->so_state & SQ_INCOMP) == 0, ("soabort: SQ_INCOMP")); 741 742 if (so->so_proto->pr_usrreqs->pru_abort != NULL) 743 (*so->so_proto->pr_usrreqs->pru_abort)(so); 744 ACCEPT_LOCK(); 745 SOCK_LOCK(so); 746 sofree(so); 747 } 748 749 int 750 soaccept(struct socket *so, struct sockaddr **nam) 751 { 752 int error; 753 754 SOCK_LOCK(so); 755 KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF")); 756 so->so_state &= ~SS_NOFDREF; 757 SOCK_UNLOCK(so); 758 error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam); 759 return (error); 760 } 761 762 int 763 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td) 764 { 765 int error; 766 767 if (so->so_options & SO_ACCEPTCONN) 768 return (EOPNOTSUPP); 769 /* 770 * If protocol is connection-based, can only connect once. 771 * Otherwise, if connected, try to disconnect first. This allows 772 * user to disconnect by connecting to, e.g., a null address. 773 */ 774 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 775 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 776 (error = sodisconnect(so)))) { 777 error = EISCONN; 778 } else { 779 /* 780 * Prevent accumulated error from previous connection from 781 * biting us. 782 */ 783 so->so_error = 0; 784 CURVNET_SET(so->so_vnet); 785 error = (*so->so_proto->pr_usrreqs->pru_connect)(so, nam, td); 786 CURVNET_RESTORE(); 787 } 788 789 return (error); 790 } 791 792 int 793 soconnect2(struct socket *so1, struct socket *so2) 794 { 795 796 return ((*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2)); 797 } 798 799 int 800 sodisconnect(struct socket *so) 801 { 802 int error; 803 804 if ((so->so_state & SS_ISCONNECTED) == 0) 805 return (ENOTCONN); 806 if (so->so_state & SS_ISDISCONNECTING) 807 return (EALREADY); 808 error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so); 809 return (error); 810 } 811 812 #ifdef ZERO_COPY_SOCKETS 813 struct so_zerocopy_stats{ 814 int size_ok; 815 int align_ok; 816 int found_ifp; 817 }; 818 struct so_zerocopy_stats so_zerocp_stats = {0,0,0}; 819 #include <netinet/in.h> 820 #include <net/route.h> 821 #include <netinet/in_pcb.h> 822 #include <vm/vm.h> 823 #include <vm/vm_page.h> 824 #include <vm/vm_object.h> 825 826 /* 827 * sosend_copyin() is only used if zero copy sockets are enabled. Otherwise 828 * sosend_dgram() and sosend_generic() use m_uiotombuf(). 829 * 830 * sosend_copyin() accepts a uio and prepares an mbuf chain holding part or 831 * all of the data referenced by the uio. If desired, it uses zero-copy. 832 * *space will be updated to reflect data copied in. 833 * 834 * NB: If atomic I/O is requested, the caller must already have checked that 835 * space can hold resid bytes. 836 * 837 * NB: In the event of an error, the caller may need to free the partial 838 * chain pointed to by *mpp. The contents of both *uio and *space may be 839 * modified even in the case of an error. 840 */ 841 static int 842 sosend_copyin(struct uio *uio, struct mbuf **retmp, int atomic, long *space, 843 int flags) 844 { 845 struct mbuf *m, **mp, *top; 846 long len, resid; 847 int error; 848 #ifdef ZERO_COPY_SOCKETS 849 int cow_send; 850 #endif 851 852 *retmp = top = NULL; 853 mp = ⊤ 854 len = 0; 855 resid = uio->uio_resid; 856 error = 0; 857 do { 858 #ifdef ZERO_COPY_SOCKETS 859 cow_send = 0; 860 #endif /* ZERO_COPY_SOCKETS */ 861 if (resid >= MINCLSIZE) { 862 #ifdef ZERO_COPY_SOCKETS 863 if (top == NULL) { 864 m = m_gethdr(M_WAITOK, MT_DATA); 865 m->m_pkthdr.len = 0; 866 m->m_pkthdr.rcvif = NULL; 867 } else 868 m = m_get(M_WAITOK, MT_DATA); 869 if (so_zero_copy_send && 870 resid>=PAGE_SIZE && 871 *space>=PAGE_SIZE && 872 uio->uio_iov->iov_len>=PAGE_SIZE) { 873 so_zerocp_stats.size_ok++; 874 so_zerocp_stats.align_ok++; 875 cow_send = socow_setup(m, uio); 876 len = cow_send; 877 } 878 if (!cow_send) { 879 m_clget(m, M_WAITOK); 880 len = min(min(MCLBYTES, resid), *space); 881 } 882 #else /* ZERO_COPY_SOCKETS */ 883 if (top == NULL) { 884 m = m_getcl(M_WAIT, MT_DATA, M_PKTHDR); 885 m->m_pkthdr.len = 0; 886 m->m_pkthdr.rcvif = NULL; 887 } else 888 m = m_getcl(M_WAIT, MT_DATA, 0); 889 len = min(min(MCLBYTES, resid), *space); 890 #endif /* ZERO_COPY_SOCKETS */ 891 } else { 892 if (top == NULL) { 893 m = m_gethdr(M_WAIT, MT_DATA); 894 m->m_pkthdr.len = 0; 895 m->m_pkthdr.rcvif = NULL; 896 897 len = min(min(MHLEN, resid), *space); 898 /* 899 * For datagram protocols, leave room 900 * for protocol headers in first mbuf. 901 */ 902 if (atomic && m && len < MHLEN) 903 MH_ALIGN(m, len); 904 } else { 905 m = m_get(M_WAIT, MT_DATA); 906 len = min(min(MLEN, resid), *space); 907 } 908 } 909 if (m == NULL) { 910 error = ENOBUFS; 911 goto out; 912 } 913 914 *space -= len; 915 #ifdef ZERO_COPY_SOCKETS 916 if (cow_send) 917 error = 0; 918 else 919 #endif /* ZERO_COPY_SOCKETS */ 920 error = uiomove(mtod(m, void *), (int)len, uio); 921 resid = uio->uio_resid; 922 m->m_len = len; 923 *mp = m; 924 top->m_pkthdr.len += len; 925 if (error) 926 goto out; 927 mp = &m->m_next; 928 if (resid <= 0) { 929 if (flags & MSG_EOR) 930 top->m_flags |= M_EOR; 931 break; 932 } 933 } while (*space > 0 && atomic); 934 out: 935 *retmp = top; 936 return (error); 937 } 938 #endif /*ZERO_COPY_SOCKETS*/ 939 940 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT) 941 942 int 943 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, 944 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 945 { 946 long space, resid; 947 int clen = 0, error, dontroute; 948 #ifdef ZERO_COPY_SOCKETS 949 int atomic = sosendallatonce(so) || top; 950 #endif 951 952 KASSERT(so->so_type == SOCK_DGRAM, ("sodgram_send: !SOCK_DGRAM")); 953 KASSERT(so->so_proto->pr_flags & PR_ATOMIC, 954 ("sodgram_send: !PR_ATOMIC")); 955 956 if (uio != NULL) 957 resid = uio->uio_resid; 958 else 959 resid = top->m_pkthdr.len; 960 /* 961 * In theory resid should be unsigned. However, space must be 962 * signed, as it might be less than 0 if we over-committed, and we 963 * must use a signed comparison of space and resid. On the other 964 * hand, a negative resid causes us to loop sending 0-length 965 * segments to the protocol. 966 * 967 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 968 * type sockets since that's an error. 969 */ 970 if (resid < 0) { 971 error = EINVAL; 972 goto out; 973 } 974 975 dontroute = 976 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0; 977 if (td != NULL) 978 td->td_ru.ru_msgsnd++; 979 if (control != NULL) 980 clen = control->m_len; 981 982 SOCKBUF_LOCK(&so->so_snd); 983 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 984 SOCKBUF_UNLOCK(&so->so_snd); 985 error = EPIPE; 986 goto out; 987 } 988 if (so->so_error) { 989 error = so->so_error; 990 so->so_error = 0; 991 SOCKBUF_UNLOCK(&so->so_snd); 992 goto out; 993 } 994 if ((so->so_state & SS_ISCONNECTED) == 0) { 995 /* 996 * `sendto' and `sendmsg' is allowed on a connection-based 997 * socket if it supports implied connect. Return ENOTCONN if 998 * not connected and no address is supplied. 999 */ 1000 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1001 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1002 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1003 !(resid == 0 && clen != 0)) { 1004 SOCKBUF_UNLOCK(&so->so_snd); 1005 error = ENOTCONN; 1006 goto out; 1007 } 1008 } else if (addr == NULL) { 1009 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1010 error = ENOTCONN; 1011 else 1012 error = EDESTADDRREQ; 1013 SOCKBUF_UNLOCK(&so->so_snd); 1014 goto out; 1015 } 1016 } 1017 1018 /* 1019 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a 1020 * problem and need fixing. 1021 */ 1022 space = sbspace(&so->so_snd); 1023 if (flags & MSG_OOB) 1024 space += 1024; 1025 space -= clen; 1026 SOCKBUF_UNLOCK(&so->so_snd); 1027 if (resid > space) { 1028 error = EMSGSIZE; 1029 goto out; 1030 } 1031 if (uio == NULL) { 1032 resid = 0; 1033 if (flags & MSG_EOR) 1034 top->m_flags |= M_EOR; 1035 } else { 1036 #ifdef ZERO_COPY_SOCKETS 1037 error = sosend_copyin(uio, &top, atomic, &space, flags); 1038 if (error) 1039 goto out; 1040 #else 1041 /* 1042 * Copy the data from userland into a mbuf chain. 1043 * If no data is to be copied in, a single empty mbuf 1044 * is returned. 1045 */ 1046 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr, 1047 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0))); 1048 if (top == NULL) { 1049 error = EFAULT; /* only possible error */ 1050 goto out; 1051 } 1052 space -= resid - uio->uio_resid; 1053 #endif 1054 resid = uio->uio_resid; 1055 } 1056 KASSERT(resid == 0, ("sosend_dgram: resid != 0")); 1057 /* 1058 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock 1059 * than with. 1060 */ 1061 if (dontroute) { 1062 SOCK_LOCK(so); 1063 so->so_options |= SO_DONTROUTE; 1064 SOCK_UNLOCK(so); 1065 } 1066 /* 1067 * XXX all the SBS_CANTSENDMORE checks previously done could be out 1068 * of date. We could have recieved a reset packet in an interrupt or 1069 * maybe we slept while doing page faults in uiomove() etc. We could 1070 * probably recheck again inside the locking protection here, but 1071 * there are probably other places that this also happens. We must 1072 * rethink this. 1073 */ 1074 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1075 (flags & MSG_OOB) ? PRUS_OOB : 1076 /* 1077 * If the user set MSG_EOF, the protocol understands this flag and 1078 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND. 1079 */ 1080 ((flags & MSG_EOF) && 1081 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1082 (resid <= 0)) ? 1083 PRUS_EOF : 1084 /* If there is more to send set PRUS_MORETOCOME */ 1085 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1086 top, addr, control, td); 1087 if (dontroute) { 1088 SOCK_LOCK(so); 1089 so->so_options &= ~SO_DONTROUTE; 1090 SOCK_UNLOCK(so); 1091 } 1092 clen = 0; 1093 control = NULL; 1094 top = NULL; 1095 out: 1096 if (top != NULL) 1097 m_freem(top); 1098 if (control != NULL) 1099 m_freem(control); 1100 return (error); 1101 } 1102 1103 /* 1104 * Send on a socket. If send must go all at once and message is larger than 1105 * send buffering, then hard error. Lock against other senders. If must go 1106 * all at once and not enough room now, then inform user that this would 1107 * block and do nothing. Otherwise, if nonblocking, send as much as 1108 * possible. The data to be sent is described by "uio" if nonzero, otherwise 1109 * by the mbuf chain "top" (which must be null if uio is not). Data provided 1110 * in mbuf chain must be small enough to send all at once. 1111 * 1112 * Returns nonzero on error, timeout or signal; callers must check for short 1113 * counts if EINTR/ERESTART are returned. Data and control buffers are freed 1114 * on return. 1115 */ 1116 int 1117 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio, 1118 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1119 { 1120 long space, resid; 1121 int clen = 0, error, dontroute; 1122 int atomic = sosendallatonce(so) || top; 1123 1124 if (uio != NULL) 1125 resid = uio->uio_resid; 1126 else 1127 resid = top->m_pkthdr.len; 1128 /* 1129 * In theory resid should be unsigned. However, space must be 1130 * signed, as it might be less than 0 if we over-committed, and we 1131 * must use a signed comparison of space and resid. On the other 1132 * hand, a negative resid causes us to loop sending 0-length 1133 * segments to the protocol. 1134 * 1135 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 1136 * type sockets since that's an error. 1137 */ 1138 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 1139 error = EINVAL; 1140 goto out; 1141 } 1142 1143 dontroute = 1144 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 1145 (so->so_proto->pr_flags & PR_ATOMIC); 1146 if (td != NULL) 1147 td->td_ru.ru_msgsnd++; 1148 if (control != NULL) 1149 clen = control->m_len; 1150 1151 error = sblock(&so->so_snd, SBLOCKWAIT(flags)); 1152 if (error) 1153 goto out; 1154 1155 restart: 1156 do { 1157 SOCKBUF_LOCK(&so->so_snd); 1158 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1159 SOCKBUF_UNLOCK(&so->so_snd); 1160 error = EPIPE; 1161 goto release; 1162 } 1163 if (so->so_error) { 1164 error = so->so_error; 1165 so->so_error = 0; 1166 SOCKBUF_UNLOCK(&so->so_snd); 1167 goto release; 1168 } 1169 if ((so->so_state & SS_ISCONNECTED) == 0) { 1170 /* 1171 * `sendto' and `sendmsg' is allowed on a connection- 1172 * based socket if it supports implied connect. 1173 * Return ENOTCONN if not connected and no address is 1174 * supplied. 1175 */ 1176 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1177 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1178 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1179 !(resid == 0 && clen != 0)) { 1180 SOCKBUF_UNLOCK(&so->so_snd); 1181 error = ENOTCONN; 1182 goto release; 1183 } 1184 } else if (addr == NULL) { 1185 SOCKBUF_UNLOCK(&so->so_snd); 1186 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1187 error = ENOTCONN; 1188 else 1189 error = EDESTADDRREQ; 1190 goto release; 1191 } 1192 } 1193 space = sbspace(&so->so_snd); 1194 if (flags & MSG_OOB) 1195 space += 1024; 1196 if ((atomic && resid > so->so_snd.sb_hiwat) || 1197 clen > so->so_snd.sb_hiwat) { 1198 SOCKBUF_UNLOCK(&so->so_snd); 1199 error = EMSGSIZE; 1200 goto release; 1201 } 1202 if (space < resid + clen && 1203 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 1204 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) { 1205 SOCKBUF_UNLOCK(&so->so_snd); 1206 error = EWOULDBLOCK; 1207 goto release; 1208 } 1209 error = sbwait(&so->so_snd); 1210 SOCKBUF_UNLOCK(&so->so_snd); 1211 if (error) 1212 goto release; 1213 goto restart; 1214 } 1215 SOCKBUF_UNLOCK(&so->so_snd); 1216 space -= clen; 1217 do { 1218 if (uio == NULL) { 1219 resid = 0; 1220 if (flags & MSG_EOR) 1221 top->m_flags |= M_EOR; 1222 } else { 1223 #ifdef ZERO_COPY_SOCKETS 1224 error = sosend_copyin(uio, &top, atomic, 1225 &space, flags); 1226 if (error != 0) 1227 goto release; 1228 #else 1229 /* 1230 * Copy the data from userland into a mbuf 1231 * chain. If no data is to be copied in, 1232 * a single empty mbuf is returned. 1233 */ 1234 top = m_uiotombuf(uio, M_WAITOK, space, 1235 (atomic ? max_hdr : 0), 1236 (atomic ? M_PKTHDR : 0) | 1237 ((flags & MSG_EOR) ? M_EOR : 0)); 1238 if (top == NULL) { 1239 error = EFAULT; /* only possible error */ 1240 goto release; 1241 } 1242 space -= resid - uio->uio_resid; 1243 #endif 1244 resid = uio->uio_resid; 1245 } 1246 if (dontroute) { 1247 SOCK_LOCK(so); 1248 so->so_options |= SO_DONTROUTE; 1249 SOCK_UNLOCK(so); 1250 } 1251 /* 1252 * XXX all the SBS_CANTSENDMORE checks previously 1253 * done could be out of date. We could have recieved 1254 * a reset packet in an interrupt or maybe we slept 1255 * while doing page faults in uiomove() etc. We 1256 * could probably recheck again inside the locking 1257 * protection here, but there are probably other 1258 * places that this also happens. We must rethink 1259 * this. 1260 */ 1261 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1262 (flags & MSG_OOB) ? PRUS_OOB : 1263 /* 1264 * If the user set MSG_EOF, the protocol understands 1265 * this flag and nothing left to send then use 1266 * PRU_SEND_EOF instead of PRU_SEND. 1267 */ 1268 ((flags & MSG_EOF) && 1269 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1270 (resid <= 0)) ? 1271 PRUS_EOF : 1272 /* If there is more to send set PRUS_MORETOCOME. */ 1273 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1274 top, addr, control, td); 1275 if (dontroute) { 1276 SOCK_LOCK(so); 1277 so->so_options &= ~SO_DONTROUTE; 1278 SOCK_UNLOCK(so); 1279 } 1280 clen = 0; 1281 control = NULL; 1282 top = NULL; 1283 if (error) 1284 goto release; 1285 } while (resid && space > 0); 1286 } while (resid); 1287 1288 release: 1289 sbunlock(&so->so_snd); 1290 out: 1291 if (top != NULL) 1292 m_freem(top); 1293 if (control != NULL) 1294 m_freem(control); 1295 return (error); 1296 } 1297 1298 int 1299 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, 1300 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1301 { 1302 int error; 1303 1304 CURVNET_SET(so->so_vnet); 1305 error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, top, 1306 control, flags, td); 1307 CURVNET_RESTORE(); 1308 return (error); 1309 } 1310 1311 /* 1312 * The part of soreceive() that implements reading non-inline out-of-band 1313 * data from a socket. For more complete comments, see soreceive(), from 1314 * which this code originated. 1315 * 1316 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is 1317 * unable to return an mbuf chain to the caller. 1318 */ 1319 static int 1320 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags) 1321 { 1322 struct protosw *pr = so->so_proto; 1323 struct mbuf *m; 1324 int error; 1325 1326 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); 1327 1328 m = m_get(M_WAIT, MT_DATA); 1329 error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK); 1330 if (error) 1331 goto bad; 1332 do { 1333 #ifdef ZERO_COPY_SOCKETS 1334 if (so_zero_copy_receive) { 1335 int disposable; 1336 1337 if ((m->m_flags & M_EXT) 1338 && (m->m_ext.ext_type == EXT_DISPOSABLE)) 1339 disposable = 1; 1340 else 1341 disposable = 0; 1342 1343 error = uiomoveco(mtod(m, void *), 1344 min(uio->uio_resid, m->m_len), 1345 uio, disposable); 1346 } else 1347 #endif /* ZERO_COPY_SOCKETS */ 1348 error = uiomove(mtod(m, void *), 1349 (int) min(uio->uio_resid, m->m_len), uio); 1350 m = m_free(m); 1351 } while (uio->uio_resid && error == 0 && m); 1352 bad: 1353 if (m != NULL) 1354 m_freem(m); 1355 return (error); 1356 } 1357 1358 /* 1359 * Following replacement or removal of the first mbuf on the first mbuf chain 1360 * of a socket buffer, push necessary state changes back into the socket 1361 * buffer so that other consumers see the values consistently. 'nextrecord' 1362 * is the callers locally stored value of the original value of 1363 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. 1364 * NOTE: 'nextrecord' may be NULL. 1365 */ 1366 static __inline void 1367 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) 1368 { 1369 1370 SOCKBUF_LOCK_ASSERT(sb); 1371 /* 1372 * First, update for the new value of nextrecord. If necessary, make 1373 * it the first record. 1374 */ 1375 if (sb->sb_mb != NULL) 1376 sb->sb_mb->m_nextpkt = nextrecord; 1377 else 1378 sb->sb_mb = nextrecord; 1379 1380 /* 1381 * Now update any dependent socket buffer fields to reflect the new 1382 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the 1383 * addition of a second clause that takes care of the case where 1384 * sb_mb has been updated, but remains the last record. 1385 */ 1386 if (sb->sb_mb == NULL) { 1387 sb->sb_mbtail = NULL; 1388 sb->sb_lastrecord = NULL; 1389 } else if (sb->sb_mb->m_nextpkt == NULL) 1390 sb->sb_lastrecord = sb->sb_mb; 1391 } 1392 1393 1394 /* 1395 * Implement receive operations on a socket. We depend on the way that 1396 * records are added to the sockbuf by sbappend. In particular, each record 1397 * (mbufs linked through m_next) must begin with an address if the protocol 1398 * so specifies, followed by an optional mbuf or mbufs containing ancillary 1399 * data, and then zero or more mbufs of data. In order to allow parallelism 1400 * between network receive and copying to user space, as well as avoid 1401 * sleeping with a mutex held, we release the socket buffer mutex during the 1402 * user space copy. Although the sockbuf is locked, new data may still be 1403 * appended, and thus we must maintain consistency of the sockbuf during that 1404 * time. 1405 * 1406 * The caller may receive the data as a single mbuf chain by supplying an 1407 * mbuf **mp0 for use in returning the chain. The uio is then used only for 1408 * the count in uio_resid. 1409 */ 1410 int 1411 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio, 1412 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1413 { 1414 struct mbuf *m, **mp; 1415 int flags, len, error, offset; 1416 struct protosw *pr = so->so_proto; 1417 struct mbuf *nextrecord; 1418 int moff, type = 0; 1419 int orig_resid = uio->uio_resid; 1420 1421 mp = mp0; 1422 if (psa != NULL) 1423 *psa = NULL; 1424 if (controlp != NULL) 1425 *controlp = NULL; 1426 if (flagsp != NULL) 1427 flags = *flagsp &~ MSG_EOR; 1428 else 1429 flags = 0; 1430 if (flags & MSG_OOB) 1431 return (soreceive_rcvoob(so, uio, flags)); 1432 if (mp != NULL) 1433 *mp = NULL; 1434 if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING) 1435 && uio->uio_resid) 1436 (*pr->pr_usrreqs->pru_rcvd)(so, 0); 1437 1438 error = sblock(&so->so_rcv, SBLOCKWAIT(flags)); 1439 if (error) 1440 return (error); 1441 1442 restart: 1443 SOCKBUF_LOCK(&so->so_rcv); 1444 m = so->so_rcv.sb_mb; 1445 /* 1446 * If we have less data than requested, block awaiting more (subject 1447 * to any timeout) if: 1448 * 1. the current count is less than the low water mark, or 1449 * 2. MSG_WAITALL is set, and it is possible to do the entire 1450 * receive operation at once if we block (resid <= hiwat). 1451 * 3. MSG_DONTWAIT is not set 1452 * If MSG_WAITALL is set but resid is larger than the receive buffer, 1453 * we have to do the receive in sections, and thus risk returning a 1454 * short count if a timeout or signal occurs after we start. 1455 */ 1456 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 1457 so->so_rcv.sb_cc < uio->uio_resid) && 1458 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat || 1459 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) && 1460 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 1461 KASSERT(m != NULL || !so->so_rcv.sb_cc, 1462 ("receive: m == %p so->so_rcv.sb_cc == %u", 1463 m, so->so_rcv.sb_cc)); 1464 if (so->so_error) { 1465 if (m != NULL) 1466 goto dontblock; 1467 error = so->so_error; 1468 if ((flags & MSG_PEEK) == 0) 1469 so->so_error = 0; 1470 SOCKBUF_UNLOCK(&so->so_rcv); 1471 goto release; 1472 } 1473 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1474 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 1475 if (m == NULL) { 1476 SOCKBUF_UNLOCK(&so->so_rcv); 1477 goto release; 1478 } else 1479 goto dontblock; 1480 } 1481 for (; m != NULL; m = m->m_next) 1482 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 1483 m = so->so_rcv.sb_mb; 1484 goto dontblock; 1485 } 1486 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 1487 (so->so_proto->pr_flags & PR_CONNREQUIRED)) { 1488 SOCKBUF_UNLOCK(&so->so_rcv); 1489 error = ENOTCONN; 1490 goto release; 1491 } 1492 if (uio->uio_resid == 0) { 1493 SOCKBUF_UNLOCK(&so->so_rcv); 1494 goto release; 1495 } 1496 if ((so->so_state & SS_NBIO) || 1497 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 1498 SOCKBUF_UNLOCK(&so->so_rcv); 1499 error = EWOULDBLOCK; 1500 goto release; 1501 } 1502 SBLASTRECORDCHK(&so->so_rcv); 1503 SBLASTMBUFCHK(&so->so_rcv); 1504 error = sbwait(&so->so_rcv); 1505 SOCKBUF_UNLOCK(&so->so_rcv); 1506 if (error) 1507 goto release; 1508 goto restart; 1509 } 1510 dontblock: 1511 /* 1512 * From this point onward, we maintain 'nextrecord' as a cache of the 1513 * pointer to the next record in the socket buffer. We must keep the 1514 * various socket buffer pointers and local stack versions of the 1515 * pointers in sync, pushing out modifications before dropping the 1516 * socket buffer mutex, and re-reading them when picking it up. 1517 * 1518 * Otherwise, we will race with the network stack appending new data 1519 * or records onto the socket buffer by using inconsistent/stale 1520 * versions of the field, possibly resulting in socket buffer 1521 * corruption. 1522 * 1523 * By holding the high-level sblock(), we prevent simultaneous 1524 * readers from pulling off the front of the socket buffer. 1525 */ 1526 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1527 if (uio->uio_td) 1528 uio->uio_td->td_ru.ru_msgrcv++; 1529 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); 1530 SBLASTRECORDCHK(&so->so_rcv); 1531 SBLASTMBUFCHK(&so->so_rcv); 1532 nextrecord = m->m_nextpkt; 1533 if (pr->pr_flags & PR_ADDR) { 1534 KASSERT(m->m_type == MT_SONAME, 1535 ("m->m_type == %d", m->m_type)); 1536 orig_resid = 0; 1537 if (psa != NULL) 1538 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 1539 M_NOWAIT); 1540 if (flags & MSG_PEEK) { 1541 m = m->m_next; 1542 } else { 1543 sbfree(&so->so_rcv, m); 1544 so->so_rcv.sb_mb = m_free(m); 1545 m = so->so_rcv.sb_mb; 1546 sockbuf_pushsync(&so->so_rcv, nextrecord); 1547 } 1548 } 1549 1550 /* 1551 * Process one or more MT_CONTROL mbufs present before any data mbufs 1552 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 1553 * just copy the data; if !MSG_PEEK, we call into the protocol to 1554 * perform externalization (or freeing if controlp == NULL). 1555 */ 1556 if (m != NULL && m->m_type == MT_CONTROL) { 1557 struct mbuf *cm = NULL, *cmn; 1558 struct mbuf **cme = &cm; 1559 1560 do { 1561 if (flags & MSG_PEEK) { 1562 if (controlp != NULL) { 1563 *controlp = m_copy(m, 0, m->m_len); 1564 controlp = &(*controlp)->m_next; 1565 } 1566 m = m->m_next; 1567 } else { 1568 sbfree(&so->so_rcv, m); 1569 so->so_rcv.sb_mb = m->m_next; 1570 m->m_next = NULL; 1571 *cme = m; 1572 cme = &(*cme)->m_next; 1573 m = so->so_rcv.sb_mb; 1574 } 1575 } while (m != NULL && m->m_type == MT_CONTROL); 1576 if ((flags & MSG_PEEK) == 0) 1577 sockbuf_pushsync(&so->so_rcv, nextrecord); 1578 while (cm != NULL) { 1579 cmn = cm->m_next; 1580 cm->m_next = NULL; 1581 if (pr->pr_domain->dom_externalize != NULL) { 1582 SOCKBUF_UNLOCK(&so->so_rcv); 1583 error = (*pr->pr_domain->dom_externalize) 1584 (cm, controlp); 1585 SOCKBUF_LOCK(&so->so_rcv); 1586 } else if (controlp != NULL) 1587 *controlp = cm; 1588 else 1589 m_freem(cm); 1590 if (controlp != NULL) { 1591 orig_resid = 0; 1592 while (*controlp != NULL) 1593 controlp = &(*controlp)->m_next; 1594 } 1595 cm = cmn; 1596 } 1597 if (m != NULL) 1598 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 1599 else 1600 nextrecord = so->so_rcv.sb_mb; 1601 orig_resid = 0; 1602 } 1603 if (m != NULL) { 1604 if ((flags & MSG_PEEK) == 0) { 1605 KASSERT(m->m_nextpkt == nextrecord, 1606 ("soreceive: post-control, nextrecord !sync")); 1607 if (nextrecord == NULL) { 1608 KASSERT(so->so_rcv.sb_mb == m, 1609 ("soreceive: post-control, sb_mb!=m")); 1610 KASSERT(so->so_rcv.sb_lastrecord == m, 1611 ("soreceive: post-control, lastrecord!=m")); 1612 } 1613 } 1614 type = m->m_type; 1615 if (type == MT_OOBDATA) 1616 flags |= MSG_OOB; 1617 } else { 1618 if ((flags & MSG_PEEK) == 0) { 1619 KASSERT(so->so_rcv.sb_mb == nextrecord, 1620 ("soreceive: sb_mb != nextrecord")); 1621 if (so->so_rcv.sb_mb == NULL) { 1622 KASSERT(so->so_rcv.sb_lastrecord == NULL, 1623 ("soreceive: sb_lastercord != NULL")); 1624 } 1625 } 1626 } 1627 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1628 SBLASTRECORDCHK(&so->so_rcv); 1629 SBLASTMBUFCHK(&so->so_rcv); 1630 1631 /* 1632 * Now continue to read any data mbufs off of the head of the socket 1633 * buffer until the read request is satisfied. Note that 'type' is 1634 * used to store the type of any mbuf reads that have happened so far 1635 * such that soreceive() can stop reading if the type changes, which 1636 * causes soreceive() to return only one of regular data and inline 1637 * out-of-band data in a single socket receive operation. 1638 */ 1639 moff = 0; 1640 offset = 0; 1641 while (m != NULL && uio->uio_resid > 0 && error == 0) { 1642 /* 1643 * If the type of mbuf has changed since the last mbuf 1644 * examined ('type'), end the receive operation. 1645 */ 1646 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1647 if (m->m_type == MT_OOBDATA) { 1648 if (type != MT_OOBDATA) 1649 break; 1650 } else if (type == MT_OOBDATA) 1651 break; 1652 else 1653 KASSERT(m->m_type == MT_DATA, 1654 ("m->m_type == %d", m->m_type)); 1655 so->so_rcv.sb_state &= ~SBS_RCVATMARK; 1656 len = uio->uio_resid; 1657 if (so->so_oobmark && len > so->so_oobmark - offset) 1658 len = so->so_oobmark - offset; 1659 if (len > m->m_len - moff) 1660 len = m->m_len - moff; 1661 /* 1662 * If mp is set, just pass back the mbufs. Otherwise copy 1663 * them out via the uio, then free. Sockbuf must be 1664 * consistent here (points to current mbuf, it points to next 1665 * record) when we drop priority; we must note any additions 1666 * to the sockbuf when we block interrupts again. 1667 */ 1668 if (mp == NULL) { 1669 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1670 SBLASTRECORDCHK(&so->so_rcv); 1671 SBLASTMBUFCHK(&so->so_rcv); 1672 SOCKBUF_UNLOCK(&so->so_rcv); 1673 #ifdef ZERO_COPY_SOCKETS 1674 if (so_zero_copy_receive) { 1675 int disposable; 1676 1677 if ((m->m_flags & M_EXT) 1678 && (m->m_ext.ext_type == EXT_DISPOSABLE)) 1679 disposable = 1; 1680 else 1681 disposable = 0; 1682 1683 error = uiomoveco(mtod(m, char *) + moff, 1684 (int)len, uio, 1685 disposable); 1686 } else 1687 #endif /* ZERO_COPY_SOCKETS */ 1688 error = uiomove(mtod(m, char *) + moff, (int)len, uio); 1689 SOCKBUF_LOCK(&so->so_rcv); 1690 if (error) { 1691 /* 1692 * The MT_SONAME mbuf has already been removed 1693 * from the record, so it is necessary to 1694 * remove the data mbufs, if any, to preserve 1695 * the invariant in the case of PR_ADDR that 1696 * requires MT_SONAME mbufs at the head of 1697 * each record. 1698 */ 1699 if (m && pr->pr_flags & PR_ATOMIC && 1700 ((flags & MSG_PEEK) == 0)) 1701 (void)sbdroprecord_locked(&so->so_rcv); 1702 SOCKBUF_UNLOCK(&so->so_rcv); 1703 goto release; 1704 } 1705 } else 1706 uio->uio_resid -= len; 1707 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1708 if (len == m->m_len - moff) { 1709 if (m->m_flags & M_EOR) 1710 flags |= MSG_EOR; 1711 if (flags & MSG_PEEK) { 1712 m = m->m_next; 1713 moff = 0; 1714 } else { 1715 nextrecord = m->m_nextpkt; 1716 sbfree(&so->so_rcv, m); 1717 if (mp != NULL) { 1718 *mp = m; 1719 mp = &m->m_next; 1720 so->so_rcv.sb_mb = m = m->m_next; 1721 *mp = NULL; 1722 } else { 1723 so->so_rcv.sb_mb = m_free(m); 1724 m = so->so_rcv.sb_mb; 1725 } 1726 sockbuf_pushsync(&so->so_rcv, nextrecord); 1727 SBLASTRECORDCHK(&so->so_rcv); 1728 SBLASTMBUFCHK(&so->so_rcv); 1729 } 1730 } else { 1731 if (flags & MSG_PEEK) 1732 moff += len; 1733 else { 1734 if (mp != NULL) { 1735 int copy_flag; 1736 1737 if (flags & MSG_DONTWAIT) 1738 copy_flag = M_DONTWAIT; 1739 else 1740 copy_flag = M_WAIT; 1741 if (copy_flag == M_WAIT) 1742 SOCKBUF_UNLOCK(&so->so_rcv); 1743 *mp = m_copym(m, 0, len, copy_flag); 1744 if (copy_flag == M_WAIT) 1745 SOCKBUF_LOCK(&so->so_rcv); 1746 if (*mp == NULL) { 1747 /* 1748 * m_copym() couldn't 1749 * allocate an mbuf. Adjust 1750 * uio_resid back (it was 1751 * adjusted down by len 1752 * bytes, which we didn't end 1753 * up "copying" over). 1754 */ 1755 uio->uio_resid += len; 1756 break; 1757 } 1758 } 1759 m->m_data += len; 1760 m->m_len -= len; 1761 so->so_rcv.sb_cc -= len; 1762 } 1763 } 1764 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1765 if (so->so_oobmark) { 1766 if ((flags & MSG_PEEK) == 0) { 1767 so->so_oobmark -= len; 1768 if (so->so_oobmark == 0) { 1769 so->so_rcv.sb_state |= SBS_RCVATMARK; 1770 break; 1771 } 1772 } else { 1773 offset += len; 1774 if (offset == so->so_oobmark) 1775 break; 1776 } 1777 } 1778 if (flags & MSG_EOR) 1779 break; 1780 /* 1781 * If the MSG_WAITALL flag is set (for non-atomic socket), we 1782 * must not quit until "uio->uio_resid == 0" or an error 1783 * termination. If a signal/timeout occurs, return with a 1784 * short count but without error. Keep sockbuf locked 1785 * against other readers. 1786 */ 1787 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 1788 !sosendallatonce(so) && nextrecord == NULL) { 1789 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1790 if (so->so_error || so->so_rcv.sb_state & SBS_CANTRCVMORE) 1791 break; 1792 /* 1793 * Notify the protocol that some data has been 1794 * drained before blocking. 1795 */ 1796 if (pr->pr_flags & PR_WANTRCVD) { 1797 SOCKBUF_UNLOCK(&so->so_rcv); 1798 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 1799 SOCKBUF_LOCK(&so->so_rcv); 1800 } 1801 SBLASTRECORDCHK(&so->so_rcv); 1802 SBLASTMBUFCHK(&so->so_rcv); 1803 error = sbwait(&so->so_rcv); 1804 if (error) { 1805 SOCKBUF_UNLOCK(&so->so_rcv); 1806 goto release; 1807 } 1808 m = so->so_rcv.sb_mb; 1809 if (m != NULL) 1810 nextrecord = m->m_nextpkt; 1811 } 1812 } 1813 1814 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1815 if (m != NULL && pr->pr_flags & PR_ATOMIC) { 1816 flags |= MSG_TRUNC; 1817 if ((flags & MSG_PEEK) == 0) 1818 (void) sbdroprecord_locked(&so->so_rcv); 1819 } 1820 if ((flags & MSG_PEEK) == 0) { 1821 if (m == NULL) { 1822 /* 1823 * First part is an inline SB_EMPTY_FIXUP(). Second 1824 * part makes sure sb_lastrecord is up-to-date if 1825 * there is still data in the socket buffer. 1826 */ 1827 so->so_rcv.sb_mb = nextrecord; 1828 if (so->so_rcv.sb_mb == NULL) { 1829 so->so_rcv.sb_mbtail = NULL; 1830 so->so_rcv.sb_lastrecord = NULL; 1831 } else if (nextrecord->m_nextpkt == NULL) 1832 so->so_rcv.sb_lastrecord = nextrecord; 1833 } 1834 SBLASTRECORDCHK(&so->so_rcv); 1835 SBLASTMBUFCHK(&so->so_rcv); 1836 /* 1837 * If soreceive() is being done from the socket callback, 1838 * then don't need to generate ACK to peer to update window, 1839 * since ACK will be generated on return to TCP. 1840 */ 1841 if (!(flags & MSG_SOCALLBCK) && 1842 (pr->pr_flags & PR_WANTRCVD)) { 1843 SOCKBUF_UNLOCK(&so->so_rcv); 1844 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 1845 SOCKBUF_LOCK(&so->so_rcv); 1846 } 1847 } 1848 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1849 if (orig_resid == uio->uio_resid && orig_resid && 1850 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { 1851 SOCKBUF_UNLOCK(&so->so_rcv); 1852 goto restart; 1853 } 1854 SOCKBUF_UNLOCK(&so->so_rcv); 1855 1856 if (flagsp != NULL) 1857 *flagsp |= flags; 1858 release: 1859 sbunlock(&so->so_rcv); 1860 return (error); 1861 } 1862 1863 /* 1864 * Optimized version of soreceive() for simple datagram cases from userspace. 1865 * Unlike in the stream case, we're able to drop a datagram if copyout() 1866 * fails, and because we handle datagrams atomically, we don't need to use a 1867 * sleep lock to prevent I/O interlacing. 1868 */ 1869 int 1870 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio, 1871 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1872 { 1873 struct mbuf *m, *m2; 1874 int flags, len, error; 1875 struct protosw *pr = so->so_proto; 1876 struct mbuf *nextrecord; 1877 1878 if (psa != NULL) 1879 *psa = NULL; 1880 if (controlp != NULL) 1881 *controlp = NULL; 1882 if (flagsp != NULL) 1883 flags = *flagsp &~ MSG_EOR; 1884 else 1885 flags = 0; 1886 1887 /* 1888 * For any complicated cases, fall back to the full 1889 * soreceive_generic(). 1890 */ 1891 if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB)) 1892 return (soreceive_generic(so, psa, uio, mp0, controlp, 1893 flagsp)); 1894 1895 /* 1896 * Enforce restrictions on use. 1897 */ 1898 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0, 1899 ("soreceive_dgram: wantrcvd")); 1900 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic")); 1901 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0, 1902 ("soreceive_dgram: SBS_RCVATMARK")); 1903 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0, 1904 ("soreceive_dgram: P_CONNREQUIRED")); 1905 1906 /* 1907 * Loop blocking while waiting for a datagram. 1908 */ 1909 SOCKBUF_LOCK(&so->so_rcv); 1910 while ((m = so->so_rcv.sb_mb) == NULL) { 1911 KASSERT(so->so_rcv.sb_cc == 0, 1912 ("soreceive_dgram: sb_mb NULL but sb_cc %u", 1913 so->so_rcv.sb_cc)); 1914 if (so->so_error) { 1915 error = so->so_error; 1916 so->so_error = 0; 1917 SOCKBUF_UNLOCK(&so->so_rcv); 1918 return (error); 1919 } 1920 if (so->so_rcv.sb_state & SBS_CANTRCVMORE || 1921 uio->uio_resid == 0) { 1922 SOCKBUF_UNLOCK(&so->so_rcv); 1923 return (0); 1924 } 1925 if ((so->so_state & SS_NBIO) || 1926 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 1927 SOCKBUF_UNLOCK(&so->so_rcv); 1928 return (EWOULDBLOCK); 1929 } 1930 SBLASTRECORDCHK(&so->so_rcv); 1931 SBLASTMBUFCHK(&so->so_rcv); 1932 error = sbwait(&so->so_rcv); 1933 if (error) { 1934 SOCKBUF_UNLOCK(&so->so_rcv); 1935 return (error); 1936 } 1937 } 1938 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1939 1940 if (uio->uio_td) 1941 uio->uio_td->td_ru.ru_msgrcv++; 1942 SBLASTRECORDCHK(&so->so_rcv); 1943 SBLASTMBUFCHK(&so->so_rcv); 1944 nextrecord = m->m_nextpkt; 1945 if (nextrecord == NULL) { 1946 KASSERT(so->so_rcv.sb_lastrecord == m, 1947 ("soreceive_dgram: lastrecord != m")); 1948 } 1949 1950 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord, 1951 ("soreceive_dgram: m_nextpkt != nextrecord")); 1952 1953 /* 1954 * Pull 'm' and its chain off the front of the packet queue. 1955 */ 1956 so->so_rcv.sb_mb = NULL; 1957 sockbuf_pushsync(&so->so_rcv, nextrecord); 1958 1959 /* 1960 * Walk 'm's chain and free that many bytes from the socket buffer. 1961 */ 1962 for (m2 = m; m2 != NULL; m2 = m2->m_next) 1963 sbfree(&so->so_rcv, m2); 1964 1965 /* 1966 * Do a few last checks before we let go of the lock. 1967 */ 1968 SBLASTRECORDCHK(&so->so_rcv); 1969 SBLASTMBUFCHK(&so->so_rcv); 1970 SOCKBUF_UNLOCK(&so->so_rcv); 1971 1972 if (pr->pr_flags & PR_ADDR) { 1973 KASSERT(m->m_type == MT_SONAME, 1974 ("m->m_type == %d", m->m_type)); 1975 if (psa != NULL) 1976 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 1977 M_NOWAIT); 1978 m = m_free(m); 1979 } 1980 if (m == NULL) { 1981 /* XXXRW: Can this happen? */ 1982 return (0); 1983 } 1984 1985 /* 1986 * Packet to copyout() is now in 'm' and it is disconnected from the 1987 * queue. 1988 * 1989 * Process one or more MT_CONTROL mbufs present before any data mbufs 1990 * in the first mbuf chain on the socket buffer. We call into the 1991 * protocol to perform externalization (or freeing if controlp == 1992 * NULL). 1993 */ 1994 if (m->m_type == MT_CONTROL) { 1995 struct mbuf *cm = NULL, *cmn; 1996 struct mbuf **cme = &cm; 1997 1998 do { 1999 m2 = m->m_next; 2000 m->m_next = NULL; 2001 *cme = m; 2002 cme = &(*cme)->m_next; 2003 m = m2; 2004 } while (m != NULL && m->m_type == MT_CONTROL); 2005 while (cm != NULL) { 2006 cmn = cm->m_next; 2007 cm->m_next = NULL; 2008 if (pr->pr_domain->dom_externalize != NULL) { 2009 error = (*pr->pr_domain->dom_externalize) 2010 (cm, controlp); 2011 } else if (controlp != NULL) 2012 *controlp = cm; 2013 else 2014 m_freem(cm); 2015 if (controlp != NULL) { 2016 while (*controlp != NULL) 2017 controlp = &(*controlp)->m_next; 2018 } 2019 cm = cmn; 2020 } 2021 } 2022 KASSERT(m->m_type == MT_DATA, ("soreceive_dgram: !data")); 2023 2024 while (m != NULL && uio->uio_resid > 0) { 2025 len = uio->uio_resid; 2026 if (len > m->m_len) 2027 len = m->m_len; 2028 error = uiomove(mtod(m, char *), (int)len, uio); 2029 if (error) { 2030 m_freem(m); 2031 return (error); 2032 } 2033 m = m_free(m); 2034 } 2035 if (m != NULL) 2036 flags |= MSG_TRUNC; 2037 m_freem(m); 2038 if (flagsp != NULL) 2039 *flagsp |= flags; 2040 return (0); 2041 } 2042 2043 int 2044 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, 2045 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2046 { 2047 2048 return (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, mp0, 2049 controlp, flagsp)); 2050 } 2051 2052 int 2053 soshutdown(struct socket *so, int how) 2054 { 2055 struct protosw *pr = so->so_proto; 2056 int error; 2057 2058 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 2059 return (EINVAL); 2060 if (pr->pr_usrreqs->pru_flush != NULL) { 2061 (*pr->pr_usrreqs->pru_flush)(so, how); 2062 } 2063 if (how != SHUT_WR) 2064 sorflush(so); 2065 if (how != SHUT_RD) { 2066 CURVNET_SET(so->so_vnet); 2067 error = (*pr->pr_usrreqs->pru_shutdown)(so); 2068 CURVNET_RESTORE(); 2069 return (error); 2070 } 2071 return (0); 2072 } 2073 2074 void 2075 sorflush(struct socket *so) 2076 { 2077 struct sockbuf *sb = &so->so_rcv; 2078 struct protosw *pr = so->so_proto; 2079 struct sockbuf asb; 2080 2081 /* 2082 * In order to avoid calling dom_dispose with the socket buffer mutex 2083 * held, and in order to generally avoid holding the lock for a long 2084 * time, we make a copy of the socket buffer and clear the original 2085 * (except locks, state). The new socket buffer copy won't have 2086 * initialized locks so we can only call routines that won't use or 2087 * assert those locks. 2088 * 2089 * Dislodge threads currently blocked in receive and wait to acquire 2090 * a lock against other simultaneous readers before clearing the 2091 * socket buffer. Don't let our acquire be interrupted by a signal 2092 * despite any existing socket disposition on interruptable waiting. 2093 */ 2094 CURVNET_SET(so->so_vnet); 2095 socantrcvmore(so); 2096 (void) sblock(sb, SBL_WAIT | SBL_NOINTR); 2097 2098 /* 2099 * Invalidate/clear most of the sockbuf structure, but leave selinfo 2100 * and mutex data unchanged. 2101 */ 2102 SOCKBUF_LOCK(sb); 2103 bzero(&asb, offsetof(struct sockbuf, sb_startzero)); 2104 bcopy(&sb->sb_startzero, &asb.sb_startzero, 2105 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 2106 bzero(&sb->sb_startzero, 2107 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 2108 SOCKBUF_UNLOCK(sb); 2109 sbunlock(sb); 2110 2111 /* 2112 * Dispose of special rights and flush the socket buffer. Don't call 2113 * any unsafe routines (that rely on locks being initialized) on asb. 2114 */ 2115 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 2116 (*pr->pr_domain->dom_dispose)(asb.sb_mb); 2117 sbrelease_internal(&asb, so); 2118 CURVNET_RESTORE(); 2119 } 2120 2121 /* 2122 * Perhaps this routine, and sooptcopyout(), below, ought to come in an 2123 * additional variant to handle the case where the option value needs to be 2124 * some kind of integer, but not a specific size. In addition to their use 2125 * here, these functions are also called by the protocol-level pr_ctloutput() 2126 * routines. 2127 */ 2128 int 2129 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen) 2130 { 2131 size_t valsize; 2132 2133 /* 2134 * If the user gives us more than we wanted, we ignore it, but if we 2135 * don't get the minimum length the caller wants, we return EINVAL. 2136 * On success, sopt->sopt_valsize is set to however much we actually 2137 * retrieved. 2138 */ 2139 if ((valsize = sopt->sopt_valsize) < minlen) 2140 return EINVAL; 2141 if (valsize > len) 2142 sopt->sopt_valsize = valsize = len; 2143 2144 if (sopt->sopt_td != NULL) 2145 return (copyin(sopt->sopt_val, buf, valsize)); 2146 2147 bcopy(sopt->sopt_val, buf, valsize); 2148 return (0); 2149 } 2150 2151 /* 2152 * Kernel version of setsockopt(2). 2153 * 2154 * XXX: optlen is size_t, not socklen_t 2155 */ 2156 int 2157 so_setsockopt(struct socket *so, int level, int optname, void *optval, 2158 size_t optlen) 2159 { 2160 struct sockopt sopt; 2161 2162 sopt.sopt_level = level; 2163 sopt.sopt_name = optname; 2164 sopt.sopt_dir = SOPT_SET; 2165 sopt.sopt_val = optval; 2166 sopt.sopt_valsize = optlen; 2167 sopt.sopt_td = NULL; 2168 return (sosetopt(so, &sopt)); 2169 } 2170 2171 int 2172 sosetopt(struct socket *so, struct sockopt *sopt) 2173 { 2174 int error, optval; 2175 struct linger l; 2176 struct timeval tv; 2177 u_long val; 2178 #ifdef MAC 2179 struct mac extmac; 2180 #endif 2181 2182 error = 0; 2183 if (sopt->sopt_level != SOL_SOCKET) { 2184 if (so->so_proto && so->so_proto->pr_ctloutput) 2185 return ((*so->so_proto->pr_ctloutput) 2186 (so, sopt)); 2187 error = ENOPROTOOPT; 2188 } else { 2189 switch (sopt->sopt_name) { 2190 #ifdef INET 2191 case SO_ACCEPTFILTER: 2192 error = do_setopt_accept_filter(so, sopt); 2193 if (error) 2194 goto bad; 2195 break; 2196 #endif 2197 case SO_LINGER: 2198 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 2199 if (error) 2200 goto bad; 2201 2202 SOCK_LOCK(so); 2203 so->so_linger = l.l_linger; 2204 if (l.l_onoff) 2205 so->so_options |= SO_LINGER; 2206 else 2207 so->so_options &= ~SO_LINGER; 2208 SOCK_UNLOCK(so); 2209 break; 2210 2211 case SO_DEBUG: 2212 case SO_KEEPALIVE: 2213 case SO_DONTROUTE: 2214 case SO_USELOOPBACK: 2215 case SO_BROADCAST: 2216 case SO_REUSEADDR: 2217 case SO_REUSEPORT: 2218 case SO_OOBINLINE: 2219 case SO_TIMESTAMP: 2220 case SO_BINTIME: 2221 case SO_NOSIGPIPE: 2222 case SO_NO_DDP: 2223 case SO_NO_OFFLOAD: 2224 error = sooptcopyin(sopt, &optval, sizeof optval, 2225 sizeof optval); 2226 if (error) 2227 goto bad; 2228 SOCK_LOCK(so); 2229 if (optval) 2230 so->so_options |= sopt->sopt_name; 2231 else 2232 so->so_options &= ~sopt->sopt_name; 2233 SOCK_UNLOCK(so); 2234 break; 2235 2236 case SO_SETFIB: 2237 error = sooptcopyin(sopt, &optval, sizeof optval, 2238 sizeof optval); 2239 if (optval < 1 || optval > rt_numfibs) { 2240 error = EINVAL; 2241 goto bad; 2242 } 2243 if ((so->so_proto->pr_domain->dom_family == PF_INET) || 2244 (so->so_proto->pr_domain->dom_family == PF_ROUTE)) { 2245 so->so_fibnum = optval; 2246 /* Note: ignore error */ 2247 if (so->so_proto && so->so_proto->pr_ctloutput) 2248 (*so->so_proto->pr_ctloutput)(so, sopt); 2249 } else { 2250 so->so_fibnum = 0; 2251 } 2252 break; 2253 case SO_SNDBUF: 2254 case SO_RCVBUF: 2255 case SO_SNDLOWAT: 2256 case SO_RCVLOWAT: 2257 error = sooptcopyin(sopt, &optval, sizeof optval, 2258 sizeof optval); 2259 if (error) 2260 goto bad; 2261 2262 /* 2263 * Values < 1 make no sense for any of these options, 2264 * so disallow them. 2265 */ 2266 if (optval < 1) { 2267 error = EINVAL; 2268 goto bad; 2269 } 2270 2271 switch (sopt->sopt_name) { 2272 case SO_SNDBUF: 2273 case SO_RCVBUF: 2274 if (sbreserve(sopt->sopt_name == SO_SNDBUF ? 2275 &so->so_snd : &so->so_rcv, (u_long)optval, 2276 so, curthread) == 0) { 2277 error = ENOBUFS; 2278 goto bad; 2279 } 2280 (sopt->sopt_name == SO_SNDBUF ? &so->so_snd : 2281 &so->so_rcv)->sb_flags &= ~SB_AUTOSIZE; 2282 break; 2283 2284 /* 2285 * Make sure the low-water is never greater than the 2286 * high-water. 2287 */ 2288 case SO_SNDLOWAT: 2289 SOCKBUF_LOCK(&so->so_snd); 2290 so->so_snd.sb_lowat = 2291 (optval > so->so_snd.sb_hiwat) ? 2292 so->so_snd.sb_hiwat : optval; 2293 SOCKBUF_UNLOCK(&so->so_snd); 2294 break; 2295 case SO_RCVLOWAT: 2296 SOCKBUF_LOCK(&so->so_rcv); 2297 so->so_rcv.sb_lowat = 2298 (optval > so->so_rcv.sb_hiwat) ? 2299 so->so_rcv.sb_hiwat : optval; 2300 SOCKBUF_UNLOCK(&so->so_rcv); 2301 break; 2302 } 2303 break; 2304 2305 case SO_SNDTIMEO: 2306 case SO_RCVTIMEO: 2307 #ifdef COMPAT_IA32 2308 if (SV_CURPROC_FLAG(SV_ILP32)) { 2309 struct timeval32 tv32; 2310 2311 error = sooptcopyin(sopt, &tv32, sizeof tv32, 2312 sizeof tv32); 2313 CP(tv32, tv, tv_sec); 2314 CP(tv32, tv, tv_usec); 2315 } else 2316 #endif 2317 error = sooptcopyin(sopt, &tv, sizeof tv, 2318 sizeof tv); 2319 if (error) 2320 goto bad; 2321 2322 /* assert(hz > 0); */ 2323 if (tv.tv_sec < 0 || tv.tv_sec > INT_MAX / hz || 2324 tv.tv_usec < 0 || tv.tv_usec >= 1000000) { 2325 error = EDOM; 2326 goto bad; 2327 } 2328 /* assert(tick > 0); */ 2329 /* assert(ULONG_MAX - INT_MAX >= 1000000); */ 2330 val = (u_long)(tv.tv_sec * hz) + tv.tv_usec / tick; 2331 if (val > INT_MAX) { 2332 error = EDOM; 2333 goto bad; 2334 } 2335 if (val == 0 && tv.tv_usec != 0) 2336 val = 1; 2337 2338 switch (sopt->sopt_name) { 2339 case SO_SNDTIMEO: 2340 so->so_snd.sb_timeo = val; 2341 break; 2342 case SO_RCVTIMEO: 2343 so->so_rcv.sb_timeo = val; 2344 break; 2345 } 2346 break; 2347 2348 case SO_LABEL: 2349 #ifdef MAC 2350 error = sooptcopyin(sopt, &extmac, sizeof extmac, 2351 sizeof extmac); 2352 if (error) 2353 goto bad; 2354 error = mac_setsockopt_label(sopt->sopt_td->td_ucred, 2355 so, &extmac); 2356 #else 2357 error = EOPNOTSUPP; 2358 #endif 2359 break; 2360 2361 default: 2362 error = ENOPROTOOPT; 2363 break; 2364 } 2365 if (error == 0 && so->so_proto != NULL && 2366 so->so_proto->pr_ctloutput != NULL) { 2367 (void) ((*so->so_proto->pr_ctloutput) 2368 (so, sopt)); 2369 } 2370 } 2371 bad: 2372 return (error); 2373 } 2374 2375 /* 2376 * Helper routine for getsockopt. 2377 */ 2378 int 2379 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 2380 { 2381 int error; 2382 size_t valsize; 2383 2384 error = 0; 2385 2386 /* 2387 * Documented get behavior is that we always return a value, possibly 2388 * truncated to fit in the user's buffer. Traditional behavior is 2389 * that we always tell the user precisely how much we copied, rather 2390 * than something useful like the total amount we had available for 2391 * her. Note that this interface is not idempotent; the entire 2392 * answer must generated ahead of time. 2393 */ 2394 valsize = min(len, sopt->sopt_valsize); 2395 sopt->sopt_valsize = valsize; 2396 if (sopt->sopt_val != NULL) { 2397 if (sopt->sopt_td != NULL) 2398 error = copyout(buf, sopt->sopt_val, valsize); 2399 else 2400 bcopy(buf, sopt->sopt_val, valsize); 2401 } 2402 return (error); 2403 } 2404 2405 int 2406 sogetopt(struct socket *so, struct sockopt *sopt) 2407 { 2408 int error, optval; 2409 struct linger l; 2410 struct timeval tv; 2411 #ifdef MAC 2412 struct mac extmac; 2413 #endif 2414 2415 error = 0; 2416 if (sopt->sopt_level != SOL_SOCKET) { 2417 if (so->so_proto && so->so_proto->pr_ctloutput) { 2418 return ((*so->so_proto->pr_ctloutput) 2419 (so, sopt)); 2420 } else 2421 return (ENOPROTOOPT); 2422 } else { 2423 switch (sopt->sopt_name) { 2424 #ifdef INET 2425 case SO_ACCEPTFILTER: 2426 error = do_getopt_accept_filter(so, sopt); 2427 break; 2428 #endif 2429 case SO_LINGER: 2430 SOCK_LOCK(so); 2431 l.l_onoff = so->so_options & SO_LINGER; 2432 l.l_linger = so->so_linger; 2433 SOCK_UNLOCK(so); 2434 error = sooptcopyout(sopt, &l, sizeof l); 2435 break; 2436 2437 case SO_USELOOPBACK: 2438 case SO_DONTROUTE: 2439 case SO_DEBUG: 2440 case SO_KEEPALIVE: 2441 case SO_REUSEADDR: 2442 case SO_REUSEPORT: 2443 case SO_BROADCAST: 2444 case SO_OOBINLINE: 2445 case SO_ACCEPTCONN: 2446 case SO_TIMESTAMP: 2447 case SO_BINTIME: 2448 case SO_NOSIGPIPE: 2449 optval = so->so_options & sopt->sopt_name; 2450 integer: 2451 error = sooptcopyout(sopt, &optval, sizeof optval); 2452 break; 2453 2454 case SO_TYPE: 2455 optval = so->so_type; 2456 goto integer; 2457 2458 case SO_ERROR: 2459 SOCK_LOCK(so); 2460 optval = so->so_error; 2461 so->so_error = 0; 2462 SOCK_UNLOCK(so); 2463 goto integer; 2464 2465 case SO_SNDBUF: 2466 optval = so->so_snd.sb_hiwat; 2467 goto integer; 2468 2469 case SO_RCVBUF: 2470 optval = so->so_rcv.sb_hiwat; 2471 goto integer; 2472 2473 case SO_SNDLOWAT: 2474 optval = so->so_snd.sb_lowat; 2475 goto integer; 2476 2477 case SO_RCVLOWAT: 2478 optval = so->so_rcv.sb_lowat; 2479 goto integer; 2480 2481 case SO_SNDTIMEO: 2482 case SO_RCVTIMEO: 2483 optval = (sopt->sopt_name == SO_SNDTIMEO ? 2484 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 2485 2486 tv.tv_sec = optval / hz; 2487 tv.tv_usec = (optval % hz) * tick; 2488 #ifdef COMPAT_IA32 2489 if (SV_CURPROC_FLAG(SV_ILP32)) { 2490 struct timeval32 tv32; 2491 2492 CP(tv, tv32, tv_sec); 2493 CP(tv, tv32, tv_usec); 2494 error = sooptcopyout(sopt, &tv32, sizeof tv32); 2495 } else 2496 #endif 2497 error = sooptcopyout(sopt, &tv, sizeof tv); 2498 break; 2499 2500 case SO_LABEL: 2501 #ifdef MAC 2502 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 2503 sizeof(extmac)); 2504 if (error) 2505 return (error); 2506 error = mac_getsockopt_label(sopt->sopt_td->td_ucred, 2507 so, &extmac); 2508 if (error) 2509 return (error); 2510 error = sooptcopyout(sopt, &extmac, sizeof extmac); 2511 #else 2512 error = EOPNOTSUPP; 2513 #endif 2514 break; 2515 2516 case SO_PEERLABEL: 2517 #ifdef MAC 2518 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 2519 sizeof(extmac)); 2520 if (error) 2521 return (error); 2522 error = mac_getsockopt_peerlabel( 2523 sopt->sopt_td->td_ucred, so, &extmac); 2524 if (error) 2525 return (error); 2526 error = sooptcopyout(sopt, &extmac, sizeof extmac); 2527 #else 2528 error = EOPNOTSUPP; 2529 #endif 2530 break; 2531 2532 case SO_LISTENQLIMIT: 2533 optval = so->so_qlimit; 2534 goto integer; 2535 2536 case SO_LISTENQLEN: 2537 optval = so->so_qlen; 2538 goto integer; 2539 2540 case SO_LISTENINCQLEN: 2541 optval = so->so_incqlen; 2542 goto integer; 2543 2544 default: 2545 error = ENOPROTOOPT; 2546 break; 2547 } 2548 return (error); 2549 } 2550 } 2551 2552 /* XXX; prepare mbuf for (__FreeBSD__ < 3) routines. */ 2553 int 2554 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 2555 { 2556 struct mbuf *m, *m_prev; 2557 int sopt_size = sopt->sopt_valsize; 2558 2559 MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA); 2560 if (m == NULL) 2561 return ENOBUFS; 2562 if (sopt_size > MLEN) { 2563 MCLGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT); 2564 if ((m->m_flags & M_EXT) == 0) { 2565 m_free(m); 2566 return ENOBUFS; 2567 } 2568 m->m_len = min(MCLBYTES, sopt_size); 2569 } else { 2570 m->m_len = min(MLEN, sopt_size); 2571 } 2572 sopt_size -= m->m_len; 2573 *mp = m; 2574 m_prev = m; 2575 2576 while (sopt_size) { 2577 MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA); 2578 if (m == NULL) { 2579 m_freem(*mp); 2580 return ENOBUFS; 2581 } 2582 if (sopt_size > MLEN) { 2583 MCLGET(m, sopt->sopt_td != NULL ? M_WAIT : 2584 M_DONTWAIT); 2585 if ((m->m_flags & M_EXT) == 0) { 2586 m_freem(m); 2587 m_freem(*mp); 2588 return ENOBUFS; 2589 } 2590 m->m_len = min(MCLBYTES, sopt_size); 2591 } else { 2592 m->m_len = min(MLEN, sopt_size); 2593 } 2594 sopt_size -= m->m_len; 2595 m_prev->m_next = m; 2596 m_prev = m; 2597 } 2598 return (0); 2599 } 2600 2601 /* XXX; copyin sopt data into mbuf chain for (__FreeBSD__ < 3) routines. */ 2602 int 2603 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 2604 { 2605 struct mbuf *m0 = m; 2606 2607 if (sopt->sopt_val == NULL) 2608 return (0); 2609 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 2610 if (sopt->sopt_td != NULL) { 2611 int error; 2612 2613 error = copyin(sopt->sopt_val, mtod(m, char *), 2614 m->m_len); 2615 if (error != 0) { 2616 m_freem(m0); 2617 return(error); 2618 } 2619 } else 2620 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 2621 sopt->sopt_valsize -= m->m_len; 2622 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 2623 m = m->m_next; 2624 } 2625 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 2626 panic("ip6_sooptmcopyin"); 2627 return (0); 2628 } 2629 2630 /* XXX; copyout mbuf chain data into soopt for (__FreeBSD__ < 3) routines. */ 2631 int 2632 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 2633 { 2634 struct mbuf *m0 = m; 2635 size_t valsize = 0; 2636 2637 if (sopt->sopt_val == NULL) 2638 return (0); 2639 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 2640 if (sopt->sopt_td != NULL) { 2641 int error; 2642 2643 error = copyout(mtod(m, char *), sopt->sopt_val, 2644 m->m_len); 2645 if (error != 0) { 2646 m_freem(m0); 2647 return(error); 2648 } 2649 } else 2650 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 2651 sopt->sopt_valsize -= m->m_len; 2652 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 2653 valsize += m->m_len; 2654 m = m->m_next; 2655 } 2656 if (m != NULL) { 2657 /* enough soopt buffer should be given from user-land */ 2658 m_freem(m0); 2659 return(EINVAL); 2660 } 2661 sopt->sopt_valsize = valsize; 2662 return (0); 2663 } 2664 2665 /* 2666 * sohasoutofband(): protocol notifies socket layer of the arrival of new 2667 * out-of-band data, which will then notify socket consumers. 2668 */ 2669 void 2670 sohasoutofband(struct socket *so) 2671 { 2672 2673 if (so->so_sigio != NULL) 2674 pgsigio(&so->so_sigio, SIGURG, 0); 2675 selwakeuppri(&so->so_rcv.sb_sel, PSOCK); 2676 } 2677 2678 int 2679 sopoll(struct socket *so, int events, struct ucred *active_cred, 2680 struct thread *td) 2681 { 2682 2683 return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred, 2684 td)); 2685 } 2686 2687 int 2688 sopoll_generic(struct socket *so, int events, struct ucred *active_cred, 2689 struct thread *td) 2690 { 2691 int revents = 0; 2692 2693 SOCKBUF_LOCK(&so->so_snd); 2694 SOCKBUF_LOCK(&so->so_rcv); 2695 if (events & (POLLIN | POLLRDNORM)) 2696 if (soreadable(so)) 2697 revents |= events & (POLLIN | POLLRDNORM); 2698 2699 if (events & POLLINIGNEOF) 2700 if (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat || 2701 !TAILQ_EMPTY(&so->so_comp) || so->so_error) 2702 revents |= POLLINIGNEOF; 2703 2704 if (events & (POLLOUT | POLLWRNORM)) 2705 if (sowriteable(so)) 2706 revents |= events & (POLLOUT | POLLWRNORM); 2707 2708 if (events & (POLLPRI | POLLRDBAND)) 2709 if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK)) 2710 revents |= events & (POLLPRI | POLLRDBAND); 2711 2712 if (revents == 0) { 2713 if (events & 2714 (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | 2715 POLLRDBAND)) { 2716 selrecord(td, &so->so_rcv.sb_sel); 2717 so->so_rcv.sb_flags |= SB_SEL; 2718 } 2719 2720 if (events & (POLLOUT | POLLWRNORM)) { 2721 selrecord(td, &so->so_snd.sb_sel); 2722 so->so_snd.sb_flags |= SB_SEL; 2723 } 2724 } 2725 2726 SOCKBUF_UNLOCK(&so->so_rcv); 2727 SOCKBUF_UNLOCK(&so->so_snd); 2728 return (revents); 2729 } 2730 2731 int 2732 soo_kqfilter(struct file *fp, struct knote *kn) 2733 { 2734 struct socket *so = kn->kn_fp->f_data; 2735 struct sockbuf *sb; 2736 2737 switch (kn->kn_filter) { 2738 case EVFILT_READ: 2739 if (so->so_options & SO_ACCEPTCONN) 2740 kn->kn_fop = &solisten_filtops; 2741 else 2742 kn->kn_fop = &soread_filtops; 2743 sb = &so->so_rcv; 2744 break; 2745 case EVFILT_WRITE: 2746 kn->kn_fop = &sowrite_filtops; 2747 sb = &so->so_snd; 2748 break; 2749 default: 2750 return (EINVAL); 2751 } 2752 2753 SOCKBUF_LOCK(sb); 2754 knlist_add(&sb->sb_sel.si_note, kn, 1); 2755 sb->sb_flags |= SB_KNOTE; 2756 SOCKBUF_UNLOCK(sb); 2757 return (0); 2758 } 2759 2760 /* 2761 * Some routines that return EOPNOTSUPP for entry points that are not 2762 * supported by a protocol. Fill in as needed. 2763 */ 2764 int 2765 pru_accept_notsupp(struct socket *so, struct sockaddr **nam) 2766 { 2767 2768 return EOPNOTSUPP; 2769 } 2770 2771 int 2772 pru_attach_notsupp(struct socket *so, int proto, struct thread *td) 2773 { 2774 2775 return EOPNOTSUPP; 2776 } 2777 2778 int 2779 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 2780 { 2781 2782 return EOPNOTSUPP; 2783 } 2784 2785 int 2786 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 2787 { 2788 2789 return EOPNOTSUPP; 2790 } 2791 2792 int 2793 pru_connect2_notsupp(struct socket *so1, struct socket *so2) 2794 { 2795 2796 return EOPNOTSUPP; 2797 } 2798 2799 int 2800 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, 2801 struct ifnet *ifp, struct thread *td) 2802 { 2803 2804 return EOPNOTSUPP; 2805 } 2806 2807 int 2808 pru_disconnect_notsupp(struct socket *so) 2809 { 2810 2811 return EOPNOTSUPP; 2812 } 2813 2814 int 2815 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td) 2816 { 2817 2818 return EOPNOTSUPP; 2819 } 2820 2821 int 2822 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam) 2823 { 2824 2825 return EOPNOTSUPP; 2826 } 2827 2828 int 2829 pru_rcvd_notsupp(struct socket *so, int flags) 2830 { 2831 2832 return EOPNOTSUPP; 2833 } 2834 2835 int 2836 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) 2837 { 2838 2839 return EOPNOTSUPP; 2840 } 2841 2842 int 2843 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m, 2844 struct sockaddr *addr, struct mbuf *control, struct thread *td) 2845 { 2846 2847 return EOPNOTSUPP; 2848 } 2849 2850 /* 2851 * This isn't really a ``null'' operation, but it's the default one and 2852 * doesn't do anything destructive. 2853 */ 2854 int 2855 pru_sense_null(struct socket *so, struct stat *sb) 2856 { 2857 2858 sb->st_blksize = so->so_snd.sb_hiwat; 2859 return 0; 2860 } 2861 2862 int 2863 pru_shutdown_notsupp(struct socket *so) 2864 { 2865 2866 return EOPNOTSUPP; 2867 } 2868 2869 int 2870 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam) 2871 { 2872 2873 return EOPNOTSUPP; 2874 } 2875 2876 int 2877 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio, 2878 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 2879 { 2880 2881 return EOPNOTSUPP; 2882 } 2883 2884 int 2885 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr, 2886 struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2887 { 2888 2889 return EOPNOTSUPP; 2890 } 2891 2892 int 2893 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred, 2894 struct thread *td) 2895 { 2896 2897 return EOPNOTSUPP; 2898 } 2899 2900 static void 2901 filt_sordetach(struct knote *kn) 2902 { 2903 struct socket *so = kn->kn_fp->f_data; 2904 2905 SOCKBUF_LOCK(&so->so_rcv); 2906 knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1); 2907 if (knlist_empty(&so->so_rcv.sb_sel.si_note)) 2908 so->so_rcv.sb_flags &= ~SB_KNOTE; 2909 SOCKBUF_UNLOCK(&so->so_rcv); 2910 } 2911 2912 /*ARGSUSED*/ 2913 static int 2914 filt_soread(struct knote *kn, long hint) 2915 { 2916 struct socket *so; 2917 2918 so = kn->kn_fp->f_data; 2919 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2920 2921 kn->kn_data = so->so_rcv.sb_cc - so->so_rcv.sb_ctl; 2922 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 2923 kn->kn_flags |= EV_EOF; 2924 kn->kn_fflags = so->so_error; 2925 return (1); 2926 } else if (so->so_error) /* temporary udp error */ 2927 return (1); 2928 else if (kn->kn_sfflags & NOTE_LOWAT) 2929 return (kn->kn_data >= kn->kn_sdata); 2930 else 2931 return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat); 2932 } 2933 2934 static void 2935 filt_sowdetach(struct knote *kn) 2936 { 2937 struct socket *so = kn->kn_fp->f_data; 2938 2939 SOCKBUF_LOCK(&so->so_snd); 2940 knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1); 2941 if (knlist_empty(&so->so_snd.sb_sel.si_note)) 2942 so->so_snd.sb_flags &= ~SB_KNOTE; 2943 SOCKBUF_UNLOCK(&so->so_snd); 2944 } 2945 2946 /*ARGSUSED*/ 2947 static int 2948 filt_sowrite(struct knote *kn, long hint) 2949 { 2950 struct socket *so; 2951 2952 so = kn->kn_fp->f_data; 2953 SOCKBUF_LOCK_ASSERT(&so->so_snd); 2954 kn->kn_data = sbspace(&so->so_snd); 2955 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 2956 kn->kn_flags |= EV_EOF; 2957 kn->kn_fflags = so->so_error; 2958 return (1); 2959 } else if (so->so_error) /* temporary udp error */ 2960 return (1); 2961 else if (((so->so_state & SS_ISCONNECTED) == 0) && 2962 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 2963 return (0); 2964 else if (kn->kn_sfflags & NOTE_LOWAT) 2965 return (kn->kn_data >= kn->kn_sdata); 2966 else 2967 return (kn->kn_data >= so->so_snd.sb_lowat); 2968 } 2969 2970 /*ARGSUSED*/ 2971 static int 2972 filt_solisten(struct knote *kn, long hint) 2973 { 2974 struct socket *so = kn->kn_fp->f_data; 2975 2976 kn->kn_data = so->so_qlen; 2977 return (! TAILQ_EMPTY(&so->so_comp)); 2978 } 2979 2980 int 2981 socheckuid(struct socket *so, uid_t uid) 2982 { 2983 2984 if (so == NULL) 2985 return (EPERM); 2986 if (so->so_cred->cr_uid != uid) 2987 return (EPERM); 2988 return (0); 2989 } 2990 2991 static int 2992 sysctl_somaxconn(SYSCTL_HANDLER_ARGS) 2993 { 2994 int error; 2995 int val; 2996 2997 val = somaxconn; 2998 error = sysctl_handle_int(oidp, &val, 0, req); 2999 if (error || !req->newptr ) 3000 return (error); 3001 3002 if (val < 1 || val > USHRT_MAX) 3003 return (EINVAL); 3004 3005 somaxconn = val; 3006 return (0); 3007 } 3008 3009 /* 3010 * These functions are used by protocols to notify the socket layer (and its 3011 * consumers) of state changes in the sockets driven by protocol-side events. 3012 */ 3013 3014 /* 3015 * Procedures to manipulate state flags of socket and do appropriate wakeups. 3016 * 3017 * Normal sequence from the active (originating) side is that 3018 * soisconnecting() is called during processing of connect() call, resulting 3019 * in an eventual call to soisconnected() if/when the connection is 3020 * established. When the connection is torn down soisdisconnecting() is 3021 * called during processing of disconnect() call, and soisdisconnected() is 3022 * called when the connection to the peer is totally severed. The semantics 3023 * of these routines are such that connectionless protocols can call 3024 * soisconnected() and soisdisconnected() only, bypassing the in-progress 3025 * calls when setting up a ``connection'' takes no time. 3026 * 3027 * From the passive side, a socket is created with two queues of sockets: 3028 * so_incomp for connections in progress and so_comp for connections already 3029 * made and awaiting user acceptance. As a protocol is preparing incoming 3030 * connections, it creates a socket structure queued on so_incomp by calling 3031 * sonewconn(). When the connection is established, soisconnected() is 3032 * called, and transfers the socket structure to so_comp, making it available 3033 * to accept(). 3034 * 3035 * If a socket is closed with sockets on either so_incomp or so_comp, these 3036 * sockets are dropped. 3037 * 3038 * If higher-level protocols are implemented in the kernel, the wakeups done 3039 * here will sometimes cause software-interrupt process scheduling. 3040 */ 3041 void 3042 soisconnecting(struct socket *so) 3043 { 3044 3045 SOCK_LOCK(so); 3046 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 3047 so->so_state |= SS_ISCONNECTING; 3048 SOCK_UNLOCK(so); 3049 } 3050 3051 void 3052 soisconnected(struct socket *so) 3053 { 3054 struct socket *head; 3055 int ret; 3056 3057 restart: 3058 ACCEPT_LOCK(); 3059 SOCK_LOCK(so); 3060 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 3061 so->so_state |= SS_ISCONNECTED; 3062 head = so->so_head; 3063 if (head != NULL && (so->so_qstate & SQ_INCOMP)) { 3064 if ((so->so_options & SO_ACCEPTFILTER) == 0) { 3065 SOCK_UNLOCK(so); 3066 TAILQ_REMOVE(&head->so_incomp, so, so_list); 3067 head->so_incqlen--; 3068 so->so_qstate &= ~SQ_INCOMP; 3069 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 3070 head->so_qlen++; 3071 so->so_qstate |= SQ_COMP; 3072 ACCEPT_UNLOCK(); 3073 sorwakeup(head); 3074 wakeup_one(&head->so_timeo); 3075 } else { 3076 ACCEPT_UNLOCK(); 3077 soupcall_set(so, SO_RCV, 3078 head->so_accf->so_accept_filter->accf_callback, 3079 head->so_accf->so_accept_filter_arg); 3080 so->so_options &= ~SO_ACCEPTFILTER; 3081 ret = head->so_accf->so_accept_filter->accf_callback(so, 3082 head->so_accf->so_accept_filter_arg, M_DONTWAIT); 3083 if (ret == SU_ISCONNECTED) 3084 soupcall_clear(so, SO_RCV); 3085 SOCK_UNLOCK(so); 3086 if (ret == SU_ISCONNECTED) 3087 goto restart; 3088 } 3089 return; 3090 } 3091 SOCK_UNLOCK(so); 3092 ACCEPT_UNLOCK(); 3093 wakeup(&so->so_timeo); 3094 sorwakeup(so); 3095 sowwakeup(so); 3096 } 3097 3098 void 3099 soisdisconnecting(struct socket *so) 3100 { 3101 3102 /* 3103 * Note: This code assumes that SOCK_LOCK(so) and 3104 * SOCKBUF_LOCK(&so->so_rcv) are the same. 3105 */ 3106 SOCKBUF_LOCK(&so->so_rcv); 3107 so->so_state &= ~SS_ISCONNECTING; 3108 so->so_state |= SS_ISDISCONNECTING; 3109 so->so_rcv.sb_state |= SBS_CANTRCVMORE; 3110 sorwakeup_locked(so); 3111 SOCKBUF_LOCK(&so->so_snd); 3112 so->so_snd.sb_state |= SBS_CANTSENDMORE; 3113 sowwakeup_locked(so); 3114 wakeup(&so->so_timeo); 3115 } 3116 3117 void 3118 soisdisconnected(struct socket *so) 3119 { 3120 3121 /* 3122 * Note: This code assumes that SOCK_LOCK(so) and 3123 * SOCKBUF_LOCK(&so->so_rcv) are the same. 3124 */ 3125 SOCKBUF_LOCK(&so->so_rcv); 3126 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 3127 so->so_state |= SS_ISDISCONNECTED; 3128 so->so_rcv.sb_state |= SBS_CANTRCVMORE; 3129 sorwakeup_locked(so); 3130 SOCKBUF_LOCK(&so->so_snd); 3131 so->so_snd.sb_state |= SBS_CANTSENDMORE; 3132 sbdrop_locked(&so->so_snd, so->so_snd.sb_cc); 3133 sowwakeup_locked(so); 3134 wakeup(&so->so_timeo); 3135 } 3136 3137 /* 3138 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 3139 */ 3140 struct sockaddr * 3141 sodupsockaddr(const struct sockaddr *sa, int mflags) 3142 { 3143 struct sockaddr *sa2; 3144 3145 sa2 = malloc(sa->sa_len, M_SONAME, mflags); 3146 if (sa2) 3147 bcopy(sa, sa2, sa->sa_len); 3148 return sa2; 3149 } 3150 3151 /* 3152 * Register per-socket buffer upcalls. 3153 */ 3154 void 3155 soupcall_set(struct socket *so, int which, 3156 int (*func)(struct socket *, void *, int), void *arg) 3157 { 3158 struct sockbuf *sb; 3159 3160 switch (which) { 3161 case SO_RCV: 3162 sb = &so->so_rcv; 3163 break; 3164 case SO_SND: 3165 sb = &so->so_snd; 3166 break; 3167 default: 3168 panic("soupcall_set: bad which"); 3169 } 3170 SOCKBUF_LOCK_ASSERT(sb); 3171 #if 0 3172 /* XXX: accf_http actually wants to do this on purpose. */ 3173 KASSERT(sb->sb_upcall == NULL, ("soupcall_set: overwriting upcall")); 3174 #endif 3175 sb->sb_upcall = func; 3176 sb->sb_upcallarg = arg; 3177 sb->sb_flags |= SB_UPCALL; 3178 } 3179 3180 void 3181 soupcall_clear(struct socket *so, int which) 3182 { 3183 struct sockbuf *sb; 3184 3185 switch (which) { 3186 case SO_RCV: 3187 sb = &so->so_rcv; 3188 break; 3189 case SO_SND: 3190 sb = &so->so_snd; 3191 break; 3192 default: 3193 panic("soupcall_clear: bad which"); 3194 } 3195 SOCKBUF_LOCK_ASSERT(sb); 3196 KASSERT(sb->sb_upcall != NULL, ("soupcall_clear: no upcall to clear")); 3197 sb->sb_upcall = NULL; 3198 sb->sb_upcallarg = NULL; 3199 sb->sb_flags &= ~SB_UPCALL; 3200 } 3201 3202 /* 3203 * Create an external-format (``xsocket'') structure using the information in 3204 * the kernel-format socket structure pointed to by so. This is done to 3205 * reduce the spew of irrelevant information over this interface, to isolate 3206 * user code from changes in the kernel structure, and potentially to provide 3207 * information-hiding if we decide that some of this information should be 3208 * hidden from users. 3209 */ 3210 void 3211 sotoxsocket(struct socket *so, struct xsocket *xso) 3212 { 3213 3214 xso->xso_len = sizeof *xso; 3215 xso->xso_so = so; 3216 xso->so_type = so->so_type; 3217 xso->so_options = so->so_options; 3218 xso->so_linger = so->so_linger; 3219 xso->so_state = so->so_state; 3220 xso->so_pcb = so->so_pcb; 3221 xso->xso_protocol = so->so_proto->pr_protocol; 3222 xso->xso_family = so->so_proto->pr_domain->dom_family; 3223 xso->so_qlen = so->so_qlen; 3224 xso->so_incqlen = so->so_incqlen; 3225 xso->so_qlimit = so->so_qlimit; 3226 xso->so_timeo = so->so_timeo; 3227 xso->so_error = so->so_error; 3228 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 3229 xso->so_oobmark = so->so_oobmark; 3230 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 3231 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 3232 xso->so_uid = so->so_cred->cr_uid; 3233 } 3234 3235 3236 /* 3237 * Socket accessor functions to provide external consumers with 3238 * a safe interface to socket state 3239 * 3240 */ 3241 3242 void 3243 so_listeners_apply_all(struct socket *so, void (*func)(struct socket *, void *), void *arg) 3244 { 3245 3246 TAILQ_FOREACH(so, &so->so_comp, so_list) 3247 func(so, arg); 3248 } 3249 3250 struct sockbuf * 3251 so_sockbuf_rcv(struct socket *so) 3252 { 3253 3254 return (&so->so_rcv); 3255 } 3256 3257 struct sockbuf * 3258 so_sockbuf_snd(struct socket *so) 3259 { 3260 3261 return (&so->so_snd); 3262 } 3263 3264 int 3265 so_state_get(const struct socket *so) 3266 { 3267 3268 return (so->so_state); 3269 } 3270 3271 void 3272 so_state_set(struct socket *so, int val) 3273 { 3274 3275 so->so_state = val; 3276 } 3277 3278 int 3279 so_options_get(const struct socket *so) 3280 { 3281 3282 return (so->so_options); 3283 } 3284 3285 void 3286 so_options_set(struct socket *so, int val) 3287 { 3288 3289 so->so_options = val; 3290 } 3291 3292 int 3293 so_error_get(const struct socket *so) 3294 { 3295 3296 return (so->so_error); 3297 } 3298 3299 void 3300 so_error_set(struct socket *so, int val) 3301 { 3302 3303 so->so_error = val; 3304 } 3305 3306 int 3307 so_linger_get(const struct socket *so) 3308 { 3309 3310 return (so->so_linger); 3311 } 3312 3313 void 3314 so_linger_set(struct socket *so, int val) 3315 { 3316 3317 so->so_linger = val; 3318 } 3319 3320 struct protosw * 3321 so_protosw_get(const struct socket *so) 3322 { 3323 3324 return (so->so_proto); 3325 } 3326 3327 void 3328 so_protosw_set(struct socket *so, struct protosw *val) 3329 { 3330 3331 so->so_proto = val; 3332 } 3333 3334 void 3335 so_sorwakeup(struct socket *so) 3336 { 3337 3338 sorwakeup(so); 3339 } 3340 3341 void 3342 so_sowwakeup(struct socket *so) 3343 { 3344 3345 sowwakeup(so); 3346 } 3347 3348 void 3349 so_sorwakeup_locked(struct socket *so) 3350 { 3351 3352 sorwakeup_locked(so); 3353 } 3354 3355 void 3356 so_sowwakeup_locked(struct socket *so) 3357 { 3358 3359 sowwakeup_locked(so); 3360 } 3361 3362 void 3363 so_lock(struct socket *so) 3364 { 3365 SOCK_LOCK(so); 3366 } 3367 3368 void 3369 so_unlock(struct socket *so) 3370 { 3371 SOCK_UNLOCK(so); 3372 } 3373