xref: /freebsd/sys/kern/uipc_socket.c (revision 6f63e88c0166ed3e5f2805a9e667c7d24d304cf1)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
5  *	The Regents of the University of California.
6  * Copyright (c) 2004 The FreeBSD Foundation
7  * Copyright (c) 2004-2008 Robert N. M. Watson
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)uipc_socket.c	8.3 (Berkeley) 4/15/94
35  */
36 
37 /*
38  * Comments on the socket life cycle:
39  *
40  * soalloc() sets of socket layer state for a socket, called only by
41  * socreate() and sonewconn().  Socket layer private.
42  *
43  * sodealloc() tears down socket layer state for a socket, called only by
44  * sofree() and sonewconn().  Socket layer private.
45  *
46  * pru_attach() associates protocol layer state with an allocated socket;
47  * called only once, may fail, aborting socket allocation.  This is called
48  * from socreate() and sonewconn().  Socket layer private.
49  *
50  * pru_detach() disassociates protocol layer state from an attached socket,
51  * and will be called exactly once for sockets in which pru_attach() has
52  * been successfully called.  If pru_attach() returned an error,
53  * pru_detach() will not be called.  Socket layer private.
54  *
55  * pru_abort() and pru_close() notify the protocol layer that the last
56  * consumer of a socket is starting to tear down the socket, and that the
57  * protocol should terminate the connection.  Historically, pru_abort() also
58  * detached protocol state from the socket state, but this is no longer the
59  * case.
60  *
61  * socreate() creates a socket and attaches protocol state.  This is a public
62  * interface that may be used by socket layer consumers to create new
63  * sockets.
64  *
65  * sonewconn() creates a socket and attaches protocol state.  This is a
66  * public interface  that may be used by protocols to create new sockets when
67  * a new connection is received and will be available for accept() on a
68  * listen socket.
69  *
70  * soclose() destroys a socket after possibly waiting for it to disconnect.
71  * This is a public interface that socket consumers should use to close and
72  * release a socket when done with it.
73  *
74  * soabort() destroys a socket without waiting for it to disconnect (used
75  * only for incoming connections that are already partially or fully
76  * connected).  This is used internally by the socket layer when clearing
77  * listen socket queues (due to overflow or close on the listen socket), but
78  * is also a public interface protocols may use to abort connections in
79  * their incomplete listen queues should they no longer be required.  Sockets
80  * placed in completed connection listen queues should not be aborted for
81  * reasons described in the comment above the soclose() implementation.  This
82  * is not a general purpose close routine, and except in the specific
83  * circumstances described here, should not be used.
84  *
85  * sofree() will free a socket and its protocol state if all references on
86  * the socket have been released, and is the public interface to attempt to
87  * free a socket when a reference is removed.  This is a socket layer private
88  * interface.
89  *
90  * NOTE: In addition to socreate() and soclose(), which provide a single
91  * socket reference to the consumer to be managed as required, there are two
92  * calls to explicitly manage socket references, soref(), and sorele().
93  * Currently, these are generally required only when transitioning a socket
94  * from a listen queue to a file descriptor, in order to prevent garbage
95  * collection of the socket at an untimely moment.  For a number of reasons,
96  * these interfaces are not preferred, and should be avoided.
97  *
98  * NOTE: With regard to VNETs the general rule is that callers do not set
99  * curvnet. Exceptions to this rule include soabort(), sodisconnect(),
100  * sofree() (and with that sorele(), sotryfree()), as well as sonewconn()
101  * and sorflush(), which are usually called from a pre-set VNET context.
102  * sopoll() currently does not need a VNET context to be set.
103  */
104 
105 #include <sys/cdefs.h>
106 __FBSDID("$FreeBSD$");
107 
108 #include "opt_inet.h"
109 #include "opt_inet6.h"
110 #include "opt_kern_tls.h"
111 #include "opt_sctp.h"
112 
113 #include <sys/param.h>
114 #include <sys/systm.h>
115 #include <sys/fcntl.h>
116 #include <sys/limits.h>
117 #include <sys/lock.h>
118 #include <sys/mac.h>
119 #include <sys/malloc.h>
120 #include <sys/mbuf.h>
121 #include <sys/mutex.h>
122 #include <sys/domain.h>
123 #include <sys/file.h>			/* for struct knote */
124 #include <sys/hhook.h>
125 #include <sys/kernel.h>
126 #include <sys/khelp.h>
127 #include <sys/ktls.h>
128 #include <sys/event.h>
129 #include <sys/eventhandler.h>
130 #include <sys/poll.h>
131 #include <sys/proc.h>
132 #include <sys/protosw.h>
133 #include <sys/sbuf.h>
134 #include <sys/socket.h>
135 #include <sys/socketvar.h>
136 #include <sys/resourcevar.h>
137 #include <net/route.h>
138 #include <sys/signalvar.h>
139 #include <sys/stat.h>
140 #include <sys/sx.h>
141 #include <sys/sysctl.h>
142 #include <sys/taskqueue.h>
143 #include <sys/uio.h>
144 #include <sys/un.h>
145 #include <sys/unpcb.h>
146 #include <sys/jail.h>
147 #include <sys/syslog.h>
148 #include <netinet/in.h>
149 #include <netinet/in_pcb.h>
150 #include <netinet/tcp.h>
151 
152 #include <net/vnet.h>
153 
154 #include <security/mac/mac_framework.h>
155 
156 #include <vm/uma.h>
157 
158 #ifdef COMPAT_FREEBSD32
159 #include <sys/mount.h>
160 #include <sys/sysent.h>
161 #include <compat/freebsd32/freebsd32.h>
162 #endif
163 
164 static int	soreceive_rcvoob(struct socket *so, struct uio *uio,
165 		    int flags);
166 static void	so_rdknl_lock(void *);
167 static void	so_rdknl_unlock(void *);
168 static void	so_rdknl_assert_locked(void *);
169 static void	so_rdknl_assert_unlocked(void *);
170 static void	so_wrknl_lock(void *);
171 static void	so_wrknl_unlock(void *);
172 static void	so_wrknl_assert_locked(void *);
173 static void	so_wrknl_assert_unlocked(void *);
174 
175 static void	filt_sordetach(struct knote *kn);
176 static int	filt_soread(struct knote *kn, long hint);
177 static void	filt_sowdetach(struct knote *kn);
178 static int	filt_sowrite(struct knote *kn, long hint);
179 static int	filt_soempty(struct knote *kn, long hint);
180 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id);
181 fo_kqfilter_t	soo_kqfilter;
182 
183 static struct filterops soread_filtops = {
184 	.f_isfd = 1,
185 	.f_detach = filt_sordetach,
186 	.f_event = filt_soread,
187 };
188 static struct filterops sowrite_filtops = {
189 	.f_isfd = 1,
190 	.f_detach = filt_sowdetach,
191 	.f_event = filt_sowrite,
192 };
193 static struct filterops soempty_filtops = {
194 	.f_isfd = 1,
195 	.f_detach = filt_sowdetach,
196 	.f_event = filt_soempty,
197 };
198 
199 so_gen_t	so_gencnt;	/* generation count for sockets */
200 
201 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
202 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
203 
204 #define	VNET_SO_ASSERT(so)						\
205 	VNET_ASSERT(curvnet != NULL,					\
206 	    ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so)));
207 
208 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]);
209 #define	V_socket_hhh		VNET(socket_hhh)
210 
211 /*
212  * Limit on the number of connections in the listen queue waiting
213  * for accept(2).
214  * NB: The original sysctl somaxconn is still available but hidden
215  * to prevent confusion about the actual purpose of this number.
216  */
217 static u_int somaxconn = SOMAXCONN;
218 
219 static int
220 sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
221 {
222 	int error;
223 	int val;
224 
225 	val = somaxconn;
226 	error = sysctl_handle_int(oidp, &val, 0, req);
227 	if (error || !req->newptr )
228 		return (error);
229 
230 	/*
231 	 * The purpose of the UINT_MAX / 3 limit, is so that the formula
232 	 *   3 * so_qlimit / 2
233 	 * below, will not overflow.
234          */
235 
236 	if (val < 1 || val > UINT_MAX / 3)
237 		return (EINVAL);
238 
239 	somaxconn = val;
240 	return (0);
241 }
242 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue,
243     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 0, sizeof(int),
244     sysctl_somaxconn, "I",
245     "Maximum listen socket pending connection accept queue size");
246 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn,
247     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_NEEDGIANT, 0,
248     sizeof(int), sysctl_somaxconn, "I",
249     "Maximum listen socket pending connection accept queue size (compat)");
250 
251 static int numopensockets;
252 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,
253     &numopensockets, 0, "Number of open sockets");
254 
255 /*
256  * accept_mtx locks down per-socket fields relating to accept queues.  See
257  * socketvar.h for an annotation of the protected fields of struct socket.
258  */
259 struct mtx accept_mtx;
260 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF);
261 
262 /*
263  * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
264  * so_gencnt field.
265  */
266 static struct mtx so_global_mtx;
267 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
268 
269 /*
270  * General IPC sysctl name space, used by sockets and a variety of other IPC
271  * types.
272  */
273 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
274     "IPC");
275 
276 /*
277  * Initialize the socket subsystem and set up the socket
278  * memory allocator.
279  */
280 static uma_zone_t socket_zone;
281 int	maxsockets;
282 
283 static void
284 socket_zone_change(void *tag)
285 {
286 
287 	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
288 }
289 
290 static void
291 socket_hhook_register(int subtype)
292 {
293 
294 	if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype,
295 	    &V_socket_hhh[subtype],
296 	    HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
297 		printf("%s: WARNING: unable to register hook\n", __func__);
298 }
299 
300 static void
301 socket_hhook_deregister(int subtype)
302 {
303 
304 	if (hhook_head_deregister(V_socket_hhh[subtype]) != 0)
305 		printf("%s: WARNING: unable to deregister hook\n", __func__);
306 }
307 
308 static void
309 socket_init(void *tag)
310 {
311 
312 	socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL,
313 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
314 	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
315 	uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached");
316 	EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL,
317 	    EVENTHANDLER_PRI_FIRST);
318 }
319 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL);
320 
321 static void
322 socket_vnet_init(const void *unused __unused)
323 {
324 	int i;
325 
326 	/* We expect a contiguous range */
327 	for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
328 		socket_hhook_register(i);
329 }
330 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
331     socket_vnet_init, NULL);
332 
333 static void
334 socket_vnet_uninit(const void *unused __unused)
335 {
336 	int i;
337 
338 	for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
339 		socket_hhook_deregister(i);
340 }
341 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
342     socket_vnet_uninit, NULL);
343 
344 /*
345  * Initialise maxsockets.  This SYSINIT must be run after
346  * tunable_mbinit().
347  */
348 static void
349 init_maxsockets(void *ignored)
350 {
351 
352 	TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
353 	maxsockets = imax(maxsockets, maxfiles);
354 }
355 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
356 
357 /*
358  * Sysctl to get and set the maximum global sockets limit.  Notify protocols
359  * of the change so that they can update their dependent limits as required.
360  */
361 static int
362 sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
363 {
364 	int error, newmaxsockets;
365 
366 	newmaxsockets = maxsockets;
367 	error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
368 	if (error == 0 && req->newptr) {
369 		if (newmaxsockets > maxsockets &&
370 		    newmaxsockets <= maxfiles) {
371 			maxsockets = newmaxsockets;
372 			EVENTHANDLER_INVOKE(maxsockets_change);
373 		} else
374 			error = EINVAL;
375 	}
376 	return (error);
377 }
378 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets,
379     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &maxsockets, 0,
380     sysctl_maxsockets, "IU",
381     "Maximum number of sockets available");
382 
383 /*
384  * Socket operation routines.  These routines are called by the routines in
385  * sys_socket.c or from a system process, and implement the semantics of
386  * socket operations by switching out to the protocol specific routines.
387  */
388 
389 /*
390  * Get a socket structure from our zone, and initialize it.  Note that it
391  * would probably be better to allocate socket and PCB at the same time, but
392  * I'm not convinced that all the protocols can be easily modified to do
393  * this.
394  *
395  * soalloc() returns a socket with a ref count of 0.
396  */
397 static struct socket *
398 soalloc(struct vnet *vnet)
399 {
400 	struct socket *so;
401 
402 	so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
403 	if (so == NULL)
404 		return (NULL);
405 #ifdef MAC
406 	if (mac_socket_init(so, M_NOWAIT) != 0) {
407 		uma_zfree(socket_zone, so);
408 		return (NULL);
409 	}
410 #endif
411 	if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) {
412 		uma_zfree(socket_zone, so);
413 		return (NULL);
414 	}
415 
416 	/*
417 	 * The socket locking protocol allows to lock 2 sockets at a time,
418 	 * however, the first one must be a listening socket.  WITNESS lacks
419 	 * a feature to change class of an existing lock, so we use DUPOK.
420 	 */
421 	mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK);
422 	SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd");
423 	SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv");
424 	so->so_rcv.sb_sel = &so->so_rdsel;
425 	so->so_snd.sb_sel = &so->so_wrsel;
426 	sx_init(&so->so_snd.sb_sx, "so_snd_sx");
427 	sx_init(&so->so_rcv.sb_sx, "so_rcv_sx");
428 	TAILQ_INIT(&so->so_snd.sb_aiojobq);
429 	TAILQ_INIT(&so->so_rcv.sb_aiojobq);
430 	TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so);
431 	TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so);
432 #ifdef VIMAGE
433 	VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p",
434 	    __func__, __LINE__, so));
435 	so->so_vnet = vnet;
436 #endif
437 	/* We shouldn't need the so_global_mtx */
438 	if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) {
439 		/* Do we need more comprehensive error returns? */
440 		uma_zfree(socket_zone, so);
441 		return (NULL);
442 	}
443 	mtx_lock(&so_global_mtx);
444 	so->so_gencnt = ++so_gencnt;
445 	++numopensockets;
446 #ifdef VIMAGE
447 	vnet->vnet_sockcnt++;
448 #endif
449 	mtx_unlock(&so_global_mtx);
450 
451 	return (so);
452 }
453 
454 /*
455  * Free the storage associated with a socket at the socket layer, tear down
456  * locks, labels, etc.  All protocol state is assumed already to have been
457  * torn down (and possibly never set up) by the caller.
458  */
459 static void
460 sodealloc(struct socket *so)
461 {
462 
463 	KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
464 	KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
465 
466 	mtx_lock(&so_global_mtx);
467 	so->so_gencnt = ++so_gencnt;
468 	--numopensockets;	/* Could be below, but faster here. */
469 #ifdef VIMAGE
470 	VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p",
471 	    __func__, __LINE__, so));
472 	so->so_vnet->vnet_sockcnt--;
473 #endif
474 	mtx_unlock(&so_global_mtx);
475 #ifdef MAC
476 	mac_socket_destroy(so);
477 #endif
478 	hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE);
479 
480 	crfree(so->so_cred);
481 	khelp_destroy_osd(&so->osd);
482 	if (SOLISTENING(so)) {
483 		if (so->sol_accept_filter != NULL)
484 			accept_filt_setopt(so, NULL);
485 	} else {
486 		if (so->so_rcv.sb_hiwat)
487 			(void)chgsbsize(so->so_cred->cr_uidinfo,
488 			    &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
489 		if (so->so_snd.sb_hiwat)
490 			(void)chgsbsize(so->so_cred->cr_uidinfo,
491 			    &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
492 		sx_destroy(&so->so_snd.sb_sx);
493 		sx_destroy(&so->so_rcv.sb_sx);
494 		SOCKBUF_LOCK_DESTROY(&so->so_snd);
495 		SOCKBUF_LOCK_DESTROY(&so->so_rcv);
496 	}
497 	mtx_destroy(&so->so_lock);
498 	uma_zfree(socket_zone, so);
499 }
500 
501 /*
502  * socreate returns a socket with a ref count of 1.  The socket should be
503  * closed with soclose().
504  */
505 int
506 socreate(int dom, struct socket **aso, int type, int proto,
507     struct ucred *cred, struct thread *td)
508 {
509 	struct protosw *prp;
510 	struct socket *so;
511 	int error;
512 
513 	if (proto)
514 		prp = pffindproto(dom, proto, type);
515 	else
516 		prp = pffindtype(dom, type);
517 
518 	if (prp == NULL) {
519 		/* No support for domain. */
520 		if (pffinddomain(dom) == NULL)
521 			return (EAFNOSUPPORT);
522 		/* No support for socket type. */
523 		if (proto == 0 && type != 0)
524 			return (EPROTOTYPE);
525 		return (EPROTONOSUPPORT);
526 	}
527 	if (prp->pr_usrreqs->pru_attach == NULL ||
528 	    prp->pr_usrreqs->pru_attach == pru_attach_notsupp)
529 		return (EPROTONOSUPPORT);
530 
531 	if (prison_check_af(cred, prp->pr_domain->dom_family) != 0)
532 		return (EPROTONOSUPPORT);
533 
534 	if (prp->pr_type != type)
535 		return (EPROTOTYPE);
536 	so = soalloc(CRED_TO_VNET(cred));
537 	if (so == NULL)
538 		return (ENOBUFS);
539 
540 	so->so_type = type;
541 	so->so_cred = crhold(cred);
542 	if ((prp->pr_domain->dom_family == PF_INET) ||
543 	    (prp->pr_domain->dom_family == PF_INET6) ||
544 	    (prp->pr_domain->dom_family == PF_ROUTE))
545 		so->so_fibnum = td->td_proc->p_fibnum;
546 	else
547 		so->so_fibnum = 0;
548 	so->so_proto = prp;
549 #ifdef MAC
550 	mac_socket_create(cred, so);
551 #endif
552 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
553 	    so_rdknl_assert_locked, so_rdknl_assert_unlocked);
554 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
555 	    so_wrknl_assert_locked, so_wrknl_assert_unlocked);
556 	/*
557 	 * Auto-sizing of socket buffers is managed by the protocols and
558 	 * the appropriate flags must be set in the pru_attach function.
559 	 */
560 	CURVNET_SET(so->so_vnet);
561 	error = (*prp->pr_usrreqs->pru_attach)(so, proto, td);
562 	CURVNET_RESTORE();
563 	if (error) {
564 		sodealloc(so);
565 		return (error);
566 	}
567 	soref(so);
568 	*aso = so;
569 	return (0);
570 }
571 
572 #ifdef REGRESSION
573 static int regression_sonewconn_earlytest = 1;
574 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
575     &regression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
576 #endif
577 
578 static struct timeval overinterval = { 60, 0 };
579 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW,
580     &overinterval,
581     "Delay in seconds between warnings for listen socket overflows");
582 
583 /*
584  * When an attempt at a new connection is noted on a socket which accepts
585  * connections, sonewconn is called.  If the connection is possible (subject
586  * to space constraints, etc.) then we allocate a new structure, properly
587  * linked into the data structure of the original socket, and return this.
588  * Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED.
589  *
590  * Note: the ref count on the socket is 0 on return.
591  */
592 struct socket *
593 sonewconn(struct socket *head, int connstatus)
594 {
595 	struct sbuf descrsb;
596 	struct socket *so;
597 	int len, overcount;
598 	u_int qlen;
599 	const char localprefix[] = "local:";
600 	char descrbuf[SUNPATHLEN + sizeof(localprefix)];
601 #if defined(INET6)
602 	char addrbuf[INET6_ADDRSTRLEN];
603 #elif defined(INET)
604 	char addrbuf[INET_ADDRSTRLEN];
605 #endif
606 	bool dolog, over;
607 
608 	SOLISTEN_LOCK(head);
609 	over = (head->sol_qlen > 3 * head->sol_qlimit / 2);
610 #ifdef REGRESSION
611 	if (regression_sonewconn_earlytest && over) {
612 #else
613 	if (over) {
614 #endif
615 		head->sol_overcount++;
616 		dolog = !!ratecheck(&head->sol_lastover, &overinterval);
617 
618 		/*
619 		 * If we're going to log, copy the overflow count and queue
620 		 * length from the listen socket before dropping the lock.
621 		 * Also, reset the overflow count.
622 		 */
623 		if (dolog) {
624 			overcount = head->sol_overcount;
625 			head->sol_overcount = 0;
626 			qlen = head->sol_qlen;
627 		}
628 		SOLISTEN_UNLOCK(head);
629 
630 		if (dolog) {
631 			/*
632 			 * Try to print something descriptive about the
633 			 * socket for the error message.
634 			 */
635 			sbuf_new(&descrsb, descrbuf, sizeof(descrbuf),
636 			    SBUF_FIXEDLEN);
637 			switch (head->so_proto->pr_domain->dom_family) {
638 #if defined(INET) || defined(INET6)
639 #ifdef INET
640 			case AF_INET:
641 #endif
642 #ifdef INET6
643 			case AF_INET6:
644 				if (head->so_proto->pr_domain->dom_family ==
645 				    AF_INET6 ||
646 				    (sotoinpcb(head)->inp_inc.inc_flags &
647 				    INC_ISIPV6)) {
648 					ip6_sprintf(addrbuf,
649 					    &sotoinpcb(head)->inp_inc.inc6_laddr);
650 					sbuf_printf(&descrsb, "[%s]", addrbuf);
651 				} else
652 #endif
653 				{
654 #ifdef INET
655 					inet_ntoa_r(
656 					    sotoinpcb(head)->inp_inc.inc_laddr,
657 					    addrbuf);
658 					sbuf_cat(&descrsb, addrbuf);
659 #endif
660 				}
661 				sbuf_printf(&descrsb, ":%hu (proto %u)",
662 				    ntohs(sotoinpcb(head)->inp_inc.inc_lport),
663 				    head->so_proto->pr_protocol);
664 				break;
665 #endif /* INET || INET6 */
666 			case AF_UNIX:
667 				sbuf_cat(&descrsb, localprefix);
668 				if (sotounpcb(head)->unp_addr != NULL)
669 					len =
670 					    sotounpcb(head)->unp_addr->sun_len -
671 					    offsetof(struct sockaddr_un,
672 					    sun_path);
673 				else
674 					len = 0;
675 				if (len > 0)
676 					sbuf_bcat(&descrsb,
677 					    sotounpcb(head)->unp_addr->sun_path,
678 					    len);
679 				else
680 					sbuf_cat(&descrsb, "(unknown)");
681 				break;
682 			}
683 
684 			/*
685 			 * If we can't print something more specific, at least
686 			 * print the domain name.
687 			 */
688 			if (sbuf_finish(&descrsb) != 0 ||
689 			    sbuf_len(&descrsb) <= 0) {
690 				sbuf_clear(&descrsb);
691 				sbuf_cat(&descrsb,
692 				    head->so_proto->pr_domain->dom_name ?:
693 				    "unknown");
694 				sbuf_finish(&descrsb);
695 			}
696 			KASSERT(sbuf_len(&descrsb) > 0,
697 			    ("%s: sbuf creation failed", __func__));
698 			log(LOG_DEBUG,
699 			    "%s: pcb %p (%s): Listen queue overflow: "
700 			    "%i already in queue awaiting acceptance "
701 			    "(%d occurrences)\n",
702 			    __func__, head->so_pcb, sbuf_data(&descrsb),
703 			    qlen, overcount);
704 			sbuf_delete(&descrsb);
705 
706 			overcount = 0;
707 		}
708 
709 		return (NULL);
710 	}
711 	SOLISTEN_UNLOCK(head);
712 	VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL",
713 	    __func__, head));
714 	so = soalloc(head->so_vnet);
715 	if (so == NULL) {
716 		log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
717 		    "limit reached or out of memory\n",
718 		    __func__, head->so_pcb);
719 		return (NULL);
720 	}
721 	so->so_listen = head;
722 	so->so_type = head->so_type;
723 	so->so_linger = head->so_linger;
724 	so->so_state = head->so_state | SS_NOFDREF;
725 	so->so_fibnum = head->so_fibnum;
726 	so->so_proto = head->so_proto;
727 	so->so_cred = crhold(head->so_cred);
728 #ifdef MAC
729 	mac_socket_newconn(head, so);
730 #endif
731 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
732 	    so_rdknl_assert_locked, so_rdknl_assert_unlocked);
733 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
734 	    so_wrknl_assert_locked, so_wrknl_assert_unlocked);
735 	VNET_SO_ASSERT(head);
736 	if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) {
737 		sodealloc(so);
738 		log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
739 		    __func__, head->so_pcb);
740 		return (NULL);
741 	}
742 	if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
743 		sodealloc(so);
744 		log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n",
745 		    __func__, head->so_pcb);
746 		return (NULL);
747 	}
748 	so->so_rcv.sb_lowat = head->sol_sbrcv_lowat;
749 	so->so_snd.sb_lowat = head->sol_sbsnd_lowat;
750 	so->so_rcv.sb_timeo = head->sol_sbrcv_timeo;
751 	so->so_snd.sb_timeo = head->sol_sbsnd_timeo;
752 	so->so_rcv.sb_flags |= head->sol_sbrcv_flags & SB_AUTOSIZE;
753 	so->so_snd.sb_flags |= head->sol_sbsnd_flags & SB_AUTOSIZE;
754 
755 	SOLISTEN_LOCK(head);
756 	if (head->sol_accept_filter != NULL)
757 		connstatus = 0;
758 	so->so_state |= connstatus;
759 	so->so_options = head->so_options & ~SO_ACCEPTCONN;
760 	soref(head); /* A socket on (in)complete queue refs head. */
761 	if (connstatus) {
762 		TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
763 		so->so_qstate = SQ_COMP;
764 		head->sol_qlen++;
765 		solisten_wakeup(head);	/* unlocks */
766 	} else {
767 		/*
768 		 * Keep removing sockets from the head until there's room for
769 		 * us to insert on the tail.  In pre-locking revisions, this
770 		 * was a simple if(), but as we could be racing with other
771 		 * threads and soabort() requires dropping locks, we must
772 		 * loop waiting for the condition to be true.
773 		 */
774 		while (head->sol_incqlen > head->sol_qlimit) {
775 			struct socket *sp;
776 
777 			sp = TAILQ_FIRST(&head->sol_incomp);
778 			TAILQ_REMOVE(&head->sol_incomp, sp, so_list);
779 			head->sol_incqlen--;
780 			SOCK_LOCK(sp);
781 			sp->so_qstate = SQ_NONE;
782 			sp->so_listen = NULL;
783 			SOCK_UNLOCK(sp);
784 			sorele(head);	/* does SOLISTEN_UNLOCK, head stays */
785 			soabort(sp);
786 			SOLISTEN_LOCK(head);
787 		}
788 		TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list);
789 		so->so_qstate = SQ_INCOMP;
790 		head->sol_incqlen++;
791 		SOLISTEN_UNLOCK(head);
792 	}
793 	return (so);
794 }
795 
796 #ifdef SCTP
797 /*
798  * Socket part of sctp_peeloff().  Detach a new socket from an
799  * association.  The new socket is returned with a reference.
800  */
801 struct socket *
802 sopeeloff(struct socket *head)
803 {
804 	struct socket *so;
805 
806 	VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p",
807 	    __func__, __LINE__, head));
808 	so = soalloc(head->so_vnet);
809 	if (so == NULL) {
810 		log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
811 		    "limit reached or out of memory\n",
812 		    __func__, head->so_pcb);
813 		return (NULL);
814 	}
815 	so->so_type = head->so_type;
816 	so->so_options = head->so_options;
817 	so->so_linger = head->so_linger;
818 	so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED;
819 	so->so_fibnum = head->so_fibnum;
820 	so->so_proto = head->so_proto;
821 	so->so_cred = crhold(head->so_cred);
822 #ifdef MAC
823 	mac_socket_newconn(head, so);
824 #endif
825 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
826 	    so_rdknl_assert_locked, so_rdknl_assert_unlocked);
827 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
828 	    so_wrknl_assert_locked, so_wrknl_assert_unlocked);
829 	VNET_SO_ASSERT(head);
830 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
831 		sodealloc(so);
832 		log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
833 		    __func__, head->so_pcb);
834 		return (NULL);
835 	}
836 	if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
837 		sodealloc(so);
838 		log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n",
839 		    __func__, head->so_pcb);
840 		return (NULL);
841 	}
842 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
843 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
844 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
845 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
846 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
847 	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
848 
849 	soref(so);
850 
851 	return (so);
852 }
853 #endif	/* SCTP */
854 
855 int
856 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
857 {
858 	int error;
859 
860 	CURVNET_SET(so->so_vnet);
861 	error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td);
862 	CURVNET_RESTORE();
863 	return (error);
864 }
865 
866 int
867 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
868 {
869 	int error;
870 
871 	CURVNET_SET(so->so_vnet);
872 	error = (*so->so_proto->pr_usrreqs->pru_bindat)(fd, so, nam, td);
873 	CURVNET_RESTORE();
874 	return (error);
875 }
876 
877 /*
878  * solisten() transitions a socket from a non-listening state to a listening
879  * state, but can also be used to update the listen queue depth on an
880  * existing listen socket.  The protocol will call back into the sockets
881  * layer using solisten_proto_check() and solisten_proto() to check and set
882  * socket-layer listen state.  Call backs are used so that the protocol can
883  * acquire both protocol and socket layer locks in whatever order is required
884  * by the protocol.
885  *
886  * Protocol implementors are advised to hold the socket lock across the
887  * socket-layer test and set to avoid races at the socket layer.
888  */
889 int
890 solisten(struct socket *so, int backlog, struct thread *td)
891 {
892 	int error;
893 
894 	CURVNET_SET(so->so_vnet);
895 	error = (*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td);
896 	CURVNET_RESTORE();
897 	return (error);
898 }
899 
900 int
901 solisten_proto_check(struct socket *so)
902 {
903 
904 	SOCK_LOCK_ASSERT(so);
905 
906 	if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
907 	    SS_ISDISCONNECTING))
908 		return (EINVAL);
909 	return (0);
910 }
911 
912 void
913 solisten_proto(struct socket *so, int backlog)
914 {
915 	int sbrcv_lowat, sbsnd_lowat;
916 	u_int sbrcv_hiwat, sbsnd_hiwat;
917 	short sbrcv_flags, sbsnd_flags;
918 	sbintime_t sbrcv_timeo, sbsnd_timeo;
919 
920 	SOCK_LOCK_ASSERT(so);
921 
922 	if (SOLISTENING(so))
923 		goto listening;
924 
925 	/*
926 	 * Change this socket to listening state.
927 	 */
928 	sbrcv_lowat = so->so_rcv.sb_lowat;
929 	sbsnd_lowat = so->so_snd.sb_lowat;
930 	sbrcv_hiwat = so->so_rcv.sb_hiwat;
931 	sbsnd_hiwat = so->so_snd.sb_hiwat;
932 	sbrcv_flags = so->so_rcv.sb_flags;
933 	sbsnd_flags = so->so_snd.sb_flags;
934 	sbrcv_timeo = so->so_rcv.sb_timeo;
935 	sbsnd_timeo = so->so_snd.sb_timeo;
936 
937 	sbdestroy(&so->so_snd, so);
938 	sbdestroy(&so->so_rcv, so);
939 	sx_destroy(&so->so_snd.sb_sx);
940 	sx_destroy(&so->so_rcv.sb_sx);
941 	SOCKBUF_LOCK_DESTROY(&so->so_snd);
942 	SOCKBUF_LOCK_DESTROY(&so->so_rcv);
943 
944 #ifdef INVARIANTS
945 	bzero(&so->so_rcv,
946 	    sizeof(struct socket) - offsetof(struct socket, so_rcv));
947 #endif
948 
949 	so->sol_sbrcv_lowat = sbrcv_lowat;
950 	so->sol_sbsnd_lowat = sbsnd_lowat;
951 	so->sol_sbrcv_hiwat = sbrcv_hiwat;
952 	so->sol_sbsnd_hiwat = sbsnd_hiwat;
953 	so->sol_sbrcv_flags = sbrcv_flags;
954 	so->sol_sbsnd_flags = sbsnd_flags;
955 	so->sol_sbrcv_timeo = sbrcv_timeo;
956 	so->sol_sbsnd_timeo = sbsnd_timeo;
957 
958 	so->sol_qlen = so->sol_incqlen = 0;
959 	TAILQ_INIT(&so->sol_incomp);
960 	TAILQ_INIT(&so->sol_comp);
961 
962 	so->sol_accept_filter = NULL;
963 	so->sol_accept_filter_arg = NULL;
964 	so->sol_accept_filter_str = NULL;
965 
966 	so->sol_upcall = NULL;
967 	so->sol_upcallarg = NULL;
968 
969 	so->so_options |= SO_ACCEPTCONN;
970 
971 listening:
972 	if (backlog < 0 || backlog > somaxconn)
973 		backlog = somaxconn;
974 	so->sol_qlimit = backlog;
975 }
976 
977 /*
978  * Wakeup listeners/subsystems once we have a complete connection.
979  * Enters with lock, returns unlocked.
980  */
981 void
982 solisten_wakeup(struct socket *sol)
983 {
984 
985 	if (sol->sol_upcall != NULL)
986 		(void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT);
987 	else {
988 		selwakeuppri(&sol->so_rdsel, PSOCK);
989 		KNOTE_LOCKED(&sol->so_rdsel.si_note, 0);
990 	}
991 	SOLISTEN_UNLOCK(sol);
992 	wakeup_one(&sol->sol_comp);
993 	if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL)
994 		pgsigio(&sol->so_sigio, SIGIO, 0);
995 }
996 
997 /*
998  * Return single connection off a listening socket queue.  Main consumer of
999  * the function is kern_accept4().  Some modules, that do their own accept
1000  * management also use the function.
1001  *
1002  * Listening socket must be locked on entry and is returned unlocked on
1003  * return.
1004  * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT.
1005  */
1006 int
1007 solisten_dequeue(struct socket *head, struct socket **ret, int flags)
1008 {
1009 	struct socket *so;
1010 	int error;
1011 
1012 	SOLISTEN_LOCK_ASSERT(head);
1013 
1014 	while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) &&
1015 	    head->so_error == 0) {
1016 		error = msleep(&head->sol_comp, &head->so_lock, PSOCK | PCATCH,
1017 		    "accept", 0);
1018 		if (error != 0) {
1019 			SOLISTEN_UNLOCK(head);
1020 			return (error);
1021 		}
1022 	}
1023 	if (head->so_error) {
1024 		error = head->so_error;
1025 		head->so_error = 0;
1026 	} else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp))
1027 		error = EWOULDBLOCK;
1028 	else
1029 		error = 0;
1030 	if (error) {
1031 		SOLISTEN_UNLOCK(head);
1032 		return (error);
1033 	}
1034 	so = TAILQ_FIRST(&head->sol_comp);
1035 	SOCK_LOCK(so);
1036 	KASSERT(so->so_qstate == SQ_COMP,
1037 	    ("%s: so %p not SQ_COMP", __func__, so));
1038 	soref(so);
1039 	head->sol_qlen--;
1040 	so->so_qstate = SQ_NONE;
1041 	so->so_listen = NULL;
1042 	TAILQ_REMOVE(&head->sol_comp, so, so_list);
1043 	if (flags & ACCEPT4_INHERIT)
1044 		so->so_state |= (head->so_state & SS_NBIO);
1045 	else
1046 		so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0;
1047 	SOCK_UNLOCK(so);
1048 	sorele(head);
1049 
1050 	*ret = so;
1051 	return (0);
1052 }
1053 
1054 /*
1055  * Evaluate the reference count and named references on a socket; if no
1056  * references remain, free it.  This should be called whenever a reference is
1057  * released, such as in sorele(), but also when named reference flags are
1058  * cleared in socket or protocol code.
1059  *
1060  * sofree() will free the socket if:
1061  *
1062  * - There are no outstanding file descriptor references or related consumers
1063  *   (so_count == 0).
1064  *
1065  * - The socket has been closed by user space, if ever open (SS_NOFDREF).
1066  *
1067  * - The protocol does not have an outstanding strong reference on the socket
1068  *   (SS_PROTOREF).
1069  *
1070  * - The socket is not in a completed connection queue, so a process has been
1071  *   notified that it is present.  If it is removed, the user process may
1072  *   block in accept() despite select() saying the socket was ready.
1073  */
1074 void
1075 sofree(struct socket *so)
1076 {
1077 	struct protosw *pr = so->so_proto;
1078 
1079 	SOCK_LOCK_ASSERT(so);
1080 
1081 	if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 ||
1082 	    (so->so_state & SS_PROTOREF) || (so->so_qstate == SQ_COMP)) {
1083 		SOCK_UNLOCK(so);
1084 		return;
1085 	}
1086 
1087 	if (!SOLISTENING(so) && so->so_qstate == SQ_INCOMP) {
1088 		struct socket *sol;
1089 
1090 		sol = so->so_listen;
1091 		KASSERT(sol, ("%s: so %p on incomp of NULL", __func__, so));
1092 
1093 		/*
1094 		 * To solve race between close of a listening socket and
1095 		 * a socket on its incomplete queue, we need to lock both.
1096 		 * The order is first listening socket, then regular.
1097 		 * Since we don't have SS_NOFDREF neither SS_PROTOREF, this
1098 		 * function and the listening socket are the only pointers
1099 		 * to so.  To preserve so and sol, we reference both and then
1100 		 * relock.
1101 		 * After relock the socket may not move to so_comp since it
1102 		 * doesn't have PCB already, but it may be removed from
1103 		 * so_incomp. If that happens, we share responsiblity on
1104 		 * freeing the socket, but soclose() has already removed
1105 		 * it from queue.
1106 		 */
1107 		soref(sol);
1108 		soref(so);
1109 		SOCK_UNLOCK(so);
1110 		SOLISTEN_LOCK(sol);
1111 		SOCK_LOCK(so);
1112 		if (so->so_qstate == SQ_INCOMP) {
1113 			KASSERT(so->so_listen == sol,
1114 			    ("%s: so %p migrated out of sol %p",
1115 			    __func__, so, sol));
1116 			TAILQ_REMOVE(&sol->sol_incomp, so, so_list);
1117 			sol->sol_incqlen--;
1118 			/* This is guarenteed not to be the last. */
1119 			refcount_release(&sol->so_count);
1120 			so->so_qstate = SQ_NONE;
1121 			so->so_listen = NULL;
1122 		} else
1123 			KASSERT(so->so_listen == NULL,
1124 			    ("%s: so %p not on (in)comp with so_listen",
1125 			    __func__, so));
1126 		sorele(sol);
1127 		KASSERT(so->so_count == 1,
1128 		    ("%s: so %p count %u", __func__, so, so->so_count));
1129 		so->so_count = 0;
1130 	}
1131 	if (SOLISTENING(so))
1132 		so->so_error = ECONNABORTED;
1133 	SOCK_UNLOCK(so);
1134 
1135 	if (so->so_dtor != NULL)
1136 		so->so_dtor(so);
1137 
1138 	VNET_SO_ASSERT(so);
1139 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
1140 		(*pr->pr_domain->dom_dispose)(so);
1141 	if (pr->pr_usrreqs->pru_detach != NULL)
1142 		(*pr->pr_usrreqs->pru_detach)(so);
1143 
1144 	/*
1145 	 * From this point on, we assume that no other references to this
1146 	 * socket exist anywhere else in the stack.  Therefore, no locks need
1147 	 * to be acquired or held.
1148 	 *
1149 	 * We used to do a lot of socket buffer and socket locking here, as
1150 	 * well as invoke sorflush() and perform wakeups.  The direct call to
1151 	 * dom_dispose() and sbdestroy() are an inlining of what was
1152 	 * necessary from sorflush().
1153 	 *
1154 	 * Notice that the socket buffer and kqueue state are torn down
1155 	 * before calling pru_detach.  This means that protocols shold not
1156 	 * assume they can perform socket wakeups, etc, in their detach code.
1157 	 */
1158 	if (!SOLISTENING(so)) {
1159 		sbdestroy(&so->so_snd, so);
1160 		sbdestroy(&so->so_rcv, so);
1161 	}
1162 	seldrain(&so->so_rdsel);
1163 	seldrain(&so->so_wrsel);
1164 	knlist_destroy(&so->so_rdsel.si_note);
1165 	knlist_destroy(&so->so_wrsel.si_note);
1166 	sodealloc(so);
1167 }
1168 
1169 /*
1170  * Close a socket on last file table reference removal.  Initiate disconnect
1171  * if connected.  Free socket when disconnect complete.
1172  *
1173  * This function will sorele() the socket.  Note that soclose() may be called
1174  * prior to the ref count reaching zero.  The actual socket structure will
1175  * not be freed until the ref count reaches zero.
1176  */
1177 int
1178 soclose(struct socket *so)
1179 {
1180 	struct accept_queue lqueue;
1181 	bool listening;
1182 	int error = 0;
1183 
1184 	KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter"));
1185 
1186 	CURVNET_SET(so->so_vnet);
1187 	funsetown(&so->so_sigio);
1188 	if (so->so_state & SS_ISCONNECTED) {
1189 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
1190 			error = sodisconnect(so);
1191 			if (error) {
1192 				if (error == ENOTCONN)
1193 					error = 0;
1194 				goto drop;
1195 			}
1196 		}
1197 		if (so->so_options & SO_LINGER) {
1198 			if ((so->so_state & SS_ISDISCONNECTING) &&
1199 			    (so->so_state & SS_NBIO))
1200 				goto drop;
1201 			while (so->so_state & SS_ISCONNECTED) {
1202 				error = tsleep(&so->so_timeo,
1203 				    PSOCK | PCATCH, "soclos",
1204 				    so->so_linger * hz);
1205 				if (error)
1206 					break;
1207 			}
1208 		}
1209 	}
1210 
1211 drop:
1212 	if (so->so_proto->pr_usrreqs->pru_close != NULL)
1213 		(*so->so_proto->pr_usrreqs->pru_close)(so);
1214 
1215 	SOCK_LOCK(so);
1216 	if ((listening = (so->so_options & SO_ACCEPTCONN))) {
1217 		struct socket *sp;
1218 
1219 		TAILQ_INIT(&lqueue);
1220 		TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list);
1221 		TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list);
1222 
1223 		so->sol_qlen = so->sol_incqlen = 0;
1224 
1225 		TAILQ_FOREACH(sp, &lqueue, so_list) {
1226 			SOCK_LOCK(sp);
1227 			sp->so_qstate = SQ_NONE;
1228 			sp->so_listen = NULL;
1229 			SOCK_UNLOCK(sp);
1230 			/* Guaranteed not to be the last. */
1231 			refcount_release(&so->so_count);
1232 		}
1233 	}
1234 	KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF"));
1235 	so->so_state |= SS_NOFDREF;
1236 	sorele(so);
1237 	if (listening) {
1238 		struct socket *sp, *tsp;
1239 
1240 		TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp) {
1241 			SOCK_LOCK(sp);
1242 			if (sp->so_count == 0) {
1243 				SOCK_UNLOCK(sp);
1244 				soabort(sp);
1245 			} else
1246 				/* sp is now in sofree() */
1247 				SOCK_UNLOCK(sp);
1248 		}
1249 	}
1250 	CURVNET_RESTORE();
1251 	return (error);
1252 }
1253 
1254 /*
1255  * soabort() is used to abruptly tear down a connection, such as when a
1256  * resource limit is reached (listen queue depth exceeded), or if a listen
1257  * socket is closed while there are sockets waiting to be accepted.
1258  *
1259  * This interface is tricky, because it is called on an unreferenced socket,
1260  * and must be called only by a thread that has actually removed the socket
1261  * from the listen queue it was on, or races with other threads are risked.
1262  *
1263  * This interface will call into the protocol code, so must not be called
1264  * with any socket locks held.  Protocols do call it while holding their own
1265  * recursible protocol mutexes, but this is something that should be subject
1266  * to review in the future.
1267  */
1268 void
1269 soabort(struct socket *so)
1270 {
1271 
1272 	/*
1273 	 * In as much as is possible, assert that no references to this
1274 	 * socket are held.  This is not quite the same as asserting that the
1275 	 * current thread is responsible for arranging for no references, but
1276 	 * is as close as we can get for now.
1277 	 */
1278 	KASSERT(so->so_count == 0, ("soabort: so_count"));
1279 	KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF"));
1280 	KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF"));
1281 	VNET_SO_ASSERT(so);
1282 
1283 	if (so->so_proto->pr_usrreqs->pru_abort != NULL)
1284 		(*so->so_proto->pr_usrreqs->pru_abort)(so);
1285 	SOCK_LOCK(so);
1286 	sofree(so);
1287 }
1288 
1289 int
1290 soaccept(struct socket *so, struct sockaddr **nam)
1291 {
1292 	int error;
1293 
1294 	SOCK_LOCK(so);
1295 	KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF"));
1296 	so->so_state &= ~SS_NOFDREF;
1297 	SOCK_UNLOCK(so);
1298 
1299 	CURVNET_SET(so->so_vnet);
1300 	error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam);
1301 	CURVNET_RESTORE();
1302 	return (error);
1303 }
1304 
1305 int
1306 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
1307 {
1308 
1309 	return (soconnectat(AT_FDCWD, so, nam, td));
1310 }
1311 
1312 int
1313 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
1314 {
1315 	int error;
1316 
1317 	if (so->so_options & SO_ACCEPTCONN)
1318 		return (EOPNOTSUPP);
1319 
1320 	CURVNET_SET(so->so_vnet);
1321 	/*
1322 	 * If protocol is connection-based, can only connect once.
1323 	 * Otherwise, if connected, try to disconnect first.  This allows
1324 	 * user to disconnect by connecting to, e.g., a null address.
1325 	 */
1326 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
1327 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
1328 	    (error = sodisconnect(so)))) {
1329 		error = EISCONN;
1330 	} else {
1331 		/*
1332 		 * Prevent accumulated error from previous connection from
1333 		 * biting us.
1334 		 */
1335 		so->so_error = 0;
1336 		if (fd == AT_FDCWD) {
1337 			error = (*so->so_proto->pr_usrreqs->pru_connect)(so,
1338 			    nam, td);
1339 		} else {
1340 			error = (*so->so_proto->pr_usrreqs->pru_connectat)(fd,
1341 			    so, nam, td);
1342 		}
1343 	}
1344 	CURVNET_RESTORE();
1345 
1346 	return (error);
1347 }
1348 
1349 int
1350 soconnect2(struct socket *so1, struct socket *so2)
1351 {
1352 	int error;
1353 
1354 	CURVNET_SET(so1->so_vnet);
1355 	error = (*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2);
1356 	CURVNET_RESTORE();
1357 	return (error);
1358 }
1359 
1360 int
1361 sodisconnect(struct socket *so)
1362 {
1363 	int error;
1364 
1365 	if ((so->so_state & SS_ISCONNECTED) == 0)
1366 		return (ENOTCONN);
1367 	if (so->so_state & SS_ISDISCONNECTING)
1368 		return (EALREADY);
1369 	VNET_SO_ASSERT(so);
1370 	error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so);
1371 	return (error);
1372 }
1373 
1374 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT)
1375 
1376 int
1377 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
1378     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1379 {
1380 	long space;
1381 	ssize_t resid;
1382 	int clen = 0, error, dontroute;
1383 
1384 	KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM"));
1385 	KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
1386 	    ("sosend_dgram: !PR_ATOMIC"));
1387 
1388 	if (uio != NULL)
1389 		resid = uio->uio_resid;
1390 	else
1391 		resid = top->m_pkthdr.len;
1392 	/*
1393 	 * In theory resid should be unsigned.  However, space must be
1394 	 * signed, as it might be less than 0 if we over-committed, and we
1395 	 * must use a signed comparison of space and resid.  On the other
1396 	 * hand, a negative resid causes us to loop sending 0-length
1397 	 * segments to the protocol.
1398 	 */
1399 	if (resid < 0) {
1400 		error = EINVAL;
1401 		goto out;
1402 	}
1403 
1404 	dontroute =
1405 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
1406 	if (td != NULL)
1407 		td->td_ru.ru_msgsnd++;
1408 	if (control != NULL)
1409 		clen = control->m_len;
1410 
1411 	SOCKBUF_LOCK(&so->so_snd);
1412 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1413 		SOCKBUF_UNLOCK(&so->so_snd);
1414 		error = EPIPE;
1415 		goto out;
1416 	}
1417 	if (so->so_error) {
1418 		error = so->so_error;
1419 		so->so_error = 0;
1420 		SOCKBUF_UNLOCK(&so->so_snd);
1421 		goto out;
1422 	}
1423 	if ((so->so_state & SS_ISCONNECTED) == 0) {
1424 		/*
1425 		 * `sendto' and `sendmsg' is allowed on a connection-based
1426 		 * socket if it supports implied connect.  Return ENOTCONN if
1427 		 * not connected and no address is supplied.
1428 		 */
1429 		if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1430 		    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1431 			if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1432 			    !(resid == 0 && clen != 0)) {
1433 				SOCKBUF_UNLOCK(&so->so_snd);
1434 				error = ENOTCONN;
1435 				goto out;
1436 			}
1437 		} else if (addr == NULL) {
1438 			if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1439 				error = ENOTCONN;
1440 			else
1441 				error = EDESTADDRREQ;
1442 			SOCKBUF_UNLOCK(&so->so_snd);
1443 			goto out;
1444 		}
1445 	}
1446 
1447 	/*
1448 	 * Do we need MSG_OOB support in SOCK_DGRAM?  Signs here may be a
1449 	 * problem and need fixing.
1450 	 */
1451 	space = sbspace(&so->so_snd);
1452 	if (flags & MSG_OOB)
1453 		space += 1024;
1454 	space -= clen;
1455 	SOCKBUF_UNLOCK(&so->so_snd);
1456 	if (resid > space) {
1457 		error = EMSGSIZE;
1458 		goto out;
1459 	}
1460 	if (uio == NULL) {
1461 		resid = 0;
1462 		if (flags & MSG_EOR)
1463 			top->m_flags |= M_EOR;
1464 	} else {
1465 		/*
1466 		 * Copy the data from userland into a mbuf chain.
1467 		 * If no data is to be copied in, a single empty mbuf
1468 		 * is returned.
1469 		 */
1470 		top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
1471 		    (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
1472 		if (top == NULL) {
1473 			error = EFAULT;	/* only possible error */
1474 			goto out;
1475 		}
1476 		space -= resid - uio->uio_resid;
1477 		resid = uio->uio_resid;
1478 	}
1479 	KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
1480 	/*
1481 	 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
1482 	 * than with.
1483 	 */
1484 	if (dontroute) {
1485 		SOCK_LOCK(so);
1486 		so->so_options |= SO_DONTROUTE;
1487 		SOCK_UNLOCK(so);
1488 	}
1489 	/*
1490 	 * XXX all the SBS_CANTSENDMORE checks previously done could be out
1491 	 * of date.  We could have received a reset packet in an interrupt or
1492 	 * maybe we slept while doing page faults in uiomove() etc.  We could
1493 	 * probably recheck again inside the locking protection here, but
1494 	 * there are probably other places that this also happens.  We must
1495 	 * rethink this.
1496 	 */
1497 	VNET_SO_ASSERT(so);
1498 	error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1499 	    (flags & MSG_OOB) ? PRUS_OOB :
1500 	/*
1501 	 * If the user set MSG_EOF, the protocol understands this flag and
1502 	 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
1503 	 */
1504 	    ((flags & MSG_EOF) &&
1505 	     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1506 	     (resid <= 0)) ?
1507 		PRUS_EOF :
1508 		/* If there is more to send set PRUS_MORETOCOME */
1509 		(flags & MSG_MORETOCOME) ||
1510 		(resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1511 		top, addr, control, td);
1512 	if (dontroute) {
1513 		SOCK_LOCK(so);
1514 		so->so_options &= ~SO_DONTROUTE;
1515 		SOCK_UNLOCK(so);
1516 	}
1517 	clen = 0;
1518 	control = NULL;
1519 	top = NULL;
1520 out:
1521 	if (top != NULL)
1522 		m_freem(top);
1523 	if (control != NULL)
1524 		m_freem(control);
1525 	return (error);
1526 }
1527 
1528 /*
1529  * Send on a socket.  If send must go all at once and message is larger than
1530  * send buffering, then hard error.  Lock against other senders.  If must go
1531  * all at once and not enough room now, then inform user that this would
1532  * block and do nothing.  Otherwise, if nonblocking, send as much as
1533  * possible.  The data to be sent is described by "uio" if nonzero, otherwise
1534  * by the mbuf chain "top" (which must be null if uio is not).  Data provided
1535  * in mbuf chain must be small enough to send all at once.
1536  *
1537  * Returns nonzero on error, timeout or signal; callers must check for short
1538  * counts if EINTR/ERESTART are returned.  Data and control buffers are freed
1539  * on return.
1540  */
1541 int
1542 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
1543     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1544 {
1545 	long space;
1546 	ssize_t resid;
1547 	int clen = 0, error, dontroute;
1548 	int atomic = sosendallatonce(so) || top;
1549 	int pru_flag;
1550 #ifdef KERN_TLS
1551 	struct ktls_session *tls;
1552 	int tls_enq_cnt, tls_pruflag;
1553 	uint8_t tls_rtype;
1554 
1555 	tls = NULL;
1556 	tls_rtype = TLS_RLTYPE_APP;
1557 #endif
1558 	if (uio != NULL)
1559 		resid = uio->uio_resid;
1560 	else if ((top->m_flags & M_PKTHDR) != 0)
1561 		resid = top->m_pkthdr.len;
1562 	else
1563 		resid = m_length(top, NULL);
1564 	/*
1565 	 * In theory resid should be unsigned.  However, space must be
1566 	 * signed, as it might be less than 0 if we over-committed, and we
1567 	 * must use a signed comparison of space and resid.  On the other
1568 	 * hand, a negative resid causes us to loop sending 0-length
1569 	 * segments to the protocol.
1570 	 *
1571 	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
1572 	 * type sockets since that's an error.
1573 	 */
1574 	if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
1575 		error = EINVAL;
1576 		goto out;
1577 	}
1578 
1579 	dontroute =
1580 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
1581 	    (so->so_proto->pr_flags & PR_ATOMIC);
1582 	if (td != NULL)
1583 		td->td_ru.ru_msgsnd++;
1584 	if (control != NULL)
1585 		clen = control->m_len;
1586 
1587 	error = sblock(&so->so_snd, SBLOCKWAIT(flags));
1588 	if (error)
1589 		goto out;
1590 
1591 #ifdef KERN_TLS
1592 	tls_pruflag = 0;
1593 	tls = ktls_hold(so->so_snd.sb_tls_info);
1594 	if (tls != NULL) {
1595 		if (tls->mode == TCP_TLS_MODE_SW)
1596 			tls_pruflag = PRUS_NOTREADY;
1597 
1598 		if (control != NULL) {
1599 			struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1600 
1601 			if (clen >= sizeof(*cm) &&
1602 			    cm->cmsg_type == TLS_SET_RECORD_TYPE) {
1603 				tls_rtype = *((uint8_t *)CMSG_DATA(cm));
1604 				clen = 0;
1605 				m_freem(control);
1606 				control = NULL;
1607 				atomic = 1;
1608 			}
1609 		}
1610 	}
1611 #endif
1612 
1613 restart:
1614 	do {
1615 		SOCKBUF_LOCK(&so->so_snd);
1616 		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1617 			SOCKBUF_UNLOCK(&so->so_snd);
1618 			error = EPIPE;
1619 			goto release;
1620 		}
1621 		if (so->so_error) {
1622 			error = so->so_error;
1623 			so->so_error = 0;
1624 			SOCKBUF_UNLOCK(&so->so_snd);
1625 			goto release;
1626 		}
1627 		if ((so->so_state & SS_ISCONNECTED) == 0) {
1628 			/*
1629 			 * `sendto' and `sendmsg' is allowed on a connection-
1630 			 * based socket if it supports implied connect.
1631 			 * Return ENOTCONN if not connected and no address is
1632 			 * supplied.
1633 			 */
1634 			if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1635 			    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1636 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1637 				    !(resid == 0 && clen != 0)) {
1638 					SOCKBUF_UNLOCK(&so->so_snd);
1639 					error = ENOTCONN;
1640 					goto release;
1641 				}
1642 			} else if (addr == NULL) {
1643 				SOCKBUF_UNLOCK(&so->so_snd);
1644 				if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1645 					error = ENOTCONN;
1646 				else
1647 					error = EDESTADDRREQ;
1648 				goto release;
1649 			}
1650 		}
1651 		space = sbspace(&so->so_snd);
1652 		if (flags & MSG_OOB)
1653 			space += 1024;
1654 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
1655 		    clen > so->so_snd.sb_hiwat) {
1656 			SOCKBUF_UNLOCK(&so->so_snd);
1657 			error = EMSGSIZE;
1658 			goto release;
1659 		}
1660 		if (space < resid + clen &&
1661 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
1662 			if ((so->so_state & SS_NBIO) ||
1663 			    (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) {
1664 				SOCKBUF_UNLOCK(&so->so_snd);
1665 				error = EWOULDBLOCK;
1666 				goto release;
1667 			}
1668 			error = sbwait(&so->so_snd);
1669 			SOCKBUF_UNLOCK(&so->so_snd);
1670 			if (error)
1671 				goto release;
1672 			goto restart;
1673 		}
1674 		SOCKBUF_UNLOCK(&so->so_snd);
1675 		space -= clen;
1676 		do {
1677 			if (uio == NULL) {
1678 				resid = 0;
1679 				if (flags & MSG_EOR)
1680 					top->m_flags |= M_EOR;
1681 			} else {
1682 				/*
1683 				 * Copy the data from userland into a mbuf
1684 				 * chain.  If resid is 0, which can happen
1685 				 * only if we have control to send, then
1686 				 * a single empty mbuf is returned.  This
1687 				 * is a workaround to prevent protocol send
1688 				 * methods to panic.
1689 				 */
1690 #ifdef KERN_TLS
1691 				if (tls != NULL) {
1692 					top = m_uiotombuf(uio, M_WAITOK, space,
1693 					    tls->params.max_frame_len,
1694 					    M_NOMAP |
1695 					    ((flags & MSG_EOR) ? M_EOR : 0));
1696 					if (top != NULL) {
1697 						ktls_frame(top, tls,
1698 						    &tls_enq_cnt, tls_rtype);
1699 					}
1700 					tls_rtype = TLS_RLTYPE_APP;
1701 				} else
1702 #endif
1703 					top = m_uiotombuf(uio, M_WAITOK, space,
1704 					    (atomic ? max_hdr : 0),
1705 					    (atomic ? M_PKTHDR : 0) |
1706 					    ((flags & MSG_EOR) ? M_EOR : 0));
1707 				if (top == NULL) {
1708 					error = EFAULT; /* only possible error */
1709 					goto release;
1710 				}
1711 				space -= resid - uio->uio_resid;
1712 				resid = uio->uio_resid;
1713 			}
1714 			if (dontroute) {
1715 				SOCK_LOCK(so);
1716 				so->so_options |= SO_DONTROUTE;
1717 				SOCK_UNLOCK(so);
1718 			}
1719 			/*
1720 			 * XXX all the SBS_CANTSENDMORE checks previously
1721 			 * done could be out of date.  We could have received
1722 			 * a reset packet in an interrupt or maybe we slept
1723 			 * while doing page faults in uiomove() etc.  We
1724 			 * could probably recheck again inside the locking
1725 			 * protection here, but there are probably other
1726 			 * places that this also happens.  We must rethink
1727 			 * this.
1728 			 */
1729 			VNET_SO_ASSERT(so);
1730 
1731 			pru_flag = (flags & MSG_OOB) ? PRUS_OOB :
1732 			/*
1733 			 * If the user set MSG_EOF, the protocol understands
1734 			 * this flag and nothing left to send then use
1735 			 * PRU_SEND_EOF instead of PRU_SEND.
1736 			 */
1737 			    ((flags & MSG_EOF) &&
1738 			     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1739 			     (resid <= 0)) ?
1740 				PRUS_EOF :
1741 			/* If there is more to send set PRUS_MORETOCOME. */
1742 			    (flags & MSG_MORETOCOME) ||
1743 			    (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0;
1744 
1745 #ifdef KERN_TLS
1746 			pru_flag |= tls_pruflag;
1747 #endif
1748 
1749 			error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1750 			    pru_flag, top, addr, control, td);
1751 
1752 			if (dontroute) {
1753 				SOCK_LOCK(so);
1754 				so->so_options &= ~SO_DONTROUTE;
1755 				SOCK_UNLOCK(so);
1756 			}
1757 
1758 #ifdef KERN_TLS
1759 			if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) {
1760 				/*
1761 				 * Note that error is intentionally
1762 				 * ignored.
1763 				 *
1764 				 * Like sendfile(), we rely on the
1765 				 * completion routine (pru_ready())
1766 				 * to free the mbufs in the event that
1767 				 * pru_send() encountered an error and
1768 				 * did not append them to the sockbuf.
1769 				 */
1770 				soref(so);
1771 				ktls_enqueue(top, so, tls_enq_cnt);
1772 			}
1773 #endif
1774 			clen = 0;
1775 			control = NULL;
1776 			top = NULL;
1777 			if (error)
1778 				goto release;
1779 		} while (resid && space > 0);
1780 	} while (resid);
1781 
1782 release:
1783 	sbunlock(&so->so_snd);
1784 out:
1785 #ifdef KERN_TLS
1786 	if (tls != NULL)
1787 		ktls_free(tls);
1788 #endif
1789 	if (top != NULL)
1790 		m_freem(top);
1791 	if (control != NULL)
1792 		m_freem(control);
1793 	return (error);
1794 }
1795 
1796 int
1797 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
1798     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1799 {
1800 	int error;
1801 
1802 	CURVNET_SET(so->so_vnet);
1803 	if (!SOLISTENING(so))
1804 		error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio,
1805 		    top, control, flags, td);
1806 	else {
1807 		m_freem(top);
1808 		m_freem(control);
1809 		error = ENOTCONN;
1810 	}
1811 	CURVNET_RESTORE();
1812 	return (error);
1813 }
1814 
1815 /*
1816  * The part of soreceive() that implements reading non-inline out-of-band
1817  * data from a socket.  For more complete comments, see soreceive(), from
1818  * which this code originated.
1819  *
1820  * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
1821  * unable to return an mbuf chain to the caller.
1822  */
1823 static int
1824 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
1825 {
1826 	struct protosw *pr = so->so_proto;
1827 	struct mbuf *m;
1828 	int error;
1829 
1830 	KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
1831 	VNET_SO_ASSERT(so);
1832 
1833 	m = m_get(M_WAITOK, MT_DATA);
1834 	error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK);
1835 	if (error)
1836 		goto bad;
1837 	do {
1838 		error = uiomove(mtod(m, void *),
1839 		    (int) min(uio->uio_resid, m->m_len), uio);
1840 		m = m_free(m);
1841 	} while (uio->uio_resid && error == 0 && m);
1842 bad:
1843 	if (m != NULL)
1844 		m_freem(m);
1845 	return (error);
1846 }
1847 
1848 /*
1849  * Following replacement or removal of the first mbuf on the first mbuf chain
1850  * of a socket buffer, push necessary state changes back into the socket
1851  * buffer so that other consumers see the values consistently.  'nextrecord'
1852  * is the callers locally stored value of the original value of
1853  * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
1854  * NOTE: 'nextrecord' may be NULL.
1855  */
1856 static __inline void
1857 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
1858 {
1859 
1860 	SOCKBUF_LOCK_ASSERT(sb);
1861 	/*
1862 	 * First, update for the new value of nextrecord.  If necessary, make
1863 	 * it the first record.
1864 	 */
1865 	if (sb->sb_mb != NULL)
1866 		sb->sb_mb->m_nextpkt = nextrecord;
1867 	else
1868 		sb->sb_mb = nextrecord;
1869 
1870 	/*
1871 	 * Now update any dependent socket buffer fields to reflect the new
1872 	 * state.  This is an expanded inline of SB_EMPTY_FIXUP(), with the
1873 	 * addition of a second clause that takes care of the case where
1874 	 * sb_mb has been updated, but remains the last record.
1875 	 */
1876 	if (sb->sb_mb == NULL) {
1877 		sb->sb_mbtail = NULL;
1878 		sb->sb_lastrecord = NULL;
1879 	} else if (sb->sb_mb->m_nextpkt == NULL)
1880 		sb->sb_lastrecord = sb->sb_mb;
1881 }
1882 
1883 /*
1884  * Implement receive operations on a socket.  We depend on the way that
1885  * records are added to the sockbuf by sbappend.  In particular, each record
1886  * (mbufs linked through m_next) must begin with an address if the protocol
1887  * so specifies, followed by an optional mbuf or mbufs containing ancillary
1888  * data, and then zero or more mbufs of data.  In order to allow parallelism
1889  * between network receive and copying to user space, as well as avoid
1890  * sleeping with a mutex held, we release the socket buffer mutex during the
1891  * user space copy.  Although the sockbuf is locked, new data may still be
1892  * appended, and thus we must maintain consistency of the sockbuf during that
1893  * time.
1894  *
1895  * The caller may receive the data as a single mbuf chain by supplying an
1896  * mbuf **mp0 for use in returning the chain.  The uio is then used only for
1897  * the count in uio_resid.
1898  */
1899 int
1900 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
1901     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1902 {
1903 	struct mbuf *m, **mp;
1904 	int flags, error, offset;
1905 	ssize_t len;
1906 	struct protosw *pr = so->so_proto;
1907 	struct mbuf *nextrecord;
1908 	int moff, type = 0;
1909 	ssize_t orig_resid = uio->uio_resid;
1910 
1911 	mp = mp0;
1912 	if (psa != NULL)
1913 		*psa = NULL;
1914 	if (controlp != NULL)
1915 		*controlp = NULL;
1916 	if (flagsp != NULL)
1917 		flags = *flagsp &~ MSG_EOR;
1918 	else
1919 		flags = 0;
1920 	if (flags & MSG_OOB)
1921 		return (soreceive_rcvoob(so, uio, flags));
1922 	if (mp != NULL)
1923 		*mp = NULL;
1924 	if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING)
1925 	    && uio->uio_resid) {
1926 		VNET_SO_ASSERT(so);
1927 		(*pr->pr_usrreqs->pru_rcvd)(so, 0);
1928 	}
1929 
1930 	error = sblock(&so->so_rcv, SBLOCKWAIT(flags));
1931 	if (error)
1932 		return (error);
1933 
1934 restart:
1935 	SOCKBUF_LOCK(&so->so_rcv);
1936 	m = so->so_rcv.sb_mb;
1937 	/*
1938 	 * If we have less data than requested, block awaiting more (subject
1939 	 * to any timeout) if:
1940 	 *   1. the current count is less than the low water mark, or
1941 	 *   2. MSG_DONTWAIT is not set
1942 	 */
1943 	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
1944 	    sbavail(&so->so_rcv) < uio->uio_resid) &&
1945 	    sbavail(&so->so_rcv) < so->so_rcv.sb_lowat &&
1946 	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
1947 		KASSERT(m != NULL || !sbavail(&so->so_rcv),
1948 		    ("receive: m == %p sbavail == %u",
1949 		    m, sbavail(&so->so_rcv)));
1950 		if (so->so_error) {
1951 			if (m != NULL)
1952 				goto dontblock;
1953 			error = so->so_error;
1954 			if ((flags & MSG_PEEK) == 0)
1955 				so->so_error = 0;
1956 			SOCKBUF_UNLOCK(&so->so_rcv);
1957 			goto release;
1958 		}
1959 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1960 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1961 			if (m == NULL) {
1962 				SOCKBUF_UNLOCK(&so->so_rcv);
1963 				goto release;
1964 			} else
1965 				goto dontblock;
1966 		}
1967 		for (; m != NULL; m = m->m_next)
1968 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
1969 				m = so->so_rcv.sb_mb;
1970 				goto dontblock;
1971 			}
1972 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1973 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1974 			SOCKBUF_UNLOCK(&so->so_rcv);
1975 			error = ENOTCONN;
1976 			goto release;
1977 		}
1978 		if (uio->uio_resid == 0) {
1979 			SOCKBUF_UNLOCK(&so->so_rcv);
1980 			goto release;
1981 		}
1982 		if ((so->so_state & SS_NBIO) ||
1983 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1984 			SOCKBUF_UNLOCK(&so->so_rcv);
1985 			error = EWOULDBLOCK;
1986 			goto release;
1987 		}
1988 		SBLASTRECORDCHK(&so->so_rcv);
1989 		SBLASTMBUFCHK(&so->so_rcv);
1990 		error = sbwait(&so->so_rcv);
1991 		SOCKBUF_UNLOCK(&so->so_rcv);
1992 		if (error)
1993 			goto release;
1994 		goto restart;
1995 	}
1996 dontblock:
1997 	/*
1998 	 * From this point onward, we maintain 'nextrecord' as a cache of the
1999 	 * pointer to the next record in the socket buffer.  We must keep the
2000 	 * various socket buffer pointers and local stack versions of the
2001 	 * pointers in sync, pushing out modifications before dropping the
2002 	 * socket buffer mutex, and re-reading them when picking it up.
2003 	 *
2004 	 * Otherwise, we will race with the network stack appending new data
2005 	 * or records onto the socket buffer by using inconsistent/stale
2006 	 * versions of the field, possibly resulting in socket buffer
2007 	 * corruption.
2008 	 *
2009 	 * By holding the high-level sblock(), we prevent simultaneous
2010 	 * readers from pulling off the front of the socket buffer.
2011 	 */
2012 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2013 	if (uio->uio_td)
2014 		uio->uio_td->td_ru.ru_msgrcv++;
2015 	KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
2016 	SBLASTRECORDCHK(&so->so_rcv);
2017 	SBLASTMBUFCHK(&so->so_rcv);
2018 	nextrecord = m->m_nextpkt;
2019 	if (pr->pr_flags & PR_ADDR) {
2020 		KASSERT(m->m_type == MT_SONAME,
2021 		    ("m->m_type == %d", m->m_type));
2022 		orig_resid = 0;
2023 		if (psa != NULL)
2024 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
2025 			    M_NOWAIT);
2026 		if (flags & MSG_PEEK) {
2027 			m = m->m_next;
2028 		} else {
2029 			sbfree(&so->so_rcv, m);
2030 			so->so_rcv.sb_mb = m_free(m);
2031 			m = so->so_rcv.sb_mb;
2032 			sockbuf_pushsync(&so->so_rcv, nextrecord);
2033 		}
2034 	}
2035 
2036 	/*
2037 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
2038 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
2039 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
2040 	 * perform externalization (or freeing if controlp == NULL).
2041 	 */
2042 	if (m != NULL && m->m_type == MT_CONTROL) {
2043 		struct mbuf *cm = NULL, *cmn;
2044 		struct mbuf **cme = &cm;
2045 
2046 		do {
2047 			if (flags & MSG_PEEK) {
2048 				if (controlp != NULL) {
2049 					*controlp = m_copym(m, 0, m->m_len,
2050 					    M_NOWAIT);
2051 					controlp = &(*controlp)->m_next;
2052 				}
2053 				m = m->m_next;
2054 			} else {
2055 				sbfree(&so->so_rcv, m);
2056 				so->so_rcv.sb_mb = m->m_next;
2057 				m->m_next = NULL;
2058 				*cme = m;
2059 				cme = &(*cme)->m_next;
2060 				m = so->so_rcv.sb_mb;
2061 			}
2062 		} while (m != NULL && m->m_type == MT_CONTROL);
2063 		if ((flags & MSG_PEEK) == 0)
2064 			sockbuf_pushsync(&so->so_rcv, nextrecord);
2065 		while (cm != NULL) {
2066 			cmn = cm->m_next;
2067 			cm->m_next = NULL;
2068 			if (pr->pr_domain->dom_externalize != NULL) {
2069 				SOCKBUF_UNLOCK(&so->so_rcv);
2070 				VNET_SO_ASSERT(so);
2071 				error = (*pr->pr_domain->dom_externalize)
2072 				    (cm, controlp, flags);
2073 				SOCKBUF_LOCK(&so->so_rcv);
2074 			} else if (controlp != NULL)
2075 				*controlp = cm;
2076 			else
2077 				m_freem(cm);
2078 			if (controlp != NULL) {
2079 				orig_resid = 0;
2080 				while (*controlp != NULL)
2081 					controlp = &(*controlp)->m_next;
2082 			}
2083 			cm = cmn;
2084 		}
2085 		if (m != NULL)
2086 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
2087 		else
2088 			nextrecord = so->so_rcv.sb_mb;
2089 		orig_resid = 0;
2090 	}
2091 	if (m != NULL) {
2092 		if ((flags & MSG_PEEK) == 0) {
2093 			KASSERT(m->m_nextpkt == nextrecord,
2094 			    ("soreceive: post-control, nextrecord !sync"));
2095 			if (nextrecord == NULL) {
2096 				KASSERT(so->so_rcv.sb_mb == m,
2097 				    ("soreceive: post-control, sb_mb!=m"));
2098 				KASSERT(so->so_rcv.sb_lastrecord == m,
2099 				    ("soreceive: post-control, lastrecord!=m"));
2100 			}
2101 		}
2102 		type = m->m_type;
2103 		if (type == MT_OOBDATA)
2104 			flags |= MSG_OOB;
2105 	} else {
2106 		if ((flags & MSG_PEEK) == 0) {
2107 			KASSERT(so->so_rcv.sb_mb == nextrecord,
2108 			    ("soreceive: sb_mb != nextrecord"));
2109 			if (so->so_rcv.sb_mb == NULL) {
2110 				KASSERT(so->so_rcv.sb_lastrecord == NULL,
2111 				    ("soreceive: sb_lastercord != NULL"));
2112 			}
2113 		}
2114 	}
2115 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2116 	SBLASTRECORDCHK(&so->so_rcv);
2117 	SBLASTMBUFCHK(&so->so_rcv);
2118 
2119 	/*
2120 	 * Now continue to read any data mbufs off of the head of the socket
2121 	 * buffer until the read request is satisfied.  Note that 'type' is
2122 	 * used to store the type of any mbuf reads that have happened so far
2123 	 * such that soreceive() can stop reading if the type changes, which
2124 	 * causes soreceive() to return only one of regular data and inline
2125 	 * out-of-band data in a single socket receive operation.
2126 	 */
2127 	moff = 0;
2128 	offset = 0;
2129 	while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0
2130 	    && error == 0) {
2131 		/*
2132 		 * If the type of mbuf has changed since the last mbuf
2133 		 * examined ('type'), end the receive operation.
2134 		 */
2135 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2136 		if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) {
2137 			if (type != m->m_type)
2138 				break;
2139 		} else if (type == MT_OOBDATA)
2140 			break;
2141 		else
2142 		    KASSERT(m->m_type == MT_DATA,
2143 			("m->m_type == %d", m->m_type));
2144 		so->so_rcv.sb_state &= ~SBS_RCVATMARK;
2145 		len = uio->uio_resid;
2146 		if (so->so_oobmark && len > so->so_oobmark - offset)
2147 			len = so->so_oobmark - offset;
2148 		if (len > m->m_len - moff)
2149 			len = m->m_len - moff;
2150 		/*
2151 		 * If mp is set, just pass back the mbufs.  Otherwise copy
2152 		 * them out via the uio, then free.  Sockbuf must be
2153 		 * consistent here (points to current mbuf, it points to next
2154 		 * record) when we drop priority; we must note any additions
2155 		 * to the sockbuf when we block interrupts again.
2156 		 */
2157 		if (mp == NULL) {
2158 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2159 			SBLASTRECORDCHK(&so->so_rcv);
2160 			SBLASTMBUFCHK(&so->so_rcv);
2161 			SOCKBUF_UNLOCK(&so->so_rcv);
2162 			if ((m->m_flags & M_NOMAP) != 0)
2163 				error = m_unmappedtouio(m, moff, uio, (int)len);
2164 			else
2165 				error = uiomove(mtod(m, char *) + moff,
2166 				    (int)len, uio);
2167 			SOCKBUF_LOCK(&so->so_rcv);
2168 			if (error) {
2169 				/*
2170 				 * The MT_SONAME mbuf has already been removed
2171 				 * from the record, so it is necessary to
2172 				 * remove the data mbufs, if any, to preserve
2173 				 * the invariant in the case of PR_ADDR that
2174 				 * requires MT_SONAME mbufs at the head of
2175 				 * each record.
2176 				 */
2177 				if (pr->pr_flags & PR_ATOMIC &&
2178 				    ((flags & MSG_PEEK) == 0))
2179 					(void)sbdroprecord_locked(&so->so_rcv);
2180 				SOCKBUF_UNLOCK(&so->so_rcv);
2181 				goto release;
2182 			}
2183 		} else
2184 			uio->uio_resid -= len;
2185 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2186 		if (len == m->m_len - moff) {
2187 			if (m->m_flags & M_EOR)
2188 				flags |= MSG_EOR;
2189 			if (flags & MSG_PEEK) {
2190 				m = m->m_next;
2191 				moff = 0;
2192 			} else {
2193 				nextrecord = m->m_nextpkt;
2194 				sbfree(&so->so_rcv, m);
2195 				if (mp != NULL) {
2196 					m->m_nextpkt = NULL;
2197 					*mp = m;
2198 					mp = &m->m_next;
2199 					so->so_rcv.sb_mb = m = m->m_next;
2200 					*mp = NULL;
2201 				} else {
2202 					so->so_rcv.sb_mb = m_free(m);
2203 					m = so->so_rcv.sb_mb;
2204 				}
2205 				sockbuf_pushsync(&so->so_rcv, nextrecord);
2206 				SBLASTRECORDCHK(&so->so_rcv);
2207 				SBLASTMBUFCHK(&so->so_rcv);
2208 			}
2209 		} else {
2210 			if (flags & MSG_PEEK)
2211 				moff += len;
2212 			else {
2213 				if (mp != NULL) {
2214 					if (flags & MSG_DONTWAIT) {
2215 						*mp = m_copym(m, 0, len,
2216 						    M_NOWAIT);
2217 						if (*mp == NULL) {
2218 							/*
2219 							 * m_copym() couldn't
2220 							 * allocate an mbuf.
2221 							 * Adjust uio_resid back
2222 							 * (it was adjusted
2223 							 * down by len bytes,
2224 							 * which we didn't end
2225 							 * up "copying" over).
2226 							 */
2227 							uio->uio_resid += len;
2228 							break;
2229 						}
2230 					} else {
2231 						SOCKBUF_UNLOCK(&so->so_rcv);
2232 						*mp = m_copym(m, 0, len,
2233 						    M_WAITOK);
2234 						SOCKBUF_LOCK(&so->so_rcv);
2235 					}
2236 				}
2237 				sbcut_locked(&so->so_rcv, len);
2238 			}
2239 		}
2240 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2241 		if (so->so_oobmark) {
2242 			if ((flags & MSG_PEEK) == 0) {
2243 				so->so_oobmark -= len;
2244 				if (so->so_oobmark == 0) {
2245 					so->so_rcv.sb_state |= SBS_RCVATMARK;
2246 					break;
2247 				}
2248 			} else {
2249 				offset += len;
2250 				if (offset == so->so_oobmark)
2251 					break;
2252 			}
2253 		}
2254 		if (flags & MSG_EOR)
2255 			break;
2256 		/*
2257 		 * If the MSG_WAITALL flag is set (for non-atomic socket), we
2258 		 * must not quit until "uio->uio_resid == 0" or an error
2259 		 * termination.  If a signal/timeout occurs, return with a
2260 		 * short count but without error.  Keep sockbuf locked
2261 		 * against other readers.
2262 		 */
2263 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
2264 		    !sosendallatonce(so) && nextrecord == NULL) {
2265 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2266 			if (so->so_error ||
2267 			    so->so_rcv.sb_state & SBS_CANTRCVMORE)
2268 				break;
2269 			/*
2270 			 * Notify the protocol that some data has been
2271 			 * drained before blocking.
2272 			 */
2273 			if (pr->pr_flags & PR_WANTRCVD) {
2274 				SOCKBUF_UNLOCK(&so->so_rcv);
2275 				VNET_SO_ASSERT(so);
2276 				(*pr->pr_usrreqs->pru_rcvd)(so, flags);
2277 				SOCKBUF_LOCK(&so->so_rcv);
2278 			}
2279 			SBLASTRECORDCHK(&so->so_rcv);
2280 			SBLASTMBUFCHK(&so->so_rcv);
2281 			/*
2282 			 * We could receive some data while was notifying
2283 			 * the protocol. Skip blocking in this case.
2284 			 */
2285 			if (so->so_rcv.sb_mb == NULL) {
2286 				error = sbwait(&so->so_rcv);
2287 				if (error) {
2288 					SOCKBUF_UNLOCK(&so->so_rcv);
2289 					goto release;
2290 				}
2291 			}
2292 			m = so->so_rcv.sb_mb;
2293 			if (m != NULL)
2294 				nextrecord = m->m_nextpkt;
2295 		}
2296 	}
2297 
2298 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2299 	if (m != NULL && pr->pr_flags & PR_ATOMIC) {
2300 		flags |= MSG_TRUNC;
2301 		if ((flags & MSG_PEEK) == 0)
2302 			(void) sbdroprecord_locked(&so->so_rcv);
2303 	}
2304 	if ((flags & MSG_PEEK) == 0) {
2305 		if (m == NULL) {
2306 			/*
2307 			 * First part is an inline SB_EMPTY_FIXUP().  Second
2308 			 * part makes sure sb_lastrecord is up-to-date if
2309 			 * there is still data in the socket buffer.
2310 			 */
2311 			so->so_rcv.sb_mb = nextrecord;
2312 			if (so->so_rcv.sb_mb == NULL) {
2313 				so->so_rcv.sb_mbtail = NULL;
2314 				so->so_rcv.sb_lastrecord = NULL;
2315 			} else if (nextrecord->m_nextpkt == NULL)
2316 				so->so_rcv.sb_lastrecord = nextrecord;
2317 		}
2318 		SBLASTRECORDCHK(&so->so_rcv);
2319 		SBLASTMBUFCHK(&so->so_rcv);
2320 		/*
2321 		 * If soreceive() is being done from the socket callback,
2322 		 * then don't need to generate ACK to peer to update window,
2323 		 * since ACK will be generated on return to TCP.
2324 		 */
2325 		if (!(flags & MSG_SOCALLBCK) &&
2326 		    (pr->pr_flags & PR_WANTRCVD)) {
2327 			SOCKBUF_UNLOCK(&so->so_rcv);
2328 			VNET_SO_ASSERT(so);
2329 			(*pr->pr_usrreqs->pru_rcvd)(so, flags);
2330 			SOCKBUF_LOCK(&so->so_rcv);
2331 		}
2332 	}
2333 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2334 	if (orig_resid == uio->uio_resid && orig_resid &&
2335 	    (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
2336 		SOCKBUF_UNLOCK(&so->so_rcv);
2337 		goto restart;
2338 	}
2339 	SOCKBUF_UNLOCK(&so->so_rcv);
2340 
2341 	if (flagsp != NULL)
2342 		*flagsp |= flags;
2343 release:
2344 	sbunlock(&so->so_rcv);
2345 	return (error);
2346 }
2347 
2348 /*
2349  * Optimized version of soreceive() for stream (TCP) sockets.
2350  */
2351 int
2352 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio,
2353     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2354 {
2355 	int len = 0, error = 0, flags, oresid;
2356 	struct sockbuf *sb;
2357 	struct mbuf *m, *n = NULL;
2358 
2359 	/* We only do stream sockets. */
2360 	if (so->so_type != SOCK_STREAM)
2361 		return (EINVAL);
2362 	if (psa != NULL)
2363 		*psa = NULL;
2364 	if (flagsp != NULL)
2365 		flags = *flagsp &~ MSG_EOR;
2366 	else
2367 		flags = 0;
2368 	if (controlp != NULL)
2369 		*controlp = NULL;
2370 	if (flags & MSG_OOB)
2371 		return (soreceive_rcvoob(so, uio, flags));
2372 	if (mp0 != NULL)
2373 		*mp0 = NULL;
2374 
2375 	sb = &so->so_rcv;
2376 
2377 #ifdef KERN_TLS
2378 	/*
2379 	 * KTLS store TLS records as records with a control message to
2380 	 * describe the framing.
2381 	 *
2382 	 * We check once here before acquiring locks to optimize the
2383 	 * common case.
2384 	 */
2385 	if (sb->sb_tls_info != NULL)
2386 		return (soreceive_generic(so, psa, uio, mp0, controlp,
2387 		    flagsp));
2388 #endif
2389 
2390 	/* Prevent other readers from entering the socket. */
2391 	error = sblock(sb, SBLOCKWAIT(flags));
2392 	if (error)
2393 		return (error);
2394 	SOCKBUF_LOCK(sb);
2395 
2396 #ifdef KERN_TLS
2397 	if (sb->sb_tls_info != NULL) {
2398 		SOCKBUF_UNLOCK(sb);
2399 		sbunlock(sb);
2400 		return (soreceive_generic(so, psa, uio, mp0, controlp,
2401 		    flagsp));
2402 	}
2403 #endif
2404 
2405 	/* Easy one, no space to copyout anything. */
2406 	if (uio->uio_resid == 0) {
2407 		error = EINVAL;
2408 		goto out;
2409 	}
2410 	oresid = uio->uio_resid;
2411 
2412 	/* We will never ever get anything unless we are or were connected. */
2413 	if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
2414 		error = ENOTCONN;
2415 		goto out;
2416 	}
2417 
2418 restart:
2419 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2420 
2421 	/* Abort if socket has reported problems. */
2422 	if (so->so_error) {
2423 		if (sbavail(sb) > 0)
2424 			goto deliver;
2425 		if (oresid > uio->uio_resid)
2426 			goto out;
2427 		error = so->so_error;
2428 		if (!(flags & MSG_PEEK))
2429 			so->so_error = 0;
2430 		goto out;
2431 	}
2432 
2433 	/* Door is closed.  Deliver what is left, if any. */
2434 	if (sb->sb_state & SBS_CANTRCVMORE) {
2435 		if (sbavail(sb) > 0)
2436 			goto deliver;
2437 		else
2438 			goto out;
2439 	}
2440 
2441 	/* Socket buffer is empty and we shall not block. */
2442 	if (sbavail(sb) == 0 &&
2443 	    ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) {
2444 		error = EAGAIN;
2445 		goto out;
2446 	}
2447 
2448 	/* Socket buffer got some data that we shall deliver now. */
2449 	if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) &&
2450 	    ((so->so_state & SS_NBIO) ||
2451 	     (flags & (MSG_DONTWAIT|MSG_NBIO)) ||
2452 	     sbavail(sb) >= sb->sb_lowat ||
2453 	     sbavail(sb) >= uio->uio_resid ||
2454 	     sbavail(sb) >= sb->sb_hiwat) ) {
2455 		goto deliver;
2456 	}
2457 
2458 	/* On MSG_WAITALL we must wait until all data or error arrives. */
2459 	if ((flags & MSG_WAITALL) &&
2460 	    (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat))
2461 		goto deliver;
2462 
2463 	/*
2464 	 * Wait and block until (more) data comes in.
2465 	 * NB: Drops the sockbuf lock during wait.
2466 	 */
2467 	error = sbwait(sb);
2468 	if (error)
2469 		goto out;
2470 	goto restart;
2471 
2472 deliver:
2473 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2474 	KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__));
2475 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__));
2476 
2477 	/* Statistics. */
2478 	if (uio->uio_td)
2479 		uio->uio_td->td_ru.ru_msgrcv++;
2480 
2481 	/* Fill uio until full or current end of socket buffer is reached. */
2482 	len = min(uio->uio_resid, sbavail(sb));
2483 	if (mp0 != NULL) {
2484 		/* Dequeue as many mbufs as possible. */
2485 		if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) {
2486 			if (*mp0 == NULL)
2487 				*mp0 = sb->sb_mb;
2488 			else
2489 				m_cat(*mp0, sb->sb_mb);
2490 			for (m = sb->sb_mb;
2491 			     m != NULL && m->m_len <= len;
2492 			     m = m->m_next) {
2493 				KASSERT(!(m->m_flags & M_NOTAVAIL),
2494 				    ("%s: m %p not available", __func__, m));
2495 				len -= m->m_len;
2496 				uio->uio_resid -= m->m_len;
2497 				sbfree(sb, m);
2498 				n = m;
2499 			}
2500 			n->m_next = NULL;
2501 			sb->sb_mb = m;
2502 			sb->sb_lastrecord = sb->sb_mb;
2503 			if (sb->sb_mb == NULL)
2504 				SB_EMPTY_FIXUP(sb);
2505 		}
2506 		/* Copy the remainder. */
2507 		if (len > 0) {
2508 			KASSERT(sb->sb_mb != NULL,
2509 			    ("%s: len > 0 && sb->sb_mb empty", __func__));
2510 
2511 			m = m_copym(sb->sb_mb, 0, len, M_NOWAIT);
2512 			if (m == NULL)
2513 				len = 0;	/* Don't flush data from sockbuf. */
2514 			else
2515 				uio->uio_resid -= len;
2516 			if (*mp0 != NULL)
2517 				m_cat(*mp0, m);
2518 			else
2519 				*mp0 = m;
2520 			if (*mp0 == NULL) {
2521 				error = ENOBUFS;
2522 				goto out;
2523 			}
2524 		}
2525 	} else {
2526 		/* NB: Must unlock socket buffer as uiomove may sleep. */
2527 		SOCKBUF_UNLOCK(sb);
2528 		error = m_mbuftouio(uio, sb->sb_mb, len);
2529 		SOCKBUF_LOCK(sb);
2530 		if (error)
2531 			goto out;
2532 	}
2533 	SBLASTRECORDCHK(sb);
2534 	SBLASTMBUFCHK(sb);
2535 
2536 	/*
2537 	 * Remove the delivered data from the socket buffer unless we
2538 	 * were only peeking.
2539 	 */
2540 	if (!(flags & MSG_PEEK)) {
2541 		if (len > 0)
2542 			sbdrop_locked(sb, len);
2543 
2544 		/* Notify protocol that we drained some data. */
2545 		if ((so->so_proto->pr_flags & PR_WANTRCVD) &&
2546 		    (((flags & MSG_WAITALL) && uio->uio_resid > 0) ||
2547 		     !(flags & MSG_SOCALLBCK))) {
2548 			SOCKBUF_UNLOCK(sb);
2549 			VNET_SO_ASSERT(so);
2550 			(*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags);
2551 			SOCKBUF_LOCK(sb);
2552 		}
2553 	}
2554 
2555 	/*
2556 	 * For MSG_WAITALL we may have to loop again and wait for
2557 	 * more data to come in.
2558 	 */
2559 	if ((flags & MSG_WAITALL) && uio->uio_resid > 0)
2560 		goto restart;
2561 out:
2562 	SOCKBUF_LOCK_ASSERT(sb);
2563 	SBLASTRECORDCHK(sb);
2564 	SBLASTMBUFCHK(sb);
2565 	SOCKBUF_UNLOCK(sb);
2566 	sbunlock(sb);
2567 	return (error);
2568 }
2569 
2570 /*
2571  * Optimized version of soreceive() for simple datagram cases from userspace.
2572  * Unlike in the stream case, we're able to drop a datagram if copyout()
2573  * fails, and because we handle datagrams atomically, we don't need to use a
2574  * sleep lock to prevent I/O interlacing.
2575  */
2576 int
2577 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
2578     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2579 {
2580 	struct mbuf *m, *m2;
2581 	int flags, error;
2582 	ssize_t len;
2583 	struct protosw *pr = so->so_proto;
2584 	struct mbuf *nextrecord;
2585 
2586 	if (psa != NULL)
2587 		*psa = NULL;
2588 	if (controlp != NULL)
2589 		*controlp = NULL;
2590 	if (flagsp != NULL)
2591 		flags = *flagsp &~ MSG_EOR;
2592 	else
2593 		flags = 0;
2594 
2595 	/*
2596 	 * For any complicated cases, fall back to the full
2597 	 * soreceive_generic().
2598 	 */
2599 	if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB))
2600 		return (soreceive_generic(so, psa, uio, mp0, controlp,
2601 		    flagsp));
2602 
2603 	/*
2604 	 * Enforce restrictions on use.
2605 	 */
2606 	KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
2607 	    ("soreceive_dgram: wantrcvd"));
2608 	KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
2609 	KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
2610 	    ("soreceive_dgram: SBS_RCVATMARK"));
2611 	KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
2612 	    ("soreceive_dgram: P_CONNREQUIRED"));
2613 
2614 	/*
2615 	 * Loop blocking while waiting for a datagram.
2616 	 */
2617 	SOCKBUF_LOCK(&so->so_rcv);
2618 	while ((m = so->so_rcv.sb_mb) == NULL) {
2619 		KASSERT(sbavail(&so->so_rcv) == 0,
2620 		    ("soreceive_dgram: sb_mb NULL but sbavail %u",
2621 		    sbavail(&so->so_rcv)));
2622 		if (so->so_error) {
2623 			error = so->so_error;
2624 			so->so_error = 0;
2625 			SOCKBUF_UNLOCK(&so->so_rcv);
2626 			return (error);
2627 		}
2628 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
2629 		    uio->uio_resid == 0) {
2630 			SOCKBUF_UNLOCK(&so->so_rcv);
2631 			return (0);
2632 		}
2633 		if ((so->so_state & SS_NBIO) ||
2634 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
2635 			SOCKBUF_UNLOCK(&so->so_rcv);
2636 			return (EWOULDBLOCK);
2637 		}
2638 		SBLASTRECORDCHK(&so->so_rcv);
2639 		SBLASTMBUFCHK(&so->so_rcv);
2640 		error = sbwait(&so->so_rcv);
2641 		if (error) {
2642 			SOCKBUF_UNLOCK(&so->so_rcv);
2643 			return (error);
2644 		}
2645 	}
2646 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2647 
2648 	if (uio->uio_td)
2649 		uio->uio_td->td_ru.ru_msgrcv++;
2650 	SBLASTRECORDCHK(&so->so_rcv);
2651 	SBLASTMBUFCHK(&so->so_rcv);
2652 	nextrecord = m->m_nextpkt;
2653 	if (nextrecord == NULL) {
2654 		KASSERT(so->so_rcv.sb_lastrecord == m,
2655 		    ("soreceive_dgram: lastrecord != m"));
2656 	}
2657 
2658 	KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
2659 	    ("soreceive_dgram: m_nextpkt != nextrecord"));
2660 
2661 	/*
2662 	 * Pull 'm' and its chain off the front of the packet queue.
2663 	 */
2664 	so->so_rcv.sb_mb = NULL;
2665 	sockbuf_pushsync(&so->so_rcv, nextrecord);
2666 
2667 	/*
2668 	 * Walk 'm's chain and free that many bytes from the socket buffer.
2669 	 */
2670 	for (m2 = m; m2 != NULL; m2 = m2->m_next)
2671 		sbfree(&so->so_rcv, m2);
2672 
2673 	/*
2674 	 * Do a few last checks before we let go of the lock.
2675 	 */
2676 	SBLASTRECORDCHK(&so->so_rcv);
2677 	SBLASTMBUFCHK(&so->so_rcv);
2678 	SOCKBUF_UNLOCK(&so->so_rcv);
2679 
2680 	if (pr->pr_flags & PR_ADDR) {
2681 		KASSERT(m->m_type == MT_SONAME,
2682 		    ("m->m_type == %d", m->m_type));
2683 		if (psa != NULL)
2684 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
2685 			    M_NOWAIT);
2686 		m = m_free(m);
2687 	}
2688 	if (m == NULL) {
2689 		/* XXXRW: Can this happen? */
2690 		return (0);
2691 	}
2692 
2693 	/*
2694 	 * Packet to copyout() is now in 'm' and it is disconnected from the
2695 	 * queue.
2696 	 *
2697 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
2698 	 * in the first mbuf chain on the socket buffer.  We call into the
2699 	 * protocol to perform externalization (or freeing if controlp ==
2700 	 * NULL). In some cases there can be only MT_CONTROL mbufs without
2701 	 * MT_DATA mbufs.
2702 	 */
2703 	if (m->m_type == MT_CONTROL) {
2704 		struct mbuf *cm = NULL, *cmn;
2705 		struct mbuf **cme = &cm;
2706 
2707 		do {
2708 			m2 = m->m_next;
2709 			m->m_next = NULL;
2710 			*cme = m;
2711 			cme = &(*cme)->m_next;
2712 			m = m2;
2713 		} while (m != NULL && m->m_type == MT_CONTROL);
2714 		while (cm != NULL) {
2715 			cmn = cm->m_next;
2716 			cm->m_next = NULL;
2717 			if (pr->pr_domain->dom_externalize != NULL) {
2718 				error = (*pr->pr_domain->dom_externalize)
2719 				    (cm, controlp, flags);
2720 			} else if (controlp != NULL)
2721 				*controlp = cm;
2722 			else
2723 				m_freem(cm);
2724 			if (controlp != NULL) {
2725 				while (*controlp != NULL)
2726 					controlp = &(*controlp)->m_next;
2727 			}
2728 			cm = cmn;
2729 		}
2730 	}
2731 	KASSERT(m == NULL || m->m_type == MT_DATA,
2732 	    ("soreceive_dgram: !data"));
2733 	while (m != NULL && uio->uio_resid > 0) {
2734 		len = uio->uio_resid;
2735 		if (len > m->m_len)
2736 			len = m->m_len;
2737 		error = uiomove(mtod(m, char *), (int)len, uio);
2738 		if (error) {
2739 			m_freem(m);
2740 			return (error);
2741 		}
2742 		if (len == m->m_len)
2743 			m = m_free(m);
2744 		else {
2745 			m->m_data += len;
2746 			m->m_len -= len;
2747 		}
2748 	}
2749 	if (m != NULL) {
2750 		flags |= MSG_TRUNC;
2751 		m_freem(m);
2752 	}
2753 	if (flagsp != NULL)
2754 		*flagsp |= flags;
2755 	return (0);
2756 }
2757 
2758 int
2759 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
2760     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2761 {
2762 	int error;
2763 
2764 	CURVNET_SET(so->so_vnet);
2765 	if (!SOLISTENING(so))
2766 		error = (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio,
2767 		    mp0, controlp, flagsp));
2768 	else
2769 		error = ENOTCONN;
2770 	CURVNET_RESTORE();
2771 	return (error);
2772 }
2773 
2774 int
2775 soshutdown(struct socket *so, int how)
2776 {
2777 	struct protosw *pr = so->so_proto;
2778 	int error, soerror_enotconn;
2779 
2780 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
2781 		return (EINVAL);
2782 
2783 	soerror_enotconn = 0;
2784 	if ((so->so_state &
2785 	    (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) {
2786 		/*
2787 		 * POSIX mandates us to return ENOTCONN when shutdown(2) is
2788 		 * invoked on a datagram sockets, however historically we would
2789 		 * actually tear socket down. This is known to be leveraged by
2790 		 * some applications to unblock process waiting in recvXXX(2)
2791 		 * by other process that it shares that socket with. Try to meet
2792 		 * both backward-compatibility and POSIX requirements by forcing
2793 		 * ENOTCONN but still asking protocol to perform pru_shutdown().
2794 		 */
2795 		if (so->so_type != SOCK_DGRAM && !SOLISTENING(so))
2796 			return (ENOTCONN);
2797 		soerror_enotconn = 1;
2798 	}
2799 
2800 	if (SOLISTENING(so)) {
2801 		if (how != SHUT_WR) {
2802 			SOLISTEN_LOCK(so);
2803 			so->so_error = ECONNABORTED;
2804 			solisten_wakeup(so);	/* unlocks so */
2805 		}
2806 		goto done;
2807 	}
2808 
2809 	CURVNET_SET(so->so_vnet);
2810 	if (pr->pr_usrreqs->pru_flush != NULL)
2811 		(*pr->pr_usrreqs->pru_flush)(so, how);
2812 	if (how != SHUT_WR)
2813 		sorflush(so);
2814 	if (how != SHUT_RD) {
2815 		error = (*pr->pr_usrreqs->pru_shutdown)(so);
2816 		wakeup(&so->so_timeo);
2817 		CURVNET_RESTORE();
2818 		return ((error == 0 && soerror_enotconn) ? ENOTCONN : error);
2819 	}
2820 	wakeup(&so->so_timeo);
2821 	CURVNET_RESTORE();
2822 
2823 done:
2824 	return (soerror_enotconn ? ENOTCONN : 0);
2825 }
2826 
2827 void
2828 sorflush(struct socket *so)
2829 {
2830 	struct sockbuf *sb = &so->so_rcv;
2831 	struct protosw *pr = so->so_proto;
2832 	struct socket aso;
2833 
2834 	VNET_SO_ASSERT(so);
2835 
2836 	/*
2837 	 * In order to avoid calling dom_dispose with the socket buffer mutex
2838 	 * held, and in order to generally avoid holding the lock for a long
2839 	 * time, we make a copy of the socket buffer and clear the original
2840 	 * (except locks, state).  The new socket buffer copy won't have
2841 	 * initialized locks so we can only call routines that won't use or
2842 	 * assert those locks.
2843 	 *
2844 	 * Dislodge threads currently blocked in receive and wait to acquire
2845 	 * a lock against other simultaneous readers before clearing the
2846 	 * socket buffer.  Don't let our acquire be interrupted by a signal
2847 	 * despite any existing socket disposition on interruptable waiting.
2848 	 */
2849 	socantrcvmore(so);
2850 	(void) sblock(sb, SBL_WAIT | SBL_NOINTR);
2851 
2852 	/*
2853 	 * Invalidate/clear most of the sockbuf structure, but leave selinfo
2854 	 * and mutex data unchanged.
2855 	 */
2856 	SOCKBUF_LOCK(sb);
2857 	bzero(&aso, sizeof(aso));
2858 	aso.so_pcb = so->so_pcb;
2859 	bcopy(&sb->sb_startzero, &aso.so_rcv.sb_startzero,
2860 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
2861 	bzero(&sb->sb_startzero,
2862 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
2863 	SOCKBUF_UNLOCK(sb);
2864 	sbunlock(sb);
2865 
2866 	/*
2867 	 * Dispose of special rights and flush the copied socket.  Don't call
2868 	 * any unsafe routines (that rely on locks being initialized) on aso.
2869 	 */
2870 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
2871 		(*pr->pr_domain->dom_dispose)(&aso);
2872 	sbrelease_internal(&aso.so_rcv, so);
2873 }
2874 
2875 /*
2876  * Wrapper for Socket established helper hook.
2877  * Parameters: socket, context of the hook point, hook id.
2878  */
2879 static int inline
2880 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id)
2881 {
2882 	struct socket_hhook_data hhook_data = {
2883 		.so = so,
2884 		.hctx = hctx,
2885 		.m = NULL,
2886 		.status = 0
2887 	};
2888 
2889 	CURVNET_SET(so->so_vnet);
2890 	HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd);
2891 	CURVNET_RESTORE();
2892 
2893 	/* Ugly but needed, since hhooks return void for now */
2894 	return (hhook_data.status);
2895 }
2896 
2897 /*
2898  * Perhaps this routine, and sooptcopyout(), below, ought to come in an
2899  * additional variant to handle the case where the option value needs to be
2900  * some kind of integer, but not a specific size.  In addition to their use
2901  * here, these functions are also called by the protocol-level pr_ctloutput()
2902  * routines.
2903  */
2904 int
2905 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
2906 {
2907 	size_t	valsize;
2908 
2909 	/*
2910 	 * If the user gives us more than we wanted, we ignore it, but if we
2911 	 * don't get the minimum length the caller wants, we return EINVAL.
2912 	 * On success, sopt->sopt_valsize is set to however much we actually
2913 	 * retrieved.
2914 	 */
2915 	if ((valsize = sopt->sopt_valsize) < minlen)
2916 		return EINVAL;
2917 	if (valsize > len)
2918 		sopt->sopt_valsize = valsize = len;
2919 
2920 	if (sopt->sopt_td != NULL)
2921 		return (copyin(sopt->sopt_val, buf, valsize));
2922 
2923 	bcopy(sopt->sopt_val, buf, valsize);
2924 	return (0);
2925 }
2926 
2927 /*
2928  * Kernel version of setsockopt(2).
2929  *
2930  * XXX: optlen is size_t, not socklen_t
2931  */
2932 int
2933 so_setsockopt(struct socket *so, int level, int optname, void *optval,
2934     size_t optlen)
2935 {
2936 	struct sockopt sopt;
2937 
2938 	sopt.sopt_level = level;
2939 	sopt.sopt_name = optname;
2940 	sopt.sopt_dir = SOPT_SET;
2941 	sopt.sopt_val = optval;
2942 	sopt.sopt_valsize = optlen;
2943 	sopt.sopt_td = NULL;
2944 	return (sosetopt(so, &sopt));
2945 }
2946 
2947 int
2948 sosetopt(struct socket *so, struct sockopt *sopt)
2949 {
2950 	int	error, optval;
2951 	struct	linger l;
2952 	struct	timeval tv;
2953 	sbintime_t val;
2954 	uint32_t val32;
2955 #ifdef MAC
2956 	struct mac extmac;
2957 #endif
2958 
2959 	CURVNET_SET(so->so_vnet);
2960 	error = 0;
2961 	if (sopt->sopt_level != SOL_SOCKET) {
2962 		if (so->so_proto->pr_ctloutput != NULL)
2963 			error = (*so->so_proto->pr_ctloutput)(so, sopt);
2964 		else
2965 			error = ENOPROTOOPT;
2966 	} else {
2967 		switch (sopt->sopt_name) {
2968 		case SO_ACCEPTFILTER:
2969 			error = accept_filt_setopt(so, sopt);
2970 			if (error)
2971 				goto bad;
2972 			break;
2973 
2974 		case SO_LINGER:
2975 			error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
2976 			if (error)
2977 				goto bad;
2978 			if (l.l_linger < 0 ||
2979 			    l.l_linger > USHRT_MAX ||
2980 			    l.l_linger > (INT_MAX / hz)) {
2981 				error = EDOM;
2982 				goto bad;
2983 			}
2984 			SOCK_LOCK(so);
2985 			so->so_linger = l.l_linger;
2986 			if (l.l_onoff)
2987 				so->so_options |= SO_LINGER;
2988 			else
2989 				so->so_options &= ~SO_LINGER;
2990 			SOCK_UNLOCK(so);
2991 			break;
2992 
2993 		case SO_DEBUG:
2994 		case SO_KEEPALIVE:
2995 		case SO_DONTROUTE:
2996 		case SO_USELOOPBACK:
2997 		case SO_BROADCAST:
2998 		case SO_REUSEADDR:
2999 		case SO_REUSEPORT:
3000 		case SO_REUSEPORT_LB:
3001 		case SO_OOBINLINE:
3002 		case SO_TIMESTAMP:
3003 		case SO_BINTIME:
3004 		case SO_NOSIGPIPE:
3005 		case SO_NO_DDP:
3006 		case SO_NO_OFFLOAD:
3007 			error = sooptcopyin(sopt, &optval, sizeof optval,
3008 			    sizeof optval);
3009 			if (error)
3010 				goto bad;
3011 			SOCK_LOCK(so);
3012 			if (optval)
3013 				so->so_options |= sopt->sopt_name;
3014 			else
3015 				so->so_options &= ~sopt->sopt_name;
3016 			SOCK_UNLOCK(so);
3017 			break;
3018 
3019 		case SO_SETFIB:
3020 			error = sooptcopyin(sopt, &optval, sizeof optval,
3021 			    sizeof optval);
3022 			if (error)
3023 				goto bad;
3024 
3025 			if (optval < 0 || optval >= rt_numfibs) {
3026 				error = EINVAL;
3027 				goto bad;
3028 			}
3029 			if (((so->so_proto->pr_domain->dom_family == PF_INET) ||
3030 			   (so->so_proto->pr_domain->dom_family == PF_INET6) ||
3031 			   (so->so_proto->pr_domain->dom_family == PF_ROUTE)))
3032 				so->so_fibnum = optval;
3033 			else
3034 				so->so_fibnum = 0;
3035 			break;
3036 
3037 		case SO_USER_COOKIE:
3038 			error = sooptcopyin(sopt, &val32, sizeof val32,
3039 			    sizeof val32);
3040 			if (error)
3041 				goto bad;
3042 			so->so_user_cookie = val32;
3043 			break;
3044 
3045 		case SO_SNDBUF:
3046 		case SO_RCVBUF:
3047 		case SO_SNDLOWAT:
3048 		case SO_RCVLOWAT:
3049 			error = sooptcopyin(sopt, &optval, sizeof optval,
3050 			    sizeof optval);
3051 			if (error)
3052 				goto bad;
3053 
3054 			/*
3055 			 * Values < 1 make no sense for any of these options,
3056 			 * so disallow them.
3057 			 */
3058 			if (optval < 1) {
3059 				error = EINVAL;
3060 				goto bad;
3061 			}
3062 
3063 			error = sbsetopt(so, sopt->sopt_name, optval);
3064 			break;
3065 
3066 		case SO_SNDTIMEO:
3067 		case SO_RCVTIMEO:
3068 #ifdef COMPAT_FREEBSD32
3069 			if (SV_CURPROC_FLAG(SV_ILP32)) {
3070 				struct timeval32 tv32;
3071 
3072 				error = sooptcopyin(sopt, &tv32, sizeof tv32,
3073 				    sizeof tv32);
3074 				CP(tv32, tv, tv_sec);
3075 				CP(tv32, tv, tv_usec);
3076 			} else
3077 #endif
3078 				error = sooptcopyin(sopt, &tv, sizeof tv,
3079 				    sizeof tv);
3080 			if (error)
3081 				goto bad;
3082 			if (tv.tv_sec < 0 || tv.tv_usec < 0 ||
3083 			    tv.tv_usec >= 1000000) {
3084 				error = EDOM;
3085 				goto bad;
3086 			}
3087 			if (tv.tv_sec > INT32_MAX)
3088 				val = SBT_MAX;
3089 			else
3090 				val = tvtosbt(tv);
3091 			switch (sopt->sopt_name) {
3092 			case SO_SNDTIMEO:
3093 				so->so_snd.sb_timeo = val;
3094 				break;
3095 			case SO_RCVTIMEO:
3096 				so->so_rcv.sb_timeo = val;
3097 				break;
3098 			}
3099 			break;
3100 
3101 		case SO_LABEL:
3102 #ifdef MAC
3103 			error = sooptcopyin(sopt, &extmac, sizeof extmac,
3104 			    sizeof extmac);
3105 			if (error)
3106 				goto bad;
3107 			error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
3108 			    so, &extmac);
3109 #else
3110 			error = EOPNOTSUPP;
3111 #endif
3112 			break;
3113 
3114 		case SO_TS_CLOCK:
3115 			error = sooptcopyin(sopt, &optval, sizeof optval,
3116 			    sizeof optval);
3117 			if (error)
3118 				goto bad;
3119 			if (optval < 0 || optval > SO_TS_CLOCK_MAX) {
3120 				error = EINVAL;
3121 				goto bad;
3122 			}
3123 			so->so_ts_clock = optval;
3124 			break;
3125 
3126 		case SO_MAX_PACING_RATE:
3127 			error = sooptcopyin(sopt, &val32, sizeof(val32),
3128 			    sizeof(val32));
3129 			if (error)
3130 				goto bad;
3131 			so->so_max_pacing_rate = val32;
3132 			break;
3133 
3134 		default:
3135 			if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
3136 				error = hhook_run_socket(so, sopt,
3137 				    HHOOK_SOCKET_OPT);
3138 			else
3139 				error = ENOPROTOOPT;
3140 			break;
3141 		}
3142 		if (error == 0 && so->so_proto->pr_ctloutput != NULL)
3143 			(void)(*so->so_proto->pr_ctloutput)(so, sopt);
3144 	}
3145 bad:
3146 	CURVNET_RESTORE();
3147 	return (error);
3148 }
3149 
3150 /*
3151  * Helper routine for getsockopt.
3152  */
3153 int
3154 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
3155 {
3156 	int	error;
3157 	size_t	valsize;
3158 
3159 	error = 0;
3160 
3161 	/*
3162 	 * Documented get behavior is that we always return a value, possibly
3163 	 * truncated to fit in the user's buffer.  Traditional behavior is
3164 	 * that we always tell the user precisely how much we copied, rather
3165 	 * than something useful like the total amount we had available for
3166 	 * her.  Note that this interface is not idempotent; the entire
3167 	 * answer must be generated ahead of time.
3168 	 */
3169 	valsize = min(len, sopt->sopt_valsize);
3170 	sopt->sopt_valsize = valsize;
3171 	if (sopt->sopt_val != NULL) {
3172 		if (sopt->sopt_td != NULL)
3173 			error = copyout(buf, sopt->sopt_val, valsize);
3174 		else
3175 			bcopy(buf, sopt->sopt_val, valsize);
3176 	}
3177 	return (error);
3178 }
3179 
3180 int
3181 sogetopt(struct socket *so, struct sockopt *sopt)
3182 {
3183 	int	error, optval;
3184 	struct	linger l;
3185 	struct	timeval tv;
3186 #ifdef MAC
3187 	struct mac extmac;
3188 #endif
3189 
3190 	CURVNET_SET(so->so_vnet);
3191 	error = 0;
3192 	if (sopt->sopt_level != SOL_SOCKET) {
3193 		if (so->so_proto->pr_ctloutput != NULL)
3194 			error = (*so->so_proto->pr_ctloutput)(so, sopt);
3195 		else
3196 			error = ENOPROTOOPT;
3197 		CURVNET_RESTORE();
3198 		return (error);
3199 	} else {
3200 		switch (sopt->sopt_name) {
3201 		case SO_ACCEPTFILTER:
3202 			error = accept_filt_getopt(so, sopt);
3203 			break;
3204 
3205 		case SO_LINGER:
3206 			SOCK_LOCK(so);
3207 			l.l_onoff = so->so_options & SO_LINGER;
3208 			l.l_linger = so->so_linger;
3209 			SOCK_UNLOCK(so);
3210 			error = sooptcopyout(sopt, &l, sizeof l);
3211 			break;
3212 
3213 		case SO_USELOOPBACK:
3214 		case SO_DONTROUTE:
3215 		case SO_DEBUG:
3216 		case SO_KEEPALIVE:
3217 		case SO_REUSEADDR:
3218 		case SO_REUSEPORT:
3219 		case SO_REUSEPORT_LB:
3220 		case SO_BROADCAST:
3221 		case SO_OOBINLINE:
3222 		case SO_ACCEPTCONN:
3223 		case SO_TIMESTAMP:
3224 		case SO_BINTIME:
3225 		case SO_NOSIGPIPE:
3226 			optval = so->so_options & sopt->sopt_name;
3227 integer:
3228 			error = sooptcopyout(sopt, &optval, sizeof optval);
3229 			break;
3230 
3231 		case SO_DOMAIN:
3232 			optval = so->so_proto->pr_domain->dom_family;
3233 			goto integer;
3234 
3235 		case SO_TYPE:
3236 			optval = so->so_type;
3237 			goto integer;
3238 
3239 		case SO_PROTOCOL:
3240 			optval = so->so_proto->pr_protocol;
3241 			goto integer;
3242 
3243 		case SO_ERROR:
3244 			SOCK_LOCK(so);
3245 			optval = so->so_error;
3246 			so->so_error = 0;
3247 			SOCK_UNLOCK(so);
3248 			goto integer;
3249 
3250 		case SO_SNDBUF:
3251 			optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat :
3252 			    so->so_snd.sb_hiwat;
3253 			goto integer;
3254 
3255 		case SO_RCVBUF:
3256 			optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat :
3257 			    so->so_rcv.sb_hiwat;
3258 			goto integer;
3259 
3260 		case SO_SNDLOWAT:
3261 			optval = SOLISTENING(so) ? so->sol_sbsnd_lowat :
3262 			    so->so_snd.sb_lowat;
3263 			goto integer;
3264 
3265 		case SO_RCVLOWAT:
3266 			optval = SOLISTENING(so) ? so->sol_sbrcv_lowat :
3267 			    so->so_rcv.sb_lowat;
3268 			goto integer;
3269 
3270 		case SO_SNDTIMEO:
3271 		case SO_RCVTIMEO:
3272 			tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ?
3273 			    so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
3274 #ifdef COMPAT_FREEBSD32
3275 			if (SV_CURPROC_FLAG(SV_ILP32)) {
3276 				struct timeval32 tv32;
3277 
3278 				CP(tv, tv32, tv_sec);
3279 				CP(tv, tv32, tv_usec);
3280 				error = sooptcopyout(sopt, &tv32, sizeof tv32);
3281 			} else
3282 #endif
3283 				error = sooptcopyout(sopt, &tv, sizeof tv);
3284 			break;
3285 
3286 		case SO_LABEL:
3287 #ifdef MAC
3288 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
3289 			    sizeof(extmac));
3290 			if (error)
3291 				goto bad;
3292 			error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
3293 			    so, &extmac);
3294 			if (error)
3295 				goto bad;
3296 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
3297 #else
3298 			error = EOPNOTSUPP;
3299 #endif
3300 			break;
3301 
3302 		case SO_PEERLABEL:
3303 #ifdef MAC
3304 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
3305 			    sizeof(extmac));
3306 			if (error)
3307 				goto bad;
3308 			error = mac_getsockopt_peerlabel(
3309 			    sopt->sopt_td->td_ucred, so, &extmac);
3310 			if (error)
3311 				goto bad;
3312 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
3313 #else
3314 			error = EOPNOTSUPP;
3315 #endif
3316 			break;
3317 
3318 		case SO_LISTENQLIMIT:
3319 			optval = SOLISTENING(so) ? so->sol_qlimit : 0;
3320 			goto integer;
3321 
3322 		case SO_LISTENQLEN:
3323 			optval = SOLISTENING(so) ? so->sol_qlen : 0;
3324 			goto integer;
3325 
3326 		case SO_LISTENINCQLEN:
3327 			optval = SOLISTENING(so) ? so->sol_incqlen : 0;
3328 			goto integer;
3329 
3330 		case SO_TS_CLOCK:
3331 			optval = so->so_ts_clock;
3332 			goto integer;
3333 
3334 		case SO_MAX_PACING_RATE:
3335 			optval = so->so_max_pacing_rate;
3336 			goto integer;
3337 
3338 		default:
3339 			if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
3340 				error = hhook_run_socket(so, sopt,
3341 				    HHOOK_SOCKET_OPT);
3342 			else
3343 				error = ENOPROTOOPT;
3344 			break;
3345 		}
3346 	}
3347 #ifdef MAC
3348 bad:
3349 #endif
3350 	CURVNET_RESTORE();
3351 	return (error);
3352 }
3353 
3354 int
3355 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
3356 {
3357 	struct mbuf *m, *m_prev;
3358 	int sopt_size = sopt->sopt_valsize;
3359 
3360 	MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
3361 	if (m == NULL)
3362 		return ENOBUFS;
3363 	if (sopt_size > MLEN) {
3364 		MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT);
3365 		if ((m->m_flags & M_EXT) == 0) {
3366 			m_free(m);
3367 			return ENOBUFS;
3368 		}
3369 		m->m_len = min(MCLBYTES, sopt_size);
3370 	} else {
3371 		m->m_len = min(MLEN, sopt_size);
3372 	}
3373 	sopt_size -= m->m_len;
3374 	*mp = m;
3375 	m_prev = m;
3376 
3377 	while (sopt_size) {
3378 		MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
3379 		if (m == NULL) {
3380 			m_freem(*mp);
3381 			return ENOBUFS;
3382 		}
3383 		if (sopt_size > MLEN) {
3384 			MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK :
3385 			    M_NOWAIT);
3386 			if ((m->m_flags & M_EXT) == 0) {
3387 				m_freem(m);
3388 				m_freem(*mp);
3389 				return ENOBUFS;
3390 			}
3391 			m->m_len = min(MCLBYTES, sopt_size);
3392 		} else {
3393 			m->m_len = min(MLEN, sopt_size);
3394 		}
3395 		sopt_size -= m->m_len;
3396 		m_prev->m_next = m;
3397 		m_prev = m;
3398 	}
3399 	return (0);
3400 }
3401 
3402 int
3403 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
3404 {
3405 	struct mbuf *m0 = m;
3406 
3407 	if (sopt->sopt_val == NULL)
3408 		return (0);
3409 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
3410 		if (sopt->sopt_td != NULL) {
3411 			int error;
3412 
3413 			error = copyin(sopt->sopt_val, mtod(m, char *),
3414 			    m->m_len);
3415 			if (error != 0) {
3416 				m_freem(m0);
3417 				return(error);
3418 			}
3419 		} else
3420 			bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
3421 		sopt->sopt_valsize -= m->m_len;
3422 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
3423 		m = m->m_next;
3424 	}
3425 	if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
3426 		panic("ip6_sooptmcopyin");
3427 	return (0);
3428 }
3429 
3430 int
3431 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
3432 {
3433 	struct mbuf *m0 = m;
3434 	size_t valsize = 0;
3435 
3436 	if (sopt->sopt_val == NULL)
3437 		return (0);
3438 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
3439 		if (sopt->sopt_td != NULL) {
3440 			int error;
3441 
3442 			error = copyout(mtod(m, char *), sopt->sopt_val,
3443 			    m->m_len);
3444 			if (error != 0) {
3445 				m_freem(m0);
3446 				return(error);
3447 			}
3448 		} else
3449 			bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
3450 		sopt->sopt_valsize -= m->m_len;
3451 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
3452 		valsize += m->m_len;
3453 		m = m->m_next;
3454 	}
3455 	if (m != NULL) {
3456 		/* enough soopt buffer should be given from user-land */
3457 		m_freem(m0);
3458 		return(EINVAL);
3459 	}
3460 	sopt->sopt_valsize = valsize;
3461 	return (0);
3462 }
3463 
3464 /*
3465  * sohasoutofband(): protocol notifies socket layer of the arrival of new
3466  * out-of-band data, which will then notify socket consumers.
3467  */
3468 void
3469 sohasoutofband(struct socket *so)
3470 {
3471 
3472 	if (so->so_sigio != NULL)
3473 		pgsigio(&so->so_sigio, SIGURG, 0);
3474 	selwakeuppri(&so->so_rdsel, PSOCK);
3475 }
3476 
3477 int
3478 sopoll(struct socket *so, int events, struct ucred *active_cred,
3479     struct thread *td)
3480 {
3481 
3482 	/*
3483 	 * We do not need to set or assert curvnet as long as everyone uses
3484 	 * sopoll_generic().
3485 	 */
3486 	return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred,
3487 	    td));
3488 }
3489 
3490 int
3491 sopoll_generic(struct socket *so, int events, struct ucred *active_cred,
3492     struct thread *td)
3493 {
3494 	int revents;
3495 
3496 	SOCK_LOCK(so);
3497 	if (SOLISTENING(so)) {
3498 		if (!(events & (POLLIN | POLLRDNORM)))
3499 			revents = 0;
3500 		else if (!TAILQ_EMPTY(&so->sol_comp))
3501 			revents = events & (POLLIN | POLLRDNORM);
3502 		else if ((events & POLLINIGNEOF) == 0 && so->so_error)
3503 			revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP;
3504 		else {
3505 			selrecord(td, &so->so_rdsel);
3506 			revents = 0;
3507 		}
3508 	} else {
3509 		revents = 0;
3510 		SOCKBUF_LOCK(&so->so_snd);
3511 		SOCKBUF_LOCK(&so->so_rcv);
3512 		if (events & (POLLIN | POLLRDNORM))
3513 			if (soreadabledata(so))
3514 				revents |= events & (POLLIN | POLLRDNORM);
3515 		if (events & (POLLOUT | POLLWRNORM))
3516 			if (sowriteable(so))
3517 				revents |= events & (POLLOUT | POLLWRNORM);
3518 		if (events & (POLLPRI | POLLRDBAND))
3519 			if (so->so_oobmark ||
3520 			    (so->so_rcv.sb_state & SBS_RCVATMARK))
3521 				revents |= events & (POLLPRI | POLLRDBAND);
3522 		if ((events & POLLINIGNEOF) == 0) {
3523 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3524 				revents |= events & (POLLIN | POLLRDNORM);
3525 				if (so->so_snd.sb_state & SBS_CANTSENDMORE)
3526 					revents |= POLLHUP;
3527 			}
3528 		}
3529 		if (revents == 0) {
3530 			if (events &
3531 			    (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
3532 				selrecord(td, &so->so_rdsel);
3533 				so->so_rcv.sb_flags |= SB_SEL;
3534 			}
3535 			if (events & (POLLOUT | POLLWRNORM)) {
3536 				selrecord(td, &so->so_wrsel);
3537 				so->so_snd.sb_flags |= SB_SEL;
3538 			}
3539 		}
3540 		SOCKBUF_UNLOCK(&so->so_rcv);
3541 		SOCKBUF_UNLOCK(&so->so_snd);
3542 	}
3543 	SOCK_UNLOCK(so);
3544 	return (revents);
3545 }
3546 
3547 int
3548 soo_kqfilter(struct file *fp, struct knote *kn)
3549 {
3550 	struct socket *so = kn->kn_fp->f_data;
3551 	struct sockbuf *sb;
3552 	struct knlist *knl;
3553 
3554 	switch (kn->kn_filter) {
3555 	case EVFILT_READ:
3556 		kn->kn_fop = &soread_filtops;
3557 		knl = &so->so_rdsel.si_note;
3558 		sb = &so->so_rcv;
3559 		break;
3560 	case EVFILT_WRITE:
3561 		kn->kn_fop = &sowrite_filtops;
3562 		knl = &so->so_wrsel.si_note;
3563 		sb = &so->so_snd;
3564 		break;
3565 	case EVFILT_EMPTY:
3566 		kn->kn_fop = &soempty_filtops;
3567 		knl = &so->so_wrsel.si_note;
3568 		sb = &so->so_snd;
3569 		break;
3570 	default:
3571 		return (EINVAL);
3572 	}
3573 
3574 	SOCK_LOCK(so);
3575 	if (SOLISTENING(so)) {
3576 		knlist_add(knl, kn, 1);
3577 	} else {
3578 		SOCKBUF_LOCK(sb);
3579 		knlist_add(knl, kn, 1);
3580 		sb->sb_flags |= SB_KNOTE;
3581 		SOCKBUF_UNLOCK(sb);
3582 	}
3583 	SOCK_UNLOCK(so);
3584 	return (0);
3585 }
3586 
3587 /*
3588  * Some routines that return EOPNOTSUPP for entry points that are not
3589  * supported by a protocol.  Fill in as needed.
3590  */
3591 int
3592 pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
3593 {
3594 
3595 	return EOPNOTSUPP;
3596 }
3597 
3598 int
3599 pru_aio_queue_notsupp(struct socket *so, struct kaiocb *job)
3600 {
3601 
3602 	return EOPNOTSUPP;
3603 }
3604 
3605 int
3606 pru_attach_notsupp(struct socket *so, int proto, struct thread *td)
3607 {
3608 
3609 	return EOPNOTSUPP;
3610 }
3611 
3612 int
3613 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
3614 {
3615 
3616 	return EOPNOTSUPP;
3617 }
3618 
3619 int
3620 pru_bindat_notsupp(int fd, struct socket *so, struct sockaddr *nam,
3621     struct thread *td)
3622 {
3623 
3624 	return EOPNOTSUPP;
3625 }
3626 
3627 int
3628 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
3629 {
3630 
3631 	return EOPNOTSUPP;
3632 }
3633 
3634 int
3635 pru_connectat_notsupp(int fd, struct socket *so, struct sockaddr *nam,
3636     struct thread *td)
3637 {
3638 
3639 	return EOPNOTSUPP;
3640 }
3641 
3642 int
3643 pru_connect2_notsupp(struct socket *so1, struct socket *so2)
3644 {
3645 
3646 	return EOPNOTSUPP;
3647 }
3648 
3649 int
3650 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
3651     struct ifnet *ifp, struct thread *td)
3652 {
3653 
3654 	return EOPNOTSUPP;
3655 }
3656 
3657 int
3658 pru_disconnect_notsupp(struct socket *so)
3659 {
3660 
3661 	return EOPNOTSUPP;
3662 }
3663 
3664 int
3665 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td)
3666 {
3667 
3668 	return EOPNOTSUPP;
3669 }
3670 
3671 int
3672 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam)
3673 {
3674 
3675 	return EOPNOTSUPP;
3676 }
3677 
3678 int
3679 pru_rcvd_notsupp(struct socket *so, int flags)
3680 {
3681 
3682 	return EOPNOTSUPP;
3683 }
3684 
3685 int
3686 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
3687 {
3688 
3689 	return EOPNOTSUPP;
3690 }
3691 
3692 int
3693 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m,
3694     struct sockaddr *addr, struct mbuf *control, struct thread *td)
3695 {
3696 
3697 	return EOPNOTSUPP;
3698 }
3699 
3700 int
3701 pru_ready_notsupp(struct socket *so, struct mbuf *m, int count)
3702 {
3703 
3704 	return (EOPNOTSUPP);
3705 }
3706 
3707 /*
3708  * This isn't really a ``null'' operation, but it's the default one and
3709  * doesn't do anything destructive.
3710  */
3711 int
3712 pru_sense_null(struct socket *so, struct stat *sb)
3713 {
3714 
3715 	sb->st_blksize = so->so_snd.sb_hiwat;
3716 	return 0;
3717 }
3718 
3719 int
3720 pru_shutdown_notsupp(struct socket *so)
3721 {
3722 
3723 	return EOPNOTSUPP;
3724 }
3725 
3726 int
3727 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam)
3728 {
3729 
3730 	return EOPNOTSUPP;
3731 }
3732 
3733 int
3734 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio,
3735     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
3736 {
3737 
3738 	return EOPNOTSUPP;
3739 }
3740 
3741 int
3742 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr,
3743     struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3744 {
3745 
3746 	return EOPNOTSUPP;
3747 }
3748 
3749 int
3750 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred,
3751     struct thread *td)
3752 {
3753 
3754 	return EOPNOTSUPP;
3755 }
3756 
3757 static void
3758 filt_sordetach(struct knote *kn)
3759 {
3760 	struct socket *so = kn->kn_fp->f_data;
3761 
3762 	so_rdknl_lock(so);
3763 	knlist_remove(&so->so_rdsel.si_note, kn, 1);
3764 	if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note))
3765 		so->so_rcv.sb_flags &= ~SB_KNOTE;
3766 	so_rdknl_unlock(so);
3767 }
3768 
3769 /*ARGSUSED*/
3770 static int
3771 filt_soread(struct knote *kn, long hint)
3772 {
3773 	struct socket *so;
3774 
3775 	so = kn->kn_fp->f_data;
3776 
3777 	if (SOLISTENING(so)) {
3778 		SOCK_LOCK_ASSERT(so);
3779 		kn->kn_data = so->sol_qlen;
3780 		if (so->so_error) {
3781 			kn->kn_flags |= EV_EOF;
3782 			kn->kn_fflags = so->so_error;
3783 			return (1);
3784 		}
3785 		return (!TAILQ_EMPTY(&so->sol_comp));
3786 	}
3787 
3788 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3789 
3790 	kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl;
3791 	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3792 		kn->kn_flags |= EV_EOF;
3793 		kn->kn_fflags = so->so_error;
3794 		return (1);
3795 	} else if (so->so_error)	/* temporary udp error */
3796 		return (1);
3797 
3798 	if (kn->kn_sfflags & NOTE_LOWAT) {
3799 		if (kn->kn_data >= kn->kn_sdata)
3800 			return (1);
3801 	} else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat)
3802 		return (1);
3803 
3804 	/* This hook returning non-zero indicates an event, not error */
3805 	return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD));
3806 }
3807 
3808 static void
3809 filt_sowdetach(struct knote *kn)
3810 {
3811 	struct socket *so = kn->kn_fp->f_data;
3812 
3813 	so_wrknl_lock(so);
3814 	knlist_remove(&so->so_wrsel.si_note, kn, 1);
3815 	if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note))
3816 		so->so_snd.sb_flags &= ~SB_KNOTE;
3817 	so_wrknl_unlock(so);
3818 }
3819 
3820 /*ARGSUSED*/
3821 static int
3822 filt_sowrite(struct knote *kn, long hint)
3823 {
3824 	struct socket *so;
3825 
3826 	so = kn->kn_fp->f_data;
3827 
3828 	if (SOLISTENING(so))
3829 		return (0);
3830 
3831 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
3832 	kn->kn_data = sbspace(&so->so_snd);
3833 
3834 	hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE);
3835 
3836 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
3837 		kn->kn_flags |= EV_EOF;
3838 		kn->kn_fflags = so->so_error;
3839 		return (1);
3840 	} else if (so->so_error)	/* temporary udp error */
3841 		return (1);
3842 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
3843 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
3844 		return (0);
3845 	else if (kn->kn_sfflags & NOTE_LOWAT)
3846 		return (kn->kn_data >= kn->kn_sdata);
3847 	else
3848 		return (kn->kn_data >= so->so_snd.sb_lowat);
3849 }
3850 
3851 static int
3852 filt_soempty(struct knote *kn, long hint)
3853 {
3854 	struct socket *so;
3855 
3856 	so = kn->kn_fp->f_data;
3857 
3858 	if (SOLISTENING(so))
3859 		return (1);
3860 
3861 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
3862 	kn->kn_data = sbused(&so->so_snd);
3863 
3864 	if (kn->kn_data == 0)
3865 		return (1);
3866 	else
3867 		return (0);
3868 }
3869 
3870 int
3871 socheckuid(struct socket *so, uid_t uid)
3872 {
3873 
3874 	if (so == NULL)
3875 		return (EPERM);
3876 	if (so->so_cred->cr_uid != uid)
3877 		return (EPERM);
3878 	return (0);
3879 }
3880 
3881 /*
3882  * These functions are used by protocols to notify the socket layer (and its
3883  * consumers) of state changes in the sockets driven by protocol-side events.
3884  */
3885 
3886 /*
3887  * Procedures to manipulate state flags of socket and do appropriate wakeups.
3888  *
3889  * Normal sequence from the active (originating) side is that
3890  * soisconnecting() is called during processing of connect() call, resulting
3891  * in an eventual call to soisconnected() if/when the connection is
3892  * established.  When the connection is torn down soisdisconnecting() is
3893  * called during processing of disconnect() call, and soisdisconnected() is
3894  * called when the connection to the peer is totally severed.  The semantics
3895  * of these routines are such that connectionless protocols can call
3896  * soisconnected() and soisdisconnected() only, bypassing the in-progress
3897  * calls when setting up a ``connection'' takes no time.
3898  *
3899  * From the passive side, a socket is created with two queues of sockets:
3900  * so_incomp for connections in progress and so_comp for connections already
3901  * made and awaiting user acceptance.  As a protocol is preparing incoming
3902  * connections, it creates a socket structure queued on so_incomp by calling
3903  * sonewconn().  When the connection is established, soisconnected() is
3904  * called, and transfers the socket structure to so_comp, making it available
3905  * to accept().
3906  *
3907  * If a socket is closed with sockets on either so_incomp or so_comp, these
3908  * sockets are dropped.
3909  *
3910  * If higher-level protocols are implemented in the kernel, the wakeups done
3911  * here will sometimes cause software-interrupt process scheduling.
3912  */
3913 void
3914 soisconnecting(struct socket *so)
3915 {
3916 
3917 	SOCK_LOCK(so);
3918 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
3919 	so->so_state |= SS_ISCONNECTING;
3920 	SOCK_UNLOCK(so);
3921 }
3922 
3923 void
3924 soisconnected(struct socket *so)
3925 {
3926 
3927 	SOCK_LOCK(so);
3928 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
3929 	so->so_state |= SS_ISCONNECTED;
3930 
3931 	if (so->so_qstate == SQ_INCOMP) {
3932 		struct socket *head = so->so_listen;
3933 		int ret;
3934 
3935 		KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so));
3936 		/*
3937 		 * Promoting a socket from incomplete queue to complete, we
3938 		 * need to go through reverse order of locking.  We first do
3939 		 * trylock, and if that doesn't succeed, we go the hard way
3940 		 * leaving a reference and rechecking consistency after proper
3941 		 * locking.
3942 		 */
3943 		if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) {
3944 			soref(head);
3945 			SOCK_UNLOCK(so);
3946 			SOLISTEN_LOCK(head);
3947 			SOCK_LOCK(so);
3948 			if (__predict_false(head != so->so_listen)) {
3949 				/*
3950 				 * The socket went off the listen queue,
3951 				 * should be lost race to close(2) of sol.
3952 				 * The socket is about to soabort().
3953 				 */
3954 				SOCK_UNLOCK(so);
3955 				sorele(head);
3956 				return;
3957 			}
3958 			/* Not the last one, as so holds a ref. */
3959 			refcount_release(&head->so_count);
3960 		}
3961 again:
3962 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
3963 			TAILQ_REMOVE(&head->sol_incomp, so, so_list);
3964 			head->sol_incqlen--;
3965 			TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
3966 			head->sol_qlen++;
3967 			so->so_qstate = SQ_COMP;
3968 			SOCK_UNLOCK(so);
3969 			solisten_wakeup(head);	/* unlocks */
3970 		} else {
3971 			SOCKBUF_LOCK(&so->so_rcv);
3972 			soupcall_set(so, SO_RCV,
3973 			    head->sol_accept_filter->accf_callback,
3974 			    head->sol_accept_filter_arg);
3975 			so->so_options &= ~SO_ACCEPTFILTER;
3976 			ret = head->sol_accept_filter->accf_callback(so,
3977 			    head->sol_accept_filter_arg, M_NOWAIT);
3978 			if (ret == SU_ISCONNECTED) {
3979 				soupcall_clear(so, SO_RCV);
3980 				SOCKBUF_UNLOCK(&so->so_rcv);
3981 				goto again;
3982 			}
3983 			SOCKBUF_UNLOCK(&so->so_rcv);
3984 			SOCK_UNLOCK(so);
3985 			SOLISTEN_UNLOCK(head);
3986 		}
3987 		return;
3988 	}
3989 	SOCK_UNLOCK(so);
3990 	wakeup(&so->so_timeo);
3991 	sorwakeup(so);
3992 	sowwakeup(so);
3993 }
3994 
3995 void
3996 soisdisconnecting(struct socket *so)
3997 {
3998 
3999 	SOCK_LOCK(so);
4000 	so->so_state &= ~SS_ISCONNECTING;
4001 	so->so_state |= SS_ISDISCONNECTING;
4002 
4003 	if (!SOLISTENING(so)) {
4004 		SOCKBUF_LOCK(&so->so_rcv);
4005 		socantrcvmore_locked(so);
4006 		SOCKBUF_LOCK(&so->so_snd);
4007 		socantsendmore_locked(so);
4008 	}
4009 	SOCK_UNLOCK(so);
4010 	wakeup(&so->so_timeo);
4011 }
4012 
4013 void
4014 soisdisconnected(struct socket *so)
4015 {
4016 
4017 	SOCK_LOCK(so);
4018 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
4019 	so->so_state |= SS_ISDISCONNECTED;
4020 
4021 	if (!SOLISTENING(so)) {
4022 		SOCK_UNLOCK(so);
4023 		SOCKBUF_LOCK(&so->so_rcv);
4024 		socantrcvmore_locked(so);
4025 		SOCKBUF_LOCK(&so->so_snd);
4026 		sbdrop_locked(&so->so_snd, sbused(&so->so_snd));
4027 		socantsendmore_locked(so);
4028 	} else
4029 		SOCK_UNLOCK(so);
4030 	wakeup(&so->so_timeo);
4031 }
4032 
4033 /*
4034  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
4035  */
4036 struct sockaddr *
4037 sodupsockaddr(const struct sockaddr *sa, int mflags)
4038 {
4039 	struct sockaddr *sa2;
4040 
4041 	sa2 = malloc(sa->sa_len, M_SONAME, mflags);
4042 	if (sa2)
4043 		bcopy(sa, sa2, sa->sa_len);
4044 	return sa2;
4045 }
4046 
4047 /*
4048  * Register per-socket destructor.
4049  */
4050 void
4051 sodtor_set(struct socket *so, so_dtor_t *func)
4052 {
4053 
4054 	SOCK_LOCK_ASSERT(so);
4055 	so->so_dtor = func;
4056 }
4057 
4058 /*
4059  * Register per-socket buffer upcalls.
4060  */
4061 void
4062 soupcall_set(struct socket *so, int which, so_upcall_t func, void *arg)
4063 {
4064 	struct sockbuf *sb;
4065 
4066 	KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4067 
4068 	switch (which) {
4069 	case SO_RCV:
4070 		sb = &so->so_rcv;
4071 		break;
4072 	case SO_SND:
4073 		sb = &so->so_snd;
4074 		break;
4075 	default:
4076 		panic("soupcall_set: bad which");
4077 	}
4078 	SOCKBUF_LOCK_ASSERT(sb);
4079 	sb->sb_upcall = func;
4080 	sb->sb_upcallarg = arg;
4081 	sb->sb_flags |= SB_UPCALL;
4082 }
4083 
4084 void
4085 soupcall_clear(struct socket *so, int which)
4086 {
4087 	struct sockbuf *sb;
4088 
4089 	KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4090 
4091 	switch (which) {
4092 	case SO_RCV:
4093 		sb = &so->so_rcv;
4094 		break;
4095 	case SO_SND:
4096 		sb = &so->so_snd;
4097 		break;
4098 	default:
4099 		panic("soupcall_clear: bad which");
4100 	}
4101 	SOCKBUF_LOCK_ASSERT(sb);
4102 	KASSERT(sb->sb_upcall != NULL,
4103 	    ("%s: so %p no upcall to clear", __func__, so));
4104 	sb->sb_upcall = NULL;
4105 	sb->sb_upcallarg = NULL;
4106 	sb->sb_flags &= ~SB_UPCALL;
4107 }
4108 
4109 void
4110 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg)
4111 {
4112 
4113 	SOLISTEN_LOCK_ASSERT(so);
4114 	so->sol_upcall = func;
4115 	so->sol_upcallarg = arg;
4116 }
4117 
4118 static void
4119 so_rdknl_lock(void *arg)
4120 {
4121 	struct socket *so = arg;
4122 
4123 	if (SOLISTENING(so))
4124 		SOCK_LOCK(so);
4125 	else
4126 		SOCKBUF_LOCK(&so->so_rcv);
4127 }
4128 
4129 static void
4130 so_rdknl_unlock(void *arg)
4131 {
4132 	struct socket *so = arg;
4133 
4134 	if (SOLISTENING(so))
4135 		SOCK_UNLOCK(so);
4136 	else
4137 		SOCKBUF_UNLOCK(&so->so_rcv);
4138 }
4139 
4140 static void
4141 so_rdknl_assert_locked(void *arg)
4142 {
4143 	struct socket *so = arg;
4144 
4145 	if (SOLISTENING(so))
4146 		SOCK_LOCK_ASSERT(so);
4147 	else
4148 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
4149 }
4150 
4151 static void
4152 so_rdknl_assert_unlocked(void *arg)
4153 {
4154 	struct socket *so = arg;
4155 
4156 	if (SOLISTENING(so))
4157 		SOCK_UNLOCK_ASSERT(so);
4158 	else
4159 		SOCKBUF_UNLOCK_ASSERT(&so->so_rcv);
4160 }
4161 
4162 static void
4163 so_wrknl_lock(void *arg)
4164 {
4165 	struct socket *so = arg;
4166 
4167 	if (SOLISTENING(so))
4168 		SOCK_LOCK(so);
4169 	else
4170 		SOCKBUF_LOCK(&so->so_snd);
4171 }
4172 
4173 static void
4174 so_wrknl_unlock(void *arg)
4175 {
4176 	struct socket *so = arg;
4177 
4178 	if (SOLISTENING(so))
4179 		SOCK_UNLOCK(so);
4180 	else
4181 		SOCKBUF_UNLOCK(&so->so_snd);
4182 }
4183 
4184 static void
4185 so_wrknl_assert_locked(void *arg)
4186 {
4187 	struct socket *so = arg;
4188 
4189 	if (SOLISTENING(so))
4190 		SOCK_LOCK_ASSERT(so);
4191 	else
4192 		SOCKBUF_LOCK_ASSERT(&so->so_snd);
4193 }
4194 
4195 static void
4196 so_wrknl_assert_unlocked(void *arg)
4197 {
4198 	struct socket *so = arg;
4199 
4200 	if (SOLISTENING(so))
4201 		SOCK_UNLOCK_ASSERT(so);
4202 	else
4203 		SOCKBUF_UNLOCK_ASSERT(&so->so_snd);
4204 }
4205 
4206 /*
4207  * Create an external-format (``xsocket'') structure using the information in
4208  * the kernel-format socket structure pointed to by so.  This is done to
4209  * reduce the spew of irrelevant information over this interface, to isolate
4210  * user code from changes in the kernel structure, and potentially to provide
4211  * information-hiding if we decide that some of this information should be
4212  * hidden from users.
4213  */
4214 void
4215 sotoxsocket(struct socket *so, struct xsocket *xso)
4216 {
4217 
4218 	bzero(xso, sizeof(*xso));
4219 	xso->xso_len = sizeof *xso;
4220 	xso->xso_so = (uintptr_t)so;
4221 	xso->so_type = so->so_type;
4222 	xso->so_options = so->so_options;
4223 	xso->so_linger = so->so_linger;
4224 	xso->so_state = so->so_state;
4225 	xso->so_pcb = (uintptr_t)so->so_pcb;
4226 	xso->xso_protocol = so->so_proto->pr_protocol;
4227 	xso->xso_family = so->so_proto->pr_domain->dom_family;
4228 	xso->so_timeo = so->so_timeo;
4229 	xso->so_error = so->so_error;
4230 	xso->so_uid = so->so_cred->cr_uid;
4231 	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
4232 	if (SOLISTENING(so)) {
4233 		xso->so_qlen = so->sol_qlen;
4234 		xso->so_incqlen = so->sol_incqlen;
4235 		xso->so_qlimit = so->sol_qlimit;
4236 		xso->so_oobmark = 0;
4237 	} else {
4238 		xso->so_state |= so->so_qstate;
4239 		xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0;
4240 		xso->so_oobmark = so->so_oobmark;
4241 		sbtoxsockbuf(&so->so_snd, &xso->so_snd);
4242 		sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
4243 	}
4244 }
4245 
4246 struct sockbuf *
4247 so_sockbuf_rcv(struct socket *so)
4248 {
4249 
4250 	return (&so->so_rcv);
4251 }
4252 
4253 struct sockbuf *
4254 so_sockbuf_snd(struct socket *so)
4255 {
4256 
4257 	return (&so->so_snd);
4258 }
4259 
4260 int
4261 so_state_get(const struct socket *so)
4262 {
4263 
4264 	return (so->so_state);
4265 }
4266 
4267 void
4268 so_state_set(struct socket *so, int val)
4269 {
4270 
4271 	so->so_state = val;
4272 }
4273 
4274 int
4275 so_options_get(const struct socket *so)
4276 {
4277 
4278 	return (so->so_options);
4279 }
4280 
4281 void
4282 so_options_set(struct socket *so, int val)
4283 {
4284 
4285 	so->so_options = val;
4286 }
4287 
4288 int
4289 so_error_get(const struct socket *so)
4290 {
4291 
4292 	return (so->so_error);
4293 }
4294 
4295 void
4296 so_error_set(struct socket *so, int val)
4297 {
4298 
4299 	so->so_error = val;
4300 }
4301 
4302 int
4303 so_linger_get(const struct socket *so)
4304 {
4305 
4306 	return (so->so_linger);
4307 }
4308 
4309 void
4310 so_linger_set(struct socket *so, int val)
4311 {
4312 
4313 	KASSERT(val >= 0 && val <= USHRT_MAX && val <= (INT_MAX / hz),
4314 	    ("%s: val %d out of range", __func__, val));
4315 
4316 	so->so_linger = val;
4317 }
4318 
4319 struct protosw *
4320 so_protosw_get(const struct socket *so)
4321 {
4322 
4323 	return (so->so_proto);
4324 }
4325 
4326 void
4327 so_protosw_set(struct socket *so, struct protosw *val)
4328 {
4329 
4330 	so->so_proto = val;
4331 }
4332 
4333 void
4334 so_sorwakeup(struct socket *so)
4335 {
4336 
4337 	sorwakeup(so);
4338 }
4339 
4340 void
4341 so_sowwakeup(struct socket *so)
4342 {
4343 
4344 	sowwakeup(so);
4345 }
4346 
4347 void
4348 so_sorwakeup_locked(struct socket *so)
4349 {
4350 
4351 	sorwakeup_locked(so);
4352 }
4353 
4354 void
4355 so_sowwakeup_locked(struct socket *so)
4356 {
4357 
4358 	sowwakeup_locked(so);
4359 }
4360 
4361 void
4362 so_lock(struct socket *so)
4363 {
4364 
4365 	SOCK_LOCK(so);
4366 }
4367 
4368 void
4369 so_unlock(struct socket *so)
4370 {
4371 
4372 	SOCK_UNLOCK(so);
4373 }
4374