1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. 6 * Copyright (c) 2004 The FreeBSD Foundation 7 * Copyright (c) 2004-2008 Robert N. M. Watson 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 35 */ 36 37 /* 38 * Comments on the socket life cycle: 39 * 40 * soalloc() sets of socket layer state for a socket, called only by 41 * socreate() and sonewconn(). Socket layer private. 42 * 43 * sodealloc() tears down socket layer state for a socket, called only by 44 * sofree() and sonewconn(). Socket layer private. 45 * 46 * pru_attach() associates protocol layer state with an allocated socket; 47 * called only once, may fail, aborting socket allocation. This is called 48 * from socreate() and sonewconn(). Socket layer private. 49 * 50 * pru_detach() disassociates protocol layer state from an attached socket, 51 * and will be called exactly once for sockets in which pru_attach() has 52 * been successfully called. If pru_attach() returned an error, 53 * pru_detach() will not be called. Socket layer private. 54 * 55 * pru_abort() and pru_close() notify the protocol layer that the last 56 * consumer of a socket is starting to tear down the socket, and that the 57 * protocol should terminate the connection. Historically, pru_abort() also 58 * detached protocol state from the socket state, but this is no longer the 59 * case. 60 * 61 * socreate() creates a socket and attaches protocol state. This is a public 62 * interface that may be used by socket layer consumers to create new 63 * sockets. 64 * 65 * sonewconn() creates a socket and attaches protocol state. This is a 66 * public interface that may be used by protocols to create new sockets when 67 * a new connection is received and will be available for accept() on a 68 * listen socket. 69 * 70 * soclose() destroys a socket after possibly waiting for it to disconnect. 71 * This is a public interface that socket consumers should use to close and 72 * release a socket when done with it. 73 * 74 * soabort() destroys a socket without waiting for it to disconnect (used 75 * only for incoming connections that are already partially or fully 76 * connected). This is used internally by the socket layer when clearing 77 * listen socket queues (due to overflow or close on the listen socket), but 78 * is also a public interface protocols may use to abort connections in 79 * their incomplete listen queues should they no longer be required. Sockets 80 * placed in completed connection listen queues should not be aborted for 81 * reasons described in the comment above the soclose() implementation. This 82 * is not a general purpose close routine, and except in the specific 83 * circumstances described here, should not be used. 84 * 85 * sofree() will free a socket and its protocol state if all references on 86 * the socket have been released, and is the public interface to attempt to 87 * free a socket when a reference is removed. This is a socket layer private 88 * interface. 89 * 90 * NOTE: In addition to socreate() and soclose(), which provide a single 91 * socket reference to the consumer to be managed as required, there are two 92 * calls to explicitly manage socket references, soref(), and sorele(). 93 * Currently, these are generally required only when transitioning a socket 94 * from a listen queue to a file descriptor, in order to prevent garbage 95 * collection of the socket at an untimely moment. For a number of reasons, 96 * these interfaces are not preferred, and should be avoided. 97 * 98 * NOTE: With regard to VNETs the general rule is that callers do not set 99 * curvnet. Exceptions to this rule include soabort(), sodisconnect(), 100 * sofree() (and with that sorele(), sotryfree()), as well as sonewconn() 101 * and sorflush(), which are usually called from a pre-set VNET context. 102 * sopoll() currently does not need a VNET context to be set. 103 */ 104 105 #include <sys/cdefs.h> 106 __FBSDID("$FreeBSD$"); 107 108 #include "opt_inet.h" 109 #include "opt_inet6.h" 110 #include "opt_kern_tls.h" 111 #include "opt_sctp.h" 112 113 #include <sys/param.h> 114 #include <sys/systm.h> 115 #include <sys/capsicum.h> 116 #include <sys/fcntl.h> 117 #include <sys/limits.h> 118 #include <sys/lock.h> 119 #include <sys/mac.h> 120 #include <sys/malloc.h> 121 #include <sys/mbuf.h> 122 #include <sys/mutex.h> 123 #include <sys/domain.h> 124 #include <sys/file.h> /* for struct knote */ 125 #include <sys/hhook.h> 126 #include <sys/kernel.h> 127 #include <sys/khelp.h> 128 #include <sys/ktls.h> 129 #include <sys/event.h> 130 #include <sys/eventhandler.h> 131 #include <sys/poll.h> 132 #include <sys/proc.h> 133 #include <sys/protosw.h> 134 #include <sys/sbuf.h> 135 #include <sys/socket.h> 136 #include <sys/socketvar.h> 137 #include <sys/resourcevar.h> 138 #include <net/route.h> 139 #include <sys/signalvar.h> 140 #include <sys/stat.h> 141 #include <sys/sx.h> 142 #include <sys/sysctl.h> 143 #include <sys/taskqueue.h> 144 #include <sys/uio.h> 145 #include <sys/un.h> 146 #include <sys/unpcb.h> 147 #include <sys/jail.h> 148 #include <sys/syslog.h> 149 #include <netinet/in.h> 150 #include <netinet/in_pcb.h> 151 #include <netinet/tcp.h> 152 153 #include <net/vnet.h> 154 155 #include <security/mac/mac_framework.h> 156 157 #include <vm/uma.h> 158 159 #ifdef COMPAT_FREEBSD32 160 #include <sys/mount.h> 161 #include <sys/sysent.h> 162 #include <compat/freebsd32/freebsd32.h> 163 #endif 164 165 static int soreceive_rcvoob(struct socket *so, struct uio *uio, 166 int flags); 167 static void so_rdknl_lock(void *); 168 static void so_rdknl_unlock(void *); 169 static void so_rdknl_assert_lock(void *, int); 170 static void so_wrknl_lock(void *); 171 static void so_wrknl_unlock(void *); 172 static void so_wrknl_assert_lock(void *, int); 173 174 static void filt_sordetach(struct knote *kn); 175 static int filt_soread(struct knote *kn, long hint); 176 static void filt_sowdetach(struct knote *kn); 177 static int filt_sowrite(struct knote *kn, long hint); 178 static int filt_soempty(struct knote *kn, long hint); 179 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id); 180 fo_kqfilter_t soo_kqfilter; 181 182 static struct filterops soread_filtops = { 183 .f_isfd = 1, 184 .f_detach = filt_sordetach, 185 .f_event = filt_soread, 186 }; 187 static struct filterops sowrite_filtops = { 188 .f_isfd = 1, 189 .f_detach = filt_sowdetach, 190 .f_event = filt_sowrite, 191 }; 192 static struct filterops soempty_filtops = { 193 .f_isfd = 1, 194 .f_detach = filt_sowdetach, 195 .f_event = filt_soempty, 196 }; 197 198 so_gen_t so_gencnt; /* generation count for sockets */ 199 200 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 201 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 202 203 #define VNET_SO_ASSERT(so) \ 204 VNET_ASSERT(curvnet != NULL, \ 205 ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so))); 206 207 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]); 208 #define V_socket_hhh VNET(socket_hhh) 209 210 /* 211 * Limit on the number of connections in the listen queue waiting 212 * for accept(2). 213 * NB: The original sysctl somaxconn is still available but hidden 214 * to prevent confusion about the actual purpose of this number. 215 */ 216 static u_int somaxconn = SOMAXCONN; 217 218 static int 219 sysctl_somaxconn(SYSCTL_HANDLER_ARGS) 220 { 221 int error; 222 int val; 223 224 val = somaxconn; 225 error = sysctl_handle_int(oidp, &val, 0, req); 226 if (error || !req->newptr ) 227 return (error); 228 229 /* 230 * The purpose of the UINT_MAX / 3 limit, is so that the formula 231 * 3 * so_qlimit / 2 232 * below, will not overflow. 233 */ 234 235 if (val < 1 || val > UINT_MAX / 3) 236 return (EINVAL); 237 238 somaxconn = val; 239 return (0); 240 } 241 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue, 242 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 0, sizeof(int), 243 sysctl_somaxconn, "I", 244 "Maximum listen socket pending connection accept queue size"); 245 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, 246 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_NEEDGIANT, 0, 247 sizeof(int), sysctl_somaxconn, "I", 248 "Maximum listen socket pending connection accept queue size (compat)"); 249 250 static int numopensockets; 251 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, 252 &numopensockets, 0, "Number of open sockets"); 253 254 /* 255 * accept_mtx locks down per-socket fields relating to accept queues. See 256 * socketvar.h for an annotation of the protected fields of struct socket. 257 */ 258 struct mtx accept_mtx; 259 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF); 260 261 /* 262 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket 263 * so_gencnt field. 264 */ 265 static struct mtx so_global_mtx; 266 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); 267 268 /* 269 * General IPC sysctl name space, used by sockets and a variety of other IPC 270 * types. 271 */ 272 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 273 "IPC"); 274 275 /* 276 * Initialize the socket subsystem and set up the socket 277 * memory allocator. 278 */ 279 static uma_zone_t socket_zone; 280 int maxsockets; 281 282 static void 283 socket_zone_change(void *tag) 284 { 285 286 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 287 } 288 289 static void 290 socket_hhook_register(int subtype) 291 { 292 293 if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype, 294 &V_socket_hhh[subtype], 295 HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 296 printf("%s: WARNING: unable to register hook\n", __func__); 297 } 298 299 static void 300 socket_hhook_deregister(int subtype) 301 { 302 303 if (hhook_head_deregister(V_socket_hhh[subtype]) != 0) 304 printf("%s: WARNING: unable to deregister hook\n", __func__); 305 } 306 307 static void 308 socket_init(void *tag) 309 { 310 311 socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL, 312 NULL, NULL, UMA_ALIGN_PTR, 0); 313 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 314 uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached"); 315 EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL, 316 EVENTHANDLER_PRI_FIRST); 317 } 318 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL); 319 320 static void 321 socket_vnet_init(const void *unused __unused) 322 { 323 int i; 324 325 /* We expect a contiguous range */ 326 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 327 socket_hhook_register(i); 328 } 329 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 330 socket_vnet_init, NULL); 331 332 static void 333 socket_vnet_uninit(const void *unused __unused) 334 { 335 int i; 336 337 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 338 socket_hhook_deregister(i); 339 } 340 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 341 socket_vnet_uninit, NULL); 342 343 /* 344 * Initialise maxsockets. This SYSINIT must be run after 345 * tunable_mbinit(). 346 */ 347 static void 348 init_maxsockets(void *ignored) 349 { 350 351 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 352 maxsockets = imax(maxsockets, maxfiles); 353 } 354 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 355 356 /* 357 * Sysctl to get and set the maximum global sockets limit. Notify protocols 358 * of the change so that they can update their dependent limits as required. 359 */ 360 static int 361 sysctl_maxsockets(SYSCTL_HANDLER_ARGS) 362 { 363 int error, newmaxsockets; 364 365 newmaxsockets = maxsockets; 366 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req); 367 if (error == 0 && req->newptr && newmaxsockets != maxsockets) { 368 if (newmaxsockets > maxsockets && 369 newmaxsockets <= maxfiles) { 370 maxsockets = newmaxsockets; 371 EVENTHANDLER_INVOKE(maxsockets_change); 372 } else 373 error = EINVAL; 374 } 375 return (error); 376 } 377 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, 378 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &maxsockets, 0, 379 sysctl_maxsockets, "IU", 380 "Maximum number of sockets available"); 381 382 /* 383 * Socket operation routines. These routines are called by the routines in 384 * sys_socket.c or from a system process, and implement the semantics of 385 * socket operations by switching out to the protocol specific routines. 386 */ 387 388 /* 389 * Get a socket structure from our zone, and initialize it. Note that it 390 * would probably be better to allocate socket and PCB at the same time, but 391 * I'm not convinced that all the protocols can be easily modified to do 392 * this. 393 * 394 * soalloc() returns a socket with a ref count of 0. 395 */ 396 static struct socket * 397 soalloc(struct vnet *vnet) 398 { 399 struct socket *so; 400 401 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO); 402 if (so == NULL) 403 return (NULL); 404 #ifdef MAC 405 if (mac_socket_init(so, M_NOWAIT) != 0) { 406 uma_zfree(socket_zone, so); 407 return (NULL); 408 } 409 #endif 410 if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) { 411 uma_zfree(socket_zone, so); 412 return (NULL); 413 } 414 415 /* 416 * The socket locking protocol allows to lock 2 sockets at a time, 417 * however, the first one must be a listening socket. WITNESS lacks 418 * a feature to change class of an existing lock, so we use DUPOK. 419 */ 420 mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK); 421 so->so_snd.sb_mtx = &so->so_snd_mtx; 422 so->so_rcv.sb_mtx = &so->so_rcv_mtx; 423 SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd"); 424 SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv"); 425 so->so_rcv.sb_sel = &so->so_rdsel; 426 so->so_snd.sb_sel = &so->so_wrsel; 427 sx_init(&so->so_snd_sx, "so_snd_sx"); 428 sx_init(&so->so_rcv_sx, "so_rcv_sx"); 429 TAILQ_INIT(&so->so_snd.sb_aiojobq); 430 TAILQ_INIT(&so->so_rcv.sb_aiojobq); 431 TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so); 432 TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so); 433 #ifdef VIMAGE 434 VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p", 435 __func__, __LINE__, so)); 436 so->so_vnet = vnet; 437 #endif 438 /* We shouldn't need the so_global_mtx */ 439 if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) { 440 /* Do we need more comprehensive error returns? */ 441 uma_zfree(socket_zone, so); 442 return (NULL); 443 } 444 mtx_lock(&so_global_mtx); 445 so->so_gencnt = ++so_gencnt; 446 ++numopensockets; 447 #ifdef VIMAGE 448 vnet->vnet_sockcnt++; 449 #endif 450 mtx_unlock(&so_global_mtx); 451 452 return (so); 453 } 454 455 /* 456 * Free the storage associated with a socket at the socket layer, tear down 457 * locks, labels, etc. All protocol state is assumed already to have been 458 * torn down (and possibly never set up) by the caller. 459 */ 460 static void 461 sodealloc(struct socket *so) 462 { 463 464 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); 465 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL")); 466 467 mtx_lock(&so_global_mtx); 468 so->so_gencnt = ++so_gencnt; 469 --numopensockets; /* Could be below, but faster here. */ 470 #ifdef VIMAGE 471 VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p", 472 __func__, __LINE__, so)); 473 so->so_vnet->vnet_sockcnt--; 474 #endif 475 mtx_unlock(&so_global_mtx); 476 #ifdef MAC 477 mac_socket_destroy(so); 478 #endif 479 hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE); 480 481 khelp_destroy_osd(&so->osd); 482 if (SOLISTENING(so)) { 483 if (so->sol_accept_filter != NULL) 484 accept_filt_setopt(so, NULL); 485 } else { 486 if (so->so_rcv.sb_hiwat) 487 (void)chgsbsize(so->so_cred->cr_uidinfo, 488 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 489 if (so->so_snd.sb_hiwat) 490 (void)chgsbsize(so->so_cred->cr_uidinfo, 491 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 492 sx_destroy(&so->so_snd_sx); 493 sx_destroy(&so->so_rcv_sx); 494 SOCKBUF_LOCK_DESTROY(&so->so_snd); 495 SOCKBUF_LOCK_DESTROY(&so->so_rcv); 496 } 497 crfree(so->so_cred); 498 mtx_destroy(&so->so_lock); 499 uma_zfree(socket_zone, so); 500 } 501 502 /* 503 * socreate returns a socket with a ref count of 1. The socket should be 504 * closed with soclose(). 505 */ 506 int 507 socreate(int dom, struct socket **aso, int type, int proto, 508 struct ucred *cred, struct thread *td) 509 { 510 struct protosw *prp; 511 struct socket *so; 512 int error; 513 514 if (proto) 515 prp = pffindproto(dom, proto, type); 516 else 517 prp = pffindtype(dom, type); 518 519 if (prp == NULL) { 520 /* No support for domain. */ 521 if (pffinddomain(dom) == NULL) 522 return (EAFNOSUPPORT); 523 /* No support for socket type. */ 524 if (proto == 0 && type != 0) 525 return (EPROTOTYPE); 526 return (EPROTONOSUPPORT); 527 } 528 if (prp->pr_usrreqs->pru_attach == NULL || 529 prp->pr_usrreqs->pru_attach == pru_attach_notsupp) 530 return (EPROTONOSUPPORT); 531 532 if (IN_CAPABILITY_MODE(td) && (prp->pr_flags & PR_CAPATTACH) == 0) 533 return (ECAPMODE); 534 535 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0) 536 return (EPROTONOSUPPORT); 537 538 if (prp->pr_type != type) 539 return (EPROTOTYPE); 540 so = soalloc(CRED_TO_VNET(cred)); 541 if (so == NULL) 542 return (ENOBUFS); 543 544 so->so_type = type; 545 so->so_cred = crhold(cred); 546 if ((prp->pr_domain->dom_family == PF_INET) || 547 (prp->pr_domain->dom_family == PF_INET6) || 548 (prp->pr_domain->dom_family == PF_ROUTE)) 549 so->so_fibnum = td->td_proc->p_fibnum; 550 else 551 so->so_fibnum = 0; 552 so->so_proto = prp; 553 #ifdef MAC 554 mac_socket_create(cred, so); 555 #endif 556 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 557 so_rdknl_assert_lock); 558 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 559 so_wrknl_assert_lock); 560 /* 561 * Auto-sizing of socket buffers is managed by the protocols and 562 * the appropriate flags must be set in the pru_attach function. 563 */ 564 CURVNET_SET(so->so_vnet); 565 error = (*prp->pr_usrreqs->pru_attach)(so, proto, td); 566 CURVNET_RESTORE(); 567 if (error) { 568 sodealloc(so); 569 return (error); 570 } 571 soref(so); 572 *aso = so; 573 return (0); 574 } 575 576 #ifdef REGRESSION 577 static int regression_sonewconn_earlytest = 1; 578 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW, 579 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test"); 580 #endif 581 582 static struct timeval overinterval = { 60, 0 }; 583 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW, 584 &overinterval, 585 "Delay in seconds between warnings for listen socket overflows"); 586 587 /* 588 * When an attempt at a new connection is noted on a socket which accepts 589 * connections, sonewconn is called. If the connection is possible (subject 590 * to space constraints, etc.) then we allocate a new structure, properly 591 * linked into the data structure of the original socket, and return this. 592 * Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED. 593 * 594 * Note: the ref count on the socket is 0 on return. 595 */ 596 struct socket * 597 sonewconn(struct socket *head, int connstatus) 598 { 599 struct sbuf descrsb; 600 struct socket *so; 601 int len, overcount; 602 u_int qlen; 603 const char localprefix[] = "local:"; 604 char descrbuf[SUNPATHLEN + sizeof(localprefix)]; 605 #if defined(INET6) 606 char addrbuf[INET6_ADDRSTRLEN]; 607 #elif defined(INET) 608 char addrbuf[INET_ADDRSTRLEN]; 609 #endif 610 bool dolog, over; 611 612 SOLISTEN_LOCK(head); 613 over = (head->sol_qlen > 3 * head->sol_qlimit / 2); 614 #ifdef REGRESSION 615 if (regression_sonewconn_earlytest && over) { 616 #else 617 if (over) { 618 #endif 619 head->sol_overcount++; 620 dolog = !!ratecheck(&head->sol_lastover, &overinterval); 621 622 /* 623 * If we're going to log, copy the overflow count and queue 624 * length from the listen socket before dropping the lock. 625 * Also, reset the overflow count. 626 */ 627 if (dolog) { 628 overcount = head->sol_overcount; 629 head->sol_overcount = 0; 630 qlen = head->sol_qlen; 631 } 632 SOLISTEN_UNLOCK(head); 633 634 if (dolog) { 635 /* 636 * Try to print something descriptive about the 637 * socket for the error message. 638 */ 639 sbuf_new(&descrsb, descrbuf, sizeof(descrbuf), 640 SBUF_FIXEDLEN); 641 switch (head->so_proto->pr_domain->dom_family) { 642 #if defined(INET) || defined(INET6) 643 #ifdef INET 644 case AF_INET: 645 #endif 646 #ifdef INET6 647 case AF_INET6: 648 if (head->so_proto->pr_domain->dom_family == 649 AF_INET6 || 650 (sotoinpcb(head)->inp_inc.inc_flags & 651 INC_ISIPV6)) { 652 ip6_sprintf(addrbuf, 653 &sotoinpcb(head)->inp_inc.inc6_laddr); 654 sbuf_printf(&descrsb, "[%s]", addrbuf); 655 } else 656 #endif 657 { 658 #ifdef INET 659 inet_ntoa_r( 660 sotoinpcb(head)->inp_inc.inc_laddr, 661 addrbuf); 662 sbuf_cat(&descrsb, addrbuf); 663 #endif 664 } 665 sbuf_printf(&descrsb, ":%hu (proto %u)", 666 ntohs(sotoinpcb(head)->inp_inc.inc_lport), 667 head->so_proto->pr_protocol); 668 break; 669 #endif /* INET || INET6 */ 670 case AF_UNIX: 671 sbuf_cat(&descrsb, localprefix); 672 if (sotounpcb(head)->unp_addr != NULL) 673 len = 674 sotounpcb(head)->unp_addr->sun_len - 675 offsetof(struct sockaddr_un, 676 sun_path); 677 else 678 len = 0; 679 if (len > 0) 680 sbuf_bcat(&descrsb, 681 sotounpcb(head)->unp_addr->sun_path, 682 len); 683 else 684 sbuf_cat(&descrsb, "(unknown)"); 685 break; 686 } 687 688 /* 689 * If we can't print something more specific, at least 690 * print the domain name. 691 */ 692 if (sbuf_finish(&descrsb) != 0 || 693 sbuf_len(&descrsb) <= 0) { 694 sbuf_clear(&descrsb); 695 sbuf_cat(&descrsb, 696 head->so_proto->pr_domain->dom_name ?: 697 "unknown"); 698 sbuf_finish(&descrsb); 699 } 700 KASSERT(sbuf_len(&descrsb) > 0, 701 ("%s: sbuf creation failed", __func__)); 702 log(LOG_DEBUG, 703 "%s: pcb %p (%s): Listen queue overflow: " 704 "%i already in queue awaiting acceptance " 705 "(%d occurrences)\n", 706 __func__, head->so_pcb, sbuf_data(&descrsb), 707 qlen, overcount); 708 sbuf_delete(&descrsb); 709 710 overcount = 0; 711 } 712 713 return (NULL); 714 } 715 SOLISTEN_UNLOCK(head); 716 VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL", 717 __func__, head)); 718 so = soalloc(head->so_vnet); 719 if (so == NULL) { 720 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 721 "limit reached or out of memory\n", 722 __func__, head->so_pcb); 723 return (NULL); 724 } 725 so->so_listen = head; 726 so->so_type = head->so_type; 727 so->so_options = head->so_options & ~SO_ACCEPTCONN; 728 so->so_linger = head->so_linger; 729 so->so_state = head->so_state | SS_NOFDREF; 730 so->so_fibnum = head->so_fibnum; 731 so->so_proto = head->so_proto; 732 so->so_cred = crhold(head->so_cred); 733 #ifdef MAC 734 mac_socket_newconn(head, so); 735 #endif 736 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 737 so_rdknl_assert_lock); 738 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 739 so_wrknl_assert_lock); 740 VNET_SO_ASSERT(head); 741 if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) { 742 sodealloc(so); 743 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 744 __func__, head->so_pcb); 745 return (NULL); 746 } 747 if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 748 sodealloc(so); 749 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", 750 __func__, head->so_pcb); 751 return (NULL); 752 } 753 so->so_rcv.sb_lowat = head->sol_sbrcv_lowat; 754 so->so_snd.sb_lowat = head->sol_sbsnd_lowat; 755 so->so_rcv.sb_timeo = head->sol_sbrcv_timeo; 756 so->so_snd.sb_timeo = head->sol_sbsnd_timeo; 757 so->so_rcv.sb_flags |= head->sol_sbrcv_flags & SB_AUTOSIZE; 758 so->so_snd.sb_flags |= head->sol_sbsnd_flags & SB_AUTOSIZE; 759 760 SOLISTEN_LOCK(head); 761 if (head->sol_accept_filter != NULL) 762 connstatus = 0; 763 so->so_state |= connstatus; 764 soref(head); /* A socket on (in)complete queue refs head. */ 765 if (connstatus) { 766 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 767 so->so_qstate = SQ_COMP; 768 head->sol_qlen++; 769 solisten_wakeup(head); /* unlocks */ 770 } else { 771 /* 772 * Keep removing sockets from the head until there's room for 773 * us to insert on the tail. In pre-locking revisions, this 774 * was a simple if(), but as we could be racing with other 775 * threads and soabort() requires dropping locks, we must 776 * loop waiting for the condition to be true. 777 */ 778 while (head->sol_incqlen > head->sol_qlimit) { 779 struct socket *sp; 780 781 sp = TAILQ_FIRST(&head->sol_incomp); 782 TAILQ_REMOVE(&head->sol_incomp, sp, so_list); 783 head->sol_incqlen--; 784 SOCK_LOCK(sp); 785 sp->so_qstate = SQ_NONE; 786 sp->so_listen = NULL; 787 SOCK_UNLOCK(sp); 788 sorele_locked(head); /* does SOLISTEN_UNLOCK, head stays */ 789 soabort(sp); 790 SOLISTEN_LOCK(head); 791 } 792 TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list); 793 so->so_qstate = SQ_INCOMP; 794 head->sol_incqlen++; 795 SOLISTEN_UNLOCK(head); 796 } 797 return (so); 798 } 799 800 #if defined(SCTP) || defined(SCTP_SUPPORT) 801 /* 802 * Socket part of sctp_peeloff(). Detach a new socket from an 803 * association. The new socket is returned with a reference. 804 */ 805 struct socket * 806 sopeeloff(struct socket *head) 807 { 808 struct socket *so; 809 810 VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p", 811 __func__, __LINE__, head)); 812 so = soalloc(head->so_vnet); 813 if (so == NULL) { 814 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 815 "limit reached or out of memory\n", 816 __func__, head->so_pcb); 817 return (NULL); 818 } 819 so->so_type = head->so_type; 820 so->so_options = head->so_options; 821 so->so_linger = head->so_linger; 822 so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED; 823 so->so_fibnum = head->so_fibnum; 824 so->so_proto = head->so_proto; 825 so->so_cred = crhold(head->so_cred); 826 #ifdef MAC 827 mac_socket_newconn(head, so); 828 #endif 829 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 830 so_rdknl_assert_lock); 831 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 832 so_wrknl_assert_lock); 833 VNET_SO_ASSERT(head); 834 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) { 835 sodealloc(so); 836 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 837 __func__, head->so_pcb); 838 return (NULL); 839 } 840 if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 841 sodealloc(so); 842 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", 843 __func__, head->so_pcb); 844 return (NULL); 845 } 846 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; 847 so->so_snd.sb_lowat = head->so_snd.sb_lowat; 848 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; 849 so->so_snd.sb_timeo = head->so_snd.sb_timeo; 850 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE; 851 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE; 852 853 soref(so); 854 855 return (so); 856 } 857 #endif /* SCTP */ 858 859 int 860 sobind(struct socket *so, struct sockaddr *nam, struct thread *td) 861 { 862 int error; 863 864 CURVNET_SET(so->so_vnet); 865 error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td); 866 CURVNET_RESTORE(); 867 return (error); 868 } 869 870 int 871 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 872 { 873 int error; 874 875 CURVNET_SET(so->so_vnet); 876 error = (*so->so_proto->pr_usrreqs->pru_bindat)(fd, so, nam, td); 877 CURVNET_RESTORE(); 878 return (error); 879 } 880 881 /* 882 * solisten() transitions a socket from a non-listening state to a listening 883 * state, but can also be used to update the listen queue depth on an 884 * existing listen socket. The protocol will call back into the sockets 885 * layer using solisten_proto_check() and solisten_proto() to check and set 886 * socket-layer listen state. Call backs are used so that the protocol can 887 * acquire both protocol and socket layer locks in whatever order is required 888 * by the protocol. 889 * 890 * Protocol implementors are advised to hold the socket lock across the 891 * socket-layer test and set to avoid races at the socket layer. 892 */ 893 int 894 solisten(struct socket *so, int backlog, struct thread *td) 895 { 896 int error; 897 898 CURVNET_SET(so->so_vnet); 899 error = (*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td); 900 CURVNET_RESTORE(); 901 return (error); 902 } 903 904 /* 905 * Prepare for a call to solisten_proto(). Acquire all socket buffer locks in 906 * order to interlock with socket I/O. 907 */ 908 int 909 solisten_proto_check(struct socket *so) 910 { 911 SOCK_LOCK_ASSERT(so); 912 913 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 914 SS_ISDISCONNECTING)) != 0) 915 return (EINVAL); 916 917 /* 918 * Sleeping is not permitted here, so simply fail if userspace is 919 * attempting to transmit or receive on the socket. This kind of 920 * transient failure is not ideal, but it should occur only if userspace 921 * is misusing the socket interfaces. 922 */ 923 if (!sx_try_xlock(&so->so_snd_sx)) 924 return (EAGAIN); 925 if (!sx_try_xlock(&so->so_rcv_sx)) { 926 sx_xunlock(&so->so_snd_sx); 927 return (EAGAIN); 928 } 929 mtx_lock(&so->so_snd_mtx); 930 mtx_lock(&so->so_rcv_mtx); 931 932 /* Interlock with soo_aio_queue(). */ 933 if ((so->so_snd.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0 || 934 (so->so_rcv.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0) { 935 solisten_proto_abort(so); 936 return (EINVAL); 937 } 938 return (0); 939 } 940 941 /* 942 * Undo the setup done by solisten_proto_check(). 943 */ 944 void 945 solisten_proto_abort(struct socket *so) 946 { 947 mtx_unlock(&so->so_snd_mtx); 948 mtx_unlock(&so->so_rcv_mtx); 949 sx_xunlock(&so->so_snd_sx); 950 sx_xunlock(&so->so_rcv_sx); 951 } 952 953 void 954 solisten_proto(struct socket *so, int backlog) 955 { 956 int sbrcv_lowat, sbsnd_lowat; 957 u_int sbrcv_hiwat, sbsnd_hiwat; 958 short sbrcv_flags, sbsnd_flags; 959 sbintime_t sbrcv_timeo, sbsnd_timeo; 960 961 SOCK_LOCK_ASSERT(so); 962 KASSERT((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 963 SS_ISDISCONNECTING)) == 0, 964 ("%s: bad socket state %p", __func__, so)); 965 966 if (SOLISTENING(so)) 967 goto listening; 968 969 /* 970 * Change this socket to listening state. 971 */ 972 sbrcv_lowat = so->so_rcv.sb_lowat; 973 sbsnd_lowat = so->so_snd.sb_lowat; 974 sbrcv_hiwat = so->so_rcv.sb_hiwat; 975 sbsnd_hiwat = so->so_snd.sb_hiwat; 976 sbrcv_flags = so->so_rcv.sb_flags; 977 sbsnd_flags = so->so_snd.sb_flags; 978 sbrcv_timeo = so->so_rcv.sb_timeo; 979 sbsnd_timeo = so->so_snd.sb_timeo; 980 981 sbdestroy(&so->so_snd, so); 982 sbdestroy(&so->so_rcv, so); 983 984 #ifdef INVARIANTS 985 bzero(&so->so_rcv, 986 sizeof(struct socket) - offsetof(struct socket, so_rcv)); 987 #endif 988 989 so->sol_sbrcv_lowat = sbrcv_lowat; 990 so->sol_sbsnd_lowat = sbsnd_lowat; 991 so->sol_sbrcv_hiwat = sbrcv_hiwat; 992 so->sol_sbsnd_hiwat = sbsnd_hiwat; 993 so->sol_sbrcv_flags = sbrcv_flags; 994 so->sol_sbsnd_flags = sbsnd_flags; 995 so->sol_sbrcv_timeo = sbrcv_timeo; 996 so->sol_sbsnd_timeo = sbsnd_timeo; 997 998 so->sol_qlen = so->sol_incqlen = 0; 999 TAILQ_INIT(&so->sol_incomp); 1000 TAILQ_INIT(&so->sol_comp); 1001 1002 so->sol_accept_filter = NULL; 1003 so->sol_accept_filter_arg = NULL; 1004 so->sol_accept_filter_str = NULL; 1005 1006 so->sol_upcall = NULL; 1007 so->sol_upcallarg = NULL; 1008 1009 so->so_options |= SO_ACCEPTCONN; 1010 1011 listening: 1012 if (backlog < 0 || backlog > somaxconn) 1013 backlog = somaxconn; 1014 so->sol_qlimit = backlog; 1015 1016 mtx_unlock(&so->so_snd_mtx); 1017 mtx_unlock(&so->so_rcv_mtx); 1018 sx_xunlock(&so->so_snd_sx); 1019 sx_xunlock(&so->so_rcv_sx); 1020 } 1021 1022 /* 1023 * Wakeup listeners/subsystems once we have a complete connection. 1024 * Enters with lock, returns unlocked. 1025 */ 1026 void 1027 solisten_wakeup(struct socket *sol) 1028 { 1029 1030 if (sol->sol_upcall != NULL) 1031 (void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT); 1032 else { 1033 selwakeuppri(&sol->so_rdsel, PSOCK); 1034 KNOTE_LOCKED(&sol->so_rdsel.si_note, 0); 1035 } 1036 SOLISTEN_UNLOCK(sol); 1037 wakeup_one(&sol->sol_comp); 1038 if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL) 1039 pgsigio(&sol->so_sigio, SIGIO, 0); 1040 } 1041 1042 /* 1043 * Return single connection off a listening socket queue. Main consumer of 1044 * the function is kern_accept4(). Some modules, that do their own accept 1045 * management also use the function. 1046 * 1047 * Listening socket must be locked on entry and is returned unlocked on 1048 * return. 1049 * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT. 1050 */ 1051 int 1052 solisten_dequeue(struct socket *head, struct socket **ret, int flags) 1053 { 1054 struct socket *so; 1055 int error; 1056 1057 SOLISTEN_LOCK_ASSERT(head); 1058 1059 while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) && 1060 head->so_error == 0) { 1061 error = msleep(&head->sol_comp, SOCK_MTX(head), PSOCK | PCATCH, 1062 "accept", 0); 1063 if (error != 0) { 1064 SOLISTEN_UNLOCK(head); 1065 return (error); 1066 } 1067 } 1068 if (head->so_error) { 1069 error = head->so_error; 1070 head->so_error = 0; 1071 } else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp)) 1072 error = EWOULDBLOCK; 1073 else 1074 error = 0; 1075 if (error) { 1076 SOLISTEN_UNLOCK(head); 1077 return (error); 1078 } 1079 so = TAILQ_FIRST(&head->sol_comp); 1080 SOCK_LOCK(so); 1081 KASSERT(so->so_qstate == SQ_COMP, 1082 ("%s: so %p not SQ_COMP", __func__, so)); 1083 soref(so); 1084 head->sol_qlen--; 1085 so->so_qstate = SQ_NONE; 1086 so->so_listen = NULL; 1087 TAILQ_REMOVE(&head->sol_comp, so, so_list); 1088 if (flags & ACCEPT4_INHERIT) 1089 so->so_state |= (head->so_state & SS_NBIO); 1090 else 1091 so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0; 1092 SOCK_UNLOCK(so); 1093 sorele_locked(head); 1094 1095 *ret = so; 1096 return (0); 1097 } 1098 1099 /* 1100 * Evaluate the reference count and named references on a socket; if no 1101 * references remain, free it. This should be called whenever a reference is 1102 * released, such as in sorele(), but also when named reference flags are 1103 * cleared in socket or protocol code. 1104 * 1105 * sofree() will free the socket if: 1106 * 1107 * - There are no outstanding file descriptor references or related consumers 1108 * (so_count == 0). 1109 * 1110 * - The socket has been closed by user space, if ever open (SS_NOFDREF). 1111 * 1112 * - The protocol does not have an outstanding strong reference on the socket 1113 * (SS_PROTOREF). 1114 * 1115 * - The socket is not in a completed connection queue, so a process has been 1116 * notified that it is present. If it is removed, the user process may 1117 * block in accept() despite select() saying the socket was ready. 1118 */ 1119 void 1120 sofree(struct socket *so) 1121 { 1122 struct protosw *pr = so->so_proto; 1123 bool last __diagused; 1124 1125 SOCK_LOCK_ASSERT(so); 1126 1127 if ((so->so_state & (SS_NOFDREF | SS_PROTOREF)) != SS_NOFDREF || 1128 refcount_load(&so->so_count) != 0 || so->so_qstate == SQ_COMP) { 1129 SOCK_UNLOCK(so); 1130 return; 1131 } 1132 1133 if (!SOLISTENING(so) && so->so_qstate == SQ_INCOMP) { 1134 struct socket *sol; 1135 1136 sol = so->so_listen; 1137 KASSERT(sol, ("%s: so %p on incomp of NULL", __func__, so)); 1138 1139 /* 1140 * To solve race between close of a listening socket and 1141 * a socket on its incomplete queue, we need to lock both. 1142 * The order is first listening socket, then regular. 1143 * Since we don't have SS_NOFDREF neither SS_PROTOREF, this 1144 * function and the listening socket are the only pointers 1145 * to so. To preserve so and sol, we reference both and then 1146 * relock. 1147 * After relock the socket may not move to so_comp since it 1148 * doesn't have PCB already, but it may be removed from 1149 * so_incomp. If that happens, we share responsiblity on 1150 * freeing the socket, but soclose() has already removed 1151 * it from queue. 1152 */ 1153 soref(sol); 1154 soref(so); 1155 SOCK_UNLOCK(so); 1156 SOLISTEN_LOCK(sol); 1157 SOCK_LOCK(so); 1158 if (so->so_qstate == SQ_INCOMP) { 1159 KASSERT(so->so_listen == sol, 1160 ("%s: so %p migrated out of sol %p", 1161 __func__, so, sol)); 1162 TAILQ_REMOVE(&sol->sol_incomp, so, so_list); 1163 sol->sol_incqlen--; 1164 last = refcount_release(&sol->so_count); 1165 KASSERT(!last, ("%s: released last reference for %p", 1166 __func__, sol)); 1167 so->so_qstate = SQ_NONE; 1168 so->so_listen = NULL; 1169 } else 1170 KASSERT(so->so_listen == NULL, 1171 ("%s: so %p not on (in)comp with so_listen", 1172 __func__, so)); 1173 sorele_locked(sol); 1174 KASSERT(refcount_load(&so->so_count) == 1, 1175 ("%s: so %p count %u", __func__, so, so->so_count)); 1176 so->so_count = 0; 1177 } 1178 if (SOLISTENING(so)) 1179 so->so_error = ECONNABORTED; 1180 SOCK_UNLOCK(so); 1181 1182 if (so->so_dtor != NULL) 1183 so->so_dtor(so); 1184 1185 VNET_SO_ASSERT(so); 1186 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 1187 (*pr->pr_domain->dom_dispose)(so); 1188 if (pr->pr_usrreqs->pru_detach != NULL) 1189 (*pr->pr_usrreqs->pru_detach)(so); 1190 1191 /* 1192 * From this point on, we assume that no other references to this 1193 * socket exist anywhere else in the stack. Therefore, no locks need 1194 * to be acquired or held. 1195 * 1196 * We used to do a lot of socket buffer and socket locking here, as 1197 * well as invoke sorflush() and perform wakeups. The direct call to 1198 * dom_dispose() and sbdestroy() are an inlining of what was 1199 * necessary from sorflush(). 1200 * 1201 * Notice that the socket buffer and kqueue state are torn down 1202 * before calling pru_detach. This means that protocols shold not 1203 * assume they can perform socket wakeups, etc, in their detach code. 1204 */ 1205 if (!SOLISTENING(so)) { 1206 sbdestroy(&so->so_snd, so); 1207 sbdestroy(&so->so_rcv, so); 1208 } 1209 seldrain(&so->so_rdsel); 1210 seldrain(&so->so_wrsel); 1211 knlist_destroy(&so->so_rdsel.si_note); 1212 knlist_destroy(&so->so_wrsel.si_note); 1213 sodealloc(so); 1214 } 1215 1216 /* 1217 * Release a reference on a socket while holding the socket lock. 1218 * Unlocks the socket lock before returning. 1219 */ 1220 void 1221 sorele_locked(struct socket *so) 1222 { 1223 SOCK_LOCK_ASSERT(so); 1224 if (refcount_release(&so->so_count)) 1225 sofree(so); 1226 else 1227 SOCK_UNLOCK(so); 1228 } 1229 1230 /* 1231 * Close a socket on last file table reference removal. Initiate disconnect 1232 * if connected. Free socket when disconnect complete. 1233 * 1234 * This function will sorele() the socket. Note that soclose() may be called 1235 * prior to the ref count reaching zero. The actual socket structure will 1236 * not be freed until the ref count reaches zero. 1237 */ 1238 int 1239 soclose(struct socket *so) 1240 { 1241 struct accept_queue lqueue; 1242 int error = 0; 1243 bool listening, last __diagused; 1244 1245 KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter")); 1246 1247 CURVNET_SET(so->so_vnet); 1248 funsetown(&so->so_sigio); 1249 if (so->so_state & SS_ISCONNECTED) { 1250 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 1251 error = sodisconnect(so); 1252 if (error) { 1253 if (error == ENOTCONN) 1254 error = 0; 1255 goto drop; 1256 } 1257 } 1258 1259 if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) { 1260 if ((so->so_state & SS_ISDISCONNECTING) && 1261 (so->so_state & SS_NBIO)) 1262 goto drop; 1263 while (so->so_state & SS_ISCONNECTED) { 1264 error = tsleep(&so->so_timeo, 1265 PSOCK | PCATCH, "soclos", 1266 so->so_linger * hz); 1267 if (error) 1268 break; 1269 } 1270 } 1271 } 1272 1273 drop: 1274 if (so->so_proto->pr_usrreqs->pru_close != NULL) 1275 (*so->so_proto->pr_usrreqs->pru_close)(so); 1276 1277 SOCK_LOCK(so); 1278 if ((listening = SOLISTENING(so))) { 1279 struct socket *sp; 1280 1281 TAILQ_INIT(&lqueue); 1282 TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list); 1283 TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list); 1284 1285 so->sol_qlen = so->sol_incqlen = 0; 1286 1287 TAILQ_FOREACH(sp, &lqueue, so_list) { 1288 SOCK_LOCK(sp); 1289 sp->so_qstate = SQ_NONE; 1290 sp->so_listen = NULL; 1291 SOCK_UNLOCK(sp); 1292 last = refcount_release(&so->so_count); 1293 KASSERT(!last, ("%s: released last reference for %p", 1294 __func__, so)); 1295 } 1296 } 1297 KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF")); 1298 so->so_state |= SS_NOFDREF; 1299 sorele_locked(so); 1300 if (listening) { 1301 struct socket *sp, *tsp; 1302 1303 TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp) { 1304 SOCK_LOCK(sp); 1305 if (refcount_load(&sp->so_count) == 0) { 1306 SOCK_UNLOCK(sp); 1307 soabort(sp); 1308 } else { 1309 /* See the handling of queued sockets 1310 in sofree(). */ 1311 SOCK_UNLOCK(sp); 1312 } 1313 } 1314 } 1315 CURVNET_RESTORE(); 1316 return (error); 1317 } 1318 1319 /* 1320 * soabort() is used to abruptly tear down a connection, such as when a 1321 * resource limit is reached (listen queue depth exceeded), or if a listen 1322 * socket is closed while there are sockets waiting to be accepted. 1323 * 1324 * This interface is tricky, because it is called on an unreferenced socket, 1325 * and must be called only by a thread that has actually removed the socket 1326 * from the listen queue it was on, or races with other threads are risked. 1327 * 1328 * This interface will call into the protocol code, so must not be called 1329 * with any socket locks held. Protocols do call it while holding their own 1330 * recursible protocol mutexes, but this is something that should be subject 1331 * to review in the future. 1332 */ 1333 void 1334 soabort(struct socket *so) 1335 { 1336 1337 /* 1338 * In as much as is possible, assert that no references to this 1339 * socket are held. This is not quite the same as asserting that the 1340 * current thread is responsible for arranging for no references, but 1341 * is as close as we can get for now. 1342 */ 1343 KASSERT(so->so_count == 0, ("soabort: so_count")); 1344 KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF")); 1345 KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF")); 1346 VNET_SO_ASSERT(so); 1347 1348 if (so->so_proto->pr_usrreqs->pru_abort != NULL) 1349 (*so->so_proto->pr_usrreqs->pru_abort)(so); 1350 SOCK_LOCK(so); 1351 sofree(so); 1352 } 1353 1354 int 1355 soaccept(struct socket *so, struct sockaddr **nam) 1356 { 1357 int error; 1358 1359 SOCK_LOCK(so); 1360 KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF")); 1361 so->so_state &= ~SS_NOFDREF; 1362 SOCK_UNLOCK(so); 1363 1364 CURVNET_SET(so->so_vnet); 1365 error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam); 1366 CURVNET_RESTORE(); 1367 return (error); 1368 } 1369 1370 int 1371 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td) 1372 { 1373 1374 return (soconnectat(AT_FDCWD, so, nam, td)); 1375 } 1376 1377 int 1378 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 1379 { 1380 int error; 1381 1382 CURVNET_SET(so->so_vnet); 1383 /* 1384 * If protocol is connection-based, can only connect once. 1385 * Otherwise, if connected, try to disconnect first. This allows 1386 * user to disconnect by connecting to, e.g., a null address. 1387 */ 1388 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 1389 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 1390 (error = sodisconnect(so)))) { 1391 error = EISCONN; 1392 } else { 1393 /* 1394 * Prevent accumulated error from previous connection from 1395 * biting us. 1396 */ 1397 so->so_error = 0; 1398 if (fd == AT_FDCWD) { 1399 error = (*so->so_proto->pr_usrreqs->pru_connect)(so, 1400 nam, td); 1401 } else { 1402 error = (*so->so_proto->pr_usrreqs->pru_connectat)(fd, 1403 so, nam, td); 1404 } 1405 } 1406 CURVNET_RESTORE(); 1407 1408 return (error); 1409 } 1410 1411 int 1412 soconnect2(struct socket *so1, struct socket *so2) 1413 { 1414 int error; 1415 1416 CURVNET_SET(so1->so_vnet); 1417 error = (*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2); 1418 CURVNET_RESTORE(); 1419 return (error); 1420 } 1421 1422 int 1423 sodisconnect(struct socket *so) 1424 { 1425 int error; 1426 1427 if ((so->so_state & SS_ISCONNECTED) == 0) 1428 return (ENOTCONN); 1429 if (so->so_state & SS_ISDISCONNECTING) 1430 return (EALREADY); 1431 VNET_SO_ASSERT(so); 1432 error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so); 1433 return (error); 1434 } 1435 1436 int 1437 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, 1438 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1439 { 1440 long space; 1441 ssize_t resid; 1442 int clen = 0, error, dontroute; 1443 1444 KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM")); 1445 KASSERT(so->so_proto->pr_flags & PR_ATOMIC, 1446 ("sosend_dgram: !PR_ATOMIC")); 1447 1448 if (uio != NULL) 1449 resid = uio->uio_resid; 1450 else 1451 resid = top->m_pkthdr.len; 1452 /* 1453 * In theory resid should be unsigned. However, space must be 1454 * signed, as it might be less than 0 if we over-committed, and we 1455 * must use a signed comparison of space and resid. On the other 1456 * hand, a negative resid causes us to loop sending 0-length 1457 * segments to the protocol. 1458 */ 1459 if (resid < 0) { 1460 error = EINVAL; 1461 goto out; 1462 } 1463 1464 dontroute = 1465 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0; 1466 if (td != NULL) 1467 td->td_ru.ru_msgsnd++; 1468 if (control != NULL) 1469 clen = control->m_len; 1470 1471 SOCKBUF_LOCK(&so->so_snd); 1472 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1473 SOCKBUF_UNLOCK(&so->so_snd); 1474 error = EPIPE; 1475 goto out; 1476 } 1477 if (so->so_error) { 1478 error = so->so_error; 1479 so->so_error = 0; 1480 SOCKBUF_UNLOCK(&so->so_snd); 1481 goto out; 1482 } 1483 if ((so->so_state & SS_ISCONNECTED) == 0) { 1484 /* 1485 * `sendto' and `sendmsg' is allowed on a connection-based 1486 * socket if it supports implied connect. Return ENOTCONN if 1487 * not connected and no address is supplied. 1488 */ 1489 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1490 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1491 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1492 !(resid == 0 && clen != 0)) { 1493 SOCKBUF_UNLOCK(&so->so_snd); 1494 error = ENOTCONN; 1495 goto out; 1496 } 1497 } else if (addr == NULL) { 1498 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1499 error = ENOTCONN; 1500 else 1501 error = EDESTADDRREQ; 1502 SOCKBUF_UNLOCK(&so->so_snd); 1503 goto out; 1504 } 1505 } 1506 1507 /* 1508 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a 1509 * problem and need fixing. 1510 */ 1511 space = sbspace(&so->so_snd); 1512 if (flags & MSG_OOB) 1513 space += 1024; 1514 space -= clen; 1515 SOCKBUF_UNLOCK(&so->so_snd); 1516 if (resid > space) { 1517 error = EMSGSIZE; 1518 goto out; 1519 } 1520 if (uio == NULL) { 1521 resid = 0; 1522 if (flags & MSG_EOR) 1523 top->m_flags |= M_EOR; 1524 } else { 1525 /* 1526 * Copy the data from userland into a mbuf chain. 1527 * If no data is to be copied in, a single empty mbuf 1528 * is returned. 1529 */ 1530 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr, 1531 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0))); 1532 if (top == NULL) { 1533 error = EFAULT; /* only possible error */ 1534 goto out; 1535 } 1536 space -= resid - uio->uio_resid; 1537 resid = uio->uio_resid; 1538 } 1539 KASSERT(resid == 0, ("sosend_dgram: resid != 0")); 1540 /* 1541 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock 1542 * than with. 1543 */ 1544 if (dontroute) { 1545 SOCK_LOCK(so); 1546 so->so_options |= SO_DONTROUTE; 1547 SOCK_UNLOCK(so); 1548 } 1549 /* 1550 * XXX all the SBS_CANTSENDMORE checks previously done could be out 1551 * of date. We could have received a reset packet in an interrupt or 1552 * maybe we slept while doing page faults in uiomove() etc. We could 1553 * probably recheck again inside the locking protection here, but 1554 * there are probably other places that this also happens. We must 1555 * rethink this. 1556 */ 1557 VNET_SO_ASSERT(so); 1558 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1559 (flags & MSG_OOB) ? PRUS_OOB : 1560 /* 1561 * If the user set MSG_EOF, the protocol understands this flag and 1562 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND. 1563 */ 1564 ((flags & MSG_EOF) && 1565 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1566 (resid <= 0)) ? 1567 PRUS_EOF : 1568 /* If there is more to send set PRUS_MORETOCOME */ 1569 (flags & MSG_MORETOCOME) || 1570 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1571 top, addr, control, td); 1572 if (dontroute) { 1573 SOCK_LOCK(so); 1574 so->so_options &= ~SO_DONTROUTE; 1575 SOCK_UNLOCK(so); 1576 } 1577 clen = 0; 1578 control = NULL; 1579 top = NULL; 1580 out: 1581 if (top != NULL) 1582 m_freem(top); 1583 if (control != NULL) 1584 m_freem(control); 1585 return (error); 1586 } 1587 1588 /* 1589 * Send on a socket. If send must go all at once and message is larger than 1590 * send buffering, then hard error. Lock against other senders. If must go 1591 * all at once and not enough room now, then inform user that this would 1592 * block and do nothing. Otherwise, if nonblocking, send as much as 1593 * possible. The data to be sent is described by "uio" if nonzero, otherwise 1594 * by the mbuf chain "top" (which must be null if uio is not). Data provided 1595 * in mbuf chain must be small enough to send all at once. 1596 * 1597 * Returns nonzero on error, timeout or signal; callers must check for short 1598 * counts if EINTR/ERESTART are returned. Data and control buffers are freed 1599 * on return. 1600 */ 1601 int 1602 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio, 1603 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1604 { 1605 long space; 1606 ssize_t resid; 1607 int clen = 0, error, dontroute; 1608 int atomic = sosendallatonce(so) || top; 1609 int pru_flag; 1610 #ifdef KERN_TLS 1611 struct ktls_session *tls; 1612 int tls_enq_cnt, tls_pruflag; 1613 uint8_t tls_rtype; 1614 1615 tls = NULL; 1616 tls_rtype = TLS_RLTYPE_APP; 1617 #endif 1618 if (uio != NULL) 1619 resid = uio->uio_resid; 1620 else if ((top->m_flags & M_PKTHDR) != 0) 1621 resid = top->m_pkthdr.len; 1622 else 1623 resid = m_length(top, NULL); 1624 /* 1625 * In theory resid should be unsigned. However, space must be 1626 * signed, as it might be less than 0 if we over-committed, and we 1627 * must use a signed comparison of space and resid. On the other 1628 * hand, a negative resid causes us to loop sending 0-length 1629 * segments to the protocol. 1630 * 1631 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 1632 * type sockets since that's an error. 1633 */ 1634 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 1635 error = EINVAL; 1636 goto out; 1637 } 1638 1639 dontroute = 1640 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 1641 (so->so_proto->pr_flags & PR_ATOMIC); 1642 if (td != NULL) 1643 td->td_ru.ru_msgsnd++; 1644 if (control != NULL) 1645 clen = control->m_len; 1646 1647 error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags)); 1648 if (error) 1649 goto out; 1650 1651 #ifdef KERN_TLS 1652 tls_pruflag = 0; 1653 tls = ktls_hold(so->so_snd.sb_tls_info); 1654 if (tls != NULL) { 1655 if (tls->mode == TCP_TLS_MODE_SW) 1656 tls_pruflag = PRUS_NOTREADY; 1657 1658 if (control != NULL) { 1659 struct cmsghdr *cm = mtod(control, struct cmsghdr *); 1660 1661 if (clen >= sizeof(*cm) && 1662 cm->cmsg_type == TLS_SET_RECORD_TYPE) { 1663 tls_rtype = *((uint8_t *)CMSG_DATA(cm)); 1664 clen = 0; 1665 m_freem(control); 1666 control = NULL; 1667 atomic = 1; 1668 } 1669 } 1670 } 1671 #endif 1672 1673 restart: 1674 do { 1675 SOCKBUF_LOCK(&so->so_snd); 1676 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1677 SOCKBUF_UNLOCK(&so->so_snd); 1678 error = EPIPE; 1679 goto release; 1680 } 1681 if (so->so_error) { 1682 error = so->so_error; 1683 so->so_error = 0; 1684 SOCKBUF_UNLOCK(&so->so_snd); 1685 goto release; 1686 } 1687 if ((so->so_state & SS_ISCONNECTED) == 0) { 1688 /* 1689 * `sendto' and `sendmsg' is allowed on a connection- 1690 * based socket if it supports implied connect. 1691 * Return ENOTCONN if not connected and no address is 1692 * supplied. 1693 */ 1694 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1695 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1696 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1697 !(resid == 0 && clen != 0)) { 1698 SOCKBUF_UNLOCK(&so->so_snd); 1699 error = ENOTCONN; 1700 goto release; 1701 } 1702 } else if (addr == NULL) { 1703 SOCKBUF_UNLOCK(&so->so_snd); 1704 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1705 error = ENOTCONN; 1706 else 1707 error = EDESTADDRREQ; 1708 goto release; 1709 } 1710 } 1711 space = sbspace(&so->so_snd); 1712 if (flags & MSG_OOB) 1713 space += 1024; 1714 if ((atomic && resid > so->so_snd.sb_hiwat) || 1715 clen > so->so_snd.sb_hiwat) { 1716 SOCKBUF_UNLOCK(&so->so_snd); 1717 error = EMSGSIZE; 1718 goto release; 1719 } 1720 if (space < resid + clen && 1721 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 1722 if ((so->so_state & SS_NBIO) || 1723 (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) { 1724 SOCKBUF_UNLOCK(&so->so_snd); 1725 error = EWOULDBLOCK; 1726 goto release; 1727 } 1728 error = sbwait(&so->so_snd); 1729 SOCKBUF_UNLOCK(&so->so_snd); 1730 if (error) 1731 goto release; 1732 goto restart; 1733 } 1734 SOCKBUF_UNLOCK(&so->so_snd); 1735 space -= clen; 1736 do { 1737 if (uio == NULL) { 1738 resid = 0; 1739 if (flags & MSG_EOR) 1740 top->m_flags |= M_EOR; 1741 #ifdef KERN_TLS 1742 if (tls != NULL) { 1743 ktls_frame(top, tls, &tls_enq_cnt, 1744 tls_rtype); 1745 tls_rtype = TLS_RLTYPE_APP; 1746 } 1747 #endif 1748 } else { 1749 /* 1750 * Copy the data from userland into a mbuf 1751 * chain. If resid is 0, which can happen 1752 * only if we have control to send, then 1753 * a single empty mbuf is returned. This 1754 * is a workaround to prevent protocol send 1755 * methods to panic. 1756 */ 1757 #ifdef KERN_TLS 1758 if (tls != NULL) { 1759 top = m_uiotombuf(uio, M_WAITOK, space, 1760 tls->params.max_frame_len, 1761 M_EXTPG | 1762 ((flags & MSG_EOR) ? M_EOR : 0)); 1763 if (top != NULL) { 1764 ktls_frame(top, tls, 1765 &tls_enq_cnt, tls_rtype); 1766 } 1767 tls_rtype = TLS_RLTYPE_APP; 1768 } else 1769 #endif 1770 top = m_uiotombuf(uio, M_WAITOK, space, 1771 (atomic ? max_hdr : 0), 1772 (atomic ? M_PKTHDR : 0) | 1773 ((flags & MSG_EOR) ? M_EOR : 0)); 1774 if (top == NULL) { 1775 error = EFAULT; /* only possible error */ 1776 goto release; 1777 } 1778 space -= resid - uio->uio_resid; 1779 resid = uio->uio_resid; 1780 } 1781 if (dontroute) { 1782 SOCK_LOCK(so); 1783 so->so_options |= SO_DONTROUTE; 1784 SOCK_UNLOCK(so); 1785 } 1786 /* 1787 * XXX all the SBS_CANTSENDMORE checks previously 1788 * done could be out of date. We could have received 1789 * a reset packet in an interrupt or maybe we slept 1790 * while doing page faults in uiomove() etc. We 1791 * could probably recheck again inside the locking 1792 * protection here, but there are probably other 1793 * places that this also happens. We must rethink 1794 * this. 1795 */ 1796 VNET_SO_ASSERT(so); 1797 1798 pru_flag = (flags & MSG_OOB) ? PRUS_OOB : 1799 /* 1800 * If the user set MSG_EOF, the protocol understands 1801 * this flag and nothing left to send then use 1802 * PRU_SEND_EOF instead of PRU_SEND. 1803 */ 1804 ((flags & MSG_EOF) && 1805 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1806 (resid <= 0)) ? 1807 PRUS_EOF : 1808 /* If there is more to send set PRUS_MORETOCOME. */ 1809 (flags & MSG_MORETOCOME) || 1810 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0; 1811 1812 #ifdef KERN_TLS 1813 pru_flag |= tls_pruflag; 1814 #endif 1815 1816 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1817 pru_flag, top, addr, control, td); 1818 1819 if (dontroute) { 1820 SOCK_LOCK(so); 1821 so->so_options &= ~SO_DONTROUTE; 1822 SOCK_UNLOCK(so); 1823 } 1824 1825 #ifdef KERN_TLS 1826 if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) { 1827 if (error != 0) { 1828 m_freem(top); 1829 top = NULL; 1830 } else { 1831 soref(so); 1832 ktls_enqueue(top, so, tls_enq_cnt); 1833 } 1834 } 1835 #endif 1836 clen = 0; 1837 control = NULL; 1838 top = NULL; 1839 if (error) 1840 goto release; 1841 } while (resid && space > 0); 1842 } while (resid); 1843 1844 release: 1845 SOCK_IO_SEND_UNLOCK(so); 1846 out: 1847 #ifdef KERN_TLS 1848 if (tls != NULL) 1849 ktls_free(tls); 1850 #endif 1851 if (top != NULL) 1852 m_freem(top); 1853 if (control != NULL) 1854 m_freem(control); 1855 return (error); 1856 } 1857 1858 int 1859 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, 1860 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1861 { 1862 int error; 1863 1864 CURVNET_SET(so->so_vnet); 1865 error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, 1866 top, control, flags, td); 1867 CURVNET_RESTORE(); 1868 return (error); 1869 } 1870 1871 /* 1872 * The part of soreceive() that implements reading non-inline out-of-band 1873 * data from a socket. For more complete comments, see soreceive(), from 1874 * which this code originated. 1875 * 1876 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is 1877 * unable to return an mbuf chain to the caller. 1878 */ 1879 static int 1880 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags) 1881 { 1882 struct protosw *pr = so->so_proto; 1883 struct mbuf *m; 1884 int error; 1885 1886 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); 1887 VNET_SO_ASSERT(so); 1888 1889 m = m_get(M_WAITOK, MT_DATA); 1890 error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK); 1891 if (error) 1892 goto bad; 1893 do { 1894 error = uiomove(mtod(m, void *), 1895 (int) min(uio->uio_resid, m->m_len), uio); 1896 m = m_free(m); 1897 } while (uio->uio_resid && error == 0 && m); 1898 bad: 1899 if (m != NULL) 1900 m_freem(m); 1901 return (error); 1902 } 1903 1904 /* 1905 * Following replacement or removal of the first mbuf on the first mbuf chain 1906 * of a socket buffer, push necessary state changes back into the socket 1907 * buffer so that other consumers see the values consistently. 'nextrecord' 1908 * is the callers locally stored value of the original value of 1909 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. 1910 * NOTE: 'nextrecord' may be NULL. 1911 */ 1912 static __inline void 1913 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) 1914 { 1915 1916 SOCKBUF_LOCK_ASSERT(sb); 1917 /* 1918 * First, update for the new value of nextrecord. If necessary, make 1919 * it the first record. 1920 */ 1921 if (sb->sb_mb != NULL) 1922 sb->sb_mb->m_nextpkt = nextrecord; 1923 else 1924 sb->sb_mb = nextrecord; 1925 1926 /* 1927 * Now update any dependent socket buffer fields to reflect the new 1928 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the 1929 * addition of a second clause that takes care of the case where 1930 * sb_mb has been updated, but remains the last record. 1931 */ 1932 if (sb->sb_mb == NULL) { 1933 sb->sb_mbtail = NULL; 1934 sb->sb_lastrecord = NULL; 1935 } else if (sb->sb_mb->m_nextpkt == NULL) 1936 sb->sb_lastrecord = sb->sb_mb; 1937 } 1938 1939 /* 1940 * Implement receive operations on a socket. We depend on the way that 1941 * records are added to the sockbuf by sbappend. In particular, each record 1942 * (mbufs linked through m_next) must begin with an address if the protocol 1943 * so specifies, followed by an optional mbuf or mbufs containing ancillary 1944 * data, and then zero or more mbufs of data. In order to allow parallelism 1945 * between network receive and copying to user space, as well as avoid 1946 * sleeping with a mutex held, we release the socket buffer mutex during the 1947 * user space copy. Although the sockbuf is locked, new data may still be 1948 * appended, and thus we must maintain consistency of the sockbuf during that 1949 * time. 1950 * 1951 * The caller may receive the data as a single mbuf chain by supplying an 1952 * mbuf **mp0 for use in returning the chain. The uio is then used only for 1953 * the count in uio_resid. 1954 */ 1955 int 1956 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio, 1957 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1958 { 1959 struct mbuf *m, **mp; 1960 int flags, error, offset; 1961 ssize_t len; 1962 struct protosw *pr = so->so_proto; 1963 struct mbuf *nextrecord; 1964 int moff, type = 0; 1965 ssize_t orig_resid = uio->uio_resid; 1966 1967 mp = mp0; 1968 if (psa != NULL) 1969 *psa = NULL; 1970 if (controlp != NULL) 1971 *controlp = NULL; 1972 if (flagsp != NULL) 1973 flags = *flagsp &~ MSG_EOR; 1974 else 1975 flags = 0; 1976 if (flags & MSG_OOB) 1977 return (soreceive_rcvoob(so, uio, flags)); 1978 if (mp != NULL) 1979 *mp = NULL; 1980 if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING) 1981 && uio->uio_resid) { 1982 VNET_SO_ASSERT(so); 1983 (*pr->pr_usrreqs->pru_rcvd)(so, 0); 1984 } 1985 1986 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags)); 1987 if (error) 1988 return (error); 1989 1990 restart: 1991 SOCKBUF_LOCK(&so->so_rcv); 1992 m = so->so_rcv.sb_mb; 1993 /* 1994 * If we have less data than requested, block awaiting more (subject 1995 * to any timeout) if: 1996 * 1. the current count is less than the low water mark, or 1997 * 2. MSG_DONTWAIT is not set 1998 */ 1999 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 2000 sbavail(&so->so_rcv) < uio->uio_resid) && 2001 sbavail(&so->so_rcv) < so->so_rcv.sb_lowat && 2002 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 2003 KASSERT(m != NULL || !sbavail(&so->so_rcv), 2004 ("receive: m == %p sbavail == %u", 2005 m, sbavail(&so->so_rcv))); 2006 if (so->so_error || so->so_rerror) { 2007 if (m != NULL) 2008 goto dontblock; 2009 if (so->so_error) 2010 error = so->so_error; 2011 else 2012 error = so->so_rerror; 2013 if ((flags & MSG_PEEK) == 0) { 2014 if (so->so_error) 2015 so->so_error = 0; 2016 else 2017 so->so_rerror = 0; 2018 } 2019 SOCKBUF_UNLOCK(&so->so_rcv); 2020 goto release; 2021 } 2022 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2023 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 2024 if (m != NULL) 2025 goto dontblock; 2026 #ifdef KERN_TLS 2027 else if (so->so_rcv.sb_tlsdcc == 0 && 2028 so->so_rcv.sb_tlscc == 0) { 2029 #else 2030 else { 2031 #endif 2032 SOCKBUF_UNLOCK(&so->so_rcv); 2033 goto release; 2034 } 2035 } 2036 for (; m != NULL; m = m->m_next) 2037 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 2038 m = so->so_rcv.sb_mb; 2039 goto dontblock; 2040 } 2041 if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED | 2042 SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 && 2043 (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) { 2044 SOCKBUF_UNLOCK(&so->so_rcv); 2045 error = ENOTCONN; 2046 goto release; 2047 } 2048 if (uio->uio_resid == 0) { 2049 SOCKBUF_UNLOCK(&so->so_rcv); 2050 goto release; 2051 } 2052 if ((so->so_state & SS_NBIO) || 2053 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2054 SOCKBUF_UNLOCK(&so->so_rcv); 2055 error = EWOULDBLOCK; 2056 goto release; 2057 } 2058 SBLASTRECORDCHK(&so->so_rcv); 2059 SBLASTMBUFCHK(&so->so_rcv); 2060 error = sbwait(&so->so_rcv); 2061 SOCKBUF_UNLOCK(&so->so_rcv); 2062 if (error) 2063 goto release; 2064 goto restart; 2065 } 2066 dontblock: 2067 /* 2068 * From this point onward, we maintain 'nextrecord' as a cache of the 2069 * pointer to the next record in the socket buffer. We must keep the 2070 * various socket buffer pointers and local stack versions of the 2071 * pointers in sync, pushing out modifications before dropping the 2072 * socket buffer mutex, and re-reading them when picking it up. 2073 * 2074 * Otherwise, we will race with the network stack appending new data 2075 * or records onto the socket buffer by using inconsistent/stale 2076 * versions of the field, possibly resulting in socket buffer 2077 * corruption. 2078 * 2079 * By holding the high-level sblock(), we prevent simultaneous 2080 * readers from pulling off the front of the socket buffer. 2081 */ 2082 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2083 if (uio->uio_td) 2084 uio->uio_td->td_ru.ru_msgrcv++; 2085 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); 2086 SBLASTRECORDCHK(&so->so_rcv); 2087 SBLASTMBUFCHK(&so->so_rcv); 2088 nextrecord = m->m_nextpkt; 2089 if (pr->pr_flags & PR_ADDR) { 2090 KASSERT(m->m_type == MT_SONAME, 2091 ("m->m_type == %d", m->m_type)); 2092 orig_resid = 0; 2093 if (psa != NULL) 2094 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2095 M_NOWAIT); 2096 if (flags & MSG_PEEK) { 2097 m = m->m_next; 2098 } else { 2099 sbfree(&so->so_rcv, m); 2100 so->so_rcv.sb_mb = m_free(m); 2101 m = so->so_rcv.sb_mb; 2102 sockbuf_pushsync(&so->so_rcv, nextrecord); 2103 } 2104 } 2105 2106 /* 2107 * Process one or more MT_CONTROL mbufs present before any data mbufs 2108 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 2109 * just copy the data; if !MSG_PEEK, we call into the protocol to 2110 * perform externalization (or freeing if controlp == NULL). 2111 */ 2112 if (m != NULL && m->m_type == MT_CONTROL) { 2113 struct mbuf *cm = NULL, *cmn; 2114 struct mbuf **cme = &cm; 2115 #ifdef KERN_TLS 2116 struct cmsghdr *cmsg; 2117 struct tls_get_record tgr; 2118 2119 /* 2120 * For MSG_TLSAPPDATA, check for a non-application data 2121 * record. If found, return ENXIO without removing 2122 * it from the receive queue. This allows a subsequent 2123 * call without MSG_TLSAPPDATA to receive it. 2124 * Note that, for TLS, there should only be a single 2125 * control mbuf with the TLS_GET_RECORD message in it. 2126 */ 2127 if (flags & MSG_TLSAPPDATA) { 2128 cmsg = mtod(m, struct cmsghdr *); 2129 if (cmsg->cmsg_type == TLS_GET_RECORD && 2130 cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) { 2131 memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr)); 2132 /* This will need to change for TLS 1.3. */ 2133 if (tgr.tls_type != TLS_RLTYPE_APP) { 2134 SOCKBUF_UNLOCK(&so->so_rcv); 2135 error = ENXIO; 2136 goto release; 2137 } 2138 } 2139 } 2140 #endif 2141 2142 do { 2143 if (flags & MSG_PEEK) { 2144 if (controlp != NULL) { 2145 *controlp = m_copym(m, 0, m->m_len, 2146 M_NOWAIT); 2147 controlp = &(*controlp)->m_next; 2148 } 2149 m = m->m_next; 2150 } else { 2151 sbfree(&so->so_rcv, m); 2152 so->so_rcv.sb_mb = m->m_next; 2153 m->m_next = NULL; 2154 *cme = m; 2155 cme = &(*cme)->m_next; 2156 m = so->so_rcv.sb_mb; 2157 } 2158 } while (m != NULL && m->m_type == MT_CONTROL); 2159 if ((flags & MSG_PEEK) == 0) 2160 sockbuf_pushsync(&so->so_rcv, nextrecord); 2161 while (cm != NULL) { 2162 cmn = cm->m_next; 2163 cm->m_next = NULL; 2164 if (pr->pr_domain->dom_externalize != NULL) { 2165 SOCKBUF_UNLOCK(&so->so_rcv); 2166 VNET_SO_ASSERT(so); 2167 error = (*pr->pr_domain->dom_externalize) 2168 (cm, controlp, flags); 2169 SOCKBUF_LOCK(&so->so_rcv); 2170 } else if (controlp != NULL) 2171 *controlp = cm; 2172 else 2173 m_freem(cm); 2174 if (controlp != NULL) { 2175 orig_resid = 0; 2176 while (*controlp != NULL) 2177 controlp = &(*controlp)->m_next; 2178 } 2179 cm = cmn; 2180 } 2181 if (m != NULL) 2182 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 2183 else 2184 nextrecord = so->so_rcv.sb_mb; 2185 orig_resid = 0; 2186 } 2187 if (m != NULL) { 2188 if ((flags & MSG_PEEK) == 0) { 2189 KASSERT(m->m_nextpkt == nextrecord, 2190 ("soreceive: post-control, nextrecord !sync")); 2191 if (nextrecord == NULL) { 2192 KASSERT(so->so_rcv.sb_mb == m, 2193 ("soreceive: post-control, sb_mb!=m")); 2194 KASSERT(so->so_rcv.sb_lastrecord == m, 2195 ("soreceive: post-control, lastrecord!=m")); 2196 } 2197 } 2198 type = m->m_type; 2199 if (type == MT_OOBDATA) 2200 flags |= MSG_OOB; 2201 } else { 2202 if ((flags & MSG_PEEK) == 0) { 2203 KASSERT(so->so_rcv.sb_mb == nextrecord, 2204 ("soreceive: sb_mb != nextrecord")); 2205 if (so->so_rcv.sb_mb == NULL) { 2206 KASSERT(so->so_rcv.sb_lastrecord == NULL, 2207 ("soreceive: sb_lastercord != NULL")); 2208 } 2209 } 2210 } 2211 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2212 SBLASTRECORDCHK(&so->so_rcv); 2213 SBLASTMBUFCHK(&so->so_rcv); 2214 2215 /* 2216 * Now continue to read any data mbufs off of the head of the socket 2217 * buffer until the read request is satisfied. Note that 'type' is 2218 * used to store the type of any mbuf reads that have happened so far 2219 * such that soreceive() can stop reading if the type changes, which 2220 * causes soreceive() to return only one of regular data and inline 2221 * out-of-band data in a single socket receive operation. 2222 */ 2223 moff = 0; 2224 offset = 0; 2225 while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0 2226 && error == 0) { 2227 /* 2228 * If the type of mbuf has changed since the last mbuf 2229 * examined ('type'), end the receive operation. 2230 */ 2231 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2232 if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) { 2233 if (type != m->m_type) 2234 break; 2235 } else if (type == MT_OOBDATA) 2236 break; 2237 else 2238 KASSERT(m->m_type == MT_DATA, 2239 ("m->m_type == %d", m->m_type)); 2240 so->so_rcv.sb_state &= ~SBS_RCVATMARK; 2241 len = uio->uio_resid; 2242 if (so->so_oobmark && len > so->so_oobmark - offset) 2243 len = so->so_oobmark - offset; 2244 if (len > m->m_len - moff) 2245 len = m->m_len - moff; 2246 /* 2247 * If mp is set, just pass back the mbufs. Otherwise copy 2248 * them out via the uio, then free. Sockbuf must be 2249 * consistent here (points to current mbuf, it points to next 2250 * record) when we drop priority; we must note any additions 2251 * to the sockbuf when we block interrupts again. 2252 */ 2253 if (mp == NULL) { 2254 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2255 SBLASTRECORDCHK(&so->so_rcv); 2256 SBLASTMBUFCHK(&so->so_rcv); 2257 SOCKBUF_UNLOCK(&so->so_rcv); 2258 if ((m->m_flags & M_EXTPG) != 0) 2259 error = m_unmapped_uiomove(m, moff, uio, 2260 (int)len); 2261 else 2262 error = uiomove(mtod(m, char *) + moff, 2263 (int)len, uio); 2264 SOCKBUF_LOCK(&so->so_rcv); 2265 if (error) { 2266 /* 2267 * The MT_SONAME mbuf has already been removed 2268 * from the record, so it is necessary to 2269 * remove the data mbufs, if any, to preserve 2270 * the invariant in the case of PR_ADDR that 2271 * requires MT_SONAME mbufs at the head of 2272 * each record. 2273 */ 2274 if (pr->pr_flags & PR_ATOMIC && 2275 ((flags & MSG_PEEK) == 0)) 2276 (void)sbdroprecord_locked(&so->so_rcv); 2277 SOCKBUF_UNLOCK(&so->so_rcv); 2278 goto release; 2279 } 2280 } else 2281 uio->uio_resid -= len; 2282 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2283 if (len == m->m_len - moff) { 2284 if (m->m_flags & M_EOR) 2285 flags |= MSG_EOR; 2286 if (flags & MSG_PEEK) { 2287 m = m->m_next; 2288 moff = 0; 2289 } else { 2290 nextrecord = m->m_nextpkt; 2291 sbfree(&so->so_rcv, m); 2292 if (mp != NULL) { 2293 m->m_nextpkt = NULL; 2294 *mp = m; 2295 mp = &m->m_next; 2296 so->so_rcv.sb_mb = m = m->m_next; 2297 *mp = NULL; 2298 } else { 2299 so->so_rcv.sb_mb = m_free(m); 2300 m = so->so_rcv.sb_mb; 2301 } 2302 sockbuf_pushsync(&so->so_rcv, nextrecord); 2303 SBLASTRECORDCHK(&so->so_rcv); 2304 SBLASTMBUFCHK(&so->so_rcv); 2305 } 2306 } else { 2307 if (flags & MSG_PEEK) 2308 moff += len; 2309 else { 2310 if (mp != NULL) { 2311 if (flags & MSG_DONTWAIT) { 2312 *mp = m_copym(m, 0, len, 2313 M_NOWAIT); 2314 if (*mp == NULL) { 2315 /* 2316 * m_copym() couldn't 2317 * allocate an mbuf. 2318 * Adjust uio_resid back 2319 * (it was adjusted 2320 * down by len bytes, 2321 * which we didn't end 2322 * up "copying" over). 2323 */ 2324 uio->uio_resid += len; 2325 break; 2326 } 2327 } else { 2328 SOCKBUF_UNLOCK(&so->so_rcv); 2329 *mp = m_copym(m, 0, len, 2330 M_WAITOK); 2331 SOCKBUF_LOCK(&so->so_rcv); 2332 } 2333 } 2334 sbcut_locked(&so->so_rcv, len); 2335 } 2336 } 2337 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2338 if (so->so_oobmark) { 2339 if ((flags & MSG_PEEK) == 0) { 2340 so->so_oobmark -= len; 2341 if (so->so_oobmark == 0) { 2342 so->so_rcv.sb_state |= SBS_RCVATMARK; 2343 break; 2344 } 2345 } else { 2346 offset += len; 2347 if (offset == so->so_oobmark) 2348 break; 2349 } 2350 } 2351 if (flags & MSG_EOR) 2352 break; 2353 /* 2354 * If the MSG_WAITALL flag is set (for non-atomic socket), we 2355 * must not quit until "uio->uio_resid == 0" or an error 2356 * termination. If a signal/timeout occurs, return with a 2357 * short count but without error. Keep sockbuf locked 2358 * against other readers. 2359 */ 2360 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 2361 !sosendallatonce(so) && nextrecord == NULL) { 2362 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2363 if (so->so_error || so->so_rerror || 2364 so->so_rcv.sb_state & SBS_CANTRCVMORE) 2365 break; 2366 /* 2367 * Notify the protocol that some data has been 2368 * drained before blocking. 2369 */ 2370 if (pr->pr_flags & PR_WANTRCVD) { 2371 SOCKBUF_UNLOCK(&so->so_rcv); 2372 VNET_SO_ASSERT(so); 2373 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 2374 SOCKBUF_LOCK(&so->so_rcv); 2375 } 2376 SBLASTRECORDCHK(&so->so_rcv); 2377 SBLASTMBUFCHK(&so->so_rcv); 2378 /* 2379 * We could receive some data while was notifying 2380 * the protocol. Skip blocking in this case. 2381 */ 2382 if (so->so_rcv.sb_mb == NULL) { 2383 error = sbwait(&so->so_rcv); 2384 if (error) { 2385 SOCKBUF_UNLOCK(&so->so_rcv); 2386 goto release; 2387 } 2388 } 2389 m = so->so_rcv.sb_mb; 2390 if (m != NULL) 2391 nextrecord = m->m_nextpkt; 2392 } 2393 } 2394 2395 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2396 if (m != NULL && pr->pr_flags & PR_ATOMIC) { 2397 flags |= MSG_TRUNC; 2398 if ((flags & MSG_PEEK) == 0) 2399 (void) sbdroprecord_locked(&so->so_rcv); 2400 } 2401 if ((flags & MSG_PEEK) == 0) { 2402 if (m == NULL) { 2403 /* 2404 * First part is an inline SB_EMPTY_FIXUP(). Second 2405 * part makes sure sb_lastrecord is up-to-date if 2406 * there is still data in the socket buffer. 2407 */ 2408 so->so_rcv.sb_mb = nextrecord; 2409 if (so->so_rcv.sb_mb == NULL) { 2410 so->so_rcv.sb_mbtail = NULL; 2411 so->so_rcv.sb_lastrecord = NULL; 2412 } else if (nextrecord->m_nextpkt == NULL) 2413 so->so_rcv.sb_lastrecord = nextrecord; 2414 } 2415 SBLASTRECORDCHK(&so->so_rcv); 2416 SBLASTMBUFCHK(&so->so_rcv); 2417 /* 2418 * If soreceive() is being done from the socket callback, 2419 * then don't need to generate ACK to peer to update window, 2420 * since ACK will be generated on return to TCP. 2421 */ 2422 if (!(flags & MSG_SOCALLBCK) && 2423 (pr->pr_flags & PR_WANTRCVD)) { 2424 SOCKBUF_UNLOCK(&so->so_rcv); 2425 VNET_SO_ASSERT(so); 2426 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 2427 SOCKBUF_LOCK(&so->so_rcv); 2428 } 2429 } 2430 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2431 if (orig_resid == uio->uio_resid && orig_resid && 2432 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { 2433 SOCKBUF_UNLOCK(&so->so_rcv); 2434 goto restart; 2435 } 2436 SOCKBUF_UNLOCK(&so->so_rcv); 2437 2438 if (flagsp != NULL) 2439 *flagsp |= flags; 2440 release: 2441 SOCK_IO_RECV_UNLOCK(so); 2442 return (error); 2443 } 2444 2445 /* 2446 * Optimized version of soreceive() for stream (TCP) sockets. 2447 */ 2448 int 2449 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio, 2450 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2451 { 2452 int len = 0, error = 0, flags, oresid; 2453 struct sockbuf *sb; 2454 struct mbuf *m, *n = NULL; 2455 2456 /* We only do stream sockets. */ 2457 if (so->so_type != SOCK_STREAM) 2458 return (EINVAL); 2459 if (psa != NULL) 2460 *psa = NULL; 2461 if (flagsp != NULL) 2462 flags = *flagsp &~ MSG_EOR; 2463 else 2464 flags = 0; 2465 if (controlp != NULL) 2466 *controlp = NULL; 2467 if (flags & MSG_OOB) 2468 return (soreceive_rcvoob(so, uio, flags)); 2469 if (mp0 != NULL) 2470 *mp0 = NULL; 2471 2472 sb = &so->so_rcv; 2473 2474 #ifdef KERN_TLS 2475 /* 2476 * KTLS store TLS records as records with a control message to 2477 * describe the framing. 2478 * 2479 * We check once here before acquiring locks to optimize the 2480 * common case. 2481 */ 2482 if (sb->sb_tls_info != NULL) 2483 return (soreceive_generic(so, psa, uio, mp0, controlp, 2484 flagsp)); 2485 #endif 2486 2487 /* Prevent other readers from entering the socket. */ 2488 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags)); 2489 if (error) 2490 return (error); 2491 SOCKBUF_LOCK(sb); 2492 2493 #ifdef KERN_TLS 2494 if (sb->sb_tls_info != NULL) { 2495 SOCKBUF_UNLOCK(sb); 2496 SOCK_IO_RECV_UNLOCK(so); 2497 return (soreceive_generic(so, psa, uio, mp0, controlp, 2498 flagsp)); 2499 } 2500 #endif 2501 2502 /* Easy one, no space to copyout anything. */ 2503 if (uio->uio_resid == 0) { 2504 error = EINVAL; 2505 goto out; 2506 } 2507 oresid = uio->uio_resid; 2508 2509 /* We will never ever get anything unless we are or were connected. */ 2510 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 2511 error = ENOTCONN; 2512 goto out; 2513 } 2514 2515 restart: 2516 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2517 2518 /* Abort if socket has reported problems. */ 2519 if (so->so_error) { 2520 if (sbavail(sb) > 0) 2521 goto deliver; 2522 if (oresid > uio->uio_resid) 2523 goto out; 2524 error = so->so_error; 2525 if (!(flags & MSG_PEEK)) 2526 so->so_error = 0; 2527 goto out; 2528 } 2529 2530 /* Door is closed. Deliver what is left, if any. */ 2531 if (sb->sb_state & SBS_CANTRCVMORE) { 2532 if (sbavail(sb) > 0) 2533 goto deliver; 2534 else 2535 goto out; 2536 } 2537 2538 /* Socket buffer is empty and we shall not block. */ 2539 if (sbavail(sb) == 0 && 2540 ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) { 2541 error = EAGAIN; 2542 goto out; 2543 } 2544 2545 /* Socket buffer got some data that we shall deliver now. */ 2546 if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) && 2547 ((so->so_state & SS_NBIO) || 2548 (flags & (MSG_DONTWAIT|MSG_NBIO)) || 2549 sbavail(sb) >= sb->sb_lowat || 2550 sbavail(sb) >= uio->uio_resid || 2551 sbavail(sb) >= sb->sb_hiwat) ) { 2552 goto deliver; 2553 } 2554 2555 /* On MSG_WAITALL we must wait until all data or error arrives. */ 2556 if ((flags & MSG_WAITALL) && 2557 (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat)) 2558 goto deliver; 2559 2560 /* 2561 * Wait and block until (more) data comes in. 2562 * NB: Drops the sockbuf lock during wait. 2563 */ 2564 error = sbwait(sb); 2565 if (error) 2566 goto out; 2567 goto restart; 2568 2569 deliver: 2570 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2571 KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__)); 2572 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__)); 2573 2574 /* Statistics. */ 2575 if (uio->uio_td) 2576 uio->uio_td->td_ru.ru_msgrcv++; 2577 2578 /* Fill uio until full or current end of socket buffer is reached. */ 2579 len = min(uio->uio_resid, sbavail(sb)); 2580 if (mp0 != NULL) { 2581 /* Dequeue as many mbufs as possible. */ 2582 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) { 2583 if (*mp0 == NULL) 2584 *mp0 = sb->sb_mb; 2585 else 2586 m_cat(*mp0, sb->sb_mb); 2587 for (m = sb->sb_mb; 2588 m != NULL && m->m_len <= len; 2589 m = m->m_next) { 2590 KASSERT(!(m->m_flags & M_NOTAVAIL), 2591 ("%s: m %p not available", __func__, m)); 2592 len -= m->m_len; 2593 uio->uio_resid -= m->m_len; 2594 sbfree(sb, m); 2595 n = m; 2596 } 2597 n->m_next = NULL; 2598 sb->sb_mb = m; 2599 sb->sb_lastrecord = sb->sb_mb; 2600 if (sb->sb_mb == NULL) 2601 SB_EMPTY_FIXUP(sb); 2602 } 2603 /* Copy the remainder. */ 2604 if (len > 0) { 2605 KASSERT(sb->sb_mb != NULL, 2606 ("%s: len > 0 && sb->sb_mb empty", __func__)); 2607 2608 m = m_copym(sb->sb_mb, 0, len, M_NOWAIT); 2609 if (m == NULL) 2610 len = 0; /* Don't flush data from sockbuf. */ 2611 else 2612 uio->uio_resid -= len; 2613 if (*mp0 != NULL) 2614 m_cat(*mp0, m); 2615 else 2616 *mp0 = m; 2617 if (*mp0 == NULL) { 2618 error = ENOBUFS; 2619 goto out; 2620 } 2621 } 2622 } else { 2623 /* NB: Must unlock socket buffer as uiomove may sleep. */ 2624 SOCKBUF_UNLOCK(sb); 2625 error = m_mbuftouio(uio, sb->sb_mb, len); 2626 SOCKBUF_LOCK(sb); 2627 if (error) 2628 goto out; 2629 } 2630 SBLASTRECORDCHK(sb); 2631 SBLASTMBUFCHK(sb); 2632 2633 /* 2634 * Remove the delivered data from the socket buffer unless we 2635 * were only peeking. 2636 */ 2637 if (!(flags & MSG_PEEK)) { 2638 if (len > 0) 2639 sbdrop_locked(sb, len); 2640 2641 /* Notify protocol that we drained some data. */ 2642 if ((so->so_proto->pr_flags & PR_WANTRCVD) && 2643 (((flags & MSG_WAITALL) && uio->uio_resid > 0) || 2644 !(flags & MSG_SOCALLBCK))) { 2645 SOCKBUF_UNLOCK(sb); 2646 VNET_SO_ASSERT(so); 2647 (*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags); 2648 SOCKBUF_LOCK(sb); 2649 } 2650 } 2651 2652 /* 2653 * For MSG_WAITALL we may have to loop again and wait for 2654 * more data to come in. 2655 */ 2656 if ((flags & MSG_WAITALL) && uio->uio_resid > 0) 2657 goto restart; 2658 out: 2659 SBLASTRECORDCHK(sb); 2660 SBLASTMBUFCHK(sb); 2661 SOCKBUF_UNLOCK(sb); 2662 SOCK_IO_RECV_UNLOCK(so); 2663 return (error); 2664 } 2665 2666 /* 2667 * Optimized version of soreceive() for simple datagram cases from userspace. 2668 * Unlike in the stream case, we're able to drop a datagram if copyout() 2669 * fails, and because we handle datagrams atomically, we don't need to use a 2670 * sleep lock to prevent I/O interlacing. 2671 */ 2672 int 2673 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio, 2674 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2675 { 2676 struct mbuf *m, *m2; 2677 int flags, error; 2678 ssize_t len; 2679 struct protosw *pr = so->so_proto; 2680 struct mbuf *nextrecord; 2681 2682 if (psa != NULL) 2683 *psa = NULL; 2684 if (controlp != NULL) 2685 *controlp = NULL; 2686 if (flagsp != NULL) 2687 flags = *flagsp &~ MSG_EOR; 2688 else 2689 flags = 0; 2690 2691 /* 2692 * For any complicated cases, fall back to the full 2693 * soreceive_generic(). 2694 */ 2695 if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB)) 2696 return (soreceive_generic(so, psa, uio, mp0, controlp, 2697 flagsp)); 2698 2699 /* 2700 * Enforce restrictions on use. 2701 */ 2702 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0, 2703 ("soreceive_dgram: wantrcvd")); 2704 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic")); 2705 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0, 2706 ("soreceive_dgram: SBS_RCVATMARK")); 2707 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0, 2708 ("soreceive_dgram: P_CONNREQUIRED")); 2709 2710 /* 2711 * Loop blocking while waiting for a datagram. 2712 */ 2713 SOCKBUF_LOCK(&so->so_rcv); 2714 while ((m = so->so_rcv.sb_mb) == NULL) { 2715 KASSERT(sbavail(&so->so_rcv) == 0, 2716 ("soreceive_dgram: sb_mb NULL but sbavail %u", 2717 sbavail(&so->so_rcv))); 2718 if (so->so_error) { 2719 error = so->so_error; 2720 so->so_error = 0; 2721 SOCKBUF_UNLOCK(&so->so_rcv); 2722 return (error); 2723 } 2724 if (so->so_rcv.sb_state & SBS_CANTRCVMORE || 2725 uio->uio_resid == 0) { 2726 SOCKBUF_UNLOCK(&so->so_rcv); 2727 return (0); 2728 } 2729 if ((so->so_state & SS_NBIO) || 2730 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2731 SOCKBUF_UNLOCK(&so->so_rcv); 2732 return (EWOULDBLOCK); 2733 } 2734 SBLASTRECORDCHK(&so->so_rcv); 2735 SBLASTMBUFCHK(&so->so_rcv); 2736 error = sbwait(&so->so_rcv); 2737 if (error) { 2738 SOCKBUF_UNLOCK(&so->so_rcv); 2739 return (error); 2740 } 2741 } 2742 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2743 2744 if (uio->uio_td) 2745 uio->uio_td->td_ru.ru_msgrcv++; 2746 SBLASTRECORDCHK(&so->so_rcv); 2747 SBLASTMBUFCHK(&so->so_rcv); 2748 nextrecord = m->m_nextpkt; 2749 if (nextrecord == NULL) { 2750 KASSERT(so->so_rcv.sb_lastrecord == m, 2751 ("soreceive_dgram: lastrecord != m")); 2752 } 2753 2754 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord, 2755 ("soreceive_dgram: m_nextpkt != nextrecord")); 2756 2757 /* 2758 * Pull 'm' and its chain off the front of the packet queue. 2759 */ 2760 so->so_rcv.sb_mb = NULL; 2761 sockbuf_pushsync(&so->so_rcv, nextrecord); 2762 2763 /* 2764 * Walk 'm's chain and free that many bytes from the socket buffer. 2765 */ 2766 for (m2 = m; m2 != NULL; m2 = m2->m_next) 2767 sbfree(&so->so_rcv, m2); 2768 2769 /* 2770 * Do a few last checks before we let go of the lock. 2771 */ 2772 SBLASTRECORDCHK(&so->so_rcv); 2773 SBLASTMBUFCHK(&so->so_rcv); 2774 SOCKBUF_UNLOCK(&so->so_rcv); 2775 2776 if (pr->pr_flags & PR_ADDR) { 2777 KASSERT(m->m_type == MT_SONAME, 2778 ("m->m_type == %d", m->m_type)); 2779 if (psa != NULL) 2780 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2781 M_NOWAIT); 2782 m = m_free(m); 2783 } 2784 if (m == NULL) { 2785 /* XXXRW: Can this happen? */ 2786 return (0); 2787 } 2788 2789 /* 2790 * Packet to copyout() is now in 'm' and it is disconnected from the 2791 * queue. 2792 * 2793 * Process one or more MT_CONTROL mbufs present before any data mbufs 2794 * in the first mbuf chain on the socket buffer. We call into the 2795 * protocol to perform externalization (or freeing if controlp == 2796 * NULL). In some cases there can be only MT_CONTROL mbufs without 2797 * MT_DATA mbufs. 2798 */ 2799 if (m->m_type == MT_CONTROL) { 2800 struct mbuf *cm = NULL, *cmn; 2801 struct mbuf **cme = &cm; 2802 2803 do { 2804 m2 = m->m_next; 2805 m->m_next = NULL; 2806 *cme = m; 2807 cme = &(*cme)->m_next; 2808 m = m2; 2809 } while (m != NULL && m->m_type == MT_CONTROL); 2810 while (cm != NULL) { 2811 cmn = cm->m_next; 2812 cm->m_next = NULL; 2813 if (pr->pr_domain->dom_externalize != NULL) { 2814 error = (*pr->pr_domain->dom_externalize) 2815 (cm, controlp, flags); 2816 } else if (controlp != NULL) 2817 *controlp = cm; 2818 else 2819 m_freem(cm); 2820 if (controlp != NULL) { 2821 while (*controlp != NULL) 2822 controlp = &(*controlp)->m_next; 2823 } 2824 cm = cmn; 2825 } 2826 } 2827 KASSERT(m == NULL || m->m_type == MT_DATA, 2828 ("soreceive_dgram: !data")); 2829 while (m != NULL && uio->uio_resid > 0) { 2830 len = uio->uio_resid; 2831 if (len > m->m_len) 2832 len = m->m_len; 2833 error = uiomove(mtod(m, char *), (int)len, uio); 2834 if (error) { 2835 m_freem(m); 2836 return (error); 2837 } 2838 if (len == m->m_len) 2839 m = m_free(m); 2840 else { 2841 m->m_data += len; 2842 m->m_len -= len; 2843 } 2844 } 2845 if (m != NULL) { 2846 flags |= MSG_TRUNC; 2847 m_freem(m); 2848 } 2849 if (flagsp != NULL) 2850 *flagsp |= flags; 2851 return (0); 2852 } 2853 2854 int 2855 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, 2856 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2857 { 2858 int error; 2859 2860 CURVNET_SET(so->so_vnet); 2861 error = (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, 2862 mp0, controlp, flagsp)); 2863 CURVNET_RESTORE(); 2864 return (error); 2865 } 2866 2867 int 2868 soshutdown(struct socket *so, int how) 2869 { 2870 struct protosw *pr; 2871 int error, soerror_enotconn; 2872 2873 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 2874 return (EINVAL); 2875 2876 soerror_enotconn = 0; 2877 SOCK_LOCK(so); 2878 if ((so->so_state & 2879 (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) { 2880 /* 2881 * POSIX mandates us to return ENOTCONN when shutdown(2) is 2882 * invoked on a datagram sockets, however historically we would 2883 * actually tear socket down. This is known to be leveraged by 2884 * some applications to unblock process waiting in recvXXX(2) 2885 * by other process that it shares that socket with. Try to meet 2886 * both backward-compatibility and POSIX requirements by forcing 2887 * ENOTCONN but still asking protocol to perform pru_shutdown(). 2888 */ 2889 if (so->so_type != SOCK_DGRAM && !SOLISTENING(so)) { 2890 SOCK_UNLOCK(so); 2891 return (ENOTCONN); 2892 } 2893 soerror_enotconn = 1; 2894 } 2895 2896 if (SOLISTENING(so)) { 2897 if (how != SHUT_WR) { 2898 so->so_error = ECONNABORTED; 2899 solisten_wakeup(so); /* unlocks so */ 2900 } else { 2901 SOCK_UNLOCK(so); 2902 } 2903 goto done; 2904 } 2905 SOCK_UNLOCK(so); 2906 2907 CURVNET_SET(so->so_vnet); 2908 pr = so->so_proto; 2909 if (pr->pr_usrreqs->pru_flush != NULL) 2910 (*pr->pr_usrreqs->pru_flush)(so, how); 2911 if (how != SHUT_WR) 2912 sorflush(so); 2913 if (how != SHUT_RD) { 2914 error = (*pr->pr_usrreqs->pru_shutdown)(so); 2915 wakeup(&so->so_timeo); 2916 CURVNET_RESTORE(); 2917 return ((error == 0 && soerror_enotconn) ? ENOTCONN : error); 2918 } 2919 wakeup(&so->so_timeo); 2920 CURVNET_RESTORE(); 2921 2922 done: 2923 return (soerror_enotconn ? ENOTCONN : 0); 2924 } 2925 2926 void 2927 sorflush(struct socket *so) 2928 { 2929 struct socket aso; 2930 struct protosw *pr; 2931 int error; 2932 2933 VNET_SO_ASSERT(so); 2934 2935 /* 2936 * In order to avoid calling dom_dispose with the socket buffer mutex 2937 * held, we make a partial copy of the socket buffer and clear the 2938 * original. The new socket buffer copy won't have initialized locks so 2939 * we can only call routines that won't use or assert those locks. 2940 * Ideally calling socantrcvmore() would prevent data from being added 2941 * to the buffer, but currently it merely prevents buffered data from 2942 * being read by userspace. We make this effort to free buffered data 2943 * nonetheless. 2944 * 2945 * Dislodge threads currently blocked in receive and wait to acquire 2946 * a lock against other simultaneous readers before clearing the 2947 * socket buffer. Don't let our acquire be interrupted by a signal 2948 * despite any existing socket disposition on interruptable waiting. 2949 */ 2950 socantrcvmore(so); 2951 2952 error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR); 2953 if (error != 0) { 2954 KASSERT(SOLISTENING(so), 2955 ("%s: soiolock(%p) failed", __func__, so)); 2956 return; 2957 } 2958 2959 SOCK_RECVBUF_LOCK(so); 2960 bzero(&aso, sizeof(aso)); 2961 aso.so_pcb = so->so_pcb; 2962 bcopy(&so->so_rcv.sb_startzero, &aso.so_rcv.sb_startzero, 2963 offsetof(struct sockbuf, sb_endzero) - 2964 offsetof(struct sockbuf, sb_startzero)); 2965 bzero(&so->so_rcv.sb_startzero, 2966 offsetof(struct sockbuf, sb_endzero) - 2967 offsetof(struct sockbuf, sb_startzero)); 2968 SOCK_RECVBUF_UNLOCK(so); 2969 SOCK_IO_RECV_UNLOCK(so); 2970 2971 /* 2972 * Dispose of special rights and flush the copied socket. Don't call 2973 * any unsafe routines (that rely on locks being initialized) on aso. 2974 */ 2975 pr = so->so_proto; 2976 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 2977 (*pr->pr_domain->dom_dispose)(&aso); 2978 sbrelease_internal(&aso.so_rcv, so); 2979 } 2980 2981 /* 2982 * Wrapper for Socket established helper hook. 2983 * Parameters: socket, context of the hook point, hook id. 2984 */ 2985 static int inline 2986 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id) 2987 { 2988 struct socket_hhook_data hhook_data = { 2989 .so = so, 2990 .hctx = hctx, 2991 .m = NULL, 2992 .status = 0 2993 }; 2994 2995 CURVNET_SET(so->so_vnet); 2996 HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd); 2997 CURVNET_RESTORE(); 2998 2999 /* Ugly but needed, since hhooks return void for now */ 3000 return (hhook_data.status); 3001 } 3002 3003 /* 3004 * Perhaps this routine, and sooptcopyout(), below, ought to come in an 3005 * additional variant to handle the case where the option value needs to be 3006 * some kind of integer, but not a specific size. In addition to their use 3007 * here, these functions are also called by the protocol-level pr_ctloutput() 3008 * routines. 3009 */ 3010 int 3011 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen) 3012 { 3013 size_t valsize; 3014 3015 /* 3016 * If the user gives us more than we wanted, we ignore it, but if we 3017 * don't get the minimum length the caller wants, we return EINVAL. 3018 * On success, sopt->sopt_valsize is set to however much we actually 3019 * retrieved. 3020 */ 3021 if ((valsize = sopt->sopt_valsize) < minlen) 3022 return EINVAL; 3023 if (valsize > len) 3024 sopt->sopt_valsize = valsize = len; 3025 3026 if (sopt->sopt_td != NULL) 3027 return (copyin(sopt->sopt_val, buf, valsize)); 3028 3029 bcopy(sopt->sopt_val, buf, valsize); 3030 return (0); 3031 } 3032 3033 /* 3034 * Kernel version of setsockopt(2). 3035 * 3036 * XXX: optlen is size_t, not socklen_t 3037 */ 3038 int 3039 so_setsockopt(struct socket *so, int level, int optname, void *optval, 3040 size_t optlen) 3041 { 3042 struct sockopt sopt; 3043 3044 sopt.sopt_level = level; 3045 sopt.sopt_name = optname; 3046 sopt.sopt_dir = SOPT_SET; 3047 sopt.sopt_val = optval; 3048 sopt.sopt_valsize = optlen; 3049 sopt.sopt_td = NULL; 3050 return (sosetopt(so, &sopt)); 3051 } 3052 3053 int 3054 sosetopt(struct socket *so, struct sockopt *sopt) 3055 { 3056 int error, optval; 3057 struct linger l; 3058 struct timeval tv; 3059 sbintime_t val; 3060 uint32_t val32; 3061 #ifdef MAC 3062 struct mac extmac; 3063 #endif 3064 3065 CURVNET_SET(so->so_vnet); 3066 error = 0; 3067 if (sopt->sopt_level != SOL_SOCKET) { 3068 if (so->so_proto->pr_ctloutput != NULL) 3069 error = (*so->so_proto->pr_ctloutput)(so, sopt); 3070 else 3071 error = ENOPROTOOPT; 3072 } else { 3073 switch (sopt->sopt_name) { 3074 case SO_ACCEPTFILTER: 3075 error = accept_filt_setopt(so, sopt); 3076 if (error) 3077 goto bad; 3078 break; 3079 3080 case SO_LINGER: 3081 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 3082 if (error) 3083 goto bad; 3084 if (l.l_linger < 0 || 3085 l.l_linger > USHRT_MAX || 3086 l.l_linger > (INT_MAX / hz)) { 3087 error = EDOM; 3088 goto bad; 3089 } 3090 SOCK_LOCK(so); 3091 so->so_linger = l.l_linger; 3092 if (l.l_onoff) 3093 so->so_options |= SO_LINGER; 3094 else 3095 so->so_options &= ~SO_LINGER; 3096 SOCK_UNLOCK(so); 3097 break; 3098 3099 case SO_DEBUG: 3100 case SO_KEEPALIVE: 3101 case SO_DONTROUTE: 3102 case SO_USELOOPBACK: 3103 case SO_BROADCAST: 3104 case SO_REUSEADDR: 3105 case SO_REUSEPORT: 3106 case SO_REUSEPORT_LB: 3107 case SO_OOBINLINE: 3108 case SO_TIMESTAMP: 3109 case SO_BINTIME: 3110 case SO_NOSIGPIPE: 3111 case SO_NO_DDP: 3112 case SO_NO_OFFLOAD: 3113 case SO_RERROR: 3114 error = sooptcopyin(sopt, &optval, sizeof optval, 3115 sizeof optval); 3116 if (error) 3117 goto bad; 3118 SOCK_LOCK(so); 3119 if (optval) 3120 so->so_options |= sopt->sopt_name; 3121 else 3122 so->so_options &= ~sopt->sopt_name; 3123 SOCK_UNLOCK(so); 3124 break; 3125 3126 case SO_SETFIB: 3127 error = sooptcopyin(sopt, &optval, sizeof optval, 3128 sizeof optval); 3129 if (error) 3130 goto bad; 3131 3132 if (optval < 0 || optval >= rt_numfibs) { 3133 error = EINVAL; 3134 goto bad; 3135 } 3136 if (((so->so_proto->pr_domain->dom_family == PF_INET) || 3137 (so->so_proto->pr_domain->dom_family == PF_INET6) || 3138 (so->so_proto->pr_domain->dom_family == PF_ROUTE))) 3139 so->so_fibnum = optval; 3140 else 3141 so->so_fibnum = 0; 3142 break; 3143 3144 case SO_USER_COOKIE: 3145 error = sooptcopyin(sopt, &val32, sizeof val32, 3146 sizeof val32); 3147 if (error) 3148 goto bad; 3149 so->so_user_cookie = val32; 3150 break; 3151 3152 case SO_SNDBUF: 3153 case SO_RCVBUF: 3154 case SO_SNDLOWAT: 3155 case SO_RCVLOWAT: 3156 error = sooptcopyin(sopt, &optval, sizeof optval, 3157 sizeof optval); 3158 if (error) 3159 goto bad; 3160 3161 /* 3162 * Values < 1 make no sense for any of these options, 3163 * so disallow them. 3164 */ 3165 if (optval < 1) { 3166 error = EINVAL; 3167 goto bad; 3168 } 3169 3170 error = sbsetopt(so, sopt->sopt_name, optval); 3171 break; 3172 3173 case SO_SNDTIMEO: 3174 case SO_RCVTIMEO: 3175 #ifdef COMPAT_FREEBSD32 3176 if (SV_CURPROC_FLAG(SV_ILP32)) { 3177 struct timeval32 tv32; 3178 3179 error = sooptcopyin(sopt, &tv32, sizeof tv32, 3180 sizeof tv32); 3181 CP(tv32, tv, tv_sec); 3182 CP(tv32, tv, tv_usec); 3183 } else 3184 #endif 3185 error = sooptcopyin(sopt, &tv, sizeof tv, 3186 sizeof tv); 3187 if (error) 3188 goto bad; 3189 if (tv.tv_sec < 0 || tv.tv_usec < 0 || 3190 tv.tv_usec >= 1000000) { 3191 error = EDOM; 3192 goto bad; 3193 } 3194 if (tv.tv_sec > INT32_MAX) 3195 val = SBT_MAX; 3196 else 3197 val = tvtosbt(tv); 3198 switch (sopt->sopt_name) { 3199 case SO_SNDTIMEO: 3200 so->so_snd.sb_timeo = val; 3201 break; 3202 case SO_RCVTIMEO: 3203 so->so_rcv.sb_timeo = val; 3204 break; 3205 } 3206 break; 3207 3208 case SO_LABEL: 3209 #ifdef MAC 3210 error = sooptcopyin(sopt, &extmac, sizeof extmac, 3211 sizeof extmac); 3212 if (error) 3213 goto bad; 3214 error = mac_setsockopt_label(sopt->sopt_td->td_ucred, 3215 so, &extmac); 3216 #else 3217 error = EOPNOTSUPP; 3218 #endif 3219 break; 3220 3221 case SO_TS_CLOCK: 3222 error = sooptcopyin(sopt, &optval, sizeof optval, 3223 sizeof optval); 3224 if (error) 3225 goto bad; 3226 if (optval < 0 || optval > SO_TS_CLOCK_MAX) { 3227 error = EINVAL; 3228 goto bad; 3229 } 3230 so->so_ts_clock = optval; 3231 break; 3232 3233 case SO_MAX_PACING_RATE: 3234 error = sooptcopyin(sopt, &val32, sizeof(val32), 3235 sizeof(val32)); 3236 if (error) 3237 goto bad; 3238 so->so_max_pacing_rate = val32; 3239 break; 3240 3241 default: 3242 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 3243 error = hhook_run_socket(so, sopt, 3244 HHOOK_SOCKET_OPT); 3245 else 3246 error = ENOPROTOOPT; 3247 break; 3248 } 3249 if (error == 0 && so->so_proto->pr_ctloutput != NULL) 3250 (void)(*so->so_proto->pr_ctloutput)(so, sopt); 3251 } 3252 bad: 3253 CURVNET_RESTORE(); 3254 return (error); 3255 } 3256 3257 /* 3258 * Helper routine for getsockopt. 3259 */ 3260 int 3261 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 3262 { 3263 int error; 3264 size_t valsize; 3265 3266 error = 0; 3267 3268 /* 3269 * Documented get behavior is that we always return a value, possibly 3270 * truncated to fit in the user's buffer. Traditional behavior is 3271 * that we always tell the user precisely how much we copied, rather 3272 * than something useful like the total amount we had available for 3273 * her. Note that this interface is not idempotent; the entire 3274 * answer must be generated ahead of time. 3275 */ 3276 valsize = min(len, sopt->sopt_valsize); 3277 sopt->sopt_valsize = valsize; 3278 if (sopt->sopt_val != NULL) { 3279 if (sopt->sopt_td != NULL) 3280 error = copyout(buf, sopt->sopt_val, valsize); 3281 else 3282 bcopy(buf, sopt->sopt_val, valsize); 3283 } 3284 return (error); 3285 } 3286 3287 int 3288 sogetopt(struct socket *so, struct sockopt *sopt) 3289 { 3290 int error, optval; 3291 struct linger l; 3292 struct timeval tv; 3293 #ifdef MAC 3294 struct mac extmac; 3295 #endif 3296 3297 CURVNET_SET(so->so_vnet); 3298 error = 0; 3299 if (sopt->sopt_level != SOL_SOCKET) { 3300 if (so->so_proto->pr_ctloutput != NULL) 3301 error = (*so->so_proto->pr_ctloutput)(so, sopt); 3302 else 3303 error = ENOPROTOOPT; 3304 CURVNET_RESTORE(); 3305 return (error); 3306 } else { 3307 switch (sopt->sopt_name) { 3308 case SO_ACCEPTFILTER: 3309 error = accept_filt_getopt(so, sopt); 3310 break; 3311 3312 case SO_LINGER: 3313 SOCK_LOCK(so); 3314 l.l_onoff = so->so_options & SO_LINGER; 3315 l.l_linger = so->so_linger; 3316 SOCK_UNLOCK(so); 3317 error = sooptcopyout(sopt, &l, sizeof l); 3318 break; 3319 3320 case SO_USELOOPBACK: 3321 case SO_DONTROUTE: 3322 case SO_DEBUG: 3323 case SO_KEEPALIVE: 3324 case SO_REUSEADDR: 3325 case SO_REUSEPORT: 3326 case SO_REUSEPORT_LB: 3327 case SO_BROADCAST: 3328 case SO_OOBINLINE: 3329 case SO_ACCEPTCONN: 3330 case SO_TIMESTAMP: 3331 case SO_BINTIME: 3332 case SO_NOSIGPIPE: 3333 case SO_NO_DDP: 3334 case SO_NO_OFFLOAD: 3335 case SO_RERROR: 3336 optval = so->so_options & sopt->sopt_name; 3337 integer: 3338 error = sooptcopyout(sopt, &optval, sizeof optval); 3339 break; 3340 3341 case SO_DOMAIN: 3342 optval = so->so_proto->pr_domain->dom_family; 3343 goto integer; 3344 3345 case SO_TYPE: 3346 optval = so->so_type; 3347 goto integer; 3348 3349 case SO_PROTOCOL: 3350 optval = so->so_proto->pr_protocol; 3351 goto integer; 3352 3353 case SO_ERROR: 3354 SOCK_LOCK(so); 3355 if (so->so_error) { 3356 optval = so->so_error; 3357 so->so_error = 0; 3358 } else { 3359 optval = so->so_rerror; 3360 so->so_rerror = 0; 3361 } 3362 SOCK_UNLOCK(so); 3363 goto integer; 3364 3365 case SO_SNDBUF: 3366 optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat : 3367 so->so_snd.sb_hiwat; 3368 goto integer; 3369 3370 case SO_RCVBUF: 3371 optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat : 3372 so->so_rcv.sb_hiwat; 3373 goto integer; 3374 3375 case SO_SNDLOWAT: 3376 optval = SOLISTENING(so) ? so->sol_sbsnd_lowat : 3377 so->so_snd.sb_lowat; 3378 goto integer; 3379 3380 case SO_RCVLOWAT: 3381 optval = SOLISTENING(so) ? so->sol_sbrcv_lowat : 3382 so->so_rcv.sb_lowat; 3383 goto integer; 3384 3385 case SO_SNDTIMEO: 3386 case SO_RCVTIMEO: 3387 tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ? 3388 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 3389 #ifdef COMPAT_FREEBSD32 3390 if (SV_CURPROC_FLAG(SV_ILP32)) { 3391 struct timeval32 tv32; 3392 3393 CP(tv, tv32, tv_sec); 3394 CP(tv, tv32, tv_usec); 3395 error = sooptcopyout(sopt, &tv32, sizeof tv32); 3396 } else 3397 #endif 3398 error = sooptcopyout(sopt, &tv, sizeof tv); 3399 break; 3400 3401 case SO_LABEL: 3402 #ifdef MAC 3403 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 3404 sizeof(extmac)); 3405 if (error) 3406 goto bad; 3407 error = mac_getsockopt_label(sopt->sopt_td->td_ucred, 3408 so, &extmac); 3409 if (error) 3410 goto bad; 3411 error = sooptcopyout(sopt, &extmac, sizeof extmac); 3412 #else 3413 error = EOPNOTSUPP; 3414 #endif 3415 break; 3416 3417 case SO_PEERLABEL: 3418 #ifdef MAC 3419 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 3420 sizeof(extmac)); 3421 if (error) 3422 goto bad; 3423 error = mac_getsockopt_peerlabel( 3424 sopt->sopt_td->td_ucred, so, &extmac); 3425 if (error) 3426 goto bad; 3427 error = sooptcopyout(sopt, &extmac, sizeof extmac); 3428 #else 3429 error = EOPNOTSUPP; 3430 #endif 3431 break; 3432 3433 case SO_LISTENQLIMIT: 3434 optval = SOLISTENING(so) ? so->sol_qlimit : 0; 3435 goto integer; 3436 3437 case SO_LISTENQLEN: 3438 optval = SOLISTENING(so) ? so->sol_qlen : 0; 3439 goto integer; 3440 3441 case SO_LISTENINCQLEN: 3442 optval = SOLISTENING(so) ? so->sol_incqlen : 0; 3443 goto integer; 3444 3445 case SO_TS_CLOCK: 3446 optval = so->so_ts_clock; 3447 goto integer; 3448 3449 case SO_MAX_PACING_RATE: 3450 optval = so->so_max_pacing_rate; 3451 goto integer; 3452 3453 default: 3454 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 3455 error = hhook_run_socket(so, sopt, 3456 HHOOK_SOCKET_OPT); 3457 else 3458 error = ENOPROTOOPT; 3459 break; 3460 } 3461 } 3462 #ifdef MAC 3463 bad: 3464 #endif 3465 CURVNET_RESTORE(); 3466 return (error); 3467 } 3468 3469 int 3470 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 3471 { 3472 struct mbuf *m, *m_prev; 3473 int sopt_size = sopt->sopt_valsize; 3474 3475 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 3476 if (m == NULL) 3477 return ENOBUFS; 3478 if (sopt_size > MLEN) { 3479 MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT); 3480 if ((m->m_flags & M_EXT) == 0) { 3481 m_free(m); 3482 return ENOBUFS; 3483 } 3484 m->m_len = min(MCLBYTES, sopt_size); 3485 } else { 3486 m->m_len = min(MLEN, sopt_size); 3487 } 3488 sopt_size -= m->m_len; 3489 *mp = m; 3490 m_prev = m; 3491 3492 while (sopt_size) { 3493 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 3494 if (m == NULL) { 3495 m_freem(*mp); 3496 return ENOBUFS; 3497 } 3498 if (sopt_size > MLEN) { 3499 MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK : 3500 M_NOWAIT); 3501 if ((m->m_flags & M_EXT) == 0) { 3502 m_freem(m); 3503 m_freem(*mp); 3504 return ENOBUFS; 3505 } 3506 m->m_len = min(MCLBYTES, sopt_size); 3507 } else { 3508 m->m_len = min(MLEN, sopt_size); 3509 } 3510 sopt_size -= m->m_len; 3511 m_prev->m_next = m; 3512 m_prev = m; 3513 } 3514 return (0); 3515 } 3516 3517 int 3518 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 3519 { 3520 struct mbuf *m0 = m; 3521 3522 if (sopt->sopt_val == NULL) 3523 return (0); 3524 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 3525 if (sopt->sopt_td != NULL) { 3526 int error; 3527 3528 error = copyin(sopt->sopt_val, mtod(m, char *), 3529 m->m_len); 3530 if (error != 0) { 3531 m_freem(m0); 3532 return(error); 3533 } 3534 } else 3535 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 3536 sopt->sopt_valsize -= m->m_len; 3537 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 3538 m = m->m_next; 3539 } 3540 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 3541 panic("ip6_sooptmcopyin"); 3542 return (0); 3543 } 3544 3545 int 3546 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 3547 { 3548 struct mbuf *m0 = m; 3549 size_t valsize = 0; 3550 3551 if (sopt->sopt_val == NULL) 3552 return (0); 3553 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 3554 if (sopt->sopt_td != NULL) { 3555 int error; 3556 3557 error = copyout(mtod(m, char *), sopt->sopt_val, 3558 m->m_len); 3559 if (error != 0) { 3560 m_freem(m0); 3561 return(error); 3562 } 3563 } else 3564 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 3565 sopt->sopt_valsize -= m->m_len; 3566 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 3567 valsize += m->m_len; 3568 m = m->m_next; 3569 } 3570 if (m != NULL) { 3571 /* enough soopt buffer should be given from user-land */ 3572 m_freem(m0); 3573 return(EINVAL); 3574 } 3575 sopt->sopt_valsize = valsize; 3576 return (0); 3577 } 3578 3579 /* 3580 * sohasoutofband(): protocol notifies socket layer of the arrival of new 3581 * out-of-band data, which will then notify socket consumers. 3582 */ 3583 void 3584 sohasoutofband(struct socket *so) 3585 { 3586 3587 if (so->so_sigio != NULL) 3588 pgsigio(&so->so_sigio, SIGURG, 0); 3589 selwakeuppri(&so->so_rdsel, PSOCK); 3590 } 3591 3592 int 3593 sopoll(struct socket *so, int events, struct ucred *active_cred, 3594 struct thread *td) 3595 { 3596 3597 /* 3598 * We do not need to set or assert curvnet as long as everyone uses 3599 * sopoll_generic(). 3600 */ 3601 return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred, 3602 td)); 3603 } 3604 3605 int 3606 sopoll_generic(struct socket *so, int events, struct ucred *active_cred, 3607 struct thread *td) 3608 { 3609 int revents; 3610 3611 SOCK_LOCK(so); 3612 if (SOLISTENING(so)) { 3613 if (!(events & (POLLIN | POLLRDNORM))) 3614 revents = 0; 3615 else if (!TAILQ_EMPTY(&so->sol_comp)) 3616 revents = events & (POLLIN | POLLRDNORM); 3617 else if ((events & POLLINIGNEOF) == 0 && so->so_error) 3618 revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP; 3619 else { 3620 selrecord(td, &so->so_rdsel); 3621 revents = 0; 3622 } 3623 } else { 3624 revents = 0; 3625 SOCKBUF_LOCK(&so->so_snd); 3626 SOCKBUF_LOCK(&so->so_rcv); 3627 if (events & (POLLIN | POLLRDNORM)) 3628 if (soreadabledata(so)) 3629 revents |= events & (POLLIN | POLLRDNORM); 3630 if (events & (POLLOUT | POLLWRNORM)) 3631 if (sowriteable(so)) 3632 revents |= events & (POLLOUT | POLLWRNORM); 3633 if (events & (POLLPRI | POLLRDBAND)) 3634 if (so->so_oobmark || 3635 (so->so_rcv.sb_state & SBS_RCVATMARK)) 3636 revents |= events & (POLLPRI | POLLRDBAND); 3637 if ((events & POLLINIGNEOF) == 0) { 3638 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3639 revents |= events & (POLLIN | POLLRDNORM); 3640 if (so->so_snd.sb_state & SBS_CANTSENDMORE) 3641 revents |= POLLHUP; 3642 } 3643 } 3644 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) 3645 revents |= events & POLLRDHUP; 3646 if (revents == 0) { 3647 if (events & 3648 (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND | POLLRDHUP)) { 3649 selrecord(td, &so->so_rdsel); 3650 so->so_rcv.sb_flags |= SB_SEL; 3651 } 3652 if (events & (POLLOUT | POLLWRNORM)) { 3653 selrecord(td, &so->so_wrsel); 3654 so->so_snd.sb_flags |= SB_SEL; 3655 } 3656 } 3657 SOCKBUF_UNLOCK(&so->so_rcv); 3658 SOCKBUF_UNLOCK(&so->so_snd); 3659 } 3660 SOCK_UNLOCK(so); 3661 return (revents); 3662 } 3663 3664 int 3665 soo_kqfilter(struct file *fp, struct knote *kn) 3666 { 3667 struct socket *so = kn->kn_fp->f_data; 3668 struct sockbuf *sb; 3669 struct knlist *knl; 3670 3671 switch (kn->kn_filter) { 3672 case EVFILT_READ: 3673 kn->kn_fop = &soread_filtops; 3674 knl = &so->so_rdsel.si_note; 3675 sb = &so->so_rcv; 3676 break; 3677 case EVFILT_WRITE: 3678 kn->kn_fop = &sowrite_filtops; 3679 knl = &so->so_wrsel.si_note; 3680 sb = &so->so_snd; 3681 break; 3682 case EVFILT_EMPTY: 3683 kn->kn_fop = &soempty_filtops; 3684 knl = &so->so_wrsel.si_note; 3685 sb = &so->so_snd; 3686 break; 3687 default: 3688 return (EINVAL); 3689 } 3690 3691 SOCK_LOCK(so); 3692 if (SOLISTENING(so)) { 3693 knlist_add(knl, kn, 1); 3694 } else { 3695 SOCKBUF_LOCK(sb); 3696 knlist_add(knl, kn, 1); 3697 sb->sb_flags |= SB_KNOTE; 3698 SOCKBUF_UNLOCK(sb); 3699 } 3700 SOCK_UNLOCK(so); 3701 return (0); 3702 } 3703 3704 /* 3705 * Some routines that return EOPNOTSUPP for entry points that are not 3706 * supported by a protocol. Fill in as needed. 3707 */ 3708 int 3709 pru_accept_notsupp(struct socket *so, struct sockaddr **nam) 3710 { 3711 3712 return EOPNOTSUPP; 3713 } 3714 3715 int 3716 pru_aio_queue_notsupp(struct socket *so, struct kaiocb *job) 3717 { 3718 3719 return EOPNOTSUPP; 3720 } 3721 3722 int 3723 pru_attach_notsupp(struct socket *so, int proto, struct thread *td) 3724 { 3725 3726 return EOPNOTSUPP; 3727 } 3728 3729 int 3730 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 3731 { 3732 3733 return EOPNOTSUPP; 3734 } 3735 3736 int 3737 pru_bindat_notsupp(int fd, struct socket *so, struct sockaddr *nam, 3738 struct thread *td) 3739 { 3740 3741 return EOPNOTSUPP; 3742 } 3743 3744 int 3745 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 3746 { 3747 3748 return EOPNOTSUPP; 3749 } 3750 3751 int 3752 pru_connectat_notsupp(int fd, struct socket *so, struct sockaddr *nam, 3753 struct thread *td) 3754 { 3755 3756 return EOPNOTSUPP; 3757 } 3758 3759 int 3760 pru_connect2_notsupp(struct socket *so1, struct socket *so2) 3761 { 3762 3763 return EOPNOTSUPP; 3764 } 3765 3766 int 3767 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, 3768 struct ifnet *ifp, struct thread *td) 3769 { 3770 3771 return EOPNOTSUPP; 3772 } 3773 3774 int 3775 pru_disconnect_notsupp(struct socket *so) 3776 { 3777 3778 return EOPNOTSUPP; 3779 } 3780 3781 int 3782 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td) 3783 { 3784 3785 return EOPNOTSUPP; 3786 } 3787 3788 int 3789 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam) 3790 { 3791 3792 return EOPNOTSUPP; 3793 } 3794 3795 int 3796 pru_rcvd_notsupp(struct socket *so, int flags) 3797 { 3798 3799 return EOPNOTSUPP; 3800 } 3801 3802 int 3803 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) 3804 { 3805 3806 return EOPNOTSUPP; 3807 } 3808 3809 int 3810 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m, 3811 struct sockaddr *addr, struct mbuf *control, struct thread *td) 3812 { 3813 3814 if (control != NULL) 3815 m_freem(control); 3816 if ((flags & PRUS_NOTREADY) == 0) 3817 m_freem(m); 3818 return (EOPNOTSUPP); 3819 } 3820 3821 int 3822 pru_ready_notsupp(struct socket *so, struct mbuf *m, int count) 3823 { 3824 3825 return (EOPNOTSUPP); 3826 } 3827 3828 /* 3829 * This isn't really a ``null'' operation, but it's the default one and 3830 * doesn't do anything destructive. 3831 */ 3832 int 3833 pru_sense_null(struct socket *so, struct stat *sb) 3834 { 3835 3836 sb->st_blksize = so->so_snd.sb_hiwat; 3837 return 0; 3838 } 3839 3840 int 3841 pru_shutdown_notsupp(struct socket *so) 3842 { 3843 3844 return EOPNOTSUPP; 3845 } 3846 3847 int 3848 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam) 3849 { 3850 3851 return EOPNOTSUPP; 3852 } 3853 3854 int 3855 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio, 3856 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 3857 { 3858 3859 return EOPNOTSUPP; 3860 } 3861 3862 int 3863 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr, 3864 struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 3865 { 3866 3867 return EOPNOTSUPP; 3868 } 3869 3870 int 3871 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred, 3872 struct thread *td) 3873 { 3874 3875 return EOPNOTSUPP; 3876 } 3877 3878 static void 3879 filt_sordetach(struct knote *kn) 3880 { 3881 struct socket *so = kn->kn_fp->f_data; 3882 3883 so_rdknl_lock(so); 3884 knlist_remove(&so->so_rdsel.si_note, kn, 1); 3885 if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note)) 3886 so->so_rcv.sb_flags &= ~SB_KNOTE; 3887 so_rdknl_unlock(so); 3888 } 3889 3890 /*ARGSUSED*/ 3891 static int 3892 filt_soread(struct knote *kn, long hint) 3893 { 3894 struct socket *so; 3895 3896 so = kn->kn_fp->f_data; 3897 3898 if (SOLISTENING(so)) { 3899 SOCK_LOCK_ASSERT(so); 3900 kn->kn_data = so->sol_qlen; 3901 if (so->so_error) { 3902 kn->kn_flags |= EV_EOF; 3903 kn->kn_fflags = so->so_error; 3904 return (1); 3905 } 3906 return (!TAILQ_EMPTY(&so->sol_comp)); 3907 } 3908 3909 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 3910 3911 kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl; 3912 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3913 kn->kn_flags |= EV_EOF; 3914 kn->kn_fflags = so->so_error; 3915 return (1); 3916 } else if (so->so_error || so->so_rerror) 3917 return (1); 3918 3919 if (kn->kn_sfflags & NOTE_LOWAT) { 3920 if (kn->kn_data >= kn->kn_sdata) 3921 return (1); 3922 } else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat) 3923 return (1); 3924 3925 /* This hook returning non-zero indicates an event, not error */ 3926 return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD)); 3927 } 3928 3929 static void 3930 filt_sowdetach(struct knote *kn) 3931 { 3932 struct socket *so = kn->kn_fp->f_data; 3933 3934 so_wrknl_lock(so); 3935 knlist_remove(&so->so_wrsel.si_note, kn, 1); 3936 if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note)) 3937 so->so_snd.sb_flags &= ~SB_KNOTE; 3938 so_wrknl_unlock(so); 3939 } 3940 3941 /*ARGSUSED*/ 3942 static int 3943 filt_sowrite(struct knote *kn, long hint) 3944 { 3945 struct socket *so; 3946 3947 so = kn->kn_fp->f_data; 3948 3949 if (SOLISTENING(so)) 3950 return (0); 3951 3952 SOCKBUF_LOCK_ASSERT(&so->so_snd); 3953 kn->kn_data = sbspace(&so->so_snd); 3954 3955 hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE); 3956 3957 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 3958 kn->kn_flags |= EV_EOF; 3959 kn->kn_fflags = so->so_error; 3960 return (1); 3961 } else if (so->so_error) /* temporary udp error */ 3962 return (1); 3963 else if (((so->so_state & SS_ISCONNECTED) == 0) && 3964 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 3965 return (0); 3966 else if (kn->kn_sfflags & NOTE_LOWAT) 3967 return (kn->kn_data >= kn->kn_sdata); 3968 else 3969 return (kn->kn_data >= so->so_snd.sb_lowat); 3970 } 3971 3972 static int 3973 filt_soempty(struct knote *kn, long hint) 3974 { 3975 struct socket *so; 3976 3977 so = kn->kn_fp->f_data; 3978 3979 if (SOLISTENING(so)) 3980 return (1); 3981 3982 SOCKBUF_LOCK_ASSERT(&so->so_snd); 3983 kn->kn_data = sbused(&so->so_snd); 3984 3985 if (kn->kn_data == 0) 3986 return (1); 3987 else 3988 return (0); 3989 } 3990 3991 int 3992 socheckuid(struct socket *so, uid_t uid) 3993 { 3994 3995 if (so == NULL) 3996 return (EPERM); 3997 if (so->so_cred->cr_uid != uid) 3998 return (EPERM); 3999 return (0); 4000 } 4001 4002 /* 4003 * These functions are used by protocols to notify the socket layer (and its 4004 * consumers) of state changes in the sockets driven by protocol-side events. 4005 */ 4006 4007 /* 4008 * Procedures to manipulate state flags of socket and do appropriate wakeups. 4009 * 4010 * Normal sequence from the active (originating) side is that 4011 * soisconnecting() is called during processing of connect() call, resulting 4012 * in an eventual call to soisconnected() if/when the connection is 4013 * established. When the connection is torn down soisdisconnecting() is 4014 * called during processing of disconnect() call, and soisdisconnected() is 4015 * called when the connection to the peer is totally severed. The semantics 4016 * of these routines are such that connectionless protocols can call 4017 * soisconnected() and soisdisconnected() only, bypassing the in-progress 4018 * calls when setting up a ``connection'' takes no time. 4019 * 4020 * From the passive side, a socket is created with two queues of sockets: 4021 * so_incomp for connections in progress and so_comp for connections already 4022 * made and awaiting user acceptance. As a protocol is preparing incoming 4023 * connections, it creates a socket structure queued on so_incomp by calling 4024 * sonewconn(). When the connection is established, soisconnected() is 4025 * called, and transfers the socket structure to so_comp, making it available 4026 * to accept(). 4027 * 4028 * If a socket is closed with sockets on either so_incomp or so_comp, these 4029 * sockets are dropped. 4030 * 4031 * If higher-level protocols are implemented in the kernel, the wakeups done 4032 * here will sometimes cause software-interrupt process scheduling. 4033 */ 4034 void 4035 soisconnecting(struct socket *so) 4036 { 4037 4038 SOCK_LOCK(so); 4039 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 4040 so->so_state |= SS_ISCONNECTING; 4041 SOCK_UNLOCK(so); 4042 } 4043 4044 void 4045 soisconnected(struct socket *so) 4046 { 4047 bool last __diagused; 4048 4049 SOCK_LOCK(so); 4050 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 4051 so->so_state |= SS_ISCONNECTED; 4052 4053 if (so->so_qstate == SQ_INCOMP) { 4054 struct socket *head = so->so_listen; 4055 int ret; 4056 4057 KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so)); 4058 /* 4059 * Promoting a socket from incomplete queue to complete, we 4060 * need to go through reverse order of locking. We first do 4061 * trylock, and if that doesn't succeed, we go the hard way 4062 * leaving a reference and rechecking consistency after proper 4063 * locking. 4064 */ 4065 if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) { 4066 soref(head); 4067 SOCK_UNLOCK(so); 4068 SOLISTEN_LOCK(head); 4069 SOCK_LOCK(so); 4070 if (__predict_false(head != so->so_listen)) { 4071 /* 4072 * The socket went off the listen queue, 4073 * should be lost race to close(2) of sol. 4074 * The socket is about to soabort(). 4075 */ 4076 SOCK_UNLOCK(so); 4077 sorele_locked(head); 4078 return; 4079 } 4080 last = refcount_release(&head->so_count); 4081 KASSERT(!last, ("%s: released last reference for %p", 4082 __func__, head)); 4083 } 4084 again: 4085 if ((so->so_options & SO_ACCEPTFILTER) == 0) { 4086 TAILQ_REMOVE(&head->sol_incomp, so, so_list); 4087 head->sol_incqlen--; 4088 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 4089 head->sol_qlen++; 4090 so->so_qstate = SQ_COMP; 4091 SOCK_UNLOCK(so); 4092 solisten_wakeup(head); /* unlocks */ 4093 } else { 4094 SOCKBUF_LOCK(&so->so_rcv); 4095 soupcall_set(so, SO_RCV, 4096 head->sol_accept_filter->accf_callback, 4097 head->sol_accept_filter_arg); 4098 so->so_options &= ~SO_ACCEPTFILTER; 4099 ret = head->sol_accept_filter->accf_callback(so, 4100 head->sol_accept_filter_arg, M_NOWAIT); 4101 if (ret == SU_ISCONNECTED) { 4102 soupcall_clear(so, SO_RCV); 4103 SOCKBUF_UNLOCK(&so->so_rcv); 4104 goto again; 4105 } 4106 SOCKBUF_UNLOCK(&so->so_rcv); 4107 SOCK_UNLOCK(so); 4108 SOLISTEN_UNLOCK(head); 4109 } 4110 return; 4111 } 4112 SOCK_UNLOCK(so); 4113 wakeup(&so->so_timeo); 4114 sorwakeup(so); 4115 sowwakeup(so); 4116 } 4117 4118 void 4119 soisdisconnecting(struct socket *so) 4120 { 4121 4122 SOCK_LOCK(so); 4123 so->so_state &= ~SS_ISCONNECTING; 4124 so->so_state |= SS_ISDISCONNECTING; 4125 4126 if (!SOLISTENING(so)) { 4127 SOCKBUF_LOCK(&so->so_rcv); 4128 socantrcvmore_locked(so); 4129 SOCKBUF_LOCK(&so->so_snd); 4130 socantsendmore_locked(so); 4131 } 4132 SOCK_UNLOCK(so); 4133 wakeup(&so->so_timeo); 4134 } 4135 4136 void 4137 soisdisconnected(struct socket *so) 4138 { 4139 4140 SOCK_LOCK(so); 4141 4142 /* 4143 * There is at least one reader of so_state that does not 4144 * acquire socket lock, namely soreceive_generic(). Ensure 4145 * that it never sees all flags that track connection status 4146 * cleared, by ordering the update with a barrier semantic of 4147 * our release thread fence. 4148 */ 4149 so->so_state |= SS_ISDISCONNECTED; 4150 atomic_thread_fence_rel(); 4151 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 4152 4153 if (!SOLISTENING(so)) { 4154 SOCK_UNLOCK(so); 4155 SOCKBUF_LOCK(&so->so_rcv); 4156 socantrcvmore_locked(so); 4157 SOCKBUF_LOCK(&so->so_snd); 4158 sbdrop_locked(&so->so_snd, sbused(&so->so_snd)); 4159 socantsendmore_locked(so); 4160 } else 4161 SOCK_UNLOCK(so); 4162 wakeup(&so->so_timeo); 4163 } 4164 4165 int 4166 soiolock(struct socket *so, struct sx *sx, int flags) 4167 { 4168 int error; 4169 4170 KASSERT((flags & SBL_VALID) == flags, 4171 ("soiolock: invalid flags %#x", flags)); 4172 4173 if ((flags & SBL_WAIT) != 0) { 4174 if ((flags & SBL_NOINTR) != 0) { 4175 sx_xlock(sx); 4176 } else { 4177 error = sx_xlock_sig(sx); 4178 if (error != 0) 4179 return (error); 4180 } 4181 } else if (!sx_try_xlock(sx)) { 4182 return (EWOULDBLOCK); 4183 } 4184 4185 if (__predict_false(SOLISTENING(so))) { 4186 sx_xunlock(sx); 4187 return (ENOTCONN); 4188 } 4189 return (0); 4190 } 4191 4192 void 4193 soiounlock(struct sx *sx) 4194 { 4195 sx_xunlock(sx); 4196 } 4197 4198 /* 4199 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 4200 */ 4201 struct sockaddr * 4202 sodupsockaddr(const struct sockaddr *sa, int mflags) 4203 { 4204 struct sockaddr *sa2; 4205 4206 sa2 = malloc(sa->sa_len, M_SONAME, mflags); 4207 if (sa2) 4208 bcopy(sa, sa2, sa->sa_len); 4209 return sa2; 4210 } 4211 4212 /* 4213 * Register per-socket destructor. 4214 */ 4215 void 4216 sodtor_set(struct socket *so, so_dtor_t *func) 4217 { 4218 4219 SOCK_LOCK_ASSERT(so); 4220 so->so_dtor = func; 4221 } 4222 4223 /* 4224 * Register per-socket buffer upcalls. 4225 */ 4226 void 4227 soupcall_set(struct socket *so, int which, so_upcall_t func, void *arg) 4228 { 4229 struct sockbuf *sb; 4230 4231 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 4232 4233 switch (which) { 4234 case SO_RCV: 4235 sb = &so->so_rcv; 4236 break; 4237 case SO_SND: 4238 sb = &so->so_snd; 4239 break; 4240 default: 4241 panic("soupcall_set: bad which"); 4242 } 4243 SOCKBUF_LOCK_ASSERT(sb); 4244 sb->sb_upcall = func; 4245 sb->sb_upcallarg = arg; 4246 sb->sb_flags |= SB_UPCALL; 4247 } 4248 4249 void 4250 soupcall_clear(struct socket *so, int which) 4251 { 4252 struct sockbuf *sb; 4253 4254 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 4255 4256 switch (which) { 4257 case SO_RCV: 4258 sb = &so->so_rcv; 4259 break; 4260 case SO_SND: 4261 sb = &so->so_snd; 4262 break; 4263 default: 4264 panic("soupcall_clear: bad which"); 4265 } 4266 SOCKBUF_LOCK_ASSERT(sb); 4267 KASSERT(sb->sb_upcall != NULL, 4268 ("%s: so %p no upcall to clear", __func__, so)); 4269 sb->sb_upcall = NULL; 4270 sb->sb_upcallarg = NULL; 4271 sb->sb_flags &= ~SB_UPCALL; 4272 } 4273 4274 void 4275 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg) 4276 { 4277 4278 SOLISTEN_LOCK_ASSERT(so); 4279 so->sol_upcall = func; 4280 so->sol_upcallarg = arg; 4281 } 4282 4283 static void 4284 so_rdknl_lock(void *arg) 4285 { 4286 struct socket *so = arg; 4287 4288 if (SOLISTENING(so)) 4289 SOCK_LOCK(so); 4290 else 4291 SOCKBUF_LOCK(&so->so_rcv); 4292 } 4293 4294 static void 4295 so_rdknl_unlock(void *arg) 4296 { 4297 struct socket *so = arg; 4298 4299 if (SOLISTENING(so)) 4300 SOCK_UNLOCK(so); 4301 else 4302 SOCKBUF_UNLOCK(&so->so_rcv); 4303 } 4304 4305 static void 4306 so_rdknl_assert_lock(void *arg, int what) 4307 { 4308 struct socket *so = arg; 4309 4310 if (what == LA_LOCKED) { 4311 if (SOLISTENING(so)) 4312 SOCK_LOCK_ASSERT(so); 4313 else 4314 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 4315 } else { 4316 if (SOLISTENING(so)) 4317 SOCK_UNLOCK_ASSERT(so); 4318 else 4319 SOCKBUF_UNLOCK_ASSERT(&so->so_rcv); 4320 } 4321 } 4322 4323 static void 4324 so_wrknl_lock(void *arg) 4325 { 4326 struct socket *so = arg; 4327 4328 if (SOLISTENING(so)) 4329 SOCK_LOCK(so); 4330 else 4331 SOCKBUF_LOCK(&so->so_snd); 4332 } 4333 4334 static void 4335 so_wrknl_unlock(void *arg) 4336 { 4337 struct socket *so = arg; 4338 4339 if (SOLISTENING(so)) 4340 SOCK_UNLOCK(so); 4341 else 4342 SOCKBUF_UNLOCK(&so->so_snd); 4343 } 4344 4345 static void 4346 so_wrknl_assert_lock(void *arg, int what) 4347 { 4348 struct socket *so = arg; 4349 4350 if (what == LA_LOCKED) { 4351 if (SOLISTENING(so)) 4352 SOCK_LOCK_ASSERT(so); 4353 else 4354 SOCKBUF_LOCK_ASSERT(&so->so_snd); 4355 } else { 4356 if (SOLISTENING(so)) 4357 SOCK_UNLOCK_ASSERT(so); 4358 else 4359 SOCKBUF_UNLOCK_ASSERT(&so->so_snd); 4360 } 4361 } 4362 4363 /* 4364 * Create an external-format (``xsocket'') structure using the information in 4365 * the kernel-format socket structure pointed to by so. This is done to 4366 * reduce the spew of irrelevant information over this interface, to isolate 4367 * user code from changes in the kernel structure, and potentially to provide 4368 * information-hiding if we decide that some of this information should be 4369 * hidden from users. 4370 */ 4371 void 4372 sotoxsocket(struct socket *so, struct xsocket *xso) 4373 { 4374 4375 bzero(xso, sizeof(*xso)); 4376 xso->xso_len = sizeof *xso; 4377 xso->xso_so = (uintptr_t)so; 4378 xso->so_type = so->so_type; 4379 xso->so_options = so->so_options; 4380 xso->so_linger = so->so_linger; 4381 xso->so_state = so->so_state; 4382 xso->so_pcb = (uintptr_t)so->so_pcb; 4383 xso->xso_protocol = so->so_proto->pr_protocol; 4384 xso->xso_family = so->so_proto->pr_domain->dom_family; 4385 xso->so_timeo = so->so_timeo; 4386 xso->so_error = so->so_error; 4387 xso->so_uid = so->so_cred->cr_uid; 4388 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 4389 if (SOLISTENING(so)) { 4390 xso->so_qlen = so->sol_qlen; 4391 xso->so_incqlen = so->sol_incqlen; 4392 xso->so_qlimit = so->sol_qlimit; 4393 xso->so_oobmark = 0; 4394 } else { 4395 xso->so_state |= so->so_qstate; 4396 xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0; 4397 xso->so_oobmark = so->so_oobmark; 4398 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 4399 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 4400 } 4401 } 4402 4403 struct sockbuf * 4404 so_sockbuf_rcv(struct socket *so) 4405 { 4406 4407 return (&so->so_rcv); 4408 } 4409 4410 struct sockbuf * 4411 so_sockbuf_snd(struct socket *so) 4412 { 4413 4414 return (&so->so_snd); 4415 } 4416 4417 int 4418 so_state_get(const struct socket *so) 4419 { 4420 4421 return (so->so_state); 4422 } 4423 4424 void 4425 so_state_set(struct socket *so, int val) 4426 { 4427 4428 so->so_state = val; 4429 } 4430 4431 int 4432 so_options_get(const struct socket *so) 4433 { 4434 4435 return (so->so_options); 4436 } 4437 4438 void 4439 so_options_set(struct socket *so, int val) 4440 { 4441 4442 so->so_options = val; 4443 } 4444 4445 int 4446 so_error_get(const struct socket *so) 4447 { 4448 4449 return (so->so_error); 4450 } 4451 4452 void 4453 so_error_set(struct socket *so, int val) 4454 { 4455 4456 so->so_error = val; 4457 } 4458 4459 int 4460 so_linger_get(const struct socket *so) 4461 { 4462 4463 return (so->so_linger); 4464 } 4465 4466 void 4467 so_linger_set(struct socket *so, int val) 4468 { 4469 4470 KASSERT(val >= 0 && val <= USHRT_MAX && val <= (INT_MAX / hz), 4471 ("%s: val %d out of range", __func__, val)); 4472 4473 so->so_linger = val; 4474 } 4475 4476 struct protosw * 4477 so_protosw_get(const struct socket *so) 4478 { 4479 4480 return (so->so_proto); 4481 } 4482 4483 void 4484 so_protosw_set(struct socket *so, struct protosw *val) 4485 { 4486 4487 so->so_proto = val; 4488 } 4489 4490 void 4491 so_sorwakeup(struct socket *so) 4492 { 4493 4494 sorwakeup(so); 4495 } 4496 4497 void 4498 so_sowwakeup(struct socket *so) 4499 { 4500 4501 sowwakeup(so); 4502 } 4503 4504 void 4505 so_sorwakeup_locked(struct socket *so) 4506 { 4507 4508 sorwakeup_locked(so); 4509 } 4510 4511 void 4512 so_sowwakeup_locked(struct socket *so) 4513 { 4514 4515 sowwakeup_locked(so); 4516 } 4517 4518 void 4519 so_lock(struct socket *so) 4520 { 4521 4522 SOCK_LOCK(so); 4523 } 4524 4525 void 4526 so_unlock(struct socket *so) 4527 { 4528 4529 SOCK_UNLOCK(so); 4530 } 4531