1 /* 2 * Copyright (c) 2004 The FreeBSD Foundation 3 * Copyright (c) 2004 Robert Watson 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 4. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_inet.h" 38 #include "opt_mac.h" 39 #include "opt_zero.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/fcntl.h> 44 #include <sys/limits.h> 45 #include <sys/lock.h> 46 #include <sys/mac.h> 47 #include <sys/malloc.h> 48 #include <sys/mbuf.h> 49 #include <sys/mutex.h> 50 #include <sys/domain.h> 51 #include <sys/file.h> /* for struct knote */ 52 #include <sys/kernel.h> 53 #include <sys/event.h> 54 #include <sys/poll.h> 55 #include <sys/proc.h> 56 #include <sys/protosw.h> 57 #include <sys/socket.h> 58 #include <sys/socketvar.h> 59 #include <sys/resourcevar.h> 60 #include <sys/signalvar.h> 61 #include <sys/sysctl.h> 62 #include <sys/uio.h> 63 #include <sys/jail.h> 64 65 #include <vm/uma.h> 66 67 68 static int soreceive_rcvoob(struct socket *so, struct uio *uio, 69 int flags); 70 71 #ifdef INET 72 static int do_setopt_accept_filter(struct socket *so, struct sockopt *sopt); 73 #endif 74 75 static void filt_sordetach(struct knote *kn); 76 static int filt_soread(struct knote *kn, long hint); 77 static void filt_sowdetach(struct knote *kn); 78 static int filt_sowrite(struct knote *kn, long hint); 79 static int filt_solisten(struct knote *kn, long hint); 80 81 static struct filterops solisten_filtops = 82 { 1, NULL, filt_sordetach, filt_solisten }; 83 static struct filterops soread_filtops = 84 { 1, NULL, filt_sordetach, filt_soread }; 85 static struct filterops sowrite_filtops = 86 { 1, NULL, filt_sowdetach, filt_sowrite }; 87 88 uma_zone_t socket_zone; 89 so_gen_t so_gencnt; /* generation count for sockets */ 90 91 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 92 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 93 94 SYSCTL_DECL(_kern_ipc); 95 96 static int somaxconn = SOMAXCONN; 97 SYSCTL_INT(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLFLAG_RW, 98 &somaxconn, 0, "Maximum pending socket connection queue size"); 99 static int numopensockets; 100 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, 101 &numopensockets, 0, "Number of open sockets"); 102 #ifdef ZERO_COPY_SOCKETS 103 /* These aren't static because they're used in other files. */ 104 int so_zero_copy_send = 1; 105 int so_zero_copy_receive = 1; 106 SYSCTL_NODE(_kern_ipc, OID_AUTO, zero_copy, CTLFLAG_RD, 0, 107 "Zero copy controls"); 108 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, receive, CTLFLAG_RW, 109 &so_zero_copy_receive, 0, "Enable zero copy receive"); 110 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, send, CTLFLAG_RW, 111 &so_zero_copy_send, 0, "Enable zero copy send"); 112 #endif /* ZERO_COPY_SOCKETS */ 113 114 /* 115 * accept_mtx locks down per-socket fields relating to accept queues. See 116 * socketvar.h for an annotation of the protected fields of struct socket. 117 */ 118 struct mtx accept_mtx; 119 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF); 120 121 /* 122 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket 123 * so_gencnt field. 124 * 125 * XXXRW: These variables might be better manipulated using atomic operations 126 * for improved efficiency. 127 */ 128 static struct mtx so_global_mtx; 129 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); 130 131 /* 132 * Socket operation routines. 133 * These routines are called by the routines in 134 * sys_socket.c or from a system process, and 135 * implement the semantics of socket operations by 136 * switching out to the protocol specific routines. 137 */ 138 139 /* 140 * Get a socket structure from our zone, and initialize it. 141 * Note that it would probably be better to allocate socket 142 * and PCB at the same time, but I'm not convinced that all 143 * the protocols can be easily modified to do this. 144 * 145 * soalloc() returns a socket with a ref count of 0. 146 */ 147 struct socket * 148 soalloc(int mflags) 149 { 150 struct socket *so; 151 #ifdef MAC 152 int error; 153 #endif 154 155 so = uma_zalloc(socket_zone, mflags | M_ZERO); 156 if (so != NULL) { 157 #ifdef MAC 158 error = mac_init_socket(so, mflags); 159 if (error != 0) { 160 uma_zfree(socket_zone, so); 161 so = NULL; 162 return so; 163 } 164 #endif 165 SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd"); 166 SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv"); 167 /* sx_init(&so->so_sxlock, "socket sxlock"); */ 168 TAILQ_INIT(&so->so_aiojobq); 169 mtx_lock(&so_global_mtx); 170 so->so_gencnt = ++so_gencnt; 171 ++numopensockets; 172 mtx_unlock(&so_global_mtx); 173 } 174 return so; 175 } 176 177 /* 178 * socreate returns a socket with a ref count of 1. The socket should be 179 * closed with soclose(). 180 */ 181 int 182 socreate(dom, aso, type, proto, cred, td) 183 int dom; 184 struct socket **aso; 185 int type; 186 int proto; 187 struct ucred *cred; 188 struct thread *td; 189 { 190 struct protosw *prp; 191 struct socket *so; 192 int error; 193 194 if (proto) 195 prp = pffindproto(dom, proto, type); 196 else 197 prp = pffindtype(dom, type); 198 199 if (prp == NULL || prp->pr_usrreqs->pru_attach == NULL || 200 prp->pr_usrreqs->pru_attach == pru_attach_notsupp) 201 return (EPROTONOSUPPORT); 202 203 if (jailed(cred) && jail_socket_unixiproute_only && 204 prp->pr_domain->dom_family != PF_LOCAL && 205 prp->pr_domain->dom_family != PF_INET && 206 prp->pr_domain->dom_family != PF_ROUTE) { 207 return (EPROTONOSUPPORT); 208 } 209 210 if (prp->pr_type != type) 211 return (EPROTOTYPE); 212 so = soalloc(M_WAITOK); 213 if (so == NULL) 214 return (ENOBUFS); 215 216 TAILQ_INIT(&so->so_incomp); 217 TAILQ_INIT(&so->so_comp); 218 so->so_type = type; 219 so->so_cred = crhold(cred); 220 so->so_proto = prp; 221 #ifdef MAC 222 mac_create_socket(cred, so); 223 #endif 224 SOCK_LOCK(so); 225 knlist_init(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv)); 226 knlist_init(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd)); 227 soref(so); 228 SOCK_UNLOCK(so); 229 error = (*prp->pr_usrreqs->pru_attach)(so, proto, td); 230 if (error) { 231 ACCEPT_LOCK(); 232 SOCK_LOCK(so); 233 so->so_state |= SS_NOFDREF; 234 sorele(so); 235 return (error); 236 } 237 *aso = so; 238 return (0); 239 } 240 241 int 242 sobind(so, nam, td) 243 struct socket *so; 244 struct sockaddr *nam; 245 struct thread *td; 246 { 247 248 return ((*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td)); 249 } 250 251 void 252 sodealloc(struct socket *so) 253 { 254 255 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); 256 mtx_lock(&so_global_mtx); 257 so->so_gencnt = ++so_gencnt; 258 mtx_unlock(&so_global_mtx); 259 if (so->so_rcv.sb_hiwat) 260 (void)chgsbsize(so->so_cred->cr_uidinfo, 261 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 262 if (so->so_snd.sb_hiwat) 263 (void)chgsbsize(so->so_cred->cr_uidinfo, 264 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 265 #ifdef INET 266 /* remove acccept filter if one is present. */ 267 if (so->so_accf != NULL) 268 do_setopt_accept_filter(so, NULL); 269 #endif 270 #ifdef MAC 271 mac_destroy_socket(so); 272 #endif 273 crfree(so->so_cred); 274 SOCKBUF_LOCK_DESTROY(&so->so_snd); 275 SOCKBUF_LOCK_DESTROY(&so->so_rcv); 276 /* sx_destroy(&so->so_sxlock); */ 277 uma_zfree(socket_zone, so); 278 /* 279 * XXXRW: Seems like a shame to grab the mutex again down here, but 280 * we don't want to decrement the socket count until after we free 281 * the socket, and we can't increment the gencnt on the socket after 282 * we free, it so... 283 */ 284 mtx_lock(&so_global_mtx); 285 --numopensockets; 286 mtx_unlock(&so_global_mtx); 287 } 288 289 int 290 solisten(so, backlog, td) 291 struct socket *so; 292 int backlog; 293 struct thread *td; 294 { 295 int error; 296 297 /* 298 * XXXRW: Ordering issue here -- perhaps we need to set 299 * SO_ACCEPTCONN before the call to pru_listen()? 300 * XXXRW: General atomic test-and-set concerns here also. 301 */ 302 if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 303 SS_ISDISCONNECTING)) 304 return (EINVAL); 305 error = (*so->so_proto->pr_usrreqs->pru_listen)(so, td); 306 if (error) 307 return (error); 308 ACCEPT_LOCK(); 309 if (TAILQ_EMPTY(&so->so_comp)) { 310 SOCK_LOCK(so); 311 so->so_options |= SO_ACCEPTCONN; 312 SOCK_UNLOCK(so); 313 } 314 if (backlog < 0 || backlog > somaxconn) 315 backlog = somaxconn; 316 so->so_qlimit = backlog; 317 ACCEPT_UNLOCK(); 318 return (0); 319 } 320 321 /* 322 * Attempt to free a socket. This should really be sotryfree(). 323 * 324 * We free the socket if the protocol is no longer interested in the socket, 325 * there's no file descriptor reference, and the refcount is 0. While the 326 * calling macro sotryfree() tests the refcount, sofree() has to test it 327 * again as it's possible to race with an accept()ing thread if the socket is 328 * in an listen queue of a listen socket, as being in the listen queue 329 * doesn't elevate the reference count. sofree() acquires the accept mutex 330 * early for this test in order to avoid that race. 331 */ 332 void 333 sofree(so) 334 struct socket *so; 335 { 336 struct socket *head; 337 338 ACCEPT_LOCK_ASSERT(); 339 SOCK_LOCK_ASSERT(so); 340 341 if (so->so_pcb != NULL || (so->so_state & SS_NOFDREF) == 0 || 342 so->so_count != 0) { 343 SOCK_UNLOCK(so); 344 ACCEPT_UNLOCK(); 345 return; 346 } 347 348 head = so->so_head; 349 if (head != NULL) { 350 KASSERT((so->so_qstate & SQ_COMP) != 0 || 351 (so->so_qstate & SQ_INCOMP) != 0, 352 ("sofree: so_head != NULL, but neither SQ_COMP nor " 353 "SQ_INCOMP")); 354 KASSERT((so->so_qstate & SQ_COMP) == 0 || 355 (so->so_qstate & SQ_INCOMP) == 0, 356 ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP")); 357 /* 358 * accept(2) is responsible draining the completed 359 * connection queue and freeing those sockets, so 360 * we just return here if this socket is currently 361 * on the completed connection queue. Otherwise, 362 * accept(2) may hang after select(2) has indicating 363 * that a listening socket was ready. If it's an 364 * incomplete connection, we remove it from the queue 365 * and free it; otherwise, it won't be released until 366 * the listening socket is closed. 367 */ 368 if ((so->so_qstate & SQ_COMP) != 0) { 369 SOCK_UNLOCK(so); 370 ACCEPT_UNLOCK(); 371 return; 372 } 373 TAILQ_REMOVE(&head->so_incomp, so, so_list); 374 head->so_incqlen--; 375 so->so_qstate &= ~SQ_INCOMP; 376 so->so_head = NULL; 377 } 378 KASSERT((so->so_qstate & SQ_COMP) == 0 && 379 (so->so_qstate & SQ_INCOMP) == 0, 380 ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)", 381 so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP)); 382 SOCK_UNLOCK(so); 383 ACCEPT_UNLOCK(); 384 SOCKBUF_LOCK(&so->so_snd); 385 so->so_snd.sb_flags |= SB_NOINTR; 386 (void)sblock(&so->so_snd, M_WAITOK); 387 /* 388 * socantsendmore_locked() drops the socket buffer mutex so that it 389 * can safely perform wakeups. Re-acquire the mutex before 390 * continuing. 391 */ 392 socantsendmore_locked(so); 393 SOCKBUF_LOCK(&so->so_snd); 394 sbunlock(&so->so_snd); 395 sbrelease_locked(&so->so_snd, so); 396 SOCKBUF_UNLOCK(&so->so_snd); 397 sorflush(so); 398 knlist_destroy(&so->so_rcv.sb_sel.si_note); 399 knlist_destroy(&so->so_snd.sb_sel.si_note); 400 sodealloc(so); 401 } 402 403 /* 404 * Close a socket on last file table reference removal. 405 * Initiate disconnect if connected. 406 * Free socket when disconnect complete. 407 * 408 * This function will sorele() the socket. Note that soclose() may be 409 * called prior to the ref count reaching zero. The actual socket 410 * structure will not be freed until the ref count reaches zero. 411 */ 412 int 413 soclose(so) 414 struct socket *so; 415 { 416 int error = 0; 417 418 KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter")); 419 420 funsetown(&so->so_sigio); 421 if (so->so_options & SO_ACCEPTCONN) { 422 struct socket *sp; 423 ACCEPT_LOCK(); 424 while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) { 425 TAILQ_REMOVE(&so->so_incomp, sp, so_list); 426 so->so_incqlen--; 427 sp->so_qstate &= ~SQ_INCOMP; 428 sp->so_head = NULL; 429 ACCEPT_UNLOCK(); 430 (void) soabort(sp); 431 ACCEPT_LOCK(); 432 } 433 while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) { 434 TAILQ_REMOVE(&so->so_comp, sp, so_list); 435 so->so_qlen--; 436 sp->so_qstate &= ~SQ_COMP; 437 sp->so_head = NULL; 438 ACCEPT_UNLOCK(); 439 (void) soabort(sp); 440 ACCEPT_LOCK(); 441 } 442 ACCEPT_UNLOCK(); 443 } 444 if (so->so_pcb == NULL) 445 goto discard; 446 if (so->so_state & SS_ISCONNECTED) { 447 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 448 error = sodisconnect(so); 449 if (error) 450 goto drop; 451 } 452 if (so->so_options & SO_LINGER) { 453 if ((so->so_state & SS_ISDISCONNECTING) && 454 (so->so_state & SS_NBIO)) 455 goto drop; 456 while (so->so_state & SS_ISCONNECTED) { 457 error = tsleep(&so->so_timeo, 458 PSOCK | PCATCH, "soclos", so->so_linger * hz); 459 if (error) 460 break; 461 } 462 } 463 } 464 drop: 465 if (so->so_pcb != NULL) { 466 int error2 = (*so->so_proto->pr_usrreqs->pru_detach)(so); 467 if (error == 0) 468 error = error2; 469 } 470 discard: 471 ACCEPT_LOCK(); 472 SOCK_LOCK(so); 473 KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF")); 474 so->so_state |= SS_NOFDREF; 475 sorele(so); 476 return (error); 477 } 478 479 /* 480 * soabort() must not be called with any socket locks held, as it calls 481 * into the protocol, which will call back into the socket code causing 482 * it to acquire additional socket locks that may cause recursion or lock 483 * order reversals. 484 */ 485 int 486 soabort(so) 487 struct socket *so; 488 { 489 int error; 490 491 error = (*so->so_proto->pr_usrreqs->pru_abort)(so); 492 if (error) { 493 ACCEPT_LOCK(); 494 SOCK_LOCK(so); 495 sotryfree(so); /* note: does not decrement the ref count */ 496 return error; 497 } 498 return (0); 499 } 500 501 int 502 soaccept(so, nam) 503 struct socket *so; 504 struct sockaddr **nam; 505 { 506 int error; 507 508 SOCK_LOCK(so); 509 KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF")); 510 so->so_state &= ~SS_NOFDREF; 511 SOCK_UNLOCK(so); 512 error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam); 513 return (error); 514 } 515 516 int 517 soconnect(so, nam, td) 518 struct socket *so; 519 struct sockaddr *nam; 520 struct thread *td; 521 { 522 int error; 523 524 if (so->so_options & SO_ACCEPTCONN) 525 return (EOPNOTSUPP); 526 /* 527 * If protocol is connection-based, can only connect once. 528 * Otherwise, if connected, try to disconnect first. 529 * This allows user to disconnect by connecting to, e.g., 530 * a null address. 531 */ 532 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 533 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 534 (error = sodisconnect(so)))) 535 error = EISCONN; 536 else 537 error = (*so->so_proto->pr_usrreqs->pru_connect)(so, nam, td); 538 return (error); 539 } 540 541 int 542 soconnect2(so1, so2) 543 struct socket *so1; 544 struct socket *so2; 545 { 546 547 return ((*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2)); 548 } 549 550 int 551 sodisconnect(so) 552 struct socket *so; 553 { 554 int error; 555 556 if ((so->so_state & SS_ISCONNECTED) == 0) 557 return (ENOTCONN); 558 if (so->so_state & SS_ISDISCONNECTING) 559 return (EALREADY); 560 error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so); 561 return (error); 562 } 563 564 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK) 565 /* 566 * Send on a socket. 567 * If send must go all at once and message is larger than 568 * send buffering, then hard error. 569 * Lock against other senders. 570 * If must go all at once and not enough room now, then 571 * inform user that this would block and do nothing. 572 * Otherwise, if nonblocking, send as much as possible. 573 * The data to be sent is described by "uio" if nonzero, 574 * otherwise by the mbuf chain "top" (which must be null 575 * if uio is not). Data provided in mbuf chain must be small 576 * enough to send all at once. 577 * 578 * Returns nonzero on error, timeout or signal; callers 579 * must check for short counts if EINTR/ERESTART are returned. 580 * Data and control buffers are freed on return. 581 */ 582 583 #ifdef ZERO_COPY_SOCKETS 584 struct so_zerocopy_stats{ 585 int size_ok; 586 int align_ok; 587 int found_ifp; 588 }; 589 struct so_zerocopy_stats so_zerocp_stats = {0,0,0}; 590 #include <netinet/in.h> 591 #include <net/route.h> 592 #include <netinet/in_pcb.h> 593 #include <vm/vm.h> 594 #include <vm/vm_page.h> 595 #include <vm/vm_object.h> 596 #endif /*ZERO_COPY_SOCKETS*/ 597 598 int 599 sosend(so, addr, uio, top, control, flags, td) 600 struct socket *so; 601 struct sockaddr *addr; 602 struct uio *uio; 603 struct mbuf *top; 604 struct mbuf *control; 605 int flags; 606 struct thread *td; 607 { 608 struct mbuf **mp; 609 struct mbuf *m; 610 long space, len = 0, resid; 611 int clen = 0, error, dontroute; 612 int atomic = sosendallatonce(so) || top; 613 #ifdef ZERO_COPY_SOCKETS 614 int cow_send; 615 #endif /* ZERO_COPY_SOCKETS */ 616 617 if (uio != NULL) 618 resid = uio->uio_resid; 619 else 620 resid = top->m_pkthdr.len; 621 /* 622 * In theory resid should be unsigned. 623 * However, space must be signed, as it might be less than 0 624 * if we over-committed, and we must use a signed comparison 625 * of space and resid. On the other hand, a negative resid 626 * causes us to loop sending 0-length segments to the protocol. 627 * 628 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 629 * type sockets since that's an error. 630 */ 631 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 632 error = EINVAL; 633 goto out; 634 } 635 636 dontroute = 637 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 638 (so->so_proto->pr_flags & PR_ATOMIC); 639 if (td != NULL) 640 td->td_proc->p_stats->p_ru.ru_msgsnd++; 641 if (control != NULL) 642 clen = control->m_len; 643 #define snderr(errno) { error = (errno); goto release; } 644 645 SOCKBUF_LOCK(&so->so_snd); 646 restart: 647 SOCKBUF_LOCK_ASSERT(&so->so_snd); 648 error = sblock(&so->so_snd, SBLOCKWAIT(flags)); 649 if (error) 650 goto out_locked; 651 do { 652 SOCKBUF_LOCK_ASSERT(&so->so_snd); 653 if (so->so_snd.sb_state & SBS_CANTSENDMORE) 654 snderr(EPIPE); 655 if (so->so_error) { 656 error = so->so_error; 657 so->so_error = 0; 658 goto release; 659 } 660 if ((so->so_state & SS_ISCONNECTED) == 0) { 661 /* 662 * `sendto' and `sendmsg' is allowed on a connection- 663 * based socket if it supports implied connect. 664 * Return ENOTCONN if not connected and no address is 665 * supplied. 666 */ 667 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 668 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 669 if ((so->so_state & SS_ISCONFIRMING) == 0 && 670 !(resid == 0 && clen != 0)) 671 snderr(ENOTCONN); 672 } else if (addr == NULL) 673 snderr(so->so_proto->pr_flags & PR_CONNREQUIRED ? 674 ENOTCONN : EDESTADDRREQ); 675 } 676 space = sbspace(&so->so_snd); 677 if (flags & MSG_OOB) 678 space += 1024; 679 if ((atomic && resid > so->so_snd.sb_hiwat) || 680 clen > so->so_snd.sb_hiwat) 681 snderr(EMSGSIZE); 682 if (space < resid + clen && 683 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 684 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) 685 snderr(EWOULDBLOCK); 686 sbunlock(&so->so_snd); 687 error = sbwait(&so->so_snd); 688 if (error) 689 goto out_locked; 690 goto restart; 691 } 692 SOCKBUF_UNLOCK(&so->so_snd); 693 mp = ⊤ 694 space -= clen; 695 do { 696 if (uio == NULL) { 697 /* 698 * Data is prepackaged in "top". 699 */ 700 resid = 0; 701 if (flags & MSG_EOR) 702 top->m_flags |= M_EOR; 703 } else do { 704 #ifdef ZERO_COPY_SOCKETS 705 cow_send = 0; 706 #endif /* ZERO_COPY_SOCKETS */ 707 if (resid >= MINCLSIZE) { 708 #ifdef ZERO_COPY_SOCKETS 709 if (top == NULL) { 710 MGETHDR(m, M_TRYWAIT, MT_DATA); 711 if (m == NULL) { 712 error = ENOBUFS; 713 SOCKBUF_LOCK(&so->so_snd); 714 goto release; 715 } 716 m->m_pkthdr.len = 0; 717 m->m_pkthdr.rcvif = (struct ifnet *)0; 718 } else { 719 MGET(m, M_TRYWAIT, MT_DATA); 720 if (m == NULL) { 721 error = ENOBUFS; 722 SOCKBUF_LOCK(&so->so_snd); 723 goto release; 724 } 725 } 726 if (so_zero_copy_send && 727 resid>=PAGE_SIZE && 728 space>=PAGE_SIZE && 729 uio->uio_iov->iov_len>=PAGE_SIZE) { 730 so_zerocp_stats.size_ok++; 731 if (!((vm_offset_t) 732 uio->uio_iov->iov_base & PAGE_MASK)){ 733 so_zerocp_stats.align_ok++; 734 cow_send = socow_setup(m, uio); 735 } 736 } 737 if (!cow_send) { 738 MCLGET(m, M_TRYWAIT); 739 if ((m->m_flags & M_EXT) == 0) { 740 m_free(m); 741 m = NULL; 742 } else { 743 len = min(min(MCLBYTES, resid), space); 744 } 745 } else 746 len = PAGE_SIZE; 747 #else /* ZERO_COPY_SOCKETS */ 748 if (top == NULL) { 749 m = m_getcl(M_TRYWAIT, MT_DATA, M_PKTHDR); 750 m->m_pkthdr.len = 0; 751 m->m_pkthdr.rcvif = (struct ifnet *)0; 752 } else 753 m = m_getcl(M_TRYWAIT, MT_DATA, 0); 754 len = min(min(MCLBYTES, resid), space); 755 #endif /* ZERO_COPY_SOCKETS */ 756 } else { 757 if (top == NULL) { 758 m = m_gethdr(M_TRYWAIT, MT_DATA); 759 m->m_pkthdr.len = 0; 760 m->m_pkthdr.rcvif = (struct ifnet *)0; 761 762 len = min(min(MHLEN, resid), space); 763 /* 764 * For datagram protocols, leave room 765 * for protocol headers in first mbuf. 766 */ 767 if (atomic && m && len < MHLEN) 768 MH_ALIGN(m, len); 769 } else { 770 m = m_get(M_TRYWAIT, MT_DATA); 771 len = min(min(MLEN, resid), space); 772 } 773 } 774 if (m == NULL) { 775 error = ENOBUFS; 776 SOCKBUF_LOCK(&so->so_snd); 777 goto release; 778 } 779 780 space -= len; 781 #ifdef ZERO_COPY_SOCKETS 782 if (cow_send) 783 error = 0; 784 else 785 #endif /* ZERO_COPY_SOCKETS */ 786 error = uiomove(mtod(m, void *), (int)len, uio); 787 resid = uio->uio_resid; 788 m->m_len = len; 789 *mp = m; 790 top->m_pkthdr.len += len; 791 if (error) { 792 SOCKBUF_LOCK(&so->so_snd); 793 goto release; 794 } 795 mp = &m->m_next; 796 if (resid <= 0) { 797 if (flags & MSG_EOR) 798 top->m_flags |= M_EOR; 799 break; 800 } 801 } while (space > 0 && atomic); 802 if (dontroute) { 803 SOCK_LOCK(so); 804 so->so_options |= SO_DONTROUTE; 805 SOCK_UNLOCK(so); 806 } 807 /* 808 * XXX all the SBS_CANTSENDMORE checks previously 809 * done could be out of date. We could have recieved 810 * a reset packet in an interrupt or maybe we slept 811 * while doing page faults in uiomove() etc. We could 812 * probably recheck again inside the locking protection 813 * here, but there are probably other places that this 814 * also happens. We must rethink this. 815 */ 816 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 817 (flags & MSG_OOB) ? PRUS_OOB : 818 /* 819 * If the user set MSG_EOF, the protocol 820 * understands this flag and nothing left to 821 * send then use PRU_SEND_EOF instead of PRU_SEND. 822 */ 823 ((flags & MSG_EOF) && 824 (so->so_proto->pr_flags & PR_IMPLOPCL) && 825 (resid <= 0)) ? 826 PRUS_EOF : 827 /* If there is more to send set PRUS_MORETOCOME */ 828 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 829 top, addr, control, td); 830 if (dontroute) { 831 SOCK_LOCK(so); 832 so->so_options &= ~SO_DONTROUTE; 833 SOCK_UNLOCK(so); 834 } 835 clen = 0; 836 control = NULL; 837 top = NULL; 838 mp = ⊤ 839 if (error) { 840 SOCKBUF_LOCK(&so->so_snd); 841 goto release; 842 } 843 } while (resid && space > 0); 844 SOCKBUF_LOCK(&so->so_snd); 845 } while (resid); 846 847 release: 848 SOCKBUF_LOCK_ASSERT(&so->so_snd); 849 sbunlock(&so->so_snd); 850 out_locked: 851 SOCKBUF_LOCK_ASSERT(&so->so_snd); 852 SOCKBUF_UNLOCK(&so->so_snd); 853 out: 854 if (top != NULL) 855 m_freem(top); 856 if (control != NULL) 857 m_freem(control); 858 return (error); 859 } 860 861 /* 862 * The part of soreceive() that implements reading non-inline out-of-band 863 * data from a socket. For more complete comments, see soreceive(), from 864 * which this code originated. 865 * 866 * XXXRW: Note that soreceive_rcvoob(), unlike the remainder of soreiceve(), 867 * is unable to return an mbuf chain to the caller. 868 */ 869 static int 870 soreceive_rcvoob(so, uio, flags) 871 struct socket *so; 872 struct uio *uio; 873 int flags; 874 { 875 struct protosw *pr = so->so_proto; 876 struct mbuf *m; 877 int error; 878 879 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); 880 881 m = m_get(M_TRYWAIT, MT_DATA); 882 if (m == NULL) 883 return (ENOBUFS); 884 error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK); 885 if (error) 886 goto bad; 887 do { 888 #ifdef ZERO_COPY_SOCKETS 889 if (so_zero_copy_receive) { 890 vm_page_t pg; 891 int disposable; 892 893 if ((m->m_flags & M_EXT) 894 && (m->m_ext.ext_type == EXT_DISPOSABLE)) 895 disposable = 1; 896 else 897 disposable = 0; 898 899 pg = PHYS_TO_VM_PAGE(vtophys(mtod(m, caddr_t))); 900 if (uio->uio_offset == -1) 901 uio->uio_offset =IDX_TO_OFF(pg->pindex); 902 903 error = uiomoveco(mtod(m, void *), 904 min(uio->uio_resid, m->m_len), 905 uio, pg->object, 906 disposable); 907 } else 908 #endif /* ZERO_COPY_SOCKETS */ 909 error = uiomove(mtod(m, void *), 910 (int) min(uio->uio_resid, m->m_len), uio); 911 m = m_free(m); 912 } while (uio->uio_resid && error == 0 && m); 913 bad: 914 if (m != NULL) 915 m_freem(m); 916 return (error); 917 } 918 919 /* 920 * Following replacement or removal of the first mbuf on the first mbuf chain 921 * of a socket buffer, push necessary state changes back into the socket 922 * buffer so that other consumers see the values consistently. 'nextrecord' 923 * is the callers locally stored value of the original value of 924 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. 925 * NOTE: 'nextrecord' may be NULL. 926 */ 927 static __inline void 928 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) 929 { 930 931 SOCKBUF_LOCK_ASSERT(sb); 932 /* 933 * First, update for the new value of nextrecord. If necessary, make 934 * it the first record. 935 */ 936 if (sb->sb_mb != NULL) 937 sb->sb_mb->m_nextpkt = nextrecord; 938 else 939 sb->sb_mb = nextrecord; 940 941 /* 942 * Now update any dependent socket buffer fields to reflect the new 943 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the 944 * addition of a second clause that takes care of the case where 945 * sb_mb has been updated, but remains the last record. 946 */ 947 if (sb->sb_mb == NULL) { 948 sb->sb_mbtail = NULL; 949 sb->sb_lastrecord = NULL; 950 } else if (sb->sb_mb->m_nextpkt == NULL) 951 sb->sb_lastrecord = sb->sb_mb; 952 } 953 954 955 /* 956 * Implement receive operations on a socket. 957 * We depend on the way that records are added to the sockbuf 958 * by sbappend*. In particular, each record (mbufs linked through m_next) 959 * must begin with an address if the protocol so specifies, 960 * followed by an optional mbuf or mbufs containing ancillary data, 961 * and then zero or more mbufs of data. 962 * In order to avoid blocking network interrupts for the entire time here, 963 * we splx() while doing the actual copy to user space. 964 * Although the sockbuf is locked, new data may still be appended, 965 * and thus we must maintain consistency of the sockbuf during that time. 966 * 967 * The caller may receive the data as a single mbuf chain by supplying 968 * an mbuf **mp0 for use in returning the chain. The uio is then used 969 * only for the count in uio_resid. 970 */ 971 int 972 soreceive(so, psa, uio, mp0, controlp, flagsp) 973 struct socket *so; 974 struct sockaddr **psa; 975 struct uio *uio; 976 struct mbuf **mp0; 977 struct mbuf **controlp; 978 int *flagsp; 979 { 980 struct mbuf *m, **mp; 981 int flags, len, error, offset; 982 struct protosw *pr = so->so_proto; 983 struct mbuf *nextrecord; 984 int moff, type = 0; 985 int orig_resid = uio->uio_resid; 986 987 mp = mp0; 988 if (psa != NULL) 989 *psa = NULL; 990 if (controlp != NULL) 991 *controlp = NULL; 992 if (flagsp != NULL) 993 flags = *flagsp &~ MSG_EOR; 994 else 995 flags = 0; 996 if (flags & MSG_OOB) 997 return (soreceive_rcvoob(so, uio, flags)); 998 if (mp != NULL) 999 *mp = NULL; 1000 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid) 1001 (*pr->pr_usrreqs->pru_rcvd)(so, 0); 1002 1003 SOCKBUF_LOCK(&so->so_rcv); 1004 restart: 1005 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1006 error = sblock(&so->so_rcv, SBLOCKWAIT(flags)); 1007 if (error) 1008 goto out; 1009 1010 m = so->so_rcv.sb_mb; 1011 /* 1012 * If we have less data than requested, block awaiting more 1013 * (subject to any timeout) if: 1014 * 1. the current count is less than the low water mark, or 1015 * 2. MSG_WAITALL is set, and it is possible to do the entire 1016 * receive operation at once if we block (resid <= hiwat). 1017 * 3. MSG_DONTWAIT is not set 1018 * If MSG_WAITALL is set but resid is larger than the receive buffer, 1019 * we have to do the receive in sections, and thus risk returning 1020 * a short count if a timeout or signal occurs after we start. 1021 */ 1022 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 1023 so->so_rcv.sb_cc < uio->uio_resid) && 1024 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat || 1025 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) && 1026 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 1027 KASSERT(m != NULL || !so->so_rcv.sb_cc, 1028 ("receive: m == %p so->so_rcv.sb_cc == %u", 1029 m, so->so_rcv.sb_cc)); 1030 if (so->so_error) { 1031 if (m != NULL) 1032 goto dontblock; 1033 error = so->so_error; 1034 if ((flags & MSG_PEEK) == 0) 1035 so->so_error = 0; 1036 goto release; 1037 } 1038 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1039 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 1040 if (m) 1041 goto dontblock; 1042 else 1043 goto release; 1044 } 1045 for (; m != NULL; m = m->m_next) 1046 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 1047 m = so->so_rcv.sb_mb; 1048 goto dontblock; 1049 } 1050 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 1051 (so->so_proto->pr_flags & PR_CONNREQUIRED)) { 1052 error = ENOTCONN; 1053 goto release; 1054 } 1055 if (uio->uio_resid == 0) 1056 goto release; 1057 if ((so->so_state & SS_NBIO) || 1058 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 1059 error = EWOULDBLOCK; 1060 goto release; 1061 } 1062 SBLASTRECORDCHK(&so->so_rcv); 1063 SBLASTMBUFCHK(&so->so_rcv); 1064 sbunlock(&so->so_rcv); 1065 error = sbwait(&so->so_rcv); 1066 if (error) 1067 goto out; 1068 goto restart; 1069 } 1070 dontblock: 1071 /* 1072 * From this point onward, we maintain 'nextrecord' as a cache of the 1073 * pointer to the next record in the socket buffer. We must keep the 1074 * various socket buffer pointers and local stack versions of the 1075 * pointers in sync, pushing out modifications before dropping the 1076 * socket buffer mutex, and re-reading them when picking it up. 1077 * 1078 * Otherwise, we will race with the network stack appending new data 1079 * or records onto the socket buffer by using inconsistent/stale 1080 * versions of the field, possibly resulting in socket buffer 1081 * corruption. 1082 * 1083 * By holding the high-level sblock(), we prevent simultaneous 1084 * readers from pulling off the front of the socket buffer. 1085 */ 1086 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1087 if (uio->uio_td) 1088 uio->uio_td->td_proc->p_stats->p_ru.ru_msgrcv++; 1089 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); 1090 SBLASTRECORDCHK(&so->so_rcv); 1091 SBLASTMBUFCHK(&so->so_rcv); 1092 nextrecord = m->m_nextpkt; 1093 if (pr->pr_flags & PR_ADDR) { 1094 KASSERT(m->m_type == MT_SONAME, 1095 ("m->m_type == %d", m->m_type)); 1096 orig_resid = 0; 1097 if (psa != NULL) 1098 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 1099 M_NOWAIT); 1100 if (flags & MSG_PEEK) { 1101 m = m->m_next; 1102 } else { 1103 sbfree(&so->so_rcv, m); 1104 so->so_rcv.sb_mb = m_free(m); 1105 m = so->so_rcv.sb_mb; 1106 sockbuf_pushsync(&so->so_rcv, nextrecord); 1107 } 1108 } 1109 1110 /* 1111 * Process one or more MT_CONTROL mbufs present before any data mbufs 1112 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 1113 * just copy the data; if !MSG_PEEK, we call into the protocol to 1114 * perform externalization (or freeing if controlp == NULL). 1115 */ 1116 if (m != NULL && m->m_type == MT_CONTROL) { 1117 struct mbuf *cm = NULL, *cmn; 1118 struct mbuf **cme = &cm; 1119 1120 do { 1121 if (flags & MSG_PEEK) { 1122 if (controlp != NULL) { 1123 *controlp = m_copy(m, 0, m->m_len); 1124 controlp = &(*controlp)->m_next; 1125 } 1126 m = m->m_next; 1127 } else { 1128 sbfree(&so->so_rcv, m); 1129 so->so_rcv.sb_mb = m->m_next; 1130 m->m_next = NULL; 1131 *cme = m; 1132 cme = &(*cme)->m_next; 1133 m = so->so_rcv.sb_mb; 1134 } 1135 } while (m != NULL && m->m_type == MT_CONTROL); 1136 if ((flags & MSG_PEEK) == 0) 1137 sockbuf_pushsync(&so->so_rcv, nextrecord); 1138 while (cm != NULL) { 1139 cmn = cm->m_next; 1140 cm->m_next = NULL; 1141 if (pr->pr_domain->dom_externalize != NULL) { 1142 SOCKBUF_UNLOCK(&so->so_rcv); 1143 error = (*pr->pr_domain->dom_externalize) 1144 (cm, controlp); 1145 SOCKBUF_LOCK(&so->so_rcv); 1146 } else if (controlp != NULL) 1147 *controlp = cm; 1148 else 1149 m_freem(cm); 1150 if (controlp != NULL) { 1151 orig_resid = 0; 1152 while (*controlp != NULL) 1153 controlp = &(*controlp)->m_next; 1154 } 1155 cm = cmn; 1156 } 1157 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 1158 orig_resid = 0; 1159 } 1160 if (m != NULL) { 1161 if ((flags & MSG_PEEK) == 0) { 1162 KASSERT(m->m_nextpkt == nextrecord, 1163 ("soreceive: post-control, nextrecord !sync")); 1164 if (nextrecord == NULL) { 1165 KASSERT(so->so_rcv.sb_mb == m, 1166 ("soreceive: post-control, sb_mb!=m")); 1167 KASSERT(so->so_rcv.sb_lastrecord == m, 1168 ("soreceive: post-control, lastrecord!=m")); 1169 } 1170 } 1171 type = m->m_type; 1172 if (type == MT_OOBDATA) 1173 flags |= MSG_OOB; 1174 } else { 1175 if ((flags & MSG_PEEK) == 0) { 1176 KASSERT(so->so_rcv.sb_mb == nextrecord, 1177 ("soreceive: sb_mb != nextrecord")); 1178 if (so->so_rcv.sb_mb == NULL) { 1179 KASSERT(so->so_rcv.sb_lastrecord == NULL, 1180 ("soreceive: sb_lastercord != NULL")); 1181 } 1182 } 1183 } 1184 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1185 SBLASTRECORDCHK(&so->so_rcv); 1186 SBLASTMBUFCHK(&so->so_rcv); 1187 1188 /* 1189 * Now continue to read any data mbufs off of the head of the socket 1190 * buffer until the read request is satisfied. Note that 'type' is 1191 * used to store the type of any mbuf reads that have happened so far 1192 * such that soreceive() can stop reading if the type changes, which 1193 * causes soreceive() to return only one of regular data and inline 1194 * out-of-band data in a single socket receive operation. 1195 */ 1196 moff = 0; 1197 offset = 0; 1198 while (m != NULL && uio->uio_resid > 0 && error == 0) { 1199 /* 1200 * If the type of mbuf has changed since the last mbuf 1201 * examined ('type'), end the receive operation. 1202 */ 1203 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1204 if (m->m_type == MT_OOBDATA) { 1205 if (type != MT_OOBDATA) 1206 break; 1207 } else if (type == MT_OOBDATA) 1208 break; 1209 else 1210 KASSERT(m->m_type == MT_DATA || m->m_type == MT_HEADER, 1211 ("m->m_type == %d", m->m_type)); 1212 so->so_rcv.sb_state &= ~SBS_RCVATMARK; 1213 len = uio->uio_resid; 1214 if (so->so_oobmark && len > so->so_oobmark - offset) 1215 len = so->so_oobmark - offset; 1216 if (len > m->m_len - moff) 1217 len = m->m_len - moff; 1218 /* 1219 * If mp is set, just pass back the mbufs. 1220 * Otherwise copy them out via the uio, then free. 1221 * Sockbuf must be consistent here (points to current mbuf, 1222 * it points to next record) when we drop priority; 1223 * we must note any additions to the sockbuf when we 1224 * block interrupts again. 1225 */ 1226 if (mp == NULL) { 1227 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1228 SBLASTRECORDCHK(&so->so_rcv); 1229 SBLASTMBUFCHK(&so->so_rcv); 1230 SOCKBUF_UNLOCK(&so->so_rcv); 1231 #ifdef ZERO_COPY_SOCKETS 1232 if (so_zero_copy_receive) { 1233 vm_page_t pg; 1234 int disposable; 1235 1236 if ((m->m_flags & M_EXT) 1237 && (m->m_ext.ext_type == EXT_DISPOSABLE)) 1238 disposable = 1; 1239 else 1240 disposable = 0; 1241 1242 pg = PHYS_TO_VM_PAGE(vtophys(mtod(m, caddr_t) + 1243 moff)); 1244 1245 if (uio->uio_offset == -1) 1246 uio->uio_offset =IDX_TO_OFF(pg->pindex); 1247 1248 error = uiomoveco(mtod(m, char *) + moff, 1249 (int)len, uio,pg->object, 1250 disposable); 1251 } else 1252 #endif /* ZERO_COPY_SOCKETS */ 1253 error = uiomove(mtod(m, char *) + moff, (int)len, uio); 1254 SOCKBUF_LOCK(&so->so_rcv); 1255 if (error) 1256 goto release; 1257 } else 1258 uio->uio_resid -= len; 1259 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1260 if (len == m->m_len - moff) { 1261 if (m->m_flags & M_EOR) 1262 flags |= MSG_EOR; 1263 if (flags & MSG_PEEK) { 1264 m = m->m_next; 1265 moff = 0; 1266 } else { 1267 nextrecord = m->m_nextpkt; 1268 sbfree(&so->so_rcv, m); 1269 if (mp != NULL) { 1270 *mp = m; 1271 mp = &m->m_next; 1272 so->so_rcv.sb_mb = m = m->m_next; 1273 *mp = NULL; 1274 } else { 1275 so->so_rcv.sb_mb = m_free(m); 1276 m = so->so_rcv.sb_mb; 1277 } 1278 if (m != NULL) { 1279 m->m_nextpkt = nextrecord; 1280 if (nextrecord == NULL) 1281 so->so_rcv.sb_lastrecord = m; 1282 } else { 1283 so->so_rcv.sb_mb = nextrecord; 1284 SB_EMPTY_FIXUP(&so->so_rcv); 1285 } 1286 SBLASTRECORDCHK(&so->so_rcv); 1287 SBLASTMBUFCHK(&so->so_rcv); 1288 } 1289 } else { 1290 if (flags & MSG_PEEK) 1291 moff += len; 1292 else { 1293 if (mp != NULL) { 1294 SOCKBUF_UNLOCK(&so->so_rcv); 1295 *mp = m_copym(m, 0, len, M_TRYWAIT); 1296 SOCKBUF_LOCK(&so->so_rcv); 1297 } 1298 m->m_data += len; 1299 m->m_len -= len; 1300 so->so_rcv.sb_cc -= len; 1301 } 1302 } 1303 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1304 if (so->so_oobmark) { 1305 if ((flags & MSG_PEEK) == 0) { 1306 so->so_oobmark -= len; 1307 if (so->so_oobmark == 0) { 1308 so->so_rcv.sb_state |= SBS_RCVATMARK; 1309 break; 1310 } 1311 } else { 1312 offset += len; 1313 if (offset == so->so_oobmark) 1314 break; 1315 } 1316 } 1317 if (flags & MSG_EOR) 1318 break; 1319 /* 1320 * If the MSG_WAITALL flag is set (for non-atomic socket), 1321 * we must not quit until "uio->uio_resid == 0" or an error 1322 * termination. If a signal/timeout occurs, return 1323 * with a short count but without error. 1324 * Keep sockbuf locked against other readers. 1325 */ 1326 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 1327 !sosendallatonce(so) && nextrecord == NULL) { 1328 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1329 if (so->so_error || so->so_rcv.sb_state & SBS_CANTRCVMORE) 1330 break; 1331 /* 1332 * Notify the protocol that some data has been 1333 * drained before blocking. 1334 */ 1335 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb != NULL) { 1336 SOCKBUF_UNLOCK(&so->so_rcv); 1337 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 1338 SOCKBUF_LOCK(&so->so_rcv); 1339 } 1340 SBLASTRECORDCHK(&so->so_rcv); 1341 SBLASTMBUFCHK(&so->so_rcv); 1342 error = sbwait(&so->so_rcv); 1343 if (error) 1344 goto release; 1345 m = so->so_rcv.sb_mb; 1346 if (m != NULL) 1347 nextrecord = m->m_nextpkt; 1348 } 1349 } 1350 1351 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1352 if (m != NULL && pr->pr_flags & PR_ATOMIC) { 1353 flags |= MSG_TRUNC; 1354 if ((flags & MSG_PEEK) == 0) 1355 (void) sbdroprecord_locked(&so->so_rcv); 1356 } 1357 if ((flags & MSG_PEEK) == 0) { 1358 if (m == NULL) { 1359 /* 1360 * First part is an inline SB_EMPTY_FIXUP(). Second 1361 * part makes sure sb_lastrecord is up-to-date if 1362 * there is still data in the socket buffer. 1363 */ 1364 so->so_rcv.sb_mb = nextrecord; 1365 if (so->so_rcv.sb_mb == NULL) { 1366 so->so_rcv.sb_mbtail = NULL; 1367 so->so_rcv.sb_lastrecord = NULL; 1368 } else if (nextrecord->m_nextpkt == NULL) 1369 so->so_rcv.sb_lastrecord = nextrecord; 1370 } 1371 SBLASTRECORDCHK(&so->so_rcv); 1372 SBLASTMBUFCHK(&so->so_rcv); 1373 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb) { 1374 SOCKBUF_UNLOCK(&so->so_rcv); 1375 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 1376 SOCKBUF_LOCK(&so->so_rcv); 1377 } 1378 } 1379 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1380 if (orig_resid == uio->uio_resid && orig_resid && 1381 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { 1382 sbunlock(&so->so_rcv); 1383 goto restart; 1384 } 1385 1386 if (flagsp != NULL) 1387 *flagsp |= flags; 1388 release: 1389 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1390 sbunlock(&so->so_rcv); 1391 out: 1392 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1393 SOCKBUF_UNLOCK(&so->so_rcv); 1394 return (error); 1395 } 1396 1397 int 1398 soshutdown(so, how) 1399 struct socket *so; 1400 int how; 1401 { 1402 struct protosw *pr = so->so_proto; 1403 1404 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 1405 return (EINVAL); 1406 1407 if (how != SHUT_WR) 1408 sorflush(so); 1409 if (how != SHUT_RD) 1410 return ((*pr->pr_usrreqs->pru_shutdown)(so)); 1411 return (0); 1412 } 1413 1414 void 1415 sorflush(so) 1416 struct socket *so; 1417 { 1418 struct sockbuf *sb = &so->so_rcv; 1419 struct protosw *pr = so->so_proto; 1420 struct sockbuf asb; 1421 1422 /* 1423 * XXXRW: This is quite ugly. The existing code made a copy of the 1424 * socket buffer, then zero'd the original to clear the buffer 1425 * fields. However, with mutexes in the socket buffer, this causes 1426 * problems. We only clear the zeroable bits of the original; 1427 * however, we have to initialize and destroy the mutex in the copy 1428 * so that dom_dispose() and sbrelease() can lock t as needed. 1429 */ 1430 SOCKBUF_LOCK(sb); 1431 sb->sb_flags |= SB_NOINTR; 1432 (void) sblock(sb, M_WAITOK); 1433 /* 1434 * socantrcvmore_locked() drops the socket buffer mutex so that it 1435 * can safely perform wakeups. Re-acquire the mutex before 1436 * continuing. 1437 */ 1438 socantrcvmore_locked(so); 1439 SOCKBUF_LOCK(sb); 1440 sbunlock(sb); 1441 /* 1442 * Invalidate/clear most of the sockbuf structure, but leave 1443 * selinfo and mutex data unchanged. 1444 */ 1445 bzero(&asb, offsetof(struct sockbuf, sb_startzero)); 1446 bcopy(&sb->sb_startzero, &asb.sb_startzero, 1447 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 1448 bzero(&sb->sb_startzero, 1449 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 1450 SOCKBUF_UNLOCK(sb); 1451 1452 SOCKBUF_LOCK_INIT(&asb, "so_rcv"); 1453 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 1454 (*pr->pr_domain->dom_dispose)(asb.sb_mb); 1455 sbrelease(&asb, so); 1456 SOCKBUF_LOCK_DESTROY(&asb); 1457 } 1458 1459 #ifdef INET 1460 static int 1461 do_setopt_accept_filter(so, sopt) 1462 struct socket *so; 1463 struct sockopt *sopt; 1464 { 1465 struct accept_filter_arg *afap; 1466 struct accept_filter *afp; 1467 struct so_accf *newaf; 1468 int error = 0; 1469 1470 newaf = NULL; 1471 afap = NULL; 1472 1473 /* 1474 * XXXRW: Configuring accept filters should be an atomic test-and-set 1475 * operation to prevent races during setup and attach. There may be 1476 * more general issues of racing and ordering here that are not yet 1477 * addressed by locking. 1478 */ 1479 /* do not set/remove accept filters on non listen sockets */ 1480 SOCK_LOCK(so); 1481 if ((so->so_options & SO_ACCEPTCONN) == 0) { 1482 SOCK_UNLOCK(so); 1483 return (EINVAL); 1484 } 1485 1486 /* removing the filter */ 1487 if (sopt == NULL) { 1488 if (so->so_accf != NULL) { 1489 struct so_accf *af = so->so_accf; 1490 if (af->so_accept_filter != NULL && 1491 af->so_accept_filter->accf_destroy != NULL) { 1492 af->so_accept_filter->accf_destroy(so); 1493 } 1494 if (af->so_accept_filter_str != NULL) { 1495 FREE(af->so_accept_filter_str, M_ACCF); 1496 } 1497 FREE(af, M_ACCF); 1498 so->so_accf = NULL; 1499 } 1500 so->so_options &= ~SO_ACCEPTFILTER; 1501 SOCK_UNLOCK(so); 1502 return (0); 1503 } 1504 SOCK_UNLOCK(so); 1505 1506 /*- 1507 * Adding a filter. 1508 * 1509 * Do memory allocation, copyin, and filter lookup now while we're 1510 * not holding any locks. Avoids sleeping with a mutex, as well as 1511 * introducing a lock order between accept filter locks and socket 1512 * locks here. 1513 */ 1514 MALLOC(afap, struct accept_filter_arg *, sizeof(*afap), M_TEMP, 1515 M_WAITOK); 1516 /* don't put large objects on the kernel stack */ 1517 error = sooptcopyin(sopt, afap, sizeof *afap, sizeof *afap); 1518 afap->af_name[sizeof(afap->af_name)-1] = '\0'; 1519 afap->af_arg[sizeof(afap->af_arg)-1] = '\0'; 1520 if (error) { 1521 FREE(afap, M_TEMP); 1522 return (error); 1523 } 1524 afp = accept_filt_get(afap->af_name); 1525 if (afp == NULL) { 1526 FREE(afap, M_TEMP); 1527 return (ENOENT); 1528 } 1529 1530 /* 1531 * Allocate the new accept filter instance storage. We may have to 1532 * free it again later if we fail to attach it. If attached 1533 * properly, 'newaf' is NULLed to avoid a free() while in use. 1534 */ 1535 MALLOC(newaf, struct so_accf *, sizeof(*newaf), M_ACCF, M_WAITOK | 1536 M_ZERO); 1537 if (afp->accf_create != NULL && afap->af_name[0] != '\0') { 1538 int len = strlen(afap->af_name) + 1; 1539 MALLOC(newaf->so_accept_filter_str, char *, len, M_ACCF, 1540 M_WAITOK); 1541 strcpy(newaf->so_accept_filter_str, afap->af_name); 1542 } 1543 1544 SOCK_LOCK(so); 1545 /* must remove previous filter first */ 1546 if (so->so_accf != NULL) { 1547 error = EINVAL; 1548 goto out; 1549 } 1550 /* 1551 * Invoke the accf_create() method of the filter if required. 1552 * XXXRW: the socket mutex is held over this call, so the create 1553 * method cannot block. This may be something we have to change, but 1554 * it would require addressing possible races. 1555 */ 1556 if (afp->accf_create != NULL) { 1557 newaf->so_accept_filter_arg = 1558 afp->accf_create(so, afap->af_arg); 1559 if (newaf->so_accept_filter_arg == NULL) { 1560 error = EINVAL; 1561 goto out; 1562 } 1563 } 1564 newaf->so_accept_filter = afp; 1565 so->so_accf = newaf; 1566 so->so_options |= SO_ACCEPTFILTER; 1567 newaf = NULL; 1568 out: 1569 SOCK_UNLOCK(so); 1570 if (newaf != NULL) { 1571 if (newaf->so_accept_filter_str != NULL) 1572 FREE(newaf->so_accept_filter_str, M_ACCF); 1573 FREE(newaf, M_ACCF); 1574 } 1575 if (afap != NULL) 1576 FREE(afap, M_TEMP); 1577 return (error); 1578 } 1579 #endif /* INET */ 1580 1581 /* 1582 * Perhaps this routine, and sooptcopyout(), below, ought to come in 1583 * an additional variant to handle the case where the option value needs 1584 * to be some kind of integer, but not a specific size. 1585 * In addition to their use here, these functions are also called by the 1586 * protocol-level pr_ctloutput() routines. 1587 */ 1588 int 1589 sooptcopyin(sopt, buf, len, minlen) 1590 struct sockopt *sopt; 1591 void *buf; 1592 size_t len; 1593 size_t minlen; 1594 { 1595 size_t valsize; 1596 1597 /* 1598 * If the user gives us more than we wanted, we ignore it, 1599 * but if we don't get the minimum length the caller 1600 * wants, we return EINVAL. On success, sopt->sopt_valsize 1601 * is set to however much we actually retrieved. 1602 */ 1603 if ((valsize = sopt->sopt_valsize) < minlen) 1604 return EINVAL; 1605 if (valsize > len) 1606 sopt->sopt_valsize = valsize = len; 1607 1608 if (sopt->sopt_td != NULL) 1609 return (copyin(sopt->sopt_val, buf, valsize)); 1610 1611 bcopy(sopt->sopt_val, buf, valsize); 1612 return 0; 1613 } 1614 1615 /* 1616 * Kernel version of setsockopt(2)/ 1617 * XXX: optlen is size_t, not socklen_t 1618 */ 1619 int 1620 so_setsockopt(struct socket *so, int level, int optname, void *optval, 1621 size_t optlen) 1622 { 1623 struct sockopt sopt; 1624 1625 sopt.sopt_level = level; 1626 sopt.sopt_name = optname; 1627 sopt.sopt_dir = SOPT_SET; 1628 sopt.sopt_val = optval; 1629 sopt.sopt_valsize = optlen; 1630 sopt.sopt_td = NULL; 1631 return (sosetopt(so, &sopt)); 1632 } 1633 1634 int 1635 sosetopt(so, sopt) 1636 struct socket *so; 1637 struct sockopt *sopt; 1638 { 1639 int error, optval; 1640 struct linger l; 1641 struct timeval tv; 1642 u_long val; 1643 #ifdef MAC 1644 struct mac extmac; 1645 #endif 1646 1647 error = 0; 1648 if (sopt->sopt_level != SOL_SOCKET) { 1649 if (so->so_proto && so->so_proto->pr_ctloutput) 1650 return ((*so->so_proto->pr_ctloutput) 1651 (so, sopt)); 1652 error = ENOPROTOOPT; 1653 } else { 1654 switch (sopt->sopt_name) { 1655 #ifdef INET 1656 case SO_ACCEPTFILTER: 1657 error = do_setopt_accept_filter(so, sopt); 1658 if (error) 1659 goto bad; 1660 break; 1661 #endif 1662 case SO_LINGER: 1663 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 1664 if (error) 1665 goto bad; 1666 1667 SOCK_LOCK(so); 1668 so->so_linger = l.l_linger; 1669 if (l.l_onoff) 1670 so->so_options |= SO_LINGER; 1671 else 1672 so->so_options &= ~SO_LINGER; 1673 SOCK_UNLOCK(so); 1674 break; 1675 1676 case SO_DEBUG: 1677 case SO_KEEPALIVE: 1678 case SO_DONTROUTE: 1679 case SO_USELOOPBACK: 1680 case SO_BROADCAST: 1681 case SO_REUSEADDR: 1682 case SO_REUSEPORT: 1683 case SO_OOBINLINE: 1684 case SO_TIMESTAMP: 1685 case SO_BINTIME: 1686 case SO_NOSIGPIPE: 1687 error = sooptcopyin(sopt, &optval, sizeof optval, 1688 sizeof optval); 1689 if (error) 1690 goto bad; 1691 SOCK_LOCK(so); 1692 if (optval) 1693 so->so_options |= sopt->sopt_name; 1694 else 1695 so->so_options &= ~sopt->sopt_name; 1696 SOCK_UNLOCK(so); 1697 break; 1698 1699 case SO_SNDBUF: 1700 case SO_RCVBUF: 1701 case SO_SNDLOWAT: 1702 case SO_RCVLOWAT: 1703 error = sooptcopyin(sopt, &optval, sizeof optval, 1704 sizeof optval); 1705 if (error) 1706 goto bad; 1707 1708 /* 1709 * Values < 1 make no sense for any of these 1710 * options, so disallow them. 1711 */ 1712 if (optval < 1) { 1713 error = EINVAL; 1714 goto bad; 1715 } 1716 1717 switch (sopt->sopt_name) { 1718 case SO_SNDBUF: 1719 case SO_RCVBUF: 1720 if (sbreserve(sopt->sopt_name == SO_SNDBUF ? 1721 &so->so_snd : &so->so_rcv, (u_long)optval, 1722 so, curthread) == 0) { 1723 error = ENOBUFS; 1724 goto bad; 1725 } 1726 break; 1727 1728 /* 1729 * Make sure the low-water is never greater than 1730 * the high-water. 1731 */ 1732 case SO_SNDLOWAT: 1733 SOCKBUF_LOCK(&so->so_snd); 1734 so->so_snd.sb_lowat = 1735 (optval > so->so_snd.sb_hiwat) ? 1736 so->so_snd.sb_hiwat : optval; 1737 SOCKBUF_UNLOCK(&so->so_snd); 1738 break; 1739 case SO_RCVLOWAT: 1740 SOCKBUF_LOCK(&so->so_rcv); 1741 so->so_rcv.sb_lowat = 1742 (optval > so->so_rcv.sb_hiwat) ? 1743 so->so_rcv.sb_hiwat : optval; 1744 SOCKBUF_UNLOCK(&so->so_rcv); 1745 break; 1746 } 1747 break; 1748 1749 case SO_SNDTIMEO: 1750 case SO_RCVTIMEO: 1751 error = sooptcopyin(sopt, &tv, sizeof tv, 1752 sizeof tv); 1753 if (error) 1754 goto bad; 1755 1756 /* assert(hz > 0); */ 1757 if (tv.tv_sec < 0 || tv.tv_sec > SHRT_MAX / hz || 1758 tv.tv_usec < 0 || tv.tv_usec >= 1000000) { 1759 error = EDOM; 1760 goto bad; 1761 } 1762 /* assert(tick > 0); */ 1763 /* assert(ULONG_MAX - SHRT_MAX >= 1000000); */ 1764 val = (u_long)(tv.tv_sec * hz) + tv.tv_usec / tick; 1765 if (val > SHRT_MAX) { 1766 error = EDOM; 1767 goto bad; 1768 } 1769 if (val == 0 && tv.tv_usec != 0) 1770 val = 1; 1771 1772 switch (sopt->sopt_name) { 1773 case SO_SNDTIMEO: 1774 so->so_snd.sb_timeo = val; 1775 break; 1776 case SO_RCVTIMEO: 1777 so->so_rcv.sb_timeo = val; 1778 break; 1779 } 1780 break; 1781 case SO_LABEL: 1782 #ifdef MAC 1783 error = sooptcopyin(sopt, &extmac, sizeof extmac, 1784 sizeof extmac); 1785 if (error) 1786 goto bad; 1787 error = mac_setsockopt_label(sopt->sopt_td->td_ucred, 1788 so, &extmac); 1789 #else 1790 error = EOPNOTSUPP; 1791 #endif 1792 break; 1793 default: 1794 error = ENOPROTOOPT; 1795 break; 1796 } 1797 if (error == 0 && so->so_proto != NULL && 1798 so->so_proto->pr_ctloutput != NULL) { 1799 (void) ((*so->so_proto->pr_ctloutput) 1800 (so, sopt)); 1801 } 1802 } 1803 bad: 1804 return (error); 1805 } 1806 1807 /* Helper routine for getsockopt */ 1808 int 1809 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 1810 { 1811 int error; 1812 size_t valsize; 1813 1814 error = 0; 1815 1816 /* 1817 * Documented get behavior is that we always return a value, 1818 * possibly truncated to fit in the user's buffer. 1819 * Traditional behavior is that we always tell the user 1820 * precisely how much we copied, rather than something useful 1821 * like the total amount we had available for her. 1822 * Note that this interface is not idempotent; the entire answer must 1823 * generated ahead of time. 1824 */ 1825 valsize = min(len, sopt->sopt_valsize); 1826 sopt->sopt_valsize = valsize; 1827 if (sopt->sopt_val != NULL) { 1828 if (sopt->sopt_td != NULL) 1829 error = copyout(buf, sopt->sopt_val, valsize); 1830 else 1831 bcopy(buf, sopt->sopt_val, valsize); 1832 } 1833 return error; 1834 } 1835 1836 int 1837 sogetopt(so, sopt) 1838 struct socket *so; 1839 struct sockopt *sopt; 1840 { 1841 int error, optval; 1842 struct linger l; 1843 struct timeval tv; 1844 #ifdef INET 1845 struct accept_filter_arg *afap; 1846 #endif 1847 #ifdef MAC 1848 struct mac extmac; 1849 #endif 1850 1851 error = 0; 1852 if (sopt->sopt_level != SOL_SOCKET) { 1853 if (so->so_proto && so->so_proto->pr_ctloutput) { 1854 return ((*so->so_proto->pr_ctloutput) 1855 (so, sopt)); 1856 } else 1857 return (ENOPROTOOPT); 1858 } else { 1859 switch (sopt->sopt_name) { 1860 #ifdef INET 1861 case SO_ACCEPTFILTER: 1862 /* Unlocked read. */ 1863 if ((so->so_options & SO_ACCEPTCONN) == 0) 1864 return (EINVAL); 1865 MALLOC(afap, struct accept_filter_arg *, sizeof(*afap), 1866 M_TEMP, M_WAITOK | M_ZERO); 1867 SOCK_LOCK(so); 1868 if ((so->so_options & SO_ACCEPTFILTER) != 0) { 1869 strcpy(afap->af_name, so->so_accf->so_accept_filter->accf_name); 1870 if (so->so_accf->so_accept_filter_str != NULL) 1871 strcpy(afap->af_arg, so->so_accf->so_accept_filter_str); 1872 } 1873 SOCK_UNLOCK(so); 1874 error = sooptcopyout(sopt, afap, sizeof(*afap)); 1875 FREE(afap, M_TEMP); 1876 break; 1877 #endif 1878 1879 case SO_LINGER: 1880 /* 1881 * XXXRW: We grab the lock here to get a consistent 1882 * snapshot of both fields. This may not really 1883 * be necessary. 1884 */ 1885 SOCK_LOCK(so); 1886 l.l_onoff = so->so_options & SO_LINGER; 1887 l.l_linger = so->so_linger; 1888 SOCK_UNLOCK(so); 1889 error = sooptcopyout(sopt, &l, sizeof l); 1890 break; 1891 1892 case SO_USELOOPBACK: 1893 case SO_DONTROUTE: 1894 case SO_DEBUG: 1895 case SO_KEEPALIVE: 1896 case SO_REUSEADDR: 1897 case SO_REUSEPORT: 1898 case SO_BROADCAST: 1899 case SO_OOBINLINE: 1900 case SO_TIMESTAMP: 1901 case SO_BINTIME: 1902 case SO_NOSIGPIPE: 1903 optval = so->so_options & sopt->sopt_name; 1904 integer: 1905 error = sooptcopyout(sopt, &optval, sizeof optval); 1906 break; 1907 1908 case SO_TYPE: 1909 optval = so->so_type; 1910 goto integer; 1911 1912 case SO_ERROR: 1913 optval = so->so_error; 1914 so->so_error = 0; 1915 goto integer; 1916 1917 case SO_SNDBUF: 1918 optval = so->so_snd.sb_hiwat; 1919 goto integer; 1920 1921 case SO_RCVBUF: 1922 optval = so->so_rcv.sb_hiwat; 1923 goto integer; 1924 1925 case SO_SNDLOWAT: 1926 optval = so->so_snd.sb_lowat; 1927 goto integer; 1928 1929 case SO_RCVLOWAT: 1930 optval = so->so_rcv.sb_lowat; 1931 goto integer; 1932 1933 case SO_SNDTIMEO: 1934 case SO_RCVTIMEO: 1935 optval = (sopt->sopt_name == SO_SNDTIMEO ? 1936 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 1937 1938 tv.tv_sec = optval / hz; 1939 tv.tv_usec = (optval % hz) * tick; 1940 error = sooptcopyout(sopt, &tv, sizeof tv); 1941 break; 1942 case SO_LABEL: 1943 #ifdef MAC 1944 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 1945 sizeof(extmac)); 1946 if (error) 1947 return (error); 1948 error = mac_getsockopt_label(sopt->sopt_td->td_ucred, 1949 so, &extmac); 1950 if (error) 1951 return (error); 1952 error = sooptcopyout(sopt, &extmac, sizeof extmac); 1953 #else 1954 error = EOPNOTSUPP; 1955 #endif 1956 break; 1957 case SO_PEERLABEL: 1958 #ifdef MAC 1959 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 1960 sizeof(extmac)); 1961 if (error) 1962 return (error); 1963 error = mac_getsockopt_peerlabel( 1964 sopt->sopt_td->td_ucred, so, &extmac); 1965 if (error) 1966 return (error); 1967 error = sooptcopyout(sopt, &extmac, sizeof extmac); 1968 #else 1969 error = EOPNOTSUPP; 1970 #endif 1971 break; 1972 default: 1973 error = ENOPROTOOPT; 1974 break; 1975 } 1976 return (error); 1977 } 1978 } 1979 1980 /* XXX; prepare mbuf for (__FreeBSD__ < 3) routines. */ 1981 int 1982 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 1983 { 1984 struct mbuf *m, *m_prev; 1985 int sopt_size = sopt->sopt_valsize; 1986 1987 MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA); 1988 if (m == NULL) 1989 return ENOBUFS; 1990 if (sopt_size > MLEN) { 1991 MCLGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT); 1992 if ((m->m_flags & M_EXT) == 0) { 1993 m_free(m); 1994 return ENOBUFS; 1995 } 1996 m->m_len = min(MCLBYTES, sopt_size); 1997 } else { 1998 m->m_len = min(MLEN, sopt_size); 1999 } 2000 sopt_size -= m->m_len; 2001 *mp = m; 2002 m_prev = m; 2003 2004 while (sopt_size) { 2005 MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA); 2006 if (m == NULL) { 2007 m_freem(*mp); 2008 return ENOBUFS; 2009 } 2010 if (sopt_size > MLEN) { 2011 MCLGET(m, sopt->sopt_td != NULL ? M_TRYWAIT : 2012 M_DONTWAIT); 2013 if ((m->m_flags & M_EXT) == 0) { 2014 m_freem(m); 2015 m_freem(*mp); 2016 return ENOBUFS; 2017 } 2018 m->m_len = min(MCLBYTES, sopt_size); 2019 } else { 2020 m->m_len = min(MLEN, sopt_size); 2021 } 2022 sopt_size -= m->m_len; 2023 m_prev->m_next = m; 2024 m_prev = m; 2025 } 2026 return 0; 2027 } 2028 2029 /* XXX; copyin sopt data into mbuf chain for (__FreeBSD__ < 3) routines. */ 2030 int 2031 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 2032 { 2033 struct mbuf *m0 = m; 2034 2035 if (sopt->sopt_val == NULL) 2036 return 0; 2037 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 2038 if (sopt->sopt_td != NULL) { 2039 int error; 2040 2041 error = copyin(sopt->sopt_val, mtod(m, char *), 2042 m->m_len); 2043 if (error != 0) { 2044 m_freem(m0); 2045 return(error); 2046 } 2047 } else 2048 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 2049 sopt->sopt_valsize -= m->m_len; 2050 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 2051 m = m->m_next; 2052 } 2053 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 2054 panic("ip6_sooptmcopyin"); 2055 return 0; 2056 } 2057 2058 /* XXX; copyout mbuf chain data into soopt for (__FreeBSD__ < 3) routines. */ 2059 int 2060 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 2061 { 2062 struct mbuf *m0 = m; 2063 size_t valsize = 0; 2064 2065 if (sopt->sopt_val == NULL) 2066 return 0; 2067 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 2068 if (sopt->sopt_td != NULL) { 2069 int error; 2070 2071 error = copyout(mtod(m, char *), sopt->sopt_val, 2072 m->m_len); 2073 if (error != 0) { 2074 m_freem(m0); 2075 return(error); 2076 } 2077 } else 2078 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 2079 sopt->sopt_valsize -= m->m_len; 2080 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 2081 valsize += m->m_len; 2082 m = m->m_next; 2083 } 2084 if (m != NULL) { 2085 /* enough soopt buffer should be given from user-land */ 2086 m_freem(m0); 2087 return(EINVAL); 2088 } 2089 sopt->sopt_valsize = valsize; 2090 return 0; 2091 } 2092 2093 void 2094 sohasoutofband(so) 2095 struct socket *so; 2096 { 2097 if (so->so_sigio != NULL) 2098 pgsigio(&so->so_sigio, SIGURG, 0); 2099 selwakeuppri(&so->so_rcv.sb_sel, PSOCK); 2100 } 2101 2102 int 2103 sopoll(struct socket *so, int events, struct ucred *active_cred, 2104 struct thread *td) 2105 { 2106 int revents = 0; 2107 2108 SOCKBUF_LOCK(&so->so_snd); 2109 SOCKBUF_LOCK(&so->so_rcv); 2110 if (events & (POLLIN | POLLRDNORM)) 2111 if (soreadable(so)) 2112 revents |= events & (POLLIN | POLLRDNORM); 2113 2114 if (events & POLLINIGNEOF) 2115 if (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat || 2116 !TAILQ_EMPTY(&so->so_comp) || so->so_error) 2117 revents |= POLLINIGNEOF; 2118 2119 if (events & (POLLOUT | POLLWRNORM)) 2120 if (sowriteable(so)) 2121 revents |= events & (POLLOUT | POLLWRNORM); 2122 2123 if (events & (POLLPRI | POLLRDBAND)) 2124 if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK)) 2125 revents |= events & (POLLPRI | POLLRDBAND); 2126 2127 if (revents == 0) { 2128 if (events & 2129 (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | 2130 POLLRDBAND)) { 2131 selrecord(td, &so->so_rcv.sb_sel); 2132 so->so_rcv.sb_flags |= SB_SEL; 2133 } 2134 2135 if (events & (POLLOUT | POLLWRNORM)) { 2136 selrecord(td, &so->so_snd.sb_sel); 2137 so->so_snd.sb_flags |= SB_SEL; 2138 } 2139 } 2140 2141 SOCKBUF_UNLOCK(&so->so_rcv); 2142 SOCKBUF_UNLOCK(&so->so_snd); 2143 return (revents); 2144 } 2145 2146 int 2147 soo_kqfilter(struct file *fp, struct knote *kn) 2148 { 2149 struct socket *so = kn->kn_fp->f_data; 2150 struct sockbuf *sb; 2151 2152 switch (kn->kn_filter) { 2153 case EVFILT_READ: 2154 if (so->so_options & SO_ACCEPTCONN) 2155 kn->kn_fop = &solisten_filtops; 2156 else 2157 kn->kn_fop = &soread_filtops; 2158 sb = &so->so_rcv; 2159 break; 2160 case EVFILT_WRITE: 2161 kn->kn_fop = &sowrite_filtops; 2162 sb = &so->so_snd; 2163 break; 2164 default: 2165 return (EINVAL); 2166 } 2167 2168 SOCKBUF_LOCK(sb); 2169 knlist_add(&sb->sb_sel.si_note, kn, 1); 2170 sb->sb_flags |= SB_KNOTE; 2171 SOCKBUF_UNLOCK(sb); 2172 return (0); 2173 } 2174 2175 static void 2176 filt_sordetach(struct knote *kn) 2177 { 2178 struct socket *so = kn->kn_fp->f_data; 2179 2180 SOCKBUF_LOCK(&so->so_rcv); 2181 knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1); 2182 if (knlist_empty(&so->so_rcv.sb_sel.si_note)) 2183 so->so_rcv.sb_flags &= ~SB_KNOTE; 2184 SOCKBUF_UNLOCK(&so->so_rcv); 2185 } 2186 2187 /*ARGSUSED*/ 2188 static int 2189 filt_soread(struct knote *kn, long hint) 2190 { 2191 struct socket *so; 2192 2193 so = kn->kn_fp->f_data; 2194 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2195 2196 kn->kn_data = so->so_rcv.sb_cc - so->so_rcv.sb_ctl; 2197 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 2198 kn->kn_flags |= EV_EOF; 2199 kn->kn_fflags = so->so_error; 2200 return (1); 2201 } else if (so->so_error) /* temporary udp error */ 2202 return (1); 2203 else if (kn->kn_sfflags & NOTE_LOWAT) 2204 return (kn->kn_data >= kn->kn_sdata); 2205 else 2206 return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat); 2207 } 2208 2209 static void 2210 filt_sowdetach(struct knote *kn) 2211 { 2212 struct socket *so = kn->kn_fp->f_data; 2213 2214 SOCKBUF_LOCK(&so->so_snd); 2215 knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1); 2216 if (knlist_empty(&so->so_snd.sb_sel.si_note)) 2217 so->so_snd.sb_flags &= ~SB_KNOTE; 2218 SOCKBUF_UNLOCK(&so->so_snd); 2219 } 2220 2221 /*ARGSUSED*/ 2222 static int 2223 filt_sowrite(struct knote *kn, long hint) 2224 { 2225 struct socket *so; 2226 2227 so = kn->kn_fp->f_data; 2228 SOCKBUF_LOCK_ASSERT(&so->so_snd); 2229 kn->kn_data = sbspace(&so->so_snd); 2230 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 2231 kn->kn_flags |= EV_EOF; 2232 kn->kn_fflags = so->so_error; 2233 return (1); 2234 } else if (so->so_error) /* temporary udp error */ 2235 return (1); 2236 else if (((so->so_state & SS_ISCONNECTED) == 0) && 2237 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 2238 return (0); 2239 else if (kn->kn_sfflags & NOTE_LOWAT) 2240 return (kn->kn_data >= kn->kn_sdata); 2241 else 2242 return (kn->kn_data >= so->so_snd.sb_lowat); 2243 } 2244 2245 /*ARGSUSED*/ 2246 static int 2247 filt_solisten(struct knote *kn, long hint) 2248 { 2249 struct socket *so = kn->kn_fp->f_data; 2250 2251 kn->kn_data = so->so_qlen; 2252 return (! TAILQ_EMPTY(&so->so_comp)); 2253 } 2254 2255 int 2256 socheckuid(struct socket *so, uid_t uid) 2257 { 2258 2259 if (so == NULL) 2260 return (EPERM); 2261 if (so->so_cred->cr_uid == uid) 2262 return (0); 2263 return (EPERM); 2264 } 2265