1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. 6 * Copyright (c) 2004 The FreeBSD Foundation 7 * Copyright (c) 2004-2008 Robert N. M. Watson 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 35 */ 36 37 /* 38 * Comments on the socket life cycle: 39 * 40 * soalloc() sets of socket layer state for a socket, called only by 41 * socreate() and sonewconn(). Socket layer private. 42 * 43 * sodealloc() tears down socket layer state for a socket, called only by 44 * sofree() and sonewconn(). Socket layer private. 45 * 46 * pru_attach() associates protocol layer state with an allocated socket; 47 * called only once, may fail, aborting socket allocation. This is called 48 * from socreate() and sonewconn(). Socket layer private. 49 * 50 * pru_detach() disassociates protocol layer state from an attached socket, 51 * and will be called exactly once for sockets in which pru_attach() has 52 * been successfully called. If pru_attach() returned an error, 53 * pru_detach() will not be called. Socket layer private. 54 * 55 * pru_abort() and pru_close() notify the protocol layer that the last 56 * consumer of a socket is starting to tear down the socket, and that the 57 * protocol should terminate the connection. Historically, pru_abort() also 58 * detached protocol state from the socket state, but this is no longer the 59 * case. 60 * 61 * socreate() creates a socket and attaches protocol state. This is a public 62 * interface that may be used by socket layer consumers to create new 63 * sockets. 64 * 65 * sonewconn() creates a socket and attaches protocol state. This is a 66 * public interface that may be used by protocols to create new sockets when 67 * a new connection is received and will be available for accept() on a 68 * listen socket. 69 * 70 * soclose() destroys a socket after possibly waiting for it to disconnect. 71 * This is a public interface that socket consumers should use to close and 72 * release a socket when done with it. 73 * 74 * soabort() destroys a socket without waiting for it to disconnect (used 75 * only for incoming connections that are already partially or fully 76 * connected). This is used internally by the socket layer when clearing 77 * listen socket queues (due to overflow or close on the listen socket), but 78 * is also a public interface protocols may use to abort connections in 79 * their incomplete listen queues should they no longer be required. Sockets 80 * placed in completed connection listen queues should not be aborted for 81 * reasons described in the comment above the soclose() implementation. This 82 * is not a general purpose close routine, and except in the specific 83 * circumstances described here, should not be used. 84 * 85 * sofree() will free a socket and its protocol state if all references on 86 * the socket have been released, and is the public interface to attempt to 87 * free a socket when a reference is removed. This is a socket layer private 88 * interface. 89 * 90 * NOTE: In addition to socreate() and soclose(), which provide a single 91 * socket reference to the consumer to be managed as required, there are two 92 * calls to explicitly manage socket references, soref(), and sorele(). 93 * Currently, these are generally required only when transitioning a socket 94 * from a listen queue to a file descriptor, in order to prevent garbage 95 * collection of the socket at an untimely moment. For a number of reasons, 96 * these interfaces are not preferred, and should be avoided. 97 * 98 * NOTE: With regard to VNETs the general rule is that callers do not set 99 * curvnet. Exceptions to this rule include soabort(), sodisconnect(), 100 * sofree() (and with that sorele(), sotryfree()), as well as sonewconn() 101 * and sorflush(), which are usually called from a pre-set VNET context. 102 * sopoll() currently does not need a VNET context to be set. 103 */ 104 105 #include <sys/cdefs.h> 106 __FBSDID("$FreeBSD$"); 107 108 #include "opt_inet.h" 109 #include "opt_inet6.h" 110 #include "opt_kern_tls.h" 111 #include "opt_sctp.h" 112 113 #include <sys/param.h> 114 #include <sys/systm.h> 115 #include <sys/fcntl.h> 116 #include <sys/limits.h> 117 #include <sys/lock.h> 118 #include <sys/mac.h> 119 #include <sys/malloc.h> 120 #include <sys/mbuf.h> 121 #include <sys/mutex.h> 122 #include <sys/domain.h> 123 #include <sys/file.h> /* for struct knote */ 124 #include <sys/hhook.h> 125 #include <sys/kernel.h> 126 #include <sys/khelp.h> 127 #include <sys/ktls.h> 128 #include <sys/event.h> 129 #include <sys/eventhandler.h> 130 #include <sys/poll.h> 131 #include <sys/proc.h> 132 #include <sys/protosw.h> 133 #include <sys/sbuf.h> 134 #include <sys/socket.h> 135 #include <sys/socketvar.h> 136 #include <sys/resourcevar.h> 137 #include <net/route.h> 138 #include <sys/signalvar.h> 139 #include <sys/stat.h> 140 #include <sys/sx.h> 141 #include <sys/sysctl.h> 142 #include <sys/taskqueue.h> 143 #include <sys/uio.h> 144 #include <sys/un.h> 145 #include <sys/unpcb.h> 146 #include <sys/jail.h> 147 #include <sys/syslog.h> 148 #include <netinet/in.h> 149 #include <netinet/in_pcb.h> 150 #include <netinet/tcp.h> 151 152 #include <net/vnet.h> 153 154 #include <security/mac/mac_framework.h> 155 156 #include <vm/uma.h> 157 158 #ifdef COMPAT_FREEBSD32 159 #include <sys/mount.h> 160 #include <sys/sysent.h> 161 #include <compat/freebsd32/freebsd32.h> 162 #endif 163 164 static int soreceive_rcvoob(struct socket *so, struct uio *uio, 165 int flags); 166 static void so_rdknl_lock(void *); 167 static void so_rdknl_unlock(void *); 168 static void so_rdknl_assert_locked(void *); 169 static void so_rdknl_assert_unlocked(void *); 170 static void so_wrknl_lock(void *); 171 static void so_wrknl_unlock(void *); 172 static void so_wrknl_assert_locked(void *); 173 static void so_wrknl_assert_unlocked(void *); 174 175 static void filt_sordetach(struct knote *kn); 176 static int filt_soread(struct knote *kn, long hint); 177 static void filt_sowdetach(struct knote *kn); 178 static int filt_sowrite(struct knote *kn, long hint); 179 static int filt_soempty(struct knote *kn, long hint); 180 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id); 181 fo_kqfilter_t soo_kqfilter; 182 183 static struct filterops soread_filtops = { 184 .f_isfd = 1, 185 .f_detach = filt_sordetach, 186 .f_event = filt_soread, 187 }; 188 static struct filterops sowrite_filtops = { 189 .f_isfd = 1, 190 .f_detach = filt_sowdetach, 191 .f_event = filt_sowrite, 192 }; 193 static struct filterops soempty_filtops = { 194 .f_isfd = 1, 195 .f_detach = filt_sowdetach, 196 .f_event = filt_soempty, 197 }; 198 199 so_gen_t so_gencnt; /* generation count for sockets */ 200 201 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 202 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 203 204 #define VNET_SO_ASSERT(so) \ 205 VNET_ASSERT(curvnet != NULL, \ 206 ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so))); 207 208 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]); 209 #define V_socket_hhh VNET(socket_hhh) 210 211 /* 212 * Limit on the number of connections in the listen queue waiting 213 * for accept(2). 214 * NB: The original sysctl somaxconn is still available but hidden 215 * to prevent confusion about the actual purpose of this number. 216 */ 217 static u_int somaxconn = SOMAXCONN; 218 219 static int 220 sysctl_somaxconn(SYSCTL_HANDLER_ARGS) 221 { 222 int error; 223 int val; 224 225 val = somaxconn; 226 error = sysctl_handle_int(oidp, &val, 0, req); 227 if (error || !req->newptr ) 228 return (error); 229 230 /* 231 * The purpose of the UINT_MAX / 3 limit, is so that the formula 232 * 3 * so_qlimit / 2 233 * below, will not overflow. 234 */ 235 236 if (val < 1 || val > UINT_MAX / 3) 237 return (EINVAL); 238 239 somaxconn = val; 240 return (0); 241 } 242 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue, 243 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 0, sizeof(int), 244 sysctl_somaxconn, "I", 245 "Maximum listen socket pending connection accept queue size"); 246 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, 247 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_NEEDGIANT, 0, 248 sizeof(int), sysctl_somaxconn, "I", 249 "Maximum listen socket pending connection accept queue size (compat)"); 250 251 static int numopensockets; 252 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, 253 &numopensockets, 0, "Number of open sockets"); 254 255 /* 256 * accept_mtx locks down per-socket fields relating to accept queues. See 257 * socketvar.h for an annotation of the protected fields of struct socket. 258 */ 259 struct mtx accept_mtx; 260 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF); 261 262 /* 263 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket 264 * so_gencnt field. 265 */ 266 static struct mtx so_global_mtx; 267 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); 268 269 /* 270 * General IPC sysctl name space, used by sockets and a variety of other IPC 271 * types. 272 */ 273 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 274 "IPC"); 275 276 /* 277 * Initialize the socket subsystem and set up the socket 278 * memory allocator. 279 */ 280 static uma_zone_t socket_zone; 281 int maxsockets; 282 283 static void 284 socket_zone_change(void *tag) 285 { 286 287 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 288 } 289 290 static void 291 socket_hhook_register(int subtype) 292 { 293 294 if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype, 295 &V_socket_hhh[subtype], 296 HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 297 printf("%s: WARNING: unable to register hook\n", __func__); 298 } 299 300 static void 301 socket_hhook_deregister(int subtype) 302 { 303 304 if (hhook_head_deregister(V_socket_hhh[subtype]) != 0) 305 printf("%s: WARNING: unable to deregister hook\n", __func__); 306 } 307 308 static void 309 socket_init(void *tag) 310 { 311 312 socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL, 313 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 314 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 315 uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached"); 316 EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL, 317 EVENTHANDLER_PRI_FIRST); 318 } 319 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL); 320 321 static void 322 socket_vnet_init(const void *unused __unused) 323 { 324 int i; 325 326 /* We expect a contiguous range */ 327 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 328 socket_hhook_register(i); 329 } 330 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 331 socket_vnet_init, NULL); 332 333 static void 334 socket_vnet_uninit(const void *unused __unused) 335 { 336 int i; 337 338 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 339 socket_hhook_deregister(i); 340 } 341 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 342 socket_vnet_uninit, NULL); 343 344 /* 345 * Initialise maxsockets. This SYSINIT must be run after 346 * tunable_mbinit(). 347 */ 348 static void 349 init_maxsockets(void *ignored) 350 { 351 352 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 353 maxsockets = imax(maxsockets, maxfiles); 354 } 355 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 356 357 /* 358 * Sysctl to get and set the maximum global sockets limit. Notify protocols 359 * of the change so that they can update their dependent limits as required. 360 */ 361 static int 362 sysctl_maxsockets(SYSCTL_HANDLER_ARGS) 363 { 364 int error, newmaxsockets; 365 366 newmaxsockets = maxsockets; 367 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req); 368 if (error == 0 && req->newptr) { 369 if (newmaxsockets > maxsockets && 370 newmaxsockets <= maxfiles) { 371 maxsockets = newmaxsockets; 372 EVENTHANDLER_INVOKE(maxsockets_change); 373 } else 374 error = EINVAL; 375 } 376 return (error); 377 } 378 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, 379 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &maxsockets, 0, 380 sysctl_maxsockets, "IU", 381 "Maximum number of sockets available"); 382 383 /* 384 * Socket operation routines. These routines are called by the routines in 385 * sys_socket.c or from a system process, and implement the semantics of 386 * socket operations by switching out to the protocol specific routines. 387 */ 388 389 /* 390 * Get a socket structure from our zone, and initialize it. Note that it 391 * would probably be better to allocate socket and PCB at the same time, but 392 * I'm not convinced that all the protocols can be easily modified to do 393 * this. 394 * 395 * soalloc() returns a socket with a ref count of 0. 396 */ 397 static struct socket * 398 soalloc(struct vnet *vnet) 399 { 400 struct socket *so; 401 402 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO); 403 if (so == NULL) 404 return (NULL); 405 #ifdef MAC 406 if (mac_socket_init(so, M_NOWAIT) != 0) { 407 uma_zfree(socket_zone, so); 408 return (NULL); 409 } 410 #endif 411 if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) { 412 uma_zfree(socket_zone, so); 413 return (NULL); 414 } 415 416 /* 417 * The socket locking protocol allows to lock 2 sockets at a time, 418 * however, the first one must be a listening socket. WITNESS lacks 419 * a feature to change class of an existing lock, so we use DUPOK. 420 */ 421 mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK); 422 SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd"); 423 SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv"); 424 so->so_rcv.sb_sel = &so->so_rdsel; 425 so->so_snd.sb_sel = &so->so_wrsel; 426 sx_init(&so->so_snd.sb_sx, "so_snd_sx"); 427 sx_init(&so->so_rcv.sb_sx, "so_rcv_sx"); 428 TAILQ_INIT(&so->so_snd.sb_aiojobq); 429 TAILQ_INIT(&so->so_rcv.sb_aiojobq); 430 TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so); 431 TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so); 432 #ifdef VIMAGE 433 VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p", 434 __func__, __LINE__, so)); 435 so->so_vnet = vnet; 436 #endif 437 /* We shouldn't need the so_global_mtx */ 438 if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) { 439 /* Do we need more comprehensive error returns? */ 440 uma_zfree(socket_zone, so); 441 return (NULL); 442 } 443 mtx_lock(&so_global_mtx); 444 so->so_gencnt = ++so_gencnt; 445 ++numopensockets; 446 #ifdef VIMAGE 447 vnet->vnet_sockcnt++; 448 #endif 449 mtx_unlock(&so_global_mtx); 450 451 return (so); 452 } 453 454 /* 455 * Free the storage associated with a socket at the socket layer, tear down 456 * locks, labels, etc. All protocol state is assumed already to have been 457 * torn down (and possibly never set up) by the caller. 458 */ 459 static void 460 sodealloc(struct socket *so) 461 { 462 463 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); 464 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL")); 465 466 mtx_lock(&so_global_mtx); 467 so->so_gencnt = ++so_gencnt; 468 --numopensockets; /* Could be below, but faster here. */ 469 #ifdef VIMAGE 470 VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p", 471 __func__, __LINE__, so)); 472 so->so_vnet->vnet_sockcnt--; 473 #endif 474 mtx_unlock(&so_global_mtx); 475 #ifdef MAC 476 mac_socket_destroy(so); 477 #endif 478 hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE); 479 480 crfree(so->so_cred); 481 khelp_destroy_osd(&so->osd); 482 if (SOLISTENING(so)) { 483 if (so->sol_accept_filter != NULL) 484 accept_filt_setopt(so, NULL); 485 } else { 486 if (so->so_rcv.sb_hiwat) 487 (void)chgsbsize(so->so_cred->cr_uidinfo, 488 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 489 if (so->so_snd.sb_hiwat) 490 (void)chgsbsize(so->so_cred->cr_uidinfo, 491 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 492 sx_destroy(&so->so_snd.sb_sx); 493 sx_destroy(&so->so_rcv.sb_sx); 494 SOCKBUF_LOCK_DESTROY(&so->so_snd); 495 SOCKBUF_LOCK_DESTROY(&so->so_rcv); 496 } 497 mtx_destroy(&so->so_lock); 498 uma_zfree(socket_zone, so); 499 } 500 501 /* 502 * socreate returns a socket with a ref count of 1. The socket should be 503 * closed with soclose(). 504 */ 505 int 506 socreate(int dom, struct socket **aso, int type, int proto, 507 struct ucred *cred, struct thread *td) 508 { 509 struct protosw *prp; 510 struct socket *so; 511 int error; 512 513 if (proto) 514 prp = pffindproto(dom, proto, type); 515 else 516 prp = pffindtype(dom, type); 517 518 if (prp == NULL) { 519 /* No support for domain. */ 520 if (pffinddomain(dom) == NULL) 521 return (EAFNOSUPPORT); 522 /* No support for socket type. */ 523 if (proto == 0 && type != 0) 524 return (EPROTOTYPE); 525 return (EPROTONOSUPPORT); 526 } 527 if (prp->pr_usrreqs->pru_attach == NULL || 528 prp->pr_usrreqs->pru_attach == pru_attach_notsupp) 529 return (EPROTONOSUPPORT); 530 531 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0) 532 return (EPROTONOSUPPORT); 533 534 if (prp->pr_type != type) 535 return (EPROTOTYPE); 536 so = soalloc(CRED_TO_VNET(cred)); 537 if (so == NULL) 538 return (ENOBUFS); 539 540 so->so_type = type; 541 so->so_cred = crhold(cred); 542 if ((prp->pr_domain->dom_family == PF_INET) || 543 (prp->pr_domain->dom_family == PF_INET6) || 544 (prp->pr_domain->dom_family == PF_ROUTE)) 545 so->so_fibnum = td->td_proc->p_fibnum; 546 else 547 so->so_fibnum = 0; 548 so->so_proto = prp; 549 #ifdef MAC 550 mac_socket_create(cred, so); 551 #endif 552 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 553 so_rdknl_assert_locked, so_rdknl_assert_unlocked); 554 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 555 so_wrknl_assert_locked, so_wrknl_assert_unlocked); 556 /* 557 * Auto-sizing of socket buffers is managed by the protocols and 558 * the appropriate flags must be set in the pru_attach function. 559 */ 560 CURVNET_SET(so->so_vnet); 561 error = (*prp->pr_usrreqs->pru_attach)(so, proto, td); 562 CURVNET_RESTORE(); 563 if (error) { 564 sodealloc(so); 565 return (error); 566 } 567 soref(so); 568 *aso = so; 569 return (0); 570 } 571 572 #ifdef REGRESSION 573 static int regression_sonewconn_earlytest = 1; 574 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW, 575 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test"); 576 #endif 577 578 static struct timeval overinterval = { 60, 0 }; 579 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW, 580 &overinterval, 581 "Delay in seconds between warnings for listen socket overflows"); 582 583 /* 584 * When an attempt at a new connection is noted on a socket which accepts 585 * connections, sonewconn is called. If the connection is possible (subject 586 * to space constraints, etc.) then we allocate a new structure, properly 587 * linked into the data structure of the original socket, and return this. 588 * Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED. 589 * 590 * Note: the ref count on the socket is 0 on return. 591 */ 592 struct socket * 593 sonewconn(struct socket *head, int connstatus) 594 { 595 struct sbuf descrsb; 596 struct socket *so; 597 int len, overcount; 598 u_int qlen; 599 const char localprefix[] = "local:"; 600 char descrbuf[SUNPATHLEN + sizeof(localprefix)]; 601 #if defined(INET6) 602 char addrbuf[INET6_ADDRSTRLEN]; 603 #elif defined(INET) 604 char addrbuf[INET_ADDRSTRLEN]; 605 #endif 606 bool dolog, over; 607 608 SOLISTEN_LOCK(head); 609 over = (head->sol_qlen > 3 * head->sol_qlimit / 2); 610 #ifdef REGRESSION 611 if (regression_sonewconn_earlytest && over) { 612 #else 613 if (over) { 614 #endif 615 head->sol_overcount++; 616 dolog = !!ratecheck(&head->sol_lastover, &overinterval); 617 618 /* 619 * If we're going to log, copy the overflow count and queue 620 * length from the listen socket before dropping the lock. 621 * Also, reset the overflow count. 622 */ 623 if (dolog) { 624 overcount = head->sol_overcount; 625 head->sol_overcount = 0; 626 qlen = head->sol_qlen; 627 } 628 SOLISTEN_UNLOCK(head); 629 630 if (dolog) { 631 /* 632 * Try to print something descriptive about the 633 * socket for the error message. 634 */ 635 sbuf_new(&descrsb, descrbuf, sizeof(descrbuf), 636 SBUF_FIXEDLEN); 637 switch (head->so_proto->pr_domain->dom_family) { 638 #if defined(INET) || defined(INET6) 639 #ifdef INET 640 case AF_INET: 641 #endif 642 #ifdef INET6 643 case AF_INET6: 644 if (head->so_proto->pr_domain->dom_family == 645 AF_INET6 || 646 (sotoinpcb(head)->inp_inc.inc_flags & 647 INC_ISIPV6)) { 648 ip6_sprintf(addrbuf, 649 &sotoinpcb(head)->inp_inc.inc6_laddr); 650 sbuf_printf(&descrsb, "[%s]", addrbuf); 651 } else 652 #endif 653 { 654 #ifdef INET 655 inet_ntoa_r( 656 sotoinpcb(head)->inp_inc.inc_laddr, 657 addrbuf); 658 sbuf_cat(&descrsb, addrbuf); 659 #endif 660 } 661 sbuf_printf(&descrsb, ":%hu (proto %u)", 662 ntohs(sotoinpcb(head)->inp_inc.inc_lport), 663 head->so_proto->pr_protocol); 664 break; 665 #endif /* INET || INET6 */ 666 case AF_UNIX: 667 sbuf_cat(&descrsb, localprefix); 668 if (sotounpcb(head)->unp_addr != NULL) 669 len = 670 sotounpcb(head)->unp_addr->sun_len - 671 offsetof(struct sockaddr_un, 672 sun_path); 673 else 674 len = 0; 675 if (len > 0) 676 sbuf_bcat(&descrsb, 677 sotounpcb(head)->unp_addr->sun_path, 678 len); 679 else 680 sbuf_cat(&descrsb, "(unknown)"); 681 break; 682 } 683 684 /* 685 * If we can't print something more specific, at least 686 * print the domain name. 687 */ 688 if (sbuf_finish(&descrsb) != 0 || 689 sbuf_len(&descrsb) <= 0) { 690 sbuf_clear(&descrsb); 691 sbuf_cat(&descrsb, 692 head->so_proto->pr_domain->dom_name ?: 693 "unknown"); 694 sbuf_finish(&descrsb); 695 } 696 KASSERT(sbuf_len(&descrsb) > 0, 697 ("%s: sbuf creation failed", __func__)); 698 log(LOG_DEBUG, 699 "%s: pcb %p (%s): Listen queue overflow: " 700 "%i already in queue awaiting acceptance " 701 "(%d occurrences)\n", 702 __func__, head->so_pcb, sbuf_data(&descrsb), 703 qlen, overcount); 704 sbuf_delete(&descrsb); 705 706 overcount = 0; 707 } 708 709 return (NULL); 710 } 711 SOLISTEN_UNLOCK(head); 712 VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL", 713 __func__, head)); 714 so = soalloc(head->so_vnet); 715 if (so == NULL) { 716 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 717 "limit reached or out of memory\n", 718 __func__, head->so_pcb); 719 return (NULL); 720 } 721 so->so_listen = head; 722 so->so_type = head->so_type; 723 so->so_linger = head->so_linger; 724 so->so_state = head->so_state | SS_NOFDREF; 725 so->so_fibnum = head->so_fibnum; 726 so->so_proto = head->so_proto; 727 so->so_cred = crhold(head->so_cred); 728 #ifdef MAC 729 mac_socket_newconn(head, so); 730 #endif 731 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 732 so_rdknl_assert_locked, so_rdknl_assert_unlocked); 733 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 734 so_wrknl_assert_locked, so_wrknl_assert_unlocked); 735 VNET_SO_ASSERT(head); 736 if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) { 737 sodealloc(so); 738 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 739 __func__, head->so_pcb); 740 return (NULL); 741 } 742 if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 743 sodealloc(so); 744 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", 745 __func__, head->so_pcb); 746 return (NULL); 747 } 748 so->so_rcv.sb_lowat = head->sol_sbrcv_lowat; 749 so->so_snd.sb_lowat = head->sol_sbsnd_lowat; 750 so->so_rcv.sb_timeo = head->sol_sbrcv_timeo; 751 so->so_snd.sb_timeo = head->sol_sbsnd_timeo; 752 so->so_rcv.sb_flags |= head->sol_sbrcv_flags & SB_AUTOSIZE; 753 so->so_snd.sb_flags |= head->sol_sbsnd_flags & SB_AUTOSIZE; 754 755 SOLISTEN_LOCK(head); 756 if (head->sol_accept_filter != NULL) 757 connstatus = 0; 758 so->so_state |= connstatus; 759 so->so_options = head->so_options & ~SO_ACCEPTCONN; 760 soref(head); /* A socket on (in)complete queue refs head. */ 761 if (connstatus) { 762 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 763 so->so_qstate = SQ_COMP; 764 head->sol_qlen++; 765 solisten_wakeup(head); /* unlocks */ 766 } else { 767 /* 768 * Keep removing sockets from the head until there's room for 769 * us to insert on the tail. In pre-locking revisions, this 770 * was a simple if(), but as we could be racing with other 771 * threads and soabort() requires dropping locks, we must 772 * loop waiting for the condition to be true. 773 */ 774 while (head->sol_incqlen > head->sol_qlimit) { 775 struct socket *sp; 776 777 sp = TAILQ_FIRST(&head->sol_incomp); 778 TAILQ_REMOVE(&head->sol_incomp, sp, so_list); 779 head->sol_incqlen--; 780 SOCK_LOCK(sp); 781 sp->so_qstate = SQ_NONE; 782 sp->so_listen = NULL; 783 SOCK_UNLOCK(sp); 784 sorele(head); /* does SOLISTEN_UNLOCK, head stays */ 785 soabort(sp); 786 SOLISTEN_LOCK(head); 787 } 788 TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list); 789 so->so_qstate = SQ_INCOMP; 790 head->sol_incqlen++; 791 SOLISTEN_UNLOCK(head); 792 } 793 return (so); 794 } 795 796 #ifdef SCTP 797 /* 798 * Socket part of sctp_peeloff(). Detach a new socket from an 799 * association. The new socket is returned with a reference. 800 */ 801 struct socket * 802 sopeeloff(struct socket *head) 803 { 804 struct socket *so; 805 806 VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p", 807 __func__, __LINE__, head)); 808 so = soalloc(head->so_vnet); 809 if (so == NULL) { 810 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 811 "limit reached or out of memory\n", 812 __func__, head->so_pcb); 813 return (NULL); 814 } 815 so->so_type = head->so_type; 816 so->so_options = head->so_options; 817 so->so_linger = head->so_linger; 818 so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED; 819 so->so_fibnum = head->so_fibnum; 820 so->so_proto = head->so_proto; 821 so->so_cred = crhold(head->so_cred); 822 #ifdef MAC 823 mac_socket_newconn(head, so); 824 #endif 825 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 826 so_rdknl_assert_locked, so_rdknl_assert_unlocked); 827 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 828 so_wrknl_assert_locked, so_wrknl_assert_unlocked); 829 VNET_SO_ASSERT(head); 830 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) { 831 sodealloc(so); 832 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 833 __func__, head->so_pcb); 834 return (NULL); 835 } 836 if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 837 sodealloc(so); 838 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", 839 __func__, head->so_pcb); 840 return (NULL); 841 } 842 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; 843 so->so_snd.sb_lowat = head->so_snd.sb_lowat; 844 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; 845 so->so_snd.sb_timeo = head->so_snd.sb_timeo; 846 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE; 847 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE; 848 849 soref(so); 850 851 return (so); 852 } 853 #endif /* SCTP */ 854 855 int 856 sobind(struct socket *so, struct sockaddr *nam, struct thread *td) 857 { 858 int error; 859 860 CURVNET_SET(so->so_vnet); 861 error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td); 862 CURVNET_RESTORE(); 863 return (error); 864 } 865 866 int 867 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 868 { 869 int error; 870 871 CURVNET_SET(so->so_vnet); 872 error = (*so->so_proto->pr_usrreqs->pru_bindat)(fd, so, nam, td); 873 CURVNET_RESTORE(); 874 return (error); 875 } 876 877 /* 878 * solisten() transitions a socket from a non-listening state to a listening 879 * state, but can also be used to update the listen queue depth on an 880 * existing listen socket. The protocol will call back into the sockets 881 * layer using solisten_proto_check() and solisten_proto() to check and set 882 * socket-layer listen state. Call backs are used so that the protocol can 883 * acquire both protocol and socket layer locks in whatever order is required 884 * by the protocol. 885 * 886 * Protocol implementors are advised to hold the socket lock across the 887 * socket-layer test and set to avoid races at the socket layer. 888 */ 889 int 890 solisten(struct socket *so, int backlog, struct thread *td) 891 { 892 int error; 893 894 CURVNET_SET(so->so_vnet); 895 error = (*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td); 896 CURVNET_RESTORE(); 897 return (error); 898 } 899 900 int 901 solisten_proto_check(struct socket *so) 902 { 903 904 SOCK_LOCK_ASSERT(so); 905 906 if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 907 SS_ISDISCONNECTING)) 908 return (EINVAL); 909 return (0); 910 } 911 912 void 913 solisten_proto(struct socket *so, int backlog) 914 { 915 int sbrcv_lowat, sbsnd_lowat; 916 u_int sbrcv_hiwat, sbsnd_hiwat; 917 short sbrcv_flags, sbsnd_flags; 918 sbintime_t sbrcv_timeo, sbsnd_timeo; 919 920 SOCK_LOCK_ASSERT(so); 921 922 if (SOLISTENING(so)) 923 goto listening; 924 925 /* 926 * Change this socket to listening state. 927 */ 928 sbrcv_lowat = so->so_rcv.sb_lowat; 929 sbsnd_lowat = so->so_snd.sb_lowat; 930 sbrcv_hiwat = so->so_rcv.sb_hiwat; 931 sbsnd_hiwat = so->so_snd.sb_hiwat; 932 sbrcv_flags = so->so_rcv.sb_flags; 933 sbsnd_flags = so->so_snd.sb_flags; 934 sbrcv_timeo = so->so_rcv.sb_timeo; 935 sbsnd_timeo = so->so_snd.sb_timeo; 936 937 sbdestroy(&so->so_snd, so); 938 sbdestroy(&so->so_rcv, so); 939 sx_destroy(&so->so_snd.sb_sx); 940 sx_destroy(&so->so_rcv.sb_sx); 941 SOCKBUF_LOCK_DESTROY(&so->so_snd); 942 SOCKBUF_LOCK_DESTROY(&so->so_rcv); 943 944 #ifdef INVARIANTS 945 bzero(&so->so_rcv, 946 sizeof(struct socket) - offsetof(struct socket, so_rcv)); 947 #endif 948 949 so->sol_sbrcv_lowat = sbrcv_lowat; 950 so->sol_sbsnd_lowat = sbsnd_lowat; 951 so->sol_sbrcv_hiwat = sbrcv_hiwat; 952 so->sol_sbsnd_hiwat = sbsnd_hiwat; 953 so->sol_sbrcv_flags = sbrcv_flags; 954 so->sol_sbsnd_flags = sbsnd_flags; 955 so->sol_sbrcv_timeo = sbrcv_timeo; 956 so->sol_sbsnd_timeo = sbsnd_timeo; 957 958 so->sol_qlen = so->sol_incqlen = 0; 959 TAILQ_INIT(&so->sol_incomp); 960 TAILQ_INIT(&so->sol_comp); 961 962 so->sol_accept_filter = NULL; 963 so->sol_accept_filter_arg = NULL; 964 so->sol_accept_filter_str = NULL; 965 966 so->sol_upcall = NULL; 967 so->sol_upcallarg = NULL; 968 969 so->so_options |= SO_ACCEPTCONN; 970 971 listening: 972 if (backlog < 0 || backlog > somaxconn) 973 backlog = somaxconn; 974 so->sol_qlimit = backlog; 975 } 976 977 /* 978 * Wakeup listeners/subsystems once we have a complete connection. 979 * Enters with lock, returns unlocked. 980 */ 981 void 982 solisten_wakeup(struct socket *sol) 983 { 984 985 if (sol->sol_upcall != NULL) 986 (void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT); 987 else { 988 selwakeuppri(&sol->so_rdsel, PSOCK); 989 KNOTE_LOCKED(&sol->so_rdsel.si_note, 0); 990 } 991 SOLISTEN_UNLOCK(sol); 992 wakeup_one(&sol->sol_comp); 993 if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL) 994 pgsigio(&sol->so_sigio, SIGIO, 0); 995 } 996 997 /* 998 * Return single connection off a listening socket queue. Main consumer of 999 * the function is kern_accept4(). Some modules, that do their own accept 1000 * management also use the function. 1001 * 1002 * Listening socket must be locked on entry and is returned unlocked on 1003 * return. 1004 * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT. 1005 */ 1006 int 1007 solisten_dequeue(struct socket *head, struct socket **ret, int flags) 1008 { 1009 struct socket *so; 1010 int error; 1011 1012 SOLISTEN_LOCK_ASSERT(head); 1013 1014 while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) && 1015 head->so_error == 0) { 1016 error = msleep(&head->sol_comp, &head->so_lock, PSOCK | PCATCH, 1017 "accept", 0); 1018 if (error != 0) { 1019 SOLISTEN_UNLOCK(head); 1020 return (error); 1021 } 1022 } 1023 if (head->so_error) { 1024 error = head->so_error; 1025 head->so_error = 0; 1026 } else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp)) 1027 error = EWOULDBLOCK; 1028 else 1029 error = 0; 1030 if (error) { 1031 SOLISTEN_UNLOCK(head); 1032 return (error); 1033 } 1034 so = TAILQ_FIRST(&head->sol_comp); 1035 SOCK_LOCK(so); 1036 KASSERT(so->so_qstate == SQ_COMP, 1037 ("%s: so %p not SQ_COMP", __func__, so)); 1038 soref(so); 1039 head->sol_qlen--; 1040 so->so_qstate = SQ_NONE; 1041 so->so_listen = NULL; 1042 TAILQ_REMOVE(&head->sol_comp, so, so_list); 1043 if (flags & ACCEPT4_INHERIT) 1044 so->so_state |= (head->so_state & SS_NBIO); 1045 else 1046 so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0; 1047 SOCK_UNLOCK(so); 1048 sorele(head); 1049 1050 *ret = so; 1051 return (0); 1052 } 1053 1054 /* 1055 * Evaluate the reference count and named references on a socket; if no 1056 * references remain, free it. This should be called whenever a reference is 1057 * released, such as in sorele(), but also when named reference flags are 1058 * cleared in socket or protocol code. 1059 * 1060 * sofree() will free the socket if: 1061 * 1062 * - There are no outstanding file descriptor references or related consumers 1063 * (so_count == 0). 1064 * 1065 * - The socket has been closed by user space, if ever open (SS_NOFDREF). 1066 * 1067 * - The protocol does not have an outstanding strong reference on the socket 1068 * (SS_PROTOREF). 1069 * 1070 * - The socket is not in a completed connection queue, so a process has been 1071 * notified that it is present. If it is removed, the user process may 1072 * block in accept() despite select() saying the socket was ready. 1073 */ 1074 void 1075 sofree(struct socket *so) 1076 { 1077 struct protosw *pr = so->so_proto; 1078 1079 SOCK_LOCK_ASSERT(so); 1080 1081 if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 || 1082 (so->so_state & SS_PROTOREF) || (so->so_qstate == SQ_COMP)) { 1083 SOCK_UNLOCK(so); 1084 return; 1085 } 1086 1087 if (!SOLISTENING(so) && so->so_qstate == SQ_INCOMP) { 1088 struct socket *sol; 1089 1090 sol = so->so_listen; 1091 KASSERT(sol, ("%s: so %p on incomp of NULL", __func__, so)); 1092 1093 /* 1094 * To solve race between close of a listening socket and 1095 * a socket on its incomplete queue, we need to lock both. 1096 * The order is first listening socket, then regular. 1097 * Since we don't have SS_NOFDREF neither SS_PROTOREF, this 1098 * function and the listening socket are the only pointers 1099 * to so. To preserve so and sol, we reference both and then 1100 * relock. 1101 * After relock the socket may not move to so_comp since it 1102 * doesn't have PCB already, but it may be removed from 1103 * so_incomp. If that happens, we share responsiblity on 1104 * freeing the socket, but soclose() has already removed 1105 * it from queue. 1106 */ 1107 soref(sol); 1108 soref(so); 1109 SOCK_UNLOCK(so); 1110 SOLISTEN_LOCK(sol); 1111 SOCK_LOCK(so); 1112 if (so->so_qstate == SQ_INCOMP) { 1113 KASSERT(so->so_listen == sol, 1114 ("%s: so %p migrated out of sol %p", 1115 __func__, so, sol)); 1116 TAILQ_REMOVE(&sol->sol_incomp, so, so_list); 1117 sol->sol_incqlen--; 1118 /* This is guarenteed not to be the last. */ 1119 refcount_release(&sol->so_count); 1120 so->so_qstate = SQ_NONE; 1121 so->so_listen = NULL; 1122 } else 1123 KASSERT(so->so_listen == NULL, 1124 ("%s: so %p not on (in)comp with so_listen", 1125 __func__, so)); 1126 sorele(sol); 1127 KASSERT(so->so_count == 1, 1128 ("%s: so %p count %u", __func__, so, so->so_count)); 1129 so->so_count = 0; 1130 } 1131 if (SOLISTENING(so)) 1132 so->so_error = ECONNABORTED; 1133 SOCK_UNLOCK(so); 1134 1135 if (so->so_dtor != NULL) 1136 so->so_dtor(so); 1137 1138 VNET_SO_ASSERT(so); 1139 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 1140 (*pr->pr_domain->dom_dispose)(so); 1141 if (pr->pr_usrreqs->pru_detach != NULL) 1142 (*pr->pr_usrreqs->pru_detach)(so); 1143 1144 /* 1145 * From this point on, we assume that no other references to this 1146 * socket exist anywhere else in the stack. Therefore, no locks need 1147 * to be acquired or held. 1148 * 1149 * We used to do a lot of socket buffer and socket locking here, as 1150 * well as invoke sorflush() and perform wakeups. The direct call to 1151 * dom_dispose() and sbdestroy() are an inlining of what was 1152 * necessary from sorflush(). 1153 * 1154 * Notice that the socket buffer and kqueue state are torn down 1155 * before calling pru_detach. This means that protocols shold not 1156 * assume they can perform socket wakeups, etc, in their detach code. 1157 */ 1158 if (!SOLISTENING(so)) { 1159 sbdestroy(&so->so_snd, so); 1160 sbdestroy(&so->so_rcv, so); 1161 } 1162 seldrain(&so->so_rdsel); 1163 seldrain(&so->so_wrsel); 1164 knlist_destroy(&so->so_rdsel.si_note); 1165 knlist_destroy(&so->so_wrsel.si_note); 1166 sodealloc(so); 1167 } 1168 1169 /* 1170 * Close a socket on last file table reference removal. Initiate disconnect 1171 * if connected. Free socket when disconnect complete. 1172 * 1173 * This function will sorele() the socket. Note that soclose() may be called 1174 * prior to the ref count reaching zero. The actual socket structure will 1175 * not be freed until the ref count reaches zero. 1176 */ 1177 int 1178 soclose(struct socket *so) 1179 { 1180 struct accept_queue lqueue; 1181 bool listening; 1182 int error = 0; 1183 1184 KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter")); 1185 1186 CURVNET_SET(so->so_vnet); 1187 funsetown(&so->so_sigio); 1188 if (so->so_state & SS_ISCONNECTED) { 1189 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 1190 error = sodisconnect(so); 1191 if (error) { 1192 if (error == ENOTCONN) 1193 error = 0; 1194 goto drop; 1195 } 1196 } 1197 if (so->so_options & SO_LINGER) { 1198 if ((so->so_state & SS_ISDISCONNECTING) && 1199 (so->so_state & SS_NBIO)) 1200 goto drop; 1201 while (so->so_state & SS_ISCONNECTED) { 1202 error = tsleep(&so->so_timeo, 1203 PSOCK | PCATCH, "soclos", 1204 so->so_linger * hz); 1205 if (error) 1206 break; 1207 } 1208 } 1209 } 1210 1211 drop: 1212 if (so->so_proto->pr_usrreqs->pru_close != NULL) 1213 (*so->so_proto->pr_usrreqs->pru_close)(so); 1214 1215 SOCK_LOCK(so); 1216 if ((listening = (so->so_options & SO_ACCEPTCONN))) { 1217 struct socket *sp; 1218 1219 TAILQ_INIT(&lqueue); 1220 TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list); 1221 TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list); 1222 1223 so->sol_qlen = so->sol_incqlen = 0; 1224 1225 TAILQ_FOREACH(sp, &lqueue, so_list) { 1226 SOCK_LOCK(sp); 1227 sp->so_qstate = SQ_NONE; 1228 sp->so_listen = NULL; 1229 SOCK_UNLOCK(sp); 1230 /* Guaranteed not to be the last. */ 1231 refcount_release(&so->so_count); 1232 } 1233 } 1234 KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF")); 1235 so->so_state |= SS_NOFDREF; 1236 sorele(so); 1237 if (listening) { 1238 struct socket *sp, *tsp; 1239 1240 TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp) { 1241 SOCK_LOCK(sp); 1242 if (sp->so_count == 0) { 1243 SOCK_UNLOCK(sp); 1244 soabort(sp); 1245 } else 1246 /* sp is now in sofree() */ 1247 SOCK_UNLOCK(sp); 1248 } 1249 } 1250 CURVNET_RESTORE(); 1251 return (error); 1252 } 1253 1254 /* 1255 * soabort() is used to abruptly tear down a connection, such as when a 1256 * resource limit is reached (listen queue depth exceeded), or if a listen 1257 * socket is closed while there are sockets waiting to be accepted. 1258 * 1259 * This interface is tricky, because it is called on an unreferenced socket, 1260 * and must be called only by a thread that has actually removed the socket 1261 * from the listen queue it was on, or races with other threads are risked. 1262 * 1263 * This interface will call into the protocol code, so must not be called 1264 * with any socket locks held. Protocols do call it while holding their own 1265 * recursible protocol mutexes, but this is something that should be subject 1266 * to review in the future. 1267 */ 1268 void 1269 soabort(struct socket *so) 1270 { 1271 1272 /* 1273 * In as much as is possible, assert that no references to this 1274 * socket are held. This is not quite the same as asserting that the 1275 * current thread is responsible for arranging for no references, but 1276 * is as close as we can get for now. 1277 */ 1278 KASSERT(so->so_count == 0, ("soabort: so_count")); 1279 KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF")); 1280 KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF")); 1281 VNET_SO_ASSERT(so); 1282 1283 if (so->so_proto->pr_usrreqs->pru_abort != NULL) 1284 (*so->so_proto->pr_usrreqs->pru_abort)(so); 1285 SOCK_LOCK(so); 1286 sofree(so); 1287 } 1288 1289 int 1290 soaccept(struct socket *so, struct sockaddr **nam) 1291 { 1292 int error; 1293 1294 SOCK_LOCK(so); 1295 KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF")); 1296 so->so_state &= ~SS_NOFDREF; 1297 SOCK_UNLOCK(so); 1298 1299 CURVNET_SET(so->so_vnet); 1300 error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam); 1301 CURVNET_RESTORE(); 1302 return (error); 1303 } 1304 1305 int 1306 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td) 1307 { 1308 1309 return (soconnectat(AT_FDCWD, so, nam, td)); 1310 } 1311 1312 int 1313 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 1314 { 1315 int error; 1316 1317 if (so->so_options & SO_ACCEPTCONN) 1318 return (EOPNOTSUPP); 1319 1320 CURVNET_SET(so->so_vnet); 1321 /* 1322 * If protocol is connection-based, can only connect once. 1323 * Otherwise, if connected, try to disconnect first. This allows 1324 * user to disconnect by connecting to, e.g., a null address. 1325 */ 1326 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 1327 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 1328 (error = sodisconnect(so)))) { 1329 error = EISCONN; 1330 } else { 1331 /* 1332 * Prevent accumulated error from previous connection from 1333 * biting us. 1334 */ 1335 so->so_error = 0; 1336 if (fd == AT_FDCWD) { 1337 error = (*so->so_proto->pr_usrreqs->pru_connect)(so, 1338 nam, td); 1339 } else { 1340 error = (*so->so_proto->pr_usrreqs->pru_connectat)(fd, 1341 so, nam, td); 1342 } 1343 } 1344 CURVNET_RESTORE(); 1345 1346 return (error); 1347 } 1348 1349 int 1350 soconnect2(struct socket *so1, struct socket *so2) 1351 { 1352 int error; 1353 1354 CURVNET_SET(so1->so_vnet); 1355 error = (*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2); 1356 CURVNET_RESTORE(); 1357 return (error); 1358 } 1359 1360 int 1361 sodisconnect(struct socket *so) 1362 { 1363 int error; 1364 1365 if ((so->so_state & SS_ISCONNECTED) == 0) 1366 return (ENOTCONN); 1367 if (so->so_state & SS_ISDISCONNECTING) 1368 return (EALREADY); 1369 VNET_SO_ASSERT(so); 1370 error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so); 1371 return (error); 1372 } 1373 1374 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT) 1375 1376 int 1377 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, 1378 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1379 { 1380 long space; 1381 ssize_t resid; 1382 int clen = 0, error, dontroute; 1383 1384 KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM")); 1385 KASSERT(so->so_proto->pr_flags & PR_ATOMIC, 1386 ("sosend_dgram: !PR_ATOMIC")); 1387 1388 if (uio != NULL) 1389 resid = uio->uio_resid; 1390 else 1391 resid = top->m_pkthdr.len; 1392 /* 1393 * In theory resid should be unsigned. However, space must be 1394 * signed, as it might be less than 0 if we over-committed, and we 1395 * must use a signed comparison of space and resid. On the other 1396 * hand, a negative resid causes us to loop sending 0-length 1397 * segments to the protocol. 1398 */ 1399 if (resid < 0) { 1400 error = EINVAL; 1401 goto out; 1402 } 1403 1404 dontroute = 1405 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0; 1406 if (td != NULL) 1407 td->td_ru.ru_msgsnd++; 1408 if (control != NULL) 1409 clen = control->m_len; 1410 1411 SOCKBUF_LOCK(&so->so_snd); 1412 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1413 SOCKBUF_UNLOCK(&so->so_snd); 1414 error = EPIPE; 1415 goto out; 1416 } 1417 if (so->so_error) { 1418 error = so->so_error; 1419 so->so_error = 0; 1420 SOCKBUF_UNLOCK(&so->so_snd); 1421 goto out; 1422 } 1423 if ((so->so_state & SS_ISCONNECTED) == 0) { 1424 /* 1425 * `sendto' and `sendmsg' is allowed on a connection-based 1426 * socket if it supports implied connect. Return ENOTCONN if 1427 * not connected and no address is supplied. 1428 */ 1429 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1430 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1431 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1432 !(resid == 0 && clen != 0)) { 1433 SOCKBUF_UNLOCK(&so->so_snd); 1434 error = ENOTCONN; 1435 goto out; 1436 } 1437 } else if (addr == NULL) { 1438 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1439 error = ENOTCONN; 1440 else 1441 error = EDESTADDRREQ; 1442 SOCKBUF_UNLOCK(&so->so_snd); 1443 goto out; 1444 } 1445 } 1446 1447 /* 1448 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a 1449 * problem and need fixing. 1450 */ 1451 space = sbspace(&so->so_snd); 1452 if (flags & MSG_OOB) 1453 space += 1024; 1454 space -= clen; 1455 SOCKBUF_UNLOCK(&so->so_snd); 1456 if (resid > space) { 1457 error = EMSGSIZE; 1458 goto out; 1459 } 1460 if (uio == NULL) { 1461 resid = 0; 1462 if (flags & MSG_EOR) 1463 top->m_flags |= M_EOR; 1464 } else { 1465 /* 1466 * Copy the data from userland into a mbuf chain. 1467 * If no data is to be copied in, a single empty mbuf 1468 * is returned. 1469 */ 1470 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr, 1471 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0))); 1472 if (top == NULL) { 1473 error = EFAULT; /* only possible error */ 1474 goto out; 1475 } 1476 space -= resid - uio->uio_resid; 1477 resid = uio->uio_resid; 1478 } 1479 KASSERT(resid == 0, ("sosend_dgram: resid != 0")); 1480 /* 1481 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock 1482 * than with. 1483 */ 1484 if (dontroute) { 1485 SOCK_LOCK(so); 1486 so->so_options |= SO_DONTROUTE; 1487 SOCK_UNLOCK(so); 1488 } 1489 /* 1490 * XXX all the SBS_CANTSENDMORE checks previously done could be out 1491 * of date. We could have received a reset packet in an interrupt or 1492 * maybe we slept while doing page faults in uiomove() etc. We could 1493 * probably recheck again inside the locking protection here, but 1494 * there are probably other places that this also happens. We must 1495 * rethink this. 1496 */ 1497 VNET_SO_ASSERT(so); 1498 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1499 (flags & MSG_OOB) ? PRUS_OOB : 1500 /* 1501 * If the user set MSG_EOF, the protocol understands this flag and 1502 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND. 1503 */ 1504 ((flags & MSG_EOF) && 1505 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1506 (resid <= 0)) ? 1507 PRUS_EOF : 1508 /* If there is more to send set PRUS_MORETOCOME */ 1509 (flags & MSG_MORETOCOME) || 1510 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1511 top, addr, control, td); 1512 if (dontroute) { 1513 SOCK_LOCK(so); 1514 so->so_options &= ~SO_DONTROUTE; 1515 SOCK_UNLOCK(so); 1516 } 1517 clen = 0; 1518 control = NULL; 1519 top = NULL; 1520 out: 1521 if (top != NULL) 1522 m_freem(top); 1523 if (control != NULL) 1524 m_freem(control); 1525 return (error); 1526 } 1527 1528 /* 1529 * Send on a socket. If send must go all at once and message is larger than 1530 * send buffering, then hard error. Lock against other senders. If must go 1531 * all at once and not enough room now, then inform user that this would 1532 * block and do nothing. Otherwise, if nonblocking, send as much as 1533 * possible. The data to be sent is described by "uio" if nonzero, otherwise 1534 * by the mbuf chain "top" (which must be null if uio is not). Data provided 1535 * in mbuf chain must be small enough to send all at once. 1536 * 1537 * Returns nonzero on error, timeout or signal; callers must check for short 1538 * counts if EINTR/ERESTART are returned. Data and control buffers are freed 1539 * on return. 1540 */ 1541 int 1542 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio, 1543 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1544 { 1545 long space; 1546 ssize_t resid; 1547 int clen = 0, error, dontroute; 1548 int atomic = sosendallatonce(so) || top; 1549 int pru_flag; 1550 #ifdef KERN_TLS 1551 struct ktls_session *tls; 1552 int tls_enq_cnt, tls_pruflag; 1553 uint8_t tls_rtype; 1554 1555 tls = NULL; 1556 tls_rtype = TLS_RLTYPE_APP; 1557 #endif 1558 if (uio != NULL) 1559 resid = uio->uio_resid; 1560 else 1561 resid = top->m_pkthdr.len; 1562 /* 1563 * In theory resid should be unsigned. However, space must be 1564 * signed, as it might be less than 0 if we over-committed, and we 1565 * must use a signed comparison of space and resid. On the other 1566 * hand, a negative resid causes us to loop sending 0-length 1567 * segments to the protocol. 1568 * 1569 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 1570 * type sockets since that's an error. 1571 */ 1572 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 1573 error = EINVAL; 1574 goto out; 1575 } 1576 1577 dontroute = 1578 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 1579 (so->so_proto->pr_flags & PR_ATOMIC); 1580 if (td != NULL) 1581 td->td_ru.ru_msgsnd++; 1582 if (control != NULL) 1583 clen = control->m_len; 1584 1585 error = sblock(&so->so_snd, SBLOCKWAIT(flags)); 1586 if (error) 1587 goto out; 1588 1589 #ifdef KERN_TLS 1590 tls_pruflag = 0; 1591 tls = ktls_hold(so->so_snd.sb_tls_info); 1592 if (tls != NULL) { 1593 if (tls->mode == TCP_TLS_MODE_SW) 1594 tls_pruflag = PRUS_NOTREADY; 1595 1596 if (control != NULL) { 1597 struct cmsghdr *cm = mtod(control, struct cmsghdr *); 1598 1599 if (clen >= sizeof(*cm) && 1600 cm->cmsg_type == TLS_SET_RECORD_TYPE) { 1601 tls_rtype = *((uint8_t *)CMSG_DATA(cm)); 1602 clen = 0; 1603 m_freem(control); 1604 control = NULL; 1605 atomic = 1; 1606 } 1607 } 1608 } 1609 #endif 1610 1611 restart: 1612 do { 1613 SOCKBUF_LOCK(&so->so_snd); 1614 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1615 SOCKBUF_UNLOCK(&so->so_snd); 1616 error = EPIPE; 1617 goto release; 1618 } 1619 if (so->so_error) { 1620 error = so->so_error; 1621 so->so_error = 0; 1622 SOCKBUF_UNLOCK(&so->so_snd); 1623 goto release; 1624 } 1625 if ((so->so_state & SS_ISCONNECTED) == 0) { 1626 /* 1627 * `sendto' and `sendmsg' is allowed on a connection- 1628 * based socket if it supports implied connect. 1629 * Return ENOTCONN if not connected and no address is 1630 * supplied. 1631 */ 1632 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1633 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1634 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1635 !(resid == 0 && clen != 0)) { 1636 SOCKBUF_UNLOCK(&so->so_snd); 1637 error = ENOTCONN; 1638 goto release; 1639 } 1640 } else if (addr == NULL) { 1641 SOCKBUF_UNLOCK(&so->so_snd); 1642 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1643 error = ENOTCONN; 1644 else 1645 error = EDESTADDRREQ; 1646 goto release; 1647 } 1648 } 1649 space = sbspace(&so->so_snd); 1650 if (flags & MSG_OOB) 1651 space += 1024; 1652 if ((atomic && resid > so->so_snd.sb_hiwat) || 1653 clen > so->so_snd.sb_hiwat) { 1654 SOCKBUF_UNLOCK(&so->so_snd); 1655 error = EMSGSIZE; 1656 goto release; 1657 } 1658 if (space < resid + clen && 1659 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 1660 if ((so->so_state & SS_NBIO) || 1661 (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) { 1662 SOCKBUF_UNLOCK(&so->so_snd); 1663 error = EWOULDBLOCK; 1664 goto release; 1665 } 1666 error = sbwait(&so->so_snd); 1667 SOCKBUF_UNLOCK(&so->so_snd); 1668 if (error) 1669 goto release; 1670 goto restart; 1671 } 1672 SOCKBUF_UNLOCK(&so->so_snd); 1673 space -= clen; 1674 do { 1675 if (uio == NULL) { 1676 resid = 0; 1677 if (flags & MSG_EOR) 1678 top->m_flags |= M_EOR; 1679 } else { 1680 /* 1681 * Copy the data from userland into a mbuf 1682 * chain. If resid is 0, which can happen 1683 * only if we have control to send, then 1684 * a single empty mbuf is returned. This 1685 * is a workaround to prevent protocol send 1686 * methods to panic. 1687 */ 1688 #ifdef KERN_TLS 1689 if (tls != NULL) { 1690 top = m_uiotombuf(uio, M_WAITOK, space, 1691 tls->params.max_frame_len, 1692 M_NOMAP | 1693 ((flags & MSG_EOR) ? M_EOR : 0)); 1694 if (top != NULL) { 1695 ktls_frame(top, tls, 1696 &tls_enq_cnt, tls_rtype); 1697 } 1698 tls_rtype = TLS_RLTYPE_APP; 1699 } else 1700 #endif 1701 top = m_uiotombuf(uio, M_WAITOK, space, 1702 (atomic ? max_hdr : 0), 1703 (atomic ? M_PKTHDR : 0) | 1704 ((flags & MSG_EOR) ? M_EOR : 0)); 1705 if (top == NULL) { 1706 error = EFAULT; /* only possible error */ 1707 goto release; 1708 } 1709 space -= resid - uio->uio_resid; 1710 resid = uio->uio_resid; 1711 } 1712 if (dontroute) { 1713 SOCK_LOCK(so); 1714 so->so_options |= SO_DONTROUTE; 1715 SOCK_UNLOCK(so); 1716 } 1717 /* 1718 * XXX all the SBS_CANTSENDMORE checks previously 1719 * done could be out of date. We could have received 1720 * a reset packet in an interrupt or maybe we slept 1721 * while doing page faults in uiomove() etc. We 1722 * could probably recheck again inside the locking 1723 * protection here, but there are probably other 1724 * places that this also happens. We must rethink 1725 * this. 1726 */ 1727 VNET_SO_ASSERT(so); 1728 1729 pru_flag = (flags & MSG_OOB) ? PRUS_OOB : 1730 /* 1731 * If the user set MSG_EOF, the protocol understands 1732 * this flag and nothing left to send then use 1733 * PRU_SEND_EOF instead of PRU_SEND. 1734 */ 1735 ((flags & MSG_EOF) && 1736 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1737 (resid <= 0)) ? 1738 PRUS_EOF : 1739 /* If there is more to send set PRUS_MORETOCOME. */ 1740 (flags & MSG_MORETOCOME) || 1741 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0; 1742 1743 #ifdef KERN_TLS 1744 pru_flag |= tls_pruflag; 1745 #endif 1746 1747 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1748 pru_flag, top, addr, control, td); 1749 1750 if (dontroute) { 1751 SOCK_LOCK(so); 1752 so->so_options &= ~SO_DONTROUTE; 1753 SOCK_UNLOCK(so); 1754 } 1755 1756 #ifdef KERN_TLS 1757 if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) { 1758 /* 1759 * Note that error is intentionally 1760 * ignored. 1761 * 1762 * Like sendfile(), we rely on the 1763 * completion routine (pru_ready()) 1764 * to free the mbufs in the event that 1765 * pru_send() encountered an error and 1766 * did not append them to the sockbuf. 1767 */ 1768 soref(so); 1769 ktls_enqueue(top, so, tls_enq_cnt); 1770 } 1771 #endif 1772 clen = 0; 1773 control = NULL; 1774 top = NULL; 1775 if (error) 1776 goto release; 1777 } while (resid && space > 0); 1778 } while (resid); 1779 1780 release: 1781 sbunlock(&so->so_snd); 1782 out: 1783 #ifdef KERN_TLS 1784 if (tls != NULL) 1785 ktls_free(tls); 1786 #endif 1787 if (top != NULL) 1788 m_freem(top); 1789 if (control != NULL) 1790 m_freem(control); 1791 return (error); 1792 } 1793 1794 int 1795 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, 1796 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1797 { 1798 int error; 1799 1800 CURVNET_SET(so->so_vnet); 1801 if (!SOLISTENING(so)) 1802 error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, 1803 top, control, flags, td); 1804 else { 1805 m_freem(top); 1806 m_freem(control); 1807 error = ENOTCONN; 1808 } 1809 CURVNET_RESTORE(); 1810 return (error); 1811 } 1812 1813 /* 1814 * The part of soreceive() that implements reading non-inline out-of-band 1815 * data from a socket. For more complete comments, see soreceive(), from 1816 * which this code originated. 1817 * 1818 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is 1819 * unable to return an mbuf chain to the caller. 1820 */ 1821 static int 1822 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags) 1823 { 1824 struct protosw *pr = so->so_proto; 1825 struct mbuf *m; 1826 int error; 1827 1828 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); 1829 VNET_SO_ASSERT(so); 1830 1831 m = m_get(M_WAITOK, MT_DATA); 1832 error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK); 1833 if (error) 1834 goto bad; 1835 do { 1836 error = uiomove(mtod(m, void *), 1837 (int) min(uio->uio_resid, m->m_len), uio); 1838 m = m_free(m); 1839 } while (uio->uio_resid && error == 0 && m); 1840 bad: 1841 if (m != NULL) 1842 m_freem(m); 1843 return (error); 1844 } 1845 1846 /* 1847 * Following replacement or removal of the first mbuf on the first mbuf chain 1848 * of a socket buffer, push necessary state changes back into the socket 1849 * buffer so that other consumers see the values consistently. 'nextrecord' 1850 * is the callers locally stored value of the original value of 1851 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. 1852 * NOTE: 'nextrecord' may be NULL. 1853 */ 1854 static __inline void 1855 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) 1856 { 1857 1858 SOCKBUF_LOCK_ASSERT(sb); 1859 /* 1860 * First, update for the new value of nextrecord. If necessary, make 1861 * it the first record. 1862 */ 1863 if (sb->sb_mb != NULL) 1864 sb->sb_mb->m_nextpkt = nextrecord; 1865 else 1866 sb->sb_mb = nextrecord; 1867 1868 /* 1869 * Now update any dependent socket buffer fields to reflect the new 1870 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the 1871 * addition of a second clause that takes care of the case where 1872 * sb_mb has been updated, but remains the last record. 1873 */ 1874 if (sb->sb_mb == NULL) { 1875 sb->sb_mbtail = NULL; 1876 sb->sb_lastrecord = NULL; 1877 } else if (sb->sb_mb->m_nextpkt == NULL) 1878 sb->sb_lastrecord = sb->sb_mb; 1879 } 1880 1881 /* 1882 * Implement receive operations on a socket. We depend on the way that 1883 * records are added to the sockbuf by sbappend. In particular, each record 1884 * (mbufs linked through m_next) must begin with an address if the protocol 1885 * so specifies, followed by an optional mbuf or mbufs containing ancillary 1886 * data, and then zero or more mbufs of data. In order to allow parallelism 1887 * between network receive and copying to user space, as well as avoid 1888 * sleeping with a mutex held, we release the socket buffer mutex during the 1889 * user space copy. Although the sockbuf is locked, new data may still be 1890 * appended, and thus we must maintain consistency of the sockbuf during that 1891 * time. 1892 * 1893 * The caller may receive the data as a single mbuf chain by supplying an 1894 * mbuf **mp0 for use in returning the chain. The uio is then used only for 1895 * the count in uio_resid. 1896 */ 1897 int 1898 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio, 1899 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1900 { 1901 struct mbuf *m, **mp; 1902 int flags, error, offset; 1903 ssize_t len; 1904 struct protosw *pr = so->so_proto; 1905 struct mbuf *nextrecord; 1906 int moff, type = 0; 1907 ssize_t orig_resid = uio->uio_resid; 1908 1909 mp = mp0; 1910 if (psa != NULL) 1911 *psa = NULL; 1912 if (controlp != NULL) 1913 *controlp = NULL; 1914 if (flagsp != NULL) 1915 flags = *flagsp &~ MSG_EOR; 1916 else 1917 flags = 0; 1918 if (flags & MSG_OOB) 1919 return (soreceive_rcvoob(so, uio, flags)); 1920 if (mp != NULL) 1921 *mp = NULL; 1922 if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING) 1923 && uio->uio_resid) { 1924 VNET_SO_ASSERT(so); 1925 (*pr->pr_usrreqs->pru_rcvd)(so, 0); 1926 } 1927 1928 error = sblock(&so->so_rcv, SBLOCKWAIT(flags)); 1929 if (error) 1930 return (error); 1931 1932 restart: 1933 SOCKBUF_LOCK(&so->so_rcv); 1934 m = so->so_rcv.sb_mb; 1935 /* 1936 * If we have less data than requested, block awaiting more (subject 1937 * to any timeout) if: 1938 * 1. the current count is less than the low water mark, or 1939 * 2. MSG_DONTWAIT is not set 1940 */ 1941 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 1942 sbavail(&so->so_rcv) < uio->uio_resid) && 1943 sbavail(&so->so_rcv) < so->so_rcv.sb_lowat && 1944 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 1945 KASSERT(m != NULL || !sbavail(&so->so_rcv), 1946 ("receive: m == %p sbavail == %u", 1947 m, sbavail(&so->so_rcv))); 1948 if (so->so_error) { 1949 if (m != NULL) 1950 goto dontblock; 1951 error = so->so_error; 1952 if ((flags & MSG_PEEK) == 0) 1953 so->so_error = 0; 1954 SOCKBUF_UNLOCK(&so->so_rcv); 1955 goto release; 1956 } 1957 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1958 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 1959 if (m == NULL) { 1960 SOCKBUF_UNLOCK(&so->so_rcv); 1961 goto release; 1962 } else 1963 goto dontblock; 1964 } 1965 for (; m != NULL; m = m->m_next) 1966 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 1967 m = so->so_rcv.sb_mb; 1968 goto dontblock; 1969 } 1970 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 1971 (so->so_proto->pr_flags & PR_CONNREQUIRED)) { 1972 SOCKBUF_UNLOCK(&so->so_rcv); 1973 error = ENOTCONN; 1974 goto release; 1975 } 1976 if (uio->uio_resid == 0) { 1977 SOCKBUF_UNLOCK(&so->so_rcv); 1978 goto release; 1979 } 1980 if ((so->so_state & SS_NBIO) || 1981 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 1982 SOCKBUF_UNLOCK(&so->so_rcv); 1983 error = EWOULDBLOCK; 1984 goto release; 1985 } 1986 SBLASTRECORDCHK(&so->so_rcv); 1987 SBLASTMBUFCHK(&so->so_rcv); 1988 error = sbwait(&so->so_rcv); 1989 SOCKBUF_UNLOCK(&so->so_rcv); 1990 if (error) 1991 goto release; 1992 goto restart; 1993 } 1994 dontblock: 1995 /* 1996 * From this point onward, we maintain 'nextrecord' as a cache of the 1997 * pointer to the next record in the socket buffer. We must keep the 1998 * various socket buffer pointers and local stack versions of the 1999 * pointers in sync, pushing out modifications before dropping the 2000 * socket buffer mutex, and re-reading them when picking it up. 2001 * 2002 * Otherwise, we will race with the network stack appending new data 2003 * or records onto the socket buffer by using inconsistent/stale 2004 * versions of the field, possibly resulting in socket buffer 2005 * corruption. 2006 * 2007 * By holding the high-level sblock(), we prevent simultaneous 2008 * readers from pulling off the front of the socket buffer. 2009 */ 2010 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2011 if (uio->uio_td) 2012 uio->uio_td->td_ru.ru_msgrcv++; 2013 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); 2014 SBLASTRECORDCHK(&so->so_rcv); 2015 SBLASTMBUFCHK(&so->so_rcv); 2016 nextrecord = m->m_nextpkt; 2017 if (pr->pr_flags & PR_ADDR) { 2018 KASSERT(m->m_type == MT_SONAME, 2019 ("m->m_type == %d", m->m_type)); 2020 orig_resid = 0; 2021 if (psa != NULL) 2022 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2023 M_NOWAIT); 2024 if (flags & MSG_PEEK) { 2025 m = m->m_next; 2026 } else { 2027 sbfree(&so->so_rcv, m); 2028 so->so_rcv.sb_mb = m_free(m); 2029 m = so->so_rcv.sb_mb; 2030 sockbuf_pushsync(&so->so_rcv, nextrecord); 2031 } 2032 } 2033 2034 /* 2035 * Process one or more MT_CONTROL mbufs present before any data mbufs 2036 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 2037 * just copy the data; if !MSG_PEEK, we call into the protocol to 2038 * perform externalization (or freeing if controlp == NULL). 2039 */ 2040 if (m != NULL && m->m_type == MT_CONTROL) { 2041 struct mbuf *cm = NULL, *cmn; 2042 struct mbuf **cme = &cm; 2043 2044 do { 2045 if (flags & MSG_PEEK) { 2046 if (controlp != NULL) { 2047 *controlp = m_copym(m, 0, m->m_len, 2048 M_NOWAIT); 2049 controlp = &(*controlp)->m_next; 2050 } 2051 m = m->m_next; 2052 } else { 2053 sbfree(&so->so_rcv, m); 2054 so->so_rcv.sb_mb = m->m_next; 2055 m->m_next = NULL; 2056 *cme = m; 2057 cme = &(*cme)->m_next; 2058 m = so->so_rcv.sb_mb; 2059 } 2060 } while (m != NULL && m->m_type == MT_CONTROL); 2061 if ((flags & MSG_PEEK) == 0) 2062 sockbuf_pushsync(&so->so_rcv, nextrecord); 2063 while (cm != NULL) { 2064 cmn = cm->m_next; 2065 cm->m_next = NULL; 2066 if (pr->pr_domain->dom_externalize != NULL) { 2067 SOCKBUF_UNLOCK(&so->so_rcv); 2068 VNET_SO_ASSERT(so); 2069 error = (*pr->pr_domain->dom_externalize) 2070 (cm, controlp, flags); 2071 SOCKBUF_LOCK(&so->so_rcv); 2072 } else if (controlp != NULL) 2073 *controlp = cm; 2074 else 2075 m_freem(cm); 2076 if (controlp != NULL) { 2077 orig_resid = 0; 2078 while (*controlp != NULL) 2079 controlp = &(*controlp)->m_next; 2080 } 2081 cm = cmn; 2082 } 2083 if (m != NULL) 2084 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 2085 else 2086 nextrecord = so->so_rcv.sb_mb; 2087 orig_resid = 0; 2088 } 2089 if (m != NULL) { 2090 if ((flags & MSG_PEEK) == 0) { 2091 KASSERT(m->m_nextpkt == nextrecord, 2092 ("soreceive: post-control, nextrecord !sync")); 2093 if (nextrecord == NULL) { 2094 KASSERT(so->so_rcv.sb_mb == m, 2095 ("soreceive: post-control, sb_mb!=m")); 2096 KASSERT(so->so_rcv.sb_lastrecord == m, 2097 ("soreceive: post-control, lastrecord!=m")); 2098 } 2099 } 2100 type = m->m_type; 2101 if (type == MT_OOBDATA) 2102 flags |= MSG_OOB; 2103 } else { 2104 if ((flags & MSG_PEEK) == 0) { 2105 KASSERT(so->so_rcv.sb_mb == nextrecord, 2106 ("soreceive: sb_mb != nextrecord")); 2107 if (so->so_rcv.sb_mb == NULL) { 2108 KASSERT(so->so_rcv.sb_lastrecord == NULL, 2109 ("soreceive: sb_lastercord != NULL")); 2110 } 2111 } 2112 } 2113 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2114 SBLASTRECORDCHK(&so->so_rcv); 2115 SBLASTMBUFCHK(&so->so_rcv); 2116 2117 /* 2118 * Now continue to read any data mbufs off of the head of the socket 2119 * buffer until the read request is satisfied. Note that 'type' is 2120 * used to store the type of any mbuf reads that have happened so far 2121 * such that soreceive() can stop reading if the type changes, which 2122 * causes soreceive() to return only one of regular data and inline 2123 * out-of-band data in a single socket receive operation. 2124 */ 2125 moff = 0; 2126 offset = 0; 2127 while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0 2128 && error == 0) { 2129 /* 2130 * If the type of mbuf has changed since the last mbuf 2131 * examined ('type'), end the receive operation. 2132 */ 2133 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2134 if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) { 2135 if (type != m->m_type) 2136 break; 2137 } else if (type == MT_OOBDATA) 2138 break; 2139 else 2140 KASSERT(m->m_type == MT_DATA, 2141 ("m->m_type == %d", m->m_type)); 2142 so->so_rcv.sb_state &= ~SBS_RCVATMARK; 2143 len = uio->uio_resid; 2144 if (so->so_oobmark && len > so->so_oobmark - offset) 2145 len = so->so_oobmark - offset; 2146 if (len > m->m_len - moff) 2147 len = m->m_len - moff; 2148 /* 2149 * If mp is set, just pass back the mbufs. Otherwise copy 2150 * them out via the uio, then free. Sockbuf must be 2151 * consistent here (points to current mbuf, it points to next 2152 * record) when we drop priority; we must note any additions 2153 * to the sockbuf when we block interrupts again. 2154 */ 2155 if (mp == NULL) { 2156 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2157 SBLASTRECORDCHK(&so->so_rcv); 2158 SBLASTMBUFCHK(&so->so_rcv); 2159 SOCKBUF_UNLOCK(&so->so_rcv); 2160 if ((m->m_flags & M_NOMAP) != 0) 2161 error = m_unmappedtouio(m, moff, uio, (int)len); 2162 else 2163 error = uiomove(mtod(m, char *) + moff, 2164 (int)len, uio); 2165 SOCKBUF_LOCK(&so->so_rcv); 2166 if (error) { 2167 /* 2168 * The MT_SONAME mbuf has already been removed 2169 * from the record, so it is necessary to 2170 * remove the data mbufs, if any, to preserve 2171 * the invariant in the case of PR_ADDR that 2172 * requires MT_SONAME mbufs at the head of 2173 * each record. 2174 */ 2175 if (pr->pr_flags & PR_ATOMIC && 2176 ((flags & MSG_PEEK) == 0)) 2177 (void)sbdroprecord_locked(&so->so_rcv); 2178 SOCKBUF_UNLOCK(&so->so_rcv); 2179 goto release; 2180 } 2181 } else 2182 uio->uio_resid -= len; 2183 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2184 if (len == m->m_len - moff) { 2185 if (m->m_flags & M_EOR) 2186 flags |= MSG_EOR; 2187 if (flags & MSG_PEEK) { 2188 m = m->m_next; 2189 moff = 0; 2190 } else { 2191 nextrecord = m->m_nextpkt; 2192 sbfree(&so->so_rcv, m); 2193 if (mp != NULL) { 2194 m->m_nextpkt = NULL; 2195 *mp = m; 2196 mp = &m->m_next; 2197 so->so_rcv.sb_mb = m = m->m_next; 2198 *mp = NULL; 2199 } else { 2200 so->so_rcv.sb_mb = m_free(m); 2201 m = so->so_rcv.sb_mb; 2202 } 2203 sockbuf_pushsync(&so->so_rcv, nextrecord); 2204 SBLASTRECORDCHK(&so->so_rcv); 2205 SBLASTMBUFCHK(&so->so_rcv); 2206 } 2207 } else { 2208 if (flags & MSG_PEEK) 2209 moff += len; 2210 else { 2211 if (mp != NULL) { 2212 if (flags & MSG_DONTWAIT) { 2213 *mp = m_copym(m, 0, len, 2214 M_NOWAIT); 2215 if (*mp == NULL) { 2216 /* 2217 * m_copym() couldn't 2218 * allocate an mbuf. 2219 * Adjust uio_resid back 2220 * (it was adjusted 2221 * down by len bytes, 2222 * which we didn't end 2223 * up "copying" over). 2224 */ 2225 uio->uio_resid += len; 2226 break; 2227 } 2228 } else { 2229 SOCKBUF_UNLOCK(&so->so_rcv); 2230 *mp = m_copym(m, 0, len, 2231 M_WAITOK); 2232 SOCKBUF_LOCK(&so->so_rcv); 2233 } 2234 } 2235 sbcut_locked(&so->so_rcv, len); 2236 } 2237 } 2238 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2239 if (so->so_oobmark) { 2240 if ((flags & MSG_PEEK) == 0) { 2241 so->so_oobmark -= len; 2242 if (so->so_oobmark == 0) { 2243 so->so_rcv.sb_state |= SBS_RCVATMARK; 2244 break; 2245 } 2246 } else { 2247 offset += len; 2248 if (offset == so->so_oobmark) 2249 break; 2250 } 2251 } 2252 if (flags & MSG_EOR) 2253 break; 2254 /* 2255 * If the MSG_WAITALL flag is set (for non-atomic socket), we 2256 * must not quit until "uio->uio_resid == 0" or an error 2257 * termination. If a signal/timeout occurs, return with a 2258 * short count but without error. Keep sockbuf locked 2259 * against other readers. 2260 */ 2261 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 2262 !sosendallatonce(so) && nextrecord == NULL) { 2263 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2264 if (so->so_error || 2265 so->so_rcv.sb_state & SBS_CANTRCVMORE) 2266 break; 2267 /* 2268 * Notify the protocol that some data has been 2269 * drained before blocking. 2270 */ 2271 if (pr->pr_flags & PR_WANTRCVD) { 2272 SOCKBUF_UNLOCK(&so->so_rcv); 2273 VNET_SO_ASSERT(so); 2274 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 2275 SOCKBUF_LOCK(&so->so_rcv); 2276 } 2277 SBLASTRECORDCHK(&so->so_rcv); 2278 SBLASTMBUFCHK(&so->so_rcv); 2279 /* 2280 * We could receive some data while was notifying 2281 * the protocol. Skip blocking in this case. 2282 */ 2283 if (so->so_rcv.sb_mb == NULL) { 2284 error = sbwait(&so->so_rcv); 2285 if (error) { 2286 SOCKBUF_UNLOCK(&so->so_rcv); 2287 goto release; 2288 } 2289 } 2290 m = so->so_rcv.sb_mb; 2291 if (m != NULL) 2292 nextrecord = m->m_nextpkt; 2293 } 2294 } 2295 2296 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2297 if (m != NULL && pr->pr_flags & PR_ATOMIC) { 2298 flags |= MSG_TRUNC; 2299 if ((flags & MSG_PEEK) == 0) 2300 (void) sbdroprecord_locked(&so->so_rcv); 2301 } 2302 if ((flags & MSG_PEEK) == 0) { 2303 if (m == NULL) { 2304 /* 2305 * First part is an inline SB_EMPTY_FIXUP(). Second 2306 * part makes sure sb_lastrecord is up-to-date if 2307 * there is still data in the socket buffer. 2308 */ 2309 so->so_rcv.sb_mb = nextrecord; 2310 if (so->so_rcv.sb_mb == NULL) { 2311 so->so_rcv.sb_mbtail = NULL; 2312 so->so_rcv.sb_lastrecord = NULL; 2313 } else if (nextrecord->m_nextpkt == NULL) 2314 so->so_rcv.sb_lastrecord = nextrecord; 2315 } 2316 SBLASTRECORDCHK(&so->so_rcv); 2317 SBLASTMBUFCHK(&so->so_rcv); 2318 /* 2319 * If soreceive() is being done from the socket callback, 2320 * then don't need to generate ACK to peer to update window, 2321 * since ACK will be generated on return to TCP. 2322 */ 2323 if (!(flags & MSG_SOCALLBCK) && 2324 (pr->pr_flags & PR_WANTRCVD)) { 2325 SOCKBUF_UNLOCK(&so->so_rcv); 2326 VNET_SO_ASSERT(so); 2327 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 2328 SOCKBUF_LOCK(&so->so_rcv); 2329 } 2330 } 2331 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2332 if (orig_resid == uio->uio_resid && orig_resid && 2333 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { 2334 SOCKBUF_UNLOCK(&so->so_rcv); 2335 goto restart; 2336 } 2337 SOCKBUF_UNLOCK(&so->so_rcv); 2338 2339 if (flagsp != NULL) 2340 *flagsp |= flags; 2341 release: 2342 sbunlock(&so->so_rcv); 2343 return (error); 2344 } 2345 2346 /* 2347 * Optimized version of soreceive() for stream (TCP) sockets. 2348 */ 2349 int 2350 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio, 2351 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2352 { 2353 int len = 0, error = 0, flags, oresid; 2354 struct sockbuf *sb; 2355 struct mbuf *m, *n = NULL; 2356 2357 /* We only do stream sockets. */ 2358 if (so->so_type != SOCK_STREAM) 2359 return (EINVAL); 2360 if (psa != NULL) 2361 *psa = NULL; 2362 if (flagsp != NULL) 2363 flags = *flagsp &~ MSG_EOR; 2364 else 2365 flags = 0; 2366 if (controlp != NULL) 2367 *controlp = NULL; 2368 if (flags & MSG_OOB) 2369 return (soreceive_rcvoob(so, uio, flags)); 2370 if (mp0 != NULL) 2371 *mp0 = NULL; 2372 2373 sb = &so->so_rcv; 2374 2375 /* Prevent other readers from entering the socket. */ 2376 error = sblock(sb, SBLOCKWAIT(flags)); 2377 if (error) 2378 return (error); 2379 SOCKBUF_LOCK(sb); 2380 2381 /* Easy one, no space to copyout anything. */ 2382 if (uio->uio_resid == 0) { 2383 error = EINVAL; 2384 goto out; 2385 } 2386 oresid = uio->uio_resid; 2387 2388 /* We will never ever get anything unless we are or were connected. */ 2389 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 2390 error = ENOTCONN; 2391 goto out; 2392 } 2393 2394 restart: 2395 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2396 2397 /* Abort if socket has reported problems. */ 2398 if (so->so_error) { 2399 if (sbavail(sb) > 0) 2400 goto deliver; 2401 if (oresid > uio->uio_resid) 2402 goto out; 2403 error = so->so_error; 2404 if (!(flags & MSG_PEEK)) 2405 so->so_error = 0; 2406 goto out; 2407 } 2408 2409 /* Door is closed. Deliver what is left, if any. */ 2410 if (sb->sb_state & SBS_CANTRCVMORE) { 2411 if (sbavail(sb) > 0) 2412 goto deliver; 2413 else 2414 goto out; 2415 } 2416 2417 /* Socket buffer is empty and we shall not block. */ 2418 if (sbavail(sb) == 0 && 2419 ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) { 2420 error = EAGAIN; 2421 goto out; 2422 } 2423 2424 /* Socket buffer got some data that we shall deliver now. */ 2425 if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) && 2426 ((so->so_state & SS_NBIO) || 2427 (flags & (MSG_DONTWAIT|MSG_NBIO)) || 2428 sbavail(sb) >= sb->sb_lowat || 2429 sbavail(sb) >= uio->uio_resid || 2430 sbavail(sb) >= sb->sb_hiwat) ) { 2431 goto deliver; 2432 } 2433 2434 /* On MSG_WAITALL we must wait until all data or error arrives. */ 2435 if ((flags & MSG_WAITALL) && 2436 (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat)) 2437 goto deliver; 2438 2439 /* 2440 * Wait and block until (more) data comes in. 2441 * NB: Drops the sockbuf lock during wait. 2442 */ 2443 error = sbwait(sb); 2444 if (error) 2445 goto out; 2446 goto restart; 2447 2448 deliver: 2449 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2450 KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__)); 2451 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__)); 2452 2453 /* Statistics. */ 2454 if (uio->uio_td) 2455 uio->uio_td->td_ru.ru_msgrcv++; 2456 2457 /* Fill uio until full or current end of socket buffer is reached. */ 2458 len = min(uio->uio_resid, sbavail(sb)); 2459 if (mp0 != NULL) { 2460 /* Dequeue as many mbufs as possible. */ 2461 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) { 2462 if (*mp0 == NULL) 2463 *mp0 = sb->sb_mb; 2464 else 2465 m_cat(*mp0, sb->sb_mb); 2466 for (m = sb->sb_mb; 2467 m != NULL && m->m_len <= len; 2468 m = m->m_next) { 2469 KASSERT(!(m->m_flags & M_NOTAVAIL), 2470 ("%s: m %p not available", __func__, m)); 2471 len -= m->m_len; 2472 uio->uio_resid -= m->m_len; 2473 sbfree(sb, m); 2474 n = m; 2475 } 2476 n->m_next = NULL; 2477 sb->sb_mb = m; 2478 sb->sb_lastrecord = sb->sb_mb; 2479 if (sb->sb_mb == NULL) 2480 SB_EMPTY_FIXUP(sb); 2481 } 2482 /* Copy the remainder. */ 2483 if (len > 0) { 2484 KASSERT(sb->sb_mb != NULL, 2485 ("%s: len > 0 && sb->sb_mb empty", __func__)); 2486 2487 m = m_copym(sb->sb_mb, 0, len, M_NOWAIT); 2488 if (m == NULL) 2489 len = 0; /* Don't flush data from sockbuf. */ 2490 else 2491 uio->uio_resid -= len; 2492 if (*mp0 != NULL) 2493 m_cat(*mp0, m); 2494 else 2495 *mp0 = m; 2496 if (*mp0 == NULL) { 2497 error = ENOBUFS; 2498 goto out; 2499 } 2500 } 2501 } else { 2502 /* NB: Must unlock socket buffer as uiomove may sleep. */ 2503 SOCKBUF_UNLOCK(sb); 2504 error = m_mbuftouio(uio, sb->sb_mb, len); 2505 SOCKBUF_LOCK(sb); 2506 if (error) 2507 goto out; 2508 } 2509 SBLASTRECORDCHK(sb); 2510 SBLASTMBUFCHK(sb); 2511 2512 /* 2513 * Remove the delivered data from the socket buffer unless we 2514 * were only peeking. 2515 */ 2516 if (!(flags & MSG_PEEK)) { 2517 if (len > 0) 2518 sbdrop_locked(sb, len); 2519 2520 /* Notify protocol that we drained some data. */ 2521 if ((so->so_proto->pr_flags & PR_WANTRCVD) && 2522 (((flags & MSG_WAITALL) && uio->uio_resid > 0) || 2523 !(flags & MSG_SOCALLBCK))) { 2524 SOCKBUF_UNLOCK(sb); 2525 VNET_SO_ASSERT(so); 2526 (*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags); 2527 SOCKBUF_LOCK(sb); 2528 } 2529 } 2530 2531 /* 2532 * For MSG_WAITALL we may have to loop again and wait for 2533 * more data to come in. 2534 */ 2535 if ((flags & MSG_WAITALL) && uio->uio_resid > 0) 2536 goto restart; 2537 out: 2538 SOCKBUF_LOCK_ASSERT(sb); 2539 SBLASTRECORDCHK(sb); 2540 SBLASTMBUFCHK(sb); 2541 SOCKBUF_UNLOCK(sb); 2542 sbunlock(sb); 2543 return (error); 2544 } 2545 2546 /* 2547 * Optimized version of soreceive() for simple datagram cases from userspace. 2548 * Unlike in the stream case, we're able to drop a datagram if copyout() 2549 * fails, and because we handle datagrams atomically, we don't need to use a 2550 * sleep lock to prevent I/O interlacing. 2551 */ 2552 int 2553 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio, 2554 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2555 { 2556 struct mbuf *m, *m2; 2557 int flags, error; 2558 ssize_t len; 2559 struct protosw *pr = so->so_proto; 2560 struct mbuf *nextrecord; 2561 2562 if (psa != NULL) 2563 *psa = NULL; 2564 if (controlp != NULL) 2565 *controlp = NULL; 2566 if (flagsp != NULL) 2567 flags = *flagsp &~ MSG_EOR; 2568 else 2569 flags = 0; 2570 2571 /* 2572 * For any complicated cases, fall back to the full 2573 * soreceive_generic(). 2574 */ 2575 if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB)) 2576 return (soreceive_generic(so, psa, uio, mp0, controlp, 2577 flagsp)); 2578 2579 /* 2580 * Enforce restrictions on use. 2581 */ 2582 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0, 2583 ("soreceive_dgram: wantrcvd")); 2584 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic")); 2585 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0, 2586 ("soreceive_dgram: SBS_RCVATMARK")); 2587 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0, 2588 ("soreceive_dgram: P_CONNREQUIRED")); 2589 2590 /* 2591 * Loop blocking while waiting for a datagram. 2592 */ 2593 SOCKBUF_LOCK(&so->so_rcv); 2594 while ((m = so->so_rcv.sb_mb) == NULL) { 2595 KASSERT(sbavail(&so->so_rcv) == 0, 2596 ("soreceive_dgram: sb_mb NULL but sbavail %u", 2597 sbavail(&so->so_rcv))); 2598 if (so->so_error) { 2599 error = so->so_error; 2600 so->so_error = 0; 2601 SOCKBUF_UNLOCK(&so->so_rcv); 2602 return (error); 2603 } 2604 if (so->so_rcv.sb_state & SBS_CANTRCVMORE || 2605 uio->uio_resid == 0) { 2606 SOCKBUF_UNLOCK(&so->so_rcv); 2607 return (0); 2608 } 2609 if ((so->so_state & SS_NBIO) || 2610 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2611 SOCKBUF_UNLOCK(&so->so_rcv); 2612 return (EWOULDBLOCK); 2613 } 2614 SBLASTRECORDCHK(&so->so_rcv); 2615 SBLASTMBUFCHK(&so->so_rcv); 2616 error = sbwait(&so->so_rcv); 2617 if (error) { 2618 SOCKBUF_UNLOCK(&so->so_rcv); 2619 return (error); 2620 } 2621 } 2622 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2623 2624 if (uio->uio_td) 2625 uio->uio_td->td_ru.ru_msgrcv++; 2626 SBLASTRECORDCHK(&so->so_rcv); 2627 SBLASTMBUFCHK(&so->so_rcv); 2628 nextrecord = m->m_nextpkt; 2629 if (nextrecord == NULL) { 2630 KASSERT(so->so_rcv.sb_lastrecord == m, 2631 ("soreceive_dgram: lastrecord != m")); 2632 } 2633 2634 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord, 2635 ("soreceive_dgram: m_nextpkt != nextrecord")); 2636 2637 /* 2638 * Pull 'm' and its chain off the front of the packet queue. 2639 */ 2640 so->so_rcv.sb_mb = NULL; 2641 sockbuf_pushsync(&so->so_rcv, nextrecord); 2642 2643 /* 2644 * Walk 'm's chain and free that many bytes from the socket buffer. 2645 */ 2646 for (m2 = m; m2 != NULL; m2 = m2->m_next) 2647 sbfree(&so->so_rcv, m2); 2648 2649 /* 2650 * Do a few last checks before we let go of the lock. 2651 */ 2652 SBLASTRECORDCHK(&so->so_rcv); 2653 SBLASTMBUFCHK(&so->so_rcv); 2654 SOCKBUF_UNLOCK(&so->so_rcv); 2655 2656 if (pr->pr_flags & PR_ADDR) { 2657 KASSERT(m->m_type == MT_SONAME, 2658 ("m->m_type == %d", m->m_type)); 2659 if (psa != NULL) 2660 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2661 M_NOWAIT); 2662 m = m_free(m); 2663 } 2664 if (m == NULL) { 2665 /* XXXRW: Can this happen? */ 2666 return (0); 2667 } 2668 2669 /* 2670 * Packet to copyout() is now in 'm' and it is disconnected from the 2671 * queue. 2672 * 2673 * Process one or more MT_CONTROL mbufs present before any data mbufs 2674 * in the first mbuf chain on the socket buffer. We call into the 2675 * protocol to perform externalization (or freeing if controlp == 2676 * NULL). In some cases there can be only MT_CONTROL mbufs without 2677 * MT_DATA mbufs. 2678 */ 2679 if (m->m_type == MT_CONTROL) { 2680 struct mbuf *cm = NULL, *cmn; 2681 struct mbuf **cme = &cm; 2682 2683 do { 2684 m2 = m->m_next; 2685 m->m_next = NULL; 2686 *cme = m; 2687 cme = &(*cme)->m_next; 2688 m = m2; 2689 } while (m != NULL && m->m_type == MT_CONTROL); 2690 while (cm != NULL) { 2691 cmn = cm->m_next; 2692 cm->m_next = NULL; 2693 if (pr->pr_domain->dom_externalize != NULL) { 2694 error = (*pr->pr_domain->dom_externalize) 2695 (cm, controlp, flags); 2696 } else if (controlp != NULL) 2697 *controlp = cm; 2698 else 2699 m_freem(cm); 2700 if (controlp != NULL) { 2701 while (*controlp != NULL) 2702 controlp = &(*controlp)->m_next; 2703 } 2704 cm = cmn; 2705 } 2706 } 2707 KASSERT(m == NULL || m->m_type == MT_DATA, 2708 ("soreceive_dgram: !data")); 2709 while (m != NULL && uio->uio_resid > 0) { 2710 len = uio->uio_resid; 2711 if (len > m->m_len) 2712 len = m->m_len; 2713 error = uiomove(mtod(m, char *), (int)len, uio); 2714 if (error) { 2715 m_freem(m); 2716 return (error); 2717 } 2718 if (len == m->m_len) 2719 m = m_free(m); 2720 else { 2721 m->m_data += len; 2722 m->m_len -= len; 2723 } 2724 } 2725 if (m != NULL) { 2726 flags |= MSG_TRUNC; 2727 m_freem(m); 2728 } 2729 if (flagsp != NULL) 2730 *flagsp |= flags; 2731 return (0); 2732 } 2733 2734 int 2735 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, 2736 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2737 { 2738 int error; 2739 2740 CURVNET_SET(so->so_vnet); 2741 if (!SOLISTENING(so)) 2742 error = (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, 2743 mp0, controlp, flagsp)); 2744 else 2745 error = ENOTCONN; 2746 CURVNET_RESTORE(); 2747 return (error); 2748 } 2749 2750 int 2751 soshutdown(struct socket *so, int how) 2752 { 2753 struct protosw *pr = so->so_proto; 2754 int error, soerror_enotconn; 2755 2756 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 2757 return (EINVAL); 2758 2759 soerror_enotconn = 0; 2760 if ((so->so_state & 2761 (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) { 2762 /* 2763 * POSIX mandates us to return ENOTCONN when shutdown(2) is 2764 * invoked on a datagram sockets, however historically we would 2765 * actually tear socket down. This is known to be leveraged by 2766 * some applications to unblock process waiting in recvXXX(2) 2767 * by other process that it shares that socket with. Try to meet 2768 * both backward-compatibility and POSIX requirements by forcing 2769 * ENOTCONN but still asking protocol to perform pru_shutdown(). 2770 */ 2771 if (so->so_type != SOCK_DGRAM && !SOLISTENING(so)) 2772 return (ENOTCONN); 2773 soerror_enotconn = 1; 2774 } 2775 2776 if (SOLISTENING(so)) { 2777 if (how != SHUT_WR) { 2778 SOLISTEN_LOCK(so); 2779 so->so_error = ECONNABORTED; 2780 solisten_wakeup(so); /* unlocks so */ 2781 } 2782 goto done; 2783 } 2784 2785 CURVNET_SET(so->so_vnet); 2786 if (pr->pr_usrreqs->pru_flush != NULL) 2787 (*pr->pr_usrreqs->pru_flush)(so, how); 2788 if (how != SHUT_WR) 2789 sorflush(so); 2790 if (how != SHUT_RD) { 2791 error = (*pr->pr_usrreqs->pru_shutdown)(so); 2792 wakeup(&so->so_timeo); 2793 CURVNET_RESTORE(); 2794 return ((error == 0 && soerror_enotconn) ? ENOTCONN : error); 2795 } 2796 wakeup(&so->so_timeo); 2797 CURVNET_RESTORE(); 2798 2799 done: 2800 return (soerror_enotconn ? ENOTCONN : 0); 2801 } 2802 2803 void 2804 sorflush(struct socket *so) 2805 { 2806 struct sockbuf *sb = &so->so_rcv; 2807 struct protosw *pr = so->so_proto; 2808 struct socket aso; 2809 2810 VNET_SO_ASSERT(so); 2811 2812 /* 2813 * In order to avoid calling dom_dispose with the socket buffer mutex 2814 * held, and in order to generally avoid holding the lock for a long 2815 * time, we make a copy of the socket buffer and clear the original 2816 * (except locks, state). The new socket buffer copy won't have 2817 * initialized locks so we can only call routines that won't use or 2818 * assert those locks. 2819 * 2820 * Dislodge threads currently blocked in receive and wait to acquire 2821 * a lock against other simultaneous readers before clearing the 2822 * socket buffer. Don't let our acquire be interrupted by a signal 2823 * despite any existing socket disposition on interruptable waiting. 2824 */ 2825 socantrcvmore(so); 2826 (void) sblock(sb, SBL_WAIT | SBL_NOINTR); 2827 2828 /* 2829 * Invalidate/clear most of the sockbuf structure, but leave selinfo 2830 * and mutex data unchanged. 2831 */ 2832 SOCKBUF_LOCK(sb); 2833 bzero(&aso, sizeof(aso)); 2834 aso.so_pcb = so->so_pcb; 2835 bcopy(&sb->sb_startzero, &aso.so_rcv.sb_startzero, 2836 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 2837 bzero(&sb->sb_startzero, 2838 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 2839 SOCKBUF_UNLOCK(sb); 2840 sbunlock(sb); 2841 2842 /* 2843 * Dispose of special rights and flush the copied socket. Don't call 2844 * any unsafe routines (that rely on locks being initialized) on aso. 2845 */ 2846 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 2847 (*pr->pr_domain->dom_dispose)(&aso); 2848 sbrelease_internal(&aso.so_rcv, so); 2849 } 2850 2851 /* 2852 * Wrapper for Socket established helper hook. 2853 * Parameters: socket, context of the hook point, hook id. 2854 */ 2855 static int inline 2856 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id) 2857 { 2858 struct socket_hhook_data hhook_data = { 2859 .so = so, 2860 .hctx = hctx, 2861 .m = NULL, 2862 .status = 0 2863 }; 2864 2865 CURVNET_SET(so->so_vnet); 2866 HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd); 2867 CURVNET_RESTORE(); 2868 2869 /* Ugly but needed, since hhooks return void for now */ 2870 return (hhook_data.status); 2871 } 2872 2873 /* 2874 * Perhaps this routine, and sooptcopyout(), below, ought to come in an 2875 * additional variant to handle the case where the option value needs to be 2876 * some kind of integer, but not a specific size. In addition to their use 2877 * here, these functions are also called by the protocol-level pr_ctloutput() 2878 * routines. 2879 */ 2880 int 2881 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen) 2882 { 2883 size_t valsize; 2884 2885 /* 2886 * If the user gives us more than we wanted, we ignore it, but if we 2887 * don't get the minimum length the caller wants, we return EINVAL. 2888 * On success, sopt->sopt_valsize is set to however much we actually 2889 * retrieved. 2890 */ 2891 if ((valsize = sopt->sopt_valsize) < minlen) 2892 return EINVAL; 2893 if (valsize > len) 2894 sopt->sopt_valsize = valsize = len; 2895 2896 if (sopt->sopt_td != NULL) 2897 return (copyin(sopt->sopt_val, buf, valsize)); 2898 2899 bcopy(sopt->sopt_val, buf, valsize); 2900 return (0); 2901 } 2902 2903 /* 2904 * Kernel version of setsockopt(2). 2905 * 2906 * XXX: optlen is size_t, not socklen_t 2907 */ 2908 int 2909 so_setsockopt(struct socket *so, int level, int optname, void *optval, 2910 size_t optlen) 2911 { 2912 struct sockopt sopt; 2913 2914 sopt.sopt_level = level; 2915 sopt.sopt_name = optname; 2916 sopt.sopt_dir = SOPT_SET; 2917 sopt.sopt_val = optval; 2918 sopt.sopt_valsize = optlen; 2919 sopt.sopt_td = NULL; 2920 return (sosetopt(so, &sopt)); 2921 } 2922 2923 int 2924 sosetopt(struct socket *so, struct sockopt *sopt) 2925 { 2926 int error, optval; 2927 struct linger l; 2928 struct timeval tv; 2929 sbintime_t val; 2930 uint32_t val32; 2931 #ifdef MAC 2932 struct mac extmac; 2933 #endif 2934 2935 CURVNET_SET(so->so_vnet); 2936 error = 0; 2937 if (sopt->sopt_level != SOL_SOCKET) { 2938 if (so->so_proto->pr_ctloutput != NULL) 2939 error = (*so->so_proto->pr_ctloutput)(so, sopt); 2940 else 2941 error = ENOPROTOOPT; 2942 } else { 2943 switch (sopt->sopt_name) { 2944 case SO_ACCEPTFILTER: 2945 error = accept_filt_setopt(so, sopt); 2946 if (error) 2947 goto bad; 2948 break; 2949 2950 case SO_LINGER: 2951 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 2952 if (error) 2953 goto bad; 2954 if (l.l_linger < 0 || 2955 l.l_linger > USHRT_MAX || 2956 l.l_linger > (INT_MAX / hz)) { 2957 error = EDOM; 2958 goto bad; 2959 } 2960 SOCK_LOCK(so); 2961 so->so_linger = l.l_linger; 2962 if (l.l_onoff) 2963 so->so_options |= SO_LINGER; 2964 else 2965 so->so_options &= ~SO_LINGER; 2966 SOCK_UNLOCK(so); 2967 break; 2968 2969 case SO_DEBUG: 2970 case SO_KEEPALIVE: 2971 case SO_DONTROUTE: 2972 case SO_USELOOPBACK: 2973 case SO_BROADCAST: 2974 case SO_REUSEADDR: 2975 case SO_REUSEPORT: 2976 case SO_REUSEPORT_LB: 2977 case SO_OOBINLINE: 2978 case SO_TIMESTAMP: 2979 case SO_BINTIME: 2980 case SO_NOSIGPIPE: 2981 case SO_NO_DDP: 2982 case SO_NO_OFFLOAD: 2983 error = sooptcopyin(sopt, &optval, sizeof optval, 2984 sizeof optval); 2985 if (error) 2986 goto bad; 2987 SOCK_LOCK(so); 2988 if (optval) 2989 so->so_options |= sopt->sopt_name; 2990 else 2991 so->so_options &= ~sopt->sopt_name; 2992 SOCK_UNLOCK(so); 2993 break; 2994 2995 case SO_SETFIB: 2996 error = sooptcopyin(sopt, &optval, sizeof optval, 2997 sizeof optval); 2998 if (error) 2999 goto bad; 3000 3001 if (optval < 0 || optval >= rt_numfibs) { 3002 error = EINVAL; 3003 goto bad; 3004 } 3005 if (((so->so_proto->pr_domain->dom_family == PF_INET) || 3006 (so->so_proto->pr_domain->dom_family == PF_INET6) || 3007 (so->so_proto->pr_domain->dom_family == PF_ROUTE))) 3008 so->so_fibnum = optval; 3009 else 3010 so->so_fibnum = 0; 3011 break; 3012 3013 case SO_USER_COOKIE: 3014 error = sooptcopyin(sopt, &val32, sizeof val32, 3015 sizeof val32); 3016 if (error) 3017 goto bad; 3018 so->so_user_cookie = val32; 3019 break; 3020 3021 case SO_SNDBUF: 3022 case SO_RCVBUF: 3023 case SO_SNDLOWAT: 3024 case SO_RCVLOWAT: 3025 error = sooptcopyin(sopt, &optval, sizeof optval, 3026 sizeof optval); 3027 if (error) 3028 goto bad; 3029 3030 /* 3031 * Values < 1 make no sense for any of these options, 3032 * so disallow them. 3033 */ 3034 if (optval < 1) { 3035 error = EINVAL; 3036 goto bad; 3037 } 3038 3039 error = sbsetopt(so, sopt->sopt_name, optval); 3040 break; 3041 3042 case SO_SNDTIMEO: 3043 case SO_RCVTIMEO: 3044 #ifdef COMPAT_FREEBSD32 3045 if (SV_CURPROC_FLAG(SV_ILP32)) { 3046 struct timeval32 tv32; 3047 3048 error = sooptcopyin(sopt, &tv32, sizeof tv32, 3049 sizeof tv32); 3050 CP(tv32, tv, tv_sec); 3051 CP(tv32, tv, tv_usec); 3052 } else 3053 #endif 3054 error = sooptcopyin(sopt, &tv, sizeof tv, 3055 sizeof tv); 3056 if (error) 3057 goto bad; 3058 if (tv.tv_sec < 0 || tv.tv_usec < 0 || 3059 tv.tv_usec >= 1000000) { 3060 error = EDOM; 3061 goto bad; 3062 } 3063 if (tv.tv_sec > INT32_MAX) 3064 val = SBT_MAX; 3065 else 3066 val = tvtosbt(tv); 3067 switch (sopt->sopt_name) { 3068 case SO_SNDTIMEO: 3069 so->so_snd.sb_timeo = val; 3070 break; 3071 case SO_RCVTIMEO: 3072 so->so_rcv.sb_timeo = val; 3073 break; 3074 } 3075 break; 3076 3077 case SO_LABEL: 3078 #ifdef MAC 3079 error = sooptcopyin(sopt, &extmac, sizeof extmac, 3080 sizeof extmac); 3081 if (error) 3082 goto bad; 3083 error = mac_setsockopt_label(sopt->sopt_td->td_ucred, 3084 so, &extmac); 3085 #else 3086 error = EOPNOTSUPP; 3087 #endif 3088 break; 3089 3090 case SO_TS_CLOCK: 3091 error = sooptcopyin(sopt, &optval, sizeof optval, 3092 sizeof optval); 3093 if (error) 3094 goto bad; 3095 if (optval < 0 || optval > SO_TS_CLOCK_MAX) { 3096 error = EINVAL; 3097 goto bad; 3098 } 3099 so->so_ts_clock = optval; 3100 break; 3101 3102 case SO_MAX_PACING_RATE: 3103 error = sooptcopyin(sopt, &val32, sizeof(val32), 3104 sizeof(val32)); 3105 if (error) 3106 goto bad; 3107 so->so_max_pacing_rate = val32; 3108 break; 3109 3110 default: 3111 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 3112 error = hhook_run_socket(so, sopt, 3113 HHOOK_SOCKET_OPT); 3114 else 3115 error = ENOPROTOOPT; 3116 break; 3117 } 3118 if (error == 0 && so->so_proto->pr_ctloutput != NULL) 3119 (void)(*so->so_proto->pr_ctloutput)(so, sopt); 3120 } 3121 bad: 3122 CURVNET_RESTORE(); 3123 return (error); 3124 } 3125 3126 /* 3127 * Helper routine for getsockopt. 3128 */ 3129 int 3130 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 3131 { 3132 int error; 3133 size_t valsize; 3134 3135 error = 0; 3136 3137 /* 3138 * Documented get behavior is that we always return a value, possibly 3139 * truncated to fit in the user's buffer. Traditional behavior is 3140 * that we always tell the user precisely how much we copied, rather 3141 * than something useful like the total amount we had available for 3142 * her. Note that this interface is not idempotent; the entire 3143 * answer must be generated ahead of time. 3144 */ 3145 valsize = min(len, sopt->sopt_valsize); 3146 sopt->sopt_valsize = valsize; 3147 if (sopt->sopt_val != NULL) { 3148 if (sopt->sopt_td != NULL) 3149 error = copyout(buf, sopt->sopt_val, valsize); 3150 else 3151 bcopy(buf, sopt->sopt_val, valsize); 3152 } 3153 return (error); 3154 } 3155 3156 int 3157 sogetopt(struct socket *so, struct sockopt *sopt) 3158 { 3159 int error, optval; 3160 struct linger l; 3161 struct timeval tv; 3162 #ifdef MAC 3163 struct mac extmac; 3164 #endif 3165 3166 CURVNET_SET(so->so_vnet); 3167 error = 0; 3168 if (sopt->sopt_level != SOL_SOCKET) { 3169 if (so->so_proto->pr_ctloutput != NULL) 3170 error = (*so->so_proto->pr_ctloutput)(so, sopt); 3171 else 3172 error = ENOPROTOOPT; 3173 CURVNET_RESTORE(); 3174 return (error); 3175 } else { 3176 switch (sopt->sopt_name) { 3177 case SO_ACCEPTFILTER: 3178 error = accept_filt_getopt(so, sopt); 3179 break; 3180 3181 case SO_LINGER: 3182 SOCK_LOCK(so); 3183 l.l_onoff = so->so_options & SO_LINGER; 3184 l.l_linger = so->so_linger; 3185 SOCK_UNLOCK(so); 3186 error = sooptcopyout(sopt, &l, sizeof l); 3187 break; 3188 3189 case SO_USELOOPBACK: 3190 case SO_DONTROUTE: 3191 case SO_DEBUG: 3192 case SO_KEEPALIVE: 3193 case SO_REUSEADDR: 3194 case SO_REUSEPORT: 3195 case SO_REUSEPORT_LB: 3196 case SO_BROADCAST: 3197 case SO_OOBINLINE: 3198 case SO_ACCEPTCONN: 3199 case SO_TIMESTAMP: 3200 case SO_BINTIME: 3201 case SO_NOSIGPIPE: 3202 optval = so->so_options & sopt->sopt_name; 3203 integer: 3204 error = sooptcopyout(sopt, &optval, sizeof optval); 3205 break; 3206 3207 case SO_DOMAIN: 3208 optval = so->so_proto->pr_domain->dom_family; 3209 goto integer; 3210 3211 case SO_TYPE: 3212 optval = so->so_type; 3213 goto integer; 3214 3215 case SO_PROTOCOL: 3216 optval = so->so_proto->pr_protocol; 3217 goto integer; 3218 3219 case SO_ERROR: 3220 SOCK_LOCK(so); 3221 optval = so->so_error; 3222 so->so_error = 0; 3223 SOCK_UNLOCK(so); 3224 goto integer; 3225 3226 case SO_SNDBUF: 3227 optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat : 3228 so->so_snd.sb_hiwat; 3229 goto integer; 3230 3231 case SO_RCVBUF: 3232 optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat : 3233 so->so_rcv.sb_hiwat; 3234 goto integer; 3235 3236 case SO_SNDLOWAT: 3237 optval = SOLISTENING(so) ? so->sol_sbsnd_lowat : 3238 so->so_snd.sb_lowat; 3239 goto integer; 3240 3241 case SO_RCVLOWAT: 3242 optval = SOLISTENING(so) ? so->sol_sbrcv_lowat : 3243 so->so_rcv.sb_lowat; 3244 goto integer; 3245 3246 case SO_SNDTIMEO: 3247 case SO_RCVTIMEO: 3248 tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ? 3249 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 3250 #ifdef COMPAT_FREEBSD32 3251 if (SV_CURPROC_FLAG(SV_ILP32)) { 3252 struct timeval32 tv32; 3253 3254 CP(tv, tv32, tv_sec); 3255 CP(tv, tv32, tv_usec); 3256 error = sooptcopyout(sopt, &tv32, sizeof tv32); 3257 } else 3258 #endif 3259 error = sooptcopyout(sopt, &tv, sizeof tv); 3260 break; 3261 3262 case SO_LABEL: 3263 #ifdef MAC 3264 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 3265 sizeof(extmac)); 3266 if (error) 3267 goto bad; 3268 error = mac_getsockopt_label(sopt->sopt_td->td_ucred, 3269 so, &extmac); 3270 if (error) 3271 goto bad; 3272 error = sooptcopyout(sopt, &extmac, sizeof extmac); 3273 #else 3274 error = EOPNOTSUPP; 3275 #endif 3276 break; 3277 3278 case SO_PEERLABEL: 3279 #ifdef MAC 3280 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 3281 sizeof(extmac)); 3282 if (error) 3283 goto bad; 3284 error = mac_getsockopt_peerlabel( 3285 sopt->sopt_td->td_ucred, so, &extmac); 3286 if (error) 3287 goto bad; 3288 error = sooptcopyout(sopt, &extmac, sizeof extmac); 3289 #else 3290 error = EOPNOTSUPP; 3291 #endif 3292 break; 3293 3294 case SO_LISTENQLIMIT: 3295 optval = SOLISTENING(so) ? so->sol_qlimit : 0; 3296 goto integer; 3297 3298 case SO_LISTENQLEN: 3299 optval = SOLISTENING(so) ? so->sol_qlen : 0; 3300 goto integer; 3301 3302 case SO_LISTENINCQLEN: 3303 optval = SOLISTENING(so) ? so->sol_incqlen : 0; 3304 goto integer; 3305 3306 case SO_TS_CLOCK: 3307 optval = so->so_ts_clock; 3308 goto integer; 3309 3310 case SO_MAX_PACING_RATE: 3311 optval = so->so_max_pacing_rate; 3312 goto integer; 3313 3314 default: 3315 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 3316 error = hhook_run_socket(so, sopt, 3317 HHOOK_SOCKET_OPT); 3318 else 3319 error = ENOPROTOOPT; 3320 break; 3321 } 3322 } 3323 #ifdef MAC 3324 bad: 3325 #endif 3326 CURVNET_RESTORE(); 3327 return (error); 3328 } 3329 3330 int 3331 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 3332 { 3333 struct mbuf *m, *m_prev; 3334 int sopt_size = sopt->sopt_valsize; 3335 3336 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 3337 if (m == NULL) 3338 return ENOBUFS; 3339 if (sopt_size > MLEN) { 3340 MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT); 3341 if ((m->m_flags & M_EXT) == 0) { 3342 m_free(m); 3343 return ENOBUFS; 3344 } 3345 m->m_len = min(MCLBYTES, sopt_size); 3346 } else { 3347 m->m_len = min(MLEN, sopt_size); 3348 } 3349 sopt_size -= m->m_len; 3350 *mp = m; 3351 m_prev = m; 3352 3353 while (sopt_size) { 3354 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 3355 if (m == NULL) { 3356 m_freem(*mp); 3357 return ENOBUFS; 3358 } 3359 if (sopt_size > MLEN) { 3360 MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK : 3361 M_NOWAIT); 3362 if ((m->m_flags & M_EXT) == 0) { 3363 m_freem(m); 3364 m_freem(*mp); 3365 return ENOBUFS; 3366 } 3367 m->m_len = min(MCLBYTES, sopt_size); 3368 } else { 3369 m->m_len = min(MLEN, sopt_size); 3370 } 3371 sopt_size -= m->m_len; 3372 m_prev->m_next = m; 3373 m_prev = m; 3374 } 3375 return (0); 3376 } 3377 3378 int 3379 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 3380 { 3381 struct mbuf *m0 = m; 3382 3383 if (sopt->sopt_val == NULL) 3384 return (0); 3385 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 3386 if (sopt->sopt_td != NULL) { 3387 int error; 3388 3389 error = copyin(sopt->sopt_val, mtod(m, char *), 3390 m->m_len); 3391 if (error != 0) { 3392 m_freem(m0); 3393 return(error); 3394 } 3395 } else 3396 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 3397 sopt->sopt_valsize -= m->m_len; 3398 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 3399 m = m->m_next; 3400 } 3401 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 3402 panic("ip6_sooptmcopyin"); 3403 return (0); 3404 } 3405 3406 int 3407 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 3408 { 3409 struct mbuf *m0 = m; 3410 size_t valsize = 0; 3411 3412 if (sopt->sopt_val == NULL) 3413 return (0); 3414 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 3415 if (sopt->sopt_td != NULL) { 3416 int error; 3417 3418 error = copyout(mtod(m, char *), sopt->sopt_val, 3419 m->m_len); 3420 if (error != 0) { 3421 m_freem(m0); 3422 return(error); 3423 } 3424 } else 3425 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 3426 sopt->sopt_valsize -= m->m_len; 3427 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 3428 valsize += m->m_len; 3429 m = m->m_next; 3430 } 3431 if (m != NULL) { 3432 /* enough soopt buffer should be given from user-land */ 3433 m_freem(m0); 3434 return(EINVAL); 3435 } 3436 sopt->sopt_valsize = valsize; 3437 return (0); 3438 } 3439 3440 /* 3441 * sohasoutofband(): protocol notifies socket layer of the arrival of new 3442 * out-of-band data, which will then notify socket consumers. 3443 */ 3444 void 3445 sohasoutofband(struct socket *so) 3446 { 3447 3448 if (so->so_sigio != NULL) 3449 pgsigio(&so->so_sigio, SIGURG, 0); 3450 selwakeuppri(&so->so_rdsel, PSOCK); 3451 } 3452 3453 int 3454 sopoll(struct socket *so, int events, struct ucred *active_cred, 3455 struct thread *td) 3456 { 3457 3458 /* 3459 * We do not need to set or assert curvnet as long as everyone uses 3460 * sopoll_generic(). 3461 */ 3462 return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred, 3463 td)); 3464 } 3465 3466 int 3467 sopoll_generic(struct socket *so, int events, struct ucred *active_cred, 3468 struct thread *td) 3469 { 3470 int revents; 3471 3472 SOCK_LOCK(so); 3473 if (SOLISTENING(so)) { 3474 if (!(events & (POLLIN | POLLRDNORM))) 3475 revents = 0; 3476 else if (!TAILQ_EMPTY(&so->sol_comp)) 3477 revents = events & (POLLIN | POLLRDNORM); 3478 else if ((events & POLLINIGNEOF) == 0 && so->so_error) 3479 revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP; 3480 else { 3481 selrecord(td, &so->so_rdsel); 3482 revents = 0; 3483 } 3484 } else { 3485 revents = 0; 3486 SOCKBUF_LOCK(&so->so_snd); 3487 SOCKBUF_LOCK(&so->so_rcv); 3488 if (events & (POLLIN | POLLRDNORM)) 3489 if (soreadabledata(so)) 3490 revents |= events & (POLLIN | POLLRDNORM); 3491 if (events & (POLLOUT | POLLWRNORM)) 3492 if (sowriteable(so)) 3493 revents |= events & (POLLOUT | POLLWRNORM); 3494 if (events & (POLLPRI | POLLRDBAND)) 3495 if (so->so_oobmark || 3496 (so->so_rcv.sb_state & SBS_RCVATMARK)) 3497 revents |= events & (POLLPRI | POLLRDBAND); 3498 if ((events & POLLINIGNEOF) == 0) { 3499 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3500 revents |= events & (POLLIN | POLLRDNORM); 3501 if (so->so_snd.sb_state & SBS_CANTSENDMORE) 3502 revents |= POLLHUP; 3503 } 3504 } 3505 if (revents == 0) { 3506 if (events & 3507 (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) { 3508 selrecord(td, &so->so_rdsel); 3509 so->so_rcv.sb_flags |= SB_SEL; 3510 } 3511 if (events & (POLLOUT | POLLWRNORM)) { 3512 selrecord(td, &so->so_wrsel); 3513 so->so_snd.sb_flags |= SB_SEL; 3514 } 3515 } 3516 SOCKBUF_UNLOCK(&so->so_rcv); 3517 SOCKBUF_UNLOCK(&so->so_snd); 3518 } 3519 SOCK_UNLOCK(so); 3520 return (revents); 3521 } 3522 3523 int 3524 soo_kqfilter(struct file *fp, struct knote *kn) 3525 { 3526 struct socket *so = kn->kn_fp->f_data; 3527 struct sockbuf *sb; 3528 struct knlist *knl; 3529 3530 switch (kn->kn_filter) { 3531 case EVFILT_READ: 3532 kn->kn_fop = &soread_filtops; 3533 knl = &so->so_rdsel.si_note; 3534 sb = &so->so_rcv; 3535 break; 3536 case EVFILT_WRITE: 3537 kn->kn_fop = &sowrite_filtops; 3538 knl = &so->so_wrsel.si_note; 3539 sb = &so->so_snd; 3540 break; 3541 case EVFILT_EMPTY: 3542 kn->kn_fop = &soempty_filtops; 3543 knl = &so->so_wrsel.si_note; 3544 sb = &so->so_snd; 3545 break; 3546 default: 3547 return (EINVAL); 3548 } 3549 3550 SOCK_LOCK(so); 3551 if (SOLISTENING(so)) { 3552 knlist_add(knl, kn, 1); 3553 } else { 3554 SOCKBUF_LOCK(sb); 3555 knlist_add(knl, kn, 1); 3556 sb->sb_flags |= SB_KNOTE; 3557 SOCKBUF_UNLOCK(sb); 3558 } 3559 SOCK_UNLOCK(so); 3560 return (0); 3561 } 3562 3563 /* 3564 * Some routines that return EOPNOTSUPP for entry points that are not 3565 * supported by a protocol. Fill in as needed. 3566 */ 3567 int 3568 pru_accept_notsupp(struct socket *so, struct sockaddr **nam) 3569 { 3570 3571 return EOPNOTSUPP; 3572 } 3573 3574 int 3575 pru_aio_queue_notsupp(struct socket *so, struct kaiocb *job) 3576 { 3577 3578 return EOPNOTSUPP; 3579 } 3580 3581 int 3582 pru_attach_notsupp(struct socket *so, int proto, struct thread *td) 3583 { 3584 3585 return EOPNOTSUPP; 3586 } 3587 3588 int 3589 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 3590 { 3591 3592 return EOPNOTSUPP; 3593 } 3594 3595 int 3596 pru_bindat_notsupp(int fd, struct socket *so, struct sockaddr *nam, 3597 struct thread *td) 3598 { 3599 3600 return EOPNOTSUPP; 3601 } 3602 3603 int 3604 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 3605 { 3606 3607 return EOPNOTSUPP; 3608 } 3609 3610 int 3611 pru_connectat_notsupp(int fd, struct socket *so, struct sockaddr *nam, 3612 struct thread *td) 3613 { 3614 3615 return EOPNOTSUPP; 3616 } 3617 3618 int 3619 pru_connect2_notsupp(struct socket *so1, struct socket *so2) 3620 { 3621 3622 return EOPNOTSUPP; 3623 } 3624 3625 int 3626 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, 3627 struct ifnet *ifp, struct thread *td) 3628 { 3629 3630 return EOPNOTSUPP; 3631 } 3632 3633 int 3634 pru_disconnect_notsupp(struct socket *so) 3635 { 3636 3637 return EOPNOTSUPP; 3638 } 3639 3640 int 3641 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td) 3642 { 3643 3644 return EOPNOTSUPP; 3645 } 3646 3647 int 3648 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam) 3649 { 3650 3651 return EOPNOTSUPP; 3652 } 3653 3654 int 3655 pru_rcvd_notsupp(struct socket *so, int flags) 3656 { 3657 3658 return EOPNOTSUPP; 3659 } 3660 3661 int 3662 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) 3663 { 3664 3665 return EOPNOTSUPP; 3666 } 3667 3668 int 3669 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m, 3670 struct sockaddr *addr, struct mbuf *control, struct thread *td) 3671 { 3672 3673 return EOPNOTSUPP; 3674 } 3675 3676 int 3677 pru_ready_notsupp(struct socket *so, struct mbuf *m, int count) 3678 { 3679 3680 return (EOPNOTSUPP); 3681 } 3682 3683 /* 3684 * This isn't really a ``null'' operation, but it's the default one and 3685 * doesn't do anything destructive. 3686 */ 3687 int 3688 pru_sense_null(struct socket *so, struct stat *sb) 3689 { 3690 3691 sb->st_blksize = so->so_snd.sb_hiwat; 3692 return 0; 3693 } 3694 3695 int 3696 pru_shutdown_notsupp(struct socket *so) 3697 { 3698 3699 return EOPNOTSUPP; 3700 } 3701 3702 int 3703 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam) 3704 { 3705 3706 return EOPNOTSUPP; 3707 } 3708 3709 int 3710 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio, 3711 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 3712 { 3713 3714 return EOPNOTSUPP; 3715 } 3716 3717 int 3718 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr, 3719 struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 3720 { 3721 3722 return EOPNOTSUPP; 3723 } 3724 3725 int 3726 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred, 3727 struct thread *td) 3728 { 3729 3730 return EOPNOTSUPP; 3731 } 3732 3733 static void 3734 filt_sordetach(struct knote *kn) 3735 { 3736 struct socket *so = kn->kn_fp->f_data; 3737 3738 so_rdknl_lock(so); 3739 knlist_remove(&so->so_rdsel.si_note, kn, 1); 3740 if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note)) 3741 so->so_rcv.sb_flags &= ~SB_KNOTE; 3742 so_rdknl_unlock(so); 3743 } 3744 3745 /*ARGSUSED*/ 3746 static int 3747 filt_soread(struct knote *kn, long hint) 3748 { 3749 struct socket *so; 3750 3751 so = kn->kn_fp->f_data; 3752 3753 if (SOLISTENING(so)) { 3754 SOCK_LOCK_ASSERT(so); 3755 kn->kn_data = so->sol_qlen; 3756 if (so->so_error) { 3757 kn->kn_flags |= EV_EOF; 3758 kn->kn_fflags = so->so_error; 3759 return (1); 3760 } 3761 return (!TAILQ_EMPTY(&so->sol_comp)); 3762 } 3763 3764 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 3765 3766 kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl; 3767 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3768 kn->kn_flags |= EV_EOF; 3769 kn->kn_fflags = so->so_error; 3770 return (1); 3771 } else if (so->so_error) /* temporary udp error */ 3772 return (1); 3773 3774 if (kn->kn_sfflags & NOTE_LOWAT) { 3775 if (kn->kn_data >= kn->kn_sdata) 3776 return (1); 3777 } else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat) 3778 return (1); 3779 3780 /* This hook returning non-zero indicates an event, not error */ 3781 return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD)); 3782 } 3783 3784 static void 3785 filt_sowdetach(struct knote *kn) 3786 { 3787 struct socket *so = kn->kn_fp->f_data; 3788 3789 so_wrknl_lock(so); 3790 knlist_remove(&so->so_wrsel.si_note, kn, 1); 3791 if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note)) 3792 so->so_snd.sb_flags &= ~SB_KNOTE; 3793 so_wrknl_unlock(so); 3794 } 3795 3796 /*ARGSUSED*/ 3797 static int 3798 filt_sowrite(struct knote *kn, long hint) 3799 { 3800 struct socket *so; 3801 3802 so = kn->kn_fp->f_data; 3803 3804 if (SOLISTENING(so)) 3805 return (0); 3806 3807 SOCKBUF_LOCK_ASSERT(&so->so_snd); 3808 kn->kn_data = sbspace(&so->so_snd); 3809 3810 hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE); 3811 3812 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 3813 kn->kn_flags |= EV_EOF; 3814 kn->kn_fflags = so->so_error; 3815 return (1); 3816 } else if (so->so_error) /* temporary udp error */ 3817 return (1); 3818 else if (((so->so_state & SS_ISCONNECTED) == 0) && 3819 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 3820 return (0); 3821 else if (kn->kn_sfflags & NOTE_LOWAT) 3822 return (kn->kn_data >= kn->kn_sdata); 3823 else 3824 return (kn->kn_data >= so->so_snd.sb_lowat); 3825 } 3826 3827 static int 3828 filt_soempty(struct knote *kn, long hint) 3829 { 3830 struct socket *so; 3831 3832 so = kn->kn_fp->f_data; 3833 3834 if (SOLISTENING(so)) 3835 return (1); 3836 3837 SOCKBUF_LOCK_ASSERT(&so->so_snd); 3838 kn->kn_data = sbused(&so->so_snd); 3839 3840 if (kn->kn_data == 0) 3841 return (1); 3842 else 3843 return (0); 3844 } 3845 3846 int 3847 socheckuid(struct socket *so, uid_t uid) 3848 { 3849 3850 if (so == NULL) 3851 return (EPERM); 3852 if (so->so_cred->cr_uid != uid) 3853 return (EPERM); 3854 return (0); 3855 } 3856 3857 /* 3858 * These functions are used by protocols to notify the socket layer (and its 3859 * consumers) of state changes in the sockets driven by protocol-side events. 3860 */ 3861 3862 /* 3863 * Procedures to manipulate state flags of socket and do appropriate wakeups. 3864 * 3865 * Normal sequence from the active (originating) side is that 3866 * soisconnecting() is called during processing of connect() call, resulting 3867 * in an eventual call to soisconnected() if/when the connection is 3868 * established. When the connection is torn down soisdisconnecting() is 3869 * called during processing of disconnect() call, and soisdisconnected() is 3870 * called when the connection to the peer is totally severed. The semantics 3871 * of these routines are such that connectionless protocols can call 3872 * soisconnected() and soisdisconnected() only, bypassing the in-progress 3873 * calls when setting up a ``connection'' takes no time. 3874 * 3875 * From the passive side, a socket is created with two queues of sockets: 3876 * so_incomp for connections in progress and so_comp for connections already 3877 * made and awaiting user acceptance. As a protocol is preparing incoming 3878 * connections, it creates a socket structure queued on so_incomp by calling 3879 * sonewconn(). When the connection is established, soisconnected() is 3880 * called, and transfers the socket structure to so_comp, making it available 3881 * to accept(). 3882 * 3883 * If a socket is closed with sockets on either so_incomp or so_comp, these 3884 * sockets are dropped. 3885 * 3886 * If higher-level protocols are implemented in the kernel, the wakeups done 3887 * here will sometimes cause software-interrupt process scheduling. 3888 */ 3889 void 3890 soisconnecting(struct socket *so) 3891 { 3892 3893 SOCK_LOCK(so); 3894 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 3895 so->so_state |= SS_ISCONNECTING; 3896 SOCK_UNLOCK(so); 3897 } 3898 3899 void 3900 soisconnected(struct socket *so) 3901 { 3902 3903 SOCK_LOCK(so); 3904 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 3905 so->so_state |= SS_ISCONNECTED; 3906 3907 if (so->so_qstate == SQ_INCOMP) { 3908 struct socket *head = so->so_listen; 3909 int ret; 3910 3911 KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so)); 3912 /* 3913 * Promoting a socket from incomplete queue to complete, we 3914 * need to go through reverse order of locking. We first do 3915 * trylock, and if that doesn't succeed, we go the hard way 3916 * leaving a reference and rechecking consistency after proper 3917 * locking. 3918 */ 3919 if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) { 3920 soref(head); 3921 SOCK_UNLOCK(so); 3922 SOLISTEN_LOCK(head); 3923 SOCK_LOCK(so); 3924 if (__predict_false(head != so->so_listen)) { 3925 /* 3926 * The socket went off the listen queue, 3927 * should be lost race to close(2) of sol. 3928 * The socket is about to soabort(). 3929 */ 3930 SOCK_UNLOCK(so); 3931 sorele(head); 3932 return; 3933 } 3934 /* Not the last one, as so holds a ref. */ 3935 refcount_release(&head->so_count); 3936 } 3937 again: 3938 if ((so->so_options & SO_ACCEPTFILTER) == 0) { 3939 TAILQ_REMOVE(&head->sol_incomp, so, so_list); 3940 head->sol_incqlen--; 3941 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 3942 head->sol_qlen++; 3943 so->so_qstate = SQ_COMP; 3944 SOCK_UNLOCK(so); 3945 solisten_wakeup(head); /* unlocks */ 3946 } else { 3947 SOCKBUF_LOCK(&so->so_rcv); 3948 soupcall_set(so, SO_RCV, 3949 head->sol_accept_filter->accf_callback, 3950 head->sol_accept_filter_arg); 3951 so->so_options &= ~SO_ACCEPTFILTER; 3952 ret = head->sol_accept_filter->accf_callback(so, 3953 head->sol_accept_filter_arg, M_NOWAIT); 3954 if (ret == SU_ISCONNECTED) { 3955 soupcall_clear(so, SO_RCV); 3956 SOCKBUF_UNLOCK(&so->so_rcv); 3957 goto again; 3958 } 3959 SOCKBUF_UNLOCK(&so->so_rcv); 3960 SOCK_UNLOCK(so); 3961 SOLISTEN_UNLOCK(head); 3962 } 3963 return; 3964 } 3965 SOCK_UNLOCK(so); 3966 wakeup(&so->so_timeo); 3967 sorwakeup(so); 3968 sowwakeup(so); 3969 } 3970 3971 void 3972 soisdisconnecting(struct socket *so) 3973 { 3974 3975 SOCK_LOCK(so); 3976 so->so_state &= ~SS_ISCONNECTING; 3977 so->so_state |= SS_ISDISCONNECTING; 3978 3979 if (!SOLISTENING(so)) { 3980 SOCKBUF_LOCK(&so->so_rcv); 3981 socantrcvmore_locked(so); 3982 SOCKBUF_LOCK(&so->so_snd); 3983 socantsendmore_locked(so); 3984 } 3985 SOCK_UNLOCK(so); 3986 wakeup(&so->so_timeo); 3987 } 3988 3989 void 3990 soisdisconnected(struct socket *so) 3991 { 3992 3993 SOCK_LOCK(so); 3994 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 3995 so->so_state |= SS_ISDISCONNECTED; 3996 3997 if (!SOLISTENING(so)) { 3998 SOCK_UNLOCK(so); 3999 SOCKBUF_LOCK(&so->so_rcv); 4000 socantrcvmore_locked(so); 4001 SOCKBUF_LOCK(&so->so_snd); 4002 sbdrop_locked(&so->so_snd, sbused(&so->so_snd)); 4003 socantsendmore_locked(so); 4004 } else 4005 SOCK_UNLOCK(so); 4006 wakeup(&so->so_timeo); 4007 } 4008 4009 /* 4010 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 4011 */ 4012 struct sockaddr * 4013 sodupsockaddr(const struct sockaddr *sa, int mflags) 4014 { 4015 struct sockaddr *sa2; 4016 4017 sa2 = malloc(sa->sa_len, M_SONAME, mflags); 4018 if (sa2) 4019 bcopy(sa, sa2, sa->sa_len); 4020 return sa2; 4021 } 4022 4023 /* 4024 * Register per-socket destructor. 4025 */ 4026 void 4027 sodtor_set(struct socket *so, so_dtor_t *func) 4028 { 4029 4030 SOCK_LOCK_ASSERT(so); 4031 so->so_dtor = func; 4032 } 4033 4034 /* 4035 * Register per-socket buffer upcalls. 4036 */ 4037 void 4038 soupcall_set(struct socket *so, int which, so_upcall_t func, void *arg) 4039 { 4040 struct sockbuf *sb; 4041 4042 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 4043 4044 switch (which) { 4045 case SO_RCV: 4046 sb = &so->so_rcv; 4047 break; 4048 case SO_SND: 4049 sb = &so->so_snd; 4050 break; 4051 default: 4052 panic("soupcall_set: bad which"); 4053 } 4054 SOCKBUF_LOCK_ASSERT(sb); 4055 sb->sb_upcall = func; 4056 sb->sb_upcallarg = arg; 4057 sb->sb_flags |= SB_UPCALL; 4058 } 4059 4060 void 4061 soupcall_clear(struct socket *so, int which) 4062 { 4063 struct sockbuf *sb; 4064 4065 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 4066 4067 switch (which) { 4068 case SO_RCV: 4069 sb = &so->so_rcv; 4070 break; 4071 case SO_SND: 4072 sb = &so->so_snd; 4073 break; 4074 default: 4075 panic("soupcall_clear: bad which"); 4076 } 4077 SOCKBUF_LOCK_ASSERT(sb); 4078 KASSERT(sb->sb_upcall != NULL, 4079 ("%s: so %p no upcall to clear", __func__, so)); 4080 sb->sb_upcall = NULL; 4081 sb->sb_upcallarg = NULL; 4082 sb->sb_flags &= ~SB_UPCALL; 4083 } 4084 4085 void 4086 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg) 4087 { 4088 4089 SOLISTEN_LOCK_ASSERT(so); 4090 so->sol_upcall = func; 4091 so->sol_upcallarg = arg; 4092 } 4093 4094 static void 4095 so_rdknl_lock(void *arg) 4096 { 4097 struct socket *so = arg; 4098 4099 if (SOLISTENING(so)) 4100 SOCK_LOCK(so); 4101 else 4102 SOCKBUF_LOCK(&so->so_rcv); 4103 } 4104 4105 static void 4106 so_rdknl_unlock(void *arg) 4107 { 4108 struct socket *so = arg; 4109 4110 if (SOLISTENING(so)) 4111 SOCK_UNLOCK(so); 4112 else 4113 SOCKBUF_UNLOCK(&so->so_rcv); 4114 } 4115 4116 static void 4117 so_rdknl_assert_locked(void *arg) 4118 { 4119 struct socket *so = arg; 4120 4121 if (SOLISTENING(so)) 4122 SOCK_LOCK_ASSERT(so); 4123 else 4124 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 4125 } 4126 4127 static void 4128 so_rdknl_assert_unlocked(void *arg) 4129 { 4130 struct socket *so = arg; 4131 4132 if (SOLISTENING(so)) 4133 SOCK_UNLOCK_ASSERT(so); 4134 else 4135 SOCKBUF_UNLOCK_ASSERT(&so->so_rcv); 4136 } 4137 4138 static void 4139 so_wrknl_lock(void *arg) 4140 { 4141 struct socket *so = arg; 4142 4143 if (SOLISTENING(so)) 4144 SOCK_LOCK(so); 4145 else 4146 SOCKBUF_LOCK(&so->so_snd); 4147 } 4148 4149 static void 4150 so_wrknl_unlock(void *arg) 4151 { 4152 struct socket *so = arg; 4153 4154 if (SOLISTENING(so)) 4155 SOCK_UNLOCK(so); 4156 else 4157 SOCKBUF_UNLOCK(&so->so_snd); 4158 } 4159 4160 static void 4161 so_wrknl_assert_locked(void *arg) 4162 { 4163 struct socket *so = arg; 4164 4165 if (SOLISTENING(so)) 4166 SOCK_LOCK_ASSERT(so); 4167 else 4168 SOCKBUF_LOCK_ASSERT(&so->so_snd); 4169 } 4170 4171 static void 4172 so_wrknl_assert_unlocked(void *arg) 4173 { 4174 struct socket *so = arg; 4175 4176 if (SOLISTENING(so)) 4177 SOCK_UNLOCK_ASSERT(so); 4178 else 4179 SOCKBUF_UNLOCK_ASSERT(&so->so_snd); 4180 } 4181 4182 /* 4183 * Create an external-format (``xsocket'') structure using the information in 4184 * the kernel-format socket structure pointed to by so. This is done to 4185 * reduce the spew of irrelevant information over this interface, to isolate 4186 * user code from changes in the kernel structure, and potentially to provide 4187 * information-hiding if we decide that some of this information should be 4188 * hidden from users. 4189 */ 4190 void 4191 sotoxsocket(struct socket *so, struct xsocket *xso) 4192 { 4193 4194 bzero(xso, sizeof(*xso)); 4195 xso->xso_len = sizeof *xso; 4196 xso->xso_so = (uintptr_t)so; 4197 xso->so_type = so->so_type; 4198 xso->so_options = so->so_options; 4199 xso->so_linger = so->so_linger; 4200 xso->so_state = so->so_state; 4201 xso->so_pcb = (uintptr_t)so->so_pcb; 4202 xso->xso_protocol = so->so_proto->pr_protocol; 4203 xso->xso_family = so->so_proto->pr_domain->dom_family; 4204 xso->so_timeo = so->so_timeo; 4205 xso->so_error = so->so_error; 4206 xso->so_uid = so->so_cred->cr_uid; 4207 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 4208 if (SOLISTENING(so)) { 4209 xso->so_qlen = so->sol_qlen; 4210 xso->so_incqlen = so->sol_incqlen; 4211 xso->so_qlimit = so->sol_qlimit; 4212 xso->so_oobmark = 0; 4213 } else { 4214 xso->so_state |= so->so_qstate; 4215 xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0; 4216 xso->so_oobmark = so->so_oobmark; 4217 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 4218 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 4219 } 4220 } 4221 4222 struct sockbuf * 4223 so_sockbuf_rcv(struct socket *so) 4224 { 4225 4226 return (&so->so_rcv); 4227 } 4228 4229 struct sockbuf * 4230 so_sockbuf_snd(struct socket *so) 4231 { 4232 4233 return (&so->so_snd); 4234 } 4235 4236 int 4237 so_state_get(const struct socket *so) 4238 { 4239 4240 return (so->so_state); 4241 } 4242 4243 void 4244 so_state_set(struct socket *so, int val) 4245 { 4246 4247 so->so_state = val; 4248 } 4249 4250 int 4251 so_options_get(const struct socket *so) 4252 { 4253 4254 return (so->so_options); 4255 } 4256 4257 void 4258 so_options_set(struct socket *so, int val) 4259 { 4260 4261 so->so_options = val; 4262 } 4263 4264 int 4265 so_error_get(const struct socket *so) 4266 { 4267 4268 return (so->so_error); 4269 } 4270 4271 void 4272 so_error_set(struct socket *so, int val) 4273 { 4274 4275 so->so_error = val; 4276 } 4277 4278 int 4279 so_linger_get(const struct socket *so) 4280 { 4281 4282 return (so->so_linger); 4283 } 4284 4285 void 4286 so_linger_set(struct socket *so, int val) 4287 { 4288 4289 KASSERT(val >= 0 && val <= USHRT_MAX && val <= (INT_MAX / hz), 4290 ("%s: val %d out of range", __func__, val)); 4291 4292 so->so_linger = val; 4293 } 4294 4295 struct protosw * 4296 so_protosw_get(const struct socket *so) 4297 { 4298 4299 return (so->so_proto); 4300 } 4301 4302 void 4303 so_protosw_set(struct socket *so, struct protosw *val) 4304 { 4305 4306 so->so_proto = val; 4307 } 4308 4309 void 4310 so_sorwakeup(struct socket *so) 4311 { 4312 4313 sorwakeup(so); 4314 } 4315 4316 void 4317 so_sowwakeup(struct socket *so) 4318 { 4319 4320 sowwakeup(so); 4321 } 4322 4323 void 4324 so_sorwakeup_locked(struct socket *so) 4325 { 4326 4327 sorwakeup_locked(so); 4328 } 4329 4330 void 4331 so_sowwakeup_locked(struct socket *so) 4332 { 4333 4334 sowwakeup_locked(so); 4335 } 4336 4337 void 4338 so_lock(struct socket *so) 4339 { 4340 4341 SOCK_LOCK(so); 4342 } 4343 4344 void 4345 so_unlock(struct socket *so) 4346 { 4347 4348 SOCK_UNLOCK(so); 4349 } 4350