1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. 6 * Copyright (c) 2004 The FreeBSD Foundation 7 * Copyright (c) 2004-2008 Robert N. M. Watson 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 35 */ 36 37 /* 38 * Comments on the socket life cycle: 39 * 40 * soalloc() sets of socket layer state for a socket, called only by 41 * socreate() and sonewconn(). Socket layer private. 42 * 43 * sodealloc() tears down socket layer state for a socket, called only by 44 * sofree() and sonewconn(). Socket layer private. 45 * 46 * pru_attach() associates protocol layer state with an allocated socket; 47 * called only once, may fail, aborting socket allocation. This is called 48 * from socreate() and sonewconn(). Socket layer private. 49 * 50 * pru_detach() disassociates protocol layer state from an attached socket, 51 * and will be called exactly once for sockets in which pru_attach() has 52 * been successfully called. If pru_attach() returned an error, 53 * pru_detach() will not be called. Socket layer private. 54 * 55 * pru_abort() and pru_close() notify the protocol layer that the last 56 * consumer of a socket is starting to tear down the socket, and that the 57 * protocol should terminate the connection. Historically, pru_abort() also 58 * detached protocol state from the socket state, but this is no longer the 59 * case. 60 * 61 * socreate() creates a socket and attaches protocol state. This is a public 62 * interface that may be used by socket layer consumers to create new 63 * sockets. 64 * 65 * sonewconn() creates a socket and attaches protocol state. This is a 66 * public interface that may be used by protocols to create new sockets when 67 * a new connection is received and will be available for accept() on a 68 * listen socket. 69 * 70 * soclose() destroys a socket after possibly waiting for it to disconnect. 71 * This is a public interface that socket consumers should use to close and 72 * release a socket when done with it. 73 * 74 * soabort() destroys a socket without waiting for it to disconnect (used 75 * only for incoming connections that are already partially or fully 76 * connected). This is used internally by the socket layer when clearing 77 * listen socket queues (due to overflow or close on the listen socket), but 78 * is also a public interface protocols may use to abort connections in 79 * their incomplete listen queues should they no longer be required. Sockets 80 * placed in completed connection listen queues should not be aborted for 81 * reasons described in the comment above the soclose() implementation. This 82 * is not a general purpose close routine, and except in the specific 83 * circumstances described here, should not be used. 84 * 85 * sofree() will free a socket and its protocol state if all references on 86 * the socket have been released, and is the public interface to attempt to 87 * free a socket when a reference is removed. This is a socket layer private 88 * interface. 89 * 90 * NOTE: In addition to socreate() and soclose(), which provide a single 91 * socket reference to the consumer to be managed as required, there are two 92 * calls to explicitly manage socket references, soref(), and sorele(). 93 * Currently, these are generally required only when transitioning a socket 94 * from a listen queue to a file descriptor, in order to prevent garbage 95 * collection of the socket at an untimely moment. For a number of reasons, 96 * these interfaces are not preferred, and should be avoided. 97 * 98 * NOTE: With regard to VNETs the general rule is that callers do not set 99 * curvnet. Exceptions to this rule include soabort(), sodisconnect(), 100 * sofree() (and with that sorele(), sotryfree()), as well as sonewconn() 101 * and sorflush(), which are usually called from a pre-set VNET context. 102 * sopoll() currently does not need a VNET context to be set. 103 */ 104 105 #include <sys/cdefs.h> 106 __FBSDID("$FreeBSD$"); 107 108 #include "opt_inet.h" 109 #include "opt_inet6.h" 110 #include "opt_kern_tls.h" 111 #include "opt_sctp.h" 112 113 #include <sys/param.h> 114 #include <sys/systm.h> 115 #include <sys/fcntl.h> 116 #include <sys/limits.h> 117 #include <sys/lock.h> 118 #include <sys/mac.h> 119 #include <sys/malloc.h> 120 #include <sys/mbuf.h> 121 #include <sys/mutex.h> 122 #include <sys/domain.h> 123 #include <sys/file.h> /* for struct knote */ 124 #include <sys/hhook.h> 125 #include <sys/kernel.h> 126 #include <sys/khelp.h> 127 #include <sys/ktls.h> 128 #include <sys/event.h> 129 #include <sys/eventhandler.h> 130 #include <sys/poll.h> 131 #include <sys/proc.h> 132 #include <sys/protosw.h> 133 #include <sys/sbuf.h> 134 #include <sys/socket.h> 135 #include <sys/socketvar.h> 136 #include <sys/resourcevar.h> 137 #include <net/route.h> 138 #include <sys/signalvar.h> 139 #include <sys/stat.h> 140 #include <sys/sx.h> 141 #include <sys/sysctl.h> 142 #include <sys/taskqueue.h> 143 #include <sys/uio.h> 144 #include <sys/un.h> 145 #include <sys/unpcb.h> 146 #include <sys/jail.h> 147 #include <sys/syslog.h> 148 #include <netinet/in.h> 149 #include <netinet/in_pcb.h> 150 #include <netinet/tcp.h> 151 152 #include <net/vnet.h> 153 154 #include <security/mac/mac_framework.h> 155 156 #include <vm/uma.h> 157 158 #ifdef COMPAT_FREEBSD32 159 #include <sys/mount.h> 160 #include <sys/sysent.h> 161 #include <compat/freebsd32/freebsd32.h> 162 #endif 163 164 static int soreceive_rcvoob(struct socket *so, struct uio *uio, 165 int flags); 166 static void so_rdknl_lock(void *); 167 static void so_rdknl_unlock(void *); 168 static void so_rdknl_assert_locked(void *); 169 static void so_rdknl_assert_unlocked(void *); 170 static void so_wrknl_lock(void *); 171 static void so_wrknl_unlock(void *); 172 static void so_wrknl_assert_locked(void *); 173 static void so_wrknl_assert_unlocked(void *); 174 175 static void filt_sordetach(struct knote *kn); 176 static int filt_soread(struct knote *kn, long hint); 177 static void filt_sowdetach(struct knote *kn); 178 static int filt_sowrite(struct knote *kn, long hint); 179 static int filt_soempty(struct knote *kn, long hint); 180 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id); 181 fo_kqfilter_t soo_kqfilter; 182 183 static struct filterops soread_filtops = { 184 .f_isfd = 1, 185 .f_detach = filt_sordetach, 186 .f_event = filt_soread, 187 }; 188 static struct filterops sowrite_filtops = { 189 .f_isfd = 1, 190 .f_detach = filt_sowdetach, 191 .f_event = filt_sowrite, 192 }; 193 static struct filterops soempty_filtops = { 194 .f_isfd = 1, 195 .f_detach = filt_sowdetach, 196 .f_event = filt_soempty, 197 }; 198 199 so_gen_t so_gencnt; /* generation count for sockets */ 200 201 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 202 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 203 204 #define VNET_SO_ASSERT(so) \ 205 VNET_ASSERT(curvnet != NULL, \ 206 ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so))); 207 208 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]); 209 #define V_socket_hhh VNET(socket_hhh) 210 211 /* 212 * Limit on the number of connections in the listen queue waiting 213 * for accept(2). 214 * NB: The original sysctl somaxconn is still available but hidden 215 * to prevent confusion about the actual purpose of this number. 216 */ 217 static u_int somaxconn = SOMAXCONN; 218 219 static int 220 sysctl_somaxconn(SYSCTL_HANDLER_ARGS) 221 { 222 int error; 223 int val; 224 225 val = somaxconn; 226 error = sysctl_handle_int(oidp, &val, 0, req); 227 if (error || !req->newptr ) 228 return (error); 229 230 /* 231 * The purpose of the UINT_MAX / 3 limit, is so that the formula 232 * 3 * so_qlimit / 2 233 * below, will not overflow. 234 */ 235 236 if (val < 1 || val > UINT_MAX / 3) 237 return (EINVAL); 238 239 somaxconn = val; 240 return (0); 241 } 242 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue, 243 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 0, sizeof(int), 244 sysctl_somaxconn, "I", 245 "Maximum listen socket pending connection accept queue size"); 246 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, 247 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_NEEDGIANT, 0, 248 sizeof(int), sysctl_somaxconn, "I", 249 "Maximum listen socket pending connection accept queue size (compat)"); 250 251 static int numopensockets; 252 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, 253 &numopensockets, 0, "Number of open sockets"); 254 255 /* 256 * accept_mtx locks down per-socket fields relating to accept queues. See 257 * socketvar.h for an annotation of the protected fields of struct socket. 258 */ 259 struct mtx accept_mtx; 260 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF); 261 262 /* 263 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket 264 * so_gencnt field. 265 */ 266 static struct mtx so_global_mtx; 267 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); 268 269 /* 270 * General IPC sysctl name space, used by sockets and a variety of other IPC 271 * types. 272 */ 273 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 274 "IPC"); 275 276 /* 277 * Initialize the socket subsystem and set up the socket 278 * memory allocator. 279 */ 280 static uma_zone_t socket_zone; 281 int maxsockets; 282 283 static void 284 socket_zone_change(void *tag) 285 { 286 287 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 288 } 289 290 static void 291 socket_hhook_register(int subtype) 292 { 293 294 if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype, 295 &V_socket_hhh[subtype], 296 HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 297 printf("%s: WARNING: unable to register hook\n", __func__); 298 } 299 300 static void 301 socket_hhook_deregister(int subtype) 302 { 303 304 if (hhook_head_deregister(V_socket_hhh[subtype]) != 0) 305 printf("%s: WARNING: unable to deregister hook\n", __func__); 306 } 307 308 static void 309 socket_init(void *tag) 310 { 311 312 socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL, 313 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 314 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 315 uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached"); 316 EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL, 317 EVENTHANDLER_PRI_FIRST); 318 } 319 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL); 320 321 static void 322 socket_vnet_init(const void *unused __unused) 323 { 324 int i; 325 326 /* We expect a contiguous range */ 327 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 328 socket_hhook_register(i); 329 } 330 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 331 socket_vnet_init, NULL); 332 333 static void 334 socket_vnet_uninit(const void *unused __unused) 335 { 336 int i; 337 338 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 339 socket_hhook_deregister(i); 340 } 341 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 342 socket_vnet_uninit, NULL); 343 344 /* 345 * Initialise maxsockets. This SYSINIT must be run after 346 * tunable_mbinit(). 347 */ 348 static void 349 init_maxsockets(void *ignored) 350 { 351 352 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 353 maxsockets = imax(maxsockets, maxfiles); 354 } 355 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 356 357 /* 358 * Sysctl to get and set the maximum global sockets limit. Notify protocols 359 * of the change so that they can update their dependent limits as required. 360 */ 361 static int 362 sysctl_maxsockets(SYSCTL_HANDLER_ARGS) 363 { 364 int error, newmaxsockets; 365 366 newmaxsockets = maxsockets; 367 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req); 368 if (error == 0 && req->newptr) { 369 if (newmaxsockets > maxsockets && 370 newmaxsockets <= maxfiles) { 371 maxsockets = newmaxsockets; 372 EVENTHANDLER_INVOKE(maxsockets_change); 373 } else 374 error = EINVAL; 375 } 376 return (error); 377 } 378 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, 379 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &maxsockets, 0, 380 sysctl_maxsockets, "IU", 381 "Maximum number of sockets available"); 382 383 /* 384 * Socket operation routines. These routines are called by the routines in 385 * sys_socket.c or from a system process, and implement the semantics of 386 * socket operations by switching out to the protocol specific routines. 387 */ 388 389 /* 390 * Get a socket structure from our zone, and initialize it. Note that it 391 * would probably be better to allocate socket and PCB at the same time, but 392 * I'm not convinced that all the protocols can be easily modified to do 393 * this. 394 * 395 * soalloc() returns a socket with a ref count of 0. 396 */ 397 static struct socket * 398 soalloc(struct vnet *vnet) 399 { 400 struct socket *so; 401 402 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO); 403 if (so == NULL) 404 return (NULL); 405 #ifdef MAC 406 if (mac_socket_init(so, M_NOWAIT) != 0) { 407 uma_zfree(socket_zone, so); 408 return (NULL); 409 } 410 #endif 411 if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) { 412 uma_zfree(socket_zone, so); 413 return (NULL); 414 } 415 416 /* 417 * The socket locking protocol allows to lock 2 sockets at a time, 418 * however, the first one must be a listening socket. WITNESS lacks 419 * a feature to change class of an existing lock, so we use DUPOK. 420 */ 421 mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK); 422 SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd"); 423 SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv"); 424 so->so_rcv.sb_sel = &so->so_rdsel; 425 so->so_snd.sb_sel = &so->so_wrsel; 426 sx_init(&so->so_snd.sb_sx, "so_snd_sx"); 427 sx_init(&so->so_rcv.sb_sx, "so_rcv_sx"); 428 TAILQ_INIT(&so->so_snd.sb_aiojobq); 429 TAILQ_INIT(&so->so_rcv.sb_aiojobq); 430 TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so); 431 TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so); 432 #ifdef VIMAGE 433 VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p", 434 __func__, __LINE__, so)); 435 so->so_vnet = vnet; 436 #endif 437 /* We shouldn't need the so_global_mtx */ 438 if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) { 439 /* Do we need more comprehensive error returns? */ 440 uma_zfree(socket_zone, so); 441 return (NULL); 442 } 443 mtx_lock(&so_global_mtx); 444 so->so_gencnt = ++so_gencnt; 445 ++numopensockets; 446 #ifdef VIMAGE 447 vnet->vnet_sockcnt++; 448 #endif 449 mtx_unlock(&so_global_mtx); 450 451 return (so); 452 } 453 454 /* 455 * Free the storage associated with a socket at the socket layer, tear down 456 * locks, labels, etc. All protocol state is assumed already to have been 457 * torn down (and possibly never set up) by the caller. 458 */ 459 static void 460 sodealloc(struct socket *so) 461 { 462 463 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); 464 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL")); 465 466 mtx_lock(&so_global_mtx); 467 so->so_gencnt = ++so_gencnt; 468 --numopensockets; /* Could be below, but faster here. */ 469 #ifdef VIMAGE 470 VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p", 471 __func__, __LINE__, so)); 472 so->so_vnet->vnet_sockcnt--; 473 #endif 474 mtx_unlock(&so_global_mtx); 475 #ifdef MAC 476 mac_socket_destroy(so); 477 #endif 478 hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE); 479 480 crfree(so->so_cred); 481 khelp_destroy_osd(&so->osd); 482 if (SOLISTENING(so)) { 483 if (so->sol_accept_filter != NULL) 484 accept_filt_setopt(so, NULL); 485 } else { 486 if (so->so_rcv.sb_hiwat) 487 (void)chgsbsize(so->so_cred->cr_uidinfo, 488 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 489 if (so->so_snd.sb_hiwat) 490 (void)chgsbsize(so->so_cred->cr_uidinfo, 491 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 492 sx_destroy(&so->so_snd.sb_sx); 493 sx_destroy(&so->so_rcv.sb_sx); 494 SOCKBUF_LOCK_DESTROY(&so->so_snd); 495 SOCKBUF_LOCK_DESTROY(&so->so_rcv); 496 } 497 mtx_destroy(&so->so_lock); 498 uma_zfree(socket_zone, so); 499 } 500 501 /* 502 * socreate returns a socket with a ref count of 1. The socket should be 503 * closed with soclose(). 504 */ 505 int 506 socreate(int dom, struct socket **aso, int type, int proto, 507 struct ucred *cred, struct thread *td) 508 { 509 struct protosw *prp; 510 struct socket *so; 511 int error; 512 513 if (proto) 514 prp = pffindproto(dom, proto, type); 515 else 516 prp = pffindtype(dom, type); 517 518 if (prp == NULL) { 519 /* No support for domain. */ 520 if (pffinddomain(dom) == NULL) 521 return (EAFNOSUPPORT); 522 /* No support for socket type. */ 523 if (proto == 0 && type != 0) 524 return (EPROTOTYPE); 525 return (EPROTONOSUPPORT); 526 } 527 if (prp->pr_usrreqs->pru_attach == NULL || 528 prp->pr_usrreqs->pru_attach == pru_attach_notsupp) 529 return (EPROTONOSUPPORT); 530 531 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0) 532 return (EPROTONOSUPPORT); 533 534 if (prp->pr_type != type) 535 return (EPROTOTYPE); 536 so = soalloc(CRED_TO_VNET(cred)); 537 if (so == NULL) 538 return (ENOBUFS); 539 540 so->so_type = type; 541 so->so_cred = crhold(cred); 542 if ((prp->pr_domain->dom_family == PF_INET) || 543 (prp->pr_domain->dom_family == PF_INET6) || 544 (prp->pr_domain->dom_family == PF_ROUTE)) 545 so->so_fibnum = td->td_proc->p_fibnum; 546 else 547 so->so_fibnum = 0; 548 so->so_proto = prp; 549 #ifdef MAC 550 mac_socket_create(cred, so); 551 #endif 552 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 553 so_rdknl_assert_locked, so_rdknl_assert_unlocked); 554 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 555 so_wrknl_assert_locked, so_wrknl_assert_unlocked); 556 /* 557 * Auto-sizing of socket buffers is managed by the protocols and 558 * the appropriate flags must be set in the pru_attach function. 559 */ 560 CURVNET_SET(so->so_vnet); 561 error = (*prp->pr_usrreqs->pru_attach)(so, proto, td); 562 CURVNET_RESTORE(); 563 if (error) { 564 sodealloc(so); 565 return (error); 566 } 567 soref(so); 568 *aso = so; 569 return (0); 570 } 571 572 #ifdef REGRESSION 573 static int regression_sonewconn_earlytest = 1; 574 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW, 575 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test"); 576 #endif 577 578 static struct timeval overinterval = { 60, 0 }; 579 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW, 580 &overinterval, 581 "Delay in seconds between warnings for listen socket overflows"); 582 583 /* 584 * When an attempt at a new connection is noted on a socket which accepts 585 * connections, sonewconn is called. If the connection is possible (subject 586 * to space constraints, etc.) then we allocate a new structure, properly 587 * linked into the data structure of the original socket, and return this. 588 * Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED. 589 * 590 * Note: the ref count on the socket is 0 on return. 591 */ 592 struct socket * 593 sonewconn(struct socket *head, int connstatus) 594 { 595 struct sbuf descrsb; 596 struct socket *so; 597 int len, overcount; 598 u_int qlen; 599 const char localprefix[] = "local:"; 600 char descrbuf[SUNPATHLEN + sizeof(localprefix)]; 601 #if defined(INET6) 602 char addrbuf[INET6_ADDRSTRLEN]; 603 #elif defined(INET) 604 char addrbuf[INET_ADDRSTRLEN]; 605 #endif 606 bool dolog, over; 607 608 SOLISTEN_LOCK(head); 609 over = (head->sol_qlen > 3 * head->sol_qlimit / 2); 610 #ifdef REGRESSION 611 if (regression_sonewconn_earlytest && over) { 612 #else 613 if (over) { 614 #endif 615 head->sol_overcount++; 616 dolog = !!ratecheck(&head->sol_lastover, &overinterval); 617 618 /* 619 * If we're going to log, copy the overflow count and queue 620 * length from the listen socket before dropping the lock. 621 * Also, reset the overflow count. 622 */ 623 if (dolog) { 624 overcount = head->sol_overcount; 625 head->sol_overcount = 0; 626 qlen = head->sol_qlen; 627 } 628 SOLISTEN_UNLOCK(head); 629 630 if (dolog) { 631 /* 632 * Try to print something descriptive about the 633 * socket for the error message. 634 */ 635 sbuf_new(&descrsb, descrbuf, sizeof(descrbuf), 636 SBUF_FIXEDLEN); 637 switch (head->so_proto->pr_domain->dom_family) { 638 #if defined(INET) || defined(INET6) 639 #ifdef INET 640 case AF_INET: 641 #endif 642 #ifdef INET6 643 case AF_INET6: 644 if (head->so_proto->pr_domain->dom_family == 645 AF_INET6 || 646 (sotoinpcb(head)->inp_inc.inc_flags & 647 INC_ISIPV6)) { 648 ip6_sprintf(addrbuf, 649 &sotoinpcb(head)->inp_inc.inc6_laddr); 650 sbuf_printf(&descrsb, "[%s]", addrbuf); 651 } else 652 #endif 653 { 654 #ifdef INET 655 inet_ntoa_r( 656 sotoinpcb(head)->inp_inc.inc_laddr, 657 addrbuf); 658 sbuf_cat(&descrsb, addrbuf); 659 #endif 660 } 661 sbuf_printf(&descrsb, ":%hu (proto %u)", 662 ntohs(sotoinpcb(head)->inp_inc.inc_lport), 663 head->so_proto->pr_protocol); 664 break; 665 #endif /* INET || INET6 */ 666 case AF_UNIX: 667 sbuf_cat(&descrsb, localprefix); 668 if (sotounpcb(head)->unp_addr != NULL) 669 len = 670 sotounpcb(head)->unp_addr->sun_len - 671 offsetof(struct sockaddr_un, 672 sun_path); 673 else 674 len = 0; 675 if (len > 0) 676 sbuf_bcat(&descrsb, 677 sotounpcb(head)->unp_addr->sun_path, 678 len); 679 else 680 sbuf_cat(&descrsb, "(unknown)"); 681 break; 682 } 683 684 /* 685 * If we can't print something more specific, at least 686 * print the domain name. 687 */ 688 if (sbuf_finish(&descrsb) != 0 || 689 sbuf_len(&descrsb) <= 0) { 690 sbuf_clear(&descrsb); 691 sbuf_cat(&descrsb, 692 head->so_proto->pr_domain->dom_name ?: 693 "unknown"); 694 sbuf_finish(&descrsb); 695 } 696 KASSERT(sbuf_len(&descrsb) > 0, 697 ("%s: sbuf creation failed", __func__)); 698 log(LOG_DEBUG, 699 "%s: pcb %p (%s): Listen queue overflow: " 700 "%i already in queue awaiting acceptance " 701 "(%d occurrences)\n", 702 __func__, head->so_pcb, sbuf_data(&descrsb), 703 qlen, overcount); 704 sbuf_delete(&descrsb); 705 706 overcount = 0; 707 } 708 709 return (NULL); 710 } 711 SOLISTEN_UNLOCK(head); 712 VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL", 713 __func__, head)); 714 so = soalloc(head->so_vnet); 715 if (so == NULL) { 716 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 717 "limit reached or out of memory\n", 718 __func__, head->so_pcb); 719 return (NULL); 720 } 721 so->so_listen = head; 722 so->so_type = head->so_type; 723 so->so_linger = head->so_linger; 724 so->so_state = head->so_state | SS_NOFDREF; 725 so->so_fibnum = head->so_fibnum; 726 so->so_proto = head->so_proto; 727 so->so_cred = crhold(head->so_cred); 728 #ifdef MAC 729 mac_socket_newconn(head, so); 730 #endif 731 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 732 so_rdknl_assert_locked, so_rdknl_assert_unlocked); 733 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 734 so_wrknl_assert_locked, so_wrknl_assert_unlocked); 735 VNET_SO_ASSERT(head); 736 if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) { 737 sodealloc(so); 738 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 739 __func__, head->so_pcb); 740 return (NULL); 741 } 742 if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 743 sodealloc(so); 744 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", 745 __func__, head->so_pcb); 746 return (NULL); 747 } 748 so->so_rcv.sb_lowat = head->sol_sbrcv_lowat; 749 so->so_snd.sb_lowat = head->sol_sbsnd_lowat; 750 so->so_rcv.sb_timeo = head->sol_sbrcv_timeo; 751 so->so_snd.sb_timeo = head->sol_sbsnd_timeo; 752 so->so_rcv.sb_flags |= head->sol_sbrcv_flags & SB_AUTOSIZE; 753 so->so_snd.sb_flags |= head->sol_sbsnd_flags & SB_AUTOSIZE; 754 755 SOLISTEN_LOCK(head); 756 if (head->sol_accept_filter != NULL) 757 connstatus = 0; 758 so->so_state |= connstatus; 759 so->so_options = head->so_options & ~SO_ACCEPTCONN; 760 soref(head); /* A socket on (in)complete queue refs head. */ 761 if (connstatus) { 762 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 763 so->so_qstate = SQ_COMP; 764 head->sol_qlen++; 765 solisten_wakeup(head); /* unlocks */ 766 } else { 767 /* 768 * Keep removing sockets from the head until there's room for 769 * us to insert on the tail. In pre-locking revisions, this 770 * was a simple if(), but as we could be racing with other 771 * threads and soabort() requires dropping locks, we must 772 * loop waiting for the condition to be true. 773 */ 774 while (head->sol_incqlen > head->sol_qlimit) { 775 struct socket *sp; 776 777 sp = TAILQ_FIRST(&head->sol_incomp); 778 TAILQ_REMOVE(&head->sol_incomp, sp, so_list); 779 head->sol_incqlen--; 780 SOCK_LOCK(sp); 781 sp->so_qstate = SQ_NONE; 782 sp->so_listen = NULL; 783 SOCK_UNLOCK(sp); 784 sorele(head); /* does SOLISTEN_UNLOCK, head stays */ 785 soabort(sp); 786 SOLISTEN_LOCK(head); 787 } 788 TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list); 789 so->so_qstate = SQ_INCOMP; 790 head->sol_incqlen++; 791 SOLISTEN_UNLOCK(head); 792 } 793 return (so); 794 } 795 796 #ifdef SCTP 797 /* 798 * Socket part of sctp_peeloff(). Detach a new socket from an 799 * association. The new socket is returned with a reference. 800 */ 801 struct socket * 802 sopeeloff(struct socket *head) 803 { 804 struct socket *so; 805 806 VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p", 807 __func__, __LINE__, head)); 808 so = soalloc(head->so_vnet); 809 if (so == NULL) { 810 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 811 "limit reached or out of memory\n", 812 __func__, head->so_pcb); 813 return (NULL); 814 } 815 so->so_type = head->so_type; 816 so->so_options = head->so_options; 817 so->so_linger = head->so_linger; 818 so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED; 819 so->so_fibnum = head->so_fibnum; 820 so->so_proto = head->so_proto; 821 so->so_cred = crhold(head->so_cred); 822 #ifdef MAC 823 mac_socket_newconn(head, so); 824 #endif 825 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 826 so_rdknl_assert_locked, so_rdknl_assert_unlocked); 827 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 828 so_wrknl_assert_locked, so_wrknl_assert_unlocked); 829 VNET_SO_ASSERT(head); 830 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) { 831 sodealloc(so); 832 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 833 __func__, head->so_pcb); 834 return (NULL); 835 } 836 if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 837 sodealloc(so); 838 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", 839 __func__, head->so_pcb); 840 return (NULL); 841 } 842 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; 843 so->so_snd.sb_lowat = head->so_snd.sb_lowat; 844 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; 845 so->so_snd.sb_timeo = head->so_snd.sb_timeo; 846 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE; 847 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE; 848 849 soref(so); 850 851 return (so); 852 } 853 #endif /* SCTP */ 854 855 int 856 sobind(struct socket *so, struct sockaddr *nam, struct thread *td) 857 { 858 int error; 859 860 CURVNET_SET(so->so_vnet); 861 error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td); 862 CURVNET_RESTORE(); 863 return (error); 864 } 865 866 int 867 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 868 { 869 int error; 870 871 CURVNET_SET(so->so_vnet); 872 error = (*so->so_proto->pr_usrreqs->pru_bindat)(fd, so, nam, td); 873 CURVNET_RESTORE(); 874 return (error); 875 } 876 877 /* 878 * solisten() transitions a socket from a non-listening state to a listening 879 * state, but can also be used to update the listen queue depth on an 880 * existing listen socket. The protocol will call back into the sockets 881 * layer using solisten_proto_check() and solisten_proto() to check and set 882 * socket-layer listen state. Call backs are used so that the protocol can 883 * acquire both protocol and socket layer locks in whatever order is required 884 * by the protocol. 885 * 886 * Protocol implementors are advised to hold the socket lock across the 887 * socket-layer test and set to avoid races at the socket layer. 888 */ 889 int 890 solisten(struct socket *so, int backlog, struct thread *td) 891 { 892 int error; 893 894 CURVNET_SET(so->so_vnet); 895 error = (*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td); 896 CURVNET_RESTORE(); 897 return (error); 898 } 899 900 int 901 solisten_proto_check(struct socket *so) 902 { 903 904 SOCK_LOCK_ASSERT(so); 905 906 if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 907 SS_ISDISCONNECTING)) 908 return (EINVAL); 909 return (0); 910 } 911 912 void 913 solisten_proto(struct socket *so, int backlog) 914 { 915 int sbrcv_lowat, sbsnd_lowat; 916 u_int sbrcv_hiwat, sbsnd_hiwat; 917 short sbrcv_flags, sbsnd_flags; 918 sbintime_t sbrcv_timeo, sbsnd_timeo; 919 920 SOCK_LOCK_ASSERT(so); 921 922 if (SOLISTENING(so)) 923 goto listening; 924 925 /* 926 * Change this socket to listening state. 927 */ 928 sbrcv_lowat = so->so_rcv.sb_lowat; 929 sbsnd_lowat = so->so_snd.sb_lowat; 930 sbrcv_hiwat = so->so_rcv.sb_hiwat; 931 sbsnd_hiwat = so->so_snd.sb_hiwat; 932 sbrcv_flags = so->so_rcv.sb_flags; 933 sbsnd_flags = so->so_snd.sb_flags; 934 sbrcv_timeo = so->so_rcv.sb_timeo; 935 sbsnd_timeo = so->so_snd.sb_timeo; 936 937 sbdestroy(&so->so_snd, so); 938 sbdestroy(&so->so_rcv, so); 939 sx_destroy(&so->so_snd.sb_sx); 940 sx_destroy(&so->so_rcv.sb_sx); 941 SOCKBUF_LOCK_DESTROY(&so->so_snd); 942 SOCKBUF_LOCK_DESTROY(&so->so_rcv); 943 944 #ifdef INVARIANTS 945 bzero(&so->so_rcv, 946 sizeof(struct socket) - offsetof(struct socket, so_rcv)); 947 #endif 948 949 so->sol_sbrcv_lowat = sbrcv_lowat; 950 so->sol_sbsnd_lowat = sbsnd_lowat; 951 so->sol_sbrcv_hiwat = sbrcv_hiwat; 952 so->sol_sbsnd_hiwat = sbsnd_hiwat; 953 so->sol_sbrcv_flags = sbrcv_flags; 954 so->sol_sbsnd_flags = sbsnd_flags; 955 so->sol_sbrcv_timeo = sbrcv_timeo; 956 so->sol_sbsnd_timeo = sbsnd_timeo; 957 958 so->sol_qlen = so->sol_incqlen = 0; 959 TAILQ_INIT(&so->sol_incomp); 960 TAILQ_INIT(&so->sol_comp); 961 962 so->sol_accept_filter = NULL; 963 so->sol_accept_filter_arg = NULL; 964 so->sol_accept_filter_str = NULL; 965 966 so->sol_upcall = NULL; 967 so->sol_upcallarg = NULL; 968 969 so->so_options |= SO_ACCEPTCONN; 970 971 listening: 972 if (backlog < 0 || backlog > somaxconn) 973 backlog = somaxconn; 974 so->sol_qlimit = backlog; 975 } 976 977 /* 978 * Wakeup listeners/subsystems once we have a complete connection. 979 * Enters with lock, returns unlocked. 980 */ 981 void 982 solisten_wakeup(struct socket *sol) 983 { 984 985 if (sol->sol_upcall != NULL) 986 (void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT); 987 else { 988 selwakeuppri(&sol->so_rdsel, PSOCK); 989 KNOTE_LOCKED(&sol->so_rdsel.si_note, 0); 990 } 991 SOLISTEN_UNLOCK(sol); 992 wakeup_one(&sol->sol_comp); 993 if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL) 994 pgsigio(&sol->so_sigio, SIGIO, 0); 995 } 996 997 /* 998 * Return single connection off a listening socket queue. Main consumer of 999 * the function is kern_accept4(). Some modules, that do their own accept 1000 * management also use the function. 1001 * 1002 * Listening socket must be locked on entry and is returned unlocked on 1003 * return. 1004 * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT. 1005 */ 1006 int 1007 solisten_dequeue(struct socket *head, struct socket **ret, int flags) 1008 { 1009 struct socket *so; 1010 int error; 1011 1012 SOLISTEN_LOCK_ASSERT(head); 1013 1014 while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) && 1015 head->so_error == 0) { 1016 error = msleep(&head->sol_comp, &head->so_lock, PSOCK | PCATCH, 1017 "accept", 0); 1018 if (error != 0) { 1019 SOLISTEN_UNLOCK(head); 1020 return (error); 1021 } 1022 } 1023 if (head->so_error) { 1024 error = head->so_error; 1025 head->so_error = 0; 1026 } else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp)) 1027 error = EWOULDBLOCK; 1028 else 1029 error = 0; 1030 if (error) { 1031 SOLISTEN_UNLOCK(head); 1032 return (error); 1033 } 1034 so = TAILQ_FIRST(&head->sol_comp); 1035 SOCK_LOCK(so); 1036 KASSERT(so->so_qstate == SQ_COMP, 1037 ("%s: so %p not SQ_COMP", __func__, so)); 1038 soref(so); 1039 head->sol_qlen--; 1040 so->so_qstate = SQ_NONE; 1041 so->so_listen = NULL; 1042 TAILQ_REMOVE(&head->sol_comp, so, so_list); 1043 if (flags & ACCEPT4_INHERIT) 1044 so->so_state |= (head->so_state & SS_NBIO); 1045 else 1046 so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0; 1047 SOCK_UNLOCK(so); 1048 sorele(head); 1049 1050 *ret = so; 1051 return (0); 1052 } 1053 1054 /* 1055 * Evaluate the reference count and named references on a socket; if no 1056 * references remain, free it. This should be called whenever a reference is 1057 * released, such as in sorele(), but also when named reference flags are 1058 * cleared in socket or protocol code. 1059 * 1060 * sofree() will free the socket if: 1061 * 1062 * - There are no outstanding file descriptor references or related consumers 1063 * (so_count == 0). 1064 * 1065 * - The socket has been closed by user space, if ever open (SS_NOFDREF). 1066 * 1067 * - The protocol does not have an outstanding strong reference on the socket 1068 * (SS_PROTOREF). 1069 * 1070 * - The socket is not in a completed connection queue, so a process has been 1071 * notified that it is present. If it is removed, the user process may 1072 * block in accept() despite select() saying the socket was ready. 1073 */ 1074 void 1075 sofree(struct socket *so) 1076 { 1077 struct protosw *pr = so->so_proto; 1078 1079 SOCK_LOCK_ASSERT(so); 1080 1081 if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 || 1082 (so->so_state & SS_PROTOREF) || (so->so_qstate == SQ_COMP)) { 1083 SOCK_UNLOCK(so); 1084 return; 1085 } 1086 1087 if (!SOLISTENING(so) && so->so_qstate == SQ_INCOMP) { 1088 struct socket *sol; 1089 1090 sol = so->so_listen; 1091 KASSERT(sol, ("%s: so %p on incomp of NULL", __func__, so)); 1092 1093 /* 1094 * To solve race between close of a listening socket and 1095 * a socket on its incomplete queue, we need to lock both. 1096 * The order is first listening socket, then regular. 1097 * Since we don't have SS_NOFDREF neither SS_PROTOREF, this 1098 * function and the listening socket are the only pointers 1099 * to so. To preserve so and sol, we reference both and then 1100 * relock. 1101 * After relock the socket may not move to so_comp since it 1102 * doesn't have PCB already, but it may be removed from 1103 * so_incomp. If that happens, we share responsiblity on 1104 * freeing the socket, but soclose() has already removed 1105 * it from queue. 1106 */ 1107 soref(sol); 1108 soref(so); 1109 SOCK_UNLOCK(so); 1110 SOLISTEN_LOCK(sol); 1111 SOCK_LOCK(so); 1112 if (so->so_qstate == SQ_INCOMP) { 1113 KASSERT(so->so_listen == sol, 1114 ("%s: so %p migrated out of sol %p", 1115 __func__, so, sol)); 1116 TAILQ_REMOVE(&sol->sol_incomp, so, so_list); 1117 sol->sol_incqlen--; 1118 /* This is guarenteed not to be the last. */ 1119 refcount_release(&sol->so_count); 1120 so->so_qstate = SQ_NONE; 1121 so->so_listen = NULL; 1122 } else 1123 KASSERT(so->so_listen == NULL, 1124 ("%s: so %p not on (in)comp with so_listen", 1125 __func__, so)); 1126 sorele(sol); 1127 KASSERT(so->so_count == 1, 1128 ("%s: so %p count %u", __func__, so, so->so_count)); 1129 so->so_count = 0; 1130 } 1131 if (SOLISTENING(so)) 1132 so->so_error = ECONNABORTED; 1133 SOCK_UNLOCK(so); 1134 1135 if (so->so_dtor != NULL) 1136 so->so_dtor(so); 1137 1138 VNET_SO_ASSERT(so); 1139 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 1140 (*pr->pr_domain->dom_dispose)(so); 1141 if (pr->pr_usrreqs->pru_detach != NULL) 1142 (*pr->pr_usrreqs->pru_detach)(so); 1143 1144 /* 1145 * From this point on, we assume that no other references to this 1146 * socket exist anywhere else in the stack. Therefore, no locks need 1147 * to be acquired or held. 1148 * 1149 * We used to do a lot of socket buffer and socket locking here, as 1150 * well as invoke sorflush() and perform wakeups. The direct call to 1151 * dom_dispose() and sbdestroy() are an inlining of what was 1152 * necessary from sorflush(). 1153 * 1154 * Notice that the socket buffer and kqueue state are torn down 1155 * before calling pru_detach. This means that protocols shold not 1156 * assume they can perform socket wakeups, etc, in their detach code. 1157 */ 1158 if (!SOLISTENING(so)) { 1159 sbdestroy(&so->so_snd, so); 1160 sbdestroy(&so->so_rcv, so); 1161 } 1162 seldrain(&so->so_rdsel); 1163 seldrain(&so->so_wrsel); 1164 knlist_destroy(&so->so_rdsel.si_note); 1165 knlist_destroy(&so->so_wrsel.si_note); 1166 sodealloc(so); 1167 } 1168 1169 /* 1170 * Close a socket on last file table reference removal. Initiate disconnect 1171 * if connected. Free socket when disconnect complete. 1172 * 1173 * This function will sorele() the socket. Note that soclose() may be called 1174 * prior to the ref count reaching zero. The actual socket structure will 1175 * not be freed until the ref count reaches zero. 1176 */ 1177 int 1178 soclose(struct socket *so) 1179 { 1180 struct accept_queue lqueue; 1181 bool listening; 1182 int error = 0; 1183 1184 KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter")); 1185 1186 CURVNET_SET(so->so_vnet); 1187 funsetown(&so->so_sigio); 1188 if (so->so_state & SS_ISCONNECTED) { 1189 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 1190 error = sodisconnect(so); 1191 if (error) { 1192 if (error == ENOTCONN) 1193 error = 0; 1194 goto drop; 1195 } 1196 } 1197 if (so->so_options & SO_LINGER) { 1198 if ((so->so_state & SS_ISDISCONNECTING) && 1199 (so->so_state & SS_NBIO)) 1200 goto drop; 1201 while (so->so_state & SS_ISCONNECTED) { 1202 error = tsleep(&so->so_timeo, 1203 PSOCK | PCATCH, "soclos", 1204 so->so_linger * hz); 1205 if (error) 1206 break; 1207 } 1208 } 1209 } 1210 1211 drop: 1212 if (so->so_proto->pr_usrreqs->pru_close != NULL) 1213 (*so->so_proto->pr_usrreqs->pru_close)(so); 1214 1215 SOCK_LOCK(so); 1216 if ((listening = (so->so_options & SO_ACCEPTCONN))) { 1217 struct socket *sp; 1218 1219 TAILQ_INIT(&lqueue); 1220 TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list); 1221 TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list); 1222 1223 so->sol_qlen = so->sol_incqlen = 0; 1224 1225 TAILQ_FOREACH(sp, &lqueue, so_list) { 1226 SOCK_LOCK(sp); 1227 sp->so_qstate = SQ_NONE; 1228 sp->so_listen = NULL; 1229 SOCK_UNLOCK(sp); 1230 /* Guaranteed not to be the last. */ 1231 refcount_release(&so->so_count); 1232 } 1233 } 1234 KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF")); 1235 so->so_state |= SS_NOFDREF; 1236 sorele(so); 1237 if (listening) { 1238 struct socket *sp, *tsp; 1239 1240 TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp) { 1241 SOCK_LOCK(sp); 1242 if (sp->so_count == 0) { 1243 SOCK_UNLOCK(sp); 1244 soabort(sp); 1245 } else 1246 /* sp is now in sofree() */ 1247 SOCK_UNLOCK(sp); 1248 } 1249 } 1250 CURVNET_RESTORE(); 1251 return (error); 1252 } 1253 1254 /* 1255 * soabort() is used to abruptly tear down a connection, such as when a 1256 * resource limit is reached (listen queue depth exceeded), or if a listen 1257 * socket is closed while there are sockets waiting to be accepted. 1258 * 1259 * This interface is tricky, because it is called on an unreferenced socket, 1260 * and must be called only by a thread that has actually removed the socket 1261 * from the listen queue it was on, or races with other threads are risked. 1262 * 1263 * This interface will call into the protocol code, so must not be called 1264 * with any socket locks held. Protocols do call it while holding their own 1265 * recursible protocol mutexes, but this is something that should be subject 1266 * to review in the future. 1267 */ 1268 void 1269 soabort(struct socket *so) 1270 { 1271 1272 /* 1273 * In as much as is possible, assert that no references to this 1274 * socket are held. This is not quite the same as asserting that the 1275 * current thread is responsible for arranging for no references, but 1276 * is as close as we can get for now. 1277 */ 1278 KASSERT(so->so_count == 0, ("soabort: so_count")); 1279 KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF")); 1280 KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF")); 1281 VNET_SO_ASSERT(so); 1282 1283 if (so->so_proto->pr_usrreqs->pru_abort != NULL) 1284 (*so->so_proto->pr_usrreqs->pru_abort)(so); 1285 SOCK_LOCK(so); 1286 sofree(so); 1287 } 1288 1289 int 1290 soaccept(struct socket *so, struct sockaddr **nam) 1291 { 1292 int error; 1293 1294 SOCK_LOCK(so); 1295 KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF")); 1296 so->so_state &= ~SS_NOFDREF; 1297 SOCK_UNLOCK(so); 1298 1299 CURVNET_SET(so->so_vnet); 1300 error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam); 1301 CURVNET_RESTORE(); 1302 return (error); 1303 } 1304 1305 int 1306 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td) 1307 { 1308 1309 return (soconnectat(AT_FDCWD, so, nam, td)); 1310 } 1311 1312 int 1313 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 1314 { 1315 int error; 1316 1317 if (so->so_options & SO_ACCEPTCONN) 1318 return (EOPNOTSUPP); 1319 1320 CURVNET_SET(so->so_vnet); 1321 /* 1322 * If protocol is connection-based, can only connect once. 1323 * Otherwise, if connected, try to disconnect first. This allows 1324 * user to disconnect by connecting to, e.g., a null address. 1325 */ 1326 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 1327 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 1328 (error = sodisconnect(so)))) { 1329 error = EISCONN; 1330 } else { 1331 /* 1332 * Prevent accumulated error from previous connection from 1333 * biting us. 1334 */ 1335 so->so_error = 0; 1336 if (fd == AT_FDCWD) { 1337 error = (*so->so_proto->pr_usrreqs->pru_connect)(so, 1338 nam, td); 1339 } else { 1340 error = (*so->so_proto->pr_usrreqs->pru_connectat)(fd, 1341 so, nam, td); 1342 } 1343 } 1344 CURVNET_RESTORE(); 1345 1346 return (error); 1347 } 1348 1349 int 1350 soconnect2(struct socket *so1, struct socket *so2) 1351 { 1352 int error; 1353 1354 CURVNET_SET(so1->so_vnet); 1355 error = (*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2); 1356 CURVNET_RESTORE(); 1357 return (error); 1358 } 1359 1360 int 1361 sodisconnect(struct socket *so) 1362 { 1363 int error; 1364 1365 if ((so->so_state & SS_ISCONNECTED) == 0) 1366 return (ENOTCONN); 1367 if (so->so_state & SS_ISDISCONNECTING) 1368 return (EALREADY); 1369 VNET_SO_ASSERT(so); 1370 error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so); 1371 return (error); 1372 } 1373 1374 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT) 1375 1376 int 1377 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, 1378 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1379 { 1380 long space; 1381 ssize_t resid; 1382 int clen = 0, error, dontroute; 1383 1384 KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM")); 1385 KASSERT(so->so_proto->pr_flags & PR_ATOMIC, 1386 ("sosend_dgram: !PR_ATOMIC")); 1387 1388 if (uio != NULL) 1389 resid = uio->uio_resid; 1390 else 1391 resid = top->m_pkthdr.len; 1392 /* 1393 * In theory resid should be unsigned. However, space must be 1394 * signed, as it might be less than 0 if we over-committed, and we 1395 * must use a signed comparison of space and resid. On the other 1396 * hand, a negative resid causes us to loop sending 0-length 1397 * segments to the protocol. 1398 */ 1399 if (resid < 0) { 1400 error = EINVAL; 1401 goto out; 1402 } 1403 1404 dontroute = 1405 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0; 1406 if (td != NULL) 1407 td->td_ru.ru_msgsnd++; 1408 if (control != NULL) 1409 clen = control->m_len; 1410 1411 SOCKBUF_LOCK(&so->so_snd); 1412 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1413 SOCKBUF_UNLOCK(&so->so_snd); 1414 error = EPIPE; 1415 goto out; 1416 } 1417 if (so->so_error) { 1418 error = so->so_error; 1419 so->so_error = 0; 1420 SOCKBUF_UNLOCK(&so->so_snd); 1421 goto out; 1422 } 1423 if ((so->so_state & SS_ISCONNECTED) == 0) { 1424 /* 1425 * `sendto' and `sendmsg' is allowed on a connection-based 1426 * socket if it supports implied connect. Return ENOTCONN if 1427 * not connected and no address is supplied. 1428 */ 1429 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1430 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1431 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1432 !(resid == 0 && clen != 0)) { 1433 SOCKBUF_UNLOCK(&so->so_snd); 1434 error = ENOTCONN; 1435 goto out; 1436 } 1437 } else if (addr == NULL) { 1438 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1439 error = ENOTCONN; 1440 else 1441 error = EDESTADDRREQ; 1442 SOCKBUF_UNLOCK(&so->so_snd); 1443 goto out; 1444 } 1445 } 1446 1447 /* 1448 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a 1449 * problem and need fixing. 1450 */ 1451 space = sbspace(&so->so_snd); 1452 if (flags & MSG_OOB) 1453 space += 1024; 1454 space -= clen; 1455 SOCKBUF_UNLOCK(&so->so_snd); 1456 if (resid > space) { 1457 error = EMSGSIZE; 1458 goto out; 1459 } 1460 if (uio == NULL) { 1461 resid = 0; 1462 if (flags & MSG_EOR) 1463 top->m_flags |= M_EOR; 1464 } else { 1465 /* 1466 * Copy the data from userland into a mbuf chain. 1467 * If no data is to be copied in, a single empty mbuf 1468 * is returned. 1469 */ 1470 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr, 1471 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0))); 1472 if (top == NULL) { 1473 error = EFAULT; /* only possible error */ 1474 goto out; 1475 } 1476 space -= resid - uio->uio_resid; 1477 resid = uio->uio_resid; 1478 } 1479 KASSERT(resid == 0, ("sosend_dgram: resid != 0")); 1480 /* 1481 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock 1482 * than with. 1483 */ 1484 if (dontroute) { 1485 SOCK_LOCK(so); 1486 so->so_options |= SO_DONTROUTE; 1487 SOCK_UNLOCK(so); 1488 } 1489 /* 1490 * XXX all the SBS_CANTSENDMORE checks previously done could be out 1491 * of date. We could have received a reset packet in an interrupt or 1492 * maybe we slept while doing page faults in uiomove() etc. We could 1493 * probably recheck again inside the locking protection here, but 1494 * there are probably other places that this also happens. We must 1495 * rethink this. 1496 */ 1497 VNET_SO_ASSERT(so); 1498 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1499 (flags & MSG_OOB) ? PRUS_OOB : 1500 /* 1501 * If the user set MSG_EOF, the protocol understands this flag and 1502 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND. 1503 */ 1504 ((flags & MSG_EOF) && 1505 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1506 (resid <= 0)) ? 1507 PRUS_EOF : 1508 /* If there is more to send set PRUS_MORETOCOME */ 1509 (flags & MSG_MORETOCOME) || 1510 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1511 top, addr, control, td); 1512 if (dontroute) { 1513 SOCK_LOCK(so); 1514 so->so_options &= ~SO_DONTROUTE; 1515 SOCK_UNLOCK(so); 1516 } 1517 clen = 0; 1518 control = NULL; 1519 top = NULL; 1520 out: 1521 if (top != NULL) 1522 m_freem(top); 1523 if (control != NULL) 1524 m_freem(control); 1525 return (error); 1526 } 1527 1528 /* 1529 * Send on a socket. If send must go all at once and message is larger than 1530 * send buffering, then hard error. Lock against other senders. If must go 1531 * all at once and not enough room now, then inform user that this would 1532 * block and do nothing. Otherwise, if nonblocking, send as much as 1533 * possible. The data to be sent is described by "uio" if nonzero, otherwise 1534 * by the mbuf chain "top" (which must be null if uio is not). Data provided 1535 * in mbuf chain must be small enough to send all at once. 1536 * 1537 * Returns nonzero on error, timeout or signal; callers must check for short 1538 * counts if EINTR/ERESTART are returned. Data and control buffers are freed 1539 * on return. 1540 */ 1541 int 1542 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio, 1543 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1544 { 1545 long space; 1546 ssize_t resid; 1547 int clen = 0, error, dontroute; 1548 int atomic = sosendallatonce(so) || top; 1549 int pru_flag; 1550 #ifdef KERN_TLS 1551 struct ktls_session *tls; 1552 int tls_enq_cnt, tls_pruflag; 1553 uint8_t tls_rtype; 1554 1555 tls = NULL; 1556 tls_rtype = TLS_RLTYPE_APP; 1557 #endif 1558 if (uio != NULL) 1559 resid = uio->uio_resid; 1560 else if ((top->m_flags & M_PKTHDR) != 0) 1561 resid = top->m_pkthdr.len; 1562 else 1563 resid = m_length(top, NULL); 1564 /* 1565 * In theory resid should be unsigned. However, space must be 1566 * signed, as it might be less than 0 if we over-committed, and we 1567 * must use a signed comparison of space and resid. On the other 1568 * hand, a negative resid causes us to loop sending 0-length 1569 * segments to the protocol. 1570 * 1571 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 1572 * type sockets since that's an error. 1573 */ 1574 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 1575 error = EINVAL; 1576 goto out; 1577 } 1578 1579 dontroute = 1580 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 1581 (so->so_proto->pr_flags & PR_ATOMIC); 1582 if (td != NULL) 1583 td->td_ru.ru_msgsnd++; 1584 if (control != NULL) 1585 clen = control->m_len; 1586 1587 error = sblock(&so->so_snd, SBLOCKWAIT(flags)); 1588 if (error) 1589 goto out; 1590 1591 #ifdef KERN_TLS 1592 tls_pruflag = 0; 1593 tls = ktls_hold(so->so_snd.sb_tls_info); 1594 if (tls != NULL) { 1595 if (tls->mode == TCP_TLS_MODE_SW) 1596 tls_pruflag = PRUS_NOTREADY; 1597 1598 if (control != NULL) { 1599 struct cmsghdr *cm = mtod(control, struct cmsghdr *); 1600 1601 if (clen >= sizeof(*cm) && 1602 cm->cmsg_type == TLS_SET_RECORD_TYPE) { 1603 tls_rtype = *((uint8_t *)CMSG_DATA(cm)); 1604 clen = 0; 1605 m_freem(control); 1606 control = NULL; 1607 atomic = 1; 1608 } 1609 } 1610 } 1611 #endif 1612 1613 restart: 1614 do { 1615 SOCKBUF_LOCK(&so->so_snd); 1616 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1617 SOCKBUF_UNLOCK(&so->so_snd); 1618 error = EPIPE; 1619 goto release; 1620 } 1621 if (so->so_error) { 1622 error = so->so_error; 1623 so->so_error = 0; 1624 SOCKBUF_UNLOCK(&so->so_snd); 1625 goto release; 1626 } 1627 if ((so->so_state & SS_ISCONNECTED) == 0) { 1628 /* 1629 * `sendto' and `sendmsg' is allowed on a connection- 1630 * based socket if it supports implied connect. 1631 * Return ENOTCONN if not connected and no address is 1632 * supplied. 1633 */ 1634 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1635 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1636 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1637 !(resid == 0 && clen != 0)) { 1638 SOCKBUF_UNLOCK(&so->so_snd); 1639 error = ENOTCONN; 1640 goto release; 1641 } 1642 } else if (addr == NULL) { 1643 SOCKBUF_UNLOCK(&so->so_snd); 1644 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1645 error = ENOTCONN; 1646 else 1647 error = EDESTADDRREQ; 1648 goto release; 1649 } 1650 } 1651 space = sbspace(&so->so_snd); 1652 if (flags & MSG_OOB) 1653 space += 1024; 1654 if ((atomic && resid > so->so_snd.sb_hiwat) || 1655 clen > so->so_snd.sb_hiwat) { 1656 SOCKBUF_UNLOCK(&so->so_snd); 1657 error = EMSGSIZE; 1658 goto release; 1659 } 1660 if (space < resid + clen && 1661 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 1662 if ((so->so_state & SS_NBIO) || 1663 (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) { 1664 SOCKBUF_UNLOCK(&so->so_snd); 1665 error = EWOULDBLOCK; 1666 goto release; 1667 } 1668 error = sbwait(&so->so_snd); 1669 SOCKBUF_UNLOCK(&so->so_snd); 1670 if (error) 1671 goto release; 1672 goto restart; 1673 } 1674 SOCKBUF_UNLOCK(&so->so_snd); 1675 space -= clen; 1676 do { 1677 if (uio == NULL) { 1678 resid = 0; 1679 if (flags & MSG_EOR) 1680 top->m_flags |= M_EOR; 1681 } else { 1682 /* 1683 * Copy the data from userland into a mbuf 1684 * chain. If resid is 0, which can happen 1685 * only if we have control to send, then 1686 * a single empty mbuf is returned. This 1687 * is a workaround to prevent protocol send 1688 * methods to panic. 1689 */ 1690 #ifdef KERN_TLS 1691 if (tls != NULL) { 1692 top = m_uiotombuf(uio, M_WAITOK, space, 1693 tls->params.max_frame_len, 1694 M_NOMAP | 1695 ((flags & MSG_EOR) ? M_EOR : 0)); 1696 if (top != NULL) { 1697 ktls_frame(top, tls, 1698 &tls_enq_cnt, tls_rtype); 1699 } 1700 tls_rtype = TLS_RLTYPE_APP; 1701 } else 1702 #endif 1703 top = m_uiotombuf(uio, M_WAITOK, space, 1704 (atomic ? max_hdr : 0), 1705 (atomic ? M_PKTHDR : 0) | 1706 ((flags & MSG_EOR) ? M_EOR : 0)); 1707 if (top == NULL) { 1708 error = EFAULT; /* only possible error */ 1709 goto release; 1710 } 1711 space -= resid - uio->uio_resid; 1712 resid = uio->uio_resid; 1713 } 1714 if (dontroute) { 1715 SOCK_LOCK(so); 1716 so->so_options |= SO_DONTROUTE; 1717 SOCK_UNLOCK(so); 1718 } 1719 /* 1720 * XXX all the SBS_CANTSENDMORE checks previously 1721 * done could be out of date. We could have received 1722 * a reset packet in an interrupt or maybe we slept 1723 * while doing page faults in uiomove() etc. We 1724 * could probably recheck again inside the locking 1725 * protection here, but there are probably other 1726 * places that this also happens. We must rethink 1727 * this. 1728 */ 1729 VNET_SO_ASSERT(so); 1730 1731 pru_flag = (flags & MSG_OOB) ? PRUS_OOB : 1732 /* 1733 * If the user set MSG_EOF, the protocol understands 1734 * this flag and nothing left to send then use 1735 * PRU_SEND_EOF instead of PRU_SEND. 1736 */ 1737 ((flags & MSG_EOF) && 1738 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1739 (resid <= 0)) ? 1740 PRUS_EOF : 1741 /* If there is more to send set PRUS_MORETOCOME. */ 1742 (flags & MSG_MORETOCOME) || 1743 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0; 1744 1745 #ifdef KERN_TLS 1746 pru_flag |= tls_pruflag; 1747 #endif 1748 1749 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1750 pru_flag, top, addr, control, td); 1751 1752 if (dontroute) { 1753 SOCK_LOCK(so); 1754 so->so_options &= ~SO_DONTROUTE; 1755 SOCK_UNLOCK(so); 1756 } 1757 1758 #ifdef KERN_TLS 1759 if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) { 1760 /* 1761 * Note that error is intentionally 1762 * ignored. 1763 * 1764 * Like sendfile(), we rely on the 1765 * completion routine (pru_ready()) 1766 * to free the mbufs in the event that 1767 * pru_send() encountered an error and 1768 * did not append them to the sockbuf. 1769 */ 1770 soref(so); 1771 ktls_enqueue(top, so, tls_enq_cnt); 1772 } 1773 #endif 1774 clen = 0; 1775 control = NULL; 1776 top = NULL; 1777 if (error) 1778 goto release; 1779 } while (resid && space > 0); 1780 } while (resid); 1781 1782 release: 1783 sbunlock(&so->so_snd); 1784 out: 1785 #ifdef KERN_TLS 1786 if (tls != NULL) 1787 ktls_free(tls); 1788 #endif 1789 if (top != NULL) 1790 m_freem(top); 1791 if (control != NULL) 1792 m_freem(control); 1793 return (error); 1794 } 1795 1796 int 1797 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, 1798 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1799 { 1800 int error; 1801 1802 CURVNET_SET(so->so_vnet); 1803 if (!SOLISTENING(so)) 1804 error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, 1805 top, control, flags, td); 1806 else { 1807 m_freem(top); 1808 m_freem(control); 1809 error = ENOTCONN; 1810 } 1811 CURVNET_RESTORE(); 1812 return (error); 1813 } 1814 1815 /* 1816 * The part of soreceive() that implements reading non-inline out-of-band 1817 * data from a socket. For more complete comments, see soreceive(), from 1818 * which this code originated. 1819 * 1820 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is 1821 * unable to return an mbuf chain to the caller. 1822 */ 1823 static int 1824 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags) 1825 { 1826 struct protosw *pr = so->so_proto; 1827 struct mbuf *m; 1828 int error; 1829 1830 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); 1831 VNET_SO_ASSERT(so); 1832 1833 m = m_get(M_WAITOK, MT_DATA); 1834 error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK); 1835 if (error) 1836 goto bad; 1837 do { 1838 error = uiomove(mtod(m, void *), 1839 (int) min(uio->uio_resid, m->m_len), uio); 1840 m = m_free(m); 1841 } while (uio->uio_resid && error == 0 && m); 1842 bad: 1843 if (m != NULL) 1844 m_freem(m); 1845 return (error); 1846 } 1847 1848 /* 1849 * Following replacement or removal of the first mbuf on the first mbuf chain 1850 * of a socket buffer, push necessary state changes back into the socket 1851 * buffer so that other consumers see the values consistently. 'nextrecord' 1852 * is the callers locally stored value of the original value of 1853 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. 1854 * NOTE: 'nextrecord' may be NULL. 1855 */ 1856 static __inline void 1857 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) 1858 { 1859 1860 SOCKBUF_LOCK_ASSERT(sb); 1861 /* 1862 * First, update for the new value of nextrecord. If necessary, make 1863 * it the first record. 1864 */ 1865 if (sb->sb_mb != NULL) 1866 sb->sb_mb->m_nextpkt = nextrecord; 1867 else 1868 sb->sb_mb = nextrecord; 1869 1870 /* 1871 * Now update any dependent socket buffer fields to reflect the new 1872 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the 1873 * addition of a second clause that takes care of the case where 1874 * sb_mb has been updated, but remains the last record. 1875 */ 1876 if (sb->sb_mb == NULL) { 1877 sb->sb_mbtail = NULL; 1878 sb->sb_lastrecord = NULL; 1879 } else if (sb->sb_mb->m_nextpkt == NULL) 1880 sb->sb_lastrecord = sb->sb_mb; 1881 } 1882 1883 /* 1884 * Implement receive operations on a socket. We depend on the way that 1885 * records are added to the sockbuf by sbappend. In particular, each record 1886 * (mbufs linked through m_next) must begin with an address if the protocol 1887 * so specifies, followed by an optional mbuf or mbufs containing ancillary 1888 * data, and then zero or more mbufs of data. In order to allow parallelism 1889 * between network receive and copying to user space, as well as avoid 1890 * sleeping with a mutex held, we release the socket buffer mutex during the 1891 * user space copy. Although the sockbuf is locked, new data may still be 1892 * appended, and thus we must maintain consistency of the sockbuf during that 1893 * time. 1894 * 1895 * The caller may receive the data as a single mbuf chain by supplying an 1896 * mbuf **mp0 for use in returning the chain. The uio is then used only for 1897 * the count in uio_resid. 1898 */ 1899 int 1900 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio, 1901 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1902 { 1903 struct mbuf *m, **mp; 1904 int flags, error, offset; 1905 ssize_t len; 1906 struct protosw *pr = so->so_proto; 1907 struct mbuf *nextrecord; 1908 int moff, type = 0; 1909 ssize_t orig_resid = uio->uio_resid; 1910 1911 mp = mp0; 1912 if (psa != NULL) 1913 *psa = NULL; 1914 if (controlp != NULL) 1915 *controlp = NULL; 1916 if (flagsp != NULL) 1917 flags = *flagsp &~ MSG_EOR; 1918 else 1919 flags = 0; 1920 if (flags & MSG_OOB) 1921 return (soreceive_rcvoob(so, uio, flags)); 1922 if (mp != NULL) 1923 *mp = NULL; 1924 if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING) 1925 && uio->uio_resid) { 1926 VNET_SO_ASSERT(so); 1927 (*pr->pr_usrreqs->pru_rcvd)(so, 0); 1928 } 1929 1930 error = sblock(&so->so_rcv, SBLOCKWAIT(flags)); 1931 if (error) 1932 return (error); 1933 1934 restart: 1935 SOCKBUF_LOCK(&so->so_rcv); 1936 m = so->so_rcv.sb_mb; 1937 /* 1938 * If we have less data than requested, block awaiting more (subject 1939 * to any timeout) if: 1940 * 1. the current count is less than the low water mark, or 1941 * 2. MSG_DONTWAIT is not set 1942 */ 1943 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 1944 sbavail(&so->so_rcv) < uio->uio_resid) && 1945 sbavail(&so->so_rcv) < so->so_rcv.sb_lowat && 1946 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 1947 KASSERT(m != NULL || !sbavail(&so->so_rcv), 1948 ("receive: m == %p sbavail == %u", 1949 m, sbavail(&so->so_rcv))); 1950 if (so->so_error) { 1951 if (m != NULL) 1952 goto dontblock; 1953 error = so->so_error; 1954 if ((flags & MSG_PEEK) == 0) 1955 so->so_error = 0; 1956 SOCKBUF_UNLOCK(&so->so_rcv); 1957 goto release; 1958 } 1959 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1960 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 1961 if (m == NULL) { 1962 SOCKBUF_UNLOCK(&so->so_rcv); 1963 goto release; 1964 } else 1965 goto dontblock; 1966 } 1967 for (; m != NULL; m = m->m_next) 1968 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 1969 m = so->so_rcv.sb_mb; 1970 goto dontblock; 1971 } 1972 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 1973 (so->so_proto->pr_flags & PR_CONNREQUIRED)) { 1974 SOCKBUF_UNLOCK(&so->so_rcv); 1975 error = ENOTCONN; 1976 goto release; 1977 } 1978 if (uio->uio_resid == 0) { 1979 SOCKBUF_UNLOCK(&so->so_rcv); 1980 goto release; 1981 } 1982 if ((so->so_state & SS_NBIO) || 1983 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 1984 SOCKBUF_UNLOCK(&so->so_rcv); 1985 error = EWOULDBLOCK; 1986 goto release; 1987 } 1988 SBLASTRECORDCHK(&so->so_rcv); 1989 SBLASTMBUFCHK(&so->so_rcv); 1990 error = sbwait(&so->so_rcv); 1991 SOCKBUF_UNLOCK(&so->so_rcv); 1992 if (error) 1993 goto release; 1994 goto restart; 1995 } 1996 dontblock: 1997 /* 1998 * From this point onward, we maintain 'nextrecord' as a cache of the 1999 * pointer to the next record in the socket buffer. We must keep the 2000 * various socket buffer pointers and local stack versions of the 2001 * pointers in sync, pushing out modifications before dropping the 2002 * socket buffer mutex, and re-reading them when picking it up. 2003 * 2004 * Otherwise, we will race with the network stack appending new data 2005 * or records onto the socket buffer by using inconsistent/stale 2006 * versions of the field, possibly resulting in socket buffer 2007 * corruption. 2008 * 2009 * By holding the high-level sblock(), we prevent simultaneous 2010 * readers from pulling off the front of the socket buffer. 2011 */ 2012 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2013 if (uio->uio_td) 2014 uio->uio_td->td_ru.ru_msgrcv++; 2015 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); 2016 SBLASTRECORDCHK(&so->so_rcv); 2017 SBLASTMBUFCHK(&so->so_rcv); 2018 nextrecord = m->m_nextpkt; 2019 if (pr->pr_flags & PR_ADDR) { 2020 KASSERT(m->m_type == MT_SONAME, 2021 ("m->m_type == %d", m->m_type)); 2022 orig_resid = 0; 2023 if (psa != NULL) 2024 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2025 M_NOWAIT); 2026 if (flags & MSG_PEEK) { 2027 m = m->m_next; 2028 } else { 2029 sbfree(&so->so_rcv, m); 2030 so->so_rcv.sb_mb = m_free(m); 2031 m = so->so_rcv.sb_mb; 2032 sockbuf_pushsync(&so->so_rcv, nextrecord); 2033 } 2034 } 2035 2036 /* 2037 * Process one or more MT_CONTROL mbufs present before any data mbufs 2038 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 2039 * just copy the data; if !MSG_PEEK, we call into the protocol to 2040 * perform externalization (or freeing if controlp == NULL). 2041 */ 2042 if (m != NULL && m->m_type == MT_CONTROL) { 2043 struct mbuf *cm = NULL, *cmn; 2044 struct mbuf **cme = &cm; 2045 2046 do { 2047 if (flags & MSG_PEEK) { 2048 if (controlp != NULL) { 2049 *controlp = m_copym(m, 0, m->m_len, 2050 M_NOWAIT); 2051 controlp = &(*controlp)->m_next; 2052 } 2053 m = m->m_next; 2054 } else { 2055 sbfree(&so->so_rcv, m); 2056 so->so_rcv.sb_mb = m->m_next; 2057 m->m_next = NULL; 2058 *cme = m; 2059 cme = &(*cme)->m_next; 2060 m = so->so_rcv.sb_mb; 2061 } 2062 } while (m != NULL && m->m_type == MT_CONTROL); 2063 if ((flags & MSG_PEEK) == 0) 2064 sockbuf_pushsync(&so->so_rcv, nextrecord); 2065 while (cm != NULL) { 2066 cmn = cm->m_next; 2067 cm->m_next = NULL; 2068 if (pr->pr_domain->dom_externalize != NULL) { 2069 SOCKBUF_UNLOCK(&so->so_rcv); 2070 VNET_SO_ASSERT(so); 2071 error = (*pr->pr_domain->dom_externalize) 2072 (cm, controlp, flags); 2073 SOCKBUF_LOCK(&so->so_rcv); 2074 } else if (controlp != NULL) 2075 *controlp = cm; 2076 else 2077 m_freem(cm); 2078 if (controlp != NULL) { 2079 orig_resid = 0; 2080 while (*controlp != NULL) 2081 controlp = &(*controlp)->m_next; 2082 } 2083 cm = cmn; 2084 } 2085 if (m != NULL) 2086 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 2087 else 2088 nextrecord = so->so_rcv.sb_mb; 2089 orig_resid = 0; 2090 } 2091 if (m != NULL) { 2092 if ((flags & MSG_PEEK) == 0) { 2093 KASSERT(m->m_nextpkt == nextrecord, 2094 ("soreceive: post-control, nextrecord !sync")); 2095 if (nextrecord == NULL) { 2096 KASSERT(so->so_rcv.sb_mb == m, 2097 ("soreceive: post-control, sb_mb!=m")); 2098 KASSERT(so->so_rcv.sb_lastrecord == m, 2099 ("soreceive: post-control, lastrecord!=m")); 2100 } 2101 } 2102 type = m->m_type; 2103 if (type == MT_OOBDATA) 2104 flags |= MSG_OOB; 2105 } else { 2106 if ((flags & MSG_PEEK) == 0) { 2107 KASSERT(so->so_rcv.sb_mb == nextrecord, 2108 ("soreceive: sb_mb != nextrecord")); 2109 if (so->so_rcv.sb_mb == NULL) { 2110 KASSERT(so->so_rcv.sb_lastrecord == NULL, 2111 ("soreceive: sb_lastercord != NULL")); 2112 } 2113 } 2114 } 2115 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2116 SBLASTRECORDCHK(&so->so_rcv); 2117 SBLASTMBUFCHK(&so->so_rcv); 2118 2119 /* 2120 * Now continue to read any data mbufs off of the head of the socket 2121 * buffer until the read request is satisfied. Note that 'type' is 2122 * used to store the type of any mbuf reads that have happened so far 2123 * such that soreceive() can stop reading if the type changes, which 2124 * causes soreceive() to return only one of regular data and inline 2125 * out-of-band data in a single socket receive operation. 2126 */ 2127 moff = 0; 2128 offset = 0; 2129 while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0 2130 && error == 0) { 2131 /* 2132 * If the type of mbuf has changed since the last mbuf 2133 * examined ('type'), end the receive operation. 2134 */ 2135 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2136 if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) { 2137 if (type != m->m_type) 2138 break; 2139 } else if (type == MT_OOBDATA) 2140 break; 2141 else 2142 KASSERT(m->m_type == MT_DATA, 2143 ("m->m_type == %d", m->m_type)); 2144 so->so_rcv.sb_state &= ~SBS_RCVATMARK; 2145 len = uio->uio_resid; 2146 if (so->so_oobmark && len > so->so_oobmark - offset) 2147 len = so->so_oobmark - offset; 2148 if (len > m->m_len - moff) 2149 len = m->m_len - moff; 2150 /* 2151 * If mp is set, just pass back the mbufs. Otherwise copy 2152 * them out via the uio, then free. Sockbuf must be 2153 * consistent here (points to current mbuf, it points to next 2154 * record) when we drop priority; we must note any additions 2155 * to the sockbuf when we block interrupts again. 2156 */ 2157 if (mp == NULL) { 2158 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2159 SBLASTRECORDCHK(&so->so_rcv); 2160 SBLASTMBUFCHK(&so->so_rcv); 2161 SOCKBUF_UNLOCK(&so->so_rcv); 2162 if ((m->m_flags & M_NOMAP) != 0) 2163 error = m_unmappedtouio(m, moff, uio, (int)len); 2164 else 2165 error = uiomove(mtod(m, char *) + moff, 2166 (int)len, uio); 2167 SOCKBUF_LOCK(&so->so_rcv); 2168 if (error) { 2169 /* 2170 * The MT_SONAME mbuf has already been removed 2171 * from the record, so it is necessary to 2172 * remove the data mbufs, if any, to preserve 2173 * the invariant in the case of PR_ADDR that 2174 * requires MT_SONAME mbufs at the head of 2175 * each record. 2176 */ 2177 if (pr->pr_flags & PR_ATOMIC && 2178 ((flags & MSG_PEEK) == 0)) 2179 (void)sbdroprecord_locked(&so->so_rcv); 2180 SOCKBUF_UNLOCK(&so->so_rcv); 2181 goto release; 2182 } 2183 } else 2184 uio->uio_resid -= len; 2185 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2186 if (len == m->m_len - moff) { 2187 if (m->m_flags & M_EOR) 2188 flags |= MSG_EOR; 2189 if (flags & MSG_PEEK) { 2190 m = m->m_next; 2191 moff = 0; 2192 } else { 2193 nextrecord = m->m_nextpkt; 2194 sbfree(&so->so_rcv, m); 2195 if (mp != NULL) { 2196 m->m_nextpkt = NULL; 2197 *mp = m; 2198 mp = &m->m_next; 2199 so->so_rcv.sb_mb = m = m->m_next; 2200 *mp = NULL; 2201 } else { 2202 so->so_rcv.sb_mb = m_free(m); 2203 m = so->so_rcv.sb_mb; 2204 } 2205 sockbuf_pushsync(&so->so_rcv, nextrecord); 2206 SBLASTRECORDCHK(&so->so_rcv); 2207 SBLASTMBUFCHK(&so->so_rcv); 2208 } 2209 } else { 2210 if (flags & MSG_PEEK) 2211 moff += len; 2212 else { 2213 if (mp != NULL) { 2214 if (flags & MSG_DONTWAIT) { 2215 *mp = m_copym(m, 0, len, 2216 M_NOWAIT); 2217 if (*mp == NULL) { 2218 /* 2219 * m_copym() couldn't 2220 * allocate an mbuf. 2221 * Adjust uio_resid back 2222 * (it was adjusted 2223 * down by len bytes, 2224 * which we didn't end 2225 * up "copying" over). 2226 */ 2227 uio->uio_resid += len; 2228 break; 2229 } 2230 } else { 2231 SOCKBUF_UNLOCK(&so->so_rcv); 2232 *mp = m_copym(m, 0, len, 2233 M_WAITOK); 2234 SOCKBUF_LOCK(&so->so_rcv); 2235 } 2236 } 2237 sbcut_locked(&so->so_rcv, len); 2238 } 2239 } 2240 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2241 if (so->so_oobmark) { 2242 if ((flags & MSG_PEEK) == 0) { 2243 so->so_oobmark -= len; 2244 if (so->so_oobmark == 0) { 2245 so->so_rcv.sb_state |= SBS_RCVATMARK; 2246 break; 2247 } 2248 } else { 2249 offset += len; 2250 if (offset == so->so_oobmark) 2251 break; 2252 } 2253 } 2254 if (flags & MSG_EOR) 2255 break; 2256 /* 2257 * If the MSG_WAITALL flag is set (for non-atomic socket), we 2258 * must not quit until "uio->uio_resid == 0" or an error 2259 * termination. If a signal/timeout occurs, return with a 2260 * short count but without error. Keep sockbuf locked 2261 * against other readers. 2262 */ 2263 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 2264 !sosendallatonce(so) && nextrecord == NULL) { 2265 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2266 if (so->so_error || 2267 so->so_rcv.sb_state & SBS_CANTRCVMORE) 2268 break; 2269 /* 2270 * Notify the protocol that some data has been 2271 * drained before blocking. 2272 */ 2273 if (pr->pr_flags & PR_WANTRCVD) { 2274 SOCKBUF_UNLOCK(&so->so_rcv); 2275 VNET_SO_ASSERT(so); 2276 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 2277 SOCKBUF_LOCK(&so->so_rcv); 2278 } 2279 SBLASTRECORDCHK(&so->so_rcv); 2280 SBLASTMBUFCHK(&so->so_rcv); 2281 /* 2282 * We could receive some data while was notifying 2283 * the protocol. Skip blocking in this case. 2284 */ 2285 if (so->so_rcv.sb_mb == NULL) { 2286 error = sbwait(&so->so_rcv); 2287 if (error) { 2288 SOCKBUF_UNLOCK(&so->so_rcv); 2289 goto release; 2290 } 2291 } 2292 m = so->so_rcv.sb_mb; 2293 if (m != NULL) 2294 nextrecord = m->m_nextpkt; 2295 } 2296 } 2297 2298 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2299 if (m != NULL && pr->pr_flags & PR_ATOMIC) { 2300 flags |= MSG_TRUNC; 2301 if ((flags & MSG_PEEK) == 0) 2302 (void) sbdroprecord_locked(&so->so_rcv); 2303 } 2304 if ((flags & MSG_PEEK) == 0) { 2305 if (m == NULL) { 2306 /* 2307 * First part is an inline SB_EMPTY_FIXUP(). Second 2308 * part makes sure sb_lastrecord is up-to-date if 2309 * there is still data in the socket buffer. 2310 */ 2311 so->so_rcv.sb_mb = nextrecord; 2312 if (so->so_rcv.sb_mb == NULL) { 2313 so->so_rcv.sb_mbtail = NULL; 2314 so->so_rcv.sb_lastrecord = NULL; 2315 } else if (nextrecord->m_nextpkt == NULL) 2316 so->so_rcv.sb_lastrecord = nextrecord; 2317 } 2318 SBLASTRECORDCHK(&so->so_rcv); 2319 SBLASTMBUFCHK(&so->so_rcv); 2320 /* 2321 * If soreceive() is being done from the socket callback, 2322 * then don't need to generate ACK to peer to update window, 2323 * since ACK will be generated on return to TCP. 2324 */ 2325 if (!(flags & MSG_SOCALLBCK) && 2326 (pr->pr_flags & PR_WANTRCVD)) { 2327 SOCKBUF_UNLOCK(&so->so_rcv); 2328 VNET_SO_ASSERT(so); 2329 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 2330 SOCKBUF_LOCK(&so->so_rcv); 2331 } 2332 } 2333 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2334 if (orig_resid == uio->uio_resid && orig_resid && 2335 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { 2336 SOCKBUF_UNLOCK(&so->so_rcv); 2337 goto restart; 2338 } 2339 SOCKBUF_UNLOCK(&so->so_rcv); 2340 2341 if (flagsp != NULL) 2342 *flagsp |= flags; 2343 release: 2344 sbunlock(&so->so_rcv); 2345 return (error); 2346 } 2347 2348 /* 2349 * Optimized version of soreceive() for stream (TCP) sockets. 2350 */ 2351 int 2352 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio, 2353 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2354 { 2355 int len = 0, error = 0, flags, oresid; 2356 struct sockbuf *sb; 2357 struct mbuf *m, *n = NULL; 2358 2359 /* We only do stream sockets. */ 2360 if (so->so_type != SOCK_STREAM) 2361 return (EINVAL); 2362 if (psa != NULL) 2363 *psa = NULL; 2364 if (flagsp != NULL) 2365 flags = *flagsp &~ MSG_EOR; 2366 else 2367 flags = 0; 2368 if (controlp != NULL) 2369 *controlp = NULL; 2370 if (flags & MSG_OOB) 2371 return (soreceive_rcvoob(so, uio, flags)); 2372 if (mp0 != NULL) 2373 *mp0 = NULL; 2374 2375 sb = &so->so_rcv; 2376 2377 #ifdef KERN_TLS 2378 /* 2379 * KTLS store TLS records as records with a control message to 2380 * describe the framing. 2381 * 2382 * We check once here before acquiring locks to optimize the 2383 * common case. 2384 */ 2385 if (sb->sb_tls_info != NULL) 2386 return (soreceive_generic(so, psa, uio, mp0, controlp, 2387 flagsp)); 2388 #endif 2389 2390 /* Prevent other readers from entering the socket. */ 2391 error = sblock(sb, SBLOCKWAIT(flags)); 2392 if (error) 2393 return (error); 2394 SOCKBUF_LOCK(sb); 2395 2396 #ifdef KERN_TLS 2397 if (sb->sb_tls_info != NULL) { 2398 SOCKBUF_UNLOCK(sb); 2399 sbunlock(sb); 2400 return (soreceive_generic(so, psa, uio, mp0, controlp, 2401 flagsp)); 2402 } 2403 #endif 2404 2405 /* Easy one, no space to copyout anything. */ 2406 if (uio->uio_resid == 0) { 2407 error = EINVAL; 2408 goto out; 2409 } 2410 oresid = uio->uio_resid; 2411 2412 /* We will never ever get anything unless we are or were connected. */ 2413 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 2414 error = ENOTCONN; 2415 goto out; 2416 } 2417 2418 restart: 2419 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2420 2421 /* Abort if socket has reported problems. */ 2422 if (so->so_error) { 2423 if (sbavail(sb) > 0) 2424 goto deliver; 2425 if (oresid > uio->uio_resid) 2426 goto out; 2427 error = so->so_error; 2428 if (!(flags & MSG_PEEK)) 2429 so->so_error = 0; 2430 goto out; 2431 } 2432 2433 /* Door is closed. Deliver what is left, if any. */ 2434 if (sb->sb_state & SBS_CANTRCVMORE) { 2435 if (sbavail(sb) > 0) 2436 goto deliver; 2437 else 2438 goto out; 2439 } 2440 2441 /* Socket buffer is empty and we shall not block. */ 2442 if (sbavail(sb) == 0 && 2443 ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) { 2444 error = EAGAIN; 2445 goto out; 2446 } 2447 2448 /* Socket buffer got some data that we shall deliver now. */ 2449 if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) && 2450 ((so->so_state & SS_NBIO) || 2451 (flags & (MSG_DONTWAIT|MSG_NBIO)) || 2452 sbavail(sb) >= sb->sb_lowat || 2453 sbavail(sb) >= uio->uio_resid || 2454 sbavail(sb) >= sb->sb_hiwat) ) { 2455 goto deliver; 2456 } 2457 2458 /* On MSG_WAITALL we must wait until all data or error arrives. */ 2459 if ((flags & MSG_WAITALL) && 2460 (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat)) 2461 goto deliver; 2462 2463 /* 2464 * Wait and block until (more) data comes in. 2465 * NB: Drops the sockbuf lock during wait. 2466 */ 2467 error = sbwait(sb); 2468 if (error) 2469 goto out; 2470 goto restart; 2471 2472 deliver: 2473 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2474 KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__)); 2475 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__)); 2476 2477 /* Statistics. */ 2478 if (uio->uio_td) 2479 uio->uio_td->td_ru.ru_msgrcv++; 2480 2481 /* Fill uio until full or current end of socket buffer is reached. */ 2482 len = min(uio->uio_resid, sbavail(sb)); 2483 if (mp0 != NULL) { 2484 /* Dequeue as many mbufs as possible. */ 2485 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) { 2486 if (*mp0 == NULL) 2487 *mp0 = sb->sb_mb; 2488 else 2489 m_cat(*mp0, sb->sb_mb); 2490 for (m = sb->sb_mb; 2491 m != NULL && m->m_len <= len; 2492 m = m->m_next) { 2493 KASSERT(!(m->m_flags & M_NOTAVAIL), 2494 ("%s: m %p not available", __func__, m)); 2495 len -= m->m_len; 2496 uio->uio_resid -= m->m_len; 2497 sbfree(sb, m); 2498 n = m; 2499 } 2500 n->m_next = NULL; 2501 sb->sb_mb = m; 2502 sb->sb_lastrecord = sb->sb_mb; 2503 if (sb->sb_mb == NULL) 2504 SB_EMPTY_FIXUP(sb); 2505 } 2506 /* Copy the remainder. */ 2507 if (len > 0) { 2508 KASSERT(sb->sb_mb != NULL, 2509 ("%s: len > 0 && sb->sb_mb empty", __func__)); 2510 2511 m = m_copym(sb->sb_mb, 0, len, M_NOWAIT); 2512 if (m == NULL) 2513 len = 0; /* Don't flush data from sockbuf. */ 2514 else 2515 uio->uio_resid -= len; 2516 if (*mp0 != NULL) 2517 m_cat(*mp0, m); 2518 else 2519 *mp0 = m; 2520 if (*mp0 == NULL) { 2521 error = ENOBUFS; 2522 goto out; 2523 } 2524 } 2525 } else { 2526 /* NB: Must unlock socket buffer as uiomove may sleep. */ 2527 SOCKBUF_UNLOCK(sb); 2528 error = m_mbuftouio(uio, sb->sb_mb, len); 2529 SOCKBUF_LOCK(sb); 2530 if (error) 2531 goto out; 2532 } 2533 SBLASTRECORDCHK(sb); 2534 SBLASTMBUFCHK(sb); 2535 2536 /* 2537 * Remove the delivered data from the socket buffer unless we 2538 * were only peeking. 2539 */ 2540 if (!(flags & MSG_PEEK)) { 2541 if (len > 0) 2542 sbdrop_locked(sb, len); 2543 2544 /* Notify protocol that we drained some data. */ 2545 if ((so->so_proto->pr_flags & PR_WANTRCVD) && 2546 (((flags & MSG_WAITALL) && uio->uio_resid > 0) || 2547 !(flags & MSG_SOCALLBCK))) { 2548 SOCKBUF_UNLOCK(sb); 2549 VNET_SO_ASSERT(so); 2550 (*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags); 2551 SOCKBUF_LOCK(sb); 2552 } 2553 } 2554 2555 /* 2556 * For MSG_WAITALL we may have to loop again and wait for 2557 * more data to come in. 2558 */ 2559 if ((flags & MSG_WAITALL) && uio->uio_resid > 0) 2560 goto restart; 2561 out: 2562 SOCKBUF_LOCK_ASSERT(sb); 2563 SBLASTRECORDCHK(sb); 2564 SBLASTMBUFCHK(sb); 2565 SOCKBUF_UNLOCK(sb); 2566 sbunlock(sb); 2567 return (error); 2568 } 2569 2570 /* 2571 * Optimized version of soreceive() for simple datagram cases from userspace. 2572 * Unlike in the stream case, we're able to drop a datagram if copyout() 2573 * fails, and because we handle datagrams atomically, we don't need to use a 2574 * sleep lock to prevent I/O interlacing. 2575 */ 2576 int 2577 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio, 2578 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2579 { 2580 struct mbuf *m, *m2; 2581 int flags, error; 2582 ssize_t len; 2583 struct protosw *pr = so->so_proto; 2584 struct mbuf *nextrecord; 2585 2586 if (psa != NULL) 2587 *psa = NULL; 2588 if (controlp != NULL) 2589 *controlp = NULL; 2590 if (flagsp != NULL) 2591 flags = *flagsp &~ MSG_EOR; 2592 else 2593 flags = 0; 2594 2595 /* 2596 * For any complicated cases, fall back to the full 2597 * soreceive_generic(). 2598 */ 2599 if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB)) 2600 return (soreceive_generic(so, psa, uio, mp0, controlp, 2601 flagsp)); 2602 2603 /* 2604 * Enforce restrictions on use. 2605 */ 2606 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0, 2607 ("soreceive_dgram: wantrcvd")); 2608 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic")); 2609 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0, 2610 ("soreceive_dgram: SBS_RCVATMARK")); 2611 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0, 2612 ("soreceive_dgram: P_CONNREQUIRED")); 2613 2614 /* 2615 * Loop blocking while waiting for a datagram. 2616 */ 2617 SOCKBUF_LOCK(&so->so_rcv); 2618 while ((m = so->so_rcv.sb_mb) == NULL) { 2619 KASSERT(sbavail(&so->so_rcv) == 0, 2620 ("soreceive_dgram: sb_mb NULL but sbavail %u", 2621 sbavail(&so->so_rcv))); 2622 if (so->so_error) { 2623 error = so->so_error; 2624 so->so_error = 0; 2625 SOCKBUF_UNLOCK(&so->so_rcv); 2626 return (error); 2627 } 2628 if (so->so_rcv.sb_state & SBS_CANTRCVMORE || 2629 uio->uio_resid == 0) { 2630 SOCKBUF_UNLOCK(&so->so_rcv); 2631 return (0); 2632 } 2633 if ((so->so_state & SS_NBIO) || 2634 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2635 SOCKBUF_UNLOCK(&so->so_rcv); 2636 return (EWOULDBLOCK); 2637 } 2638 SBLASTRECORDCHK(&so->so_rcv); 2639 SBLASTMBUFCHK(&so->so_rcv); 2640 error = sbwait(&so->so_rcv); 2641 if (error) { 2642 SOCKBUF_UNLOCK(&so->so_rcv); 2643 return (error); 2644 } 2645 } 2646 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2647 2648 if (uio->uio_td) 2649 uio->uio_td->td_ru.ru_msgrcv++; 2650 SBLASTRECORDCHK(&so->so_rcv); 2651 SBLASTMBUFCHK(&so->so_rcv); 2652 nextrecord = m->m_nextpkt; 2653 if (nextrecord == NULL) { 2654 KASSERT(so->so_rcv.sb_lastrecord == m, 2655 ("soreceive_dgram: lastrecord != m")); 2656 } 2657 2658 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord, 2659 ("soreceive_dgram: m_nextpkt != nextrecord")); 2660 2661 /* 2662 * Pull 'm' and its chain off the front of the packet queue. 2663 */ 2664 so->so_rcv.sb_mb = NULL; 2665 sockbuf_pushsync(&so->so_rcv, nextrecord); 2666 2667 /* 2668 * Walk 'm's chain and free that many bytes from the socket buffer. 2669 */ 2670 for (m2 = m; m2 != NULL; m2 = m2->m_next) 2671 sbfree(&so->so_rcv, m2); 2672 2673 /* 2674 * Do a few last checks before we let go of the lock. 2675 */ 2676 SBLASTRECORDCHK(&so->so_rcv); 2677 SBLASTMBUFCHK(&so->so_rcv); 2678 SOCKBUF_UNLOCK(&so->so_rcv); 2679 2680 if (pr->pr_flags & PR_ADDR) { 2681 KASSERT(m->m_type == MT_SONAME, 2682 ("m->m_type == %d", m->m_type)); 2683 if (psa != NULL) 2684 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2685 M_NOWAIT); 2686 m = m_free(m); 2687 } 2688 if (m == NULL) { 2689 /* XXXRW: Can this happen? */ 2690 return (0); 2691 } 2692 2693 /* 2694 * Packet to copyout() is now in 'm' and it is disconnected from the 2695 * queue. 2696 * 2697 * Process one or more MT_CONTROL mbufs present before any data mbufs 2698 * in the first mbuf chain on the socket buffer. We call into the 2699 * protocol to perform externalization (or freeing if controlp == 2700 * NULL). In some cases there can be only MT_CONTROL mbufs without 2701 * MT_DATA mbufs. 2702 */ 2703 if (m->m_type == MT_CONTROL) { 2704 struct mbuf *cm = NULL, *cmn; 2705 struct mbuf **cme = &cm; 2706 2707 do { 2708 m2 = m->m_next; 2709 m->m_next = NULL; 2710 *cme = m; 2711 cme = &(*cme)->m_next; 2712 m = m2; 2713 } while (m != NULL && m->m_type == MT_CONTROL); 2714 while (cm != NULL) { 2715 cmn = cm->m_next; 2716 cm->m_next = NULL; 2717 if (pr->pr_domain->dom_externalize != NULL) { 2718 error = (*pr->pr_domain->dom_externalize) 2719 (cm, controlp, flags); 2720 } else if (controlp != NULL) 2721 *controlp = cm; 2722 else 2723 m_freem(cm); 2724 if (controlp != NULL) { 2725 while (*controlp != NULL) 2726 controlp = &(*controlp)->m_next; 2727 } 2728 cm = cmn; 2729 } 2730 } 2731 KASSERT(m == NULL || m->m_type == MT_DATA, 2732 ("soreceive_dgram: !data")); 2733 while (m != NULL && uio->uio_resid > 0) { 2734 len = uio->uio_resid; 2735 if (len > m->m_len) 2736 len = m->m_len; 2737 error = uiomove(mtod(m, char *), (int)len, uio); 2738 if (error) { 2739 m_freem(m); 2740 return (error); 2741 } 2742 if (len == m->m_len) 2743 m = m_free(m); 2744 else { 2745 m->m_data += len; 2746 m->m_len -= len; 2747 } 2748 } 2749 if (m != NULL) { 2750 flags |= MSG_TRUNC; 2751 m_freem(m); 2752 } 2753 if (flagsp != NULL) 2754 *flagsp |= flags; 2755 return (0); 2756 } 2757 2758 int 2759 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, 2760 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2761 { 2762 int error; 2763 2764 CURVNET_SET(so->so_vnet); 2765 if (!SOLISTENING(so)) 2766 error = (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, 2767 mp0, controlp, flagsp)); 2768 else 2769 error = ENOTCONN; 2770 CURVNET_RESTORE(); 2771 return (error); 2772 } 2773 2774 int 2775 soshutdown(struct socket *so, int how) 2776 { 2777 struct protosw *pr = so->so_proto; 2778 int error, soerror_enotconn; 2779 2780 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 2781 return (EINVAL); 2782 2783 soerror_enotconn = 0; 2784 if ((so->so_state & 2785 (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) { 2786 /* 2787 * POSIX mandates us to return ENOTCONN when shutdown(2) is 2788 * invoked on a datagram sockets, however historically we would 2789 * actually tear socket down. This is known to be leveraged by 2790 * some applications to unblock process waiting in recvXXX(2) 2791 * by other process that it shares that socket with. Try to meet 2792 * both backward-compatibility and POSIX requirements by forcing 2793 * ENOTCONN but still asking protocol to perform pru_shutdown(). 2794 */ 2795 if (so->so_type != SOCK_DGRAM && !SOLISTENING(so)) 2796 return (ENOTCONN); 2797 soerror_enotconn = 1; 2798 } 2799 2800 if (SOLISTENING(so)) { 2801 if (how != SHUT_WR) { 2802 SOLISTEN_LOCK(so); 2803 so->so_error = ECONNABORTED; 2804 solisten_wakeup(so); /* unlocks so */ 2805 } 2806 goto done; 2807 } 2808 2809 CURVNET_SET(so->so_vnet); 2810 if (pr->pr_usrreqs->pru_flush != NULL) 2811 (*pr->pr_usrreqs->pru_flush)(so, how); 2812 if (how != SHUT_WR) 2813 sorflush(so); 2814 if (how != SHUT_RD) { 2815 error = (*pr->pr_usrreqs->pru_shutdown)(so); 2816 wakeup(&so->so_timeo); 2817 CURVNET_RESTORE(); 2818 return ((error == 0 && soerror_enotconn) ? ENOTCONN : error); 2819 } 2820 wakeup(&so->so_timeo); 2821 CURVNET_RESTORE(); 2822 2823 done: 2824 return (soerror_enotconn ? ENOTCONN : 0); 2825 } 2826 2827 void 2828 sorflush(struct socket *so) 2829 { 2830 struct sockbuf *sb = &so->so_rcv; 2831 struct protosw *pr = so->so_proto; 2832 struct socket aso; 2833 2834 VNET_SO_ASSERT(so); 2835 2836 /* 2837 * In order to avoid calling dom_dispose with the socket buffer mutex 2838 * held, and in order to generally avoid holding the lock for a long 2839 * time, we make a copy of the socket buffer and clear the original 2840 * (except locks, state). The new socket buffer copy won't have 2841 * initialized locks so we can only call routines that won't use or 2842 * assert those locks. 2843 * 2844 * Dislodge threads currently blocked in receive and wait to acquire 2845 * a lock against other simultaneous readers before clearing the 2846 * socket buffer. Don't let our acquire be interrupted by a signal 2847 * despite any existing socket disposition on interruptable waiting. 2848 */ 2849 socantrcvmore(so); 2850 (void) sblock(sb, SBL_WAIT | SBL_NOINTR); 2851 2852 /* 2853 * Invalidate/clear most of the sockbuf structure, but leave selinfo 2854 * and mutex data unchanged. 2855 */ 2856 SOCKBUF_LOCK(sb); 2857 bzero(&aso, sizeof(aso)); 2858 aso.so_pcb = so->so_pcb; 2859 bcopy(&sb->sb_startzero, &aso.so_rcv.sb_startzero, 2860 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 2861 bzero(&sb->sb_startzero, 2862 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 2863 SOCKBUF_UNLOCK(sb); 2864 sbunlock(sb); 2865 2866 /* 2867 * Dispose of special rights and flush the copied socket. Don't call 2868 * any unsafe routines (that rely on locks being initialized) on aso. 2869 */ 2870 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 2871 (*pr->pr_domain->dom_dispose)(&aso); 2872 sbrelease_internal(&aso.so_rcv, so); 2873 } 2874 2875 /* 2876 * Wrapper for Socket established helper hook. 2877 * Parameters: socket, context of the hook point, hook id. 2878 */ 2879 static int inline 2880 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id) 2881 { 2882 struct socket_hhook_data hhook_data = { 2883 .so = so, 2884 .hctx = hctx, 2885 .m = NULL, 2886 .status = 0 2887 }; 2888 2889 CURVNET_SET(so->so_vnet); 2890 HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd); 2891 CURVNET_RESTORE(); 2892 2893 /* Ugly but needed, since hhooks return void for now */ 2894 return (hhook_data.status); 2895 } 2896 2897 /* 2898 * Perhaps this routine, and sooptcopyout(), below, ought to come in an 2899 * additional variant to handle the case where the option value needs to be 2900 * some kind of integer, but not a specific size. In addition to their use 2901 * here, these functions are also called by the protocol-level pr_ctloutput() 2902 * routines. 2903 */ 2904 int 2905 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen) 2906 { 2907 size_t valsize; 2908 2909 /* 2910 * If the user gives us more than we wanted, we ignore it, but if we 2911 * don't get the minimum length the caller wants, we return EINVAL. 2912 * On success, sopt->sopt_valsize is set to however much we actually 2913 * retrieved. 2914 */ 2915 if ((valsize = sopt->sopt_valsize) < minlen) 2916 return EINVAL; 2917 if (valsize > len) 2918 sopt->sopt_valsize = valsize = len; 2919 2920 if (sopt->sopt_td != NULL) 2921 return (copyin(sopt->sopt_val, buf, valsize)); 2922 2923 bcopy(sopt->sopt_val, buf, valsize); 2924 return (0); 2925 } 2926 2927 /* 2928 * Kernel version of setsockopt(2). 2929 * 2930 * XXX: optlen is size_t, not socklen_t 2931 */ 2932 int 2933 so_setsockopt(struct socket *so, int level, int optname, void *optval, 2934 size_t optlen) 2935 { 2936 struct sockopt sopt; 2937 2938 sopt.sopt_level = level; 2939 sopt.sopt_name = optname; 2940 sopt.sopt_dir = SOPT_SET; 2941 sopt.sopt_val = optval; 2942 sopt.sopt_valsize = optlen; 2943 sopt.sopt_td = NULL; 2944 return (sosetopt(so, &sopt)); 2945 } 2946 2947 int 2948 sosetopt(struct socket *so, struct sockopt *sopt) 2949 { 2950 int error, optval; 2951 struct linger l; 2952 struct timeval tv; 2953 sbintime_t val; 2954 uint32_t val32; 2955 #ifdef MAC 2956 struct mac extmac; 2957 #endif 2958 2959 CURVNET_SET(so->so_vnet); 2960 error = 0; 2961 if (sopt->sopt_level != SOL_SOCKET) { 2962 if (so->so_proto->pr_ctloutput != NULL) 2963 error = (*so->so_proto->pr_ctloutput)(so, sopt); 2964 else 2965 error = ENOPROTOOPT; 2966 } else { 2967 switch (sopt->sopt_name) { 2968 case SO_ACCEPTFILTER: 2969 error = accept_filt_setopt(so, sopt); 2970 if (error) 2971 goto bad; 2972 break; 2973 2974 case SO_LINGER: 2975 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 2976 if (error) 2977 goto bad; 2978 if (l.l_linger < 0 || 2979 l.l_linger > USHRT_MAX || 2980 l.l_linger > (INT_MAX / hz)) { 2981 error = EDOM; 2982 goto bad; 2983 } 2984 SOCK_LOCK(so); 2985 so->so_linger = l.l_linger; 2986 if (l.l_onoff) 2987 so->so_options |= SO_LINGER; 2988 else 2989 so->so_options &= ~SO_LINGER; 2990 SOCK_UNLOCK(so); 2991 break; 2992 2993 case SO_DEBUG: 2994 case SO_KEEPALIVE: 2995 case SO_DONTROUTE: 2996 case SO_USELOOPBACK: 2997 case SO_BROADCAST: 2998 case SO_REUSEADDR: 2999 case SO_REUSEPORT: 3000 case SO_REUSEPORT_LB: 3001 case SO_OOBINLINE: 3002 case SO_TIMESTAMP: 3003 case SO_BINTIME: 3004 case SO_NOSIGPIPE: 3005 case SO_NO_DDP: 3006 case SO_NO_OFFLOAD: 3007 error = sooptcopyin(sopt, &optval, sizeof optval, 3008 sizeof optval); 3009 if (error) 3010 goto bad; 3011 SOCK_LOCK(so); 3012 if (optval) 3013 so->so_options |= sopt->sopt_name; 3014 else 3015 so->so_options &= ~sopt->sopt_name; 3016 SOCK_UNLOCK(so); 3017 break; 3018 3019 case SO_SETFIB: 3020 error = sooptcopyin(sopt, &optval, sizeof optval, 3021 sizeof optval); 3022 if (error) 3023 goto bad; 3024 3025 if (optval < 0 || optval >= rt_numfibs) { 3026 error = EINVAL; 3027 goto bad; 3028 } 3029 if (((so->so_proto->pr_domain->dom_family == PF_INET) || 3030 (so->so_proto->pr_domain->dom_family == PF_INET6) || 3031 (so->so_proto->pr_domain->dom_family == PF_ROUTE))) 3032 so->so_fibnum = optval; 3033 else 3034 so->so_fibnum = 0; 3035 break; 3036 3037 case SO_USER_COOKIE: 3038 error = sooptcopyin(sopt, &val32, sizeof val32, 3039 sizeof val32); 3040 if (error) 3041 goto bad; 3042 so->so_user_cookie = val32; 3043 break; 3044 3045 case SO_SNDBUF: 3046 case SO_RCVBUF: 3047 case SO_SNDLOWAT: 3048 case SO_RCVLOWAT: 3049 error = sooptcopyin(sopt, &optval, sizeof optval, 3050 sizeof optval); 3051 if (error) 3052 goto bad; 3053 3054 /* 3055 * Values < 1 make no sense for any of these options, 3056 * so disallow them. 3057 */ 3058 if (optval < 1) { 3059 error = EINVAL; 3060 goto bad; 3061 } 3062 3063 error = sbsetopt(so, sopt->sopt_name, optval); 3064 break; 3065 3066 case SO_SNDTIMEO: 3067 case SO_RCVTIMEO: 3068 #ifdef COMPAT_FREEBSD32 3069 if (SV_CURPROC_FLAG(SV_ILP32)) { 3070 struct timeval32 tv32; 3071 3072 error = sooptcopyin(sopt, &tv32, sizeof tv32, 3073 sizeof tv32); 3074 CP(tv32, tv, tv_sec); 3075 CP(tv32, tv, tv_usec); 3076 } else 3077 #endif 3078 error = sooptcopyin(sopt, &tv, sizeof tv, 3079 sizeof tv); 3080 if (error) 3081 goto bad; 3082 if (tv.tv_sec < 0 || tv.tv_usec < 0 || 3083 tv.tv_usec >= 1000000) { 3084 error = EDOM; 3085 goto bad; 3086 } 3087 if (tv.tv_sec > INT32_MAX) 3088 val = SBT_MAX; 3089 else 3090 val = tvtosbt(tv); 3091 switch (sopt->sopt_name) { 3092 case SO_SNDTIMEO: 3093 so->so_snd.sb_timeo = val; 3094 break; 3095 case SO_RCVTIMEO: 3096 so->so_rcv.sb_timeo = val; 3097 break; 3098 } 3099 break; 3100 3101 case SO_LABEL: 3102 #ifdef MAC 3103 error = sooptcopyin(sopt, &extmac, sizeof extmac, 3104 sizeof extmac); 3105 if (error) 3106 goto bad; 3107 error = mac_setsockopt_label(sopt->sopt_td->td_ucred, 3108 so, &extmac); 3109 #else 3110 error = EOPNOTSUPP; 3111 #endif 3112 break; 3113 3114 case SO_TS_CLOCK: 3115 error = sooptcopyin(sopt, &optval, sizeof optval, 3116 sizeof optval); 3117 if (error) 3118 goto bad; 3119 if (optval < 0 || optval > SO_TS_CLOCK_MAX) { 3120 error = EINVAL; 3121 goto bad; 3122 } 3123 so->so_ts_clock = optval; 3124 break; 3125 3126 case SO_MAX_PACING_RATE: 3127 error = sooptcopyin(sopt, &val32, sizeof(val32), 3128 sizeof(val32)); 3129 if (error) 3130 goto bad; 3131 so->so_max_pacing_rate = val32; 3132 break; 3133 3134 default: 3135 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 3136 error = hhook_run_socket(so, sopt, 3137 HHOOK_SOCKET_OPT); 3138 else 3139 error = ENOPROTOOPT; 3140 break; 3141 } 3142 if (error == 0 && so->so_proto->pr_ctloutput != NULL) 3143 (void)(*so->so_proto->pr_ctloutput)(so, sopt); 3144 } 3145 bad: 3146 CURVNET_RESTORE(); 3147 return (error); 3148 } 3149 3150 /* 3151 * Helper routine for getsockopt. 3152 */ 3153 int 3154 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 3155 { 3156 int error; 3157 size_t valsize; 3158 3159 error = 0; 3160 3161 /* 3162 * Documented get behavior is that we always return a value, possibly 3163 * truncated to fit in the user's buffer. Traditional behavior is 3164 * that we always tell the user precisely how much we copied, rather 3165 * than something useful like the total amount we had available for 3166 * her. Note that this interface is not idempotent; the entire 3167 * answer must be generated ahead of time. 3168 */ 3169 valsize = min(len, sopt->sopt_valsize); 3170 sopt->sopt_valsize = valsize; 3171 if (sopt->sopt_val != NULL) { 3172 if (sopt->sopt_td != NULL) 3173 error = copyout(buf, sopt->sopt_val, valsize); 3174 else 3175 bcopy(buf, sopt->sopt_val, valsize); 3176 } 3177 return (error); 3178 } 3179 3180 int 3181 sogetopt(struct socket *so, struct sockopt *sopt) 3182 { 3183 int error, optval; 3184 struct linger l; 3185 struct timeval tv; 3186 #ifdef MAC 3187 struct mac extmac; 3188 #endif 3189 3190 CURVNET_SET(so->so_vnet); 3191 error = 0; 3192 if (sopt->sopt_level != SOL_SOCKET) { 3193 if (so->so_proto->pr_ctloutput != NULL) 3194 error = (*so->so_proto->pr_ctloutput)(so, sopt); 3195 else 3196 error = ENOPROTOOPT; 3197 CURVNET_RESTORE(); 3198 return (error); 3199 } else { 3200 switch (sopt->sopt_name) { 3201 case SO_ACCEPTFILTER: 3202 error = accept_filt_getopt(so, sopt); 3203 break; 3204 3205 case SO_LINGER: 3206 SOCK_LOCK(so); 3207 l.l_onoff = so->so_options & SO_LINGER; 3208 l.l_linger = so->so_linger; 3209 SOCK_UNLOCK(so); 3210 error = sooptcopyout(sopt, &l, sizeof l); 3211 break; 3212 3213 case SO_USELOOPBACK: 3214 case SO_DONTROUTE: 3215 case SO_DEBUG: 3216 case SO_KEEPALIVE: 3217 case SO_REUSEADDR: 3218 case SO_REUSEPORT: 3219 case SO_REUSEPORT_LB: 3220 case SO_BROADCAST: 3221 case SO_OOBINLINE: 3222 case SO_ACCEPTCONN: 3223 case SO_TIMESTAMP: 3224 case SO_BINTIME: 3225 case SO_NOSIGPIPE: 3226 optval = so->so_options & sopt->sopt_name; 3227 integer: 3228 error = sooptcopyout(sopt, &optval, sizeof optval); 3229 break; 3230 3231 case SO_DOMAIN: 3232 optval = so->so_proto->pr_domain->dom_family; 3233 goto integer; 3234 3235 case SO_TYPE: 3236 optval = so->so_type; 3237 goto integer; 3238 3239 case SO_PROTOCOL: 3240 optval = so->so_proto->pr_protocol; 3241 goto integer; 3242 3243 case SO_ERROR: 3244 SOCK_LOCK(so); 3245 optval = so->so_error; 3246 so->so_error = 0; 3247 SOCK_UNLOCK(so); 3248 goto integer; 3249 3250 case SO_SNDBUF: 3251 optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat : 3252 so->so_snd.sb_hiwat; 3253 goto integer; 3254 3255 case SO_RCVBUF: 3256 optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat : 3257 so->so_rcv.sb_hiwat; 3258 goto integer; 3259 3260 case SO_SNDLOWAT: 3261 optval = SOLISTENING(so) ? so->sol_sbsnd_lowat : 3262 so->so_snd.sb_lowat; 3263 goto integer; 3264 3265 case SO_RCVLOWAT: 3266 optval = SOLISTENING(so) ? so->sol_sbrcv_lowat : 3267 so->so_rcv.sb_lowat; 3268 goto integer; 3269 3270 case SO_SNDTIMEO: 3271 case SO_RCVTIMEO: 3272 tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ? 3273 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 3274 #ifdef COMPAT_FREEBSD32 3275 if (SV_CURPROC_FLAG(SV_ILP32)) { 3276 struct timeval32 tv32; 3277 3278 CP(tv, tv32, tv_sec); 3279 CP(tv, tv32, tv_usec); 3280 error = sooptcopyout(sopt, &tv32, sizeof tv32); 3281 } else 3282 #endif 3283 error = sooptcopyout(sopt, &tv, sizeof tv); 3284 break; 3285 3286 case SO_LABEL: 3287 #ifdef MAC 3288 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 3289 sizeof(extmac)); 3290 if (error) 3291 goto bad; 3292 error = mac_getsockopt_label(sopt->sopt_td->td_ucred, 3293 so, &extmac); 3294 if (error) 3295 goto bad; 3296 error = sooptcopyout(sopt, &extmac, sizeof extmac); 3297 #else 3298 error = EOPNOTSUPP; 3299 #endif 3300 break; 3301 3302 case SO_PEERLABEL: 3303 #ifdef MAC 3304 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 3305 sizeof(extmac)); 3306 if (error) 3307 goto bad; 3308 error = mac_getsockopt_peerlabel( 3309 sopt->sopt_td->td_ucred, so, &extmac); 3310 if (error) 3311 goto bad; 3312 error = sooptcopyout(sopt, &extmac, sizeof extmac); 3313 #else 3314 error = EOPNOTSUPP; 3315 #endif 3316 break; 3317 3318 case SO_LISTENQLIMIT: 3319 optval = SOLISTENING(so) ? so->sol_qlimit : 0; 3320 goto integer; 3321 3322 case SO_LISTENQLEN: 3323 optval = SOLISTENING(so) ? so->sol_qlen : 0; 3324 goto integer; 3325 3326 case SO_LISTENINCQLEN: 3327 optval = SOLISTENING(so) ? so->sol_incqlen : 0; 3328 goto integer; 3329 3330 case SO_TS_CLOCK: 3331 optval = so->so_ts_clock; 3332 goto integer; 3333 3334 case SO_MAX_PACING_RATE: 3335 optval = so->so_max_pacing_rate; 3336 goto integer; 3337 3338 default: 3339 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 3340 error = hhook_run_socket(so, sopt, 3341 HHOOK_SOCKET_OPT); 3342 else 3343 error = ENOPROTOOPT; 3344 break; 3345 } 3346 } 3347 #ifdef MAC 3348 bad: 3349 #endif 3350 CURVNET_RESTORE(); 3351 return (error); 3352 } 3353 3354 int 3355 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 3356 { 3357 struct mbuf *m, *m_prev; 3358 int sopt_size = sopt->sopt_valsize; 3359 3360 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 3361 if (m == NULL) 3362 return ENOBUFS; 3363 if (sopt_size > MLEN) { 3364 MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT); 3365 if ((m->m_flags & M_EXT) == 0) { 3366 m_free(m); 3367 return ENOBUFS; 3368 } 3369 m->m_len = min(MCLBYTES, sopt_size); 3370 } else { 3371 m->m_len = min(MLEN, sopt_size); 3372 } 3373 sopt_size -= m->m_len; 3374 *mp = m; 3375 m_prev = m; 3376 3377 while (sopt_size) { 3378 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 3379 if (m == NULL) { 3380 m_freem(*mp); 3381 return ENOBUFS; 3382 } 3383 if (sopt_size > MLEN) { 3384 MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK : 3385 M_NOWAIT); 3386 if ((m->m_flags & M_EXT) == 0) { 3387 m_freem(m); 3388 m_freem(*mp); 3389 return ENOBUFS; 3390 } 3391 m->m_len = min(MCLBYTES, sopt_size); 3392 } else { 3393 m->m_len = min(MLEN, sopt_size); 3394 } 3395 sopt_size -= m->m_len; 3396 m_prev->m_next = m; 3397 m_prev = m; 3398 } 3399 return (0); 3400 } 3401 3402 int 3403 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 3404 { 3405 struct mbuf *m0 = m; 3406 3407 if (sopt->sopt_val == NULL) 3408 return (0); 3409 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 3410 if (sopt->sopt_td != NULL) { 3411 int error; 3412 3413 error = copyin(sopt->sopt_val, mtod(m, char *), 3414 m->m_len); 3415 if (error != 0) { 3416 m_freem(m0); 3417 return(error); 3418 } 3419 } else 3420 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 3421 sopt->sopt_valsize -= m->m_len; 3422 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 3423 m = m->m_next; 3424 } 3425 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 3426 panic("ip6_sooptmcopyin"); 3427 return (0); 3428 } 3429 3430 int 3431 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 3432 { 3433 struct mbuf *m0 = m; 3434 size_t valsize = 0; 3435 3436 if (sopt->sopt_val == NULL) 3437 return (0); 3438 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 3439 if (sopt->sopt_td != NULL) { 3440 int error; 3441 3442 error = copyout(mtod(m, char *), sopt->sopt_val, 3443 m->m_len); 3444 if (error != 0) { 3445 m_freem(m0); 3446 return(error); 3447 } 3448 } else 3449 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 3450 sopt->sopt_valsize -= m->m_len; 3451 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 3452 valsize += m->m_len; 3453 m = m->m_next; 3454 } 3455 if (m != NULL) { 3456 /* enough soopt buffer should be given from user-land */ 3457 m_freem(m0); 3458 return(EINVAL); 3459 } 3460 sopt->sopt_valsize = valsize; 3461 return (0); 3462 } 3463 3464 /* 3465 * sohasoutofband(): protocol notifies socket layer of the arrival of new 3466 * out-of-band data, which will then notify socket consumers. 3467 */ 3468 void 3469 sohasoutofband(struct socket *so) 3470 { 3471 3472 if (so->so_sigio != NULL) 3473 pgsigio(&so->so_sigio, SIGURG, 0); 3474 selwakeuppri(&so->so_rdsel, PSOCK); 3475 } 3476 3477 int 3478 sopoll(struct socket *so, int events, struct ucred *active_cred, 3479 struct thread *td) 3480 { 3481 3482 /* 3483 * We do not need to set or assert curvnet as long as everyone uses 3484 * sopoll_generic(). 3485 */ 3486 return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred, 3487 td)); 3488 } 3489 3490 int 3491 sopoll_generic(struct socket *so, int events, struct ucred *active_cred, 3492 struct thread *td) 3493 { 3494 int revents; 3495 3496 SOCK_LOCK(so); 3497 if (SOLISTENING(so)) { 3498 if (!(events & (POLLIN | POLLRDNORM))) 3499 revents = 0; 3500 else if (!TAILQ_EMPTY(&so->sol_comp)) 3501 revents = events & (POLLIN | POLLRDNORM); 3502 else if ((events & POLLINIGNEOF) == 0 && so->so_error) 3503 revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP; 3504 else { 3505 selrecord(td, &so->so_rdsel); 3506 revents = 0; 3507 } 3508 } else { 3509 revents = 0; 3510 SOCKBUF_LOCK(&so->so_snd); 3511 SOCKBUF_LOCK(&so->so_rcv); 3512 if (events & (POLLIN | POLLRDNORM)) 3513 if (soreadabledata(so)) 3514 revents |= events & (POLLIN | POLLRDNORM); 3515 if (events & (POLLOUT | POLLWRNORM)) 3516 if (sowriteable(so)) 3517 revents |= events & (POLLOUT | POLLWRNORM); 3518 if (events & (POLLPRI | POLLRDBAND)) 3519 if (so->so_oobmark || 3520 (so->so_rcv.sb_state & SBS_RCVATMARK)) 3521 revents |= events & (POLLPRI | POLLRDBAND); 3522 if ((events & POLLINIGNEOF) == 0) { 3523 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3524 revents |= events & (POLLIN | POLLRDNORM); 3525 if (so->so_snd.sb_state & SBS_CANTSENDMORE) 3526 revents |= POLLHUP; 3527 } 3528 } 3529 if (revents == 0) { 3530 if (events & 3531 (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) { 3532 selrecord(td, &so->so_rdsel); 3533 so->so_rcv.sb_flags |= SB_SEL; 3534 } 3535 if (events & (POLLOUT | POLLWRNORM)) { 3536 selrecord(td, &so->so_wrsel); 3537 so->so_snd.sb_flags |= SB_SEL; 3538 } 3539 } 3540 SOCKBUF_UNLOCK(&so->so_rcv); 3541 SOCKBUF_UNLOCK(&so->so_snd); 3542 } 3543 SOCK_UNLOCK(so); 3544 return (revents); 3545 } 3546 3547 int 3548 soo_kqfilter(struct file *fp, struct knote *kn) 3549 { 3550 struct socket *so = kn->kn_fp->f_data; 3551 struct sockbuf *sb; 3552 struct knlist *knl; 3553 3554 switch (kn->kn_filter) { 3555 case EVFILT_READ: 3556 kn->kn_fop = &soread_filtops; 3557 knl = &so->so_rdsel.si_note; 3558 sb = &so->so_rcv; 3559 break; 3560 case EVFILT_WRITE: 3561 kn->kn_fop = &sowrite_filtops; 3562 knl = &so->so_wrsel.si_note; 3563 sb = &so->so_snd; 3564 break; 3565 case EVFILT_EMPTY: 3566 kn->kn_fop = &soempty_filtops; 3567 knl = &so->so_wrsel.si_note; 3568 sb = &so->so_snd; 3569 break; 3570 default: 3571 return (EINVAL); 3572 } 3573 3574 SOCK_LOCK(so); 3575 if (SOLISTENING(so)) { 3576 knlist_add(knl, kn, 1); 3577 } else { 3578 SOCKBUF_LOCK(sb); 3579 knlist_add(knl, kn, 1); 3580 sb->sb_flags |= SB_KNOTE; 3581 SOCKBUF_UNLOCK(sb); 3582 } 3583 SOCK_UNLOCK(so); 3584 return (0); 3585 } 3586 3587 /* 3588 * Some routines that return EOPNOTSUPP for entry points that are not 3589 * supported by a protocol. Fill in as needed. 3590 */ 3591 int 3592 pru_accept_notsupp(struct socket *so, struct sockaddr **nam) 3593 { 3594 3595 return EOPNOTSUPP; 3596 } 3597 3598 int 3599 pru_aio_queue_notsupp(struct socket *so, struct kaiocb *job) 3600 { 3601 3602 return EOPNOTSUPP; 3603 } 3604 3605 int 3606 pru_attach_notsupp(struct socket *so, int proto, struct thread *td) 3607 { 3608 3609 return EOPNOTSUPP; 3610 } 3611 3612 int 3613 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 3614 { 3615 3616 return EOPNOTSUPP; 3617 } 3618 3619 int 3620 pru_bindat_notsupp(int fd, struct socket *so, struct sockaddr *nam, 3621 struct thread *td) 3622 { 3623 3624 return EOPNOTSUPP; 3625 } 3626 3627 int 3628 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 3629 { 3630 3631 return EOPNOTSUPP; 3632 } 3633 3634 int 3635 pru_connectat_notsupp(int fd, struct socket *so, struct sockaddr *nam, 3636 struct thread *td) 3637 { 3638 3639 return EOPNOTSUPP; 3640 } 3641 3642 int 3643 pru_connect2_notsupp(struct socket *so1, struct socket *so2) 3644 { 3645 3646 return EOPNOTSUPP; 3647 } 3648 3649 int 3650 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, 3651 struct ifnet *ifp, struct thread *td) 3652 { 3653 3654 return EOPNOTSUPP; 3655 } 3656 3657 int 3658 pru_disconnect_notsupp(struct socket *so) 3659 { 3660 3661 return EOPNOTSUPP; 3662 } 3663 3664 int 3665 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td) 3666 { 3667 3668 return EOPNOTSUPP; 3669 } 3670 3671 int 3672 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam) 3673 { 3674 3675 return EOPNOTSUPP; 3676 } 3677 3678 int 3679 pru_rcvd_notsupp(struct socket *so, int flags) 3680 { 3681 3682 return EOPNOTSUPP; 3683 } 3684 3685 int 3686 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) 3687 { 3688 3689 return EOPNOTSUPP; 3690 } 3691 3692 int 3693 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m, 3694 struct sockaddr *addr, struct mbuf *control, struct thread *td) 3695 { 3696 3697 return EOPNOTSUPP; 3698 } 3699 3700 int 3701 pru_ready_notsupp(struct socket *so, struct mbuf *m, int count) 3702 { 3703 3704 return (EOPNOTSUPP); 3705 } 3706 3707 /* 3708 * This isn't really a ``null'' operation, but it's the default one and 3709 * doesn't do anything destructive. 3710 */ 3711 int 3712 pru_sense_null(struct socket *so, struct stat *sb) 3713 { 3714 3715 sb->st_blksize = so->so_snd.sb_hiwat; 3716 return 0; 3717 } 3718 3719 int 3720 pru_shutdown_notsupp(struct socket *so) 3721 { 3722 3723 return EOPNOTSUPP; 3724 } 3725 3726 int 3727 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam) 3728 { 3729 3730 return EOPNOTSUPP; 3731 } 3732 3733 int 3734 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio, 3735 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 3736 { 3737 3738 return EOPNOTSUPP; 3739 } 3740 3741 int 3742 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr, 3743 struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 3744 { 3745 3746 return EOPNOTSUPP; 3747 } 3748 3749 int 3750 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred, 3751 struct thread *td) 3752 { 3753 3754 return EOPNOTSUPP; 3755 } 3756 3757 static void 3758 filt_sordetach(struct knote *kn) 3759 { 3760 struct socket *so = kn->kn_fp->f_data; 3761 3762 so_rdknl_lock(so); 3763 knlist_remove(&so->so_rdsel.si_note, kn, 1); 3764 if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note)) 3765 so->so_rcv.sb_flags &= ~SB_KNOTE; 3766 so_rdknl_unlock(so); 3767 } 3768 3769 /*ARGSUSED*/ 3770 static int 3771 filt_soread(struct knote *kn, long hint) 3772 { 3773 struct socket *so; 3774 3775 so = kn->kn_fp->f_data; 3776 3777 if (SOLISTENING(so)) { 3778 SOCK_LOCK_ASSERT(so); 3779 kn->kn_data = so->sol_qlen; 3780 if (so->so_error) { 3781 kn->kn_flags |= EV_EOF; 3782 kn->kn_fflags = so->so_error; 3783 return (1); 3784 } 3785 return (!TAILQ_EMPTY(&so->sol_comp)); 3786 } 3787 3788 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 3789 3790 kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl; 3791 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3792 kn->kn_flags |= EV_EOF; 3793 kn->kn_fflags = so->so_error; 3794 return (1); 3795 } else if (so->so_error) /* temporary udp error */ 3796 return (1); 3797 3798 if (kn->kn_sfflags & NOTE_LOWAT) { 3799 if (kn->kn_data >= kn->kn_sdata) 3800 return (1); 3801 } else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat) 3802 return (1); 3803 3804 /* This hook returning non-zero indicates an event, not error */ 3805 return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD)); 3806 } 3807 3808 static void 3809 filt_sowdetach(struct knote *kn) 3810 { 3811 struct socket *so = kn->kn_fp->f_data; 3812 3813 so_wrknl_lock(so); 3814 knlist_remove(&so->so_wrsel.si_note, kn, 1); 3815 if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note)) 3816 so->so_snd.sb_flags &= ~SB_KNOTE; 3817 so_wrknl_unlock(so); 3818 } 3819 3820 /*ARGSUSED*/ 3821 static int 3822 filt_sowrite(struct knote *kn, long hint) 3823 { 3824 struct socket *so; 3825 3826 so = kn->kn_fp->f_data; 3827 3828 if (SOLISTENING(so)) 3829 return (0); 3830 3831 SOCKBUF_LOCK_ASSERT(&so->so_snd); 3832 kn->kn_data = sbspace(&so->so_snd); 3833 3834 hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE); 3835 3836 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 3837 kn->kn_flags |= EV_EOF; 3838 kn->kn_fflags = so->so_error; 3839 return (1); 3840 } else if (so->so_error) /* temporary udp error */ 3841 return (1); 3842 else if (((so->so_state & SS_ISCONNECTED) == 0) && 3843 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 3844 return (0); 3845 else if (kn->kn_sfflags & NOTE_LOWAT) 3846 return (kn->kn_data >= kn->kn_sdata); 3847 else 3848 return (kn->kn_data >= so->so_snd.sb_lowat); 3849 } 3850 3851 static int 3852 filt_soempty(struct knote *kn, long hint) 3853 { 3854 struct socket *so; 3855 3856 so = kn->kn_fp->f_data; 3857 3858 if (SOLISTENING(so)) 3859 return (1); 3860 3861 SOCKBUF_LOCK_ASSERT(&so->so_snd); 3862 kn->kn_data = sbused(&so->so_snd); 3863 3864 if (kn->kn_data == 0) 3865 return (1); 3866 else 3867 return (0); 3868 } 3869 3870 int 3871 socheckuid(struct socket *so, uid_t uid) 3872 { 3873 3874 if (so == NULL) 3875 return (EPERM); 3876 if (so->so_cred->cr_uid != uid) 3877 return (EPERM); 3878 return (0); 3879 } 3880 3881 /* 3882 * These functions are used by protocols to notify the socket layer (and its 3883 * consumers) of state changes in the sockets driven by protocol-side events. 3884 */ 3885 3886 /* 3887 * Procedures to manipulate state flags of socket and do appropriate wakeups. 3888 * 3889 * Normal sequence from the active (originating) side is that 3890 * soisconnecting() is called during processing of connect() call, resulting 3891 * in an eventual call to soisconnected() if/when the connection is 3892 * established. When the connection is torn down soisdisconnecting() is 3893 * called during processing of disconnect() call, and soisdisconnected() is 3894 * called when the connection to the peer is totally severed. The semantics 3895 * of these routines are such that connectionless protocols can call 3896 * soisconnected() and soisdisconnected() only, bypassing the in-progress 3897 * calls when setting up a ``connection'' takes no time. 3898 * 3899 * From the passive side, a socket is created with two queues of sockets: 3900 * so_incomp for connections in progress and so_comp for connections already 3901 * made and awaiting user acceptance. As a protocol is preparing incoming 3902 * connections, it creates a socket structure queued on so_incomp by calling 3903 * sonewconn(). When the connection is established, soisconnected() is 3904 * called, and transfers the socket structure to so_comp, making it available 3905 * to accept(). 3906 * 3907 * If a socket is closed with sockets on either so_incomp or so_comp, these 3908 * sockets are dropped. 3909 * 3910 * If higher-level protocols are implemented in the kernel, the wakeups done 3911 * here will sometimes cause software-interrupt process scheduling. 3912 */ 3913 void 3914 soisconnecting(struct socket *so) 3915 { 3916 3917 SOCK_LOCK(so); 3918 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 3919 so->so_state |= SS_ISCONNECTING; 3920 SOCK_UNLOCK(so); 3921 } 3922 3923 void 3924 soisconnected(struct socket *so) 3925 { 3926 3927 SOCK_LOCK(so); 3928 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 3929 so->so_state |= SS_ISCONNECTED; 3930 3931 if (so->so_qstate == SQ_INCOMP) { 3932 struct socket *head = so->so_listen; 3933 int ret; 3934 3935 KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so)); 3936 /* 3937 * Promoting a socket from incomplete queue to complete, we 3938 * need to go through reverse order of locking. We first do 3939 * trylock, and if that doesn't succeed, we go the hard way 3940 * leaving a reference and rechecking consistency after proper 3941 * locking. 3942 */ 3943 if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) { 3944 soref(head); 3945 SOCK_UNLOCK(so); 3946 SOLISTEN_LOCK(head); 3947 SOCK_LOCK(so); 3948 if (__predict_false(head != so->so_listen)) { 3949 /* 3950 * The socket went off the listen queue, 3951 * should be lost race to close(2) of sol. 3952 * The socket is about to soabort(). 3953 */ 3954 SOCK_UNLOCK(so); 3955 sorele(head); 3956 return; 3957 } 3958 /* Not the last one, as so holds a ref. */ 3959 refcount_release(&head->so_count); 3960 } 3961 again: 3962 if ((so->so_options & SO_ACCEPTFILTER) == 0) { 3963 TAILQ_REMOVE(&head->sol_incomp, so, so_list); 3964 head->sol_incqlen--; 3965 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 3966 head->sol_qlen++; 3967 so->so_qstate = SQ_COMP; 3968 SOCK_UNLOCK(so); 3969 solisten_wakeup(head); /* unlocks */ 3970 } else { 3971 SOCKBUF_LOCK(&so->so_rcv); 3972 soupcall_set(so, SO_RCV, 3973 head->sol_accept_filter->accf_callback, 3974 head->sol_accept_filter_arg); 3975 so->so_options &= ~SO_ACCEPTFILTER; 3976 ret = head->sol_accept_filter->accf_callback(so, 3977 head->sol_accept_filter_arg, M_NOWAIT); 3978 if (ret == SU_ISCONNECTED) { 3979 soupcall_clear(so, SO_RCV); 3980 SOCKBUF_UNLOCK(&so->so_rcv); 3981 goto again; 3982 } 3983 SOCKBUF_UNLOCK(&so->so_rcv); 3984 SOCK_UNLOCK(so); 3985 SOLISTEN_UNLOCK(head); 3986 } 3987 return; 3988 } 3989 SOCK_UNLOCK(so); 3990 wakeup(&so->so_timeo); 3991 sorwakeup(so); 3992 sowwakeup(so); 3993 } 3994 3995 void 3996 soisdisconnecting(struct socket *so) 3997 { 3998 3999 SOCK_LOCK(so); 4000 so->so_state &= ~SS_ISCONNECTING; 4001 so->so_state |= SS_ISDISCONNECTING; 4002 4003 if (!SOLISTENING(so)) { 4004 SOCKBUF_LOCK(&so->so_rcv); 4005 socantrcvmore_locked(so); 4006 SOCKBUF_LOCK(&so->so_snd); 4007 socantsendmore_locked(so); 4008 } 4009 SOCK_UNLOCK(so); 4010 wakeup(&so->so_timeo); 4011 } 4012 4013 void 4014 soisdisconnected(struct socket *so) 4015 { 4016 4017 SOCK_LOCK(so); 4018 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 4019 so->so_state |= SS_ISDISCONNECTED; 4020 4021 if (!SOLISTENING(so)) { 4022 SOCK_UNLOCK(so); 4023 SOCKBUF_LOCK(&so->so_rcv); 4024 socantrcvmore_locked(so); 4025 SOCKBUF_LOCK(&so->so_snd); 4026 sbdrop_locked(&so->so_snd, sbused(&so->so_snd)); 4027 socantsendmore_locked(so); 4028 } else 4029 SOCK_UNLOCK(so); 4030 wakeup(&so->so_timeo); 4031 } 4032 4033 /* 4034 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 4035 */ 4036 struct sockaddr * 4037 sodupsockaddr(const struct sockaddr *sa, int mflags) 4038 { 4039 struct sockaddr *sa2; 4040 4041 sa2 = malloc(sa->sa_len, M_SONAME, mflags); 4042 if (sa2) 4043 bcopy(sa, sa2, sa->sa_len); 4044 return sa2; 4045 } 4046 4047 /* 4048 * Register per-socket destructor. 4049 */ 4050 void 4051 sodtor_set(struct socket *so, so_dtor_t *func) 4052 { 4053 4054 SOCK_LOCK_ASSERT(so); 4055 so->so_dtor = func; 4056 } 4057 4058 /* 4059 * Register per-socket buffer upcalls. 4060 */ 4061 void 4062 soupcall_set(struct socket *so, int which, so_upcall_t func, void *arg) 4063 { 4064 struct sockbuf *sb; 4065 4066 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 4067 4068 switch (which) { 4069 case SO_RCV: 4070 sb = &so->so_rcv; 4071 break; 4072 case SO_SND: 4073 sb = &so->so_snd; 4074 break; 4075 default: 4076 panic("soupcall_set: bad which"); 4077 } 4078 SOCKBUF_LOCK_ASSERT(sb); 4079 sb->sb_upcall = func; 4080 sb->sb_upcallarg = arg; 4081 sb->sb_flags |= SB_UPCALL; 4082 } 4083 4084 void 4085 soupcall_clear(struct socket *so, int which) 4086 { 4087 struct sockbuf *sb; 4088 4089 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 4090 4091 switch (which) { 4092 case SO_RCV: 4093 sb = &so->so_rcv; 4094 break; 4095 case SO_SND: 4096 sb = &so->so_snd; 4097 break; 4098 default: 4099 panic("soupcall_clear: bad which"); 4100 } 4101 SOCKBUF_LOCK_ASSERT(sb); 4102 KASSERT(sb->sb_upcall != NULL, 4103 ("%s: so %p no upcall to clear", __func__, so)); 4104 sb->sb_upcall = NULL; 4105 sb->sb_upcallarg = NULL; 4106 sb->sb_flags &= ~SB_UPCALL; 4107 } 4108 4109 void 4110 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg) 4111 { 4112 4113 SOLISTEN_LOCK_ASSERT(so); 4114 so->sol_upcall = func; 4115 so->sol_upcallarg = arg; 4116 } 4117 4118 static void 4119 so_rdknl_lock(void *arg) 4120 { 4121 struct socket *so = arg; 4122 4123 if (SOLISTENING(so)) 4124 SOCK_LOCK(so); 4125 else 4126 SOCKBUF_LOCK(&so->so_rcv); 4127 } 4128 4129 static void 4130 so_rdknl_unlock(void *arg) 4131 { 4132 struct socket *so = arg; 4133 4134 if (SOLISTENING(so)) 4135 SOCK_UNLOCK(so); 4136 else 4137 SOCKBUF_UNLOCK(&so->so_rcv); 4138 } 4139 4140 static void 4141 so_rdknl_assert_locked(void *arg) 4142 { 4143 struct socket *so = arg; 4144 4145 if (SOLISTENING(so)) 4146 SOCK_LOCK_ASSERT(so); 4147 else 4148 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 4149 } 4150 4151 static void 4152 so_rdknl_assert_unlocked(void *arg) 4153 { 4154 struct socket *so = arg; 4155 4156 if (SOLISTENING(so)) 4157 SOCK_UNLOCK_ASSERT(so); 4158 else 4159 SOCKBUF_UNLOCK_ASSERT(&so->so_rcv); 4160 } 4161 4162 static void 4163 so_wrknl_lock(void *arg) 4164 { 4165 struct socket *so = arg; 4166 4167 if (SOLISTENING(so)) 4168 SOCK_LOCK(so); 4169 else 4170 SOCKBUF_LOCK(&so->so_snd); 4171 } 4172 4173 static void 4174 so_wrknl_unlock(void *arg) 4175 { 4176 struct socket *so = arg; 4177 4178 if (SOLISTENING(so)) 4179 SOCK_UNLOCK(so); 4180 else 4181 SOCKBUF_UNLOCK(&so->so_snd); 4182 } 4183 4184 static void 4185 so_wrknl_assert_locked(void *arg) 4186 { 4187 struct socket *so = arg; 4188 4189 if (SOLISTENING(so)) 4190 SOCK_LOCK_ASSERT(so); 4191 else 4192 SOCKBUF_LOCK_ASSERT(&so->so_snd); 4193 } 4194 4195 static void 4196 so_wrknl_assert_unlocked(void *arg) 4197 { 4198 struct socket *so = arg; 4199 4200 if (SOLISTENING(so)) 4201 SOCK_UNLOCK_ASSERT(so); 4202 else 4203 SOCKBUF_UNLOCK_ASSERT(&so->so_snd); 4204 } 4205 4206 /* 4207 * Create an external-format (``xsocket'') structure using the information in 4208 * the kernel-format socket structure pointed to by so. This is done to 4209 * reduce the spew of irrelevant information over this interface, to isolate 4210 * user code from changes in the kernel structure, and potentially to provide 4211 * information-hiding if we decide that some of this information should be 4212 * hidden from users. 4213 */ 4214 void 4215 sotoxsocket(struct socket *so, struct xsocket *xso) 4216 { 4217 4218 bzero(xso, sizeof(*xso)); 4219 xso->xso_len = sizeof *xso; 4220 xso->xso_so = (uintptr_t)so; 4221 xso->so_type = so->so_type; 4222 xso->so_options = so->so_options; 4223 xso->so_linger = so->so_linger; 4224 xso->so_state = so->so_state; 4225 xso->so_pcb = (uintptr_t)so->so_pcb; 4226 xso->xso_protocol = so->so_proto->pr_protocol; 4227 xso->xso_family = so->so_proto->pr_domain->dom_family; 4228 xso->so_timeo = so->so_timeo; 4229 xso->so_error = so->so_error; 4230 xso->so_uid = so->so_cred->cr_uid; 4231 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 4232 if (SOLISTENING(so)) { 4233 xso->so_qlen = so->sol_qlen; 4234 xso->so_incqlen = so->sol_incqlen; 4235 xso->so_qlimit = so->sol_qlimit; 4236 xso->so_oobmark = 0; 4237 } else { 4238 xso->so_state |= so->so_qstate; 4239 xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0; 4240 xso->so_oobmark = so->so_oobmark; 4241 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 4242 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 4243 } 4244 } 4245 4246 struct sockbuf * 4247 so_sockbuf_rcv(struct socket *so) 4248 { 4249 4250 return (&so->so_rcv); 4251 } 4252 4253 struct sockbuf * 4254 so_sockbuf_snd(struct socket *so) 4255 { 4256 4257 return (&so->so_snd); 4258 } 4259 4260 int 4261 so_state_get(const struct socket *so) 4262 { 4263 4264 return (so->so_state); 4265 } 4266 4267 void 4268 so_state_set(struct socket *so, int val) 4269 { 4270 4271 so->so_state = val; 4272 } 4273 4274 int 4275 so_options_get(const struct socket *so) 4276 { 4277 4278 return (so->so_options); 4279 } 4280 4281 void 4282 so_options_set(struct socket *so, int val) 4283 { 4284 4285 so->so_options = val; 4286 } 4287 4288 int 4289 so_error_get(const struct socket *so) 4290 { 4291 4292 return (so->so_error); 4293 } 4294 4295 void 4296 so_error_set(struct socket *so, int val) 4297 { 4298 4299 so->so_error = val; 4300 } 4301 4302 int 4303 so_linger_get(const struct socket *so) 4304 { 4305 4306 return (so->so_linger); 4307 } 4308 4309 void 4310 so_linger_set(struct socket *so, int val) 4311 { 4312 4313 KASSERT(val >= 0 && val <= USHRT_MAX && val <= (INT_MAX / hz), 4314 ("%s: val %d out of range", __func__, val)); 4315 4316 so->so_linger = val; 4317 } 4318 4319 struct protosw * 4320 so_protosw_get(const struct socket *so) 4321 { 4322 4323 return (so->so_proto); 4324 } 4325 4326 void 4327 so_protosw_set(struct socket *so, struct protosw *val) 4328 { 4329 4330 so->so_proto = val; 4331 } 4332 4333 void 4334 so_sorwakeup(struct socket *so) 4335 { 4336 4337 sorwakeup(so); 4338 } 4339 4340 void 4341 so_sowwakeup(struct socket *so) 4342 { 4343 4344 sowwakeup(so); 4345 } 4346 4347 void 4348 so_sorwakeup_locked(struct socket *so) 4349 { 4350 4351 sorwakeup_locked(so); 4352 } 4353 4354 void 4355 so_sowwakeup_locked(struct socket *so) 4356 { 4357 4358 sowwakeup_locked(so); 4359 } 4360 4361 void 4362 so_lock(struct socket *so) 4363 { 4364 4365 SOCK_LOCK(so); 4366 } 4367 4368 void 4369 so_unlock(struct socket *so) 4370 { 4371 4372 SOCK_UNLOCK(so); 4373 } 4374