1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993 3 * The Regents of the University of California. 4 * Copyright (c) 2004 The FreeBSD Foundation 5 * Copyright (c) 2004-2008 Robert N. M. Watson 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 33 */ 34 35 /* 36 * Comments on the socket life cycle: 37 * 38 * soalloc() sets of socket layer state for a socket, called only by 39 * socreate() and sonewconn(). Socket layer private. 40 * 41 * sodealloc() tears down socket layer state for a socket, called only by 42 * sofree() and sonewconn(). Socket layer private. 43 * 44 * pru_attach() associates protocol layer state with an allocated socket; 45 * called only once, may fail, aborting socket allocation. This is called 46 * from socreate() and sonewconn(). Socket layer private. 47 * 48 * pru_detach() disassociates protocol layer state from an attached socket, 49 * and will be called exactly once for sockets in which pru_attach() has 50 * been successfully called. If pru_attach() returned an error, 51 * pru_detach() will not be called. Socket layer private. 52 * 53 * pru_abort() and pru_close() notify the protocol layer that the last 54 * consumer of a socket is starting to tear down the socket, and that the 55 * protocol should terminate the connection. Historically, pru_abort() also 56 * detached protocol state from the socket state, but this is no longer the 57 * case. 58 * 59 * socreate() creates a socket and attaches protocol state. This is a public 60 * interface that may be used by socket layer consumers to create new 61 * sockets. 62 * 63 * sonewconn() creates a socket and attaches protocol state. This is a 64 * public interface that may be used by protocols to create new sockets when 65 * a new connection is received and will be available for accept() on a 66 * listen socket. 67 * 68 * soclose() destroys a socket after possibly waiting for it to disconnect. 69 * This is a public interface that socket consumers should use to close and 70 * release a socket when done with it. 71 * 72 * soabort() destroys a socket without waiting for it to disconnect (used 73 * only for incoming connections that are already partially or fully 74 * connected). This is used internally by the socket layer when clearing 75 * listen socket queues (due to overflow or close on the listen socket), but 76 * is also a public interface protocols may use to abort connections in 77 * their incomplete listen queues should they no longer be required. Sockets 78 * placed in completed connection listen queues should not be aborted for 79 * reasons described in the comment above the soclose() implementation. This 80 * is not a general purpose close routine, and except in the specific 81 * circumstances described here, should not be used. 82 * 83 * sofree() will free a socket and its protocol state if all references on 84 * the socket have been released, and is the public interface to attempt to 85 * free a socket when a reference is removed. This is a socket layer private 86 * interface. 87 * 88 * NOTE: In addition to socreate() and soclose(), which provide a single 89 * socket reference to the consumer to be managed as required, there are two 90 * calls to explicitly manage socket references, soref(), and sorele(). 91 * Currently, these are generally required only when transitioning a socket 92 * from a listen queue to a file descriptor, in order to prevent garbage 93 * collection of the socket at an untimely moment. For a number of reasons, 94 * these interfaces are not preferred, and should be avoided. 95 * 96 * NOTE: With regard to VNETs the general rule is that callers do not set 97 * curvnet. Exceptions to this rule include soabort(), sodisconnect(), 98 * sofree() (and with that sorele(), sotryfree()), as well as sonewconn() 99 * and sorflush(), which are usually called from a pre-set VNET context. 100 * sopoll() currently does not need a VNET context to be set. 101 */ 102 103 #include <sys/cdefs.h> 104 __FBSDID("$FreeBSD$"); 105 106 #include "opt_inet.h" 107 #include "opt_inet6.h" 108 #include "opt_compat.h" 109 110 #include <sys/param.h> 111 #include <sys/systm.h> 112 #include <sys/fcntl.h> 113 #include <sys/limits.h> 114 #include <sys/lock.h> 115 #include <sys/mac.h> 116 #include <sys/malloc.h> 117 #include <sys/mbuf.h> 118 #include <sys/mutex.h> 119 #include <sys/domain.h> 120 #include <sys/file.h> /* for struct knote */ 121 #include <sys/hhook.h> 122 #include <sys/kernel.h> 123 #include <sys/khelp.h> 124 #include <sys/event.h> 125 #include <sys/eventhandler.h> 126 #include <sys/poll.h> 127 #include <sys/proc.h> 128 #include <sys/protosw.h> 129 #include <sys/socket.h> 130 #include <sys/socketvar.h> 131 #include <sys/resourcevar.h> 132 #include <net/route.h> 133 #include <sys/signalvar.h> 134 #include <sys/stat.h> 135 #include <sys/sx.h> 136 #include <sys/sysctl.h> 137 #include <sys/taskqueue.h> 138 #include <sys/uio.h> 139 #include <sys/jail.h> 140 #include <sys/syslog.h> 141 #include <netinet/in.h> 142 143 #include <net/vnet.h> 144 145 #include <security/mac/mac_framework.h> 146 147 #include <vm/uma.h> 148 149 #ifdef COMPAT_FREEBSD32 150 #include <sys/mount.h> 151 #include <sys/sysent.h> 152 #include <compat/freebsd32/freebsd32.h> 153 #endif 154 155 static int soreceive_rcvoob(struct socket *so, struct uio *uio, 156 int flags); 157 158 static void filt_sordetach(struct knote *kn); 159 static int filt_soread(struct knote *kn, long hint); 160 static void filt_sowdetach(struct knote *kn); 161 static int filt_sowrite(struct knote *kn, long hint); 162 static int filt_solisten(struct knote *kn, long hint); 163 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id); 164 fo_kqfilter_t soo_kqfilter; 165 166 static struct filterops solisten_filtops = { 167 .f_isfd = 1, 168 .f_detach = filt_sordetach, 169 .f_event = filt_solisten, 170 }; 171 static struct filterops soread_filtops = { 172 .f_isfd = 1, 173 .f_detach = filt_sordetach, 174 .f_event = filt_soread, 175 }; 176 static struct filterops sowrite_filtops = { 177 .f_isfd = 1, 178 .f_detach = filt_sowdetach, 179 .f_event = filt_sowrite, 180 }; 181 182 so_gen_t so_gencnt; /* generation count for sockets */ 183 184 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 185 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 186 187 #define VNET_SO_ASSERT(so) \ 188 VNET_ASSERT(curvnet != NULL, \ 189 ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so))); 190 191 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]); 192 #define V_socket_hhh VNET(socket_hhh) 193 194 /* 195 * Limit on the number of connections in the listen queue waiting 196 * for accept(2). 197 * NB: The original sysctl somaxconn is still available but hidden 198 * to prevent confusion about the actual purpose of this number. 199 */ 200 static u_int somaxconn = SOMAXCONN; 201 202 static int 203 sysctl_somaxconn(SYSCTL_HANDLER_ARGS) 204 { 205 int error; 206 int val; 207 208 val = somaxconn; 209 error = sysctl_handle_int(oidp, &val, 0, req); 210 if (error || !req->newptr ) 211 return (error); 212 213 /* 214 * The purpose of the UINT_MAX / 3 limit, is so that the formula 215 * 3 * so_qlimit / 2 216 * below, will not overflow. 217 */ 218 219 if (val < 1 || val > UINT_MAX / 3) 220 return (EINVAL); 221 222 somaxconn = val; 223 return (0); 224 } 225 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue, CTLTYPE_UINT | CTLFLAG_RW, 226 0, sizeof(int), sysctl_somaxconn, "I", 227 "Maximum listen socket pending connection accept queue size"); 228 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, 229 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP, 230 0, sizeof(int), sysctl_somaxconn, "I", 231 "Maximum listen socket pending connection accept queue size (compat)"); 232 233 static int numopensockets; 234 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, 235 &numopensockets, 0, "Number of open sockets"); 236 237 /* 238 * accept_mtx locks down per-socket fields relating to accept queues. See 239 * socketvar.h for an annotation of the protected fields of struct socket. 240 */ 241 struct mtx accept_mtx; 242 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF); 243 244 /* 245 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket 246 * so_gencnt field. 247 */ 248 static struct mtx so_global_mtx; 249 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); 250 251 /* 252 * General IPC sysctl name space, used by sockets and a variety of other IPC 253 * types. 254 */ 255 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC"); 256 257 /* 258 * Initialize the socket subsystem and set up the socket 259 * memory allocator. 260 */ 261 static uma_zone_t socket_zone; 262 int maxsockets; 263 264 static void 265 socket_zone_change(void *tag) 266 { 267 268 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 269 } 270 271 static void 272 socket_hhook_register(int subtype) 273 { 274 275 if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype, 276 &V_socket_hhh[subtype], 277 HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 278 printf("%s: WARNING: unable to register hook\n", __func__); 279 } 280 281 static void 282 socket_hhook_deregister(int subtype) 283 { 284 285 if (hhook_head_deregister(V_socket_hhh[subtype]) != 0) 286 printf("%s: WARNING: unable to deregister hook\n", __func__); 287 } 288 289 static void 290 socket_init(void *tag) 291 { 292 293 socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL, 294 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 295 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 296 uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached"); 297 EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL, 298 EVENTHANDLER_PRI_FIRST); 299 } 300 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL); 301 302 static void 303 socket_vnet_init(const void *unused __unused) 304 { 305 int i; 306 307 /* We expect a contiguous range */ 308 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 309 socket_hhook_register(i); 310 } 311 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 312 socket_vnet_init, NULL); 313 314 static void 315 socket_vnet_uninit(const void *unused __unused) 316 { 317 int i; 318 319 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 320 socket_hhook_deregister(i); 321 } 322 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 323 socket_vnet_uninit, NULL); 324 325 /* 326 * Initialise maxsockets. This SYSINIT must be run after 327 * tunable_mbinit(). 328 */ 329 static void 330 init_maxsockets(void *ignored) 331 { 332 333 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 334 maxsockets = imax(maxsockets, maxfiles); 335 } 336 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 337 338 /* 339 * Sysctl to get and set the maximum global sockets limit. Notify protocols 340 * of the change so that they can update their dependent limits as required. 341 */ 342 static int 343 sysctl_maxsockets(SYSCTL_HANDLER_ARGS) 344 { 345 int error, newmaxsockets; 346 347 newmaxsockets = maxsockets; 348 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req); 349 if (error == 0 && req->newptr) { 350 if (newmaxsockets > maxsockets && 351 newmaxsockets <= maxfiles) { 352 maxsockets = newmaxsockets; 353 EVENTHANDLER_INVOKE(maxsockets_change); 354 } else 355 error = EINVAL; 356 } 357 return (error); 358 } 359 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, CTLTYPE_INT|CTLFLAG_RW, 360 &maxsockets, 0, sysctl_maxsockets, "IU", 361 "Maximum number of sockets available"); 362 363 /* 364 * Socket operation routines. These routines are called by the routines in 365 * sys_socket.c or from a system process, and implement the semantics of 366 * socket operations by switching out to the protocol specific routines. 367 */ 368 369 /* 370 * Get a socket structure from our zone, and initialize it. Note that it 371 * would probably be better to allocate socket and PCB at the same time, but 372 * I'm not convinced that all the protocols can be easily modified to do 373 * this. 374 * 375 * soalloc() returns a socket with a ref count of 0. 376 */ 377 static struct socket * 378 soalloc(struct vnet *vnet) 379 { 380 struct socket *so; 381 382 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO); 383 if (so == NULL) 384 return (NULL); 385 #ifdef MAC 386 if (mac_socket_init(so, M_NOWAIT) != 0) { 387 uma_zfree(socket_zone, so); 388 return (NULL); 389 } 390 #endif 391 if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) { 392 uma_zfree(socket_zone, so); 393 return (NULL); 394 } 395 396 SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd"); 397 SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv"); 398 sx_init(&so->so_snd.sb_sx, "so_snd_sx"); 399 sx_init(&so->so_rcv.sb_sx, "so_rcv_sx"); 400 TAILQ_INIT(&so->so_snd.sb_aiojobq); 401 TAILQ_INIT(&so->so_rcv.sb_aiojobq); 402 TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so); 403 TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so); 404 #ifdef VIMAGE 405 VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p", 406 __func__, __LINE__, so)); 407 so->so_vnet = vnet; 408 #endif 409 /* We shouldn't need the so_global_mtx */ 410 if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) { 411 /* Do we need more comprehensive error returns? */ 412 uma_zfree(socket_zone, so); 413 return (NULL); 414 } 415 mtx_lock(&so_global_mtx); 416 so->so_gencnt = ++so_gencnt; 417 ++numopensockets; 418 #ifdef VIMAGE 419 vnet->vnet_sockcnt++; 420 #endif 421 mtx_unlock(&so_global_mtx); 422 423 return (so); 424 } 425 426 /* 427 * Free the storage associated with a socket at the socket layer, tear down 428 * locks, labels, etc. All protocol state is assumed already to have been 429 * torn down (and possibly never set up) by the caller. 430 */ 431 static void 432 sodealloc(struct socket *so) 433 { 434 435 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); 436 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL")); 437 438 mtx_lock(&so_global_mtx); 439 so->so_gencnt = ++so_gencnt; 440 --numopensockets; /* Could be below, but faster here. */ 441 #ifdef VIMAGE 442 VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p", 443 __func__, __LINE__, so)); 444 so->so_vnet->vnet_sockcnt--; 445 #endif 446 mtx_unlock(&so_global_mtx); 447 if (so->so_rcv.sb_hiwat) 448 (void)chgsbsize(so->so_cred->cr_uidinfo, 449 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 450 if (so->so_snd.sb_hiwat) 451 (void)chgsbsize(so->so_cred->cr_uidinfo, 452 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 453 /* remove accept filter if one is present. */ 454 if (so->so_accf != NULL) 455 do_setopt_accept_filter(so, NULL); 456 #ifdef MAC 457 mac_socket_destroy(so); 458 #endif 459 hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE); 460 461 crfree(so->so_cred); 462 khelp_destroy_osd(&so->osd); 463 sx_destroy(&so->so_snd.sb_sx); 464 sx_destroy(&so->so_rcv.sb_sx); 465 SOCKBUF_LOCK_DESTROY(&so->so_snd); 466 SOCKBUF_LOCK_DESTROY(&so->so_rcv); 467 uma_zfree(socket_zone, so); 468 } 469 470 /* 471 * socreate returns a socket with a ref count of 1. The socket should be 472 * closed with soclose(). 473 */ 474 int 475 socreate(int dom, struct socket **aso, int type, int proto, 476 struct ucred *cred, struct thread *td) 477 { 478 struct protosw *prp; 479 struct socket *so; 480 int error; 481 482 if (proto) 483 prp = pffindproto(dom, proto, type); 484 else 485 prp = pffindtype(dom, type); 486 487 if (prp == NULL) { 488 /* No support for domain. */ 489 if (pffinddomain(dom) == NULL) 490 return (EAFNOSUPPORT); 491 /* No support for socket type. */ 492 if (proto == 0 && type != 0) 493 return (EPROTOTYPE); 494 return (EPROTONOSUPPORT); 495 } 496 if (prp->pr_usrreqs->pru_attach == NULL || 497 prp->pr_usrreqs->pru_attach == pru_attach_notsupp) 498 return (EPROTONOSUPPORT); 499 500 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0) 501 return (EPROTONOSUPPORT); 502 503 if (prp->pr_type != type) 504 return (EPROTOTYPE); 505 so = soalloc(CRED_TO_VNET(cred)); 506 if (so == NULL) 507 return (ENOBUFS); 508 509 TAILQ_INIT(&so->so_incomp); 510 TAILQ_INIT(&so->so_comp); 511 so->so_type = type; 512 so->so_cred = crhold(cred); 513 if ((prp->pr_domain->dom_family == PF_INET) || 514 (prp->pr_domain->dom_family == PF_INET6) || 515 (prp->pr_domain->dom_family == PF_ROUTE)) 516 so->so_fibnum = td->td_proc->p_fibnum; 517 else 518 so->so_fibnum = 0; 519 so->so_proto = prp; 520 #ifdef MAC 521 mac_socket_create(cred, so); 522 #endif 523 knlist_init_mtx(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv)); 524 knlist_init_mtx(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd)); 525 so->so_count = 1; 526 /* 527 * Auto-sizing of socket buffers is managed by the protocols and 528 * the appropriate flags must be set in the pru_attach function. 529 */ 530 CURVNET_SET(so->so_vnet); 531 error = (*prp->pr_usrreqs->pru_attach)(so, proto, td); 532 CURVNET_RESTORE(); 533 if (error) { 534 KASSERT(so->so_count == 1, ("socreate: so_count %d", 535 so->so_count)); 536 so->so_count = 0; 537 sodealloc(so); 538 return (error); 539 } 540 *aso = so; 541 return (0); 542 } 543 544 #ifdef REGRESSION 545 static int regression_sonewconn_earlytest = 1; 546 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW, 547 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test"); 548 #endif 549 550 /* 551 * When an attempt at a new connection is noted on a socket which accepts 552 * connections, sonewconn is called. If the connection is possible (subject 553 * to space constraints, etc.) then we allocate a new structure, properly 554 * linked into the data structure of the original socket, and return this. 555 * Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED. 556 * 557 * Note: the ref count on the socket is 0 on return. 558 */ 559 struct socket * 560 sonewconn(struct socket *head, int connstatus) 561 { 562 static struct timeval lastover; 563 static struct timeval overinterval = { 60, 0 }; 564 static int overcount; 565 566 struct socket *so; 567 int over; 568 569 ACCEPT_LOCK(); 570 over = (head->so_qlen > 3 * head->so_qlimit / 2); 571 ACCEPT_UNLOCK(); 572 #ifdef REGRESSION 573 if (regression_sonewconn_earlytest && over) { 574 #else 575 if (over) { 576 #endif 577 overcount++; 578 579 if (ratecheck(&lastover, &overinterval)) { 580 log(LOG_DEBUG, "%s: pcb %p: Listen queue overflow: " 581 "%i already in queue awaiting acceptance " 582 "(%d occurrences)\n", 583 __func__, head->so_pcb, head->so_qlen, overcount); 584 585 overcount = 0; 586 } 587 588 return (NULL); 589 } 590 VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p", 591 __func__, __LINE__, head)); 592 so = soalloc(head->so_vnet); 593 if (so == NULL) { 594 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 595 "limit reached or out of memory\n", 596 __func__, head->so_pcb); 597 return (NULL); 598 } 599 if ((head->so_options & SO_ACCEPTFILTER) != 0) 600 connstatus = 0; 601 so->so_head = head; 602 so->so_type = head->so_type; 603 so->so_options = head->so_options &~ SO_ACCEPTCONN; 604 so->so_linger = head->so_linger; 605 so->so_state = head->so_state | SS_NOFDREF; 606 so->so_fibnum = head->so_fibnum; 607 so->so_proto = head->so_proto; 608 so->so_cred = crhold(head->so_cred); 609 #ifdef MAC 610 mac_socket_newconn(head, so); 611 #endif 612 knlist_init_mtx(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv)); 613 knlist_init_mtx(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd)); 614 VNET_SO_ASSERT(head); 615 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) { 616 sodealloc(so); 617 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 618 __func__, head->so_pcb); 619 return (NULL); 620 } 621 if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 622 sodealloc(so); 623 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", 624 __func__, head->so_pcb); 625 return (NULL); 626 } 627 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; 628 so->so_snd.sb_lowat = head->so_snd.sb_lowat; 629 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; 630 so->so_snd.sb_timeo = head->so_snd.sb_timeo; 631 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE; 632 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE; 633 so->so_state |= connstatus; 634 ACCEPT_LOCK(); 635 /* 636 * The accept socket may be tearing down but we just 637 * won a race on the ACCEPT_LOCK. 638 * However, if sctp_peeloff() is called on a 1-to-many 639 * style socket, the SO_ACCEPTCONN doesn't need to be set. 640 */ 641 if (!(head->so_options & SO_ACCEPTCONN) && 642 ((head->so_proto->pr_protocol != IPPROTO_SCTP) || 643 (head->so_type != SOCK_SEQPACKET))) { 644 SOCK_LOCK(so); 645 so->so_head = NULL; 646 sofree(so); /* NB: returns ACCEPT_UNLOCK'ed. */ 647 return (NULL); 648 } 649 if (connstatus) { 650 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 651 so->so_qstate |= SQ_COMP; 652 head->so_qlen++; 653 } else { 654 /* 655 * Keep removing sockets from the head until there's room for 656 * us to insert on the tail. In pre-locking revisions, this 657 * was a simple if(), but as we could be racing with other 658 * threads and soabort() requires dropping locks, we must 659 * loop waiting for the condition to be true. 660 */ 661 while (head->so_incqlen > head->so_qlimit) { 662 struct socket *sp; 663 sp = TAILQ_FIRST(&head->so_incomp); 664 TAILQ_REMOVE(&head->so_incomp, sp, so_list); 665 head->so_incqlen--; 666 sp->so_qstate &= ~SQ_INCOMP; 667 sp->so_head = NULL; 668 ACCEPT_UNLOCK(); 669 soabort(sp); 670 ACCEPT_LOCK(); 671 } 672 TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list); 673 so->so_qstate |= SQ_INCOMP; 674 head->so_incqlen++; 675 } 676 ACCEPT_UNLOCK(); 677 if (connstatus) { 678 sorwakeup(head); 679 wakeup_one(&head->so_timeo); 680 } 681 return (so); 682 } 683 684 int 685 sobind(struct socket *so, struct sockaddr *nam, struct thread *td) 686 { 687 int error; 688 689 CURVNET_SET(so->so_vnet); 690 error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td); 691 CURVNET_RESTORE(); 692 return (error); 693 } 694 695 int 696 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 697 { 698 int error; 699 700 CURVNET_SET(so->so_vnet); 701 error = (*so->so_proto->pr_usrreqs->pru_bindat)(fd, so, nam, td); 702 CURVNET_RESTORE(); 703 return (error); 704 } 705 706 /* 707 * solisten() transitions a socket from a non-listening state to a listening 708 * state, but can also be used to update the listen queue depth on an 709 * existing listen socket. The protocol will call back into the sockets 710 * layer using solisten_proto_check() and solisten_proto() to check and set 711 * socket-layer listen state. Call backs are used so that the protocol can 712 * acquire both protocol and socket layer locks in whatever order is required 713 * by the protocol. 714 * 715 * Protocol implementors are advised to hold the socket lock across the 716 * socket-layer test and set to avoid races at the socket layer. 717 */ 718 int 719 solisten(struct socket *so, int backlog, struct thread *td) 720 { 721 int error; 722 723 CURVNET_SET(so->so_vnet); 724 error = (*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td); 725 CURVNET_RESTORE(); 726 return (error); 727 } 728 729 int 730 solisten_proto_check(struct socket *so) 731 { 732 733 SOCK_LOCK_ASSERT(so); 734 735 if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 736 SS_ISDISCONNECTING)) 737 return (EINVAL); 738 return (0); 739 } 740 741 void 742 solisten_proto(struct socket *so, int backlog) 743 { 744 745 SOCK_LOCK_ASSERT(so); 746 747 if (backlog < 0 || backlog > somaxconn) 748 backlog = somaxconn; 749 so->so_qlimit = backlog; 750 so->so_options |= SO_ACCEPTCONN; 751 } 752 753 /* 754 * Evaluate the reference count and named references on a socket; if no 755 * references remain, free it. This should be called whenever a reference is 756 * released, such as in sorele(), but also when named reference flags are 757 * cleared in socket or protocol code. 758 * 759 * sofree() will free the socket if: 760 * 761 * - There are no outstanding file descriptor references or related consumers 762 * (so_count == 0). 763 * 764 * - The socket has been closed by user space, if ever open (SS_NOFDREF). 765 * 766 * - The protocol does not have an outstanding strong reference on the socket 767 * (SS_PROTOREF). 768 * 769 * - The socket is not in a completed connection queue, so a process has been 770 * notified that it is present. If it is removed, the user process may 771 * block in accept() despite select() saying the socket was ready. 772 */ 773 void 774 sofree(struct socket *so) 775 { 776 struct protosw *pr = so->so_proto; 777 struct socket *head; 778 779 ACCEPT_LOCK_ASSERT(); 780 SOCK_LOCK_ASSERT(so); 781 782 if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 || 783 (so->so_state & SS_PROTOREF) || (so->so_qstate & SQ_COMP)) { 784 SOCK_UNLOCK(so); 785 ACCEPT_UNLOCK(); 786 return; 787 } 788 789 head = so->so_head; 790 if (head != NULL) { 791 KASSERT((so->so_qstate & SQ_COMP) != 0 || 792 (so->so_qstate & SQ_INCOMP) != 0, 793 ("sofree: so_head != NULL, but neither SQ_COMP nor " 794 "SQ_INCOMP")); 795 KASSERT((so->so_qstate & SQ_COMP) == 0 || 796 (so->so_qstate & SQ_INCOMP) == 0, 797 ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP")); 798 TAILQ_REMOVE(&head->so_incomp, so, so_list); 799 head->so_incqlen--; 800 so->so_qstate &= ~SQ_INCOMP; 801 so->so_head = NULL; 802 } 803 KASSERT((so->so_qstate & SQ_COMP) == 0 && 804 (so->so_qstate & SQ_INCOMP) == 0, 805 ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)", 806 so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP)); 807 if (so->so_options & SO_ACCEPTCONN) { 808 KASSERT((TAILQ_EMPTY(&so->so_comp)), 809 ("sofree: so_comp populated")); 810 KASSERT((TAILQ_EMPTY(&so->so_incomp)), 811 ("sofree: so_incomp populated")); 812 } 813 SOCK_UNLOCK(so); 814 ACCEPT_UNLOCK(); 815 816 VNET_SO_ASSERT(so); 817 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 818 (*pr->pr_domain->dom_dispose)(so); 819 if (pr->pr_usrreqs->pru_detach != NULL) 820 (*pr->pr_usrreqs->pru_detach)(so); 821 822 /* 823 * From this point on, we assume that no other references to this 824 * socket exist anywhere else in the stack. Therefore, no locks need 825 * to be acquired or held. 826 * 827 * We used to do a lot of socket buffer and socket locking here, as 828 * well as invoke sorflush() and perform wakeups. The direct call to 829 * dom_dispose() and sbrelease_internal() are an inlining of what was 830 * necessary from sorflush(). 831 * 832 * Notice that the socket buffer and kqueue state are torn down 833 * before calling pru_detach. This means that protocols shold not 834 * assume they can perform socket wakeups, etc, in their detach code. 835 */ 836 sbdestroy(&so->so_snd, so); 837 sbdestroy(&so->so_rcv, so); 838 seldrain(&so->so_snd.sb_sel); 839 seldrain(&so->so_rcv.sb_sel); 840 knlist_destroy(&so->so_rcv.sb_sel.si_note); 841 knlist_destroy(&so->so_snd.sb_sel.si_note); 842 sodealloc(so); 843 } 844 845 /* 846 * Close a socket on last file table reference removal. Initiate disconnect 847 * if connected. Free socket when disconnect complete. 848 * 849 * This function will sorele() the socket. Note that soclose() may be called 850 * prior to the ref count reaching zero. The actual socket structure will 851 * not be freed until the ref count reaches zero. 852 */ 853 int 854 soclose(struct socket *so) 855 { 856 int error = 0; 857 858 KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter")); 859 860 CURVNET_SET(so->so_vnet); 861 funsetown(&so->so_sigio); 862 if (so->so_state & SS_ISCONNECTED) { 863 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 864 error = sodisconnect(so); 865 if (error) { 866 if (error == ENOTCONN) 867 error = 0; 868 goto drop; 869 } 870 } 871 if (so->so_options & SO_LINGER) { 872 if ((so->so_state & SS_ISDISCONNECTING) && 873 (so->so_state & SS_NBIO)) 874 goto drop; 875 while (so->so_state & SS_ISCONNECTED) { 876 error = tsleep(&so->so_timeo, 877 PSOCK | PCATCH, "soclos", 878 so->so_linger * hz); 879 if (error) 880 break; 881 } 882 } 883 } 884 885 drop: 886 if (so->so_proto->pr_usrreqs->pru_close != NULL) 887 (*so->so_proto->pr_usrreqs->pru_close)(so); 888 ACCEPT_LOCK(); 889 if (so->so_options & SO_ACCEPTCONN) { 890 struct socket *sp; 891 /* 892 * Prevent new additions to the accept queues due 893 * to ACCEPT_LOCK races while we are draining them. 894 */ 895 so->so_options &= ~SO_ACCEPTCONN; 896 while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) { 897 TAILQ_REMOVE(&so->so_incomp, sp, so_list); 898 so->so_incqlen--; 899 sp->so_qstate &= ~SQ_INCOMP; 900 sp->so_head = NULL; 901 ACCEPT_UNLOCK(); 902 soabort(sp); 903 ACCEPT_LOCK(); 904 } 905 while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) { 906 TAILQ_REMOVE(&so->so_comp, sp, so_list); 907 so->so_qlen--; 908 sp->so_qstate &= ~SQ_COMP; 909 sp->so_head = NULL; 910 ACCEPT_UNLOCK(); 911 soabort(sp); 912 ACCEPT_LOCK(); 913 } 914 KASSERT((TAILQ_EMPTY(&so->so_comp)), 915 ("%s: so_comp populated", __func__)); 916 KASSERT((TAILQ_EMPTY(&so->so_incomp)), 917 ("%s: so_incomp populated", __func__)); 918 } 919 SOCK_LOCK(so); 920 KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF")); 921 so->so_state |= SS_NOFDREF; 922 sorele(so); /* NB: Returns with ACCEPT_UNLOCK(). */ 923 CURVNET_RESTORE(); 924 return (error); 925 } 926 927 /* 928 * soabort() is used to abruptly tear down a connection, such as when a 929 * resource limit is reached (listen queue depth exceeded), or if a listen 930 * socket is closed while there are sockets waiting to be accepted. 931 * 932 * This interface is tricky, because it is called on an unreferenced socket, 933 * and must be called only by a thread that has actually removed the socket 934 * from the listen queue it was on, or races with other threads are risked. 935 * 936 * This interface will call into the protocol code, so must not be called 937 * with any socket locks held. Protocols do call it while holding their own 938 * recursible protocol mutexes, but this is something that should be subject 939 * to review in the future. 940 */ 941 void 942 soabort(struct socket *so) 943 { 944 945 /* 946 * In as much as is possible, assert that no references to this 947 * socket are held. This is not quite the same as asserting that the 948 * current thread is responsible for arranging for no references, but 949 * is as close as we can get for now. 950 */ 951 KASSERT(so->so_count == 0, ("soabort: so_count")); 952 KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF")); 953 KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF")); 954 KASSERT((so->so_state & SQ_COMP) == 0, ("soabort: SQ_COMP")); 955 KASSERT((so->so_state & SQ_INCOMP) == 0, ("soabort: SQ_INCOMP")); 956 VNET_SO_ASSERT(so); 957 958 if (so->so_proto->pr_usrreqs->pru_abort != NULL) 959 (*so->so_proto->pr_usrreqs->pru_abort)(so); 960 ACCEPT_LOCK(); 961 SOCK_LOCK(so); 962 sofree(so); 963 } 964 965 int 966 soaccept(struct socket *so, struct sockaddr **nam) 967 { 968 int error; 969 970 SOCK_LOCK(so); 971 KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF")); 972 so->so_state &= ~SS_NOFDREF; 973 SOCK_UNLOCK(so); 974 975 CURVNET_SET(so->so_vnet); 976 error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam); 977 CURVNET_RESTORE(); 978 return (error); 979 } 980 981 int 982 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td) 983 { 984 985 return (soconnectat(AT_FDCWD, so, nam, td)); 986 } 987 988 int 989 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 990 { 991 int error; 992 993 if (so->so_options & SO_ACCEPTCONN) 994 return (EOPNOTSUPP); 995 996 CURVNET_SET(so->so_vnet); 997 /* 998 * If protocol is connection-based, can only connect once. 999 * Otherwise, if connected, try to disconnect first. This allows 1000 * user to disconnect by connecting to, e.g., a null address. 1001 */ 1002 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 1003 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 1004 (error = sodisconnect(so)))) { 1005 error = EISCONN; 1006 } else { 1007 /* 1008 * Prevent accumulated error from previous connection from 1009 * biting us. 1010 */ 1011 so->so_error = 0; 1012 if (fd == AT_FDCWD) { 1013 error = (*so->so_proto->pr_usrreqs->pru_connect)(so, 1014 nam, td); 1015 } else { 1016 error = (*so->so_proto->pr_usrreqs->pru_connectat)(fd, 1017 so, nam, td); 1018 } 1019 } 1020 CURVNET_RESTORE(); 1021 1022 return (error); 1023 } 1024 1025 int 1026 soconnect2(struct socket *so1, struct socket *so2) 1027 { 1028 int error; 1029 1030 CURVNET_SET(so1->so_vnet); 1031 error = (*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2); 1032 CURVNET_RESTORE(); 1033 return (error); 1034 } 1035 1036 int 1037 sodisconnect(struct socket *so) 1038 { 1039 int error; 1040 1041 if ((so->so_state & SS_ISCONNECTED) == 0) 1042 return (ENOTCONN); 1043 if (so->so_state & SS_ISDISCONNECTING) 1044 return (EALREADY); 1045 VNET_SO_ASSERT(so); 1046 error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so); 1047 return (error); 1048 } 1049 1050 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT) 1051 1052 int 1053 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, 1054 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1055 { 1056 long space; 1057 ssize_t resid; 1058 int clen = 0, error, dontroute; 1059 1060 KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM")); 1061 KASSERT(so->so_proto->pr_flags & PR_ATOMIC, 1062 ("sosend_dgram: !PR_ATOMIC")); 1063 1064 if (uio != NULL) 1065 resid = uio->uio_resid; 1066 else 1067 resid = top->m_pkthdr.len; 1068 /* 1069 * In theory resid should be unsigned. However, space must be 1070 * signed, as it might be less than 0 if we over-committed, and we 1071 * must use a signed comparison of space and resid. On the other 1072 * hand, a negative resid causes us to loop sending 0-length 1073 * segments to the protocol. 1074 */ 1075 if (resid < 0) { 1076 error = EINVAL; 1077 goto out; 1078 } 1079 1080 dontroute = 1081 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0; 1082 if (td != NULL) 1083 td->td_ru.ru_msgsnd++; 1084 if (control != NULL) 1085 clen = control->m_len; 1086 1087 SOCKBUF_LOCK(&so->so_snd); 1088 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1089 SOCKBUF_UNLOCK(&so->so_snd); 1090 error = EPIPE; 1091 goto out; 1092 } 1093 if (so->so_error) { 1094 error = so->so_error; 1095 so->so_error = 0; 1096 SOCKBUF_UNLOCK(&so->so_snd); 1097 goto out; 1098 } 1099 if ((so->so_state & SS_ISCONNECTED) == 0) { 1100 /* 1101 * `sendto' and `sendmsg' is allowed on a connection-based 1102 * socket if it supports implied connect. Return ENOTCONN if 1103 * not connected and no address is supplied. 1104 */ 1105 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1106 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1107 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1108 !(resid == 0 && clen != 0)) { 1109 SOCKBUF_UNLOCK(&so->so_snd); 1110 error = ENOTCONN; 1111 goto out; 1112 } 1113 } else if (addr == NULL) { 1114 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1115 error = ENOTCONN; 1116 else 1117 error = EDESTADDRREQ; 1118 SOCKBUF_UNLOCK(&so->so_snd); 1119 goto out; 1120 } 1121 } 1122 1123 /* 1124 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a 1125 * problem and need fixing. 1126 */ 1127 space = sbspace(&so->so_snd); 1128 if (flags & MSG_OOB) 1129 space += 1024; 1130 space -= clen; 1131 SOCKBUF_UNLOCK(&so->so_snd); 1132 if (resid > space) { 1133 error = EMSGSIZE; 1134 goto out; 1135 } 1136 if (uio == NULL) { 1137 resid = 0; 1138 if (flags & MSG_EOR) 1139 top->m_flags |= M_EOR; 1140 } else { 1141 /* 1142 * Copy the data from userland into a mbuf chain. 1143 * If no data is to be copied in, a single empty mbuf 1144 * is returned. 1145 */ 1146 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr, 1147 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0))); 1148 if (top == NULL) { 1149 error = EFAULT; /* only possible error */ 1150 goto out; 1151 } 1152 space -= resid - uio->uio_resid; 1153 resid = uio->uio_resid; 1154 } 1155 KASSERT(resid == 0, ("sosend_dgram: resid != 0")); 1156 /* 1157 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock 1158 * than with. 1159 */ 1160 if (dontroute) { 1161 SOCK_LOCK(so); 1162 so->so_options |= SO_DONTROUTE; 1163 SOCK_UNLOCK(so); 1164 } 1165 /* 1166 * XXX all the SBS_CANTSENDMORE checks previously done could be out 1167 * of date. We could have received a reset packet in an interrupt or 1168 * maybe we slept while doing page faults in uiomove() etc. We could 1169 * probably recheck again inside the locking protection here, but 1170 * there are probably other places that this also happens. We must 1171 * rethink this. 1172 */ 1173 VNET_SO_ASSERT(so); 1174 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1175 (flags & MSG_OOB) ? PRUS_OOB : 1176 /* 1177 * If the user set MSG_EOF, the protocol understands this flag and 1178 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND. 1179 */ 1180 ((flags & MSG_EOF) && 1181 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1182 (resid <= 0)) ? 1183 PRUS_EOF : 1184 /* If there is more to send set PRUS_MORETOCOME */ 1185 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1186 top, addr, control, td); 1187 if (dontroute) { 1188 SOCK_LOCK(so); 1189 so->so_options &= ~SO_DONTROUTE; 1190 SOCK_UNLOCK(so); 1191 } 1192 clen = 0; 1193 control = NULL; 1194 top = NULL; 1195 out: 1196 if (top != NULL) 1197 m_freem(top); 1198 if (control != NULL) 1199 m_freem(control); 1200 return (error); 1201 } 1202 1203 /* 1204 * Send on a socket. If send must go all at once and message is larger than 1205 * send buffering, then hard error. Lock against other senders. If must go 1206 * all at once and not enough room now, then inform user that this would 1207 * block and do nothing. Otherwise, if nonblocking, send as much as 1208 * possible. The data to be sent is described by "uio" if nonzero, otherwise 1209 * by the mbuf chain "top" (which must be null if uio is not). Data provided 1210 * in mbuf chain must be small enough to send all at once. 1211 * 1212 * Returns nonzero on error, timeout or signal; callers must check for short 1213 * counts if EINTR/ERESTART are returned. Data and control buffers are freed 1214 * on return. 1215 */ 1216 int 1217 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio, 1218 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1219 { 1220 long space; 1221 ssize_t resid; 1222 int clen = 0, error, dontroute; 1223 int atomic = sosendallatonce(so) || top; 1224 1225 if (uio != NULL) 1226 resid = uio->uio_resid; 1227 else 1228 resid = top->m_pkthdr.len; 1229 /* 1230 * In theory resid should be unsigned. However, space must be 1231 * signed, as it might be less than 0 if we over-committed, and we 1232 * must use a signed comparison of space and resid. On the other 1233 * hand, a negative resid causes us to loop sending 0-length 1234 * segments to the protocol. 1235 * 1236 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 1237 * type sockets since that's an error. 1238 */ 1239 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 1240 error = EINVAL; 1241 goto out; 1242 } 1243 1244 dontroute = 1245 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 1246 (so->so_proto->pr_flags & PR_ATOMIC); 1247 if (td != NULL) 1248 td->td_ru.ru_msgsnd++; 1249 if (control != NULL) 1250 clen = control->m_len; 1251 1252 error = sblock(&so->so_snd, SBLOCKWAIT(flags)); 1253 if (error) 1254 goto out; 1255 1256 restart: 1257 do { 1258 SOCKBUF_LOCK(&so->so_snd); 1259 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1260 SOCKBUF_UNLOCK(&so->so_snd); 1261 error = EPIPE; 1262 goto release; 1263 } 1264 if (so->so_error) { 1265 error = so->so_error; 1266 so->so_error = 0; 1267 SOCKBUF_UNLOCK(&so->so_snd); 1268 goto release; 1269 } 1270 if ((so->so_state & SS_ISCONNECTED) == 0) { 1271 /* 1272 * `sendto' and `sendmsg' is allowed on a connection- 1273 * based socket if it supports implied connect. 1274 * Return ENOTCONN if not connected and no address is 1275 * supplied. 1276 */ 1277 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1278 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1279 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1280 !(resid == 0 && clen != 0)) { 1281 SOCKBUF_UNLOCK(&so->so_snd); 1282 error = ENOTCONN; 1283 goto release; 1284 } 1285 } else if (addr == NULL) { 1286 SOCKBUF_UNLOCK(&so->so_snd); 1287 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1288 error = ENOTCONN; 1289 else 1290 error = EDESTADDRREQ; 1291 goto release; 1292 } 1293 } 1294 space = sbspace(&so->so_snd); 1295 if (flags & MSG_OOB) 1296 space += 1024; 1297 if ((atomic && resid > so->so_snd.sb_hiwat) || 1298 clen > so->so_snd.sb_hiwat) { 1299 SOCKBUF_UNLOCK(&so->so_snd); 1300 error = EMSGSIZE; 1301 goto release; 1302 } 1303 if (space < resid + clen && 1304 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 1305 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) { 1306 SOCKBUF_UNLOCK(&so->so_snd); 1307 error = EWOULDBLOCK; 1308 goto release; 1309 } 1310 error = sbwait(&so->so_snd); 1311 SOCKBUF_UNLOCK(&so->so_snd); 1312 if (error) 1313 goto release; 1314 goto restart; 1315 } 1316 SOCKBUF_UNLOCK(&so->so_snd); 1317 space -= clen; 1318 do { 1319 if (uio == NULL) { 1320 resid = 0; 1321 if (flags & MSG_EOR) 1322 top->m_flags |= M_EOR; 1323 } else { 1324 /* 1325 * Copy the data from userland into a mbuf 1326 * chain. If resid is 0, which can happen 1327 * only if we have control to send, then 1328 * a single empty mbuf is returned. This 1329 * is a workaround to prevent protocol send 1330 * methods to panic. 1331 */ 1332 top = m_uiotombuf(uio, M_WAITOK, space, 1333 (atomic ? max_hdr : 0), 1334 (atomic ? M_PKTHDR : 0) | 1335 ((flags & MSG_EOR) ? M_EOR : 0)); 1336 if (top == NULL) { 1337 error = EFAULT; /* only possible error */ 1338 goto release; 1339 } 1340 space -= resid - uio->uio_resid; 1341 resid = uio->uio_resid; 1342 } 1343 if (dontroute) { 1344 SOCK_LOCK(so); 1345 so->so_options |= SO_DONTROUTE; 1346 SOCK_UNLOCK(so); 1347 } 1348 /* 1349 * XXX all the SBS_CANTSENDMORE checks previously 1350 * done could be out of date. We could have received 1351 * a reset packet in an interrupt or maybe we slept 1352 * while doing page faults in uiomove() etc. We 1353 * could probably recheck again inside the locking 1354 * protection here, but there are probably other 1355 * places that this also happens. We must rethink 1356 * this. 1357 */ 1358 VNET_SO_ASSERT(so); 1359 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1360 (flags & MSG_OOB) ? PRUS_OOB : 1361 /* 1362 * If the user set MSG_EOF, the protocol understands 1363 * this flag and nothing left to send then use 1364 * PRU_SEND_EOF instead of PRU_SEND. 1365 */ 1366 ((flags & MSG_EOF) && 1367 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1368 (resid <= 0)) ? 1369 PRUS_EOF : 1370 /* If there is more to send set PRUS_MORETOCOME. */ 1371 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1372 top, addr, control, td); 1373 if (dontroute) { 1374 SOCK_LOCK(so); 1375 so->so_options &= ~SO_DONTROUTE; 1376 SOCK_UNLOCK(so); 1377 } 1378 clen = 0; 1379 control = NULL; 1380 top = NULL; 1381 if (error) 1382 goto release; 1383 } while (resid && space > 0); 1384 } while (resid); 1385 1386 release: 1387 sbunlock(&so->so_snd); 1388 out: 1389 if (top != NULL) 1390 m_freem(top); 1391 if (control != NULL) 1392 m_freem(control); 1393 return (error); 1394 } 1395 1396 int 1397 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, 1398 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1399 { 1400 int error; 1401 1402 CURVNET_SET(so->so_vnet); 1403 error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, top, 1404 control, flags, td); 1405 CURVNET_RESTORE(); 1406 return (error); 1407 } 1408 1409 /* 1410 * The part of soreceive() that implements reading non-inline out-of-band 1411 * data from a socket. For more complete comments, see soreceive(), from 1412 * which this code originated. 1413 * 1414 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is 1415 * unable to return an mbuf chain to the caller. 1416 */ 1417 static int 1418 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags) 1419 { 1420 struct protosw *pr = so->so_proto; 1421 struct mbuf *m; 1422 int error; 1423 1424 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); 1425 VNET_SO_ASSERT(so); 1426 1427 m = m_get(M_WAITOK, MT_DATA); 1428 error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK); 1429 if (error) 1430 goto bad; 1431 do { 1432 error = uiomove(mtod(m, void *), 1433 (int) min(uio->uio_resid, m->m_len), uio); 1434 m = m_free(m); 1435 } while (uio->uio_resid && error == 0 && m); 1436 bad: 1437 if (m != NULL) 1438 m_freem(m); 1439 return (error); 1440 } 1441 1442 /* 1443 * Following replacement or removal of the first mbuf on the first mbuf chain 1444 * of a socket buffer, push necessary state changes back into the socket 1445 * buffer so that other consumers see the values consistently. 'nextrecord' 1446 * is the callers locally stored value of the original value of 1447 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. 1448 * NOTE: 'nextrecord' may be NULL. 1449 */ 1450 static __inline void 1451 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) 1452 { 1453 1454 SOCKBUF_LOCK_ASSERT(sb); 1455 /* 1456 * First, update for the new value of nextrecord. If necessary, make 1457 * it the first record. 1458 */ 1459 if (sb->sb_mb != NULL) 1460 sb->sb_mb->m_nextpkt = nextrecord; 1461 else 1462 sb->sb_mb = nextrecord; 1463 1464 /* 1465 * Now update any dependent socket buffer fields to reflect the new 1466 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the 1467 * addition of a second clause that takes care of the case where 1468 * sb_mb has been updated, but remains the last record. 1469 */ 1470 if (sb->sb_mb == NULL) { 1471 sb->sb_mbtail = NULL; 1472 sb->sb_lastrecord = NULL; 1473 } else if (sb->sb_mb->m_nextpkt == NULL) 1474 sb->sb_lastrecord = sb->sb_mb; 1475 } 1476 1477 /* 1478 * Implement receive operations on a socket. We depend on the way that 1479 * records are added to the sockbuf by sbappend. In particular, each record 1480 * (mbufs linked through m_next) must begin with an address if the protocol 1481 * so specifies, followed by an optional mbuf or mbufs containing ancillary 1482 * data, and then zero or more mbufs of data. In order to allow parallelism 1483 * between network receive and copying to user space, as well as avoid 1484 * sleeping with a mutex held, we release the socket buffer mutex during the 1485 * user space copy. Although the sockbuf is locked, new data may still be 1486 * appended, and thus we must maintain consistency of the sockbuf during that 1487 * time. 1488 * 1489 * The caller may receive the data as a single mbuf chain by supplying an 1490 * mbuf **mp0 for use in returning the chain. The uio is then used only for 1491 * the count in uio_resid. 1492 */ 1493 int 1494 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio, 1495 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1496 { 1497 struct mbuf *m, **mp; 1498 int flags, error, offset; 1499 ssize_t len; 1500 struct protosw *pr = so->so_proto; 1501 struct mbuf *nextrecord; 1502 int moff, type = 0; 1503 ssize_t orig_resid = uio->uio_resid; 1504 1505 mp = mp0; 1506 if (psa != NULL) 1507 *psa = NULL; 1508 if (controlp != NULL) 1509 *controlp = NULL; 1510 if (flagsp != NULL) 1511 flags = *flagsp &~ MSG_EOR; 1512 else 1513 flags = 0; 1514 if (flags & MSG_OOB) 1515 return (soreceive_rcvoob(so, uio, flags)); 1516 if (mp != NULL) 1517 *mp = NULL; 1518 if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING) 1519 && uio->uio_resid) { 1520 VNET_SO_ASSERT(so); 1521 (*pr->pr_usrreqs->pru_rcvd)(so, 0); 1522 } 1523 1524 error = sblock(&so->so_rcv, SBLOCKWAIT(flags)); 1525 if (error) 1526 return (error); 1527 1528 restart: 1529 SOCKBUF_LOCK(&so->so_rcv); 1530 m = so->so_rcv.sb_mb; 1531 /* 1532 * If we have less data than requested, block awaiting more (subject 1533 * to any timeout) if: 1534 * 1. the current count is less than the low water mark, or 1535 * 2. MSG_DONTWAIT is not set 1536 */ 1537 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 1538 sbavail(&so->so_rcv) < uio->uio_resid) && 1539 sbavail(&so->so_rcv) < so->so_rcv.sb_lowat && 1540 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 1541 KASSERT(m != NULL || !sbavail(&so->so_rcv), 1542 ("receive: m == %p sbavail == %u", 1543 m, sbavail(&so->so_rcv))); 1544 if (so->so_error) { 1545 if (m != NULL) 1546 goto dontblock; 1547 error = so->so_error; 1548 if ((flags & MSG_PEEK) == 0) 1549 so->so_error = 0; 1550 SOCKBUF_UNLOCK(&so->so_rcv); 1551 goto release; 1552 } 1553 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1554 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 1555 if (m == NULL) { 1556 SOCKBUF_UNLOCK(&so->so_rcv); 1557 goto release; 1558 } else 1559 goto dontblock; 1560 } 1561 for (; m != NULL; m = m->m_next) 1562 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 1563 m = so->so_rcv.sb_mb; 1564 goto dontblock; 1565 } 1566 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 1567 (so->so_proto->pr_flags & PR_CONNREQUIRED)) { 1568 SOCKBUF_UNLOCK(&so->so_rcv); 1569 error = ENOTCONN; 1570 goto release; 1571 } 1572 if (uio->uio_resid == 0) { 1573 SOCKBUF_UNLOCK(&so->so_rcv); 1574 goto release; 1575 } 1576 if ((so->so_state & SS_NBIO) || 1577 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 1578 SOCKBUF_UNLOCK(&so->so_rcv); 1579 error = EWOULDBLOCK; 1580 goto release; 1581 } 1582 SBLASTRECORDCHK(&so->so_rcv); 1583 SBLASTMBUFCHK(&so->so_rcv); 1584 error = sbwait(&so->so_rcv); 1585 SOCKBUF_UNLOCK(&so->so_rcv); 1586 if (error) 1587 goto release; 1588 goto restart; 1589 } 1590 dontblock: 1591 /* 1592 * From this point onward, we maintain 'nextrecord' as a cache of the 1593 * pointer to the next record in the socket buffer. We must keep the 1594 * various socket buffer pointers and local stack versions of the 1595 * pointers in sync, pushing out modifications before dropping the 1596 * socket buffer mutex, and re-reading them when picking it up. 1597 * 1598 * Otherwise, we will race with the network stack appending new data 1599 * or records onto the socket buffer by using inconsistent/stale 1600 * versions of the field, possibly resulting in socket buffer 1601 * corruption. 1602 * 1603 * By holding the high-level sblock(), we prevent simultaneous 1604 * readers from pulling off the front of the socket buffer. 1605 */ 1606 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1607 if (uio->uio_td) 1608 uio->uio_td->td_ru.ru_msgrcv++; 1609 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); 1610 SBLASTRECORDCHK(&so->so_rcv); 1611 SBLASTMBUFCHK(&so->so_rcv); 1612 nextrecord = m->m_nextpkt; 1613 if (pr->pr_flags & PR_ADDR) { 1614 KASSERT(m->m_type == MT_SONAME, 1615 ("m->m_type == %d", m->m_type)); 1616 orig_resid = 0; 1617 if (psa != NULL) 1618 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 1619 M_NOWAIT); 1620 if (flags & MSG_PEEK) { 1621 m = m->m_next; 1622 } else { 1623 sbfree(&so->so_rcv, m); 1624 so->so_rcv.sb_mb = m_free(m); 1625 m = so->so_rcv.sb_mb; 1626 sockbuf_pushsync(&so->so_rcv, nextrecord); 1627 } 1628 } 1629 1630 /* 1631 * Process one or more MT_CONTROL mbufs present before any data mbufs 1632 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 1633 * just copy the data; if !MSG_PEEK, we call into the protocol to 1634 * perform externalization (or freeing if controlp == NULL). 1635 */ 1636 if (m != NULL && m->m_type == MT_CONTROL) { 1637 struct mbuf *cm = NULL, *cmn; 1638 struct mbuf **cme = &cm; 1639 1640 do { 1641 if (flags & MSG_PEEK) { 1642 if (controlp != NULL) { 1643 *controlp = m_copy(m, 0, m->m_len); 1644 controlp = &(*controlp)->m_next; 1645 } 1646 m = m->m_next; 1647 } else { 1648 sbfree(&so->so_rcv, m); 1649 so->so_rcv.sb_mb = m->m_next; 1650 m->m_next = NULL; 1651 *cme = m; 1652 cme = &(*cme)->m_next; 1653 m = so->so_rcv.sb_mb; 1654 } 1655 } while (m != NULL && m->m_type == MT_CONTROL); 1656 if ((flags & MSG_PEEK) == 0) 1657 sockbuf_pushsync(&so->so_rcv, nextrecord); 1658 while (cm != NULL) { 1659 cmn = cm->m_next; 1660 cm->m_next = NULL; 1661 if (pr->pr_domain->dom_externalize != NULL) { 1662 SOCKBUF_UNLOCK(&so->so_rcv); 1663 VNET_SO_ASSERT(so); 1664 error = (*pr->pr_domain->dom_externalize) 1665 (cm, controlp, flags); 1666 SOCKBUF_LOCK(&so->so_rcv); 1667 } else if (controlp != NULL) 1668 *controlp = cm; 1669 else 1670 m_freem(cm); 1671 if (controlp != NULL) { 1672 orig_resid = 0; 1673 while (*controlp != NULL) 1674 controlp = &(*controlp)->m_next; 1675 } 1676 cm = cmn; 1677 } 1678 if (m != NULL) 1679 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 1680 else 1681 nextrecord = so->so_rcv.sb_mb; 1682 orig_resid = 0; 1683 } 1684 if (m != NULL) { 1685 if ((flags & MSG_PEEK) == 0) { 1686 KASSERT(m->m_nextpkt == nextrecord, 1687 ("soreceive: post-control, nextrecord !sync")); 1688 if (nextrecord == NULL) { 1689 KASSERT(so->so_rcv.sb_mb == m, 1690 ("soreceive: post-control, sb_mb!=m")); 1691 KASSERT(so->so_rcv.sb_lastrecord == m, 1692 ("soreceive: post-control, lastrecord!=m")); 1693 } 1694 } 1695 type = m->m_type; 1696 if (type == MT_OOBDATA) 1697 flags |= MSG_OOB; 1698 } else { 1699 if ((flags & MSG_PEEK) == 0) { 1700 KASSERT(so->so_rcv.sb_mb == nextrecord, 1701 ("soreceive: sb_mb != nextrecord")); 1702 if (so->so_rcv.sb_mb == NULL) { 1703 KASSERT(so->so_rcv.sb_lastrecord == NULL, 1704 ("soreceive: sb_lastercord != NULL")); 1705 } 1706 } 1707 } 1708 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1709 SBLASTRECORDCHK(&so->so_rcv); 1710 SBLASTMBUFCHK(&so->so_rcv); 1711 1712 /* 1713 * Now continue to read any data mbufs off of the head of the socket 1714 * buffer until the read request is satisfied. Note that 'type' is 1715 * used to store the type of any mbuf reads that have happened so far 1716 * such that soreceive() can stop reading if the type changes, which 1717 * causes soreceive() to return only one of regular data and inline 1718 * out-of-band data in a single socket receive operation. 1719 */ 1720 moff = 0; 1721 offset = 0; 1722 while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0 1723 && error == 0) { 1724 /* 1725 * If the type of mbuf has changed since the last mbuf 1726 * examined ('type'), end the receive operation. 1727 */ 1728 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1729 if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) { 1730 if (type != m->m_type) 1731 break; 1732 } else if (type == MT_OOBDATA) 1733 break; 1734 else 1735 KASSERT(m->m_type == MT_DATA, 1736 ("m->m_type == %d", m->m_type)); 1737 so->so_rcv.sb_state &= ~SBS_RCVATMARK; 1738 len = uio->uio_resid; 1739 if (so->so_oobmark && len > so->so_oobmark - offset) 1740 len = so->so_oobmark - offset; 1741 if (len > m->m_len - moff) 1742 len = m->m_len - moff; 1743 /* 1744 * If mp is set, just pass back the mbufs. Otherwise copy 1745 * them out via the uio, then free. Sockbuf must be 1746 * consistent here (points to current mbuf, it points to next 1747 * record) when we drop priority; we must note any additions 1748 * to the sockbuf when we block interrupts again. 1749 */ 1750 if (mp == NULL) { 1751 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1752 SBLASTRECORDCHK(&so->so_rcv); 1753 SBLASTMBUFCHK(&so->so_rcv); 1754 SOCKBUF_UNLOCK(&so->so_rcv); 1755 error = uiomove(mtod(m, char *) + moff, (int)len, uio); 1756 SOCKBUF_LOCK(&so->so_rcv); 1757 if (error) { 1758 /* 1759 * The MT_SONAME mbuf has already been removed 1760 * from the record, so it is necessary to 1761 * remove the data mbufs, if any, to preserve 1762 * the invariant in the case of PR_ADDR that 1763 * requires MT_SONAME mbufs at the head of 1764 * each record. 1765 */ 1766 if (m && pr->pr_flags & PR_ATOMIC && 1767 ((flags & MSG_PEEK) == 0)) 1768 (void)sbdroprecord_locked(&so->so_rcv); 1769 SOCKBUF_UNLOCK(&so->so_rcv); 1770 goto release; 1771 } 1772 } else 1773 uio->uio_resid -= len; 1774 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1775 if (len == m->m_len - moff) { 1776 if (m->m_flags & M_EOR) 1777 flags |= MSG_EOR; 1778 if (flags & MSG_PEEK) { 1779 m = m->m_next; 1780 moff = 0; 1781 } else { 1782 nextrecord = m->m_nextpkt; 1783 sbfree(&so->so_rcv, m); 1784 if (mp != NULL) { 1785 m->m_nextpkt = NULL; 1786 *mp = m; 1787 mp = &m->m_next; 1788 so->so_rcv.sb_mb = m = m->m_next; 1789 *mp = NULL; 1790 } else { 1791 so->so_rcv.sb_mb = m_free(m); 1792 m = so->so_rcv.sb_mb; 1793 } 1794 sockbuf_pushsync(&so->so_rcv, nextrecord); 1795 SBLASTRECORDCHK(&so->so_rcv); 1796 SBLASTMBUFCHK(&so->so_rcv); 1797 } 1798 } else { 1799 if (flags & MSG_PEEK) 1800 moff += len; 1801 else { 1802 if (mp != NULL) { 1803 if (flags & MSG_DONTWAIT) { 1804 *mp = m_copym(m, 0, len, 1805 M_NOWAIT); 1806 if (*mp == NULL) { 1807 /* 1808 * m_copym() couldn't 1809 * allocate an mbuf. 1810 * Adjust uio_resid back 1811 * (it was adjusted 1812 * down by len bytes, 1813 * which we didn't end 1814 * up "copying" over). 1815 */ 1816 uio->uio_resid += len; 1817 break; 1818 } 1819 } else { 1820 SOCKBUF_UNLOCK(&so->so_rcv); 1821 *mp = m_copym(m, 0, len, 1822 M_WAITOK); 1823 SOCKBUF_LOCK(&so->so_rcv); 1824 } 1825 } 1826 sbcut_locked(&so->so_rcv, len); 1827 } 1828 } 1829 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1830 if (so->so_oobmark) { 1831 if ((flags & MSG_PEEK) == 0) { 1832 so->so_oobmark -= len; 1833 if (so->so_oobmark == 0) { 1834 so->so_rcv.sb_state |= SBS_RCVATMARK; 1835 break; 1836 } 1837 } else { 1838 offset += len; 1839 if (offset == so->so_oobmark) 1840 break; 1841 } 1842 } 1843 if (flags & MSG_EOR) 1844 break; 1845 /* 1846 * If the MSG_WAITALL flag is set (for non-atomic socket), we 1847 * must not quit until "uio->uio_resid == 0" or an error 1848 * termination. If a signal/timeout occurs, return with a 1849 * short count but without error. Keep sockbuf locked 1850 * against other readers. 1851 */ 1852 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 1853 !sosendallatonce(so) && nextrecord == NULL) { 1854 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1855 if (so->so_error || 1856 so->so_rcv.sb_state & SBS_CANTRCVMORE) 1857 break; 1858 /* 1859 * Notify the protocol that some data has been 1860 * drained before blocking. 1861 */ 1862 if (pr->pr_flags & PR_WANTRCVD) { 1863 SOCKBUF_UNLOCK(&so->so_rcv); 1864 VNET_SO_ASSERT(so); 1865 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 1866 SOCKBUF_LOCK(&so->so_rcv); 1867 } 1868 SBLASTRECORDCHK(&so->so_rcv); 1869 SBLASTMBUFCHK(&so->so_rcv); 1870 /* 1871 * We could receive some data while was notifying 1872 * the protocol. Skip blocking in this case. 1873 */ 1874 if (so->so_rcv.sb_mb == NULL) { 1875 error = sbwait(&so->so_rcv); 1876 if (error) { 1877 SOCKBUF_UNLOCK(&so->so_rcv); 1878 goto release; 1879 } 1880 } 1881 m = so->so_rcv.sb_mb; 1882 if (m != NULL) 1883 nextrecord = m->m_nextpkt; 1884 } 1885 } 1886 1887 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1888 if (m != NULL && pr->pr_flags & PR_ATOMIC) { 1889 flags |= MSG_TRUNC; 1890 if ((flags & MSG_PEEK) == 0) 1891 (void) sbdroprecord_locked(&so->so_rcv); 1892 } 1893 if ((flags & MSG_PEEK) == 0) { 1894 if (m == NULL) { 1895 /* 1896 * First part is an inline SB_EMPTY_FIXUP(). Second 1897 * part makes sure sb_lastrecord is up-to-date if 1898 * there is still data in the socket buffer. 1899 */ 1900 so->so_rcv.sb_mb = nextrecord; 1901 if (so->so_rcv.sb_mb == NULL) { 1902 so->so_rcv.sb_mbtail = NULL; 1903 so->so_rcv.sb_lastrecord = NULL; 1904 } else if (nextrecord->m_nextpkt == NULL) 1905 so->so_rcv.sb_lastrecord = nextrecord; 1906 } 1907 SBLASTRECORDCHK(&so->so_rcv); 1908 SBLASTMBUFCHK(&so->so_rcv); 1909 /* 1910 * If soreceive() is being done from the socket callback, 1911 * then don't need to generate ACK to peer to update window, 1912 * since ACK will be generated on return to TCP. 1913 */ 1914 if (!(flags & MSG_SOCALLBCK) && 1915 (pr->pr_flags & PR_WANTRCVD)) { 1916 SOCKBUF_UNLOCK(&so->so_rcv); 1917 VNET_SO_ASSERT(so); 1918 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 1919 SOCKBUF_LOCK(&so->so_rcv); 1920 } 1921 } 1922 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1923 if (orig_resid == uio->uio_resid && orig_resid && 1924 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { 1925 SOCKBUF_UNLOCK(&so->so_rcv); 1926 goto restart; 1927 } 1928 SOCKBUF_UNLOCK(&so->so_rcv); 1929 1930 if (flagsp != NULL) 1931 *flagsp |= flags; 1932 release: 1933 sbunlock(&so->so_rcv); 1934 return (error); 1935 } 1936 1937 /* 1938 * Optimized version of soreceive() for stream (TCP) sockets. 1939 * XXXAO: (MSG_WAITALL | MSG_PEEK) isn't properly handled. 1940 */ 1941 int 1942 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio, 1943 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1944 { 1945 int len = 0, error = 0, flags, oresid; 1946 struct sockbuf *sb; 1947 struct mbuf *m, *n = NULL; 1948 1949 /* We only do stream sockets. */ 1950 if (so->so_type != SOCK_STREAM) 1951 return (EINVAL); 1952 if (psa != NULL) 1953 *psa = NULL; 1954 if (controlp != NULL) 1955 return (EINVAL); 1956 if (flagsp != NULL) 1957 flags = *flagsp &~ MSG_EOR; 1958 else 1959 flags = 0; 1960 if (flags & MSG_OOB) 1961 return (soreceive_rcvoob(so, uio, flags)); 1962 if (mp0 != NULL) 1963 *mp0 = NULL; 1964 1965 sb = &so->so_rcv; 1966 1967 /* Prevent other readers from entering the socket. */ 1968 error = sblock(sb, SBLOCKWAIT(flags)); 1969 if (error) 1970 goto out; 1971 SOCKBUF_LOCK(sb); 1972 1973 /* Easy one, no space to copyout anything. */ 1974 if (uio->uio_resid == 0) { 1975 error = EINVAL; 1976 goto out; 1977 } 1978 oresid = uio->uio_resid; 1979 1980 /* We will never ever get anything unless we are or were connected. */ 1981 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 1982 error = ENOTCONN; 1983 goto out; 1984 } 1985 1986 restart: 1987 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1988 1989 /* Abort if socket has reported problems. */ 1990 if (so->so_error) { 1991 if (sbavail(sb) > 0) 1992 goto deliver; 1993 if (oresid > uio->uio_resid) 1994 goto out; 1995 error = so->so_error; 1996 if (!(flags & MSG_PEEK)) 1997 so->so_error = 0; 1998 goto out; 1999 } 2000 2001 /* Door is closed. Deliver what is left, if any. */ 2002 if (sb->sb_state & SBS_CANTRCVMORE) { 2003 if (sbavail(sb) > 0) 2004 goto deliver; 2005 else 2006 goto out; 2007 } 2008 2009 /* Socket buffer is empty and we shall not block. */ 2010 if (sbavail(sb) == 0 && 2011 ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) { 2012 error = EAGAIN; 2013 goto out; 2014 } 2015 2016 /* Socket buffer got some data that we shall deliver now. */ 2017 if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) && 2018 ((so->so_state & SS_NBIO) || 2019 (flags & (MSG_DONTWAIT|MSG_NBIO)) || 2020 sbavail(sb) >= sb->sb_lowat || 2021 sbavail(sb) >= uio->uio_resid || 2022 sbavail(sb) >= sb->sb_hiwat) ) { 2023 goto deliver; 2024 } 2025 2026 /* On MSG_WAITALL we must wait until all data or error arrives. */ 2027 if ((flags & MSG_WAITALL) && 2028 (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat)) 2029 goto deliver; 2030 2031 /* 2032 * Wait and block until (more) data comes in. 2033 * NB: Drops the sockbuf lock during wait. 2034 */ 2035 error = sbwait(sb); 2036 if (error) 2037 goto out; 2038 goto restart; 2039 2040 deliver: 2041 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2042 KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__)); 2043 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__)); 2044 2045 /* Statistics. */ 2046 if (uio->uio_td) 2047 uio->uio_td->td_ru.ru_msgrcv++; 2048 2049 /* Fill uio until full or current end of socket buffer is reached. */ 2050 len = min(uio->uio_resid, sbavail(sb)); 2051 if (mp0 != NULL) { 2052 /* Dequeue as many mbufs as possible. */ 2053 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) { 2054 if (*mp0 == NULL) 2055 *mp0 = sb->sb_mb; 2056 else 2057 m_cat(*mp0, sb->sb_mb); 2058 for (m = sb->sb_mb; 2059 m != NULL && m->m_len <= len; 2060 m = m->m_next) { 2061 KASSERT(!(m->m_flags & M_NOTAVAIL), 2062 ("%s: m %p not available", __func__, m)); 2063 len -= m->m_len; 2064 uio->uio_resid -= m->m_len; 2065 sbfree(sb, m); 2066 n = m; 2067 } 2068 n->m_next = NULL; 2069 sb->sb_mb = m; 2070 sb->sb_lastrecord = sb->sb_mb; 2071 if (sb->sb_mb == NULL) 2072 SB_EMPTY_FIXUP(sb); 2073 } 2074 /* Copy the remainder. */ 2075 if (len > 0) { 2076 KASSERT(sb->sb_mb != NULL, 2077 ("%s: len > 0 && sb->sb_mb empty", __func__)); 2078 2079 m = m_copym(sb->sb_mb, 0, len, M_NOWAIT); 2080 if (m == NULL) 2081 len = 0; /* Don't flush data from sockbuf. */ 2082 else 2083 uio->uio_resid -= len; 2084 if (*mp0 != NULL) 2085 m_cat(*mp0, m); 2086 else 2087 *mp0 = m; 2088 if (*mp0 == NULL) { 2089 error = ENOBUFS; 2090 goto out; 2091 } 2092 } 2093 } else { 2094 /* NB: Must unlock socket buffer as uiomove may sleep. */ 2095 SOCKBUF_UNLOCK(sb); 2096 error = m_mbuftouio(uio, sb->sb_mb, len); 2097 SOCKBUF_LOCK(sb); 2098 if (error) 2099 goto out; 2100 } 2101 SBLASTRECORDCHK(sb); 2102 SBLASTMBUFCHK(sb); 2103 2104 /* 2105 * Remove the delivered data from the socket buffer unless we 2106 * were only peeking. 2107 */ 2108 if (!(flags & MSG_PEEK)) { 2109 if (len > 0) 2110 sbdrop_locked(sb, len); 2111 2112 /* Notify protocol that we drained some data. */ 2113 if ((so->so_proto->pr_flags & PR_WANTRCVD) && 2114 (((flags & MSG_WAITALL) && uio->uio_resid > 0) || 2115 !(flags & MSG_SOCALLBCK))) { 2116 SOCKBUF_UNLOCK(sb); 2117 VNET_SO_ASSERT(so); 2118 (*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags); 2119 SOCKBUF_LOCK(sb); 2120 } 2121 } 2122 2123 /* 2124 * For MSG_WAITALL we may have to loop again and wait for 2125 * more data to come in. 2126 */ 2127 if ((flags & MSG_WAITALL) && uio->uio_resid > 0) 2128 goto restart; 2129 out: 2130 SOCKBUF_LOCK_ASSERT(sb); 2131 SBLASTRECORDCHK(sb); 2132 SBLASTMBUFCHK(sb); 2133 SOCKBUF_UNLOCK(sb); 2134 sbunlock(sb); 2135 return (error); 2136 } 2137 2138 /* 2139 * Optimized version of soreceive() for simple datagram cases from userspace. 2140 * Unlike in the stream case, we're able to drop a datagram if copyout() 2141 * fails, and because we handle datagrams atomically, we don't need to use a 2142 * sleep lock to prevent I/O interlacing. 2143 */ 2144 int 2145 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio, 2146 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2147 { 2148 struct mbuf *m, *m2; 2149 int flags, error; 2150 ssize_t len; 2151 struct protosw *pr = so->so_proto; 2152 struct mbuf *nextrecord; 2153 2154 if (psa != NULL) 2155 *psa = NULL; 2156 if (controlp != NULL) 2157 *controlp = NULL; 2158 if (flagsp != NULL) 2159 flags = *flagsp &~ MSG_EOR; 2160 else 2161 flags = 0; 2162 2163 /* 2164 * For any complicated cases, fall back to the full 2165 * soreceive_generic(). 2166 */ 2167 if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB)) 2168 return (soreceive_generic(so, psa, uio, mp0, controlp, 2169 flagsp)); 2170 2171 /* 2172 * Enforce restrictions on use. 2173 */ 2174 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0, 2175 ("soreceive_dgram: wantrcvd")); 2176 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic")); 2177 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0, 2178 ("soreceive_dgram: SBS_RCVATMARK")); 2179 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0, 2180 ("soreceive_dgram: P_CONNREQUIRED")); 2181 2182 /* 2183 * Loop blocking while waiting for a datagram. 2184 */ 2185 SOCKBUF_LOCK(&so->so_rcv); 2186 while ((m = so->so_rcv.sb_mb) == NULL) { 2187 KASSERT(sbavail(&so->so_rcv) == 0, 2188 ("soreceive_dgram: sb_mb NULL but sbavail %u", 2189 sbavail(&so->so_rcv))); 2190 if (so->so_error) { 2191 error = so->so_error; 2192 so->so_error = 0; 2193 SOCKBUF_UNLOCK(&so->so_rcv); 2194 return (error); 2195 } 2196 if (so->so_rcv.sb_state & SBS_CANTRCVMORE || 2197 uio->uio_resid == 0) { 2198 SOCKBUF_UNLOCK(&so->so_rcv); 2199 return (0); 2200 } 2201 if ((so->so_state & SS_NBIO) || 2202 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2203 SOCKBUF_UNLOCK(&so->so_rcv); 2204 return (EWOULDBLOCK); 2205 } 2206 SBLASTRECORDCHK(&so->so_rcv); 2207 SBLASTMBUFCHK(&so->so_rcv); 2208 error = sbwait(&so->so_rcv); 2209 if (error) { 2210 SOCKBUF_UNLOCK(&so->so_rcv); 2211 return (error); 2212 } 2213 } 2214 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2215 2216 if (uio->uio_td) 2217 uio->uio_td->td_ru.ru_msgrcv++; 2218 SBLASTRECORDCHK(&so->so_rcv); 2219 SBLASTMBUFCHK(&so->so_rcv); 2220 nextrecord = m->m_nextpkt; 2221 if (nextrecord == NULL) { 2222 KASSERT(so->so_rcv.sb_lastrecord == m, 2223 ("soreceive_dgram: lastrecord != m")); 2224 } 2225 2226 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord, 2227 ("soreceive_dgram: m_nextpkt != nextrecord")); 2228 2229 /* 2230 * Pull 'm' and its chain off the front of the packet queue. 2231 */ 2232 so->so_rcv.sb_mb = NULL; 2233 sockbuf_pushsync(&so->so_rcv, nextrecord); 2234 2235 /* 2236 * Walk 'm's chain and free that many bytes from the socket buffer. 2237 */ 2238 for (m2 = m; m2 != NULL; m2 = m2->m_next) 2239 sbfree(&so->so_rcv, m2); 2240 2241 /* 2242 * Do a few last checks before we let go of the lock. 2243 */ 2244 SBLASTRECORDCHK(&so->so_rcv); 2245 SBLASTMBUFCHK(&so->so_rcv); 2246 SOCKBUF_UNLOCK(&so->so_rcv); 2247 2248 if (pr->pr_flags & PR_ADDR) { 2249 KASSERT(m->m_type == MT_SONAME, 2250 ("m->m_type == %d", m->m_type)); 2251 if (psa != NULL) 2252 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2253 M_NOWAIT); 2254 m = m_free(m); 2255 } 2256 if (m == NULL) { 2257 /* XXXRW: Can this happen? */ 2258 return (0); 2259 } 2260 2261 /* 2262 * Packet to copyout() is now in 'm' and it is disconnected from the 2263 * queue. 2264 * 2265 * Process one or more MT_CONTROL mbufs present before any data mbufs 2266 * in the first mbuf chain on the socket buffer. We call into the 2267 * protocol to perform externalization (or freeing if controlp == 2268 * NULL). In some cases there can be only MT_CONTROL mbufs without 2269 * MT_DATA mbufs. 2270 */ 2271 if (m->m_type == MT_CONTROL) { 2272 struct mbuf *cm = NULL, *cmn; 2273 struct mbuf **cme = &cm; 2274 2275 do { 2276 m2 = m->m_next; 2277 m->m_next = NULL; 2278 *cme = m; 2279 cme = &(*cme)->m_next; 2280 m = m2; 2281 } while (m != NULL && m->m_type == MT_CONTROL); 2282 while (cm != NULL) { 2283 cmn = cm->m_next; 2284 cm->m_next = NULL; 2285 if (pr->pr_domain->dom_externalize != NULL) { 2286 error = (*pr->pr_domain->dom_externalize) 2287 (cm, controlp, flags); 2288 } else if (controlp != NULL) 2289 *controlp = cm; 2290 else 2291 m_freem(cm); 2292 if (controlp != NULL) { 2293 while (*controlp != NULL) 2294 controlp = &(*controlp)->m_next; 2295 } 2296 cm = cmn; 2297 } 2298 } 2299 KASSERT(m == NULL || m->m_type == MT_DATA, 2300 ("soreceive_dgram: !data")); 2301 while (m != NULL && uio->uio_resid > 0) { 2302 len = uio->uio_resid; 2303 if (len > m->m_len) 2304 len = m->m_len; 2305 error = uiomove(mtod(m, char *), (int)len, uio); 2306 if (error) { 2307 m_freem(m); 2308 return (error); 2309 } 2310 if (len == m->m_len) 2311 m = m_free(m); 2312 else { 2313 m->m_data += len; 2314 m->m_len -= len; 2315 } 2316 } 2317 if (m != NULL) { 2318 flags |= MSG_TRUNC; 2319 m_freem(m); 2320 } 2321 if (flagsp != NULL) 2322 *flagsp |= flags; 2323 return (0); 2324 } 2325 2326 int 2327 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, 2328 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2329 { 2330 int error; 2331 2332 CURVNET_SET(so->so_vnet); 2333 error = (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, mp0, 2334 controlp, flagsp)); 2335 CURVNET_RESTORE(); 2336 return (error); 2337 } 2338 2339 int 2340 soshutdown(struct socket *so, int how) 2341 { 2342 struct protosw *pr = so->so_proto; 2343 int error; 2344 2345 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 2346 return (EINVAL); 2347 if ((so->so_state & 2348 (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) 2349 return (ENOTCONN); 2350 2351 CURVNET_SET(so->so_vnet); 2352 if (pr->pr_usrreqs->pru_flush != NULL) 2353 (*pr->pr_usrreqs->pru_flush)(so, how); 2354 if (how != SHUT_WR) 2355 sorflush(so); 2356 if (how != SHUT_RD) { 2357 error = (*pr->pr_usrreqs->pru_shutdown)(so); 2358 wakeup(&so->so_timeo); 2359 CURVNET_RESTORE(); 2360 return (error); 2361 } 2362 wakeup(&so->so_timeo); 2363 CURVNET_RESTORE(); 2364 return (0); 2365 } 2366 2367 void 2368 sorflush(struct socket *so) 2369 { 2370 struct sockbuf *sb = &so->so_rcv; 2371 struct protosw *pr = so->so_proto; 2372 struct socket aso; 2373 2374 VNET_SO_ASSERT(so); 2375 2376 /* 2377 * In order to avoid calling dom_dispose with the socket buffer mutex 2378 * held, and in order to generally avoid holding the lock for a long 2379 * time, we make a copy of the socket buffer and clear the original 2380 * (except locks, state). The new socket buffer copy won't have 2381 * initialized locks so we can only call routines that won't use or 2382 * assert those locks. 2383 * 2384 * Dislodge threads currently blocked in receive and wait to acquire 2385 * a lock against other simultaneous readers before clearing the 2386 * socket buffer. Don't let our acquire be interrupted by a signal 2387 * despite any existing socket disposition on interruptable waiting. 2388 */ 2389 socantrcvmore(so); 2390 (void) sblock(sb, SBL_WAIT | SBL_NOINTR); 2391 2392 /* 2393 * Invalidate/clear most of the sockbuf structure, but leave selinfo 2394 * and mutex data unchanged. 2395 */ 2396 SOCKBUF_LOCK(sb); 2397 bzero(&aso, sizeof(aso)); 2398 aso.so_pcb = so->so_pcb; 2399 bcopy(&sb->sb_startzero, &aso.so_rcv.sb_startzero, 2400 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 2401 bzero(&sb->sb_startzero, 2402 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 2403 SOCKBUF_UNLOCK(sb); 2404 sbunlock(sb); 2405 2406 /* 2407 * Dispose of special rights and flush the copied socket. Don't call 2408 * any unsafe routines (that rely on locks being initialized) on aso. 2409 */ 2410 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 2411 (*pr->pr_domain->dom_dispose)(&aso); 2412 sbrelease_internal(&aso.so_rcv, so); 2413 } 2414 2415 /* 2416 * Wrapper for Socket established helper hook. 2417 * Parameters: socket, context of the hook point, hook id. 2418 */ 2419 static int inline 2420 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id) 2421 { 2422 struct socket_hhook_data hhook_data = { 2423 .so = so, 2424 .hctx = hctx, 2425 .m = NULL, 2426 .status = 0 2427 }; 2428 2429 CURVNET_SET(so->so_vnet); 2430 HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd); 2431 CURVNET_RESTORE(); 2432 2433 /* Ugly but needed, since hhooks return void for now */ 2434 return (hhook_data.status); 2435 } 2436 2437 /* 2438 * Perhaps this routine, and sooptcopyout(), below, ought to come in an 2439 * additional variant to handle the case where the option value needs to be 2440 * some kind of integer, but not a specific size. In addition to their use 2441 * here, these functions are also called by the protocol-level pr_ctloutput() 2442 * routines. 2443 */ 2444 int 2445 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen) 2446 { 2447 size_t valsize; 2448 2449 /* 2450 * If the user gives us more than we wanted, we ignore it, but if we 2451 * don't get the minimum length the caller wants, we return EINVAL. 2452 * On success, sopt->sopt_valsize is set to however much we actually 2453 * retrieved. 2454 */ 2455 if ((valsize = sopt->sopt_valsize) < minlen) 2456 return EINVAL; 2457 if (valsize > len) 2458 sopt->sopt_valsize = valsize = len; 2459 2460 if (sopt->sopt_td != NULL) 2461 return (copyin(sopt->sopt_val, buf, valsize)); 2462 2463 bcopy(sopt->sopt_val, buf, valsize); 2464 return (0); 2465 } 2466 2467 /* 2468 * Kernel version of setsockopt(2). 2469 * 2470 * XXX: optlen is size_t, not socklen_t 2471 */ 2472 int 2473 so_setsockopt(struct socket *so, int level, int optname, void *optval, 2474 size_t optlen) 2475 { 2476 struct sockopt sopt; 2477 2478 sopt.sopt_level = level; 2479 sopt.sopt_name = optname; 2480 sopt.sopt_dir = SOPT_SET; 2481 sopt.sopt_val = optval; 2482 sopt.sopt_valsize = optlen; 2483 sopt.sopt_td = NULL; 2484 return (sosetopt(so, &sopt)); 2485 } 2486 2487 int 2488 sosetopt(struct socket *so, struct sockopt *sopt) 2489 { 2490 int error, optval; 2491 struct linger l; 2492 struct timeval tv; 2493 sbintime_t val; 2494 uint32_t val32; 2495 #ifdef MAC 2496 struct mac extmac; 2497 #endif 2498 2499 CURVNET_SET(so->so_vnet); 2500 error = 0; 2501 if (sopt->sopt_level != SOL_SOCKET) { 2502 if (so->so_proto->pr_ctloutput != NULL) { 2503 error = (*so->so_proto->pr_ctloutput)(so, sopt); 2504 CURVNET_RESTORE(); 2505 return (error); 2506 } 2507 error = ENOPROTOOPT; 2508 } else { 2509 switch (sopt->sopt_name) { 2510 case SO_ACCEPTFILTER: 2511 error = do_setopt_accept_filter(so, sopt); 2512 if (error) 2513 goto bad; 2514 break; 2515 2516 case SO_LINGER: 2517 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 2518 if (error) 2519 goto bad; 2520 2521 SOCK_LOCK(so); 2522 so->so_linger = l.l_linger; 2523 if (l.l_onoff) 2524 so->so_options |= SO_LINGER; 2525 else 2526 so->so_options &= ~SO_LINGER; 2527 SOCK_UNLOCK(so); 2528 break; 2529 2530 case SO_DEBUG: 2531 case SO_KEEPALIVE: 2532 case SO_DONTROUTE: 2533 case SO_USELOOPBACK: 2534 case SO_BROADCAST: 2535 case SO_REUSEADDR: 2536 case SO_REUSEPORT: 2537 case SO_OOBINLINE: 2538 case SO_TIMESTAMP: 2539 case SO_BINTIME: 2540 case SO_NOSIGPIPE: 2541 case SO_NO_DDP: 2542 case SO_NO_OFFLOAD: 2543 error = sooptcopyin(sopt, &optval, sizeof optval, 2544 sizeof optval); 2545 if (error) 2546 goto bad; 2547 SOCK_LOCK(so); 2548 if (optval) 2549 so->so_options |= sopt->sopt_name; 2550 else 2551 so->so_options &= ~sopt->sopt_name; 2552 SOCK_UNLOCK(so); 2553 break; 2554 2555 case SO_SETFIB: 2556 error = sooptcopyin(sopt, &optval, sizeof optval, 2557 sizeof optval); 2558 if (error) 2559 goto bad; 2560 2561 if (optval < 0 || optval >= rt_numfibs) { 2562 error = EINVAL; 2563 goto bad; 2564 } 2565 if (((so->so_proto->pr_domain->dom_family == PF_INET) || 2566 (so->so_proto->pr_domain->dom_family == PF_INET6) || 2567 (so->so_proto->pr_domain->dom_family == PF_ROUTE))) 2568 so->so_fibnum = optval; 2569 else 2570 so->so_fibnum = 0; 2571 break; 2572 2573 case SO_USER_COOKIE: 2574 error = sooptcopyin(sopt, &val32, sizeof val32, 2575 sizeof val32); 2576 if (error) 2577 goto bad; 2578 so->so_user_cookie = val32; 2579 break; 2580 2581 case SO_SNDBUF: 2582 case SO_RCVBUF: 2583 case SO_SNDLOWAT: 2584 case SO_RCVLOWAT: 2585 error = sooptcopyin(sopt, &optval, sizeof optval, 2586 sizeof optval); 2587 if (error) 2588 goto bad; 2589 2590 /* 2591 * Values < 1 make no sense for any of these options, 2592 * so disallow them. 2593 */ 2594 if (optval < 1) { 2595 error = EINVAL; 2596 goto bad; 2597 } 2598 2599 switch (sopt->sopt_name) { 2600 case SO_SNDBUF: 2601 case SO_RCVBUF: 2602 if (sbreserve(sopt->sopt_name == SO_SNDBUF ? 2603 &so->so_snd : &so->so_rcv, (u_long)optval, 2604 so, curthread) == 0) { 2605 error = ENOBUFS; 2606 goto bad; 2607 } 2608 (sopt->sopt_name == SO_SNDBUF ? &so->so_snd : 2609 &so->so_rcv)->sb_flags &= ~SB_AUTOSIZE; 2610 break; 2611 2612 /* 2613 * Make sure the low-water is never greater than the 2614 * high-water. 2615 */ 2616 case SO_SNDLOWAT: 2617 SOCKBUF_LOCK(&so->so_snd); 2618 so->so_snd.sb_lowat = 2619 (optval > so->so_snd.sb_hiwat) ? 2620 so->so_snd.sb_hiwat : optval; 2621 SOCKBUF_UNLOCK(&so->so_snd); 2622 break; 2623 case SO_RCVLOWAT: 2624 SOCKBUF_LOCK(&so->so_rcv); 2625 so->so_rcv.sb_lowat = 2626 (optval > so->so_rcv.sb_hiwat) ? 2627 so->so_rcv.sb_hiwat : optval; 2628 SOCKBUF_UNLOCK(&so->so_rcv); 2629 break; 2630 } 2631 break; 2632 2633 case SO_SNDTIMEO: 2634 case SO_RCVTIMEO: 2635 #ifdef COMPAT_FREEBSD32 2636 if (SV_CURPROC_FLAG(SV_ILP32)) { 2637 struct timeval32 tv32; 2638 2639 error = sooptcopyin(sopt, &tv32, sizeof tv32, 2640 sizeof tv32); 2641 CP(tv32, tv, tv_sec); 2642 CP(tv32, tv, tv_usec); 2643 } else 2644 #endif 2645 error = sooptcopyin(sopt, &tv, sizeof tv, 2646 sizeof tv); 2647 if (error) 2648 goto bad; 2649 if (tv.tv_sec < 0 || tv.tv_usec < 0 || 2650 tv.tv_usec >= 1000000) { 2651 error = EDOM; 2652 goto bad; 2653 } 2654 if (tv.tv_sec > INT32_MAX) 2655 val = SBT_MAX; 2656 else 2657 val = tvtosbt(tv); 2658 switch (sopt->sopt_name) { 2659 case SO_SNDTIMEO: 2660 so->so_snd.sb_timeo = val; 2661 break; 2662 case SO_RCVTIMEO: 2663 so->so_rcv.sb_timeo = val; 2664 break; 2665 } 2666 break; 2667 2668 case SO_LABEL: 2669 #ifdef MAC 2670 error = sooptcopyin(sopt, &extmac, sizeof extmac, 2671 sizeof extmac); 2672 if (error) 2673 goto bad; 2674 error = mac_setsockopt_label(sopt->sopt_td->td_ucred, 2675 so, &extmac); 2676 #else 2677 error = EOPNOTSUPP; 2678 #endif 2679 break; 2680 2681 default: 2682 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 2683 error = hhook_run_socket(so, sopt, 2684 HHOOK_SOCKET_OPT); 2685 else 2686 error = ENOPROTOOPT; 2687 break; 2688 } 2689 if (error == 0 && so->so_proto->pr_ctloutput != NULL) 2690 (void)(*so->so_proto->pr_ctloutput)(so, sopt); 2691 } 2692 bad: 2693 CURVNET_RESTORE(); 2694 return (error); 2695 } 2696 2697 /* 2698 * Helper routine for getsockopt. 2699 */ 2700 int 2701 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 2702 { 2703 int error; 2704 size_t valsize; 2705 2706 error = 0; 2707 2708 /* 2709 * Documented get behavior is that we always return a value, possibly 2710 * truncated to fit in the user's buffer. Traditional behavior is 2711 * that we always tell the user precisely how much we copied, rather 2712 * than something useful like the total amount we had available for 2713 * her. Note that this interface is not idempotent; the entire 2714 * answer must be generated ahead of time. 2715 */ 2716 valsize = min(len, sopt->sopt_valsize); 2717 sopt->sopt_valsize = valsize; 2718 if (sopt->sopt_val != NULL) { 2719 if (sopt->sopt_td != NULL) 2720 error = copyout(buf, sopt->sopt_val, valsize); 2721 else 2722 bcopy(buf, sopt->sopt_val, valsize); 2723 } 2724 return (error); 2725 } 2726 2727 int 2728 sogetopt(struct socket *so, struct sockopt *sopt) 2729 { 2730 int error, optval; 2731 struct linger l; 2732 struct timeval tv; 2733 #ifdef MAC 2734 struct mac extmac; 2735 #endif 2736 2737 CURVNET_SET(so->so_vnet); 2738 error = 0; 2739 if (sopt->sopt_level != SOL_SOCKET) { 2740 if (so->so_proto->pr_ctloutput != NULL) 2741 error = (*so->so_proto->pr_ctloutput)(so, sopt); 2742 else 2743 error = ENOPROTOOPT; 2744 CURVNET_RESTORE(); 2745 return (error); 2746 } else { 2747 switch (sopt->sopt_name) { 2748 case SO_ACCEPTFILTER: 2749 error = do_getopt_accept_filter(so, sopt); 2750 break; 2751 2752 case SO_LINGER: 2753 SOCK_LOCK(so); 2754 l.l_onoff = so->so_options & SO_LINGER; 2755 l.l_linger = so->so_linger; 2756 SOCK_UNLOCK(so); 2757 error = sooptcopyout(sopt, &l, sizeof l); 2758 break; 2759 2760 case SO_USELOOPBACK: 2761 case SO_DONTROUTE: 2762 case SO_DEBUG: 2763 case SO_KEEPALIVE: 2764 case SO_REUSEADDR: 2765 case SO_REUSEPORT: 2766 case SO_BROADCAST: 2767 case SO_OOBINLINE: 2768 case SO_ACCEPTCONN: 2769 case SO_TIMESTAMP: 2770 case SO_BINTIME: 2771 case SO_NOSIGPIPE: 2772 optval = so->so_options & sopt->sopt_name; 2773 integer: 2774 error = sooptcopyout(sopt, &optval, sizeof optval); 2775 break; 2776 2777 case SO_TYPE: 2778 optval = so->so_type; 2779 goto integer; 2780 2781 case SO_PROTOCOL: 2782 optval = so->so_proto->pr_protocol; 2783 goto integer; 2784 2785 case SO_ERROR: 2786 SOCK_LOCK(so); 2787 optval = so->so_error; 2788 so->so_error = 0; 2789 SOCK_UNLOCK(so); 2790 goto integer; 2791 2792 case SO_SNDBUF: 2793 optval = so->so_snd.sb_hiwat; 2794 goto integer; 2795 2796 case SO_RCVBUF: 2797 optval = so->so_rcv.sb_hiwat; 2798 goto integer; 2799 2800 case SO_SNDLOWAT: 2801 optval = so->so_snd.sb_lowat; 2802 goto integer; 2803 2804 case SO_RCVLOWAT: 2805 optval = so->so_rcv.sb_lowat; 2806 goto integer; 2807 2808 case SO_SNDTIMEO: 2809 case SO_RCVTIMEO: 2810 tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ? 2811 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 2812 #ifdef COMPAT_FREEBSD32 2813 if (SV_CURPROC_FLAG(SV_ILP32)) { 2814 struct timeval32 tv32; 2815 2816 CP(tv, tv32, tv_sec); 2817 CP(tv, tv32, tv_usec); 2818 error = sooptcopyout(sopt, &tv32, sizeof tv32); 2819 } else 2820 #endif 2821 error = sooptcopyout(sopt, &tv, sizeof tv); 2822 break; 2823 2824 case SO_LABEL: 2825 #ifdef MAC 2826 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 2827 sizeof(extmac)); 2828 if (error) 2829 goto bad; 2830 error = mac_getsockopt_label(sopt->sopt_td->td_ucred, 2831 so, &extmac); 2832 if (error) 2833 goto bad; 2834 error = sooptcopyout(sopt, &extmac, sizeof extmac); 2835 #else 2836 error = EOPNOTSUPP; 2837 #endif 2838 break; 2839 2840 case SO_PEERLABEL: 2841 #ifdef MAC 2842 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 2843 sizeof(extmac)); 2844 if (error) 2845 goto bad; 2846 error = mac_getsockopt_peerlabel( 2847 sopt->sopt_td->td_ucred, so, &extmac); 2848 if (error) 2849 goto bad; 2850 error = sooptcopyout(sopt, &extmac, sizeof extmac); 2851 #else 2852 error = EOPNOTSUPP; 2853 #endif 2854 break; 2855 2856 case SO_LISTENQLIMIT: 2857 optval = so->so_qlimit; 2858 goto integer; 2859 2860 case SO_LISTENQLEN: 2861 optval = so->so_qlen; 2862 goto integer; 2863 2864 case SO_LISTENINCQLEN: 2865 optval = so->so_incqlen; 2866 goto integer; 2867 2868 default: 2869 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 2870 error = hhook_run_socket(so, sopt, 2871 HHOOK_SOCKET_OPT); 2872 else 2873 error = ENOPROTOOPT; 2874 break; 2875 } 2876 } 2877 #ifdef MAC 2878 bad: 2879 #endif 2880 CURVNET_RESTORE(); 2881 return (error); 2882 } 2883 2884 int 2885 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 2886 { 2887 struct mbuf *m, *m_prev; 2888 int sopt_size = sopt->sopt_valsize; 2889 2890 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 2891 if (m == NULL) 2892 return ENOBUFS; 2893 if (sopt_size > MLEN) { 2894 MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT); 2895 if ((m->m_flags & M_EXT) == 0) { 2896 m_free(m); 2897 return ENOBUFS; 2898 } 2899 m->m_len = min(MCLBYTES, sopt_size); 2900 } else { 2901 m->m_len = min(MLEN, sopt_size); 2902 } 2903 sopt_size -= m->m_len; 2904 *mp = m; 2905 m_prev = m; 2906 2907 while (sopt_size) { 2908 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 2909 if (m == NULL) { 2910 m_freem(*mp); 2911 return ENOBUFS; 2912 } 2913 if (sopt_size > MLEN) { 2914 MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK : 2915 M_NOWAIT); 2916 if ((m->m_flags & M_EXT) == 0) { 2917 m_freem(m); 2918 m_freem(*mp); 2919 return ENOBUFS; 2920 } 2921 m->m_len = min(MCLBYTES, sopt_size); 2922 } else { 2923 m->m_len = min(MLEN, sopt_size); 2924 } 2925 sopt_size -= m->m_len; 2926 m_prev->m_next = m; 2927 m_prev = m; 2928 } 2929 return (0); 2930 } 2931 2932 int 2933 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 2934 { 2935 struct mbuf *m0 = m; 2936 2937 if (sopt->sopt_val == NULL) 2938 return (0); 2939 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 2940 if (sopt->sopt_td != NULL) { 2941 int error; 2942 2943 error = copyin(sopt->sopt_val, mtod(m, char *), 2944 m->m_len); 2945 if (error != 0) { 2946 m_freem(m0); 2947 return(error); 2948 } 2949 } else 2950 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 2951 sopt->sopt_valsize -= m->m_len; 2952 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 2953 m = m->m_next; 2954 } 2955 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 2956 panic("ip6_sooptmcopyin"); 2957 return (0); 2958 } 2959 2960 int 2961 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 2962 { 2963 struct mbuf *m0 = m; 2964 size_t valsize = 0; 2965 2966 if (sopt->sopt_val == NULL) 2967 return (0); 2968 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 2969 if (sopt->sopt_td != NULL) { 2970 int error; 2971 2972 error = copyout(mtod(m, char *), sopt->sopt_val, 2973 m->m_len); 2974 if (error != 0) { 2975 m_freem(m0); 2976 return(error); 2977 } 2978 } else 2979 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 2980 sopt->sopt_valsize -= m->m_len; 2981 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 2982 valsize += m->m_len; 2983 m = m->m_next; 2984 } 2985 if (m != NULL) { 2986 /* enough soopt buffer should be given from user-land */ 2987 m_freem(m0); 2988 return(EINVAL); 2989 } 2990 sopt->sopt_valsize = valsize; 2991 return (0); 2992 } 2993 2994 /* 2995 * sohasoutofband(): protocol notifies socket layer of the arrival of new 2996 * out-of-band data, which will then notify socket consumers. 2997 */ 2998 void 2999 sohasoutofband(struct socket *so) 3000 { 3001 3002 if (so->so_sigio != NULL) 3003 pgsigio(&so->so_sigio, SIGURG, 0); 3004 selwakeuppri(&so->so_rcv.sb_sel, PSOCK); 3005 } 3006 3007 int 3008 sopoll(struct socket *so, int events, struct ucred *active_cred, 3009 struct thread *td) 3010 { 3011 3012 /* 3013 * We do not need to set or assert curvnet as long as everyone uses 3014 * sopoll_generic(). 3015 */ 3016 return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred, 3017 td)); 3018 } 3019 3020 int 3021 sopoll_generic(struct socket *so, int events, struct ucred *active_cred, 3022 struct thread *td) 3023 { 3024 int revents = 0; 3025 3026 SOCKBUF_LOCK(&so->so_snd); 3027 SOCKBUF_LOCK(&so->so_rcv); 3028 if (events & (POLLIN | POLLRDNORM)) 3029 if (soreadabledata(so)) 3030 revents |= events & (POLLIN | POLLRDNORM); 3031 3032 if (events & (POLLOUT | POLLWRNORM)) 3033 if (sowriteable(so)) 3034 revents |= events & (POLLOUT | POLLWRNORM); 3035 3036 if (events & (POLLPRI | POLLRDBAND)) 3037 if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK)) 3038 revents |= events & (POLLPRI | POLLRDBAND); 3039 3040 if ((events & POLLINIGNEOF) == 0) { 3041 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3042 revents |= events & (POLLIN | POLLRDNORM); 3043 if (so->so_snd.sb_state & SBS_CANTSENDMORE) 3044 revents |= POLLHUP; 3045 } 3046 } 3047 3048 if (revents == 0) { 3049 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) { 3050 selrecord(td, &so->so_rcv.sb_sel); 3051 so->so_rcv.sb_flags |= SB_SEL; 3052 } 3053 3054 if (events & (POLLOUT | POLLWRNORM)) { 3055 selrecord(td, &so->so_snd.sb_sel); 3056 so->so_snd.sb_flags |= SB_SEL; 3057 } 3058 } 3059 3060 SOCKBUF_UNLOCK(&so->so_rcv); 3061 SOCKBUF_UNLOCK(&so->so_snd); 3062 return (revents); 3063 } 3064 3065 int 3066 soo_kqfilter(struct file *fp, struct knote *kn) 3067 { 3068 struct socket *so = kn->kn_fp->f_data; 3069 struct sockbuf *sb; 3070 3071 switch (kn->kn_filter) { 3072 case EVFILT_READ: 3073 if (so->so_options & SO_ACCEPTCONN) 3074 kn->kn_fop = &solisten_filtops; 3075 else 3076 kn->kn_fop = &soread_filtops; 3077 sb = &so->so_rcv; 3078 break; 3079 case EVFILT_WRITE: 3080 kn->kn_fop = &sowrite_filtops; 3081 sb = &so->so_snd; 3082 break; 3083 default: 3084 return (EINVAL); 3085 } 3086 3087 SOCKBUF_LOCK(sb); 3088 knlist_add(&sb->sb_sel.si_note, kn, 1); 3089 sb->sb_flags |= SB_KNOTE; 3090 SOCKBUF_UNLOCK(sb); 3091 return (0); 3092 } 3093 3094 /* 3095 * Some routines that return EOPNOTSUPP for entry points that are not 3096 * supported by a protocol. Fill in as needed. 3097 */ 3098 int 3099 pru_accept_notsupp(struct socket *so, struct sockaddr **nam) 3100 { 3101 3102 return EOPNOTSUPP; 3103 } 3104 3105 int 3106 pru_aio_queue_notsupp(struct socket *so, struct kaiocb *job) 3107 { 3108 3109 return EOPNOTSUPP; 3110 } 3111 3112 int 3113 pru_attach_notsupp(struct socket *so, int proto, struct thread *td) 3114 { 3115 3116 return EOPNOTSUPP; 3117 } 3118 3119 int 3120 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 3121 { 3122 3123 return EOPNOTSUPP; 3124 } 3125 3126 int 3127 pru_bindat_notsupp(int fd, struct socket *so, struct sockaddr *nam, 3128 struct thread *td) 3129 { 3130 3131 return EOPNOTSUPP; 3132 } 3133 3134 int 3135 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 3136 { 3137 3138 return EOPNOTSUPP; 3139 } 3140 3141 int 3142 pru_connectat_notsupp(int fd, struct socket *so, struct sockaddr *nam, 3143 struct thread *td) 3144 { 3145 3146 return EOPNOTSUPP; 3147 } 3148 3149 int 3150 pru_connect2_notsupp(struct socket *so1, struct socket *so2) 3151 { 3152 3153 return EOPNOTSUPP; 3154 } 3155 3156 int 3157 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, 3158 struct ifnet *ifp, struct thread *td) 3159 { 3160 3161 return EOPNOTSUPP; 3162 } 3163 3164 int 3165 pru_disconnect_notsupp(struct socket *so) 3166 { 3167 3168 return EOPNOTSUPP; 3169 } 3170 3171 int 3172 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td) 3173 { 3174 3175 return EOPNOTSUPP; 3176 } 3177 3178 int 3179 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam) 3180 { 3181 3182 return EOPNOTSUPP; 3183 } 3184 3185 int 3186 pru_rcvd_notsupp(struct socket *so, int flags) 3187 { 3188 3189 return EOPNOTSUPP; 3190 } 3191 3192 int 3193 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) 3194 { 3195 3196 return EOPNOTSUPP; 3197 } 3198 3199 int 3200 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m, 3201 struct sockaddr *addr, struct mbuf *control, struct thread *td) 3202 { 3203 3204 return EOPNOTSUPP; 3205 } 3206 3207 int 3208 pru_ready_notsupp(struct socket *so, struct mbuf *m, int count) 3209 { 3210 3211 return (EOPNOTSUPP); 3212 } 3213 3214 /* 3215 * This isn't really a ``null'' operation, but it's the default one and 3216 * doesn't do anything destructive. 3217 */ 3218 int 3219 pru_sense_null(struct socket *so, struct stat *sb) 3220 { 3221 3222 sb->st_blksize = so->so_snd.sb_hiwat; 3223 return 0; 3224 } 3225 3226 int 3227 pru_shutdown_notsupp(struct socket *so) 3228 { 3229 3230 return EOPNOTSUPP; 3231 } 3232 3233 int 3234 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam) 3235 { 3236 3237 return EOPNOTSUPP; 3238 } 3239 3240 int 3241 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio, 3242 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 3243 { 3244 3245 return EOPNOTSUPP; 3246 } 3247 3248 int 3249 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr, 3250 struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 3251 { 3252 3253 return EOPNOTSUPP; 3254 } 3255 3256 int 3257 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred, 3258 struct thread *td) 3259 { 3260 3261 return EOPNOTSUPP; 3262 } 3263 3264 static void 3265 filt_sordetach(struct knote *kn) 3266 { 3267 struct socket *so = kn->kn_fp->f_data; 3268 3269 SOCKBUF_LOCK(&so->so_rcv); 3270 knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1); 3271 if (knlist_empty(&so->so_rcv.sb_sel.si_note)) 3272 so->so_rcv.sb_flags &= ~SB_KNOTE; 3273 SOCKBUF_UNLOCK(&so->so_rcv); 3274 } 3275 3276 /*ARGSUSED*/ 3277 static int 3278 filt_soread(struct knote *kn, long hint) 3279 { 3280 struct socket *so; 3281 3282 so = kn->kn_fp->f_data; 3283 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 3284 3285 kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl; 3286 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3287 kn->kn_flags |= EV_EOF; 3288 kn->kn_fflags = so->so_error; 3289 return (1); 3290 } else if (so->so_error) /* temporary udp error */ 3291 return (1); 3292 3293 if (kn->kn_sfflags & NOTE_LOWAT) { 3294 if (kn->kn_data >= kn->kn_sdata) 3295 return 1; 3296 } else { 3297 if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat) 3298 return 1; 3299 } 3300 3301 /* This hook returning non-zero indicates an event, not error */ 3302 return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD)); 3303 } 3304 3305 static void 3306 filt_sowdetach(struct knote *kn) 3307 { 3308 struct socket *so = kn->kn_fp->f_data; 3309 3310 SOCKBUF_LOCK(&so->so_snd); 3311 knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1); 3312 if (knlist_empty(&so->so_snd.sb_sel.si_note)) 3313 so->so_snd.sb_flags &= ~SB_KNOTE; 3314 SOCKBUF_UNLOCK(&so->so_snd); 3315 } 3316 3317 /*ARGSUSED*/ 3318 static int 3319 filt_sowrite(struct knote *kn, long hint) 3320 { 3321 struct socket *so; 3322 3323 so = kn->kn_fp->f_data; 3324 SOCKBUF_LOCK_ASSERT(&so->so_snd); 3325 kn->kn_data = sbspace(&so->so_snd); 3326 3327 hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE); 3328 3329 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 3330 kn->kn_flags |= EV_EOF; 3331 kn->kn_fflags = so->so_error; 3332 return (1); 3333 } else if (so->so_error) /* temporary udp error */ 3334 return (1); 3335 else if (((so->so_state & SS_ISCONNECTED) == 0) && 3336 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 3337 return (0); 3338 else if (kn->kn_sfflags & NOTE_LOWAT) 3339 return (kn->kn_data >= kn->kn_sdata); 3340 else 3341 return (kn->kn_data >= so->so_snd.sb_lowat); 3342 } 3343 3344 /*ARGSUSED*/ 3345 static int 3346 filt_solisten(struct knote *kn, long hint) 3347 { 3348 struct socket *so = kn->kn_fp->f_data; 3349 3350 kn->kn_data = so->so_qlen; 3351 return (!TAILQ_EMPTY(&so->so_comp)); 3352 } 3353 3354 int 3355 socheckuid(struct socket *so, uid_t uid) 3356 { 3357 3358 if (so == NULL) 3359 return (EPERM); 3360 if (so->so_cred->cr_uid != uid) 3361 return (EPERM); 3362 return (0); 3363 } 3364 3365 /* 3366 * These functions are used by protocols to notify the socket layer (and its 3367 * consumers) of state changes in the sockets driven by protocol-side events. 3368 */ 3369 3370 /* 3371 * Procedures to manipulate state flags of socket and do appropriate wakeups. 3372 * 3373 * Normal sequence from the active (originating) side is that 3374 * soisconnecting() is called during processing of connect() call, resulting 3375 * in an eventual call to soisconnected() if/when the connection is 3376 * established. When the connection is torn down soisdisconnecting() is 3377 * called during processing of disconnect() call, and soisdisconnected() is 3378 * called when the connection to the peer is totally severed. The semantics 3379 * of these routines are such that connectionless protocols can call 3380 * soisconnected() and soisdisconnected() only, bypassing the in-progress 3381 * calls when setting up a ``connection'' takes no time. 3382 * 3383 * From the passive side, a socket is created with two queues of sockets: 3384 * so_incomp for connections in progress and so_comp for connections already 3385 * made and awaiting user acceptance. As a protocol is preparing incoming 3386 * connections, it creates a socket structure queued on so_incomp by calling 3387 * sonewconn(). When the connection is established, soisconnected() is 3388 * called, and transfers the socket structure to so_comp, making it available 3389 * to accept(). 3390 * 3391 * If a socket is closed with sockets on either so_incomp or so_comp, these 3392 * sockets are dropped. 3393 * 3394 * If higher-level protocols are implemented in the kernel, the wakeups done 3395 * here will sometimes cause software-interrupt process scheduling. 3396 */ 3397 void 3398 soisconnecting(struct socket *so) 3399 { 3400 3401 SOCK_LOCK(so); 3402 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 3403 so->so_state |= SS_ISCONNECTING; 3404 SOCK_UNLOCK(so); 3405 } 3406 3407 void 3408 soisconnected(struct socket *so) 3409 { 3410 struct socket *head; 3411 int ret; 3412 3413 restart: 3414 ACCEPT_LOCK(); 3415 SOCK_LOCK(so); 3416 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 3417 so->so_state |= SS_ISCONNECTED; 3418 head = so->so_head; 3419 if (head != NULL && (so->so_qstate & SQ_INCOMP)) { 3420 if ((so->so_options & SO_ACCEPTFILTER) == 0) { 3421 SOCK_UNLOCK(so); 3422 TAILQ_REMOVE(&head->so_incomp, so, so_list); 3423 head->so_incqlen--; 3424 so->so_qstate &= ~SQ_INCOMP; 3425 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 3426 head->so_qlen++; 3427 so->so_qstate |= SQ_COMP; 3428 ACCEPT_UNLOCK(); 3429 sorwakeup(head); 3430 wakeup_one(&head->so_timeo); 3431 } else { 3432 ACCEPT_UNLOCK(); 3433 soupcall_set(so, SO_RCV, 3434 head->so_accf->so_accept_filter->accf_callback, 3435 head->so_accf->so_accept_filter_arg); 3436 so->so_options &= ~SO_ACCEPTFILTER; 3437 ret = head->so_accf->so_accept_filter->accf_callback(so, 3438 head->so_accf->so_accept_filter_arg, M_NOWAIT); 3439 if (ret == SU_ISCONNECTED) 3440 soupcall_clear(so, SO_RCV); 3441 SOCK_UNLOCK(so); 3442 if (ret == SU_ISCONNECTED) 3443 goto restart; 3444 } 3445 return; 3446 } 3447 SOCK_UNLOCK(so); 3448 ACCEPT_UNLOCK(); 3449 wakeup(&so->so_timeo); 3450 sorwakeup(so); 3451 sowwakeup(so); 3452 } 3453 3454 void 3455 soisdisconnecting(struct socket *so) 3456 { 3457 3458 /* 3459 * Note: This code assumes that SOCK_LOCK(so) and 3460 * SOCKBUF_LOCK(&so->so_rcv) are the same. 3461 */ 3462 SOCKBUF_LOCK(&so->so_rcv); 3463 so->so_state &= ~SS_ISCONNECTING; 3464 so->so_state |= SS_ISDISCONNECTING; 3465 socantrcvmore_locked(so); 3466 SOCKBUF_LOCK(&so->so_snd); 3467 socantsendmore_locked(so); 3468 wakeup(&so->so_timeo); 3469 } 3470 3471 void 3472 soisdisconnected(struct socket *so) 3473 { 3474 3475 /* 3476 * Note: This code assumes that SOCK_LOCK(so) and 3477 * SOCKBUF_LOCK(&so->so_rcv) are the same. 3478 */ 3479 SOCKBUF_LOCK(&so->so_rcv); 3480 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 3481 so->so_state |= SS_ISDISCONNECTED; 3482 socantrcvmore_locked(so); 3483 SOCKBUF_LOCK(&so->so_snd); 3484 sbdrop_locked(&so->so_snd, sbused(&so->so_snd)); 3485 socantsendmore_locked(so); 3486 wakeup(&so->so_timeo); 3487 } 3488 3489 /* 3490 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 3491 */ 3492 struct sockaddr * 3493 sodupsockaddr(const struct sockaddr *sa, int mflags) 3494 { 3495 struct sockaddr *sa2; 3496 3497 sa2 = malloc(sa->sa_len, M_SONAME, mflags); 3498 if (sa2) 3499 bcopy(sa, sa2, sa->sa_len); 3500 return sa2; 3501 } 3502 3503 /* 3504 * Register per-socket buffer upcalls. 3505 */ 3506 void 3507 soupcall_set(struct socket *so, int which, 3508 int (*func)(struct socket *, void *, int), void *arg) 3509 { 3510 struct sockbuf *sb; 3511 3512 switch (which) { 3513 case SO_RCV: 3514 sb = &so->so_rcv; 3515 break; 3516 case SO_SND: 3517 sb = &so->so_snd; 3518 break; 3519 default: 3520 panic("soupcall_set: bad which"); 3521 } 3522 SOCKBUF_LOCK_ASSERT(sb); 3523 #if 0 3524 /* XXX: accf_http actually wants to do this on purpose. */ 3525 KASSERT(sb->sb_upcall == NULL, ("soupcall_set: overwriting upcall")); 3526 #endif 3527 sb->sb_upcall = func; 3528 sb->sb_upcallarg = arg; 3529 sb->sb_flags |= SB_UPCALL; 3530 } 3531 3532 void 3533 soupcall_clear(struct socket *so, int which) 3534 { 3535 struct sockbuf *sb; 3536 3537 switch (which) { 3538 case SO_RCV: 3539 sb = &so->so_rcv; 3540 break; 3541 case SO_SND: 3542 sb = &so->so_snd; 3543 break; 3544 default: 3545 panic("soupcall_clear: bad which"); 3546 } 3547 SOCKBUF_LOCK_ASSERT(sb); 3548 KASSERT(sb->sb_upcall != NULL, ("soupcall_clear: no upcall to clear")); 3549 sb->sb_upcall = NULL; 3550 sb->sb_upcallarg = NULL; 3551 sb->sb_flags &= ~SB_UPCALL; 3552 } 3553 3554 /* 3555 * Create an external-format (``xsocket'') structure using the information in 3556 * the kernel-format socket structure pointed to by so. This is done to 3557 * reduce the spew of irrelevant information over this interface, to isolate 3558 * user code from changes in the kernel structure, and potentially to provide 3559 * information-hiding if we decide that some of this information should be 3560 * hidden from users. 3561 */ 3562 void 3563 sotoxsocket(struct socket *so, struct xsocket *xso) 3564 { 3565 3566 xso->xso_len = sizeof *xso; 3567 xso->xso_so = so; 3568 xso->so_type = so->so_type; 3569 xso->so_options = so->so_options; 3570 xso->so_linger = so->so_linger; 3571 xso->so_state = so->so_state; 3572 xso->so_pcb = so->so_pcb; 3573 xso->xso_protocol = so->so_proto->pr_protocol; 3574 xso->xso_family = so->so_proto->pr_domain->dom_family; 3575 xso->so_qlen = so->so_qlen; 3576 xso->so_incqlen = so->so_incqlen; 3577 xso->so_qlimit = so->so_qlimit; 3578 xso->so_timeo = so->so_timeo; 3579 xso->so_error = so->so_error; 3580 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 3581 xso->so_oobmark = so->so_oobmark; 3582 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 3583 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 3584 xso->so_uid = so->so_cred->cr_uid; 3585 } 3586 3587 3588 /* 3589 * Socket accessor functions to provide external consumers with 3590 * a safe interface to socket state 3591 * 3592 */ 3593 3594 void 3595 so_listeners_apply_all(struct socket *so, void (*func)(struct socket *, void *), 3596 void *arg) 3597 { 3598 3599 TAILQ_FOREACH(so, &so->so_comp, so_list) 3600 func(so, arg); 3601 } 3602 3603 struct sockbuf * 3604 so_sockbuf_rcv(struct socket *so) 3605 { 3606 3607 return (&so->so_rcv); 3608 } 3609 3610 struct sockbuf * 3611 so_sockbuf_snd(struct socket *so) 3612 { 3613 3614 return (&so->so_snd); 3615 } 3616 3617 int 3618 so_state_get(const struct socket *so) 3619 { 3620 3621 return (so->so_state); 3622 } 3623 3624 void 3625 so_state_set(struct socket *so, int val) 3626 { 3627 3628 so->so_state = val; 3629 } 3630 3631 int 3632 so_options_get(const struct socket *so) 3633 { 3634 3635 return (so->so_options); 3636 } 3637 3638 void 3639 so_options_set(struct socket *so, int val) 3640 { 3641 3642 so->so_options = val; 3643 } 3644 3645 int 3646 so_error_get(const struct socket *so) 3647 { 3648 3649 return (so->so_error); 3650 } 3651 3652 void 3653 so_error_set(struct socket *so, int val) 3654 { 3655 3656 so->so_error = val; 3657 } 3658 3659 int 3660 so_linger_get(const struct socket *so) 3661 { 3662 3663 return (so->so_linger); 3664 } 3665 3666 void 3667 so_linger_set(struct socket *so, int val) 3668 { 3669 3670 so->so_linger = val; 3671 } 3672 3673 struct protosw * 3674 so_protosw_get(const struct socket *so) 3675 { 3676 3677 return (so->so_proto); 3678 } 3679 3680 void 3681 so_protosw_set(struct socket *so, struct protosw *val) 3682 { 3683 3684 so->so_proto = val; 3685 } 3686 3687 void 3688 so_sorwakeup(struct socket *so) 3689 { 3690 3691 sorwakeup(so); 3692 } 3693 3694 void 3695 so_sowwakeup(struct socket *so) 3696 { 3697 3698 sowwakeup(so); 3699 } 3700 3701 void 3702 so_sorwakeup_locked(struct socket *so) 3703 { 3704 3705 sorwakeup_locked(so); 3706 } 3707 3708 void 3709 so_sowwakeup_locked(struct socket *so) 3710 { 3711 3712 sowwakeup_locked(so); 3713 } 3714 3715 void 3716 so_lock(struct socket *so) 3717 { 3718 3719 SOCK_LOCK(so); 3720 } 3721 3722 void 3723 so_unlock(struct socket *so) 3724 { 3725 3726 SOCK_UNLOCK(so); 3727 } 3728