xref: /freebsd/sys/kern/uipc_socket.c (revision 8b25e8410533a6e69cceff910546b2dc485a5059)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.
4  * Copyright (c) 2004 The FreeBSD Foundation
5  * Copyright (c) 2004-2008 Robert N. M. Watson
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)uipc_socket.c	8.3 (Berkeley) 4/15/94
33  */
34 
35 /*
36  * Comments on the socket life cycle:
37  *
38  * soalloc() sets of socket layer state for a socket, called only by
39  * socreate() and sonewconn().  Socket layer private.
40  *
41  * sodealloc() tears down socket layer state for a socket, called only by
42  * sofree() and sonewconn().  Socket layer private.
43  *
44  * pru_attach() associates protocol layer state with an allocated socket;
45  * called only once, may fail, aborting socket allocation.  This is called
46  * from socreate() and sonewconn().  Socket layer private.
47  *
48  * pru_detach() disassociates protocol layer state from an attached socket,
49  * and will be called exactly once for sockets in which pru_attach() has
50  * been successfully called.  If pru_attach() returned an error,
51  * pru_detach() will not be called.  Socket layer private.
52  *
53  * pru_abort() and pru_close() notify the protocol layer that the last
54  * consumer of a socket is starting to tear down the socket, and that the
55  * protocol should terminate the connection.  Historically, pru_abort() also
56  * detached protocol state from the socket state, but this is no longer the
57  * case.
58  *
59  * socreate() creates a socket and attaches protocol state.  This is a public
60  * interface that may be used by socket layer consumers to create new
61  * sockets.
62  *
63  * sonewconn() creates a socket and attaches protocol state.  This is a
64  * public interface  that may be used by protocols to create new sockets when
65  * a new connection is received and will be available for accept() on a
66  * listen socket.
67  *
68  * soclose() destroys a socket after possibly waiting for it to disconnect.
69  * This is a public interface that socket consumers should use to close and
70  * release a socket when done with it.
71  *
72  * soabort() destroys a socket without waiting for it to disconnect (used
73  * only for incoming connections that are already partially or fully
74  * connected).  This is used internally by the socket layer when clearing
75  * listen socket queues (due to overflow or close on the listen socket), but
76  * is also a public interface protocols may use to abort connections in
77  * their incomplete listen queues should they no longer be required.  Sockets
78  * placed in completed connection listen queues should not be aborted for
79  * reasons described in the comment above the soclose() implementation.  This
80  * is not a general purpose close routine, and except in the specific
81  * circumstances described here, should not be used.
82  *
83  * sofree() will free a socket and its protocol state if all references on
84  * the socket have been released, and is the public interface to attempt to
85  * free a socket when a reference is removed.  This is a socket layer private
86  * interface.
87  *
88  * NOTE: In addition to socreate() and soclose(), which provide a single
89  * socket reference to the consumer to be managed as required, there are two
90  * calls to explicitly manage socket references, soref(), and sorele().
91  * Currently, these are generally required only when transitioning a socket
92  * from a listen queue to a file descriptor, in order to prevent garbage
93  * collection of the socket at an untimely moment.  For a number of reasons,
94  * these interfaces are not preferred, and should be avoided.
95  *
96  * NOTE: With regard to VNETs the general rule is that callers do not set
97  * curvnet. Exceptions to this rule include soabort(), sodisconnect(),
98  * sofree() (and with that sorele(), sotryfree()), as well as sonewconn()
99  * and sorflush(), which are usually called from a pre-set VNET context.
100  * sopoll() currently does not need a VNET context to be set.
101  */
102 
103 #include <sys/cdefs.h>
104 __FBSDID("$FreeBSD$");
105 
106 #include "opt_inet.h"
107 #include "opt_inet6.h"
108 #include "opt_compat.h"
109 
110 #include <sys/param.h>
111 #include <sys/systm.h>
112 #include <sys/fcntl.h>
113 #include <sys/limits.h>
114 #include <sys/lock.h>
115 #include <sys/mac.h>
116 #include <sys/malloc.h>
117 #include <sys/mbuf.h>
118 #include <sys/mutex.h>
119 #include <sys/domain.h>
120 #include <sys/file.h>			/* for struct knote */
121 #include <sys/hhook.h>
122 #include <sys/kernel.h>
123 #include <sys/khelp.h>
124 #include <sys/event.h>
125 #include <sys/eventhandler.h>
126 #include <sys/poll.h>
127 #include <sys/proc.h>
128 #include <sys/protosw.h>
129 #include <sys/socket.h>
130 #include <sys/socketvar.h>
131 #include <sys/resourcevar.h>
132 #include <net/route.h>
133 #include <sys/signalvar.h>
134 #include <sys/stat.h>
135 #include <sys/sx.h>
136 #include <sys/sysctl.h>
137 #include <sys/taskqueue.h>
138 #include <sys/uio.h>
139 #include <sys/jail.h>
140 #include <sys/syslog.h>
141 #include <netinet/in.h>
142 
143 #include <net/vnet.h>
144 
145 #include <security/mac/mac_framework.h>
146 
147 #include <vm/uma.h>
148 
149 #ifdef COMPAT_FREEBSD32
150 #include <sys/mount.h>
151 #include <sys/sysent.h>
152 #include <compat/freebsd32/freebsd32.h>
153 #endif
154 
155 static int	soreceive_rcvoob(struct socket *so, struct uio *uio,
156 		    int flags);
157 
158 static void	filt_sordetach(struct knote *kn);
159 static int	filt_soread(struct knote *kn, long hint);
160 static void	filt_sowdetach(struct knote *kn);
161 static int	filt_sowrite(struct knote *kn, long hint);
162 static int	filt_solisten(struct knote *kn, long hint);
163 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id);
164 static int	filt_soempty(struct knote *kn, long hint);
165 fo_kqfilter_t	soo_kqfilter;
166 
167 static struct filterops solisten_filtops = {
168 	.f_isfd = 1,
169 	.f_detach = filt_sordetach,
170 	.f_event = filt_solisten,
171 };
172 static struct filterops soread_filtops = {
173 	.f_isfd = 1,
174 	.f_detach = filt_sordetach,
175 	.f_event = filt_soread,
176 };
177 static struct filterops sowrite_filtops = {
178 	.f_isfd = 1,
179 	.f_detach = filt_sowdetach,
180 	.f_event = filt_sowrite,
181 };
182 static struct filterops soempty_filtops = {
183 	.f_isfd = 1,
184 	.f_detach = filt_sowdetach,
185 	.f_event = filt_soempty,
186 };
187 
188 so_gen_t	so_gencnt;	/* generation count for sockets */
189 
190 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
191 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
192 
193 #define	VNET_SO_ASSERT(so)						\
194 	VNET_ASSERT(curvnet != NULL,					\
195 	    ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so)));
196 
197 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]);
198 #define	V_socket_hhh		VNET(socket_hhh)
199 
200 /*
201  * Limit on the number of connections in the listen queue waiting
202  * for accept(2).
203  * NB: The original sysctl somaxconn is still available but hidden
204  * to prevent confusion about the actual purpose of this number.
205  */
206 static u_int somaxconn = SOMAXCONN;
207 
208 static int
209 sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
210 {
211 	int error;
212 	int val;
213 
214 	val = somaxconn;
215 	error = sysctl_handle_int(oidp, &val, 0, req);
216 	if (error || !req->newptr )
217 		return (error);
218 
219 	/*
220 	 * The purpose of the UINT_MAX / 3 limit, is so that the formula
221 	 *   3 * so_qlimit / 2
222 	 * below, will not overflow.
223          */
224 
225 	if (val < 1 || val > UINT_MAX / 3)
226 		return (EINVAL);
227 
228 	somaxconn = val;
229 	return (0);
230 }
231 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue, CTLTYPE_UINT | CTLFLAG_RW,
232     0, sizeof(int), sysctl_somaxconn, "I",
233     "Maximum listen socket pending connection accept queue size");
234 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn,
235     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP,
236     0, sizeof(int), sysctl_somaxconn, "I",
237     "Maximum listen socket pending connection accept queue size (compat)");
238 
239 static int numopensockets;
240 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,
241     &numopensockets, 0, "Number of open sockets");
242 
243 /*
244  * accept_mtx locks down per-socket fields relating to accept queues.  See
245  * socketvar.h for an annotation of the protected fields of struct socket.
246  */
247 struct mtx accept_mtx;
248 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF);
249 
250 /*
251  * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
252  * so_gencnt field.
253  */
254 static struct mtx so_global_mtx;
255 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
256 
257 /*
258  * General IPC sysctl name space, used by sockets and a variety of other IPC
259  * types.
260  */
261 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
262 
263 /*
264  * Initialize the socket subsystem and set up the socket
265  * memory allocator.
266  */
267 static uma_zone_t socket_zone;
268 int	maxsockets;
269 
270 static void
271 socket_zone_change(void *tag)
272 {
273 
274 	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
275 }
276 
277 static void
278 socket_hhook_register(int subtype)
279 {
280 
281 	if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype,
282 	    &V_socket_hhh[subtype],
283 	    HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
284 		printf("%s: WARNING: unable to register hook\n", __func__);
285 }
286 
287 static void
288 socket_hhook_deregister(int subtype)
289 {
290 
291 	if (hhook_head_deregister(V_socket_hhh[subtype]) != 0)
292 		printf("%s: WARNING: unable to deregister hook\n", __func__);
293 }
294 
295 static void
296 socket_init(void *tag)
297 {
298 
299 	socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL,
300 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
301 	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
302 	uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached");
303 	EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL,
304 	    EVENTHANDLER_PRI_FIRST);
305 }
306 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL);
307 
308 static void
309 socket_vnet_init(const void *unused __unused)
310 {
311 	int i;
312 
313 	/* We expect a contiguous range */
314 	for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
315 		socket_hhook_register(i);
316 }
317 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
318     socket_vnet_init, NULL);
319 
320 static void
321 socket_vnet_uninit(const void *unused __unused)
322 {
323 	int i;
324 
325 	for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
326 		socket_hhook_deregister(i);
327 }
328 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
329     socket_vnet_uninit, NULL);
330 
331 /*
332  * Initialise maxsockets.  This SYSINIT must be run after
333  * tunable_mbinit().
334  */
335 static void
336 init_maxsockets(void *ignored)
337 {
338 
339 	TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
340 	maxsockets = imax(maxsockets, maxfiles);
341 }
342 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
343 
344 /*
345  * Sysctl to get and set the maximum global sockets limit.  Notify protocols
346  * of the change so that they can update their dependent limits as required.
347  */
348 static int
349 sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
350 {
351 	int error, newmaxsockets;
352 
353 	newmaxsockets = maxsockets;
354 	error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
355 	if (error == 0 && req->newptr) {
356 		if (newmaxsockets > maxsockets &&
357 		    newmaxsockets <= maxfiles) {
358 			maxsockets = newmaxsockets;
359 			EVENTHANDLER_INVOKE(maxsockets_change);
360 		} else
361 			error = EINVAL;
362 	}
363 	return (error);
364 }
365 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, CTLTYPE_INT|CTLFLAG_RW,
366     &maxsockets, 0, sysctl_maxsockets, "IU",
367     "Maximum number of sockets available");
368 
369 /*
370  * Socket operation routines.  These routines are called by the routines in
371  * sys_socket.c or from a system process, and implement the semantics of
372  * socket operations by switching out to the protocol specific routines.
373  */
374 
375 /*
376  * Get a socket structure from our zone, and initialize it.  Note that it
377  * would probably be better to allocate socket and PCB at the same time, but
378  * I'm not convinced that all the protocols can be easily modified to do
379  * this.
380  *
381  * soalloc() returns a socket with a ref count of 0.
382  */
383 static struct socket *
384 soalloc(struct vnet *vnet)
385 {
386 	struct socket *so;
387 
388 	so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
389 	if (so == NULL)
390 		return (NULL);
391 #ifdef MAC
392 	if (mac_socket_init(so, M_NOWAIT) != 0) {
393 		uma_zfree(socket_zone, so);
394 		return (NULL);
395 	}
396 #endif
397 	if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) {
398 		uma_zfree(socket_zone, so);
399 		return (NULL);
400 	}
401 
402 	SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd");
403 	SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv");
404 	sx_init(&so->so_snd.sb_sx, "so_snd_sx");
405 	sx_init(&so->so_rcv.sb_sx, "so_rcv_sx");
406 	TAILQ_INIT(&so->so_snd.sb_aiojobq);
407 	TAILQ_INIT(&so->so_rcv.sb_aiojobq);
408 	TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so);
409 	TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so);
410 #ifdef VIMAGE
411 	VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p",
412 	    __func__, __LINE__, so));
413 	so->so_vnet = vnet;
414 #endif
415 	/* We shouldn't need the so_global_mtx */
416 	if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) {
417 		/* Do we need more comprehensive error returns? */
418 		uma_zfree(socket_zone, so);
419 		return (NULL);
420 	}
421 	mtx_lock(&so_global_mtx);
422 	so->so_gencnt = ++so_gencnt;
423 	++numopensockets;
424 #ifdef VIMAGE
425 	vnet->vnet_sockcnt++;
426 #endif
427 	mtx_unlock(&so_global_mtx);
428 
429 	return (so);
430 }
431 
432 /*
433  * Free the storage associated with a socket at the socket layer, tear down
434  * locks, labels, etc.  All protocol state is assumed already to have been
435  * torn down (and possibly never set up) by the caller.
436  */
437 static void
438 sodealloc(struct socket *so)
439 {
440 
441 	KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
442 	KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
443 
444 	mtx_lock(&so_global_mtx);
445 	so->so_gencnt = ++so_gencnt;
446 	--numopensockets;	/* Could be below, but faster here. */
447 #ifdef VIMAGE
448 	VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p",
449 	    __func__, __LINE__, so));
450 	so->so_vnet->vnet_sockcnt--;
451 #endif
452 	mtx_unlock(&so_global_mtx);
453 	if (so->so_rcv.sb_hiwat)
454 		(void)chgsbsize(so->so_cred->cr_uidinfo,
455 		    &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
456 	if (so->so_snd.sb_hiwat)
457 		(void)chgsbsize(so->so_cred->cr_uidinfo,
458 		    &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
459 	/* remove accept filter if one is present. */
460 	if (so->so_accf != NULL)
461 		do_setopt_accept_filter(so, NULL);
462 #ifdef MAC
463 	mac_socket_destroy(so);
464 #endif
465 	hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE);
466 
467 	crfree(so->so_cred);
468 	khelp_destroy_osd(&so->osd);
469 	sx_destroy(&so->so_snd.sb_sx);
470 	sx_destroy(&so->so_rcv.sb_sx);
471 	SOCKBUF_LOCK_DESTROY(&so->so_snd);
472 	SOCKBUF_LOCK_DESTROY(&so->so_rcv);
473 	uma_zfree(socket_zone, so);
474 }
475 
476 /*
477  * socreate returns a socket with a ref count of 1.  The socket should be
478  * closed with soclose().
479  */
480 int
481 socreate(int dom, struct socket **aso, int type, int proto,
482     struct ucred *cred, struct thread *td)
483 {
484 	struct protosw *prp;
485 	struct socket *so;
486 	int error;
487 
488 	if (proto)
489 		prp = pffindproto(dom, proto, type);
490 	else
491 		prp = pffindtype(dom, type);
492 
493 	if (prp == NULL) {
494 		/* No support for domain. */
495 		if (pffinddomain(dom) == NULL)
496 			return (EAFNOSUPPORT);
497 		/* No support for socket type. */
498 		if (proto == 0 && type != 0)
499 			return (EPROTOTYPE);
500 		return (EPROTONOSUPPORT);
501 	}
502 	if (prp->pr_usrreqs->pru_attach == NULL ||
503 	    prp->pr_usrreqs->pru_attach == pru_attach_notsupp)
504 		return (EPROTONOSUPPORT);
505 
506 	if (prison_check_af(cred, prp->pr_domain->dom_family) != 0)
507 		return (EPROTONOSUPPORT);
508 
509 	if (prp->pr_type != type)
510 		return (EPROTOTYPE);
511 	so = soalloc(CRED_TO_VNET(cred));
512 	if (so == NULL)
513 		return (ENOBUFS);
514 
515 	TAILQ_INIT(&so->so_incomp);
516 	TAILQ_INIT(&so->so_comp);
517 	so->so_type = type;
518 	so->so_cred = crhold(cred);
519 	if ((prp->pr_domain->dom_family == PF_INET) ||
520 	    (prp->pr_domain->dom_family == PF_INET6) ||
521 	    (prp->pr_domain->dom_family == PF_ROUTE))
522 		so->so_fibnum = td->td_proc->p_fibnum;
523 	else
524 		so->so_fibnum = 0;
525 	so->so_proto = prp;
526 #ifdef MAC
527 	mac_socket_create(cred, so);
528 #endif
529 	knlist_init_mtx(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv));
530 	knlist_init_mtx(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd));
531 	so->so_count = 1;
532 	/*
533 	 * Auto-sizing of socket buffers is managed by the protocols and
534 	 * the appropriate flags must be set in the pru_attach function.
535 	 */
536 	CURVNET_SET(so->so_vnet);
537 	error = (*prp->pr_usrreqs->pru_attach)(so, proto, td);
538 	CURVNET_RESTORE();
539 	if (error) {
540 		KASSERT(so->so_count == 1, ("socreate: so_count %d",
541 		    so->so_count));
542 		so->so_count = 0;
543 		sodealloc(so);
544 		return (error);
545 	}
546 	*aso = so;
547 	return (0);
548 }
549 
550 #ifdef REGRESSION
551 static int regression_sonewconn_earlytest = 1;
552 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
553     &regression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
554 #endif
555 
556 /*
557  * When an attempt at a new connection is noted on a socket which accepts
558  * connections, sonewconn is called.  If the connection is possible (subject
559  * to space constraints, etc.) then we allocate a new structure, properly
560  * linked into the data structure of the original socket, and return this.
561  * Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED.
562  *
563  * Note: the ref count on the socket is 0 on return.
564  */
565 struct socket *
566 sonewconn(struct socket *head, int connstatus)
567 {
568 	static struct timeval lastover;
569 	static struct timeval overinterval = { 60, 0 };
570 	static int overcount;
571 
572 	struct socket *so;
573 	int over;
574 
575 	ACCEPT_LOCK();
576 	over = (head->so_qlen > 3 * head->so_qlimit / 2);
577 	ACCEPT_UNLOCK();
578 #ifdef REGRESSION
579 	if (regression_sonewconn_earlytest && over) {
580 #else
581 	if (over) {
582 #endif
583 		overcount++;
584 
585 		if (ratecheck(&lastover, &overinterval)) {
586 			log(LOG_DEBUG, "%s: pcb %p: Listen queue overflow: "
587 			    "%i already in queue awaiting acceptance "
588 			    "(%d occurrences)\n",
589 			    __func__, head->so_pcb, head->so_qlen, overcount);
590 
591 			overcount = 0;
592 		}
593 
594 		return (NULL);
595 	}
596 	VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p",
597 	    __func__, __LINE__, head));
598 	so = soalloc(head->so_vnet);
599 	if (so == NULL) {
600 		log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
601 		    "limit reached or out of memory\n",
602 		    __func__, head->so_pcb);
603 		return (NULL);
604 	}
605 	if ((head->so_options & SO_ACCEPTFILTER) != 0)
606 		connstatus = 0;
607 	so->so_head = head;
608 	so->so_type = head->so_type;
609 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
610 	so->so_linger = head->so_linger;
611 	so->so_state = head->so_state | SS_NOFDREF;
612 	so->so_fibnum = head->so_fibnum;
613 	so->so_proto = head->so_proto;
614 	so->so_cred = crhold(head->so_cred);
615 #ifdef MAC
616 	mac_socket_newconn(head, so);
617 #endif
618 	knlist_init_mtx(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv));
619 	knlist_init_mtx(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd));
620 	VNET_SO_ASSERT(head);
621 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
622 		sodealloc(so);
623 		log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
624 		    __func__, head->so_pcb);
625 		return (NULL);
626 	}
627 	if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
628 		sodealloc(so);
629 		log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n",
630 		    __func__, head->so_pcb);
631 		return (NULL);
632 	}
633 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
634 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
635 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
636 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
637 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
638 	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
639 	so->so_state |= connstatus;
640 	ACCEPT_LOCK();
641 	/*
642 	 * The accept socket may be tearing down but we just
643 	 * won a race on the ACCEPT_LOCK.
644 	 * However, if sctp_peeloff() is called on a 1-to-many
645 	 * style socket, the SO_ACCEPTCONN doesn't need to be set.
646 	 */
647 	if (!(head->so_options & SO_ACCEPTCONN) &&
648 	    ((head->so_proto->pr_protocol != IPPROTO_SCTP) ||
649 	     (head->so_type != SOCK_SEQPACKET))) {
650 		SOCK_LOCK(so);
651 		so->so_head = NULL;
652 		sofree(so);		/* NB: returns ACCEPT_UNLOCK'ed. */
653 		return (NULL);
654 	}
655 	if (connstatus) {
656 		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
657 		so->so_qstate |= SQ_COMP;
658 		head->so_qlen++;
659 	} else {
660 		/*
661 		 * Keep removing sockets from the head until there's room for
662 		 * us to insert on the tail.  In pre-locking revisions, this
663 		 * was a simple if(), but as we could be racing with other
664 		 * threads and soabort() requires dropping locks, we must
665 		 * loop waiting for the condition to be true.
666 		 */
667 		while (head->so_incqlen > head->so_qlimit) {
668 			struct socket *sp;
669 			sp = TAILQ_FIRST(&head->so_incomp);
670 			TAILQ_REMOVE(&head->so_incomp, sp, so_list);
671 			head->so_incqlen--;
672 			sp->so_qstate &= ~SQ_INCOMP;
673 			sp->so_head = NULL;
674 			ACCEPT_UNLOCK();
675 			soabort(sp);
676 			ACCEPT_LOCK();
677 		}
678 		TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
679 		so->so_qstate |= SQ_INCOMP;
680 		head->so_incqlen++;
681 	}
682 	ACCEPT_UNLOCK();
683 	if (connstatus) {
684 		sorwakeup(head);
685 		wakeup_one(&head->so_timeo);
686 	}
687 	return (so);
688 }
689 
690 int
691 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
692 {
693 	int error;
694 
695 	CURVNET_SET(so->so_vnet);
696 	error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td);
697 	CURVNET_RESTORE();
698 	return (error);
699 }
700 
701 int
702 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
703 {
704 	int error;
705 
706 	CURVNET_SET(so->so_vnet);
707 	error = (*so->so_proto->pr_usrreqs->pru_bindat)(fd, so, nam, td);
708 	CURVNET_RESTORE();
709 	return (error);
710 }
711 
712 /*
713  * solisten() transitions a socket from a non-listening state to a listening
714  * state, but can also be used to update the listen queue depth on an
715  * existing listen socket.  The protocol will call back into the sockets
716  * layer using solisten_proto_check() and solisten_proto() to check and set
717  * socket-layer listen state.  Call backs are used so that the protocol can
718  * acquire both protocol and socket layer locks in whatever order is required
719  * by the protocol.
720  *
721  * Protocol implementors are advised to hold the socket lock across the
722  * socket-layer test and set to avoid races at the socket layer.
723  */
724 int
725 solisten(struct socket *so, int backlog, struct thread *td)
726 {
727 	int error;
728 
729 	CURVNET_SET(so->so_vnet);
730 	error = (*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td);
731 	CURVNET_RESTORE();
732 	return (error);
733 }
734 
735 int
736 solisten_proto_check(struct socket *so)
737 {
738 
739 	SOCK_LOCK_ASSERT(so);
740 
741 	if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
742 	    SS_ISDISCONNECTING))
743 		return (EINVAL);
744 	return (0);
745 }
746 
747 void
748 solisten_proto(struct socket *so, int backlog)
749 {
750 
751 	SOCK_LOCK_ASSERT(so);
752 
753 	if (backlog < 0 || backlog > somaxconn)
754 		backlog = somaxconn;
755 	so->so_qlimit = backlog;
756 	so->so_options |= SO_ACCEPTCONN;
757 }
758 
759 /*
760  * Evaluate the reference count and named references on a socket; if no
761  * references remain, free it.  This should be called whenever a reference is
762  * released, such as in sorele(), but also when named reference flags are
763  * cleared in socket or protocol code.
764  *
765  * sofree() will free the socket if:
766  *
767  * - There are no outstanding file descriptor references or related consumers
768  *   (so_count == 0).
769  *
770  * - The socket has been closed by user space, if ever open (SS_NOFDREF).
771  *
772  * - The protocol does not have an outstanding strong reference on the socket
773  *   (SS_PROTOREF).
774  *
775  * - The socket is not in a completed connection queue, so a process has been
776  *   notified that it is present.  If it is removed, the user process may
777  *   block in accept() despite select() saying the socket was ready.
778  */
779 void
780 sofree(struct socket *so)
781 {
782 	struct protosw *pr = so->so_proto;
783 	struct socket *head;
784 
785 	ACCEPT_LOCK_ASSERT();
786 	SOCK_LOCK_ASSERT(so);
787 
788 	if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 ||
789 	    (so->so_state & SS_PROTOREF) || (so->so_qstate & SQ_COMP)) {
790 		SOCK_UNLOCK(so);
791 		ACCEPT_UNLOCK();
792 		return;
793 	}
794 
795 	head = so->so_head;
796 	if (head != NULL) {
797 		KASSERT((so->so_qstate & SQ_COMP) != 0 ||
798 		    (so->so_qstate & SQ_INCOMP) != 0,
799 		    ("sofree: so_head != NULL, but neither SQ_COMP nor "
800 		    "SQ_INCOMP"));
801 		KASSERT((so->so_qstate & SQ_COMP) == 0 ||
802 		    (so->so_qstate & SQ_INCOMP) == 0,
803 		    ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP"));
804 		TAILQ_REMOVE(&head->so_incomp, so, so_list);
805 		head->so_incqlen--;
806 		so->so_qstate &= ~SQ_INCOMP;
807 		so->so_head = NULL;
808 	}
809 	KASSERT((so->so_qstate & SQ_COMP) == 0 &&
810 	    (so->so_qstate & SQ_INCOMP) == 0,
811 	    ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)",
812 	    so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP));
813 	if (so->so_options & SO_ACCEPTCONN) {
814 		KASSERT((TAILQ_EMPTY(&so->so_comp)),
815 		    ("sofree: so_comp populated"));
816 		KASSERT((TAILQ_EMPTY(&so->so_incomp)),
817 		    ("sofree: so_incomp populated"));
818 	}
819 	SOCK_UNLOCK(so);
820 	ACCEPT_UNLOCK();
821 
822 	VNET_SO_ASSERT(so);
823 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
824 		(*pr->pr_domain->dom_dispose)(so);
825 	if (pr->pr_usrreqs->pru_detach != NULL)
826 		(*pr->pr_usrreqs->pru_detach)(so);
827 
828 	/*
829 	 * From this point on, we assume that no other references to this
830 	 * socket exist anywhere else in the stack.  Therefore, no locks need
831 	 * to be acquired or held.
832 	 *
833 	 * We used to do a lot of socket buffer and socket locking here, as
834 	 * well as invoke sorflush() and perform wakeups.  The direct call to
835 	 * dom_dispose() and sbrelease_internal() are an inlining of what was
836 	 * necessary from sorflush().
837 	 *
838 	 * Notice that the socket buffer and kqueue state are torn down
839 	 * before calling pru_detach.  This means that protocols shold not
840 	 * assume they can perform socket wakeups, etc, in their detach code.
841 	 */
842 	sbdestroy(&so->so_snd, so);
843 	sbdestroy(&so->so_rcv, so);
844 	seldrain(&so->so_snd.sb_sel);
845 	seldrain(&so->so_rcv.sb_sel);
846 	knlist_destroy(&so->so_rcv.sb_sel.si_note);
847 	knlist_destroy(&so->so_snd.sb_sel.si_note);
848 	sodealloc(so);
849 }
850 
851 /*
852  * Close a socket on last file table reference removal.  Initiate disconnect
853  * if connected.  Free socket when disconnect complete.
854  *
855  * This function will sorele() the socket.  Note that soclose() may be called
856  * prior to the ref count reaching zero.  The actual socket structure will
857  * not be freed until the ref count reaches zero.
858  */
859 int
860 soclose(struct socket *so)
861 {
862 	int error = 0;
863 
864 	KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter"));
865 
866 	CURVNET_SET(so->so_vnet);
867 	funsetown(&so->so_sigio);
868 	if (so->so_state & SS_ISCONNECTED) {
869 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
870 			error = sodisconnect(so);
871 			if (error) {
872 				if (error == ENOTCONN)
873 					error = 0;
874 				goto drop;
875 			}
876 		}
877 		if (so->so_options & SO_LINGER) {
878 			if ((so->so_state & SS_ISDISCONNECTING) &&
879 			    (so->so_state & SS_NBIO))
880 				goto drop;
881 			while (so->so_state & SS_ISCONNECTED) {
882 				error = tsleep(&so->so_timeo,
883 				    PSOCK | PCATCH, "soclos",
884 				    so->so_linger * hz);
885 				if (error)
886 					break;
887 			}
888 		}
889 	}
890 
891 drop:
892 	if (so->so_proto->pr_usrreqs->pru_close != NULL)
893 		(*so->so_proto->pr_usrreqs->pru_close)(so);
894 	ACCEPT_LOCK();
895 	if (so->so_options & SO_ACCEPTCONN) {
896 		struct socket *sp;
897 		/*
898 		 * Prevent new additions to the accept queues due
899 		 * to ACCEPT_LOCK races while we are draining them.
900 		 */
901 		so->so_options &= ~SO_ACCEPTCONN;
902 		while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) {
903 			TAILQ_REMOVE(&so->so_incomp, sp, so_list);
904 			so->so_incqlen--;
905 			sp->so_qstate &= ~SQ_INCOMP;
906 			sp->so_head = NULL;
907 			ACCEPT_UNLOCK();
908 			soabort(sp);
909 			ACCEPT_LOCK();
910 		}
911 		while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) {
912 			TAILQ_REMOVE(&so->so_comp, sp, so_list);
913 			so->so_qlen--;
914 			sp->so_qstate &= ~SQ_COMP;
915 			sp->so_head = NULL;
916 			ACCEPT_UNLOCK();
917 			soabort(sp);
918 			ACCEPT_LOCK();
919 		}
920 		KASSERT((TAILQ_EMPTY(&so->so_comp)),
921 		    ("%s: so_comp populated", __func__));
922 		KASSERT((TAILQ_EMPTY(&so->so_incomp)),
923 		    ("%s: so_incomp populated", __func__));
924 	}
925 	SOCK_LOCK(so);
926 	KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF"));
927 	so->so_state |= SS_NOFDREF;
928 	sorele(so);			/* NB: Returns with ACCEPT_UNLOCK(). */
929 	CURVNET_RESTORE();
930 	return (error);
931 }
932 
933 /*
934  * soabort() is used to abruptly tear down a connection, such as when a
935  * resource limit is reached (listen queue depth exceeded), or if a listen
936  * socket is closed while there are sockets waiting to be accepted.
937  *
938  * This interface is tricky, because it is called on an unreferenced socket,
939  * and must be called only by a thread that has actually removed the socket
940  * from the listen queue it was on, or races with other threads are risked.
941  *
942  * This interface will call into the protocol code, so must not be called
943  * with any socket locks held.  Protocols do call it while holding their own
944  * recursible protocol mutexes, but this is something that should be subject
945  * to review in the future.
946  */
947 void
948 soabort(struct socket *so)
949 {
950 
951 	/*
952 	 * In as much as is possible, assert that no references to this
953 	 * socket are held.  This is not quite the same as asserting that the
954 	 * current thread is responsible for arranging for no references, but
955 	 * is as close as we can get for now.
956 	 */
957 	KASSERT(so->so_count == 0, ("soabort: so_count"));
958 	KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF"));
959 	KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF"));
960 	KASSERT((so->so_state & SQ_COMP) == 0, ("soabort: SQ_COMP"));
961 	KASSERT((so->so_state & SQ_INCOMP) == 0, ("soabort: SQ_INCOMP"));
962 	VNET_SO_ASSERT(so);
963 
964 	if (so->so_proto->pr_usrreqs->pru_abort != NULL)
965 		(*so->so_proto->pr_usrreqs->pru_abort)(so);
966 	ACCEPT_LOCK();
967 	SOCK_LOCK(so);
968 	sofree(so);
969 }
970 
971 int
972 soaccept(struct socket *so, struct sockaddr **nam)
973 {
974 	int error;
975 
976 	SOCK_LOCK(so);
977 	KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF"));
978 	so->so_state &= ~SS_NOFDREF;
979 	SOCK_UNLOCK(so);
980 
981 	CURVNET_SET(so->so_vnet);
982 	error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam);
983 	CURVNET_RESTORE();
984 	return (error);
985 }
986 
987 int
988 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
989 {
990 
991 	return (soconnectat(AT_FDCWD, so, nam, td));
992 }
993 
994 int
995 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
996 {
997 	int error;
998 
999 	if (so->so_options & SO_ACCEPTCONN)
1000 		return (EOPNOTSUPP);
1001 
1002 	CURVNET_SET(so->so_vnet);
1003 	/*
1004 	 * If protocol is connection-based, can only connect once.
1005 	 * Otherwise, if connected, try to disconnect first.  This allows
1006 	 * user to disconnect by connecting to, e.g., a null address.
1007 	 */
1008 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
1009 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
1010 	    (error = sodisconnect(so)))) {
1011 		error = EISCONN;
1012 	} else {
1013 		/*
1014 		 * Prevent accumulated error from previous connection from
1015 		 * biting us.
1016 		 */
1017 		so->so_error = 0;
1018 		if (fd == AT_FDCWD) {
1019 			error = (*so->so_proto->pr_usrreqs->pru_connect)(so,
1020 			    nam, td);
1021 		} else {
1022 			error = (*so->so_proto->pr_usrreqs->pru_connectat)(fd,
1023 			    so, nam, td);
1024 		}
1025 	}
1026 	CURVNET_RESTORE();
1027 
1028 	return (error);
1029 }
1030 
1031 int
1032 soconnect2(struct socket *so1, struct socket *so2)
1033 {
1034 	int error;
1035 
1036 	CURVNET_SET(so1->so_vnet);
1037 	error = (*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2);
1038 	CURVNET_RESTORE();
1039 	return (error);
1040 }
1041 
1042 int
1043 sodisconnect(struct socket *so)
1044 {
1045 	int error;
1046 
1047 	if ((so->so_state & SS_ISCONNECTED) == 0)
1048 		return (ENOTCONN);
1049 	if (so->so_state & SS_ISDISCONNECTING)
1050 		return (EALREADY);
1051 	VNET_SO_ASSERT(so);
1052 	error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so);
1053 	return (error);
1054 }
1055 
1056 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT)
1057 
1058 int
1059 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
1060     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1061 {
1062 	long space;
1063 	ssize_t resid;
1064 	int clen = 0, error, dontroute;
1065 
1066 	KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM"));
1067 	KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
1068 	    ("sosend_dgram: !PR_ATOMIC"));
1069 
1070 	if (uio != NULL)
1071 		resid = uio->uio_resid;
1072 	else
1073 		resid = top->m_pkthdr.len;
1074 	/*
1075 	 * In theory resid should be unsigned.  However, space must be
1076 	 * signed, as it might be less than 0 if we over-committed, and we
1077 	 * must use a signed comparison of space and resid.  On the other
1078 	 * hand, a negative resid causes us to loop sending 0-length
1079 	 * segments to the protocol.
1080 	 */
1081 	if (resid < 0) {
1082 		error = EINVAL;
1083 		goto out;
1084 	}
1085 
1086 	dontroute =
1087 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
1088 	if (td != NULL)
1089 		td->td_ru.ru_msgsnd++;
1090 	if (control != NULL)
1091 		clen = control->m_len;
1092 
1093 	SOCKBUF_LOCK(&so->so_snd);
1094 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1095 		SOCKBUF_UNLOCK(&so->so_snd);
1096 		error = EPIPE;
1097 		goto out;
1098 	}
1099 	if (so->so_error) {
1100 		error = so->so_error;
1101 		so->so_error = 0;
1102 		SOCKBUF_UNLOCK(&so->so_snd);
1103 		goto out;
1104 	}
1105 	if ((so->so_state & SS_ISCONNECTED) == 0) {
1106 		/*
1107 		 * `sendto' and `sendmsg' is allowed on a connection-based
1108 		 * socket if it supports implied connect.  Return ENOTCONN if
1109 		 * not connected and no address is supplied.
1110 		 */
1111 		if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1112 		    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1113 			if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1114 			    !(resid == 0 && clen != 0)) {
1115 				SOCKBUF_UNLOCK(&so->so_snd);
1116 				error = ENOTCONN;
1117 				goto out;
1118 			}
1119 		} else if (addr == NULL) {
1120 			if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1121 				error = ENOTCONN;
1122 			else
1123 				error = EDESTADDRREQ;
1124 			SOCKBUF_UNLOCK(&so->so_snd);
1125 			goto out;
1126 		}
1127 	}
1128 
1129 	/*
1130 	 * Do we need MSG_OOB support in SOCK_DGRAM?  Signs here may be a
1131 	 * problem and need fixing.
1132 	 */
1133 	space = sbspace(&so->so_snd);
1134 	if (flags & MSG_OOB)
1135 		space += 1024;
1136 	space -= clen;
1137 	SOCKBUF_UNLOCK(&so->so_snd);
1138 	if (resid > space) {
1139 		error = EMSGSIZE;
1140 		goto out;
1141 	}
1142 	if (uio == NULL) {
1143 		resid = 0;
1144 		if (flags & MSG_EOR)
1145 			top->m_flags |= M_EOR;
1146 	} else {
1147 		/*
1148 		 * Copy the data from userland into a mbuf chain.
1149 		 * If no data is to be copied in, a single empty mbuf
1150 		 * is returned.
1151 		 */
1152 		top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
1153 		    (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
1154 		if (top == NULL) {
1155 			error = EFAULT;	/* only possible error */
1156 			goto out;
1157 		}
1158 		space -= resid - uio->uio_resid;
1159 		resid = uio->uio_resid;
1160 	}
1161 	KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
1162 	/*
1163 	 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
1164 	 * than with.
1165 	 */
1166 	if (dontroute) {
1167 		SOCK_LOCK(so);
1168 		so->so_options |= SO_DONTROUTE;
1169 		SOCK_UNLOCK(so);
1170 	}
1171 	/*
1172 	 * XXX all the SBS_CANTSENDMORE checks previously done could be out
1173 	 * of date.  We could have received a reset packet in an interrupt or
1174 	 * maybe we slept while doing page faults in uiomove() etc.  We could
1175 	 * probably recheck again inside the locking protection here, but
1176 	 * there are probably other places that this also happens.  We must
1177 	 * rethink this.
1178 	 */
1179 	VNET_SO_ASSERT(so);
1180 	error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1181 	    (flags & MSG_OOB) ? PRUS_OOB :
1182 	/*
1183 	 * If the user set MSG_EOF, the protocol understands this flag and
1184 	 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
1185 	 */
1186 	    ((flags & MSG_EOF) &&
1187 	     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1188 	     (resid <= 0)) ?
1189 		PRUS_EOF :
1190 		/* If there is more to send set PRUS_MORETOCOME */
1191 		(flags & MSG_MORETOCOME) ||
1192 		(resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1193 		top, addr, control, td);
1194 	if (dontroute) {
1195 		SOCK_LOCK(so);
1196 		so->so_options &= ~SO_DONTROUTE;
1197 		SOCK_UNLOCK(so);
1198 	}
1199 	clen = 0;
1200 	control = NULL;
1201 	top = NULL;
1202 out:
1203 	if (top != NULL)
1204 		m_freem(top);
1205 	if (control != NULL)
1206 		m_freem(control);
1207 	return (error);
1208 }
1209 
1210 /*
1211  * Send on a socket.  If send must go all at once and message is larger than
1212  * send buffering, then hard error.  Lock against other senders.  If must go
1213  * all at once and not enough room now, then inform user that this would
1214  * block and do nothing.  Otherwise, if nonblocking, send as much as
1215  * possible.  The data to be sent is described by "uio" if nonzero, otherwise
1216  * by the mbuf chain "top" (which must be null if uio is not).  Data provided
1217  * in mbuf chain must be small enough to send all at once.
1218  *
1219  * Returns nonzero on error, timeout or signal; callers must check for short
1220  * counts if EINTR/ERESTART are returned.  Data and control buffers are freed
1221  * on return.
1222  */
1223 int
1224 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
1225     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1226 {
1227 	long space;
1228 	ssize_t resid;
1229 	int clen = 0, error, dontroute;
1230 	int atomic = sosendallatonce(so) || top;
1231 
1232 	if (uio != NULL)
1233 		resid = uio->uio_resid;
1234 	else
1235 		resid = top->m_pkthdr.len;
1236 	/*
1237 	 * In theory resid should be unsigned.  However, space must be
1238 	 * signed, as it might be less than 0 if we over-committed, and we
1239 	 * must use a signed comparison of space and resid.  On the other
1240 	 * hand, a negative resid causes us to loop sending 0-length
1241 	 * segments to the protocol.
1242 	 *
1243 	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
1244 	 * type sockets since that's an error.
1245 	 */
1246 	if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
1247 		error = EINVAL;
1248 		goto out;
1249 	}
1250 
1251 	dontroute =
1252 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
1253 	    (so->so_proto->pr_flags & PR_ATOMIC);
1254 	if (td != NULL)
1255 		td->td_ru.ru_msgsnd++;
1256 	if (control != NULL)
1257 		clen = control->m_len;
1258 
1259 	error = sblock(&so->so_snd, SBLOCKWAIT(flags));
1260 	if (error)
1261 		goto out;
1262 
1263 restart:
1264 	do {
1265 		SOCKBUF_LOCK(&so->so_snd);
1266 		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1267 			SOCKBUF_UNLOCK(&so->so_snd);
1268 			error = EPIPE;
1269 			goto release;
1270 		}
1271 		if (so->so_error) {
1272 			error = so->so_error;
1273 			so->so_error = 0;
1274 			SOCKBUF_UNLOCK(&so->so_snd);
1275 			goto release;
1276 		}
1277 		if ((so->so_state & SS_ISCONNECTED) == 0) {
1278 			/*
1279 			 * `sendto' and `sendmsg' is allowed on a connection-
1280 			 * based socket if it supports implied connect.
1281 			 * Return ENOTCONN if not connected and no address is
1282 			 * supplied.
1283 			 */
1284 			if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1285 			    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1286 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1287 				    !(resid == 0 && clen != 0)) {
1288 					SOCKBUF_UNLOCK(&so->so_snd);
1289 					error = ENOTCONN;
1290 					goto release;
1291 				}
1292 			} else if (addr == NULL) {
1293 				SOCKBUF_UNLOCK(&so->so_snd);
1294 				if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1295 					error = ENOTCONN;
1296 				else
1297 					error = EDESTADDRREQ;
1298 				goto release;
1299 			}
1300 		}
1301 		space = sbspace(&so->so_snd);
1302 		if (flags & MSG_OOB)
1303 			space += 1024;
1304 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
1305 		    clen > so->so_snd.sb_hiwat) {
1306 			SOCKBUF_UNLOCK(&so->so_snd);
1307 			error = EMSGSIZE;
1308 			goto release;
1309 		}
1310 		if (space < resid + clen &&
1311 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
1312 			if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
1313 				SOCKBUF_UNLOCK(&so->so_snd);
1314 				error = EWOULDBLOCK;
1315 				goto release;
1316 			}
1317 			error = sbwait(&so->so_snd);
1318 			SOCKBUF_UNLOCK(&so->so_snd);
1319 			if (error)
1320 				goto release;
1321 			goto restart;
1322 		}
1323 		SOCKBUF_UNLOCK(&so->so_snd);
1324 		space -= clen;
1325 		do {
1326 			if (uio == NULL) {
1327 				resid = 0;
1328 				if (flags & MSG_EOR)
1329 					top->m_flags |= M_EOR;
1330 			} else {
1331 				/*
1332 				 * Copy the data from userland into a mbuf
1333 				 * chain.  If resid is 0, which can happen
1334 				 * only if we have control to send, then
1335 				 * a single empty mbuf is returned.  This
1336 				 * is a workaround to prevent protocol send
1337 				 * methods to panic.
1338 				 */
1339 				top = m_uiotombuf(uio, M_WAITOK, space,
1340 				    (atomic ? max_hdr : 0),
1341 				    (atomic ? M_PKTHDR : 0) |
1342 				    ((flags & MSG_EOR) ? M_EOR : 0));
1343 				if (top == NULL) {
1344 					error = EFAULT; /* only possible error */
1345 					goto release;
1346 				}
1347 				space -= resid - uio->uio_resid;
1348 				resid = uio->uio_resid;
1349 			}
1350 			if (dontroute) {
1351 				SOCK_LOCK(so);
1352 				so->so_options |= SO_DONTROUTE;
1353 				SOCK_UNLOCK(so);
1354 			}
1355 			/*
1356 			 * XXX all the SBS_CANTSENDMORE checks previously
1357 			 * done could be out of date.  We could have received
1358 			 * a reset packet in an interrupt or maybe we slept
1359 			 * while doing page faults in uiomove() etc.  We
1360 			 * could probably recheck again inside the locking
1361 			 * protection here, but there are probably other
1362 			 * places that this also happens.  We must rethink
1363 			 * this.
1364 			 */
1365 			VNET_SO_ASSERT(so);
1366 			error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1367 			    (flags & MSG_OOB) ? PRUS_OOB :
1368 			/*
1369 			 * If the user set MSG_EOF, the protocol understands
1370 			 * this flag and nothing left to send then use
1371 			 * PRU_SEND_EOF instead of PRU_SEND.
1372 			 */
1373 			    ((flags & MSG_EOF) &&
1374 			     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1375 			     (resid <= 0)) ?
1376 				PRUS_EOF :
1377 			/* If there is more to send set PRUS_MORETOCOME. */
1378 			    (flags & MSG_MORETOCOME) ||
1379 			    (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1380 			    top, addr, control, td);
1381 			if (dontroute) {
1382 				SOCK_LOCK(so);
1383 				so->so_options &= ~SO_DONTROUTE;
1384 				SOCK_UNLOCK(so);
1385 			}
1386 			clen = 0;
1387 			control = NULL;
1388 			top = NULL;
1389 			if (error)
1390 				goto release;
1391 		} while (resid && space > 0);
1392 	} while (resid);
1393 
1394 release:
1395 	sbunlock(&so->so_snd);
1396 out:
1397 	if (top != NULL)
1398 		m_freem(top);
1399 	if (control != NULL)
1400 		m_freem(control);
1401 	return (error);
1402 }
1403 
1404 int
1405 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
1406     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1407 {
1408 	int error;
1409 
1410 	CURVNET_SET(so->so_vnet);
1411 	error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, top,
1412 	    control, flags, td);
1413 	CURVNET_RESTORE();
1414 	return (error);
1415 }
1416 
1417 /*
1418  * The part of soreceive() that implements reading non-inline out-of-band
1419  * data from a socket.  For more complete comments, see soreceive(), from
1420  * which this code originated.
1421  *
1422  * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
1423  * unable to return an mbuf chain to the caller.
1424  */
1425 static int
1426 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
1427 {
1428 	struct protosw *pr = so->so_proto;
1429 	struct mbuf *m;
1430 	int error;
1431 
1432 	KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
1433 	VNET_SO_ASSERT(so);
1434 
1435 	m = m_get(M_WAITOK, MT_DATA);
1436 	error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK);
1437 	if (error)
1438 		goto bad;
1439 	do {
1440 		error = uiomove(mtod(m, void *),
1441 		    (int) min(uio->uio_resid, m->m_len), uio);
1442 		m = m_free(m);
1443 	} while (uio->uio_resid && error == 0 && m);
1444 bad:
1445 	if (m != NULL)
1446 		m_freem(m);
1447 	return (error);
1448 }
1449 
1450 /*
1451  * Following replacement or removal of the first mbuf on the first mbuf chain
1452  * of a socket buffer, push necessary state changes back into the socket
1453  * buffer so that other consumers see the values consistently.  'nextrecord'
1454  * is the callers locally stored value of the original value of
1455  * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
1456  * NOTE: 'nextrecord' may be NULL.
1457  */
1458 static __inline void
1459 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
1460 {
1461 
1462 	SOCKBUF_LOCK_ASSERT(sb);
1463 	/*
1464 	 * First, update for the new value of nextrecord.  If necessary, make
1465 	 * it the first record.
1466 	 */
1467 	if (sb->sb_mb != NULL)
1468 		sb->sb_mb->m_nextpkt = nextrecord;
1469 	else
1470 		sb->sb_mb = nextrecord;
1471 
1472 	/*
1473 	 * Now update any dependent socket buffer fields to reflect the new
1474 	 * state.  This is an expanded inline of SB_EMPTY_FIXUP(), with the
1475 	 * addition of a second clause that takes care of the case where
1476 	 * sb_mb has been updated, but remains the last record.
1477 	 */
1478 	if (sb->sb_mb == NULL) {
1479 		sb->sb_mbtail = NULL;
1480 		sb->sb_lastrecord = NULL;
1481 	} else if (sb->sb_mb->m_nextpkt == NULL)
1482 		sb->sb_lastrecord = sb->sb_mb;
1483 }
1484 
1485 /*
1486  * Implement receive operations on a socket.  We depend on the way that
1487  * records are added to the sockbuf by sbappend.  In particular, each record
1488  * (mbufs linked through m_next) must begin with an address if the protocol
1489  * so specifies, followed by an optional mbuf or mbufs containing ancillary
1490  * data, and then zero or more mbufs of data.  In order to allow parallelism
1491  * between network receive and copying to user space, as well as avoid
1492  * sleeping with a mutex held, we release the socket buffer mutex during the
1493  * user space copy.  Although the sockbuf is locked, new data may still be
1494  * appended, and thus we must maintain consistency of the sockbuf during that
1495  * time.
1496  *
1497  * The caller may receive the data as a single mbuf chain by supplying an
1498  * mbuf **mp0 for use in returning the chain.  The uio is then used only for
1499  * the count in uio_resid.
1500  */
1501 int
1502 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
1503     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1504 {
1505 	struct mbuf *m, **mp;
1506 	int flags, error, offset;
1507 	ssize_t len;
1508 	struct protosw *pr = so->so_proto;
1509 	struct mbuf *nextrecord;
1510 	int moff, type = 0;
1511 	ssize_t orig_resid = uio->uio_resid;
1512 
1513 	mp = mp0;
1514 	if (psa != NULL)
1515 		*psa = NULL;
1516 	if (controlp != NULL)
1517 		*controlp = NULL;
1518 	if (flagsp != NULL)
1519 		flags = *flagsp &~ MSG_EOR;
1520 	else
1521 		flags = 0;
1522 	if (flags & MSG_OOB)
1523 		return (soreceive_rcvoob(so, uio, flags));
1524 	if (mp != NULL)
1525 		*mp = NULL;
1526 	if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING)
1527 	    && uio->uio_resid) {
1528 		VNET_SO_ASSERT(so);
1529 		(*pr->pr_usrreqs->pru_rcvd)(so, 0);
1530 	}
1531 
1532 	error = sblock(&so->so_rcv, SBLOCKWAIT(flags));
1533 	if (error)
1534 		return (error);
1535 
1536 restart:
1537 	SOCKBUF_LOCK(&so->so_rcv);
1538 	m = so->so_rcv.sb_mb;
1539 	/*
1540 	 * If we have less data than requested, block awaiting more (subject
1541 	 * to any timeout) if:
1542 	 *   1. the current count is less than the low water mark, or
1543 	 *   2. MSG_DONTWAIT is not set
1544 	 */
1545 	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
1546 	    sbavail(&so->so_rcv) < uio->uio_resid) &&
1547 	    sbavail(&so->so_rcv) < so->so_rcv.sb_lowat &&
1548 	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
1549 		KASSERT(m != NULL || !sbavail(&so->so_rcv),
1550 		    ("receive: m == %p sbavail == %u",
1551 		    m, sbavail(&so->so_rcv)));
1552 		if (so->so_error) {
1553 			if (m != NULL)
1554 				goto dontblock;
1555 			error = so->so_error;
1556 			if ((flags & MSG_PEEK) == 0)
1557 				so->so_error = 0;
1558 			SOCKBUF_UNLOCK(&so->so_rcv);
1559 			goto release;
1560 		}
1561 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1562 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1563 			if (m == NULL) {
1564 				SOCKBUF_UNLOCK(&so->so_rcv);
1565 				goto release;
1566 			} else
1567 				goto dontblock;
1568 		}
1569 		for (; m != NULL; m = m->m_next)
1570 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
1571 				m = so->so_rcv.sb_mb;
1572 				goto dontblock;
1573 			}
1574 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1575 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1576 			SOCKBUF_UNLOCK(&so->so_rcv);
1577 			error = ENOTCONN;
1578 			goto release;
1579 		}
1580 		if (uio->uio_resid == 0) {
1581 			SOCKBUF_UNLOCK(&so->so_rcv);
1582 			goto release;
1583 		}
1584 		if ((so->so_state & SS_NBIO) ||
1585 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1586 			SOCKBUF_UNLOCK(&so->so_rcv);
1587 			error = EWOULDBLOCK;
1588 			goto release;
1589 		}
1590 		SBLASTRECORDCHK(&so->so_rcv);
1591 		SBLASTMBUFCHK(&so->so_rcv);
1592 		error = sbwait(&so->so_rcv);
1593 		SOCKBUF_UNLOCK(&so->so_rcv);
1594 		if (error)
1595 			goto release;
1596 		goto restart;
1597 	}
1598 dontblock:
1599 	/*
1600 	 * From this point onward, we maintain 'nextrecord' as a cache of the
1601 	 * pointer to the next record in the socket buffer.  We must keep the
1602 	 * various socket buffer pointers and local stack versions of the
1603 	 * pointers in sync, pushing out modifications before dropping the
1604 	 * socket buffer mutex, and re-reading them when picking it up.
1605 	 *
1606 	 * Otherwise, we will race with the network stack appending new data
1607 	 * or records onto the socket buffer by using inconsistent/stale
1608 	 * versions of the field, possibly resulting in socket buffer
1609 	 * corruption.
1610 	 *
1611 	 * By holding the high-level sblock(), we prevent simultaneous
1612 	 * readers from pulling off the front of the socket buffer.
1613 	 */
1614 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1615 	if (uio->uio_td)
1616 		uio->uio_td->td_ru.ru_msgrcv++;
1617 	KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
1618 	SBLASTRECORDCHK(&so->so_rcv);
1619 	SBLASTMBUFCHK(&so->so_rcv);
1620 	nextrecord = m->m_nextpkt;
1621 	if (pr->pr_flags & PR_ADDR) {
1622 		KASSERT(m->m_type == MT_SONAME,
1623 		    ("m->m_type == %d", m->m_type));
1624 		orig_resid = 0;
1625 		if (psa != NULL)
1626 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
1627 			    M_NOWAIT);
1628 		if (flags & MSG_PEEK) {
1629 			m = m->m_next;
1630 		} else {
1631 			sbfree(&so->so_rcv, m);
1632 			so->so_rcv.sb_mb = m_free(m);
1633 			m = so->so_rcv.sb_mb;
1634 			sockbuf_pushsync(&so->so_rcv, nextrecord);
1635 		}
1636 	}
1637 
1638 	/*
1639 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
1640 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
1641 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
1642 	 * perform externalization (or freeing if controlp == NULL).
1643 	 */
1644 	if (m != NULL && m->m_type == MT_CONTROL) {
1645 		struct mbuf *cm = NULL, *cmn;
1646 		struct mbuf **cme = &cm;
1647 
1648 		do {
1649 			if (flags & MSG_PEEK) {
1650 				if (controlp != NULL) {
1651 					*controlp = m_copym(m, 0, m->m_len,
1652 					    M_NOWAIT);
1653 					controlp = &(*controlp)->m_next;
1654 				}
1655 				m = m->m_next;
1656 			} else {
1657 				sbfree(&so->so_rcv, m);
1658 				so->so_rcv.sb_mb = m->m_next;
1659 				m->m_next = NULL;
1660 				*cme = m;
1661 				cme = &(*cme)->m_next;
1662 				m = so->so_rcv.sb_mb;
1663 			}
1664 		} while (m != NULL && m->m_type == MT_CONTROL);
1665 		if ((flags & MSG_PEEK) == 0)
1666 			sockbuf_pushsync(&so->so_rcv, nextrecord);
1667 		while (cm != NULL) {
1668 			cmn = cm->m_next;
1669 			cm->m_next = NULL;
1670 			if (pr->pr_domain->dom_externalize != NULL) {
1671 				SOCKBUF_UNLOCK(&so->so_rcv);
1672 				VNET_SO_ASSERT(so);
1673 				error = (*pr->pr_domain->dom_externalize)
1674 				    (cm, controlp, flags);
1675 				SOCKBUF_LOCK(&so->so_rcv);
1676 			} else if (controlp != NULL)
1677 				*controlp = cm;
1678 			else
1679 				m_freem(cm);
1680 			if (controlp != NULL) {
1681 				orig_resid = 0;
1682 				while (*controlp != NULL)
1683 					controlp = &(*controlp)->m_next;
1684 			}
1685 			cm = cmn;
1686 		}
1687 		if (m != NULL)
1688 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1689 		else
1690 			nextrecord = so->so_rcv.sb_mb;
1691 		orig_resid = 0;
1692 	}
1693 	if (m != NULL) {
1694 		if ((flags & MSG_PEEK) == 0) {
1695 			KASSERT(m->m_nextpkt == nextrecord,
1696 			    ("soreceive: post-control, nextrecord !sync"));
1697 			if (nextrecord == NULL) {
1698 				KASSERT(so->so_rcv.sb_mb == m,
1699 				    ("soreceive: post-control, sb_mb!=m"));
1700 				KASSERT(so->so_rcv.sb_lastrecord == m,
1701 				    ("soreceive: post-control, lastrecord!=m"));
1702 			}
1703 		}
1704 		type = m->m_type;
1705 		if (type == MT_OOBDATA)
1706 			flags |= MSG_OOB;
1707 	} else {
1708 		if ((flags & MSG_PEEK) == 0) {
1709 			KASSERT(so->so_rcv.sb_mb == nextrecord,
1710 			    ("soreceive: sb_mb != nextrecord"));
1711 			if (so->so_rcv.sb_mb == NULL) {
1712 				KASSERT(so->so_rcv.sb_lastrecord == NULL,
1713 				    ("soreceive: sb_lastercord != NULL"));
1714 			}
1715 		}
1716 	}
1717 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1718 	SBLASTRECORDCHK(&so->so_rcv);
1719 	SBLASTMBUFCHK(&so->so_rcv);
1720 
1721 	/*
1722 	 * Now continue to read any data mbufs off of the head of the socket
1723 	 * buffer until the read request is satisfied.  Note that 'type' is
1724 	 * used to store the type of any mbuf reads that have happened so far
1725 	 * such that soreceive() can stop reading if the type changes, which
1726 	 * causes soreceive() to return only one of regular data and inline
1727 	 * out-of-band data in a single socket receive operation.
1728 	 */
1729 	moff = 0;
1730 	offset = 0;
1731 	while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0
1732 	    && error == 0) {
1733 		/*
1734 		 * If the type of mbuf has changed since the last mbuf
1735 		 * examined ('type'), end the receive operation.
1736 		 */
1737 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1738 		if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) {
1739 			if (type != m->m_type)
1740 				break;
1741 		} else if (type == MT_OOBDATA)
1742 			break;
1743 		else
1744 		    KASSERT(m->m_type == MT_DATA,
1745 			("m->m_type == %d", m->m_type));
1746 		so->so_rcv.sb_state &= ~SBS_RCVATMARK;
1747 		len = uio->uio_resid;
1748 		if (so->so_oobmark && len > so->so_oobmark - offset)
1749 			len = so->so_oobmark - offset;
1750 		if (len > m->m_len - moff)
1751 			len = m->m_len - moff;
1752 		/*
1753 		 * If mp is set, just pass back the mbufs.  Otherwise copy
1754 		 * them out via the uio, then free.  Sockbuf must be
1755 		 * consistent here (points to current mbuf, it points to next
1756 		 * record) when we drop priority; we must note any additions
1757 		 * to the sockbuf when we block interrupts again.
1758 		 */
1759 		if (mp == NULL) {
1760 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1761 			SBLASTRECORDCHK(&so->so_rcv);
1762 			SBLASTMBUFCHK(&so->so_rcv);
1763 			SOCKBUF_UNLOCK(&so->so_rcv);
1764 			error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1765 			SOCKBUF_LOCK(&so->so_rcv);
1766 			if (error) {
1767 				/*
1768 				 * The MT_SONAME mbuf has already been removed
1769 				 * from the record, so it is necessary to
1770 				 * remove the data mbufs, if any, to preserve
1771 				 * the invariant in the case of PR_ADDR that
1772 				 * requires MT_SONAME mbufs at the head of
1773 				 * each record.
1774 				 */
1775 				if (m && pr->pr_flags & PR_ATOMIC &&
1776 				    ((flags & MSG_PEEK) == 0))
1777 					(void)sbdroprecord_locked(&so->so_rcv);
1778 				SOCKBUF_UNLOCK(&so->so_rcv);
1779 				goto release;
1780 			}
1781 		} else
1782 			uio->uio_resid -= len;
1783 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1784 		if (len == m->m_len - moff) {
1785 			if (m->m_flags & M_EOR)
1786 				flags |= MSG_EOR;
1787 			if (flags & MSG_PEEK) {
1788 				m = m->m_next;
1789 				moff = 0;
1790 			} else {
1791 				nextrecord = m->m_nextpkt;
1792 				sbfree(&so->so_rcv, m);
1793 				if (mp != NULL) {
1794 					m->m_nextpkt = NULL;
1795 					*mp = m;
1796 					mp = &m->m_next;
1797 					so->so_rcv.sb_mb = m = m->m_next;
1798 					*mp = NULL;
1799 				} else {
1800 					so->so_rcv.sb_mb = m_free(m);
1801 					m = so->so_rcv.sb_mb;
1802 				}
1803 				sockbuf_pushsync(&so->so_rcv, nextrecord);
1804 				SBLASTRECORDCHK(&so->so_rcv);
1805 				SBLASTMBUFCHK(&so->so_rcv);
1806 			}
1807 		} else {
1808 			if (flags & MSG_PEEK)
1809 				moff += len;
1810 			else {
1811 				if (mp != NULL) {
1812 					if (flags & MSG_DONTWAIT) {
1813 						*mp = m_copym(m, 0, len,
1814 						    M_NOWAIT);
1815 						if (*mp == NULL) {
1816 							/*
1817 							 * m_copym() couldn't
1818 							 * allocate an mbuf.
1819 							 * Adjust uio_resid back
1820 							 * (it was adjusted
1821 							 * down by len bytes,
1822 							 * which we didn't end
1823 							 * up "copying" over).
1824 							 */
1825 							uio->uio_resid += len;
1826 							break;
1827 						}
1828 					} else {
1829 						SOCKBUF_UNLOCK(&so->so_rcv);
1830 						*mp = m_copym(m, 0, len,
1831 						    M_WAITOK);
1832 						SOCKBUF_LOCK(&so->so_rcv);
1833 					}
1834 				}
1835 				sbcut_locked(&so->so_rcv, len);
1836 			}
1837 		}
1838 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1839 		if (so->so_oobmark) {
1840 			if ((flags & MSG_PEEK) == 0) {
1841 				so->so_oobmark -= len;
1842 				if (so->so_oobmark == 0) {
1843 					so->so_rcv.sb_state |= SBS_RCVATMARK;
1844 					break;
1845 				}
1846 			} else {
1847 				offset += len;
1848 				if (offset == so->so_oobmark)
1849 					break;
1850 			}
1851 		}
1852 		if (flags & MSG_EOR)
1853 			break;
1854 		/*
1855 		 * If the MSG_WAITALL flag is set (for non-atomic socket), we
1856 		 * must not quit until "uio->uio_resid == 0" or an error
1857 		 * termination.  If a signal/timeout occurs, return with a
1858 		 * short count but without error.  Keep sockbuf locked
1859 		 * against other readers.
1860 		 */
1861 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1862 		    !sosendallatonce(so) && nextrecord == NULL) {
1863 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1864 			if (so->so_error ||
1865 			    so->so_rcv.sb_state & SBS_CANTRCVMORE)
1866 				break;
1867 			/*
1868 			 * Notify the protocol that some data has been
1869 			 * drained before blocking.
1870 			 */
1871 			if (pr->pr_flags & PR_WANTRCVD) {
1872 				SOCKBUF_UNLOCK(&so->so_rcv);
1873 				VNET_SO_ASSERT(so);
1874 				(*pr->pr_usrreqs->pru_rcvd)(so, flags);
1875 				SOCKBUF_LOCK(&so->so_rcv);
1876 			}
1877 			SBLASTRECORDCHK(&so->so_rcv);
1878 			SBLASTMBUFCHK(&so->so_rcv);
1879 			/*
1880 			 * We could receive some data while was notifying
1881 			 * the protocol. Skip blocking in this case.
1882 			 */
1883 			if (so->so_rcv.sb_mb == NULL) {
1884 				error = sbwait(&so->so_rcv);
1885 				if (error) {
1886 					SOCKBUF_UNLOCK(&so->so_rcv);
1887 					goto release;
1888 				}
1889 			}
1890 			m = so->so_rcv.sb_mb;
1891 			if (m != NULL)
1892 				nextrecord = m->m_nextpkt;
1893 		}
1894 	}
1895 
1896 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1897 	if (m != NULL && pr->pr_flags & PR_ATOMIC) {
1898 		flags |= MSG_TRUNC;
1899 		if ((flags & MSG_PEEK) == 0)
1900 			(void) sbdroprecord_locked(&so->so_rcv);
1901 	}
1902 	if ((flags & MSG_PEEK) == 0) {
1903 		if (m == NULL) {
1904 			/*
1905 			 * First part is an inline SB_EMPTY_FIXUP().  Second
1906 			 * part makes sure sb_lastrecord is up-to-date if
1907 			 * there is still data in the socket buffer.
1908 			 */
1909 			so->so_rcv.sb_mb = nextrecord;
1910 			if (so->so_rcv.sb_mb == NULL) {
1911 				so->so_rcv.sb_mbtail = NULL;
1912 				so->so_rcv.sb_lastrecord = NULL;
1913 			} else if (nextrecord->m_nextpkt == NULL)
1914 				so->so_rcv.sb_lastrecord = nextrecord;
1915 		}
1916 		SBLASTRECORDCHK(&so->so_rcv);
1917 		SBLASTMBUFCHK(&so->so_rcv);
1918 		/*
1919 		 * If soreceive() is being done from the socket callback,
1920 		 * then don't need to generate ACK to peer to update window,
1921 		 * since ACK will be generated on return to TCP.
1922 		 */
1923 		if (!(flags & MSG_SOCALLBCK) &&
1924 		    (pr->pr_flags & PR_WANTRCVD)) {
1925 			SOCKBUF_UNLOCK(&so->so_rcv);
1926 			VNET_SO_ASSERT(so);
1927 			(*pr->pr_usrreqs->pru_rcvd)(so, flags);
1928 			SOCKBUF_LOCK(&so->so_rcv);
1929 		}
1930 	}
1931 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1932 	if (orig_resid == uio->uio_resid && orig_resid &&
1933 	    (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
1934 		SOCKBUF_UNLOCK(&so->so_rcv);
1935 		goto restart;
1936 	}
1937 	SOCKBUF_UNLOCK(&so->so_rcv);
1938 
1939 	if (flagsp != NULL)
1940 		*flagsp |= flags;
1941 release:
1942 	sbunlock(&so->so_rcv);
1943 	return (error);
1944 }
1945 
1946 /*
1947  * Optimized version of soreceive() for stream (TCP) sockets.
1948  * XXXAO: (MSG_WAITALL | MSG_PEEK) isn't properly handled.
1949  */
1950 int
1951 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio,
1952     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1953 {
1954 	int len = 0, error = 0, flags, oresid;
1955 	struct sockbuf *sb;
1956 	struct mbuf *m, *n = NULL;
1957 
1958 	/* We only do stream sockets. */
1959 	if (so->so_type != SOCK_STREAM)
1960 		return (EINVAL);
1961 	if (psa != NULL)
1962 		*psa = NULL;
1963 	if (controlp != NULL)
1964 		return (EINVAL);
1965 	if (flagsp != NULL)
1966 		flags = *flagsp &~ MSG_EOR;
1967 	else
1968 		flags = 0;
1969 	if (flags & MSG_OOB)
1970 		return (soreceive_rcvoob(so, uio, flags));
1971 	if (mp0 != NULL)
1972 		*mp0 = NULL;
1973 
1974 	sb = &so->so_rcv;
1975 
1976 	/* Prevent other readers from entering the socket. */
1977 	error = sblock(sb, SBLOCKWAIT(flags));
1978 	if (error)
1979 		goto out;
1980 	SOCKBUF_LOCK(sb);
1981 
1982 	/* Easy one, no space to copyout anything. */
1983 	if (uio->uio_resid == 0) {
1984 		error = EINVAL;
1985 		goto out;
1986 	}
1987 	oresid = uio->uio_resid;
1988 
1989 	/* We will never ever get anything unless we are or were connected. */
1990 	if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
1991 		error = ENOTCONN;
1992 		goto out;
1993 	}
1994 
1995 restart:
1996 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1997 
1998 	/* Abort if socket has reported problems. */
1999 	if (so->so_error) {
2000 		if (sbavail(sb) > 0)
2001 			goto deliver;
2002 		if (oresid > uio->uio_resid)
2003 			goto out;
2004 		error = so->so_error;
2005 		if (!(flags & MSG_PEEK))
2006 			so->so_error = 0;
2007 		goto out;
2008 	}
2009 
2010 	/* Door is closed.  Deliver what is left, if any. */
2011 	if (sb->sb_state & SBS_CANTRCVMORE) {
2012 		if (sbavail(sb) > 0)
2013 			goto deliver;
2014 		else
2015 			goto out;
2016 	}
2017 
2018 	/* Socket buffer is empty and we shall not block. */
2019 	if (sbavail(sb) == 0 &&
2020 	    ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) {
2021 		error = EAGAIN;
2022 		goto out;
2023 	}
2024 
2025 	/* Socket buffer got some data that we shall deliver now. */
2026 	if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) &&
2027 	    ((so->so_state & SS_NBIO) ||
2028 	     (flags & (MSG_DONTWAIT|MSG_NBIO)) ||
2029 	     sbavail(sb) >= sb->sb_lowat ||
2030 	     sbavail(sb) >= uio->uio_resid ||
2031 	     sbavail(sb) >= sb->sb_hiwat) ) {
2032 		goto deliver;
2033 	}
2034 
2035 	/* On MSG_WAITALL we must wait until all data or error arrives. */
2036 	if ((flags & MSG_WAITALL) &&
2037 	    (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat))
2038 		goto deliver;
2039 
2040 	/*
2041 	 * Wait and block until (more) data comes in.
2042 	 * NB: Drops the sockbuf lock during wait.
2043 	 */
2044 	error = sbwait(sb);
2045 	if (error)
2046 		goto out;
2047 	goto restart;
2048 
2049 deliver:
2050 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2051 	KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__));
2052 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__));
2053 
2054 	/* Statistics. */
2055 	if (uio->uio_td)
2056 		uio->uio_td->td_ru.ru_msgrcv++;
2057 
2058 	/* Fill uio until full or current end of socket buffer is reached. */
2059 	len = min(uio->uio_resid, sbavail(sb));
2060 	if (mp0 != NULL) {
2061 		/* Dequeue as many mbufs as possible. */
2062 		if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) {
2063 			if (*mp0 == NULL)
2064 				*mp0 = sb->sb_mb;
2065 			else
2066 				m_cat(*mp0, sb->sb_mb);
2067 			for (m = sb->sb_mb;
2068 			     m != NULL && m->m_len <= len;
2069 			     m = m->m_next) {
2070 				KASSERT(!(m->m_flags & M_NOTAVAIL),
2071 				    ("%s: m %p not available", __func__, m));
2072 				len -= m->m_len;
2073 				uio->uio_resid -= m->m_len;
2074 				sbfree(sb, m);
2075 				n = m;
2076 			}
2077 			n->m_next = NULL;
2078 			sb->sb_mb = m;
2079 			sb->sb_lastrecord = sb->sb_mb;
2080 			if (sb->sb_mb == NULL)
2081 				SB_EMPTY_FIXUP(sb);
2082 		}
2083 		/* Copy the remainder. */
2084 		if (len > 0) {
2085 			KASSERT(sb->sb_mb != NULL,
2086 			    ("%s: len > 0 && sb->sb_mb empty", __func__));
2087 
2088 			m = m_copym(sb->sb_mb, 0, len, M_NOWAIT);
2089 			if (m == NULL)
2090 				len = 0;	/* Don't flush data from sockbuf. */
2091 			else
2092 				uio->uio_resid -= len;
2093 			if (*mp0 != NULL)
2094 				m_cat(*mp0, m);
2095 			else
2096 				*mp0 = m;
2097 			if (*mp0 == NULL) {
2098 				error = ENOBUFS;
2099 				goto out;
2100 			}
2101 		}
2102 	} else {
2103 		/* NB: Must unlock socket buffer as uiomove may sleep. */
2104 		SOCKBUF_UNLOCK(sb);
2105 		error = m_mbuftouio(uio, sb->sb_mb, len);
2106 		SOCKBUF_LOCK(sb);
2107 		if (error)
2108 			goto out;
2109 	}
2110 	SBLASTRECORDCHK(sb);
2111 	SBLASTMBUFCHK(sb);
2112 
2113 	/*
2114 	 * Remove the delivered data from the socket buffer unless we
2115 	 * were only peeking.
2116 	 */
2117 	if (!(flags & MSG_PEEK)) {
2118 		if (len > 0)
2119 			sbdrop_locked(sb, len);
2120 
2121 		/* Notify protocol that we drained some data. */
2122 		if ((so->so_proto->pr_flags & PR_WANTRCVD) &&
2123 		    (((flags & MSG_WAITALL) && uio->uio_resid > 0) ||
2124 		     !(flags & MSG_SOCALLBCK))) {
2125 			SOCKBUF_UNLOCK(sb);
2126 			VNET_SO_ASSERT(so);
2127 			(*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags);
2128 			SOCKBUF_LOCK(sb);
2129 		}
2130 	}
2131 
2132 	/*
2133 	 * For MSG_WAITALL we may have to loop again and wait for
2134 	 * more data to come in.
2135 	 */
2136 	if ((flags & MSG_WAITALL) && uio->uio_resid > 0)
2137 		goto restart;
2138 out:
2139 	SOCKBUF_LOCK_ASSERT(sb);
2140 	SBLASTRECORDCHK(sb);
2141 	SBLASTMBUFCHK(sb);
2142 	SOCKBUF_UNLOCK(sb);
2143 	sbunlock(sb);
2144 	return (error);
2145 }
2146 
2147 /*
2148  * Optimized version of soreceive() for simple datagram cases from userspace.
2149  * Unlike in the stream case, we're able to drop a datagram if copyout()
2150  * fails, and because we handle datagrams atomically, we don't need to use a
2151  * sleep lock to prevent I/O interlacing.
2152  */
2153 int
2154 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
2155     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2156 {
2157 	struct mbuf *m, *m2;
2158 	int flags, error;
2159 	ssize_t len;
2160 	struct protosw *pr = so->so_proto;
2161 	struct mbuf *nextrecord;
2162 
2163 	if (psa != NULL)
2164 		*psa = NULL;
2165 	if (controlp != NULL)
2166 		*controlp = NULL;
2167 	if (flagsp != NULL)
2168 		flags = *flagsp &~ MSG_EOR;
2169 	else
2170 		flags = 0;
2171 
2172 	/*
2173 	 * For any complicated cases, fall back to the full
2174 	 * soreceive_generic().
2175 	 */
2176 	if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB))
2177 		return (soreceive_generic(so, psa, uio, mp0, controlp,
2178 		    flagsp));
2179 
2180 	/*
2181 	 * Enforce restrictions on use.
2182 	 */
2183 	KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
2184 	    ("soreceive_dgram: wantrcvd"));
2185 	KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
2186 	KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
2187 	    ("soreceive_dgram: SBS_RCVATMARK"));
2188 	KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
2189 	    ("soreceive_dgram: P_CONNREQUIRED"));
2190 
2191 	/*
2192 	 * Loop blocking while waiting for a datagram.
2193 	 */
2194 	SOCKBUF_LOCK(&so->so_rcv);
2195 	while ((m = so->so_rcv.sb_mb) == NULL) {
2196 		KASSERT(sbavail(&so->so_rcv) == 0,
2197 		    ("soreceive_dgram: sb_mb NULL but sbavail %u",
2198 		    sbavail(&so->so_rcv)));
2199 		if (so->so_error) {
2200 			error = so->so_error;
2201 			so->so_error = 0;
2202 			SOCKBUF_UNLOCK(&so->so_rcv);
2203 			return (error);
2204 		}
2205 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
2206 		    uio->uio_resid == 0) {
2207 			SOCKBUF_UNLOCK(&so->so_rcv);
2208 			return (0);
2209 		}
2210 		if ((so->so_state & SS_NBIO) ||
2211 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
2212 			SOCKBUF_UNLOCK(&so->so_rcv);
2213 			return (EWOULDBLOCK);
2214 		}
2215 		SBLASTRECORDCHK(&so->so_rcv);
2216 		SBLASTMBUFCHK(&so->so_rcv);
2217 		error = sbwait(&so->so_rcv);
2218 		if (error) {
2219 			SOCKBUF_UNLOCK(&so->so_rcv);
2220 			return (error);
2221 		}
2222 	}
2223 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2224 
2225 	if (uio->uio_td)
2226 		uio->uio_td->td_ru.ru_msgrcv++;
2227 	SBLASTRECORDCHK(&so->so_rcv);
2228 	SBLASTMBUFCHK(&so->so_rcv);
2229 	nextrecord = m->m_nextpkt;
2230 	if (nextrecord == NULL) {
2231 		KASSERT(so->so_rcv.sb_lastrecord == m,
2232 		    ("soreceive_dgram: lastrecord != m"));
2233 	}
2234 
2235 	KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
2236 	    ("soreceive_dgram: m_nextpkt != nextrecord"));
2237 
2238 	/*
2239 	 * Pull 'm' and its chain off the front of the packet queue.
2240 	 */
2241 	so->so_rcv.sb_mb = NULL;
2242 	sockbuf_pushsync(&so->so_rcv, nextrecord);
2243 
2244 	/*
2245 	 * Walk 'm's chain and free that many bytes from the socket buffer.
2246 	 */
2247 	for (m2 = m; m2 != NULL; m2 = m2->m_next)
2248 		sbfree(&so->so_rcv, m2);
2249 
2250 	/*
2251 	 * Do a few last checks before we let go of the lock.
2252 	 */
2253 	SBLASTRECORDCHK(&so->so_rcv);
2254 	SBLASTMBUFCHK(&so->so_rcv);
2255 	SOCKBUF_UNLOCK(&so->so_rcv);
2256 
2257 	if (pr->pr_flags & PR_ADDR) {
2258 		KASSERT(m->m_type == MT_SONAME,
2259 		    ("m->m_type == %d", m->m_type));
2260 		if (psa != NULL)
2261 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
2262 			    M_NOWAIT);
2263 		m = m_free(m);
2264 	}
2265 	if (m == NULL) {
2266 		/* XXXRW: Can this happen? */
2267 		return (0);
2268 	}
2269 
2270 	/*
2271 	 * Packet to copyout() is now in 'm' and it is disconnected from the
2272 	 * queue.
2273 	 *
2274 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
2275 	 * in the first mbuf chain on the socket buffer.  We call into the
2276 	 * protocol to perform externalization (or freeing if controlp ==
2277 	 * NULL). In some cases there can be only MT_CONTROL mbufs without
2278 	 * MT_DATA mbufs.
2279 	 */
2280 	if (m->m_type == MT_CONTROL) {
2281 		struct mbuf *cm = NULL, *cmn;
2282 		struct mbuf **cme = &cm;
2283 
2284 		do {
2285 			m2 = m->m_next;
2286 			m->m_next = NULL;
2287 			*cme = m;
2288 			cme = &(*cme)->m_next;
2289 			m = m2;
2290 		} while (m != NULL && m->m_type == MT_CONTROL);
2291 		while (cm != NULL) {
2292 			cmn = cm->m_next;
2293 			cm->m_next = NULL;
2294 			if (pr->pr_domain->dom_externalize != NULL) {
2295 				error = (*pr->pr_domain->dom_externalize)
2296 				    (cm, controlp, flags);
2297 			} else if (controlp != NULL)
2298 				*controlp = cm;
2299 			else
2300 				m_freem(cm);
2301 			if (controlp != NULL) {
2302 				while (*controlp != NULL)
2303 					controlp = &(*controlp)->m_next;
2304 			}
2305 			cm = cmn;
2306 		}
2307 	}
2308 	KASSERT(m == NULL || m->m_type == MT_DATA,
2309 	    ("soreceive_dgram: !data"));
2310 	while (m != NULL && uio->uio_resid > 0) {
2311 		len = uio->uio_resid;
2312 		if (len > m->m_len)
2313 			len = m->m_len;
2314 		error = uiomove(mtod(m, char *), (int)len, uio);
2315 		if (error) {
2316 			m_freem(m);
2317 			return (error);
2318 		}
2319 		if (len == m->m_len)
2320 			m = m_free(m);
2321 		else {
2322 			m->m_data += len;
2323 			m->m_len -= len;
2324 		}
2325 	}
2326 	if (m != NULL) {
2327 		flags |= MSG_TRUNC;
2328 		m_freem(m);
2329 	}
2330 	if (flagsp != NULL)
2331 		*flagsp |= flags;
2332 	return (0);
2333 }
2334 
2335 int
2336 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
2337     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2338 {
2339 	int error;
2340 
2341 	CURVNET_SET(so->so_vnet);
2342 	error = (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, mp0,
2343 	    controlp, flagsp));
2344 	CURVNET_RESTORE();
2345 	return (error);
2346 }
2347 
2348 int
2349 soshutdown(struct socket *so, int how)
2350 {
2351 	struct protosw *pr = so->so_proto;
2352 	int error;
2353 
2354 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
2355 		return (EINVAL);
2356 	if ((so->so_state &
2357 	    (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0)
2358 		return (ENOTCONN);
2359 
2360 	CURVNET_SET(so->so_vnet);
2361 	if (pr->pr_usrreqs->pru_flush != NULL)
2362 		(*pr->pr_usrreqs->pru_flush)(so, how);
2363 	if (how != SHUT_WR)
2364 		sorflush(so);
2365 	if (how != SHUT_RD) {
2366 		error = (*pr->pr_usrreqs->pru_shutdown)(so);
2367 		wakeup(&so->so_timeo);
2368 		CURVNET_RESTORE();
2369 		return (error);
2370 	}
2371 	wakeup(&so->so_timeo);
2372 	CURVNET_RESTORE();
2373 	return (0);
2374 }
2375 
2376 void
2377 sorflush(struct socket *so)
2378 {
2379 	struct sockbuf *sb = &so->so_rcv;
2380 	struct protosw *pr = so->so_proto;
2381 	struct socket aso;
2382 
2383 	VNET_SO_ASSERT(so);
2384 
2385 	/*
2386 	 * In order to avoid calling dom_dispose with the socket buffer mutex
2387 	 * held, and in order to generally avoid holding the lock for a long
2388 	 * time, we make a copy of the socket buffer and clear the original
2389 	 * (except locks, state).  The new socket buffer copy won't have
2390 	 * initialized locks so we can only call routines that won't use or
2391 	 * assert those locks.
2392 	 *
2393 	 * Dislodge threads currently blocked in receive and wait to acquire
2394 	 * a lock against other simultaneous readers before clearing the
2395 	 * socket buffer.  Don't let our acquire be interrupted by a signal
2396 	 * despite any existing socket disposition on interruptable waiting.
2397 	 */
2398 	socantrcvmore(so);
2399 	(void) sblock(sb, SBL_WAIT | SBL_NOINTR);
2400 
2401 	/*
2402 	 * Invalidate/clear most of the sockbuf structure, but leave selinfo
2403 	 * and mutex data unchanged.
2404 	 */
2405 	SOCKBUF_LOCK(sb);
2406 	bzero(&aso, sizeof(aso));
2407 	aso.so_pcb = so->so_pcb;
2408 	bcopy(&sb->sb_startzero, &aso.so_rcv.sb_startzero,
2409 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
2410 	bzero(&sb->sb_startzero,
2411 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
2412 	SOCKBUF_UNLOCK(sb);
2413 	sbunlock(sb);
2414 
2415 	/*
2416 	 * Dispose of special rights and flush the copied socket.  Don't call
2417 	 * any unsafe routines (that rely on locks being initialized) on aso.
2418 	 */
2419 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
2420 		(*pr->pr_domain->dom_dispose)(&aso);
2421 	sbrelease_internal(&aso.so_rcv, so);
2422 }
2423 
2424 /*
2425  * Wrapper for Socket established helper hook.
2426  * Parameters: socket, context of the hook point, hook id.
2427  */
2428 static int inline
2429 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id)
2430 {
2431 	struct socket_hhook_data hhook_data = {
2432 		.so = so,
2433 		.hctx = hctx,
2434 		.m = NULL,
2435 		.status = 0
2436 	};
2437 
2438 	CURVNET_SET(so->so_vnet);
2439 	HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd);
2440 	CURVNET_RESTORE();
2441 
2442 	/* Ugly but needed, since hhooks return void for now */
2443 	return (hhook_data.status);
2444 }
2445 
2446 /*
2447  * Perhaps this routine, and sooptcopyout(), below, ought to come in an
2448  * additional variant to handle the case where the option value needs to be
2449  * some kind of integer, but not a specific size.  In addition to their use
2450  * here, these functions are also called by the protocol-level pr_ctloutput()
2451  * routines.
2452  */
2453 int
2454 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
2455 {
2456 	size_t	valsize;
2457 
2458 	/*
2459 	 * If the user gives us more than we wanted, we ignore it, but if we
2460 	 * don't get the minimum length the caller wants, we return EINVAL.
2461 	 * On success, sopt->sopt_valsize is set to however much we actually
2462 	 * retrieved.
2463 	 */
2464 	if ((valsize = sopt->sopt_valsize) < minlen)
2465 		return EINVAL;
2466 	if (valsize > len)
2467 		sopt->sopt_valsize = valsize = len;
2468 
2469 	if (sopt->sopt_td != NULL)
2470 		return (copyin(sopt->sopt_val, buf, valsize));
2471 
2472 	bcopy(sopt->sopt_val, buf, valsize);
2473 	return (0);
2474 }
2475 
2476 /*
2477  * Kernel version of setsockopt(2).
2478  *
2479  * XXX: optlen is size_t, not socklen_t
2480  */
2481 int
2482 so_setsockopt(struct socket *so, int level, int optname, void *optval,
2483     size_t optlen)
2484 {
2485 	struct sockopt sopt;
2486 
2487 	sopt.sopt_level = level;
2488 	sopt.sopt_name = optname;
2489 	sopt.sopt_dir = SOPT_SET;
2490 	sopt.sopt_val = optval;
2491 	sopt.sopt_valsize = optlen;
2492 	sopt.sopt_td = NULL;
2493 	return (sosetopt(so, &sopt));
2494 }
2495 
2496 int
2497 sosetopt(struct socket *so, struct sockopt *sopt)
2498 {
2499 	int	error, optval;
2500 	struct	linger l;
2501 	struct	timeval tv;
2502 	sbintime_t val;
2503 	uint32_t val32;
2504 #ifdef MAC
2505 	struct mac extmac;
2506 #endif
2507 
2508 	CURVNET_SET(so->so_vnet);
2509 	error = 0;
2510 	if (sopt->sopt_level != SOL_SOCKET) {
2511 		if (so->so_proto->pr_ctloutput != NULL) {
2512 			error = (*so->so_proto->pr_ctloutput)(so, sopt);
2513 			CURVNET_RESTORE();
2514 			return (error);
2515 		}
2516 		error = ENOPROTOOPT;
2517 	} else {
2518 		switch (sopt->sopt_name) {
2519 		case SO_ACCEPTFILTER:
2520 			error = do_setopt_accept_filter(so, sopt);
2521 			if (error)
2522 				goto bad;
2523 			break;
2524 
2525 		case SO_LINGER:
2526 			error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
2527 			if (error)
2528 				goto bad;
2529 
2530 			SOCK_LOCK(so);
2531 			so->so_linger = l.l_linger;
2532 			if (l.l_onoff)
2533 				so->so_options |= SO_LINGER;
2534 			else
2535 				so->so_options &= ~SO_LINGER;
2536 			SOCK_UNLOCK(so);
2537 			break;
2538 
2539 		case SO_DEBUG:
2540 		case SO_KEEPALIVE:
2541 		case SO_DONTROUTE:
2542 		case SO_USELOOPBACK:
2543 		case SO_BROADCAST:
2544 		case SO_REUSEADDR:
2545 		case SO_REUSEPORT:
2546 		case SO_OOBINLINE:
2547 		case SO_TIMESTAMP:
2548 		case SO_BINTIME:
2549 		case SO_NOSIGPIPE:
2550 		case SO_NO_DDP:
2551 		case SO_NO_OFFLOAD:
2552 			error = sooptcopyin(sopt, &optval, sizeof optval,
2553 			    sizeof optval);
2554 			if (error)
2555 				goto bad;
2556 			SOCK_LOCK(so);
2557 			if (optval)
2558 				so->so_options |= sopt->sopt_name;
2559 			else
2560 				so->so_options &= ~sopt->sopt_name;
2561 			SOCK_UNLOCK(so);
2562 			break;
2563 
2564 		case SO_SETFIB:
2565 			error = sooptcopyin(sopt, &optval, sizeof optval,
2566 			    sizeof optval);
2567 			if (error)
2568 				goto bad;
2569 
2570 			if (optval < 0 || optval >= rt_numfibs) {
2571 				error = EINVAL;
2572 				goto bad;
2573 			}
2574 			if (((so->so_proto->pr_domain->dom_family == PF_INET) ||
2575 			   (so->so_proto->pr_domain->dom_family == PF_INET6) ||
2576 			   (so->so_proto->pr_domain->dom_family == PF_ROUTE)))
2577 				so->so_fibnum = optval;
2578 			else
2579 				so->so_fibnum = 0;
2580 			break;
2581 
2582 		case SO_USER_COOKIE:
2583 			error = sooptcopyin(sopt, &val32, sizeof val32,
2584 			    sizeof val32);
2585 			if (error)
2586 				goto bad;
2587 			so->so_user_cookie = val32;
2588 			break;
2589 
2590 		case SO_SNDBUF:
2591 		case SO_RCVBUF:
2592 		case SO_SNDLOWAT:
2593 		case SO_RCVLOWAT:
2594 			error = sooptcopyin(sopt, &optval, sizeof optval,
2595 			    sizeof optval);
2596 			if (error)
2597 				goto bad;
2598 
2599 			/*
2600 			 * Values < 1 make no sense for any of these options,
2601 			 * so disallow them.
2602 			 */
2603 			if (optval < 1) {
2604 				error = EINVAL;
2605 				goto bad;
2606 			}
2607 
2608 			switch (sopt->sopt_name) {
2609 			case SO_SNDBUF:
2610 			case SO_RCVBUF:
2611 				if (sbreserve(sopt->sopt_name == SO_SNDBUF ?
2612 				    &so->so_snd : &so->so_rcv, (u_long)optval,
2613 				    so, curthread) == 0) {
2614 					error = ENOBUFS;
2615 					goto bad;
2616 				}
2617 				(sopt->sopt_name == SO_SNDBUF ? &so->so_snd :
2618 				    &so->so_rcv)->sb_flags &= ~SB_AUTOSIZE;
2619 				break;
2620 
2621 			/*
2622 			 * Make sure the low-water is never greater than the
2623 			 * high-water.
2624 			 */
2625 			case SO_SNDLOWAT:
2626 				SOCKBUF_LOCK(&so->so_snd);
2627 				so->so_snd.sb_lowat =
2628 				    (optval > so->so_snd.sb_hiwat) ?
2629 				    so->so_snd.sb_hiwat : optval;
2630 				SOCKBUF_UNLOCK(&so->so_snd);
2631 				break;
2632 			case SO_RCVLOWAT:
2633 				SOCKBUF_LOCK(&so->so_rcv);
2634 				so->so_rcv.sb_lowat =
2635 				    (optval > so->so_rcv.sb_hiwat) ?
2636 				    so->so_rcv.sb_hiwat : optval;
2637 				SOCKBUF_UNLOCK(&so->so_rcv);
2638 				break;
2639 			}
2640 			break;
2641 
2642 		case SO_SNDTIMEO:
2643 		case SO_RCVTIMEO:
2644 #ifdef COMPAT_FREEBSD32
2645 			if (SV_CURPROC_FLAG(SV_ILP32)) {
2646 				struct timeval32 tv32;
2647 
2648 				error = sooptcopyin(sopt, &tv32, sizeof tv32,
2649 				    sizeof tv32);
2650 				CP(tv32, tv, tv_sec);
2651 				CP(tv32, tv, tv_usec);
2652 			} else
2653 #endif
2654 				error = sooptcopyin(sopt, &tv, sizeof tv,
2655 				    sizeof tv);
2656 			if (error)
2657 				goto bad;
2658 			if (tv.tv_sec < 0 || tv.tv_usec < 0 ||
2659 			    tv.tv_usec >= 1000000) {
2660 				error = EDOM;
2661 				goto bad;
2662 			}
2663 			if (tv.tv_sec > INT32_MAX)
2664 				val = SBT_MAX;
2665 			else
2666 				val = tvtosbt(tv);
2667 			switch (sopt->sopt_name) {
2668 			case SO_SNDTIMEO:
2669 				so->so_snd.sb_timeo = val;
2670 				break;
2671 			case SO_RCVTIMEO:
2672 				so->so_rcv.sb_timeo = val;
2673 				break;
2674 			}
2675 			break;
2676 
2677 		case SO_LABEL:
2678 #ifdef MAC
2679 			error = sooptcopyin(sopt, &extmac, sizeof extmac,
2680 			    sizeof extmac);
2681 			if (error)
2682 				goto bad;
2683 			error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
2684 			    so, &extmac);
2685 #else
2686 			error = EOPNOTSUPP;
2687 #endif
2688 			break;
2689 
2690 		case SO_TS_CLOCK:
2691 			error = sooptcopyin(sopt, &optval, sizeof optval,
2692 			    sizeof optval);
2693 			if (error)
2694 				goto bad;
2695 			if (optval < 0 || optval > SO_TS_CLOCK_MAX) {
2696 				error = EINVAL;
2697 				goto bad;
2698 			}
2699 			so->so_ts_clock = optval;
2700 			break;
2701 
2702 		case SO_MAX_PACING_RATE:
2703 			error = sooptcopyin(sopt, &val32, sizeof(val32),
2704 			    sizeof(val32));
2705 			if (error)
2706 				goto bad;
2707 			so->so_max_pacing_rate = val32;
2708 			break;
2709 
2710 		default:
2711 			if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
2712 				error = hhook_run_socket(so, sopt,
2713 				    HHOOK_SOCKET_OPT);
2714 			else
2715 				error = ENOPROTOOPT;
2716 			break;
2717 		}
2718 		if (error == 0 && so->so_proto->pr_ctloutput != NULL)
2719 			(void)(*so->so_proto->pr_ctloutput)(so, sopt);
2720 	}
2721 bad:
2722 	CURVNET_RESTORE();
2723 	return (error);
2724 }
2725 
2726 /*
2727  * Helper routine for getsockopt.
2728  */
2729 int
2730 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
2731 {
2732 	int	error;
2733 	size_t	valsize;
2734 
2735 	error = 0;
2736 
2737 	/*
2738 	 * Documented get behavior is that we always return a value, possibly
2739 	 * truncated to fit in the user's buffer.  Traditional behavior is
2740 	 * that we always tell the user precisely how much we copied, rather
2741 	 * than something useful like the total amount we had available for
2742 	 * her.  Note that this interface is not idempotent; the entire
2743 	 * answer must be generated ahead of time.
2744 	 */
2745 	valsize = min(len, sopt->sopt_valsize);
2746 	sopt->sopt_valsize = valsize;
2747 	if (sopt->sopt_val != NULL) {
2748 		if (sopt->sopt_td != NULL)
2749 			error = copyout(buf, sopt->sopt_val, valsize);
2750 		else
2751 			bcopy(buf, sopt->sopt_val, valsize);
2752 	}
2753 	return (error);
2754 }
2755 
2756 int
2757 sogetopt(struct socket *so, struct sockopt *sopt)
2758 {
2759 	int	error, optval;
2760 	struct	linger l;
2761 	struct	timeval tv;
2762 #ifdef MAC
2763 	struct mac extmac;
2764 #endif
2765 
2766 	CURVNET_SET(so->so_vnet);
2767 	error = 0;
2768 	if (sopt->sopt_level != SOL_SOCKET) {
2769 		if (so->so_proto->pr_ctloutput != NULL)
2770 			error = (*so->so_proto->pr_ctloutput)(so, sopt);
2771 		else
2772 			error = ENOPROTOOPT;
2773 		CURVNET_RESTORE();
2774 		return (error);
2775 	} else {
2776 		switch (sopt->sopt_name) {
2777 		case SO_ACCEPTFILTER:
2778 			error = do_getopt_accept_filter(so, sopt);
2779 			break;
2780 
2781 		case SO_LINGER:
2782 			SOCK_LOCK(so);
2783 			l.l_onoff = so->so_options & SO_LINGER;
2784 			l.l_linger = so->so_linger;
2785 			SOCK_UNLOCK(so);
2786 			error = sooptcopyout(sopt, &l, sizeof l);
2787 			break;
2788 
2789 		case SO_USELOOPBACK:
2790 		case SO_DONTROUTE:
2791 		case SO_DEBUG:
2792 		case SO_KEEPALIVE:
2793 		case SO_REUSEADDR:
2794 		case SO_REUSEPORT:
2795 		case SO_BROADCAST:
2796 		case SO_OOBINLINE:
2797 		case SO_ACCEPTCONN:
2798 		case SO_TIMESTAMP:
2799 		case SO_BINTIME:
2800 		case SO_NOSIGPIPE:
2801 			optval = so->so_options & sopt->sopt_name;
2802 integer:
2803 			error = sooptcopyout(sopt, &optval, sizeof optval);
2804 			break;
2805 
2806 		case SO_TYPE:
2807 			optval = so->so_type;
2808 			goto integer;
2809 
2810 		case SO_PROTOCOL:
2811 			optval = so->so_proto->pr_protocol;
2812 			goto integer;
2813 
2814 		case SO_ERROR:
2815 			SOCK_LOCK(so);
2816 			optval = so->so_error;
2817 			so->so_error = 0;
2818 			SOCK_UNLOCK(so);
2819 			goto integer;
2820 
2821 		case SO_SNDBUF:
2822 			optval = so->so_snd.sb_hiwat;
2823 			goto integer;
2824 
2825 		case SO_RCVBUF:
2826 			optval = so->so_rcv.sb_hiwat;
2827 			goto integer;
2828 
2829 		case SO_SNDLOWAT:
2830 			optval = so->so_snd.sb_lowat;
2831 			goto integer;
2832 
2833 		case SO_RCVLOWAT:
2834 			optval = so->so_rcv.sb_lowat;
2835 			goto integer;
2836 
2837 		case SO_SNDTIMEO:
2838 		case SO_RCVTIMEO:
2839 			tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ?
2840 			    so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
2841 #ifdef COMPAT_FREEBSD32
2842 			if (SV_CURPROC_FLAG(SV_ILP32)) {
2843 				struct timeval32 tv32;
2844 
2845 				CP(tv, tv32, tv_sec);
2846 				CP(tv, tv32, tv_usec);
2847 				error = sooptcopyout(sopt, &tv32, sizeof tv32);
2848 			} else
2849 #endif
2850 				error = sooptcopyout(sopt, &tv, sizeof tv);
2851 			break;
2852 
2853 		case SO_LABEL:
2854 #ifdef MAC
2855 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
2856 			    sizeof(extmac));
2857 			if (error)
2858 				goto bad;
2859 			error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
2860 			    so, &extmac);
2861 			if (error)
2862 				goto bad;
2863 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
2864 #else
2865 			error = EOPNOTSUPP;
2866 #endif
2867 			break;
2868 
2869 		case SO_PEERLABEL:
2870 #ifdef MAC
2871 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
2872 			    sizeof(extmac));
2873 			if (error)
2874 				goto bad;
2875 			error = mac_getsockopt_peerlabel(
2876 			    sopt->sopt_td->td_ucred, so, &extmac);
2877 			if (error)
2878 				goto bad;
2879 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
2880 #else
2881 			error = EOPNOTSUPP;
2882 #endif
2883 			break;
2884 
2885 		case SO_LISTENQLIMIT:
2886 			optval = so->so_qlimit;
2887 			goto integer;
2888 
2889 		case SO_LISTENQLEN:
2890 			optval = so->so_qlen;
2891 			goto integer;
2892 
2893 		case SO_LISTENINCQLEN:
2894 			optval = so->so_incqlen;
2895 			goto integer;
2896 
2897 		case SO_TS_CLOCK:
2898 			optval = so->so_ts_clock;
2899 			goto integer;
2900 
2901 		case SO_MAX_PACING_RATE:
2902 			optval = so->so_max_pacing_rate;
2903 			goto integer;
2904 
2905 		default:
2906 			if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
2907 				error = hhook_run_socket(so, sopt,
2908 				    HHOOK_SOCKET_OPT);
2909 			else
2910 				error = ENOPROTOOPT;
2911 			break;
2912 		}
2913 	}
2914 #ifdef MAC
2915 bad:
2916 #endif
2917 	CURVNET_RESTORE();
2918 	return (error);
2919 }
2920 
2921 int
2922 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
2923 {
2924 	struct mbuf *m, *m_prev;
2925 	int sopt_size = sopt->sopt_valsize;
2926 
2927 	MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
2928 	if (m == NULL)
2929 		return ENOBUFS;
2930 	if (sopt_size > MLEN) {
2931 		MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT);
2932 		if ((m->m_flags & M_EXT) == 0) {
2933 			m_free(m);
2934 			return ENOBUFS;
2935 		}
2936 		m->m_len = min(MCLBYTES, sopt_size);
2937 	} else {
2938 		m->m_len = min(MLEN, sopt_size);
2939 	}
2940 	sopt_size -= m->m_len;
2941 	*mp = m;
2942 	m_prev = m;
2943 
2944 	while (sopt_size) {
2945 		MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
2946 		if (m == NULL) {
2947 			m_freem(*mp);
2948 			return ENOBUFS;
2949 		}
2950 		if (sopt_size > MLEN) {
2951 			MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK :
2952 			    M_NOWAIT);
2953 			if ((m->m_flags & M_EXT) == 0) {
2954 				m_freem(m);
2955 				m_freem(*mp);
2956 				return ENOBUFS;
2957 			}
2958 			m->m_len = min(MCLBYTES, sopt_size);
2959 		} else {
2960 			m->m_len = min(MLEN, sopt_size);
2961 		}
2962 		sopt_size -= m->m_len;
2963 		m_prev->m_next = m;
2964 		m_prev = m;
2965 	}
2966 	return (0);
2967 }
2968 
2969 int
2970 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
2971 {
2972 	struct mbuf *m0 = m;
2973 
2974 	if (sopt->sopt_val == NULL)
2975 		return (0);
2976 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
2977 		if (sopt->sopt_td != NULL) {
2978 			int error;
2979 
2980 			error = copyin(sopt->sopt_val, mtod(m, char *),
2981 			    m->m_len);
2982 			if (error != 0) {
2983 				m_freem(m0);
2984 				return(error);
2985 			}
2986 		} else
2987 			bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
2988 		sopt->sopt_valsize -= m->m_len;
2989 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
2990 		m = m->m_next;
2991 	}
2992 	if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
2993 		panic("ip6_sooptmcopyin");
2994 	return (0);
2995 }
2996 
2997 int
2998 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
2999 {
3000 	struct mbuf *m0 = m;
3001 	size_t valsize = 0;
3002 
3003 	if (sopt->sopt_val == NULL)
3004 		return (0);
3005 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
3006 		if (sopt->sopt_td != NULL) {
3007 			int error;
3008 
3009 			error = copyout(mtod(m, char *), sopt->sopt_val,
3010 			    m->m_len);
3011 			if (error != 0) {
3012 				m_freem(m0);
3013 				return(error);
3014 			}
3015 		} else
3016 			bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
3017 		sopt->sopt_valsize -= m->m_len;
3018 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
3019 		valsize += m->m_len;
3020 		m = m->m_next;
3021 	}
3022 	if (m != NULL) {
3023 		/* enough soopt buffer should be given from user-land */
3024 		m_freem(m0);
3025 		return(EINVAL);
3026 	}
3027 	sopt->sopt_valsize = valsize;
3028 	return (0);
3029 }
3030 
3031 /*
3032  * sohasoutofband(): protocol notifies socket layer of the arrival of new
3033  * out-of-band data, which will then notify socket consumers.
3034  */
3035 void
3036 sohasoutofband(struct socket *so)
3037 {
3038 
3039 	if (so->so_sigio != NULL)
3040 		pgsigio(&so->so_sigio, SIGURG, 0);
3041 	selwakeuppri(&so->so_rcv.sb_sel, PSOCK);
3042 }
3043 
3044 int
3045 sopoll(struct socket *so, int events, struct ucred *active_cred,
3046     struct thread *td)
3047 {
3048 
3049 	/*
3050 	 * We do not need to set or assert curvnet as long as everyone uses
3051 	 * sopoll_generic().
3052 	 */
3053 	return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred,
3054 	    td));
3055 }
3056 
3057 int
3058 sopoll_generic(struct socket *so, int events, struct ucred *active_cred,
3059     struct thread *td)
3060 {
3061 	int revents = 0;
3062 
3063 	SOCKBUF_LOCK(&so->so_snd);
3064 	SOCKBUF_LOCK(&so->so_rcv);
3065 	if (events & (POLLIN | POLLRDNORM))
3066 		if (soreadabledata(so))
3067 			revents |= events & (POLLIN | POLLRDNORM);
3068 
3069 	if (events & (POLLOUT | POLLWRNORM))
3070 		if (sowriteable(so))
3071 			revents |= events & (POLLOUT | POLLWRNORM);
3072 
3073 	if (events & (POLLPRI | POLLRDBAND))
3074 		if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK))
3075 			revents |= events & (POLLPRI | POLLRDBAND);
3076 
3077 	if ((events & POLLINIGNEOF) == 0) {
3078 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3079 			revents |= events & (POLLIN | POLLRDNORM);
3080 			if (so->so_snd.sb_state & SBS_CANTSENDMORE)
3081 				revents |= POLLHUP;
3082 		}
3083 	}
3084 
3085 	if (revents == 0) {
3086 		if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
3087 			selrecord(td, &so->so_rcv.sb_sel);
3088 			so->so_rcv.sb_flags |= SB_SEL;
3089 		}
3090 
3091 		if (events & (POLLOUT | POLLWRNORM)) {
3092 			selrecord(td, &so->so_snd.sb_sel);
3093 			so->so_snd.sb_flags |= SB_SEL;
3094 		}
3095 	}
3096 
3097 	SOCKBUF_UNLOCK(&so->so_rcv);
3098 	SOCKBUF_UNLOCK(&so->so_snd);
3099 	return (revents);
3100 }
3101 
3102 int
3103 soo_kqfilter(struct file *fp, struct knote *kn)
3104 {
3105 	struct socket *so = kn->kn_fp->f_data;
3106 	struct sockbuf *sb;
3107 
3108 	switch (kn->kn_filter) {
3109 	case EVFILT_READ:
3110 		if (so->so_options & SO_ACCEPTCONN)
3111 			kn->kn_fop = &solisten_filtops;
3112 		else
3113 			kn->kn_fop = &soread_filtops;
3114 		sb = &so->so_rcv;
3115 		break;
3116 	case EVFILT_WRITE:
3117 		kn->kn_fop = &sowrite_filtops;
3118 		sb = &so->so_snd;
3119 		break;
3120 	case EVFILT_EMPTY:
3121 		kn->kn_fop = &soempty_filtops;
3122 		sb = &so->so_snd;
3123 		break;
3124 	default:
3125 		return (EINVAL);
3126 	}
3127 
3128 	SOCKBUF_LOCK(sb);
3129 	knlist_add(&sb->sb_sel.si_note, kn, 1);
3130 	sb->sb_flags |= SB_KNOTE;
3131 	SOCKBUF_UNLOCK(sb);
3132 	return (0);
3133 }
3134 
3135 /*
3136  * Some routines that return EOPNOTSUPP for entry points that are not
3137  * supported by a protocol.  Fill in as needed.
3138  */
3139 int
3140 pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
3141 {
3142 
3143 	return EOPNOTSUPP;
3144 }
3145 
3146 int
3147 pru_aio_queue_notsupp(struct socket *so, struct kaiocb *job)
3148 {
3149 
3150 	return EOPNOTSUPP;
3151 }
3152 
3153 int
3154 pru_attach_notsupp(struct socket *so, int proto, struct thread *td)
3155 {
3156 
3157 	return EOPNOTSUPP;
3158 }
3159 
3160 int
3161 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
3162 {
3163 
3164 	return EOPNOTSUPP;
3165 }
3166 
3167 int
3168 pru_bindat_notsupp(int fd, struct socket *so, struct sockaddr *nam,
3169     struct thread *td)
3170 {
3171 
3172 	return EOPNOTSUPP;
3173 }
3174 
3175 int
3176 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
3177 {
3178 
3179 	return EOPNOTSUPP;
3180 }
3181 
3182 int
3183 pru_connectat_notsupp(int fd, struct socket *so, struct sockaddr *nam,
3184     struct thread *td)
3185 {
3186 
3187 	return EOPNOTSUPP;
3188 }
3189 
3190 int
3191 pru_connect2_notsupp(struct socket *so1, struct socket *so2)
3192 {
3193 
3194 	return EOPNOTSUPP;
3195 }
3196 
3197 int
3198 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
3199     struct ifnet *ifp, struct thread *td)
3200 {
3201 
3202 	return EOPNOTSUPP;
3203 }
3204 
3205 int
3206 pru_disconnect_notsupp(struct socket *so)
3207 {
3208 
3209 	return EOPNOTSUPP;
3210 }
3211 
3212 int
3213 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td)
3214 {
3215 
3216 	return EOPNOTSUPP;
3217 }
3218 
3219 int
3220 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam)
3221 {
3222 
3223 	return EOPNOTSUPP;
3224 }
3225 
3226 int
3227 pru_rcvd_notsupp(struct socket *so, int flags)
3228 {
3229 
3230 	return EOPNOTSUPP;
3231 }
3232 
3233 int
3234 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
3235 {
3236 
3237 	return EOPNOTSUPP;
3238 }
3239 
3240 int
3241 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m,
3242     struct sockaddr *addr, struct mbuf *control, struct thread *td)
3243 {
3244 
3245 	return EOPNOTSUPP;
3246 }
3247 
3248 int
3249 pru_ready_notsupp(struct socket *so, struct mbuf *m, int count)
3250 {
3251 
3252 	return (EOPNOTSUPP);
3253 }
3254 
3255 /*
3256  * This isn't really a ``null'' operation, but it's the default one and
3257  * doesn't do anything destructive.
3258  */
3259 int
3260 pru_sense_null(struct socket *so, struct stat *sb)
3261 {
3262 
3263 	sb->st_blksize = so->so_snd.sb_hiwat;
3264 	return 0;
3265 }
3266 
3267 int
3268 pru_shutdown_notsupp(struct socket *so)
3269 {
3270 
3271 	return EOPNOTSUPP;
3272 }
3273 
3274 int
3275 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam)
3276 {
3277 
3278 	return EOPNOTSUPP;
3279 }
3280 
3281 int
3282 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio,
3283     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
3284 {
3285 
3286 	return EOPNOTSUPP;
3287 }
3288 
3289 int
3290 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr,
3291     struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3292 {
3293 
3294 	return EOPNOTSUPP;
3295 }
3296 
3297 int
3298 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred,
3299     struct thread *td)
3300 {
3301 
3302 	return EOPNOTSUPP;
3303 }
3304 
3305 static void
3306 filt_sordetach(struct knote *kn)
3307 {
3308 	struct socket *so = kn->kn_fp->f_data;
3309 
3310 	SOCKBUF_LOCK(&so->so_rcv);
3311 	knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1);
3312 	if (knlist_empty(&so->so_rcv.sb_sel.si_note))
3313 		so->so_rcv.sb_flags &= ~SB_KNOTE;
3314 	SOCKBUF_UNLOCK(&so->so_rcv);
3315 }
3316 
3317 /*ARGSUSED*/
3318 static int
3319 filt_soread(struct knote *kn, long hint)
3320 {
3321 	struct socket *so;
3322 
3323 	so = kn->kn_fp->f_data;
3324 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3325 
3326 	kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl;
3327 	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3328 		kn->kn_flags |= EV_EOF;
3329 		kn->kn_fflags = so->so_error;
3330 		return (1);
3331 	} else if (so->so_error)	/* temporary udp error */
3332 		return (1);
3333 
3334 	if (kn->kn_sfflags & NOTE_LOWAT) {
3335 		if (kn->kn_data >= kn->kn_sdata)
3336 			return 1;
3337 	} else {
3338 		if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat)
3339 			return 1;
3340 	}
3341 
3342 	/* This hook returning non-zero indicates an event, not error */
3343 	return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD));
3344 }
3345 
3346 static void
3347 filt_sowdetach(struct knote *kn)
3348 {
3349 	struct socket *so = kn->kn_fp->f_data;
3350 
3351 	SOCKBUF_LOCK(&so->so_snd);
3352 	knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1);
3353 	if (knlist_empty(&so->so_snd.sb_sel.si_note))
3354 		so->so_snd.sb_flags &= ~SB_KNOTE;
3355 	SOCKBUF_UNLOCK(&so->so_snd);
3356 }
3357 
3358 /*ARGSUSED*/
3359 static int
3360 filt_sowrite(struct knote *kn, long hint)
3361 {
3362 	struct socket *so;
3363 
3364 	so = kn->kn_fp->f_data;
3365 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
3366 	kn->kn_data = sbspace(&so->so_snd);
3367 
3368 	hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE);
3369 
3370 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
3371 		kn->kn_flags |= EV_EOF;
3372 		kn->kn_fflags = so->so_error;
3373 		return (1);
3374 	} else if (so->so_error)	/* temporary udp error */
3375 		return (1);
3376 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
3377 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
3378 		return (0);
3379 	else if (kn->kn_sfflags & NOTE_LOWAT)
3380 		return (kn->kn_data >= kn->kn_sdata);
3381 	else
3382 		return (kn->kn_data >= so->so_snd.sb_lowat);
3383 }
3384 
3385 static int
3386 filt_soempty(struct knote *kn, long hint)
3387 {
3388 	struct socket *so;
3389 
3390 	so = kn->kn_fp->f_data;
3391 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
3392 	kn->kn_data = sbused(&so->so_snd);
3393 
3394 	if (kn->kn_data == 0)
3395 		return (1);
3396 	else
3397 		return (0);
3398 }
3399 
3400 /*ARGSUSED*/
3401 static int
3402 filt_solisten(struct knote *kn, long hint)
3403 {
3404 	struct socket *so = kn->kn_fp->f_data;
3405 
3406 	kn->kn_data = so->so_qlen;
3407 	return (!TAILQ_EMPTY(&so->so_comp));
3408 }
3409 
3410 int
3411 socheckuid(struct socket *so, uid_t uid)
3412 {
3413 
3414 	if (so == NULL)
3415 		return (EPERM);
3416 	if (so->so_cred->cr_uid != uid)
3417 		return (EPERM);
3418 	return (0);
3419 }
3420 
3421 /*
3422  * These functions are used by protocols to notify the socket layer (and its
3423  * consumers) of state changes in the sockets driven by protocol-side events.
3424  */
3425 
3426 /*
3427  * Procedures to manipulate state flags of socket and do appropriate wakeups.
3428  *
3429  * Normal sequence from the active (originating) side is that
3430  * soisconnecting() is called during processing of connect() call, resulting
3431  * in an eventual call to soisconnected() if/when the connection is
3432  * established.  When the connection is torn down soisdisconnecting() is
3433  * called during processing of disconnect() call, and soisdisconnected() is
3434  * called when the connection to the peer is totally severed.  The semantics
3435  * of these routines are such that connectionless protocols can call
3436  * soisconnected() and soisdisconnected() only, bypassing the in-progress
3437  * calls when setting up a ``connection'' takes no time.
3438  *
3439  * From the passive side, a socket is created with two queues of sockets:
3440  * so_incomp for connections in progress and so_comp for connections already
3441  * made and awaiting user acceptance.  As a protocol is preparing incoming
3442  * connections, it creates a socket structure queued on so_incomp by calling
3443  * sonewconn().  When the connection is established, soisconnected() is
3444  * called, and transfers the socket structure to so_comp, making it available
3445  * to accept().
3446  *
3447  * If a socket is closed with sockets on either so_incomp or so_comp, these
3448  * sockets are dropped.
3449  *
3450  * If higher-level protocols are implemented in the kernel, the wakeups done
3451  * here will sometimes cause software-interrupt process scheduling.
3452  */
3453 void
3454 soisconnecting(struct socket *so)
3455 {
3456 
3457 	SOCK_LOCK(so);
3458 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
3459 	so->so_state |= SS_ISCONNECTING;
3460 	SOCK_UNLOCK(so);
3461 }
3462 
3463 void
3464 soisconnected(struct socket *so)
3465 {
3466 	struct socket *head;
3467 	int ret;
3468 
3469 restart:
3470 	ACCEPT_LOCK();
3471 	SOCK_LOCK(so);
3472 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
3473 	so->so_state |= SS_ISCONNECTED;
3474 	head = so->so_head;
3475 	if (head != NULL && (so->so_qstate & SQ_INCOMP)) {
3476 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
3477 			SOCK_UNLOCK(so);
3478 			TAILQ_REMOVE(&head->so_incomp, so, so_list);
3479 			head->so_incqlen--;
3480 			so->so_qstate &= ~SQ_INCOMP;
3481 			TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
3482 			head->so_qlen++;
3483 			so->so_qstate |= SQ_COMP;
3484 			ACCEPT_UNLOCK();
3485 			sorwakeup(head);
3486 			wakeup_one(&head->so_timeo);
3487 		} else {
3488 			ACCEPT_UNLOCK();
3489 			soupcall_set(so, SO_RCV,
3490 			    head->so_accf->so_accept_filter->accf_callback,
3491 			    head->so_accf->so_accept_filter_arg);
3492 			so->so_options &= ~SO_ACCEPTFILTER;
3493 			ret = head->so_accf->so_accept_filter->accf_callback(so,
3494 			    head->so_accf->so_accept_filter_arg, M_NOWAIT);
3495 			if (ret == SU_ISCONNECTED)
3496 				soupcall_clear(so, SO_RCV);
3497 			SOCK_UNLOCK(so);
3498 			if (ret == SU_ISCONNECTED)
3499 				goto restart;
3500 		}
3501 		return;
3502 	}
3503 	SOCK_UNLOCK(so);
3504 	ACCEPT_UNLOCK();
3505 	wakeup(&so->so_timeo);
3506 	sorwakeup(so);
3507 	sowwakeup(so);
3508 }
3509 
3510 void
3511 soisdisconnecting(struct socket *so)
3512 {
3513 
3514 	/*
3515 	 * Note: This code assumes that SOCK_LOCK(so) and
3516 	 * SOCKBUF_LOCK(&so->so_rcv) are the same.
3517 	 */
3518 	SOCKBUF_LOCK(&so->so_rcv);
3519 	so->so_state &= ~SS_ISCONNECTING;
3520 	so->so_state |= SS_ISDISCONNECTING;
3521 	socantrcvmore_locked(so);
3522 	SOCKBUF_LOCK(&so->so_snd);
3523 	socantsendmore_locked(so);
3524 	wakeup(&so->so_timeo);
3525 }
3526 
3527 void
3528 soisdisconnected(struct socket *so)
3529 {
3530 
3531 	/*
3532 	 * Note: This code assumes that SOCK_LOCK(so) and
3533 	 * SOCKBUF_LOCK(&so->so_rcv) are the same.
3534 	 */
3535 	SOCKBUF_LOCK(&so->so_rcv);
3536 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
3537 	so->so_state |= SS_ISDISCONNECTED;
3538 	socantrcvmore_locked(so);
3539 	SOCKBUF_LOCK(&so->so_snd);
3540 	sbdrop_locked(&so->so_snd, sbused(&so->so_snd));
3541 	socantsendmore_locked(so);
3542 	wakeup(&so->so_timeo);
3543 }
3544 
3545 /*
3546  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
3547  */
3548 struct sockaddr *
3549 sodupsockaddr(const struct sockaddr *sa, int mflags)
3550 {
3551 	struct sockaddr *sa2;
3552 
3553 	sa2 = malloc(sa->sa_len, M_SONAME, mflags);
3554 	if (sa2)
3555 		bcopy(sa, sa2, sa->sa_len);
3556 	return sa2;
3557 }
3558 
3559 /*
3560  * Register per-socket buffer upcalls.
3561  */
3562 void
3563 soupcall_set(struct socket *so, int which,
3564     int (*func)(struct socket *, void *, int), void *arg)
3565 {
3566 	struct sockbuf *sb;
3567 
3568 	switch (which) {
3569 	case SO_RCV:
3570 		sb = &so->so_rcv;
3571 		break;
3572 	case SO_SND:
3573 		sb = &so->so_snd;
3574 		break;
3575 	default:
3576 		panic("soupcall_set: bad which");
3577 	}
3578 	SOCKBUF_LOCK_ASSERT(sb);
3579 #if 0
3580 	/* XXX: accf_http actually wants to do this on purpose. */
3581 	KASSERT(sb->sb_upcall == NULL, ("soupcall_set: overwriting upcall"));
3582 #endif
3583 	sb->sb_upcall = func;
3584 	sb->sb_upcallarg = arg;
3585 	sb->sb_flags |= SB_UPCALL;
3586 }
3587 
3588 void
3589 soupcall_clear(struct socket *so, int which)
3590 {
3591 	struct sockbuf *sb;
3592 
3593 	switch (which) {
3594 	case SO_RCV:
3595 		sb = &so->so_rcv;
3596 		break;
3597 	case SO_SND:
3598 		sb = &so->so_snd;
3599 		break;
3600 	default:
3601 		panic("soupcall_clear: bad which");
3602 	}
3603 	SOCKBUF_LOCK_ASSERT(sb);
3604 	KASSERT(sb->sb_upcall != NULL, ("soupcall_clear: no upcall to clear"));
3605 	sb->sb_upcall = NULL;
3606 	sb->sb_upcallarg = NULL;
3607 	sb->sb_flags &= ~SB_UPCALL;
3608 }
3609 
3610 /*
3611  * Create an external-format (``xsocket'') structure using the information in
3612  * the kernel-format socket structure pointed to by so.  This is done to
3613  * reduce the spew of irrelevant information over this interface, to isolate
3614  * user code from changes in the kernel structure, and potentially to provide
3615  * information-hiding if we decide that some of this information should be
3616  * hidden from users.
3617  */
3618 void
3619 sotoxsocket(struct socket *so, struct xsocket *xso)
3620 {
3621 
3622 	xso->xso_len = sizeof *xso;
3623 	xso->xso_so = so;
3624 	xso->so_type = so->so_type;
3625 	xso->so_options = so->so_options;
3626 	xso->so_linger = so->so_linger;
3627 	xso->so_state = so->so_state;
3628 	xso->so_pcb = so->so_pcb;
3629 	xso->xso_protocol = so->so_proto->pr_protocol;
3630 	xso->xso_family = so->so_proto->pr_domain->dom_family;
3631 	xso->so_qlen = so->so_qlen;
3632 	xso->so_incqlen = so->so_incqlen;
3633 	xso->so_qlimit = so->so_qlimit;
3634 	xso->so_timeo = so->so_timeo;
3635 	xso->so_error = so->so_error;
3636 	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
3637 	xso->so_oobmark = so->so_oobmark;
3638 	sbtoxsockbuf(&so->so_snd, &xso->so_snd);
3639 	sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
3640 	xso->so_uid = so->so_cred->cr_uid;
3641 }
3642 
3643 
3644 /*
3645  * Socket accessor functions to provide external consumers with
3646  * a safe interface to socket state
3647  *
3648  */
3649 
3650 void
3651 so_listeners_apply_all(struct socket *so, void (*func)(struct socket *, void *),
3652     void *arg)
3653 {
3654 
3655 	TAILQ_FOREACH(so, &so->so_comp, so_list)
3656 		func(so, arg);
3657 }
3658 
3659 struct sockbuf *
3660 so_sockbuf_rcv(struct socket *so)
3661 {
3662 
3663 	return (&so->so_rcv);
3664 }
3665 
3666 struct sockbuf *
3667 so_sockbuf_snd(struct socket *so)
3668 {
3669 
3670 	return (&so->so_snd);
3671 }
3672 
3673 int
3674 so_state_get(const struct socket *so)
3675 {
3676 
3677 	return (so->so_state);
3678 }
3679 
3680 void
3681 so_state_set(struct socket *so, int val)
3682 {
3683 
3684 	so->so_state = val;
3685 }
3686 
3687 int
3688 so_options_get(const struct socket *so)
3689 {
3690 
3691 	return (so->so_options);
3692 }
3693 
3694 void
3695 so_options_set(struct socket *so, int val)
3696 {
3697 
3698 	so->so_options = val;
3699 }
3700 
3701 int
3702 so_error_get(const struct socket *so)
3703 {
3704 
3705 	return (so->so_error);
3706 }
3707 
3708 void
3709 so_error_set(struct socket *so, int val)
3710 {
3711 
3712 	so->so_error = val;
3713 }
3714 
3715 int
3716 so_linger_get(const struct socket *so)
3717 {
3718 
3719 	return (so->so_linger);
3720 }
3721 
3722 void
3723 so_linger_set(struct socket *so, int val)
3724 {
3725 
3726 	so->so_linger = val;
3727 }
3728 
3729 struct protosw *
3730 so_protosw_get(const struct socket *so)
3731 {
3732 
3733 	return (so->so_proto);
3734 }
3735 
3736 void
3737 so_protosw_set(struct socket *so, struct protosw *val)
3738 {
3739 
3740 	so->so_proto = val;
3741 }
3742 
3743 void
3744 so_sorwakeup(struct socket *so)
3745 {
3746 
3747 	sorwakeup(so);
3748 }
3749 
3750 void
3751 so_sowwakeup(struct socket *so)
3752 {
3753 
3754 	sowwakeup(so);
3755 }
3756 
3757 void
3758 so_sorwakeup_locked(struct socket *so)
3759 {
3760 
3761 	sorwakeup_locked(so);
3762 }
3763 
3764 void
3765 so_sowwakeup_locked(struct socket *so)
3766 {
3767 
3768 	sowwakeup_locked(so);
3769 }
3770 
3771 void
3772 so_lock(struct socket *so)
3773 {
3774 
3775 	SOCK_LOCK(so);
3776 }
3777 
3778 void
3779 so_unlock(struct socket *so)
3780 {
3781 
3782 	SOCK_UNLOCK(so);
3783 }
3784