xref: /freebsd/sys/kern/uipc_socket.c (revision 7cd2dcf07629713e5a3d60472cfe4701b705a167)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.
4  * Copyright (c) 2004 The FreeBSD Foundation
5  * Copyright (c) 2004-2008 Robert N. M. Watson
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)uipc_socket.c	8.3 (Berkeley) 4/15/94
33  */
34 
35 /*
36  * Comments on the socket life cycle:
37  *
38  * soalloc() sets of socket layer state for a socket, called only by
39  * socreate() and sonewconn().  Socket layer private.
40  *
41  * sodealloc() tears down socket layer state for a socket, called only by
42  * sofree() and sonewconn().  Socket layer private.
43  *
44  * pru_attach() associates protocol layer state with an allocated socket;
45  * called only once, may fail, aborting socket allocation.  This is called
46  * from socreate() and sonewconn().  Socket layer private.
47  *
48  * pru_detach() disassociates protocol layer state from an attached socket,
49  * and will be called exactly once for sockets in which pru_attach() has
50  * been successfully called.  If pru_attach() returned an error,
51  * pru_detach() will not be called.  Socket layer private.
52  *
53  * pru_abort() and pru_close() notify the protocol layer that the last
54  * consumer of a socket is starting to tear down the socket, and that the
55  * protocol should terminate the connection.  Historically, pru_abort() also
56  * detached protocol state from the socket state, but this is no longer the
57  * case.
58  *
59  * socreate() creates a socket and attaches protocol state.  This is a public
60  * interface that may be used by socket layer consumers to create new
61  * sockets.
62  *
63  * sonewconn() creates a socket and attaches protocol state.  This is a
64  * public interface  that may be used by protocols to create new sockets when
65  * a new connection is received and will be available for accept() on a
66  * listen socket.
67  *
68  * soclose() destroys a socket after possibly waiting for it to disconnect.
69  * This is a public interface that socket consumers should use to close and
70  * release a socket when done with it.
71  *
72  * soabort() destroys a socket without waiting for it to disconnect (used
73  * only for incoming connections that are already partially or fully
74  * connected).  This is used internally by the socket layer when clearing
75  * listen socket queues (due to overflow or close on the listen socket), but
76  * is also a public interface protocols may use to abort connections in
77  * their incomplete listen queues should they no longer be required.  Sockets
78  * placed in completed connection listen queues should not be aborted for
79  * reasons described in the comment above the soclose() implementation.  This
80  * is not a general purpose close routine, and except in the specific
81  * circumstances described here, should not be used.
82  *
83  * sofree() will free a socket and its protocol state if all references on
84  * the socket have been released, and is the public interface to attempt to
85  * free a socket when a reference is removed.  This is a socket layer private
86  * interface.
87  *
88  * NOTE: In addition to socreate() and soclose(), which provide a single
89  * socket reference to the consumer to be managed as required, there are two
90  * calls to explicitly manage socket references, soref(), and sorele().
91  * Currently, these are generally required only when transitioning a socket
92  * from a listen queue to a file descriptor, in order to prevent garbage
93  * collection of the socket at an untimely moment.  For a number of reasons,
94  * these interfaces are not preferred, and should be avoided.
95  *
96  * NOTE: With regard to VNETs the general rule is that callers do not set
97  * curvnet. Exceptions to this rule include soabort(), sodisconnect(),
98  * sofree() (and with that sorele(), sotryfree()), as well as sonewconn()
99  * and sorflush(), which are usually called from a pre-set VNET context.
100  * sopoll() currently does not need a VNET context to be set.
101  */
102 
103 #include <sys/cdefs.h>
104 __FBSDID("$FreeBSD$");
105 
106 #include "opt_inet.h"
107 #include "opt_inet6.h"
108 #include "opt_zero.h"
109 #include "opt_compat.h"
110 
111 #include <sys/param.h>
112 #include <sys/systm.h>
113 #include <sys/fcntl.h>
114 #include <sys/limits.h>
115 #include <sys/lock.h>
116 #include <sys/mac.h>
117 #include <sys/malloc.h>
118 #include <sys/mbuf.h>
119 #include <sys/mutex.h>
120 #include <sys/domain.h>
121 #include <sys/file.h>			/* for struct knote */
122 #include <sys/kernel.h>
123 #include <sys/event.h>
124 #include <sys/eventhandler.h>
125 #include <sys/poll.h>
126 #include <sys/proc.h>
127 #include <sys/protosw.h>
128 #include <sys/socket.h>
129 #include <sys/socketvar.h>
130 #include <sys/resourcevar.h>
131 #include <net/route.h>
132 #include <sys/signalvar.h>
133 #include <sys/stat.h>
134 #include <sys/sx.h>
135 #include <sys/sysctl.h>
136 #include <sys/uio.h>
137 #include <sys/jail.h>
138 #include <sys/syslog.h>
139 
140 #include <net/vnet.h>
141 
142 #include <security/mac/mac_framework.h>
143 
144 #include <vm/uma.h>
145 
146 #ifdef COMPAT_FREEBSD32
147 #include <sys/mount.h>
148 #include <sys/sysent.h>
149 #include <compat/freebsd32/freebsd32.h>
150 #endif
151 
152 static int	soreceive_rcvoob(struct socket *so, struct uio *uio,
153 		    int flags);
154 
155 static void	filt_sordetach(struct knote *kn);
156 static int	filt_soread(struct knote *kn, long hint);
157 static void	filt_sowdetach(struct knote *kn);
158 static int	filt_sowrite(struct knote *kn, long hint);
159 static int	filt_solisten(struct knote *kn, long hint);
160 
161 static struct filterops solisten_filtops = {
162 	.f_isfd = 1,
163 	.f_detach = filt_sordetach,
164 	.f_event = filt_solisten,
165 };
166 static struct filterops soread_filtops = {
167 	.f_isfd = 1,
168 	.f_detach = filt_sordetach,
169 	.f_event = filt_soread,
170 };
171 static struct filterops sowrite_filtops = {
172 	.f_isfd = 1,
173 	.f_detach = filt_sowdetach,
174 	.f_event = filt_sowrite,
175 };
176 
177 so_gen_t	so_gencnt;	/* generation count for sockets */
178 
179 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
180 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
181 
182 #define	VNET_SO_ASSERT(so)						\
183 	VNET_ASSERT(curvnet != NULL,					\
184 	    ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so)));
185 
186 /*
187  * Limit on the number of connections in the listen queue waiting
188  * for accept(2).
189  * NB: The orginal sysctl somaxconn is still available but hidden
190  * to prevent confusion about the actual purpose of this number.
191  */
192 static int somaxconn = SOMAXCONN;
193 
194 static int
195 sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
196 {
197 	int error;
198 	int val;
199 
200 	val = somaxconn;
201 	error = sysctl_handle_int(oidp, &val, 0, req);
202 	if (error || !req->newptr )
203 		return (error);
204 
205 	if (val < 1 || val > USHRT_MAX)
206 		return (EINVAL);
207 
208 	somaxconn = val;
209 	return (0);
210 }
211 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue, CTLTYPE_UINT | CTLFLAG_RW,
212     0, sizeof(int), sysctl_somaxconn, "I",
213     "Maximum listen socket pending connection accept queue size");
214 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn,
215     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP,
216     0, sizeof(int), sysctl_somaxconn, "I",
217     "Maximum listen socket pending connection accept queue size (compat)");
218 
219 static int numopensockets;
220 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,
221     &numopensockets, 0, "Number of open sockets");
222 
223 #if defined(SOCKET_SEND_COW) || defined(SOCKET_RECV_PFLIP)
224 SYSCTL_NODE(_kern_ipc, OID_AUTO, zero_copy, CTLFLAG_RD, 0,
225     "Zero copy controls");
226 #ifdef SOCKET_RECV_PFLIP
227 int so_zero_copy_receive = 1;
228 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, receive, CTLFLAG_RW,
229     &so_zero_copy_receive, 0, "Enable zero copy receive");
230 #endif
231 #ifdef SOCKET_SEND_COW
232 int so_zero_copy_send = 1;
233 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, send, CTLFLAG_RW,
234     &so_zero_copy_send, 0, "Enable zero copy send");
235 #endif /* SOCKET_SEND_COW */
236 #endif /* SOCKET_SEND_COW || SOCKET_RECV_PFLIP */
237 
238 /*
239  * accept_mtx locks down per-socket fields relating to accept queues.  See
240  * socketvar.h for an annotation of the protected fields of struct socket.
241  */
242 struct mtx accept_mtx;
243 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF);
244 
245 /*
246  * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
247  * so_gencnt field.
248  */
249 static struct mtx so_global_mtx;
250 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
251 
252 /*
253  * General IPC sysctl name space, used by sockets and a variety of other IPC
254  * types.
255  */
256 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
257 
258 /*
259  * Initialize the socket subsystem and set up the socket
260  * memory allocator.
261  */
262 uma_zone_t socket_zone;
263 int	maxsockets;
264 
265 static void
266 socket_zone_change(void *tag)
267 {
268 
269 	uma_zone_set_max(socket_zone, maxsockets);
270 }
271 
272 static void
273 socket_init(void *tag)
274 {
275 
276         socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL,
277             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
278         uma_zone_set_max(socket_zone, maxsockets);
279         EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL,
280                 EVENTHANDLER_PRI_FIRST);
281 }
282 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL);
283 
284 /*
285  * Initialise maxsockets.  This SYSINIT must be run after
286  * tunable_mbinit().
287  */
288 static void
289 init_maxsockets(void *ignored)
290 {
291 
292 	TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
293 	maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters));
294 }
295 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
296 
297 /*
298  * Sysctl to get and set the maximum global sockets limit.  Notify protocols
299  * of the change so that they can update their dependent limits as required.
300  */
301 static int
302 sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
303 {
304 	int error, newmaxsockets;
305 
306 	newmaxsockets = maxsockets;
307 	error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
308 	if (error == 0 && req->newptr) {
309 		if (newmaxsockets > maxsockets) {
310 			maxsockets = newmaxsockets;
311 			if (maxsockets > ((maxfiles / 4) * 3)) {
312 				maxfiles = (maxsockets * 5) / 4;
313 				maxfilesperproc = (maxfiles * 9) / 10;
314 			}
315 			EVENTHANDLER_INVOKE(maxsockets_change);
316 		} else
317 			error = EINVAL;
318 	}
319 	return (error);
320 }
321 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, CTLTYPE_INT|CTLFLAG_RW,
322     &maxsockets, 0, sysctl_maxsockets, "IU",
323     "Maximum number of sockets avaliable");
324 
325 /*
326  * Socket operation routines.  These routines are called by the routines in
327  * sys_socket.c or from a system process, and implement the semantics of
328  * socket operations by switching out to the protocol specific routines.
329  */
330 
331 /*
332  * Get a socket structure from our zone, and initialize it.  Note that it
333  * would probably be better to allocate socket and PCB at the same time, but
334  * I'm not convinced that all the protocols can be easily modified to do
335  * this.
336  *
337  * soalloc() returns a socket with a ref count of 0.
338  */
339 static struct socket *
340 soalloc(struct vnet *vnet)
341 {
342 	struct socket *so;
343 
344 	so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
345 	if (so == NULL)
346 		return (NULL);
347 #ifdef MAC
348 	if (mac_socket_init(so, M_NOWAIT) != 0) {
349 		uma_zfree(socket_zone, so);
350 		return (NULL);
351 	}
352 #endif
353 	SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd");
354 	SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv");
355 	sx_init(&so->so_snd.sb_sx, "so_snd_sx");
356 	sx_init(&so->so_rcv.sb_sx, "so_rcv_sx");
357 	TAILQ_INIT(&so->so_aiojobq);
358 	mtx_lock(&so_global_mtx);
359 	so->so_gencnt = ++so_gencnt;
360 	++numopensockets;
361 #ifdef VIMAGE
362 	VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p",
363 	    __func__, __LINE__, so));
364 	vnet->vnet_sockcnt++;
365 	so->so_vnet = vnet;
366 #endif
367 	mtx_unlock(&so_global_mtx);
368 	return (so);
369 }
370 
371 /*
372  * Free the storage associated with a socket at the socket layer, tear down
373  * locks, labels, etc.  All protocol state is assumed already to have been
374  * torn down (and possibly never set up) by the caller.
375  */
376 static void
377 sodealloc(struct socket *so)
378 {
379 
380 	KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
381 	KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
382 
383 	mtx_lock(&so_global_mtx);
384 	so->so_gencnt = ++so_gencnt;
385 	--numopensockets;	/* Could be below, but faster here. */
386 #ifdef VIMAGE
387 	VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p",
388 	    __func__, __LINE__, so));
389 	so->so_vnet->vnet_sockcnt--;
390 #endif
391 	mtx_unlock(&so_global_mtx);
392 	if (so->so_rcv.sb_hiwat)
393 		(void)chgsbsize(so->so_cred->cr_uidinfo,
394 		    &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
395 	if (so->so_snd.sb_hiwat)
396 		(void)chgsbsize(so->so_cred->cr_uidinfo,
397 		    &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
398 #ifdef INET
399 	/* remove acccept filter if one is present. */
400 	if (so->so_accf != NULL)
401 		do_setopt_accept_filter(so, NULL);
402 #endif
403 #ifdef MAC
404 	mac_socket_destroy(so);
405 #endif
406 	crfree(so->so_cred);
407 	sx_destroy(&so->so_snd.sb_sx);
408 	sx_destroy(&so->so_rcv.sb_sx);
409 	SOCKBUF_LOCK_DESTROY(&so->so_snd);
410 	SOCKBUF_LOCK_DESTROY(&so->so_rcv);
411 	uma_zfree(socket_zone, so);
412 }
413 
414 /*
415  * socreate returns a socket with a ref count of 1.  The socket should be
416  * closed with soclose().
417  */
418 int
419 socreate(int dom, struct socket **aso, int type, int proto,
420     struct ucred *cred, struct thread *td)
421 {
422 	struct protosw *prp;
423 	struct socket *so;
424 	int error;
425 
426 	if (proto)
427 		prp = pffindproto(dom, proto, type);
428 	else
429 		prp = pffindtype(dom, type);
430 
431 	if (prp == NULL || prp->pr_usrreqs->pru_attach == NULL ||
432 	    prp->pr_usrreqs->pru_attach == pru_attach_notsupp)
433 		return (EPROTONOSUPPORT);
434 
435 	if (prison_check_af(cred, prp->pr_domain->dom_family) != 0)
436 		return (EPROTONOSUPPORT);
437 
438 	if (prp->pr_type != type)
439 		return (EPROTOTYPE);
440 	so = soalloc(CRED_TO_VNET(cred));
441 	if (so == NULL)
442 		return (ENOBUFS);
443 
444 	TAILQ_INIT(&so->so_incomp);
445 	TAILQ_INIT(&so->so_comp);
446 	so->so_type = type;
447 	so->so_cred = crhold(cred);
448 	if ((prp->pr_domain->dom_family == PF_INET) ||
449 	    (prp->pr_domain->dom_family == PF_INET6) ||
450 	    (prp->pr_domain->dom_family == PF_ROUTE))
451 		so->so_fibnum = td->td_proc->p_fibnum;
452 	else
453 		so->so_fibnum = 0;
454 	so->so_proto = prp;
455 #ifdef MAC
456 	mac_socket_create(cred, so);
457 #endif
458 	knlist_init_mtx(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv));
459 	knlist_init_mtx(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd));
460 	so->so_count = 1;
461 	/*
462 	 * Auto-sizing of socket buffers is managed by the protocols and
463 	 * the appropriate flags must be set in the pru_attach function.
464 	 */
465 	CURVNET_SET(so->so_vnet);
466 	error = (*prp->pr_usrreqs->pru_attach)(so, proto, td);
467 	CURVNET_RESTORE();
468 	if (error) {
469 		KASSERT(so->so_count == 1, ("socreate: so_count %d",
470 		    so->so_count));
471 		so->so_count = 0;
472 		sodealloc(so);
473 		return (error);
474 	}
475 	*aso = so;
476 	return (0);
477 }
478 
479 #ifdef REGRESSION
480 static int regression_sonewconn_earlytest = 1;
481 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
482     &regression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
483 #endif
484 
485 /*
486  * When an attempt at a new connection is noted on a socket which accepts
487  * connections, sonewconn is called.  If the connection is possible (subject
488  * to space constraints, etc.) then we allocate a new structure, propoerly
489  * linked into the data structure of the original socket, and return this.
490  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
491  *
492  * Note: the ref count on the socket is 0 on return.
493  */
494 struct socket *
495 sonewconn(struct socket *head, int connstatus)
496 {
497 	struct socket *so;
498 	int over;
499 
500 	ACCEPT_LOCK();
501 	over = (head->so_qlen > 3 * head->so_qlimit / 2);
502 	ACCEPT_UNLOCK();
503 #ifdef REGRESSION
504 	if (regression_sonewconn_earlytest && over) {
505 #else
506 	if (over) {
507 #endif
508 		log(LOG_DEBUG, "%s: pcb %p: Listen queue overflow: "
509 		    "%i already in queue awaiting acceptance\n",
510 		    __func__, head->so_pcb, over);
511 		return (NULL);
512 	}
513 	VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p",
514 	    __func__, __LINE__, head));
515 	so = soalloc(head->so_vnet);
516 	if (so == NULL) {
517 		log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
518 		    "limit reached or out of memory\n",
519 		    __func__, head->so_pcb);
520 		return (NULL);
521 	}
522 	if ((head->so_options & SO_ACCEPTFILTER) != 0)
523 		connstatus = 0;
524 	so->so_head = head;
525 	so->so_type = head->so_type;
526 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
527 	so->so_linger = head->so_linger;
528 	so->so_state = head->so_state | SS_NOFDREF;
529 	so->so_fibnum = head->so_fibnum;
530 	so->so_proto = head->so_proto;
531 	so->so_cred = crhold(head->so_cred);
532 #ifdef MAC
533 	mac_socket_newconn(head, so);
534 #endif
535 	knlist_init_mtx(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv));
536 	knlist_init_mtx(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd));
537 	VNET_SO_ASSERT(head);
538 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
539 		sodealloc(so);
540 		log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
541 		    __func__, head->so_pcb);
542 		return (NULL);
543 	}
544 	if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
545 		sodealloc(so);
546 		log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n",
547 		    __func__, head->so_pcb);
548 		return (NULL);
549 	}
550 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
551 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
552 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
553 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
554 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
555 	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
556 	so->so_state |= connstatus;
557 	ACCEPT_LOCK();
558 	if (connstatus) {
559 		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
560 		so->so_qstate |= SQ_COMP;
561 		head->so_qlen++;
562 	} else {
563 		/*
564 		 * Keep removing sockets from the head until there's room for
565 		 * us to insert on the tail.  In pre-locking revisions, this
566 		 * was a simple if(), but as we could be racing with other
567 		 * threads and soabort() requires dropping locks, we must
568 		 * loop waiting for the condition to be true.
569 		 */
570 		while (head->so_incqlen > head->so_qlimit) {
571 			struct socket *sp;
572 			sp = TAILQ_FIRST(&head->so_incomp);
573 			TAILQ_REMOVE(&head->so_incomp, sp, so_list);
574 			head->so_incqlen--;
575 			sp->so_qstate &= ~SQ_INCOMP;
576 			sp->so_head = NULL;
577 			ACCEPT_UNLOCK();
578 			soabort(sp);
579 			ACCEPT_LOCK();
580 		}
581 		TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
582 		so->so_qstate |= SQ_INCOMP;
583 		head->so_incqlen++;
584 	}
585 	ACCEPT_UNLOCK();
586 	if (connstatus) {
587 		sorwakeup(head);
588 		wakeup_one(&head->so_timeo);
589 	}
590 	return (so);
591 }
592 
593 int
594 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
595 {
596 	int error;
597 
598 	CURVNET_SET(so->so_vnet);
599 	error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td);
600 	CURVNET_RESTORE();
601 	return error;
602 }
603 
604 /*
605  * solisten() transitions a socket from a non-listening state to a listening
606  * state, but can also be used to update the listen queue depth on an
607  * existing listen socket.  The protocol will call back into the sockets
608  * layer using solisten_proto_check() and solisten_proto() to check and set
609  * socket-layer listen state.  Call backs are used so that the protocol can
610  * acquire both protocol and socket layer locks in whatever order is required
611  * by the protocol.
612  *
613  * Protocol implementors are advised to hold the socket lock across the
614  * socket-layer test and set to avoid races at the socket layer.
615  */
616 int
617 solisten(struct socket *so, int backlog, struct thread *td)
618 {
619 	int error;
620 
621 	CURVNET_SET(so->so_vnet);
622 	error = (*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td);
623 	CURVNET_RESTORE();
624 	return error;
625 }
626 
627 int
628 solisten_proto_check(struct socket *so)
629 {
630 
631 	SOCK_LOCK_ASSERT(so);
632 
633 	if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
634 	    SS_ISDISCONNECTING))
635 		return (EINVAL);
636 	return (0);
637 }
638 
639 void
640 solisten_proto(struct socket *so, int backlog)
641 {
642 
643 	SOCK_LOCK_ASSERT(so);
644 
645 	if (backlog < 0 || backlog > somaxconn)
646 		backlog = somaxconn;
647 	so->so_qlimit = backlog;
648 	so->so_options |= SO_ACCEPTCONN;
649 }
650 
651 /*
652  * Evaluate the reference count and named references on a socket; if no
653  * references remain, free it.  This should be called whenever a reference is
654  * released, such as in sorele(), but also when named reference flags are
655  * cleared in socket or protocol code.
656  *
657  * sofree() will free the socket if:
658  *
659  * - There are no outstanding file descriptor references or related consumers
660  *   (so_count == 0).
661  *
662  * - The socket has been closed by user space, if ever open (SS_NOFDREF).
663  *
664  * - The protocol does not have an outstanding strong reference on the socket
665  *   (SS_PROTOREF).
666  *
667  * - The socket is not in a completed connection queue, so a process has been
668  *   notified that it is present.  If it is removed, the user process may
669  *   block in accept() despite select() saying the socket was ready.
670  */
671 void
672 sofree(struct socket *so)
673 {
674 	struct protosw *pr = so->so_proto;
675 	struct socket *head;
676 
677 	ACCEPT_LOCK_ASSERT();
678 	SOCK_LOCK_ASSERT(so);
679 
680 	if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 ||
681 	    (so->so_state & SS_PROTOREF) || (so->so_qstate & SQ_COMP)) {
682 		SOCK_UNLOCK(so);
683 		ACCEPT_UNLOCK();
684 		return;
685 	}
686 
687 	head = so->so_head;
688 	if (head != NULL) {
689 		KASSERT((so->so_qstate & SQ_COMP) != 0 ||
690 		    (so->so_qstate & SQ_INCOMP) != 0,
691 		    ("sofree: so_head != NULL, but neither SQ_COMP nor "
692 		    "SQ_INCOMP"));
693 		KASSERT((so->so_qstate & SQ_COMP) == 0 ||
694 		    (so->so_qstate & SQ_INCOMP) == 0,
695 		    ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP"));
696 		TAILQ_REMOVE(&head->so_incomp, so, so_list);
697 		head->so_incqlen--;
698 		so->so_qstate &= ~SQ_INCOMP;
699 		so->so_head = NULL;
700 	}
701 	KASSERT((so->so_qstate & SQ_COMP) == 0 &&
702 	    (so->so_qstate & SQ_INCOMP) == 0,
703 	    ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)",
704 	    so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP));
705 	if (so->so_options & SO_ACCEPTCONN) {
706 		KASSERT((TAILQ_EMPTY(&so->so_comp)), ("sofree: so_comp populated"));
707 		KASSERT((TAILQ_EMPTY(&so->so_incomp)), ("sofree: so_incomp populated"));
708 	}
709 	SOCK_UNLOCK(so);
710 	ACCEPT_UNLOCK();
711 
712 	VNET_SO_ASSERT(so);
713 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
714 		(*pr->pr_domain->dom_dispose)(so->so_rcv.sb_mb);
715 	if (pr->pr_usrreqs->pru_detach != NULL)
716 		(*pr->pr_usrreqs->pru_detach)(so);
717 
718 	/*
719 	 * From this point on, we assume that no other references to this
720 	 * socket exist anywhere else in the stack.  Therefore, no locks need
721 	 * to be acquired or held.
722 	 *
723 	 * We used to do a lot of socket buffer and socket locking here, as
724 	 * well as invoke sorflush() and perform wakeups.  The direct call to
725 	 * dom_dispose() and sbrelease_internal() are an inlining of what was
726 	 * necessary from sorflush().
727 	 *
728 	 * Notice that the socket buffer and kqueue state are torn down
729 	 * before calling pru_detach.  This means that protocols shold not
730 	 * assume they can perform socket wakeups, etc, in their detach code.
731 	 */
732 	sbdestroy(&so->so_snd, so);
733 	sbdestroy(&so->so_rcv, so);
734 	seldrain(&so->so_snd.sb_sel);
735 	seldrain(&so->so_rcv.sb_sel);
736 	knlist_destroy(&so->so_rcv.sb_sel.si_note);
737 	knlist_destroy(&so->so_snd.sb_sel.si_note);
738 	sodealloc(so);
739 }
740 
741 /*
742  * Close a socket on last file table reference removal.  Initiate disconnect
743  * if connected.  Free socket when disconnect complete.
744  *
745  * This function will sorele() the socket.  Note that soclose() may be called
746  * prior to the ref count reaching zero.  The actual socket structure will
747  * not be freed until the ref count reaches zero.
748  */
749 int
750 soclose(struct socket *so)
751 {
752 	int error = 0;
753 
754 	KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter"));
755 
756 	CURVNET_SET(so->so_vnet);
757 	funsetown(&so->so_sigio);
758 	if (so->so_state & SS_ISCONNECTED) {
759 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
760 			error = sodisconnect(so);
761 			if (error) {
762 				if (error == ENOTCONN)
763 					error = 0;
764 				goto drop;
765 			}
766 		}
767 		if (so->so_options & SO_LINGER) {
768 			if ((so->so_state & SS_ISDISCONNECTING) &&
769 			    (so->so_state & SS_NBIO))
770 				goto drop;
771 			while (so->so_state & SS_ISCONNECTED) {
772 				error = tsleep(&so->so_timeo,
773 				    PSOCK | PCATCH, "soclos", so->so_linger * hz);
774 				if (error)
775 					break;
776 			}
777 		}
778 	}
779 
780 drop:
781 	if (so->so_proto->pr_usrreqs->pru_close != NULL)
782 		(*so->so_proto->pr_usrreqs->pru_close)(so);
783 	if (so->so_options & SO_ACCEPTCONN) {
784 		struct socket *sp;
785 		ACCEPT_LOCK();
786 		while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) {
787 			TAILQ_REMOVE(&so->so_incomp, sp, so_list);
788 			so->so_incqlen--;
789 			sp->so_qstate &= ~SQ_INCOMP;
790 			sp->so_head = NULL;
791 			ACCEPT_UNLOCK();
792 			soabort(sp);
793 			ACCEPT_LOCK();
794 		}
795 		while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) {
796 			TAILQ_REMOVE(&so->so_comp, sp, so_list);
797 			so->so_qlen--;
798 			sp->so_qstate &= ~SQ_COMP;
799 			sp->so_head = NULL;
800 			ACCEPT_UNLOCK();
801 			soabort(sp);
802 			ACCEPT_LOCK();
803 		}
804 		ACCEPT_UNLOCK();
805 	}
806 	ACCEPT_LOCK();
807 	SOCK_LOCK(so);
808 	KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF"));
809 	so->so_state |= SS_NOFDREF;
810 	sorele(so);
811 	CURVNET_RESTORE();
812 	return (error);
813 }
814 
815 /*
816  * soabort() is used to abruptly tear down a connection, such as when a
817  * resource limit is reached (listen queue depth exceeded), or if a listen
818  * socket is closed while there are sockets waiting to be accepted.
819  *
820  * This interface is tricky, because it is called on an unreferenced socket,
821  * and must be called only by a thread that has actually removed the socket
822  * from the listen queue it was on, or races with other threads are risked.
823  *
824  * This interface will call into the protocol code, so must not be called
825  * with any socket locks held.  Protocols do call it while holding their own
826  * recursible protocol mutexes, but this is something that should be subject
827  * to review in the future.
828  */
829 void
830 soabort(struct socket *so)
831 {
832 
833 	/*
834 	 * In as much as is possible, assert that no references to this
835 	 * socket are held.  This is not quite the same as asserting that the
836 	 * current thread is responsible for arranging for no references, but
837 	 * is as close as we can get for now.
838 	 */
839 	KASSERT(so->so_count == 0, ("soabort: so_count"));
840 	KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF"));
841 	KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF"));
842 	KASSERT((so->so_state & SQ_COMP) == 0, ("soabort: SQ_COMP"));
843 	KASSERT((so->so_state & SQ_INCOMP) == 0, ("soabort: SQ_INCOMP"));
844 	VNET_SO_ASSERT(so);
845 
846 	if (so->so_proto->pr_usrreqs->pru_abort != NULL)
847 		(*so->so_proto->pr_usrreqs->pru_abort)(so);
848 	ACCEPT_LOCK();
849 	SOCK_LOCK(so);
850 	sofree(so);
851 }
852 
853 int
854 soaccept(struct socket *so, struct sockaddr **nam)
855 {
856 	int error;
857 
858 	SOCK_LOCK(so);
859 	KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF"));
860 	so->so_state &= ~SS_NOFDREF;
861 	SOCK_UNLOCK(so);
862 
863 	CURVNET_SET(so->so_vnet);
864 	error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam);
865 	CURVNET_RESTORE();
866 	return (error);
867 }
868 
869 int
870 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
871 {
872 	int error;
873 
874 	if (so->so_options & SO_ACCEPTCONN)
875 		return (EOPNOTSUPP);
876 
877 	CURVNET_SET(so->so_vnet);
878 	/*
879 	 * If protocol is connection-based, can only connect once.
880 	 * Otherwise, if connected, try to disconnect first.  This allows
881 	 * user to disconnect by connecting to, e.g., a null address.
882 	 */
883 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
884 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
885 	    (error = sodisconnect(so)))) {
886 		error = EISCONN;
887 	} else {
888 		/*
889 		 * Prevent accumulated error from previous connection from
890 		 * biting us.
891 		 */
892 		so->so_error = 0;
893 		error = (*so->so_proto->pr_usrreqs->pru_connect)(so, nam, td);
894 	}
895 	CURVNET_RESTORE();
896 
897 	return (error);
898 }
899 
900 int
901 soconnect2(struct socket *so1, struct socket *so2)
902 {
903 	int error;
904 
905 	CURVNET_SET(so1->so_vnet);
906 	error = (*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2);
907 	CURVNET_RESTORE();
908 	return (error);
909 }
910 
911 int
912 sodisconnect(struct socket *so)
913 {
914 	int error;
915 
916 	if ((so->so_state & SS_ISCONNECTED) == 0)
917 		return (ENOTCONN);
918 	if (so->so_state & SS_ISDISCONNECTING)
919 		return (EALREADY);
920 	VNET_SO_ASSERT(so);
921 	error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so);
922 	return (error);
923 }
924 
925 #ifdef SOCKET_SEND_COW
926 struct so_zerocopy_stats{
927 	int size_ok;
928 	int align_ok;
929 	int found_ifp;
930 };
931 struct so_zerocopy_stats so_zerocp_stats = {0,0,0};
932 
933 /*
934  * sosend_copyin() is only used if zero copy sockets are enabled.  Otherwise
935  * sosend_dgram() and sosend_generic() use m_uiotombuf().
936  *
937  * sosend_copyin() accepts a uio and prepares an mbuf chain holding part or
938  * all of the data referenced by the uio.  If desired, it uses zero-copy.
939  * *space will be updated to reflect data copied in.
940  *
941  * NB: If atomic I/O is requested, the caller must already have checked that
942  * space can hold resid bytes.
943  *
944  * NB: In the event of an error, the caller may need to free the partial
945  * chain pointed to by *mpp.  The contents of both *uio and *space may be
946  * modified even in the case of an error.
947  */
948 static int
949 sosend_copyin(struct uio *uio, struct mbuf **retmp, int atomic, long *space,
950     int flags)
951 {
952 	struct mbuf *m, **mp, *top;
953 	long len;
954 	ssize_t resid;
955 	int error;
956 	int cow_send;
957 
958 	*retmp = top = NULL;
959 	mp = &top;
960 	len = 0;
961 	resid = uio->uio_resid;
962 	error = 0;
963 	do {
964 		cow_send = 0;
965 		if (resid >= MINCLSIZE) {
966 			if (top == NULL) {
967 				m = m_gethdr(M_WAITOK, MT_DATA);
968 				m->m_pkthdr.len = 0;
969 				m->m_pkthdr.rcvif = NULL;
970 			} else
971 				m = m_get(M_WAITOK, MT_DATA);
972 			if (so_zero_copy_send &&
973 			    resid >= PAGE_SIZE &&
974 			    *space >= PAGE_SIZE &&
975 			    uio->uio_iov->iov_len >= PAGE_SIZE) {
976 				so_zerocp_stats.size_ok++;
977 				so_zerocp_stats.align_ok++;
978 				cow_send = socow_setup(m, uio);
979 				len = cow_send;
980 			}
981 			if (!cow_send) {
982 				m_clget(m, M_WAITOK);
983 				len = min(min(MCLBYTES, resid), *space);
984 			}
985 		} else {
986 			if (top == NULL) {
987 				m = m_gethdr(M_WAIT, MT_DATA);
988 				m->m_pkthdr.len = 0;
989 				m->m_pkthdr.rcvif = NULL;
990 
991 				len = min(min(MHLEN, resid), *space);
992 				/*
993 				 * For datagram protocols, leave room
994 				 * for protocol headers in first mbuf.
995 				 */
996 				if (atomic && m && len < MHLEN)
997 					MH_ALIGN(m, len);
998 			} else {
999 				m = m_get(M_WAIT, MT_DATA);
1000 				len = min(min(MLEN, resid), *space);
1001 			}
1002 		}
1003 		if (m == NULL) {
1004 			error = ENOBUFS;
1005 			goto out;
1006 		}
1007 
1008 		*space -= len;
1009 		if (cow_send)
1010 			error = 0;
1011 		else
1012 			error = uiomove(mtod(m, void *), (int)len, uio);
1013 		resid = uio->uio_resid;
1014 		m->m_len = len;
1015 		*mp = m;
1016 		top->m_pkthdr.len += len;
1017 		if (error)
1018 			goto out;
1019 		mp = &m->m_next;
1020 		if (resid <= 0) {
1021 			if (flags & MSG_EOR)
1022 				top->m_flags |= M_EOR;
1023 			break;
1024 		}
1025 	} while (*space > 0 && atomic);
1026 out:
1027 	*retmp = top;
1028 	return (error);
1029 }
1030 #endif /* SOCKET_SEND_COW */
1031 
1032 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT)
1033 
1034 int
1035 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
1036     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1037 {
1038 	long space;
1039 	ssize_t resid;
1040 	int clen = 0, error, dontroute;
1041 #ifdef SOCKET_SEND_COW
1042 	int atomic = sosendallatonce(so) || top;
1043 #endif
1044 
1045 	KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM"));
1046 	KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
1047 	    ("sosend_dgram: !PR_ATOMIC"));
1048 
1049 	if (uio != NULL)
1050 		resid = uio->uio_resid;
1051 	else
1052 		resid = top->m_pkthdr.len;
1053 	/*
1054 	 * In theory resid should be unsigned.  However, space must be
1055 	 * signed, as it might be less than 0 if we over-committed, and we
1056 	 * must use a signed comparison of space and resid.  On the other
1057 	 * hand, a negative resid causes us to loop sending 0-length
1058 	 * segments to the protocol.
1059 	 */
1060 	if (resid < 0) {
1061 		error = EINVAL;
1062 		goto out;
1063 	}
1064 
1065 	dontroute =
1066 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
1067 	if (td != NULL)
1068 		td->td_ru.ru_msgsnd++;
1069 	if (control != NULL)
1070 		clen = control->m_len;
1071 
1072 	SOCKBUF_LOCK(&so->so_snd);
1073 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1074 		SOCKBUF_UNLOCK(&so->so_snd);
1075 		error = EPIPE;
1076 		goto out;
1077 	}
1078 	if (so->so_error) {
1079 		error = so->so_error;
1080 		so->so_error = 0;
1081 		SOCKBUF_UNLOCK(&so->so_snd);
1082 		goto out;
1083 	}
1084 	if ((so->so_state & SS_ISCONNECTED) == 0) {
1085 		/*
1086 		 * `sendto' and `sendmsg' is allowed on a connection-based
1087 		 * socket if it supports implied connect.  Return ENOTCONN if
1088 		 * not connected and no address is supplied.
1089 		 */
1090 		if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1091 		    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1092 			if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1093 			    !(resid == 0 && clen != 0)) {
1094 				SOCKBUF_UNLOCK(&so->so_snd);
1095 				error = ENOTCONN;
1096 				goto out;
1097 			}
1098 		} else if (addr == NULL) {
1099 			if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1100 				error = ENOTCONN;
1101 			else
1102 				error = EDESTADDRREQ;
1103 			SOCKBUF_UNLOCK(&so->so_snd);
1104 			goto out;
1105 		}
1106 	}
1107 
1108 	/*
1109 	 * Do we need MSG_OOB support in SOCK_DGRAM?  Signs here may be a
1110 	 * problem and need fixing.
1111 	 */
1112 	space = sbspace(&so->so_snd);
1113 	if (flags & MSG_OOB)
1114 		space += 1024;
1115 	space -= clen;
1116 	SOCKBUF_UNLOCK(&so->so_snd);
1117 	if (resid > space) {
1118 		error = EMSGSIZE;
1119 		goto out;
1120 	}
1121 	if (uio == NULL) {
1122 		resid = 0;
1123 		if (flags & MSG_EOR)
1124 			top->m_flags |= M_EOR;
1125 	} else {
1126 #ifdef SOCKET_SEND_COW
1127 		error = sosend_copyin(uio, &top, atomic, &space, flags);
1128 		if (error)
1129 			goto out;
1130 #else
1131 		/*
1132 		 * Copy the data from userland into a mbuf chain.
1133 		 * If no data is to be copied in, a single empty mbuf
1134 		 * is returned.
1135 		 */
1136 		top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
1137 		    (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
1138 		if (top == NULL) {
1139 			error = EFAULT;	/* only possible error */
1140 			goto out;
1141 		}
1142 		space -= resid - uio->uio_resid;
1143 #endif /* SOCKET_SEND_COW */
1144 		resid = uio->uio_resid;
1145 	}
1146 	KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
1147 	/*
1148 	 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
1149 	 * than with.
1150 	 */
1151 	if (dontroute) {
1152 		SOCK_LOCK(so);
1153 		so->so_options |= SO_DONTROUTE;
1154 		SOCK_UNLOCK(so);
1155 	}
1156 	/*
1157 	 * XXX all the SBS_CANTSENDMORE checks previously done could be out
1158 	 * of date.  We could have recieved a reset packet in an interrupt or
1159 	 * maybe we slept while doing page faults in uiomove() etc.  We could
1160 	 * probably recheck again inside the locking protection here, but
1161 	 * there are probably other places that this also happens.  We must
1162 	 * rethink this.
1163 	 */
1164 	VNET_SO_ASSERT(so);
1165 	error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1166 	    (flags & MSG_OOB) ? PRUS_OOB :
1167 	/*
1168 	 * If the user set MSG_EOF, the protocol understands this flag and
1169 	 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
1170 	 */
1171 	    ((flags & MSG_EOF) &&
1172 	     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1173 	     (resid <= 0)) ?
1174 		PRUS_EOF :
1175 		/* If there is more to send set PRUS_MORETOCOME */
1176 		(resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1177 		top, addr, control, td);
1178 	if (dontroute) {
1179 		SOCK_LOCK(so);
1180 		so->so_options &= ~SO_DONTROUTE;
1181 		SOCK_UNLOCK(so);
1182 	}
1183 	clen = 0;
1184 	control = NULL;
1185 	top = NULL;
1186 out:
1187 	if (top != NULL)
1188 		m_freem(top);
1189 	if (control != NULL)
1190 		m_freem(control);
1191 	return (error);
1192 }
1193 
1194 /*
1195  * Send on a socket.  If send must go all at once and message is larger than
1196  * send buffering, then hard error.  Lock against other senders.  If must go
1197  * all at once and not enough room now, then inform user that this would
1198  * block and do nothing.  Otherwise, if nonblocking, send as much as
1199  * possible.  The data to be sent is described by "uio" if nonzero, otherwise
1200  * by the mbuf chain "top" (which must be null if uio is not).  Data provided
1201  * in mbuf chain must be small enough to send all at once.
1202  *
1203  * Returns nonzero on error, timeout or signal; callers must check for short
1204  * counts if EINTR/ERESTART are returned.  Data and control buffers are freed
1205  * on return.
1206  */
1207 int
1208 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
1209     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1210 {
1211 	long space;
1212 	ssize_t resid;
1213 	int clen = 0, error, dontroute;
1214 	int atomic = sosendallatonce(so) || top;
1215 
1216 	if (uio != NULL)
1217 		resid = uio->uio_resid;
1218 	else
1219 		resid = top->m_pkthdr.len;
1220 	/*
1221 	 * In theory resid should be unsigned.  However, space must be
1222 	 * signed, as it might be less than 0 if we over-committed, and we
1223 	 * must use a signed comparison of space and resid.  On the other
1224 	 * hand, a negative resid causes us to loop sending 0-length
1225 	 * segments to the protocol.
1226 	 *
1227 	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
1228 	 * type sockets since that's an error.
1229 	 */
1230 	if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
1231 		error = EINVAL;
1232 		goto out;
1233 	}
1234 
1235 	dontroute =
1236 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
1237 	    (so->so_proto->pr_flags & PR_ATOMIC);
1238 	if (td != NULL)
1239 		td->td_ru.ru_msgsnd++;
1240 	if (control != NULL)
1241 		clen = control->m_len;
1242 
1243 	error = sblock(&so->so_snd, SBLOCKWAIT(flags));
1244 	if (error)
1245 		goto out;
1246 
1247 restart:
1248 	do {
1249 		SOCKBUF_LOCK(&so->so_snd);
1250 		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1251 			SOCKBUF_UNLOCK(&so->so_snd);
1252 			error = EPIPE;
1253 			goto release;
1254 		}
1255 		if (so->so_error) {
1256 			error = so->so_error;
1257 			so->so_error = 0;
1258 			SOCKBUF_UNLOCK(&so->so_snd);
1259 			goto release;
1260 		}
1261 		if ((so->so_state & SS_ISCONNECTED) == 0) {
1262 			/*
1263 			 * `sendto' and `sendmsg' is allowed on a connection-
1264 			 * based socket if it supports implied connect.
1265 			 * Return ENOTCONN if not connected and no address is
1266 			 * supplied.
1267 			 */
1268 			if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1269 			    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1270 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1271 				    !(resid == 0 && clen != 0)) {
1272 					SOCKBUF_UNLOCK(&so->so_snd);
1273 					error = ENOTCONN;
1274 					goto release;
1275 				}
1276 			} else if (addr == NULL) {
1277 				SOCKBUF_UNLOCK(&so->so_snd);
1278 				if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1279 					error = ENOTCONN;
1280 				else
1281 					error = EDESTADDRREQ;
1282 				goto release;
1283 			}
1284 		}
1285 		space = sbspace(&so->so_snd);
1286 		if (flags & MSG_OOB)
1287 			space += 1024;
1288 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
1289 		    clen > so->so_snd.sb_hiwat) {
1290 			SOCKBUF_UNLOCK(&so->so_snd);
1291 			error = EMSGSIZE;
1292 			goto release;
1293 		}
1294 		if (space < resid + clen &&
1295 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
1296 			if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
1297 				SOCKBUF_UNLOCK(&so->so_snd);
1298 				error = EWOULDBLOCK;
1299 				goto release;
1300 			}
1301 			error = sbwait(&so->so_snd);
1302 			SOCKBUF_UNLOCK(&so->so_snd);
1303 			if (error)
1304 				goto release;
1305 			goto restart;
1306 		}
1307 		SOCKBUF_UNLOCK(&so->so_snd);
1308 		space -= clen;
1309 		do {
1310 			if (uio == NULL) {
1311 				resid = 0;
1312 				if (flags & MSG_EOR)
1313 					top->m_flags |= M_EOR;
1314 			} else {
1315 #ifdef SOCKET_SEND_COW
1316 				error = sosend_copyin(uio, &top, atomic,
1317 				    &space, flags);
1318 				if (error != 0)
1319 					goto release;
1320 #else
1321 				/*
1322 				 * Copy the data from userland into a mbuf
1323 				 * chain.  If no data is to be copied in,
1324 				 * a single empty mbuf is returned.
1325 				 */
1326 				top = m_uiotombuf(uio, M_WAITOK, space,
1327 				    (atomic ? max_hdr : 0),
1328 				    (atomic ? M_PKTHDR : 0) |
1329 				    ((flags & MSG_EOR) ? M_EOR : 0));
1330 				if (top == NULL) {
1331 					error = EFAULT; /* only possible error */
1332 					goto release;
1333 				}
1334 				space -= resid - uio->uio_resid;
1335 #endif /* SOCKET_SEND_COW */
1336 				resid = uio->uio_resid;
1337 			}
1338 			if (dontroute) {
1339 				SOCK_LOCK(so);
1340 				so->so_options |= SO_DONTROUTE;
1341 				SOCK_UNLOCK(so);
1342 			}
1343 			/*
1344 			 * XXX all the SBS_CANTSENDMORE checks previously
1345 			 * done could be out of date.  We could have recieved
1346 			 * a reset packet in an interrupt or maybe we slept
1347 			 * while doing page faults in uiomove() etc.  We
1348 			 * could probably recheck again inside the locking
1349 			 * protection here, but there are probably other
1350 			 * places that this also happens.  We must rethink
1351 			 * this.
1352 			 */
1353 			VNET_SO_ASSERT(so);
1354 			error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1355 			    (flags & MSG_OOB) ? PRUS_OOB :
1356 			/*
1357 			 * If the user set MSG_EOF, the protocol understands
1358 			 * this flag and nothing left to send then use
1359 			 * PRU_SEND_EOF instead of PRU_SEND.
1360 			 */
1361 			    ((flags & MSG_EOF) &&
1362 			     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1363 			     (resid <= 0)) ?
1364 				PRUS_EOF :
1365 			/* If there is more to send set PRUS_MORETOCOME. */
1366 			    (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1367 			    top, addr, control, td);
1368 			if (dontroute) {
1369 				SOCK_LOCK(so);
1370 				so->so_options &= ~SO_DONTROUTE;
1371 				SOCK_UNLOCK(so);
1372 			}
1373 			clen = 0;
1374 			control = NULL;
1375 			top = NULL;
1376 			if (error)
1377 				goto release;
1378 		} while (resid && space > 0);
1379 	} while (resid);
1380 
1381 release:
1382 	sbunlock(&so->so_snd);
1383 out:
1384 	if (top != NULL)
1385 		m_freem(top);
1386 	if (control != NULL)
1387 		m_freem(control);
1388 	return (error);
1389 }
1390 
1391 int
1392 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
1393     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1394 {
1395 	int error;
1396 
1397 	CURVNET_SET(so->so_vnet);
1398 	error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, top,
1399 	    control, flags, td);
1400 	CURVNET_RESTORE();
1401 	return (error);
1402 }
1403 
1404 /*
1405  * The part of soreceive() that implements reading non-inline out-of-band
1406  * data from a socket.  For more complete comments, see soreceive(), from
1407  * which this code originated.
1408  *
1409  * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
1410  * unable to return an mbuf chain to the caller.
1411  */
1412 static int
1413 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
1414 {
1415 	struct protosw *pr = so->so_proto;
1416 	struct mbuf *m;
1417 	int error;
1418 
1419 	KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
1420 	VNET_SO_ASSERT(so);
1421 
1422 	m = m_get(M_WAIT, MT_DATA);
1423 	error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK);
1424 	if (error)
1425 		goto bad;
1426 	do {
1427 #ifdef SOCKET_RECV_PFLIP
1428 		if (so_zero_copy_receive) {
1429 			int disposable;
1430 
1431 			if ((m->m_flags & M_EXT)
1432 			 && (m->m_ext.ext_type == EXT_DISPOSABLE))
1433 				disposable = 1;
1434 			else
1435 				disposable = 0;
1436 
1437 			error = uiomoveco(mtod(m, void *),
1438 					  min(uio->uio_resid, m->m_len),
1439 					  uio, disposable);
1440 		} else
1441 #endif /* SOCKET_RECV_PFLIP */
1442 		error = uiomove(mtod(m, void *),
1443 		    (int) min(uio->uio_resid, m->m_len), uio);
1444 		m = m_free(m);
1445 	} while (uio->uio_resid && error == 0 && m);
1446 bad:
1447 	if (m != NULL)
1448 		m_freem(m);
1449 	return (error);
1450 }
1451 
1452 /*
1453  * Following replacement or removal of the first mbuf on the first mbuf chain
1454  * of a socket buffer, push necessary state changes back into the socket
1455  * buffer so that other consumers see the values consistently.  'nextrecord'
1456  * is the callers locally stored value of the original value of
1457  * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
1458  * NOTE: 'nextrecord' may be NULL.
1459  */
1460 static __inline void
1461 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
1462 {
1463 
1464 	SOCKBUF_LOCK_ASSERT(sb);
1465 	/*
1466 	 * First, update for the new value of nextrecord.  If necessary, make
1467 	 * it the first record.
1468 	 */
1469 	if (sb->sb_mb != NULL)
1470 		sb->sb_mb->m_nextpkt = nextrecord;
1471 	else
1472 		sb->sb_mb = nextrecord;
1473 
1474         /*
1475          * Now update any dependent socket buffer fields to reflect the new
1476          * state.  This is an expanded inline of SB_EMPTY_FIXUP(), with the
1477 	 * addition of a second clause that takes care of the case where
1478 	 * sb_mb has been updated, but remains the last record.
1479          */
1480         if (sb->sb_mb == NULL) {
1481                 sb->sb_mbtail = NULL;
1482                 sb->sb_lastrecord = NULL;
1483         } else if (sb->sb_mb->m_nextpkt == NULL)
1484                 sb->sb_lastrecord = sb->sb_mb;
1485 }
1486 
1487 
1488 /*
1489  * Implement receive operations on a socket.  We depend on the way that
1490  * records are added to the sockbuf by sbappend.  In particular, each record
1491  * (mbufs linked through m_next) must begin with an address if the protocol
1492  * so specifies, followed by an optional mbuf or mbufs containing ancillary
1493  * data, and then zero or more mbufs of data.  In order to allow parallelism
1494  * between network receive and copying to user space, as well as avoid
1495  * sleeping with a mutex held, we release the socket buffer mutex during the
1496  * user space copy.  Although the sockbuf is locked, new data may still be
1497  * appended, and thus we must maintain consistency of the sockbuf during that
1498  * time.
1499  *
1500  * The caller may receive the data as a single mbuf chain by supplying an
1501  * mbuf **mp0 for use in returning the chain.  The uio is then used only for
1502  * the count in uio_resid.
1503  */
1504 int
1505 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
1506     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1507 {
1508 	struct mbuf *m, **mp;
1509 	int flags, error, offset;
1510 	ssize_t len;
1511 	struct protosw *pr = so->so_proto;
1512 	struct mbuf *nextrecord;
1513 	int moff, type = 0;
1514 	ssize_t orig_resid = uio->uio_resid;
1515 
1516 	mp = mp0;
1517 	if (psa != NULL)
1518 		*psa = NULL;
1519 	if (controlp != NULL)
1520 		*controlp = NULL;
1521 	if (flagsp != NULL)
1522 		flags = *flagsp &~ MSG_EOR;
1523 	else
1524 		flags = 0;
1525 	if (flags & MSG_OOB)
1526 		return (soreceive_rcvoob(so, uio, flags));
1527 	if (mp != NULL)
1528 		*mp = NULL;
1529 	if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING)
1530 	    && uio->uio_resid) {
1531 		VNET_SO_ASSERT(so);
1532 		(*pr->pr_usrreqs->pru_rcvd)(so, 0);
1533 	}
1534 
1535 	error = sblock(&so->so_rcv, SBLOCKWAIT(flags));
1536 	if (error)
1537 		return (error);
1538 
1539 restart:
1540 	SOCKBUF_LOCK(&so->so_rcv);
1541 	m = so->so_rcv.sb_mb;
1542 	/*
1543 	 * If we have less data than requested, block awaiting more (subject
1544 	 * to any timeout) if:
1545 	 *   1. the current count is less than the low water mark, or
1546 	 *   2. MSG_DONTWAIT is not set
1547 	 */
1548 	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
1549 	    so->so_rcv.sb_cc < uio->uio_resid) &&
1550 	    so->so_rcv.sb_cc < so->so_rcv.sb_lowat &&
1551 	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
1552 		KASSERT(m != NULL || !so->so_rcv.sb_cc,
1553 		    ("receive: m == %p so->so_rcv.sb_cc == %u",
1554 		    m, so->so_rcv.sb_cc));
1555 		if (so->so_error) {
1556 			if (m != NULL)
1557 				goto dontblock;
1558 			error = so->so_error;
1559 			if ((flags & MSG_PEEK) == 0)
1560 				so->so_error = 0;
1561 			SOCKBUF_UNLOCK(&so->so_rcv);
1562 			goto release;
1563 		}
1564 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1565 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1566 			if (m == NULL) {
1567 				SOCKBUF_UNLOCK(&so->so_rcv);
1568 				goto release;
1569 			} else
1570 				goto dontblock;
1571 		}
1572 		for (; m != NULL; m = m->m_next)
1573 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
1574 				m = so->so_rcv.sb_mb;
1575 				goto dontblock;
1576 			}
1577 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1578 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1579 			SOCKBUF_UNLOCK(&so->so_rcv);
1580 			error = ENOTCONN;
1581 			goto release;
1582 		}
1583 		if (uio->uio_resid == 0) {
1584 			SOCKBUF_UNLOCK(&so->so_rcv);
1585 			goto release;
1586 		}
1587 		if ((so->so_state & SS_NBIO) ||
1588 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1589 			SOCKBUF_UNLOCK(&so->so_rcv);
1590 			error = EWOULDBLOCK;
1591 			goto release;
1592 		}
1593 		SBLASTRECORDCHK(&so->so_rcv);
1594 		SBLASTMBUFCHK(&so->so_rcv);
1595 		error = sbwait(&so->so_rcv);
1596 		SOCKBUF_UNLOCK(&so->so_rcv);
1597 		if (error)
1598 			goto release;
1599 		goto restart;
1600 	}
1601 dontblock:
1602 	/*
1603 	 * From this point onward, we maintain 'nextrecord' as a cache of the
1604 	 * pointer to the next record in the socket buffer.  We must keep the
1605 	 * various socket buffer pointers and local stack versions of the
1606 	 * pointers in sync, pushing out modifications before dropping the
1607 	 * socket buffer mutex, and re-reading them when picking it up.
1608 	 *
1609 	 * Otherwise, we will race with the network stack appending new data
1610 	 * or records onto the socket buffer by using inconsistent/stale
1611 	 * versions of the field, possibly resulting in socket buffer
1612 	 * corruption.
1613 	 *
1614 	 * By holding the high-level sblock(), we prevent simultaneous
1615 	 * readers from pulling off the front of the socket buffer.
1616 	 */
1617 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1618 	if (uio->uio_td)
1619 		uio->uio_td->td_ru.ru_msgrcv++;
1620 	KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
1621 	SBLASTRECORDCHK(&so->so_rcv);
1622 	SBLASTMBUFCHK(&so->so_rcv);
1623 	nextrecord = m->m_nextpkt;
1624 	if (pr->pr_flags & PR_ADDR) {
1625 		KASSERT(m->m_type == MT_SONAME,
1626 		    ("m->m_type == %d", m->m_type));
1627 		orig_resid = 0;
1628 		if (psa != NULL)
1629 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
1630 			    M_NOWAIT);
1631 		if (flags & MSG_PEEK) {
1632 			m = m->m_next;
1633 		} else {
1634 			sbfree(&so->so_rcv, m);
1635 			so->so_rcv.sb_mb = m_free(m);
1636 			m = so->so_rcv.sb_mb;
1637 			sockbuf_pushsync(&so->so_rcv, nextrecord);
1638 		}
1639 	}
1640 
1641 	/*
1642 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
1643 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
1644 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
1645 	 * perform externalization (or freeing if controlp == NULL).
1646 	 */
1647 	if (m != NULL && m->m_type == MT_CONTROL) {
1648 		struct mbuf *cm = NULL, *cmn;
1649 		struct mbuf **cme = &cm;
1650 
1651 		do {
1652 			if (flags & MSG_PEEK) {
1653 				if (controlp != NULL) {
1654 					*controlp = m_copy(m, 0, m->m_len);
1655 					controlp = &(*controlp)->m_next;
1656 				}
1657 				m = m->m_next;
1658 			} else {
1659 				sbfree(&so->so_rcv, m);
1660 				so->so_rcv.sb_mb = m->m_next;
1661 				m->m_next = NULL;
1662 				*cme = m;
1663 				cme = &(*cme)->m_next;
1664 				m = so->so_rcv.sb_mb;
1665 			}
1666 		} while (m != NULL && m->m_type == MT_CONTROL);
1667 		if ((flags & MSG_PEEK) == 0)
1668 			sockbuf_pushsync(&so->so_rcv, nextrecord);
1669 		while (cm != NULL) {
1670 			cmn = cm->m_next;
1671 			cm->m_next = NULL;
1672 			if (pr->pr_domain->dom_externalize != NULL) {
1673 				SOCKBUF_UNLOCK(&so->so_rcv);
1674 				VNET_SO_ASSERT(so);
1675 				error = (*pr->pr_domain->dom_externalize)
1676 				    (cm, controlp);
1677 				SOCKBUF_LOCK(&so->so_rcv);
1678 			} else if (controlp != NULL)
1679 				*controlp = cm;
1680 			else
1681 				m_freem(cm);
1682 			if (controlp != NULL) {
1683 				orig_resid = 0;
1684 				while (*controlp != NULL)
1685 					controlp = &(*controlp)->m_next;
1686 			}
1687 			cm = cmn;
1688 		}
1689 		if (m != NULL)
1690 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1691 		else
1692 			nextrecord = so->so_rcv.sb_mb;
1693 		orig_resid = 0;
1694 	}
1695 	if (m != NULL) {
1696 		if ((flags & MSG_PEEK) == 0) {
1697 			KASSERT(m->m_nextpkt == nextrecord,
1698 			    ("soreceive: post-control, nextrecord !sync"));
1699 			if (nextrecord == NULL) {
1700 				KASSERT(so->so_rcv.sb_mb == m,
1701 				    ("soreceive: post-control, sb_mb!=m"));
1702 				KASSERT(so->so_rcv.sb_lastrecord == m,
1703 				    ("soreceive: post-control, lastrecord!=m"));
1704 			}
1705 		}
1706 		type = m->m_type;
1707 		if (type == MT_OOBDATA)
1708 			flags |= MSG_OOB;
1709 	} else {
1710 		if ((flags & MSG_PEEK) == 0) {
1711 			KASSERT(so->so_rcv.sb_mb == nextrecord,
1712 			    ("soreceive: sb_mb != nextrecord"));
1713 			if (so->so_rcv.sb_mb == NULL) {
1714 				KASSERT(so->so_rcv.sb_lastrecord == NULL,
1715 				    ("soreceive: sb_lastercord != NULL"));
1716 			}
1717 		}
1718 	}
1719 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1720 	SBLASTRECORDCHK(&so->so_rcv);
1721 	SBLASTMBUFCHK(&so->so_rcv);
1722 
1723 	/*
1724 	 * Now continue to read any data mbufs off of the head of the socket
1725 	 * buffer until the read request is satisfied.  Note that 'type' is
1726 	 * used to store the type of any mbuf reads that have happened so far
1727 	 * such that soreceive() can stop reading if the type changes, which
1728 	 * causes soreceive() to return only one of regular data and inline
1729 	 * out-of-band data in a single socket receive operation.
1730 	 */
1731 	moff = 0;
1732 	offset = 0;
1733 	while (m != NULL && uio->uio_resid > 0 && error == 0) {
1734 		/*
1735 		 * If the type of mbuf has changed since the last mbuf
1736 		 * examined ('type'), end the receive operation.
1737 	 	 */
1738 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1739 		if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) {
1740 			if (type != m->m_type)
1741 				break;
1742 		} else if (type == MT_OOBDATA)
1743 			break;
1744 		else
1745 		    KASSERT(m->m_type == MT_DATA,
1746 			("m->m_type == %d", m->m_type));
1747 		so->so_rcv.sb_state &= ~SBS_RCVATMARK;
1748 		len = uio->uio_resid;
1749 		if (so->so_oobmark && len > so->so_oobmark - offset)
1750 			len = so->so_oobmark - offset;
1751 		if (len > m->m_len - moff)
1752 			len = m->m_len - moff;
1753 		/*
1754 		 * If mp is set, just pass back the mbufs.  Otherwise copy
1755 		 * them out via the uio, then free.  Sockbuf must be
1756 		 * consistent here (points to current mbuf, it points to next
1757 		 * record) when we drop priority; we must note any additions
1758 		 * to the sockbuf when we block interrupts again.
1759 		 */
1760 		if (mp == NULL) {
1761 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1762 			SBLASTRECORDCHK(&so->so_rcv);
1763 			SBLASTMBUFCHK(&so->so_rcv);
1764 			SOCKBUF_UNLOCK(&so->so_rcv);
1765 #ifdef SOCKET_RECV_PFLIP
1766 			if (so_zero_copy_receive) {
1767 				int disposable;
1768 
1769 				if ((m->m_flags & M_EXT)
1770 				 && (m->m_ext.ext_type == EXT_DISPOSABLE))
1771 					disposable = 1;
1772 				else
1773 					disposable = 0;
1774 
1775 				error = uiomoveco(mtod(m, char *) + moff,
1776 						  (int)len, uio,
1777 						  disposable);
1778 			} else
1779 #endif /* SOCKET_RECV_PFLIP */
1780 			error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1781 			SOCKBUF_LOCK(&so->so_rcv);
1782 			if (error) {
1783 				/*
1784 				 * The MT_SONAME mbuf has already been removed
1785 				 * from the record, so it is necessary to
1786 				 * remove the data mbufs, if any, to preserve
1787 				 * the invariant in the case of PR_ADDR that
1788 				 * requires MT_SONAME mbufs at the head of
1789 				 * each record.
1790 				 */
1791 				if (m && pr->pr_flags & PR_ATOMIC &&
1792 				    ((flags & MSG_PEEK) == 0))
1793 					(void)sbdroprecord_locked(&so->so_rcv);
1794 				SOCKBUF_UNLOCK(&so->so_rcv);
1795 				goto release;
1796 			}
1797 		} else
1798 			uio->uio_resid -= len;
1799 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1800 		if (len == m->m_len - moff) {
1801 			if (m->m_flags & M_EOR)
1802 				flags |= MSG_EOR;
1803 			if (flags & MSG_PEEK) {
1804 				m = m->m_next;
1805 				moff = 0;
1806 			} else {
1807 				nextrecord = m->m_nextpkt;
1808 				sbfree(&so->so_rcv, m);
1809 				if (mp != NULL) {
1810 					*mp = m;
1811 					mp = &m->m_next;
1812 					so->so_rcv.sb_mb = m = m->m_next;
1813 					*mp = NULL;
1814 				} else {
1815 					so->so_rcv.sb_mb = m_free(m);
1816 					m = so->so_rcv.sb_mb;
1817 				}
1818 				sockbuf_pushsync(&so->so_rcv, nextrecord);
1819 				SBLASTRECORDCHK(&so->so_rcv);
1820 				SBLASTMBUFCHK(&so->so_rcv);
1821 			}
1822 		} else {
1823 			if (flags & MSG_PEEK)
1824 				moff += len;
1825 			else {
1826 				if (mp != NULL) {
1827 					int copy_flag;
1828 
1829 					if (flags & MSG_DONTWAIT)
1830 						copy_flag = M_DONTWAIT;
1831 					else
1832 						copy_flag = M_WAIT;
1833 					if (copy_flag == M_WAIT)
1834 						SOCKBUF_UNLOCK(&so->so_rcv);
1835 					*mp = m_copym(m, 0, len, copy_flag);
1836 					if (copy_flag == M_WAIT)
1837 						SOCKBUF_LOCK(&so->so_rcv);
1838  					if (*mp == NULL) {
1839  						/*
1840  						 * m_copym() couldn't
1841 						 * allocate an mbuf.  Adjust
1842 						 * uio_resid back (it was
1843 						 * adjusted down by len
1844 						 * bytes, which we didn't end
1845 						 * up "copying" over).
1846  						 */
1847  						uio->uio_resid += len;
1848  						break;
1849  					}
1850 				}
1851 				m->m_data += len;
1852 				m->m_len -= len;
1853 				so->so_rcv.sb_cc -= len;
1854 			}
1855 		}
1856 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1857 		if (so->so_oobmark) {
1858 			if ((flags & MSG_PEEK) == 0) {
1859 				so->so_oobmark -= len;
1860 				if (so->so_oobmark == 0) {
1861 					so->so_rcv.sb_state |= SBS_RCVATMARK;
1862 					break;
1863 				}
1864 			} else {
1865 				offset += len;
1866 				if (offset == so->so_oobmark)
1867 					break;
1868 			}
1869 		}
1870 		if (flags & MSG_EOR)
1871 			break;
1872 		/*
1873 		 * If the MSG_WAITALL flag is set (for non-atomic socket), we
1874 		 * must not quit until "uio->uio_resid == 0" or an error
1875 		 * termination.  If a signal/timeout occurs, return with a
1876 		 * short count but without error.  Keep sockbuf locked
1877 		 * against other readers.
1878 		 */
1879 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1880 		    !sosendallatonce(so) && nextrecord == NULL) {
1881 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1882 			if (so->so_error || so->so_rcv.sb_state & SBS_CANTRCVMORE)
1883 				break;
1884 			/*
1885 			 * Notify the protocol that some data has been
1886 			 * drained before blocking.
1887 			 */
1888 			if (pr->pr_flags & PR_WANTRCVD) {
1889 				SOCKBUF_UNLOCK(&so->so_rcv);
1890 				VNET_SO_ASSERT(so);
1891 				(*pr->pr_usrreqs->pru_rcvd)(so, flags);
1892 				SOCKBUF_LOCK(&so->so_rcv);
1893 			}
1894 			SBLASTRECORDCHK(&so->so_rcv);
1895 			SBLASTMBUFCHK(&so->so_rcv);
1896 			/*
1897 			 * We could receive some data while was notifying
1898 			 * the protocol. Skip blocking in this case.
1899 			 */
1900 			if (so->so_rcv.sb_mb == NULL) {
1901 				error = sbwait(&so->so_rcv);
1902 				if (error) {
1903 					SOCKBUF_UNLOCK(&so->so_rcv);
1904 					goto release;
1905 				}
1906 			}
1907 			m = so->so_rcv.sb_mb;
1908 			if (m != NULL)
1909 				nextrecord = m->m_nextpkt;
1910 		}
1911 	}
1912 
1913 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1914 	if (m != NULL && pr->pr_flags & PR_ATOMIC) {
1915 		flags |= MSG_TRUNC;
1916 		if ((flags & MSG_PEEK) == 0)
1917 			(void) sbdroprecord_locked(&so->so_rcv);
1918 	}
1919 	if ((flags & MSG_PEEK) == 0) {
1920 		if (m == NULL) {
1921 			/*
1922 			 * First part is an inline SB_EMPTY_FIXUP().  Second
1923 			 * part makes sure sb_lastrecord is up-to-date if
1924 			 * there is still data in the socket buffer.
1925 			 */
1926 			so->so_rcv.sb_mb = nextrecord;
1927 			if (so->so_rcv.sb_mb == NULL) {
1928 				so->so_rcv.sb_mbtail = NULL;
1929 				so->so_rcv.sb_lastrecord = NULL;
1930 			} else if (nextrecord->m_nextpkt == NULL)
1931 				so->so_rcv.sb_lastrecord = nextrecord;
1932 		}
1933 		SBLASTRECORDCHK(&so->so_rcv);
1934 		SBLASTMBUFCHK(&so->so_rcv);
1935 		/*
1936 		 * If soreceive() is being done from the socket callback,
1937 		 * then don't need to generate ACK to peer to update window,
1938 		 * since ACK will be generated on return to TCP.
1939 		 */
1940 		if (!(flags & MSG_SOCALLBCK) &&
1941 		    (pr->pr_flags & PR_WANTRCVD)) {
1942 			SOCKBUF_UNLOCK(&so->so_rcv);
1943 			VNET_SO_ASSERT(so);
1944 			(*pr->pr_usrreqs->pru_rcvd)(so, flags);
1945 			SOCKBUF_LOCK(&so->so_rcv);
1946 		}
1947 	}
1948 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1949 	if (orig_resid == uio->uio_resid && orig_resid &&
1950 	    (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
1951 		SOCKBUF_UNLOCK(&so->so_rcv);
1952 		goto restart;
1953 	}
1954 	SOCKBUF_UNLOCK(&so->so_rcv);
1955 
1956 	if (flagsp != NULL)
1957 		*flagsp |= flags;
1958 release:
1959 	sbunlock(&so->so_rcv);
1960 	return (error);
1961 }
1962 
1963 /*
1964  * Optimized version of soreceive() for stream (TCP) sockets.
1965  * XXXAO: (MSG_WAITALL | MSG_PEEK) isn't properly handled.
1966  */
1967 int
1968 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio,
1969     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1970 {
1971 	int len = 0, error = 0, flags, oresid;
1972 	struct sockbuf *sb;
1973 	struct mbuf *m, *n = NULL;
1974 
1975 	/* We only do stream sockets. */
1976 	if (so->so_type != SOCK_STREAM)
1977 		return (EINVAL);
1978 	if (psa != NULL)
1979 		*psa = NULL;
1980 	if (controlp != NULL)
1981 		return (EINVAL);
1982 	if (flagsp != NULL)
1983 		flags = *flagsp &~ MSG_EOR;
1984 	else
1985 		flags = 0;
1986 	if (flags & MSG_OOB)
1987 		return (soreceive_rcvoob(so, uio, flags));
1988 	if (mp0 != NULL)
1989 		*mp0 = NULL;
1990 
1991 	sb = &so->so_rcv;
1992 
1993 	/* Prevent other readers from entering the socket. */
1994 	error = sblock(sb, SBLOCKWAIT(flags));
1995 	if (error)
1996 		goto out;
1997 	SOCKBUF_LOCK(sb);
1998 
1999 	/* Easy one, no space to copyout anything. */
2000 	if (uio->uio_resid == 0) {
2001 		error = EINVAL;
2002 		goto out;
2003 	}
2004 	oresid = uio->uio_resid;
2005 
2006 	/* We will never ever get anything unless we are or were connected. */
2007 	if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
2008 		error = ENOTCONN;
2009 		goto out;
2010 	}
2011 
2012 restart:
2013 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2014 
2015 	/* Abort if socket has reported problems. */
2016 	if (so->so_error) {
2017 		if (sb->sb_cc > 0)
2018 			goto deliver;
2019 		if (oresid > uio->uio_resid)
2020 			goto out;
2021 		error = so->so_error;
2022 		if (!(flags & MSG_PEEK))
2023 			so->so_error = 0;
2024 		goto out;
2025 	}
2026 
2027 	/* Door is closed.  Deliver what is left, if any. */
2028 	if (sb->sb_state & SBS_CANTRCVMORE) {
2029 		if (sb->sb_cc > 0)
2030 			goto deliver;
2031 		else
2032 			goto out;
2033 	}
2034 
2035 	/* Socket buffer is empty and we shall not block. */
2036 	if (sb->sb_cc == 0 &&
2037 	    ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) {
2038 		error = EAGAIN;
2039 		goto out;
2040 	}
2041 
2042 	/* Socket buffer got some data that we shall deliver now. */
2043 	if (sb->sb_cc > 0 && !(flags & MSG_WAITALL) &&
2044 	    ((sb->sb_flags & SS_NBIO) ||
2045 	     (flags & (MSG_DONTWAIT|MSG_NBIO)) ||
2046 	     sb->sb_cc >= sb->sb_lowat ||
2047 	     sb->sb_cc >= uio->uio_resid ||
2048 	     sb->sb_cc >= sb->sb_hiwat) ) {
2049 		goto deliver;
2050 	}
2051 
2052 	/* On MSG_WAITALL we must wait until all data or error arrives. */
2053 	if ((flags & MSG_WAITALL) &&
2054 	    (sb->sb_cc >= uio->uio_resid || sb->sb_cc >= sb->sb_hiwat))
2055 		goto deliver;
2056 
2057 	/*
2058 	 * Wait and block until (more) data comes in.
2059 	 * NB: Drops the sockbuf lock during wait.
2060 	 */
2061 	error = sbwait(sb);
2062 	if (error)
2063 		goto out;
2064 	goto restart;
2065 
2066 deliver:
2067 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2068 	KASSERT(sb->sb_cc > 0, ("%s: sockbuf empty", __func__));
2069 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__));
2070 
2071 	/* Statistics. */
2072 	if (uio->uio_td)
2073 		uio->uio_td->td_ru.ru_msgrcv++;
2074 
2075 	/* Fill uio until full or current end of socket buffer is reached. */
2076 	len = min(uio->uio_resid, sb->sb_cc);
2077 	if (mp0 != NULL) {
2078 		/* Dequeue as many mbufs as possible. */
2079 		if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) {
2080 			if (*mp0 == NULL)
2081 				*mp0 = sb->sb_mb;
2082 			else
2083 				m_cat(*mp0, sb->sb_mb);
2084 			for (m = sb->sb_mb;
2085 			     m != NULL && m->m_len <= len;
2086 			     m = m->m_next) {
2087 				len -= m->m_len;
2088 				uio->uio_resid -= m->m_len;
2089 				sbfree(sb, m);
2090 				n = m;
2091 			}
2092 			n->m_next = NULL;
2093 			sb->sb_mb = m;
2094 			sb->sb_lastrecord = sb->sb_mb;
2095 			if (sb->sb_mb == NULL)
2096 				SB_EMPTY_FIXUP(sb);
2097 		}
2098 		/* Copy the remainder. */
2099 		if (len > 0) {
2100 			KASSERT(sb->sb_mb != NULL,
2101 			    ("%s: len > 0 && sb->sb_mb empty", __func__));
2102 
2103 			m = m_copym(sb->sb_mb, 0, len, M_DONTWAIT);
2104 			if (m == NULL)
2105 				len = 0;	/* Don't flush data from sockbuf. */
2106 			else
2107 				uio->uio_resid -= len;
2108 			if (*mp0 != NULL)
2109 				m_cat(*mp0, m);
2110 			else
2111 				*mp0 = m;
2112 			if (*mp0 == NULL) {
2113 				error = ENOBUFS;
2114 				goto out;
2115 			}
2116 		}
2117 	} else {
2118 		/* NB: Must unlock socket buffer as uiomove may sleep. */
2119 		SOCKBUF_UNLOCK(sb);
2120 		error = m_mbuftouio(uio, sb->sb_mb, len);
2121 		SOCKBUF_LOCK(sb);
2122 		if (error)
2123 			goto out;
2124 	}
2125 	SBLASTRECORDCHK(sb);
2126 	SBLASTMBUFCHK(sb);
2127 
2128 	/*
2129 	 * Remove the delivered data from the socket buffer unless we
2130 	 * were only peeking.
2131 	 */
2132 	if (!(flags & MSG_PEEK)) {
2133 		if (len > 0)
2134 			sbdrop_locked(sb, len);
2135 
2136 		/* Notify protocol that we drained some data. */
2137 		if ((so->so_proto->pr_flags & PR_WANTRCVD) &&
2138 		    (((flags & MSG_WAITALL) && uio->uio_resid > 0) ||
2139 		     !(flags & MSG_SOCALLBCK))) {
2140 			SOCKBUF_UNLOCK(sb);
2141 			VNET_SO_ASSERT(so);
2142 			(*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags);
2143 			SOCKBUF_LOCK(sb);
2144 		}
2145 	}
2146 
2147 	/*
2148 	 * For MSG_WAITALL we may have to loop again and wait for
2149 	 * more data to come in.
2150 	 */
2151 	if ((flags & MSG_WAITALL) && uio->uio_resid > 0)
2152 		goto restart;
2153 out:
2154 	SOCKBUF_LOCK_ASSERT(sb);
2155 	SBLASTRECORDCHK(sb);
2156 	SBLASTMBUFCHK(sb);
2157 	SOCKBUF_UNLOCK(sb);
2158 	sbunlock(sb);
2159 	return (error);
2160 }
2161 
2162 /*
2163  * Optimized version of soreceive() for simple datagram cases from userspace.
2164  * Unlike in the stream case, we're able to drop a datagram if copyout()
2165  * fails, and because we handle datagrams atomically, we don't need to use a
2166  * sleep lock to prevent I/O interlacing.
2167  */
2168 int
2169 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
2170     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2171 {
2172 	struct mbuf *m, *m2;
2173 	int flags, error;
2174 	ssize_t len;
2175 	struct protosw *pr = so->so_proto;
2176 	struct mbuf *nextrecord;
2177 
2178 	if (psa != NULL)
2179 		*psa = NULL;
2180 	if (controlp != NULL)
2181 		*controlp = NULL;
2182 	if (flagsp != NULL)
2183 		flags = *flagsp &~ MSG_EOR;
2184 	else
2185 		flags = 0;
2186 
2187 	/*
2188 	 * For any complicated cases, fall back to the full
2189 	 * soreceive_generic().
2190 	 */
2191 	if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB))
2192 		return (soreceive_generic(so, psa, uio, mp0, controlp,
2193 		    flagsp));
2194 
2195 	/*
2196 	 * Enforce restrictions on use.
2197 	 */
2198 	KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
2199 	    ("soreceive_dgram: wantrcvd"));
2200 	KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
2201 	KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
2202 	    ("soreceive_dgram: SBS_RCVATMARK"));
2203 	KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
2204 	    ("soreceive_dgram: P_CONNREQUIRED"));
2205 
2206 	/*
2207 	 * Loop blocking while waiting for a datagram.
2208 	 */
2209 	SOCKBUF_LOCK(&so->so_rcv);
2210 	while ((m = so->so_rcv.sb_mb) == NULL) {
2211 		KASSERT(so->so_rcv.sb_cc == 0,
2212 		    ("soreceive_dgram: sb_mb NULL but sb_cc %u",
2213 		    so->so_rcv.sb_cc));
2214 		if (so->so_error) {
2215 			error = so->so_error;
2216 			so->so_error = 0;
2217 			SOCKBUF_UNLOCK(&so->so_rcv);
2218 			return (error);
2219 		}
2220 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
2221 		    uio->uio_resid == 0) {
2222 			SOCKBUF_UNLOCK(&so->so_rcv);
2223 			return (0);
2224 		}
2225 		if ((so->so_state & SS_NBIO) ||
2226 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
2227 			SOCKBUF_UNLOCK(&so->so_rcv);
2228 			return (EWOULDBLOCK);
2229 		}
2230 		SBLASTRECORDCHK(&so->so_rcv);
2231 		SBLASTMBUFCHK(&so->so_rcv);
2232 		error = sbwait(&so->so_rcv);
2233 		if (error) {
2234 			SOCKBUF_UNLOCK(&so->so_rcv);
2235 			return (error);
2236 		}
2237 	}
2238 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2239 
2240 	if (uio->uio_td)
2241 		uio->uio_td->td_ru.ru_msgrcv++;
2242 	SBLASTRECORDCHK(&so->so_rcv);
2243 	SBLASTMBUFCHK(&so->so_rcv);
2244 	nextrecord = m->m_nextpkt;
2245 	if (nextrecord == NULL) {
2246 		KASSERT(so->so_rcv.sb_lastrecord == m,
2247 		    ("soreceive_dgram: lastrecord != m"));
2248 	}
2249 
2250 	KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
2251 	    ("soreceive_dgram: m_nextpkt != nextrecord"));
2252 
2253 	/*
2254 	 * Pull 'm' and its chain off the front of the packet queue.
2255 	 */
2256 	so->so_rcv.sb_mb = NULL;
2257 	sockbuf_pushsync(&so->so_rcv, nextrecord);
2258 
2259 	/*
2260 	 * Walk 'm's chain and free that many bytes from the socket buffer.
2261 	 */
2262 	for (m2 = m; m2 != NULL; m2 = m2->m_next)
2263 		sbfree(&so->so_rcv, m2);
2264 
2265 	/*
2266 	 * Do a few last checks before we let go of the lock.
2267 	 */
2268 	SBLASTRECORDCHK(&so->so_rcv);
2269 	SBLASTMBUFCHK(&so->so_rcv);
2270 	SOCKBUF_UNLOCK(&so->so_rcv);
2271 
2272 	if (pr->pr_flags & PR_ADDR) {
2273 		KASSERT(m->m_type == MT_SONAME,
2274 		    ("m->m_type == %d", m->m_type));
2275 		if (psa != NULL)
2276 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
2277 			    M_NOWAIT);
2278 		m = m_free(m);
2279 	}
2280 	if (m == NULL) {
2281 		/* XXXRW: Can this happen? */
2282 		return (0);
2283 	}
2284 
2285 	/*
2286 	 * Packet to copyout() is now in 'm' and it is disconnected from the
2287 	 * queue.
2288 	 *
2289 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
2290 	 * in the first mbuf chain on the socket buffer.  We call into the
2291 	 * protocol to perform externalization (or freeing if controlp ==
2292 	 * NULL).
2293 	 */
2294 	if (m->m_type == MT_CONTROL) {
2295 		struct mbuf *cm = NULL, *cmn;
2296 		struct mbuf **cme = &cm;
2297 
2298 		do {
2299 			m2 = m->m_next;
2300 			m->m_next = NULL;
2301 			*cme = m;
2302 			cme = &(*cme)->m_next;
2303 			m = m2;
2304 		} while (m != NULL && m->m_type == MT_CONTROL);
2305 		while (cm != NULL) {
2306 			cmn = cm->m_next;
2307 			cm->m_next = NULL;
2308 			if (pr->pr_domain->dom_externalize != NULL) {
2309 				error = (*pr->pr_domain->dom_externalize)
2310 				    (cm, controlp);
2311 			} else if (controlp != NULL)
2312 				*controlp = cm;
2313 			else
2314 				m_freem(cm);
2315 			if (controlp != NULL) {
2316 				while (*controlp != NULL)
2317 					controlp = &(*controlp)->m_next;
2318 			}
2319 			cm = cmn;
2320 		}
2321 	}
2322 	KASSERT(m->m_type == MT_DATA, ("soreceive_dgram: !data"));
2323 
2324 	while (m != NULL && uio->uio_resid > 0) {
2325 		len = uio->uio_resid;
2326 		if (len > m->m_len)
2327 			len = m->m_len;
2328 		error = uiomove(mtod(m, char *), (int)len, uio);
2329 		if (error) {
2330 			m_freem(m);
2331 			return (error);
2332 		}
2333 		if (len == m->m_len)
2334 			m = m_free(m);
2335 		else {
2336 			m->m_data += len;
2337 			m->m_len -= len;
2338 		}
2339 	}
2340 	if (m != NULL)
2341 		flags |= MSG_TRUNC;
2342 	m_freem(m);
2343 	if (flagsp != NULL)
2344 		*flagsp |= flags;
2345 	return (0);
2346 }
2347 
2348 int
2349 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
2350     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2351 {
2352 	int error;
2353 
2354 	CURVNET_SET(so->so_vnet);
2355 	error = (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, mp0,
2356 	    controlp, flagsp));
2357 	CURVNET_RESTORE();
2358 	return (error);
2359 }
2360 
2361 int
2362 soshutdown(struct socket *so, int how)
2363 {
2364 	struct protosw *pr = so->so_proto;
2365 	int error;
2366 
2367 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
2368 		return (EINVAL);
2369 
2370 	CURVNET_SET(so->so_vnet);
2371 	if (pr->pr_usrreqs->pru_flush != NULL) {
2372 	        (*pr->pr_usrreqs->pru_flush)(so, how);
2373 	}
2374 	if (how != SHUT_WR)
2375 		sorflush(so);
2376 	if (how != SHUT_RD) {
2377 		error = (*pr->pr_usrreqs->pru_shutdown)(so);
2378 		CURVNET_RESTORE();
2379 		return (error);
2380 	}
2381 	CURVNET_RESTORE();
2382 	return (0);
2383 }
2384 
2385 void
2386 sorflush(struct socket *so)
2387 {
2388 	struct sockbuf *sb = &so->so_rcv;
2389 	struct protosw *pr = so->so_proto;
2390 	struct sockbuf asb;
2391 
2392 	VNET_SO_ASSERT(so);
2393 
2394 	/*
2395 	 * In order to avoid calling dom_dispose with the socket buffer mutex
2396 	 * held, and in order to generally avoid holding the lock for a long
2397 	 * time, we make a copy of the socket buffer and clear the original
2398 	 * (except locks, state).  The new socket buffer copy won't have
2399 	 * initialized locks so we can only call routines that won't use or
2400 	 * assert those locks.
2401 	 *
2402 	 * Dislodge threads currently blocked in receive and wait to acquire
2403 	 * a lock against other simultaneous readers before clearing the
2404 	 * socket buffer.  Don't let our acquire be interrupted by a signal
2405 	 * despite any existing socket disposition on interruptable waiting.
2406 	 */
2407 	socantrcvmore(so);
2408 	(void) sblock(sb, SBL_WAIT | SBL_NOINTR);
2409 
2410 	/*
2411 	 * Invalidate/clear most of the sockbuf structure, but leave selinfo
2412 	 * and mutex data unchanged.
2413 	 */
2414 	SOCKBUF_LOCK(sb);
2415 	bzero(&asb, offsetof(struct sockbuf, sb_startzero));
2416 	bcopy(&sb->sb_startzero, &asb.sb_startzero,
2417 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
2418 	bzero(&sb->sb_startzero,
2419 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
2420 	SOCKBUF_UNLOCK(sb);
2421 	sbunlock(sb);
2422 
2423 	/*
2424 	 * Dispose of special rights and flush the socket buffer.  Don't call
2425 	 * any unsafe routines (that rely on locks being initialized) on asb.
2426 	 */
2427 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
2428 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
2429 	sbrelease_internal(&asb, so);
2430 }
2431 
2432 /*
2433  * Perhaps this routine, and sooptcopyout(), below, ought to come in an
2434  * additional variant to handle the case where the option value needs to be
2435  * some kind of integer, but not a specific size.  In addition to their use
2436  * here, these functions are also called by the protocol-level pr_ctloutput()
2437  * routines.
2438  */
2439 int
2440 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
2441 {
2442 	size_t	valsize;
2443 
2444 	/*
2445 	 * If the user gives us more than we wanted, we ignore it, but if we
2446 	 * don't get the minimum length the caller wants, we return EINVAL.
2447 	 * On success, sopt->sopt_valsize is set to however much we actually
2448 	 * retrieved.
2449 	 */
2450 	if ((valsize = sopt->sopt_valsize) < minlen)
2451 		return EINVAL;
2452 	if (valsize > len)
2453 		sopt->sopt_valsize = valsize = len;
2454 
2455 	if (sopt->sopt_td != NULL)
2456 		return (copyin(sopt->sopt_val, buf, valsize));
2457 
2458 	bcopy(sopt->sopt_val, buf, valsize);
2459 	return (0);
2460 }
2461 
2462 /*
2463  * Kernel version of setsockopt(2).
2464  *
2465  * XXX: optlen is size_t, not socklen_t
2466  */
2467 int
2468 so_setsockopt(struct socket *so, int level, int optname, void *optval,
2469     size_t optlen)
2470 {
2471 	struct sockopt sopt;
2472 
2473 	sopt.sopt_level = level;
2474 	sopt.sopt_name = optname;
2475 	sopt.sopt_dir = SOPT_SET;
2476 	sopt.sopt_val = optval;
2477 	sopt.sopt_valsize = optlen;
2478 	sopt.sopt_td = NULL;
2479 	return (sosetopt(so, &sopt));
2480 }
2481 
2482 int
2483 sosetopt(struct socket *so, struct sockopt *sopt)
2484 {
2485 	int	error, optval;
2486 	struct	linger l;
2487 	struct	timeval tv;
2488 	u_long  val;
2489 	uint32_t val32;
2490 #ifdef MAC
2491 	struct mac extmac;
2492 #endif
2493 
2494 	CURVNET_SET(so->so_vnet);
2495 	error = 0;
2496 	if (sopt->sopt_level != SOL_SOCKET) {
2497 		if (so->so_proto->pr_ctloutput != NULL) {
2498 			error = (*so->so_proto->pr_ctloutput)(so, sopt);
2499 			CURVNET_RESTORE();
2500 			return (error);
2501 		}
2502 		error = ENOPROTOOPT;
2503 	} else {
2504 		switch (sopt->sopt_name) {
2505 #ifdef INET
2506 		case SO_ACCEPTFILTER:
2507 			error = do_setopt_accept_filter(so, sopt);
2508 			if (error)
2509 				goto bad;
2510 			break;
2511 #endif
2512 		case SO_LINGER:
2513 			error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
2514 			if (error)
2515 				goto bad;
2516 
2517 			SOCK_LOCK(so);
2518 			so->so_linger = l.l_linger;
2519 			if (l.l_onoff)
2520 				so->so_options |= SO_LINGER;
2521 			else
2522 				so->so_options &= ~SO_LINGER;
2523 			SOCK_UNLOCK(so);
2524 			break;
2525 
2526 		case SO_DEBUG:
2527 		case SO_KEEPALIVE:
2528 		case SO_DONTROUTE:
2529 		case SO_USELOOPBACK:
2530 		case SO_BROADCAST:
2531 		case SO_REUSEADDR:
2532 		case SO_REUSEPORT:
2533 		case SO_OOBINLINE:
2534 		case SO_TIMESTAMP:
2535 		case SO_BINTIME:
2536 		case SO_NOSIGPIPE:
2537 		case SO_NO_DDP:
2538 		case SO_NO_OFFLOAD:
2539 			error = sooptcopyin(sopt, &optval, sizeof optval,
2540 					    sizeof optval);
2541 			if (error)
2542 				goto bad;
2543 			SOCK_LOCK(so);
2544 			if (optval)
2545 				so->so_options |= sopt->sopt_name;
2546 			else
2547 				so->so_options &= ~sopt->sopt_name;
2548 			SOCK_UNLOCK(so);
2549 			break;
2550 
2551 		case SO_SETFIB:
2552 			error = sooptcopyin(sopt, &optval, sizeof optval,
2553 					    sizeof optval);
2554 			if (error)
2555 				goto bad;
2556 
2557 			if (optval < 0 || optval >= rt_numfibs) {
2558 				error = EINVAL;
2559 				goto bad;
2560 			}
2561 			if (((so->so_proto->pr_domain->dom_family == PF_INET) ||
2562 			   (so->so_proto->pr_domain->dom_family == PF_INET6) ||
2563 			   (so->so_proto->pr_domain->dom_family == PF_ROUTE)))
2564 				so->so_fibnum = optval;
2565 			else
2566 				so->so_fibnum = 0;
2567 			break;
2568 
2569 		case SO_USER_COOKIE:
2570 			error = sooptcopyin(sopt, &val32, sizeof val32,
2571 					    sizeof val32);
2572 			if (error)
2573 				goto bad;
2574 			so->so_user_cookie = val32;
2575 			break;
2576 
2577 		case SO_SNDBUF:
2578 		case SO_RCVBUF:
2579 		case SO_SNDLOWAT:
2580 		case SO_RCVLOWAT:
2581 			error = sooptcopyin(sopt, &optval, sizeof optval,
2582 					    sizeof optval);
2583 			if (error)
2584 				goto bad;
2585 
2586 			/*
2587 			 * Values < 1 make no sense for any of these options,
2588 			 * so disallow them.
2589 			 */
2590 			if (optval < 1) {
2591 				error = EINVAL;
2592 				goto bad;
2593 			}
2594 
2595 			switch (sopt->sopt_name) {
2596 			case SO_SNDBUF:
2597 			case SO_RCVBUF:
2598 				if (sbreserve(sopt->sopt_name == SO_SNDBUF ?
2599 				    &so->so_snd : &so->so_rcv, (u_long)optval,
2600 				    so, curthread) == 0) {
2601 					error = ENOBUFS;
2602 					goto bad;
2603 				}
2604 				(sopt->sopt_name == SO_SNDBUF ? &so->so_snd :
2605 				    &so->so_rcv)->sb_flags &= ~SB_AUTOSIZE;
2606 				break;
2607 
2608 			/*
2609 			 * Make sure the low-water is never greater than the
2610 			 * high-water.
2611 			 */
2612 			case SO_SNDLOWAT:
2613 				SOCKBUF_LOCK(&so->so_snd);
2614 				so->so_snd.sb_lowat =
2615 				    (optval > so->so_snd.sb_hiwat) ?
2616 				    so->so_snd.sb_hiwat : optval;
2617 				SOCKBUF_UNLOCK(&so->so_snd);
2618 				break;
2619 			case SO_RCVLOWAT:
2620 				SOCKBUF_LOCK(&so->so_rcv);
2621 				so->so_rcv.sb_lowat =
2622 				    (optval > so->so_rcv.sb_hiwat) ?
2623 				    so->so_rcv.sb_hiwat : optval;
2624 				SOCKBUF_UNLOCK(&so->so_rcv);
2625 				break;
2626 			}
2627 			break;
2628 
2629 		case SO_SNDTIMEO:
2630 		case SO_RCVTIMEO:
2631 #ifdef COMPAT_FREEBSD32
2632 			if (SV_CURPROC_FLAG(SV_ILP32)) {
2633 				struct timeval32 tv32;
2634 
2635 				error = sooptcopyin(sopt, &tv32, sizeof tv32,
2636 				    sizeof tv32);
2637 				CP(tv32, tv, tv_sec);
2638 				CP(tv32, tv, tv_usec);
2639 			} else
2640 #endif
2641 				error = sooptcopyin(sopt, &tv, sizeof tv,
2642 				    sizeof tv);
2643 			if (error)
2644 				goto bad;
2645 
2646 			/* assert(hz > 0); */
2647 			if (tv.tv_sec < 0 || tv.tv_sec > INT_MAX / hz ||
2648 			    tv.tv_usec < 0 || tv.tv_usec >= 1000000) {
2649 				error = EDOM;
2650 				goto bad;
2651 			}
2652 			/* assert(tick > 0); */
2653 			/* assert(ULONG_MAX - INT_MAX >= 1000000); */
2654 			val = (u_long)(tv.tv_sec * hz) + tv.tv_usec / tick;
2655 			if (val > INT_MAX) {
2656 				error = EDOM;
2657 				goto bad;
2658 			}
2659 			if (val == 0 && tv.tv_usec != 0)
2660 				val = 1;
2661 
2662 			switch (sopt->sopt_name) {
2663 			case SO_SNDTIMEO:
2664 				so->so_snd.sb_timeo = val;
2665 				break;
2666 			case SO_RCVTIMEO:
2667 				so->so_rcv.sb_timeo = val;
2668 				break;
2669 			}
2670 			break;
2671 
2672 		case SO_LABEL:
2673 #ifdef MAC
2674 			error = sooptcopyin(sopt, &extmac, sizeof extmac,
2675 			    sizeof extmac);
2676 			if (error)
2677 				goto bad;
2678 			error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
2679 			    so, &extmac);
2680 #else
2681 			error = EOPNOTSUPP;
2682 #endif
2683 			break;
2684 
2685 		default:
2686 			error = ENOPROTOOPT;
2687 			break;
2688 		}
2689 		if (error == 0 && so->so_proto->pr_ctloutput != NULL)
2690 			(void)(*so->so_proto->pr_ctloutput)(so, sopt);
2691 	}
2692 bad:
2693 	CURVNET_RESTORE();
2694 	return (error);
2695 }
2696 
2697 /*
2698  * Helper routine for getsockopt.
2699  */
2700 int
2701 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
2702 {
2703 	int	error;
2704 	size_t	valsize;
2705 
2706 	error = 0;
2707 
2708 	/*
2709 	 * Documented get behavior is that we always return a value, possibly
2710 	 * truncated to fit in the user's buffer.  Traditional behavior is
2711 	 * that we always tell the user precisely how much we copied, rather
2712 	 * than something useful like the total amount we had available for
2713 	 * her.  Note that this interface is not idempotent; the entire
2714 	 * answer must generated ahead of time.
2715 	 */
2716 	valsize = min(len, sopt->sopt_valsize);
2717 	sopt->sopt_valsize = valsize;
2718 	if (sopt->sopt_val != NULL) {
2719 		if (sopt->sopt_td != NULL)
2720 			error = copyout(buf, sopt->sopt_val, valsize);
2721 		else
2722 			bcopy(buf, sopt->sopt_val, valsize);
2723 	}
2724 	return (error);
2725 }
2726 
2727 int
2728 sogetopt(struct socket *so, struct sockopt *sopt)
2729 {
2730 	int	error, optval;
2731 	struct	linger l;
2732 	struct	timeval tv;
2733 #ifdef MAC
2734 	struct mac extmac;
2735 #endif
2736 
2737 	CURVNET_SET(so->so_vnet);
2738 	error = 0;
2739 	if (sopt->sopt_level != SOL_SOCKET) {
2740 		if (so->so_proto->pr_ctloutput != NULL)
2741 			error = (*so->so_proto->pr_ctloutput)(so, sopt);
2742 		else
2743 			error = ENOPROTOOPT;
2744 		CURVNET_RESTORE();
2745 		return (error);
2746 	} else {
2747 		switch (sopt->sopt_name) {
2748 #ifdef INET
2749 		case SO_ACCEPTFILTER:
2750 			error = do_getopt_accept_filter(so, sopt);
2751 			break;
2752 #endif
2753 		case SO_LINGER:
2754 			SOCK_LOCK(so);
2755 			l.l_onoff = so->so_options & SO_LINGER;
2756 			l.l_linger = so->so_linger;
2757 			SOCK_UNLOCK(so);
2758 			error = sooptcopyout(sopt, &l, sizeof l);
2759 			break;
2760 
2761 		case SO_USELOOPBACK:
2762 		case SO_DONTROUTE:
2763 		case SO_DEBUG:
2764 		case SO_KEEPALIVE:
2765 		case SO_REUSEADDR:
2766 		case SO_REUSEPORT:
2767 		case SO_BROADCAST:
2768 		case SO_OOBINLINE:
2769 		case SO_ACCEPTCONN:
2770 		case SO_TIMESTAMP:
2771 		case SO_BINTIME:
2772 		case SO_NOSIGPIPE:
2773 			optval = so->so_options & sopt->sopt_name;
2774 integer:
2775 			error = sooptcopyout(sopt, &optval, sizeof optval);
2776 			break;
2777 
2778 		case SO_TYPE:
2779 			optval = so->so_type;
2780 			goto integer;
2781 
2782 		case SO_PROTOCOL:
2783 			optval = so->so_proto->pr_protocol;
2784 			goto integer;
2785 
2786 		case SO_ERROR:
2787 			SOCK_LOCK(so);
2788 			optval = so->so_error;
2789 			so->so_error = 0;
2790 			SOCK_UNLOCK(so);
2791 			goto integer;
2792 
2793 		case SO_SNDBUF:
2794 			optval = so->so_snd.sb_hiwat;
2795 			goto integer;
2796 
2797 		case SO_RCVBUF:
2798 			optval = so->so_rcv.sb_hiwat;
2799 			goto integer;
2800 
2801 		case SO_SNDLOWAT:
2802 			optval = so->so_snd.sb_lowat;
2803 			goto integer;
2804 
2805 		case SO_RCVLOWAT:
2806 			optval = so->so_rcv.sb_lowat;
2807 			goto integer;
2808 
2809 		case SO_SNDTIMEO:
2810 		case SO_RCVTIMEO:
2811 			optval = (sopt->sopt_name == SO_SNDTIMEO ?
2812 				  so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
2813 
2814 			tv.tv_sec = optval / hz;
2815 			tv.tv_usec = (optval % hz) * tick;
2816 #ifdef COMPAT_FREEBSD32
2817 			if (SV_CURPROC_FLAG(SV_ILP32)) {
2818 				struct timeval32 tv32;
2819 
2820 				CP(tv, tv32, tv_sec);
2821 				CP(tv, tv32, tv_usec);
2822 				error = sooptcopyout(sopt, &tv32, sizeof tv32);
2823 			} else
2824 #endif
2825 				error = sooptcopyout(sopt, &tv, sizeof tv);
2826 			break;
2827 
2828 		case SO_LABEL:
2829 #ifdef MAC
2830 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
2831 			    sizeof(extmac));
2832 			if (error)
2833 				goto bad;
2834 			error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
2835 			    so, &extmac);
2836 			if (error)
2837 				goto bad;
2838 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
2839 #else
2840 			error = EOPNOTSUPP;
2841 #endif
2842 			break;
2843 
2844 		case SO_PEERLABEL:
2845 #ifdef MAC
2846 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
2847 			    sizeof(extmac));
2848 			if (error)
2849 				goto bad;
2850 			error = mac_getsockopt_peerlabel(
2851 			    sopt->sopt_td->td_ucred, so, &extmac);
2852 			if (error)
2853 				goto bad;
2854 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
2855 #else
2856 			error = EOPNOTSUPP;
2857 #endif
2858 			break;
2859 
2860 		case SO_LISTENQLIMIT:
2861 			optval = so->so_qlimit;
2862 			goto integer;
2863 
2864 		case SO_LISTENQLEN:
2865 			optval = so->so_qlen;
2866 			goto integer;
2867 
2868 		case SO_LISTENINCQLEN:
2869 			optval = so->so_incqlen;
2870 			goto integer;
2871 
2872 		default:
2873 			error = ENOPROTOOPT;
2874 			break;
2875 		}
2876 	}
2877 #ifdef MAC
2878 bad:
2879 #endif
2880 	CURVNET_RESTORE();
2881 	return (error);
2882 }
2883 
2884 int
2885 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
2886 {
2887 	struct mbuf *m, *m_prev;
2888 	int sopt_size = sopt->sopt_valsize;
2889 
2890 	MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA);
2891 	if (m == NULL)
2892 		return ENOBUFS;
2893 	if (sopt_size > MLEN) {
2894 		MCLGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT);
2895 		if ((m->m_flags & M_EXT) == 0) {
2896 			m_free(m);
2897 			return ENOBUFS;
2898 		}
2899 		m->m_len = min(MCLBYTES, sopt_size);
2900 	} else {
2901 		m->m_len = min(MLEN, sopt_size);
2902 	}
2903 	sopt_size -= m->m_len;
2904 	*mp = m;
2905 	m_prev = m;
2906 
2907 	while (sopt_size) {
2908 		MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA);
2909 		if (m == NULL) {
2910 			m_freem(*mp);
2911 			return ENOBUFS;
2912 		}
2913 		if (sopt_size > MLEN) {
2914 			MCLGET(m, sopt->sopt_td != NULL ? M_WAIT :
2915 			    M_DONTWAIT);
2916 			if ((m->m_flags & M_EXT) == 0) {
2917 				m_freem(m);
2918 				m_freem(*mp);
2919 				return ENOBUFS;
2920 			}
2921 			m->m_len = min(MCLBYTES, sopt_size);
2922 		} else {
2923 			m->m_len = min(MLEN, sopt_size);
2924 		}
2925 		sopt_size -= m->m_len;
2926 		m_prev->m_next = m;
2927 		m_prev = m;
2928 	}
2929 	return (0);
2930 }
2931 
2932 int
2933 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
2934 {
2935 	struct mbuf *m0 = m;
2936 
2937 	if (sopt->sopt_val == NULL)
2938 		return (0);
2939 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
2940 		if (sopt->sopt_td != NULL) {
2941 			int error;
2942 
2943 			error = copyin(sopt->sopt_val, mtod(m, char *),
2944 				       m->m_len);
2945 			if (error != 0) {
2946 				m_freem(m0);
2947 				return(error);
2948 			}
2949 		} else
2950 			bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
2951 		sopt->sopt_valsize -= m->m_len;
2952 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
2953 		m = m->m_next;
2954 	}
2955 	if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
2956 		panic("ip6_sooptmcopyin");
2957 	return (0);
2958 }
2959 
2960 int
2961 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
2962 {
2963 	struct mbuf *m0 = m;
2964 	size_t valsize = 0;
2965 
2966 	if (sopt->sopt_val == NULL)
2967 		return (0);
2968 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
2969 		if (sopt->sopt_td != NULL) {
2970 			int error;
2971 
2972 			error = copyout(mtod(m, char *), sopt->sopt_val,
2973 				       m->m_len);
2974 			if (error != 0) {
2975 				m_freem(m0);
2976 				return(error);
2977 			}
2978 		} else
2979 			bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
2980 	       sopt->sopt_valsize -= m->m_len;
2981 	       sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
2982 	       valsize += m->m_len;
2983 	       m = m->m_next;
2984 	}
2985 	if (m != NULL) {
2986 		/* enough soopt buffer should be given from user-land */
2987 		m_freem(m0);
2988 		return(EINVAL);
2989 	}
2990 	sopt->sopt_valsize = valsize;
2991 	return (0);
2992 }
2993 
2994 /*
2995  * sohasoutofband(): protocol notifies socket layer of the arrival of new
2996  * out-of-band data, which will then notify socket consumers.
2997  */
2998 void
2999 sohasoutofband(struct socket *so)
3000 {
3001 
3002 	if (so->so_sigio != NULL)
3003 		pgsigio(&so->so_sigio, SIGURG, 0);
3004 	selwakeuppri(&so->so_rcv.sb_sel, PSOCK);
3005 }
3006 
3007 int
3008 sopoll(struct socket *so, int events, struct ucred *active_cred,
3009     struct thread *td)
3010 {
3011 
3012 	/*
3013 	 * We do not need to set or assert curvnet as long as everyone uses
3014 	 * sopoll_generic().
3015 	 */
3016 	return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred,
3017 	    td));
3018 }
3019 
3020 int
3021 sopoll_generic(struct socket *so, int events, struct ucred *active_cred,
3022     struct thread *td)
3023 {
3024 	int revents = 0;
3025 
3026 	SOCKBUF_LOCK(&so->so_snd);
3027 	SOCKBUF_LOCK(&so->so_rcv);
3028 	if (events & (POLLIN | POLLRDNORM))
3029 		if (soreadabledata(so))
3030 			revents |= events & (POLLIN | POLLRDNORM);
3031 
3032 	if (events & (POLLOUT | POLLWRNORM))
3033 		if (sowriteable(so))
3034 			revents |= events & (POLLOUT | POLLWRNORM);
3035 
3036 	if (events & (POLLPRI | POLLRDBAND))
3037 		if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK))
3038 			revents |= events & (POLLPRI | POLLRDBAND);
3039 
3040 	if ((events & POLLINIGNEOF) == 0) {
3041 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3042 			revents |= events & (POLLIN | POLLRDNORM);
3043 			if (so->so_snd.sb_state & SBS_CANTSENDMORE)
3044 				revents |= POLLHUP;
3045 		}
3046 	}
3047 
3048 	if (revents == 0) {
3049 		if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
3050 			selrecord(td, &so->so_rcv.sb_sel);
3051 			so->so_rcv.sb_flags |= SB_SEL;
3052 		}
3053 
3054 		if (events & (POLLOUT | POLLWRNORM)) {
3055 			selrecord(td, &so->so_snd.sb_sel);
3056 			so->so_snd.sb_flags |= SB_SEL;
3057 		}
3058 	}
3059 
3060 	SOCKBUF_UNLOCK(&so->so_rcv);
3061 	SOCKBUF_UNLOCK(&so->so_snd);
3062 	return (revents);
3063 }
3064 
3065 int
3066 soo_kqfilter(struct file *fp, struct knote *kn)
3067 {
3068 	struct socket *so = kn->kn_fp->f_data;
3069 	struct sockbuf *sb;
3070 
3071 	switch (kn->kn_filter) {
3072 	case EVFILT_READ:
3073 		if (so->so_options & SO_ACCEPTCONN)
3074 			kn->kn_fop = &solisten_filtops;
3075 		else
3076 			kn->kn_fop = &soread_filtops;
3077 		sb = &so->so_rcv;
3078 		break;
3079 	case EVFILT_WRITE:
3080 		kn->kn_fop = &sowrite_filtops;
3081 		sb = &so->so_snd;
3082 		break;
3083 	default:
3084 		return (EINVAL);
3085 	}
3086 
3087 	SOCKBUF_LOCK(sb);
3088 	knlist_add(&sb->sb_sel.si_note, kn, 1);
3089 	sb->sb_flags |= SB_KNOTE;
3090 	SOCKBUF_UNLOCK(sb);
3091 	return (0);
3092 }
3093 
3094 /*
3095  * Some routines that return EOPNOTSUPP for entry points that are not
3096  * supported by a protocol.  Fill in as needed.
3097  */
3098 int
3099 pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
3100 {
3101 
3102 	return EOPNOTSUPP;
3103 }
3104 
3105 int
3106 pru_attach_notsupp(struct socket *so, int proto, struct thread *td)
3107 {
3108 
3109 	return EOPNOTSUPP;
3110 }
3111 
3112 int
3113 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
3114 {
3115 
3116 	return EOPNOTSUPP;
3117 }
3118 
3119 int
3120 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
3121 {
3122 
3123 	return EOPNOTSUPP;
3124 }
3125 
3126 int
3127 pru_connect2_notsupp(struct socket *so1, struct socket *so2)
3128 {
3129 
3130 	return EOPNOTSUPP;
3131 }
3132 
3133 int
3134 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
3135     struct ifnet *ifp, struct thread *td)
3136 {
3137 
3138 	return EOPNOTSUPP;
3139 }
3140 
3141 int
3142 pru_disconnect_notsupp(struct socket *so)
3143 {
3144 
3145 	return EOPNOTSUPP;
3146 }
3147 
3148 int
3149 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td)
3150 {
3151 
3152 	return EOPNOTSUPP;
3153 }
3154 
3155 int
3156 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam)
3157 {
3158 
3159 	return EOPNOTSUPP;
3160 }
3161 
3162 int
3163 pru_rcvd_notsupp(struct socket *so, int flags)
3164 {
3165 
3166 	return EOPNOTSUPP;
3167 }
3168 
3169 int
3170 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
3171 {
3172 
3173 	return EOPNOTSUPP;
3174 }
3175 
3176 int
3177 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m,
3178     struct sockaddr *addr, struct mbuf *control, struct thread *td)
3179 {
3180 
3181 	return EOPNOTSUPP;
3182 }
3183 
3184 /*
3185  * This isn't really a ``null'' operation, but it's the default one and
3186  * doesn't do anything destructive.
3187  */
3188 int
3189 pru_sense_null(struct socket *so, struct stat *sb)
3190 {
3191 
3192 	sb->st_blksize = so->so_snd.sb_hiwat;
3193 	return 0;
3194 }
3195 
3196 int
3197 pru_shutdown_notsupp(struct socket *so)
3198 {
3199 
3200 	return EOPNOTSUPP;
3201 }
3202 
3203 int
3204 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam)
3205 {
3206 
3207 	return EOPNOTSUPP;
3208 }
3209 
3210 int
3211 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio,
3212     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
3213 {
3214 
3215 	return EOPNOTSUPP;
3216 }
3217 
3218 int
3219 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr,
3220     struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3221 {
3222 
3223 	return EOPNOTSUPP;
3224 }
3225 
3226 int
3227 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred,
3228     struct thread *td)
3229 {
3230 
3231 	return EOPNOTSUPP;
3232 }
3233 
3234 static void
3235 filt_sordetach(struct knote *kn)
3236 {
3237 	struct socket *so = kn->kn_fp->f_data;
3238 
3239 	SOCKBUF_LOCK(&so->so_rcv);
3240 	knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1);
3241 	if (knlist_empty(&so->so_rcv.sb_sel.si_note))
3242 		so->so_rcv.sb_flags &= ~SB_KNOTE;
3243 	SOCKBUF_UNLOCK(&so->so_rcv);
3244 }
3245 
3246 /*ARGSUSED*/
3247 static int
3248 filt_soread(struct knote *kn, long hint)
3249 {
3250 	struct socket *so;
3251 
3252 	so = kn->kn_fp->f_data;
3253 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3254 
3255 	kn->kn_data = so->so_rcv.sb_cc - so->so_rcv.sb_ctl;
3256 	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3257 		kn->kn_flags |= EV_EOF;
3258 		kn->kn_fflags = so->so_error;
3259 		return (1);
3260 	} else if (so->so_error)	/* temporary udp error */
3261 		return (1);
3262 	else if (kn->kn_sfflags & NOTE_LOWAT)
3263 		return (kn->kn_data >= kn->kn_sdata);
3264 	else
3265 		return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat);
3266 }
3267 
3268 static void
3269 filt_sowdetach(struct knote *kn)
3270 {
3271 	struct socket *so = kn->kn_fp->f_data;
3272 
3273 	SOCKBUF_LOCK(&so->so_snd);
3274 	knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1);
3275 	if (knlist_empty(&so->so_snd.sb_sel.si_note))
3276 		so->so_snd.sb_flags &= ~SB_KNOTE;
3277 	SOCKBUF_UNLOCK(&so->so_snd);
3278 }
3279 
3280 /*ARGSUSED*/
3281 static int
3282 filt_sowrite(struct knote *kn, long hint)
3283 {
3284 	struct socket *so;
3285 
3286 	so = kn->kn_fp->f_data;
3287 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
3288 	kn->kn_data = sbspace(&so->so_snd);
3289 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
3290 		kn->kn_flags |= EV_EOF;
3291 		kn->kn_fflags = so->so_error;
3292 		return (1);
3293 	} else if (so->so_error)	/* temporary udp error */
3294 		return (1);
3295 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
3296 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
3297 		return (0);
3298 	else if (kn->kn_sfflags & NOTE_LOWAT)
3299 		return (kn->kn_data >= kn->kn_sdata);
3300 	else
3301 		return (kn->kn_data >= so->so_snd.sb_lowat);
3302 }
3303 
3304 /*ARGSUSED*/
3305 static int
3306 filt_solisten(struct knote *kn, long hint)
3307 {
3308 	struct socket *so = kn->kn_fp->f_data;
3309 
3310 	kn->kn_data = so->so_qlen;
3311 	return (! TAILQ_EMPTY(&so->so_comp));
3312 }
3313 
3314 int
3315 socheckuid(struct socket *so, uid_t uid)
3316 {
3317 
3318 	if (so == NULL)
3319 		return (EPERM);
3320 	if (so->so_cred->cr_uid != uid)
3321 		return (EPERM);
3322 	return (0);
3323 }
3324 
3325 /*
3326  * These functions are used by protocols to notify the socket layer (and its
3327  * consumers) of state changes in the sockets driven by protocol-side events.
3328  */
3329 
3330 /*
3331  * Procedures to manipulate state flags of socket and do appropriate wakeups.
3332  *
3333  * Normal sequence from the active (originating) side is that
3334  * soisconnecting() is called during processing of connect() call, resulting
3335  * in an eventual call to soisconnected() if/when the connection is
3336  * established.  When the connection is torn down soisdisconnecting() is
3337  * called during processing of disconnect() call, and soisdisconnected() is
3338  * called when the connection to the peer is totally severed.  The semantics
3339  * of these routines are such that connectionless protocols can call
3340  * soisconnected() and soisdisconnected() only, bypassing the in-progress
3341  * calls when setting up a ``connection'' takes no time.
3342  *
3343  * From the passive side, a socket is created with two queues of sockets:
3344  * so_incomp for connections in progress and so_comp for connections already
3345  * made and awaiting user acceptance.  As a protocol is preparing incoming
3346  * connections, it creates a socket structure queued on so_incomp by calling
3347  * sonewconn().  When the connection is established, soisconnected() is
3348  * called, and transfers the socket structure to so_comp, making it available
3349  * to accept().
3350  *
3351  * If a socket is closed with sockets on either so_incomp or so_comp, these
3352  * sockets are dropped.
3353  *
3354  * If higher-level protocols are implemented in the kernel, the wakeups done
3355  * here will sometimes cause software-interrupt process scheduling.
3356  */
3357 void
3358 soisconnecting(struct socket *so)
3359 {
3360 
3361 	SOCK_LOCK(so);
3362 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
3363 	so->so_state |= SS_ISCONNECTING;
3364 	SOCK_UNLOCK(so);
3365 }
3366 
3367 void
3368 soisconnected(struct socket *so)
3369 {
3370 	struct socket *head;
3371 	int ret;
3372 
3373 restart:
3374 	ACCEPT_LOCK();
3375 	SOCK_LOCK(so);
3376 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
3377 	so->so_state |= SS_ISCONNECTED;
3378 	head = so->so_head;
3379 	if (head != NULL && (so->so_qstate & SQ_INCOMP)) {
3380 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
3381 			SOCK_UNLOCK(so);
3382 			TAILQ_REMOVE(&head->so_incomp, so, so_list);
3383 			head->so_incqlen--;
3384 			so->so_qstate &= ~SQ_INCOMP;
3385 			TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
3386 			head->so_qlen++;
3387 			so->so_qstate |= SQ_COMP;
3388 			ACCEPT_UNLOCK();
3389 			sorwakeup(head);
3390 			wakeup_one(&head->so_timeo);
3391 		} else {
3392 			ACCEPT_UNLOCK();
3393 			soupcall_set(so, SO_RCV,
3394 			    head->so_accf->so_accept_filter->accf_callback,
3395 			    head->so_accf->so_accept_filter_arg);
3396 			so->so_options &= ~SO_ACCEPTFILTER;
3397 			ret = head->so_accf->so_accept_filter->accf_callback(so,
3398 			    head->so_accf->so_accept_filter_arg, M_DONTWAIT);
3399 			if (ret == SU_ISCONNECTED)
3400 				soupcall_clear(so, SO_RCV);
3401 			SOCK_UNLOCK(so);
3402 			if (ret == SU_ISCONNECTED)
3403 				goto restart;
3404 		}
3405 		return;
3406 	}
3407 	SOCK_UNLOCK(so);
3408 	ACCEPT_UNLOCK();
3409 	wakeup(&so->so_timeo);
3410 	sorwakeup(so);
3411 	sowwakeup(so);
3412 }
3413 
3414 void
3415 soisdisconnecting(struct socket *so)
3416 {
3417 
3418 	/*
3419 	 * Note: This code assumes that SOCK_LOCK(so) and
3420 	 * SOCKBUF_LOCK(&so->so_rcv) are the same.
3421 	 */
3422 	SOCKBUF_LOCK(&so->so_rcv);
3423 	so->so_state &= ~SS_ISCONNECTING;
3424 	so->so_state |= SS_ISDISCONNECTING;
3425 	so->so_rcv.sb_state |= SBS_CANTRCVMORE;
3426 	sorwakeup_locked(so);
3427 	SOCKBUF_LOCK(&so->so_snd);
3428 	so->so_snd.sb_state |= SBS_CANTSENDMORE;
3429 	sowwakeup_locked(so);
3430 	wakeup(&so->so_timeo);
3431 }
3432 
3433 void
3434 soisdisconnected(struct socket *so)
3435 {
3436 
3437 	/*
3438 	 * Note: This code assumes that SOCK_LOCK(so) and
3439 	 * SOCKBUF_LOCK(&so->so_rcv) are the same.
3440 	 */
3441 	SOCKBUF_LOCK(&so->so_rcv);
3442 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
3443 	so->so_state |= SS_ISDISCONNECTED;
3444 	so->so_rcv.sb_state |= SBS_CANTRCVMORE;
3445 	sorwakeup_locked(so);
3446 	SOCKBUF_LOCK(&so->so_snd);
3447 	so->so_snd.sb_state |= SBS_CANTSENDMORE;
3448 	sbdrop_locked(&so->so_snd, so->so_snd.sb_cc);
3449 	sowwakeup_locked(so);
3450 	wakeup(&so->so_timeo);
3451 }
3452 
3453 /*
3454  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
3455  */
3456 struct sockaddr *
3457 sodupsockaddr(const struct sockaddr *sa, int mflags)
3458 {
3459 	struct sockaddr *sa2;
3460 
3461 	sa2 = malloc(sa->sa_len, M_SONAME, mflags);
3462 	if (sa2)
3463 		bcopy(sa, sa2, sa->sa_len);
3464 	return sa2;
3465 }
3466 
3467 /*
3468  * Register per-socket buffer upcalls.
3469  */
3470 void
3471 soupcall_set(struct socket *so, int which,
3472     int (*func)(struct socket *, void *, int), void *arg)
3473 {
3474 	struct sockbuf *sb;
3475 
3476 	switch (which) {
3477 	case SO_RCV:
3478 		sb = &so->so_rcv;
3479 		break;
3480 	case SO_SND:
3481 		sb = &so->so_snd;
3482 		break;
3483 	default:
3484 		panic("soupcall_set: bad which");
3485 	}
3486 	SOCKBUF_LOCK_ASSERT(sb);
3487 #if 0
3488 	/* XXX: accf_http actually wants to do this on purpose. */
3489 	KASSERT(sb->sb_upcall == NULL, ("soupcall_set: overwriting upcall"));
3490 #endif
3491 	sb->sb_upcall = func;
3492 	sb->sb_upcallarg = arg;
3493 	sb->sb_flags |= SB_UPCALL;
3494 }
3495 
3496 void
3497 soupcall_clear(struct socket *so, int which)
3498 {
3499 	struct sockbuf *sb;
3500 
3501 	switch (which) {
3502 	case SO_RCV:
3503 		sb = &so->so_rcv;
3504 		break;
3505 	case SO_SND:
3506 		sb = &so->so_snd;
3507 		break;
3508 	default:
3509 		panic("soupcall_clear: bad which");
3510 	}
3511 	SOCKBUF_LOCK_ASSERT(sb);
3512 	KASSERT(sb->sb_upcall != NULL, ("soupcall_clear: no upcall to clear"));
3513 	sb->sb_upcall = NULL;
3514 	sb->sb_upcallarg = NULL;
3515 	sb->sb_flags &= ~SB_UPCALL;
3516 }
3517 
3518 /*
3519  * Create an external-format (``xsocket'') structure using the information in
3520  * the kernel-format socket structure pointed to by so.  This is done to
3521  * reduce the spew of irrelevant information over this interface, to isolate
3522  * user code from changes in the kernel structure, and potentially to provide
3523  * information-hiding if we decide that some of this information should be
3524  * hidden from users.
3525  */
3526 void
3527 sotoxsocket(struct socket *so, struct xsocket *xso)
3528 {
3529 
3530 	xso->xso_len = sizeof *xso;
3531 	xso->xso_so = so;
3532 	xso->so_type = so->so_type;
3533 	xso->so_options = so->so_options;
3534 	xso->so_linger = so->so_linger;
3535 	xso->so_state = so->so_state;
3536 	xso->so_pcb = so->so_pcb;
3537 	xso->xso_protocol = so->so_proto->pr_protocol;
3538 	xso->xso_family = so->so_proto->pr_domain->dom_family;
3539 	xso->so_qlen = so->so_qlen;
3540 	xso->so_incqlen = so->so_incqlen;
3541 	xso->so_qlimit = so->so_qlimit;
3542 	xso->so_timeo = so->so_timeo;
3543 	xso->so_error = so->so_error;
3544 	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
3545 	xso->so_oobmark = so->so_oobmark;
3546 	sbtoxsockbuf(&so->so_snd, &xso->so_snd);
3547 	sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
3548 	xso->so_uid = so->so_cred->cr_uid;
3549 }
3550 
3551 
3552 /*
3553  * Socket accessor functions to provide external consumers with
3554  * a safe interface to socket state
3555  *
3556  */
3557 
3558 void
3559 so_listeners_apply_all(struct socket *so, void (*func)(struct socket *, void *), void *arg)
3560 {
3561 
3562 	TAILQ_FOREACH(so, &so->so_comp, so_list)
3563 		func(so, arg);
3564 }
3565 
3566 struct sockbuf *
3567 so_sockbuf_rcv(struct socket *so)
3568 {
3569 
3570 	return (&so->so_rcv);
3571 }
3572 
3573 struct sockbuf *
3574 so_sockbuf_snd(struct socket *so)
3575 {
3576 
3577 	return (&so->so_snd);
3578 }
3579 
3580 int
3581 so_state_get(const struct socket *so)
3582 {
3583 
3584 	return (so->so_state);
3585 }
3586 
3587 void
3588 so_state_set(struct socket *so, int val)
3589 {
3590 
3591 	so->so_state = val;
3592 }
3593 
3594 int
3595 so_options_get(const struct socket *so)
3596 {
3597 
3598 	return (so->so_options);
3599 }
3600 
3601 void
3602 so_options_set(struct socket *so, int val)
3603 {
3604 
3605 	so->so_options = val;
3606 }
3607 
3608 int
3609 so_error_get(const struct socket *so)
3610 {
3611 
3612 	return (so->so_error);
3613 }
3614 
3615 void
3616 so_error_set(struct socket *so, int val)
3617 {
3618 
3619 	so->so_error = val;
3620 }
3621 
3622 int
3623 so_linger_get(const struct socket *so)
3624 {
3625 
3626 	return (so->so_linger);
3627 }
3628 
3629 void
3630 so_linger_set(struct socket *so, int val)
3631 {
3632 
3633 	so->so_linger = val;
3634 }
3635 
3636 struct protosw *
3637 so_protosw_get(const struct socket *so)
3638 {
3639 
3640 	return (so->so_proto);
3641 }
3642 
3643 void
3644 so_protosw_set(struct socket *so, struct protosw *val)
3645 {
3646 
3647 	so->so_proto = val;
3648 }
3649 
3650 void
3651 so_sorwakeup(struct socket *so)
3652 {
3653 
3654 	sorwakeup(so);
3655 }
3656 
3657 void
3658 so_sowwakeup(struct socket *so)
3659 {
3660 
3661 	sowwakeup(so);
3662 }
3663 
3664 void
3665 so_sorwakeup_locked(struct socket *so)
3666 {
3667 
3668 	sorwakeup_locked(so);
3669 }
3670 
3671 void
3672 so_sowwakeup_locked(struct socket *so)
3673 {
3674 
3675 	sowwakeup_locked(so);
3676 }
3677 
3678 void
3679 so_lock(struct socket *so)
3680 {
3681 	SOCK_LOCK(so);
3682 }
3683 
3684 void
3685 so_unlock(struct socket *so)
3686 {
3687 	SOCK_UNLOCK(so);
3688 }
3689