1 /*- 2 * Copyright (c) 2004 The FreeBSD Foundation 3 * Copyright (c) 2004 Robert Watson 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 4. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_inet.h" 38 #include "opt_mac.h" 39 #include "opt_zero.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/fcntl.h> 44 #include <sys/limits.h> 45 #include <sys/lock.h> 46 #include <sys/mac.h> 47 #include <sys/malloc.h> 48 #include <sys/mbuf.h> 49 #include <sys/mutex.h> 50 #include <sys/domain.h> 51 #include <sys/file.h> /* for struct knote */ 52 #include <sys/kernel.h> 53 #include <sys/event.h> 54 #include <sys/poll.h> 55 #include <sys/proc.h> 56 #include <sys/protosw.h> 57 #include <sys/socket.h> 58 #include <sys/socketvar.h> 59 #include <sys/resourcevar.h> 60 #include <sys/signalvar.h> 61 #include <sys/sysctl.h> 62 #include <sys/uio.h> 63 #include <sys/jail.h> 64 65 #include <vm/uma.h> 66 67 68 static int soreceive_rcvoob(struct socket *so, struct uio *uio, 69 int flags); 70 71 #ifdef INET 72 static int do_setopt_accept_filter(struct socket *so, struct sockopt *sopt); 73 #endif 74 75 static void filt_sordetach(struct knote *kn); 76 static int filt_soread(struct knote *kn, long hint); 77 static void filt_sowdetach(struct knote *kn); 78 static int filt_sowrite(struct knote *kn, long hint); 79 static int filt_solisten(struct knote *kn, long hint); 80 81 static struct filterops solisten_filtops = 82 { 1, NULL, filt_sordetach, filt_solisten }; 83 static struct filterops soread_filtops = 84 { 1, NULL, filt_sordetach, filt_soread }; 85 static struct filterops sowrite_filtops = 86 { 1, NULL, filt_sowdetach, filt_sowrite }; 87 88 uma_zone_t socket_zone; 89 so_gen_t so_gencnt; /* generation count for sockets */ 90 91 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 92 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 93 94 SYSCTL_DECL(_kern_ipc); 95 96 static int somaxconn = SOMAXCONN; 97 SYSCTL_INT(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLFLAG_RW, 98 &somaxconn, 0, "Maximum pending socket connection queue size"); 99 static int numopensockets; 100 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, 101 &numopensockets, 0, "Number of open sockets"); 102 #ifdef ZERO_COPY_SOCKETS 103 /* These aren't static because they're used in other files. */ 104 int so_zero_copy_send = 1; 105 int so_zero_copy_receive = 1; 106 SYSCTL_NODE(_kern_ipc, OID_AUTO, zero_copy, CTLFLAG_RD, 0, 107 "Zero copy controls"); 108 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, receive, CTLFLAG_RW, 109 &so_zero_copy_receive, 0, "Enable zero copy receive"); 110 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, send, CTLFLAG_RW, 111 &so_zero_copy_send, 0, "Enable zero copy send"); 112 #endif /* ZERO_COPY_SOCKETS */ 113 114 /* 115 * accept_mtx locks down per-socket fields relating to accept queues. See 116 * socketvar.h for an annotation of the protected fields of struct socket. 117 */ 118 struct mtx accept_mtx; 119 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF); 120 121 /* 122 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket 123 * so_gencnt field. 124 */ 125 static struct mtx so_global_mtx; 126 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); 127 128 /* 129 * Socket operation routines. 130 * These routines are called by the routines in 131 * sys_socket.c or from a system process, and 132 * implement the semantics of socket operations by 133 * switching out to the protocol specific routines. 134 */ 135 136 /* 137 * Get a socket structure from our zone, and initialize it. 138 * Note that it would probably be better to allocate socket 139 * and PCB at the same time, but I'm not convinced that all 140 * the protocols can be easily modified to do this. 141 * 142 * soalloc() returns a socket with a ref count of 0. 143 */ 144 struct socket * 145 soalloc(int mflags) 146 { 147 struct socket *so; 148 149 so = uma_zalloc(socket_zone, mflags | M_ZERO); 150 if (so != NULL) { 151 #ifdef MAC 152 if (mac_init_socket(so, mflags) != 0) { 153 uma_zfree(socket_zone, so); 154 return (NULL); 155 } 156 #endif 157 SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd"); 158 SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv"); 159 /* sx_init(&so->so_sxlock, "socket sxlock"); */ 160 TAILQ_INIT(&so->so_aiojobq); 161 mtx_lock(&so_global_mtx); 162 so->so_gencnt = ++so_gencnt; 163 ++numopensockets; 164 mtx_unlock(&so_global_mtx); 165 } 166 return (so); 167 } 168 169 /* 170 * socreate returns a socket with a ref count of 1. The socket should be 171 * closed with soclose(). 172 */ 173 int 174 socreate(dom, aso, type, proto, cred, td) 175 int dom; 176 struct socket **aso; 177 int type; 178 int proto; 179 struct ucred *cred; 180 struct thread *td; 181 { 182 struct protosw *prp; 183 struct socket *so; 184 int error; 185 186 if (proto) 187 prp = pffindproto(dom, proto, type); 188 else 189 prp = pffindtype(dom, type); 190 191 if (prp == NULL || prp->pr_usrreqs->pru_attach == NULL || 192 prp->pr_usrreqs->pru_attach == pru_attach_notsupp) 193 return (EPROTONOSUPPORT); 194 195 if (jailed(cred) && jail_socket_unixiproute_only && 196 prp->pr_domain->dom_family != PF_LOCAL && 197 prp->pr_domain->dom_family != PF_INET && 198 prp->pr_domain->dom_family != PF_ROUTE) { 199 return (EPROTONOSUPPORT); 200 } 201 202 if (prp->pr_type != type) 203 return (EPROTOTYPE); 204 so = soalloc(M_WAITOK); 205 if (so == NULL) 206 return (ENOBUFS); 207 208 TAILQ_INIT(&so->so_incomp); 209 TAILQ_INIT(&so->so_comp); 210 so->so_type = type; 211 so->so_cred = crhold(cred); 212 so->so_proto = prp; 213 #ifdef MAC 214 mac_create_socket(cred, so); 215 #endif 216 SOCK_LOCK(so); 217 knlist_init(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv)); 218 knlist_init(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd)); 219 soref(so); 220 SOCK_UNLOCK(so); 221 error = (*prp->pr_usrreqs->pru_attach)(so, proto, td); 222 if (error) { 223 ACCEPT_LOCK(); 224 SOCK_LOCK(so); 225 so->so_state |= SS_NOFDREF; 226 sorele(so); 227 return (error); 228 } 229 *aso = so; 230 return (0); 231 } 232 233 int 234 sobind(so, nam, td) 235 struct socket *so; 236 struct sockaddr *nam; 237 struct thread *td; 238 { 239 240 return ((*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td)); 241 } 242 243 void 244 sodealloc(struct socket *so) 245 { 246 247 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); 248 mtx_lock(&so_global_mtx); 249 so->so_gencnt = ++so_gencnt; 250 mtx_unlock(&so_global_mtx); 251 if (so->so_rcv.sb_hiwat) 252 (void)chgsbsize(so->so_cred->cr_uidinfo, 253 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 254 if (so->so_snd.sb_hiwat) 255 (void)chgsbsize(so->so_cred->cr_uidinfo, 256 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 257 #ifdef INET 258 /* remove acccept filter if one is present. */ 259 if (so->so_accf != NULL) 260 do_setopt_accept_filter(so, NULL); 261 #endif 262 #ifdef MAC 263 mac_destroy_socket(so); 264 #endif 265 crfree(so->so_cred); 266 SOCKBUF_LOCK_DESTROY(&so->so_snd); 267 SOCKBUF_LOCK_DESTROY(&so->so_rcv); 268 /* sx_destroy(&so->so_sxlock); */ 269 uma_zfree(socket_zone, so); 270 mtx_lock(&so_global_mtx); 271 --numopensockets; 272 mtx_unlock(&so_global_mtx); 273 } 274 275 int 276 solisten(so, backlog, td) 277 struct socket *so; 278 int backlog; 279 struct thread *td; 280 { 281 int error; 282 283 /* 284 * XXXRW: Ordering issue here -- perhaps we need to set 285 * SO_ACCEPTCONN before the call to pru_listen()? 286 * XXXRW: General atomic test-and-set concerns here also. 287 */ 288 if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 289 SS_ISDISCONNECTING)) 290 return (EINVAL); 291 error = (*so->so_proto->pr_usrreqs->pru_listen)(so, td); 292 if (error) 293 return (error); 294 ACCEPT_LOCK(); 295 if (TAILQ_EMPTY(&so->so_comp)) { 296 SOCK_LOCK(so); 297 so->so_options |= SO_ACCEPTCONN; 298 SOCK_UNLOCK(so); 299 } 300 if (backlog < 0 || backlog > somaxconn) 301 backlog = somaxconn; 302 so->so_qlimit = backlog; 303 ACCEPT_UNLOCK(); 304 return (0); 305 } 306 307 /* 308 * Attempt to free a socket. This should really be sotryfree(). 309 * 310 * We free the socket if the protocol is no longer interested in the socket, 311 * there's no file descriptor reference, and the refcount is 0. While the 312 * calling macro sotryfree() tests the refcount, sofree() has to test it 313 * again as it's possible to race with an accept()ing thread if the socket is 314 * in an listen queue of a listen socket, as being in the listen queue 315 * doesn't elevate the reference count. sofree() acquires the accept mutex 316 * early for this test in order to avoid that race. 317 */ 318 void 319 sofree(so) 320 struct socket *so; 321 { 322 struct socket *head; 323 324 ACCEPT_LOCK_ASSERT(); 325 SOCK_LOCK_ASSERT(so); 326 327 if (so->so_pcb != NULL || (so->so_state & SS_NOFDREF) == 0 || 328 so->so_count != 0) { 329 SOCK_UNLOCK(so); 330 ACCEPT_UNLOCK(); 331 return; 332 } 333 334 head = so->so_head; 335 if (head != NULL) { 336 KASSERT((so->so_qstate & SQ_COMP) != 0 || 337 (so->so_qstate & SQ_INCOMP) != 0, 338 ("sofree: so_head != NULL, but neither SQ_COMP nor " 339 "SQ_INCOMP")); 340 KASSERT((so->so_qstate & SQ_COMP) == 0 || 341 (so->so_qstate & SQ_INCOMP) == 0, 342 ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP")); 343 /* 344 * accept(2) is responsible draining the completed 345 * connection queue and freeing those sockets, so 346 * we just return here if this socket is currently 347 * on the completed connection queue. Otherwise, 348 * accept(2) may hang after select(2) has indicating 349 * that a listening socket was ready. If it's an 350 * incomplete connection, we remove it from the queue 351 * and free it; otherwise, it won't be released until 352 * the listening socket is closed. 353 */ 354 if ((so->so_qstate & SQ_COMP) != 0) { 355 SOCK_UNLOCK(so); 356 ACCEPT_UNLOCK(); 357 return; 358 } 359 TAILQ_REMOVE(&head->so_incomp, so, so_list); 360 head->so_incqlen--; 361 so->so_qstate &= ~SQ_INCOMP; 362 so->so_head = NULL; 363 } 364 KASSERT((so->so_qstate & SQ_COMP) == 0 && 365 (so->so_qstate & SQ_INCOMP) == 0, 366 ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)", 367 so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP)); 368 SOCK_UNLOCK(so); 369 ACCEPT_UNLOCK(); 370 SOCKBUF_LOCK(&so->so_snd); 371 so->so_snd.sb_flags |= SB_NOINTR; 372 (void)sblock(&so->so_snd, M_WAITOK); 373 /* 374 * socantsendmore_locked() drops the socket buffer mutex so that it 375 * can safely perform wakeups. Re-acquire the mutex before 376 * continuing. 377 */ 378 socantsendmore_locked(so); 379 SOCKBUF_LOCK(&so->so_snd); 380 sbunlock(&so->so_snd); 381 sbrelease_locked(&so->so_snd, so); 382 SOCKBUF_UNLOCK(&so->so_snd); 383 sorflush(so); 384 knlist_destroy(&so->so_rcv.sb_sel.si_note); 385 knlist_destroy(&so->so_snd.sb_sel.si_note); 386 sodealloc(so); 387 } 388 389 /* 390 * Close a socket on last file table reference removal. 391 * Initiate disconnect if connected. 392 * Free socket when disconnect complete. 393 * 394 * This function will sorele() the socket. Note that soclose() may be 395 * called prior to the ref count reaching zero. The actual socket 396 * structure will not be freed until the ref count reaches zero. 397 */ 398 int 399 soclose(so) 400 struct socket *so; 401 { 402 int error = 0; 403 404 KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter")); 405 406 funsetown(&so->so_sigio); 407 if (so->so_options & SO_ACCEPTCONN) { 408 struct socket *sp; 409 ACCEPT_LOCK(); 410 while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) { 411 TAILQ_REMOVE(&so->so_incomp, sp, so_list); 412 so->so_incqlen--; 413 sp->so_qstate &= ~SQ_INCOMP; 414 sp->so_head = NULL; 415 ACCEPT_UNLOCK(); 416 (void) soabort(sp); 417 ACCEPT_LOCK(); 418 } 419 while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) { 420 TAILQ_REMOVE(&so->so_comp, sp, so_list); 421 so->so_qlen--; 422 sp->so_qstate &= ~SQ_COMP; 423 sp->so_head = NULL; 424 ACCEPT_UNLOCK(); 425 (void) soabort(sp); 426 ACCEPT_LOCK(); 427 } 428 ACCEPT_UNLOCK(); 429 } 430 if (so->so_pcb == NULL) 431 goto discard; 432 if (so->so_state & SS_ISCONNECTED) { 433 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 434 error = sodisconnect(so); 435 if (error) 436 goto drop; 437 } 438 if (so->so_options & SO_LINGER) { 439 if ((so->so_state & SS_ISDISCONNECTING) && 440 (so->so_state & SS_NBIO)) 441 goto drop; 442 while (so->so_state & SS_ISCONNECTED) { 443 error = tsleep(&so->so_timeo, 444 PSOCK | PCATCH, "soclos", so->so_linger * hz); 445 if (error) 446 break; 447 } 448 } 449 } 450 drop: 451 if (so->so_pcb != NULL) { 452 int error2 = (*so->so_proto->pr_usrreqs->pru_detach)(so); 453 if (error == 0) 454 error = error2; 455 } 456 discard: 457 ACCEPT_LOCK(); 458 SOCK_LOCK(so); 459 KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF")); 460 so->so_state |= SS_NOFDREF; 461 sorele(so); 462 return (error); 463 } 464 465 /* 466 * soabort() must not be called with any socket locks held, as it calls 467 * into the protocol, which will call back into the socket code causing 468 * it to acquire additional socket locks that may cause recursion or lock 469 * order reversals. 470 */ 471 int 472 soabort(so) 473 struct socket *so; 474 { 475 int error; 476 477 error = (*so->so_proto->pr_usrreqs->pru_abort)(so); 478 if (error) { 479 ACCEPT_LOCK(); 480 SOCK_LOCK(so); 481 sotryfree(so); /* note: does not decrement the ref count */ 482 return error; 483 } 484 return (0); 485 } 486 487 int 488 soaccept(so, nam) 489 struct socket *so; 490 struct sockaddr **nam; 491 { 492 int error; 493 494 SOCK_LOCK(so); 495 KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF")); 496 so->so_state &= ~SS_NOFDREF; 497 SOCK_UNLOCK(so); 498 error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam); 499 return (error); 500 } 501 502 int 503 soconnect(so, nam, td) 504 struct socket *so; 505 struct sockaddr *nam; 506 struct thread *td; 507 { 508 int error; 509 510 if (so->so_options & SO_ACCEPTCONN) 511 return (EOPNOTSUPP); 512 /* 513 * If protocol is connection-based, can only connect once. 514 * Otherwise, if connected, try to disconnect first. 515 * This allows user to disconnect by connecting to, e.g., 516 * a null address. 517 */ 518 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 519 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 520 (error = sodisconnect(so)))) { 521 error = EISCONN; 522 } else { 523 SOCK_LOCK(so); 524 /* 525 * Prevent accumulated error from previous connection 526 * from biting us. 527 */ 528 so->so_error = 0; 529 SOCK_UNLOCK(so); 530 error = (*so->so_proto->pr_usrreqs->pru_connect)(so, nam, td); 531 } 532 533 return (error); 534 } 535 536 int 537 soconnect2(so1, so2) 538 struct socket *so1; 539 struct socket *so2; 540 { 541 542 return ((*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2)); 543 } 544 545 int 546 sodisconnect(so) 547 struct socket *so; 548 { 549 int error; 550 551 if ((so->so_state & SS_ISCONNECTED) == 0) 552 return (ENOTCONN); 553 if (so->so_state & SS_ISDISCONNECTING) 554 return (EALREADY); 555 error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so); 556 return (error); 557 } 558 559 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK) 560 /* 561 * Send on a socket. 562 * If send must go all at once and message is larger than 563 * send buffering, then hard error. 564 * Lock against other senders. 565 * If must go all at once and not enough room now, then 566 * inform user that this would block and do nothing. 567 * Otherwise, if nonblocking, send as much as possible. 568 * The data to be sent is described by "uio" if nonzero, 569 * otherwise by the mbuf chain "top" (which must be null 570 * if uio is not). Data provided in mbuf chain must be small 571 * enough to send all at once. 572 * 573 * Returns nonzero on error, timeout or signal; callers 574 * must check for short counts if EINTR/ERESTART are returned. 575 * Data and control buffers are freed on return. 576 */ 577 578 #ifdef ZERO_COPY_SOCKETS 579 struct so_zerocopy_stats{ 580 int size_ok; 581 int align_ok; 582 int found_ifp; 583 }; 584 struct so_zerocopy_stats so_zerocp_stats = {0,0,0}; 585 #include <netinet/in.h> 586 #include <net/route.h> 587 #include <netinet/in_pcb.h> 588 #include <vm/vm.h> 589 #include <vm/vm_page.h> 590 #include <vm/vm_object.h> 591 #endif /*ZERO_COPY_SOCKETS*/ 592 593 int 594 sosend(so, addr, uio, top, control, flags, td) 595 struct socket *so; 596 struct sockaddr *addr; 597 struct uio *uio; 598 struct mbuf *top; 599 struct mbuf *control; 600 int flags; 601 struct thread *td; 602 { 603 struct mbuf **mp; 604 struct mbuf *m; 605 long space, len = 0, resid; 606 int clen = 0, error, dontroute; 607 int atomic = sosendallatonce(so) || top; 608 #ifdef ZERO_COPY_SOCKETS 609 int cow_send; 610 #endif /* ZERO_COPY_SOCKETS */ 611 612 if (uio != NULL) 613 resid = uio->uio_resid; 614 else 615 resid = top->m_pkthdr.len; 616 /* 617 * In theory resid should be unsigned. 618 * However, space must be signed, as it might be less than 0 619 * if we over-committed, and we must use a signed comparison 620 * of space and resid. On the other hand, a negative resid 621 * causes us to loop sending 0-length segments to the protocol. 622 * 623 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 624 * type sockets since that's an error. 625 */ 626 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 627 error = EINVAL; 628 goto out; 629 } 630 631 dontroute = 632 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 633 (so->so_proto->pr_flags & PR_ATOMIC); 634 if (td != NULL) 635 td->td_proc->p_stats->p_ru.ru_msgsnd++; 636 if (control != NULL) 637 clen = control->m_len; 638 #define snderr(errno) { error = (errno); goto release; } 639 640 SOCKBUF_LOCK(&so->so_snd); 641 restart: 642 SOCKBUF_LOCK_ASSERT(&so->so_snd); 643 error = sblock(&so->so_snd, SBLOCKWAIT(flags)); 644 if (error) 645 goto out_locked; 646 do { 647 SOCKBUF_LOCK_ASSERT(&so->so_snd); 648 if (so->so_snd.sb_state & SBS_CANTSENDMORE) 649 snderr(EPIPE); 650 if (so->so_error) { 651 error = so->so_error; 652 so->so_error = 0; 653 goto release; 654 } 655 if ((so->so_state & SS_ISCONNECTED) == 0) { 656 /* 657 * `sendto' and `sendmsg' is allowed on a connection- 658 * based socket if it supports implied connect. 659 * Return ENOTCONN if not connected and no address is 660 * supplied. 661 */ 662 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 663 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 664 if ((so->so_state & SS_ISCONFIRMING) == 0 && 665 !(resid == 0 && clen != 0)) 666 snderr(ENOTCONN); 667 } else if (addr == NULL) 668 snderr(so->so_proto->pr_flags & PR_CONNREQUIRED ? 669 ENOTCONN : EDESTADDRREQ); 670 } 671 space = sbspace(&so->so_snd); 672 if (flags & MSG_OOB) 673 space += 1024; 674 if ((atomic && resid > so->so_snd.sb_hiwat) || 675 clen > so->so_snd.sb_hiwat) 676 snderr(EMSGSIZE); 677 if (space < resid + clen && 678 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 679 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) 680 snderr(EWOULDBLOCK); 681 sbunlock(&so->so_snd); 682 error = sbwait(&so->so_snd); 683 if (error) 684 goto out_locked; 685 goto restart; 686 } 687 SOCKBUF_UNLOCK(&so->so_snd); 688 mp = ⊤ 689 space -= clen; 690 do { 691 if (uio == NULL) { 692 /* 693 * Data is prepackaged in "top". 694 */ 695 resid = 0; 696 if (flags & MSG_EOR) 697 top->m_flags |= M_EOR; 698 } else do { 699 #ifdef ZERO_COPY_SOCKETS 700 cow_send = 0; 701 #endif /* ZERO_COPY_SOCKETS */ 702 if (resid >= MINCLSIZE) { 703 #ifdef ZERO_COPY_SOCKETS 704 if (top == NULL) { 705 MGETHDR(m, M_TRYWAIT, MT_DATA); 706 if (m == NULL) { 707 error = ENOBUFS; 708 SOCKBUF_LOCK(&so->so_snd); 709 goto release; 710 } 711 m->m_pkthdr.len = 0; 712 m->m_pkthdr.rcvif = (struct ifnet *)0; 713 } else { 714 MGET(m, M_TRYWAIT, MT_DATA); 715 if (m == NULL) { 716 error = ENOBUFS; 717 SOCKBUF_LOCK(&so->so_snd); 718 goto release; 719 } 720 } 721 if (so_zero_copy_send && 722 resid>=PAGE_SIZE && 723 space>=PAGE_SIZE && 724 uio->uio_iov->iov_len>=PAGE_SIZE) { 725 so_zerocp_stats.size_ok++; 726 if (!((vm_offset_t) 727 uio->uio_iov->iov_base & PAGE_MASK)){ 728 so_zerocp_stats.align_ok++; 729 cow_send = socow_setup(m, uio); 730 } 731 } 732 if (!cow_send) { 733 MCLGET(m, M_TRYWAIT); 734 if ((m->m_flags & M_EXT) == 0) { 735 m_free(m); 736 m = NULL; 737 } else { 738 len = min(min(MCLBYTES, resid), space); 739 } 740 } else 741 len = PAGE_SIZE; 742 #else /* ZERO_COPY_SOCKETS */ 743 if (top == NULL) { 744 m = m_getcl(M_TRYWAIT, MT_DATA, M_PKTHDR); 745 m->m_pkthdr.len = 0; 746 m->m_pkthdr.rcvif = (struct ifnet *)0; 747 } else 748 m = m_getcl(M_TRYWAIT, MT_DATA, 0); 749 len = min(min(MCLBYTES, resid), space); 750 #endif /* ZERO_COPY_SOCKETS */ 751 } else { 752 if (top == NULL) { 753 m = m_gethdr(M_TRYWAIT, MT_DATA); 754 m->m_pkthdr.len = 0; 755 m->m_pkthdr.rcvif = (struct ifnet *)0; 756 757 len = min(min(MHLEN, resid), space); 758 /* 759 * For datagram protocols, leave room 760 * for protocol headers in first mbuf. 761 */ 762 if (atomic && m && len < MHLEN) 763 MH_ALIGN(m, len); 764 } else { 765 m = m_get(M_TRYWAIT, MT_DATA); 766 len = min(min(MLEN, resid), space); 767 } 768 } 769 if (m == NULL) { 770 error = ENOBUFS; 771 SOCKBUF_LOCK(&so->so_snd); 772 goto release; 773 } 774 775 space -= len; 776 #ifdef ZERO_COPY_SOCKETS 777 if (cow_send) 778 error = 0; 779 else 780 #endif /* ZERO_COPY_SOCKETS */ 781 error = uiomove(mtod(m, void *), (int)len, uio); 782 resid = uio->uio_resid; 783 m->m_len = len; 784 *mp = m; 785 top->m_pkthdr.len += len; 786 if (error) { 787 SOCKBUF_LOCK(&so->so_snd); 788 goto release; 789 } 790 mp = &m->m_next; 791 if (resid <= 0) { 792 if (flags & MSG_EOR) 793 top->m_flags |= M_EOR; 794 break; 795 } 796 } while (space > 0 && atomic); 797 if (dontroute) { 798 SOCK_LOCK(so); 799 so->so_options |= SO_DONTROUTE; 800 SOCK_UNLOCK(so); 801 } 802 /* 803 * XXX all the SBS_CANTSENDMORE checks previously 804 * done could be out of date. We could have recieved 805 * a reset packet in an interrupt or maybe we slept 806 * while doing page faults in uiomove() etc. We could 807 * probably recheck again inside the locking protection 808 * here, but there are probably other places that this 809 * also happens. We must rethink this. 810 */ 811 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 812 (flags & MSG_OOB) ? PRUS_OOB : 813 /* 814 * If the user set MSG_EOF, the protocol 815 * understands this flag and nothing left to 816 * send then use PRU_SEND_EOF instead of PRU_SEND. 817 */ 818 ((flags & MSG_EOF) && 819 (so->so_proto->pr_flags & PR_IMPLOPCL) && 820 (resid <= 0)) ? 821 PRUS_EOF : 822 /* If there is more to send set PRUS_MORETOCOME */ 823 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 824 top, addr, control, td); 825 if (dontroute) { 826 SOCK_LOCK(so); 827 so->so_options &= ~SO_DONTROUTE; 828 SOCK_UNLOCK(so); 829 } 830 clen = 0; 831 control = NULL; 832 top = NULL; 833 mp = ⊤ 834 if (error) { 835 SOCKBUF_LOCK(&so->so_snd); 836 goto release; 837 } 838 } while (resid && space > 0); 839 SOCKBUF_LOCK(&so->so_snd); 840 } while (resid); 841 842 release: 843 SOCKBUF_LOCK_ASSERT(&so->so_snd); 844 sbunlock(&so->so_snd); 845 out_locked: 846 SOCKBUF_LOCK_ASSERT(&so->so_snd); 847 SOCKBUF_UNLOCK(&so->so_snd); 848 out: 849 if (top != NULL) 850 m_freem(top); 851 if (control != NULL) 852 m_freem(control); 853 return (error); 854 } 855 856 /* 857 * The part of soreceive() that implements reading non-inline out-of-band 858 * data from a socket. For more complete comments, see soreceive(), from 859 * which this code originated. 860 * 861 * Note that soreceive_rcvoob(), unlike the remainder of soreiceve(), is 862 * unable to return an mbuf chain to the caller. 863 */ 864 static int 865 soreceive_rcvoob(so, uio, flags) 866 struct socket *so; 867 struct uio *uio; 868 int flags; 869 { 870 struct protosw *pr = so->so_proto; 871 struct mbuf *m; 872 int error; 873 874 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); 875 876 m = m_get(M_TRYWAIT, MT_DATA); 877 if (m == NULL) 878 return (ENOBUFS); 879 error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK); 880 if (error) 881 goto bad; 882 do { 883 #ifdef ZERO_COPY_SOCKETS 884 if (so_zero_copy_receive) { 885 int disposable; 886 887 if ((m->m_flags & M_EXT) 888 && (m->m_ext.ext_type == EXT_DISPOSABLE)) 889 disposable = 1; 890 else 891 disposable = 0; 892 893 error = uiomoveco(mtod(m, void *), 894 min(uio->uio_resid, m->m_len), 895 uio, disposable); 896 } else 897 #endif /* ZERO_COPY_SOCKETS */ 898 error = uiomove(mtod(m, void *), 899 (int) min(uio->uio_resid, m->m_len), uio); 900 m = m_free(m); 901 } while (uio->uio_resid && error == 0 && m); 902 bad: 903 if (m != NULL) 904 m_freem(m); 905 return (error); 906 } 907 908 /* 909 * Following replacement or removal of the first mbuf on the first mbuf chain 910 * of a socket buffer, push necessary state changes back into the socket 911 * buffer so that other consumers see the values consistently. 'nextrecord' 912 * is the callers locally stored value of the original value of 913 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. 914 * NOTE: 'nextrecord' may be NULL. 915 */ 916 static __inline void 917 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) 918 { 919 920 SOCKBUF_LOCK_ASSERT(sb); 921 /* 922 * First, update for the new value of nextrecord. If necessary, make 923 * it the first record. 924 */ 925 if (sb->sb_mb != NULL) 926 sb->sb_mb->m_nextpkt = nextrecord; 927 else 928 sb->sb_mb = nextrecord; 929 930 /* 931 * Now update any dependent socket buffer fields to reflect the new 932 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the 933 * addition of a second clause that takes care of the case where 934 * sb_mb has been updated, but remains the last record. 935 */ 936 if (sb->sb_mb == NULL) { 937 sb->sb_mbtail = NULL; 938 sb->sb_lastrecord = NULL; 939 } else if (sb->sb_mb->m_nextpkt == NULL) 940 sb->sb_lastrecord = sb->sb_mb; 941 } 942 943 944 /* 945 * Implement receive operations on a socket. 946 * We depend on the way that records are added to the sockbuf 947 * by sbappend*. In particular, each record (mbufs linked through m_next) 948 * must begin with an address if the protocol so specifies, 949 * followed by an optional mbuf or mbufs containing ancillary data, 950 * and then zero or more mbufs of data. 951 * In order to avoid blocking network interrupts for the entire time here, 952 * we splx() while doing the actual copy to user space. 953 * Although the sockbuf is locked, new data may still be appended, 954 * and thus we must maintain consistency of the sockbuf during that time. 955 * 956 * The caller may receive the data as a single mbuf chain by supplying 957 * an mbuf **mp0 for use in returning the chain. The uio is then used 958 * only for the count in uio_resid. 959 */ 960 int 961 soreceive(so, psa, uio, mp0, controlp, flagsp) 962 struct socket *so; 963 struct sockaddr **psa; 964 struct uio *uio; 965 struct mbuf **mp0; 966 struct mbuf **controlp; 967 int *flagsp; 968 { 969 struct mbuf *m, **mp; 970 int flags, len, error, offset; 971 struct protosw *pr = so->so_proto; 972 struct mbuf *nextrecord; 973 int moff, type = 0; 974 int orig_resid = uio->uio_resid; 975 976 mp = mp0; 977 if (psa != NULL) 978 *psa = NULL; 979 if (controlp != NULL) 980 *controlp = NULL; 981 if (flagsp != NULL) 982 flags = *flagsp &~ MSG_EOR; 983 else 984 flags = 0; 985 if (flags & MSG_OOB) 986 return (soreceive_rcvoob(so, uio, flags)); 987 if (mp != NULL) 988 *mp = NULL; 989 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid) 990 (*pr->pr_usrreqs->pru_rcvd)(so, 0); 991 992 SOCKBUF_LOCK(&so->so_rcv); 993 restart: 994 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 995 error = sblock(&so->so_rcv, SBLOCKWAIT(flags)); 996 if (error) 997 goto out; 998 999 m = so->so_rcv.sb_mb; 1000 /* 1001 * If we have less data than requested, block awaiting more 1002 * (subject to any timeout) if: 1003 * 1. the current count is less than the low water mark, or 1004 * 2. MSG_WAITALL is set, and it is possible to do the entire 1005 * receive operation at once if we block (resid <= hiwat). 1006 * 3. MSG_DONTWAIT is not set 1007 * If MSG_WAITALL is set but resid is larger than the receive buffer, 1008 * we have to do the receive in sections, and thus risk returning 1009 * a short count if a timeout or signal occurs after we start. 1010 */ 1011 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 1012 so->so_rcv.sb_cc < uio->uio_resid) && 1013 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat || 1014 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) && 1015 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 1016 KASSERT(m != NULL || !so->so_rcv.sb_cc, 1017 ("receive: m == %p so->so_rcv.sb_cc == %u", 1018 m, so->so_rcv.sb_cc)); 1019 if (so->so_error) { 1020 if (m != NULL) 1021 goto dontblock; 1022 error = so->so_error; 1023 if ((flags & MSG_PEEK) == 0) 1024 so->so_error = 0; 1025 goto release; 1026 } 1027 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1028 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 1029 if (m) 1030 goto dontblock; 1031 else 1032 goto release; 1033 } 1034 for (; m != NULL; m = m->m_next) 1035 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 1036 m = so->so_rcv.sb_mb; 1037 goto dontblock; 1038 } 1039 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 1040 (so->so_proto->pr_flags & PR_CONNREQUIRED)) { 1041 error = ENOTCONN; 1042 goto release; 1043 } 1044 if (uio->uio_resid == 0) 1045 goto release; 1046 if ((so->so_state & SS_NBIO) || 1047 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 1048 error = EWOULDBLOCK; 1049 goto release; 1050 } 1051 SBLASTRECORDCHK(&so->so_rcv); 1052 SBLASTMBUFCHK(&so->so_rcv); 1053 sbunlock(&so->so_rcv); 1054 error = sbwait(&so->so_rcv); 1055 if (error) 1056 goto out; 1057 goto restart; 1058 } 1059 dontblock: 1060 /* 1061 * From this point onward, we maintain 'nextrecord' as a cache of the 1062 * pointer to the next record in the socket buffer. We must keep the 1063 * various socket buffer pointers and local stack versions of the 1064 * pointers in sync, pushing out modifications before dropping the 1065 * socket buffer mutex, and re-reading them when picking it up. 1066 * 1067 * Otherwise, we will race with the network stack appending new data 1068 * or records onto the socket buffer by using inconsistent/stale 1069 * versions of the field, possibly resulting in socket buffer 1070 * corruption. 1071 * 1072 * By holding the high-level sblock(), we prevent simultaneous 1073 * readers from pulling off the front of the socket buffer. 1074 */ 1075 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1076 if (uio->uio_td) 1077 uio->uio_td->td_proc->p_stats->p_ru.ru_msgrcv++; 1078 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); 1079 SBLASTRECORDCHK(&so->so_rcv); 1080 SBLASTMBUFCHK(&so->so_rcv); 1081 nextrecord = m->m_nextpkt; 1082 if (pr->pr_flags & PR_ADDR) { 1083 KASSERT(m->m_type == MT_SONAME, 1084 ("m->m_type == %d", m->m_type)); 1085 orig_resid = 0; 1086 if (psa != NULL) 1087 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 1088 M_NOWAIT); 1089 if (flags & MSG_PEEK) { 1090 m = m->m_next; 1091 } else { 1092 sbfree(&so->so_rcv, m); 1093 so->so_rcv.sb_mb = m_free(m); 1094 m = so->so_rcv.sb_mb; 1095 sockbuf_pushsync(&so->so_rcv, nextrecord); 1096 } 1097 } 1098 1099 /* 1100 * Process one or more MT_CONTROL mbufs present before any data mbufs 1101 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 1102 * just copy the data; if !MSG_PEEK, we call into the protocol to 1103 * perform externalization (or freeing if controlp == NULL). 1104 */ 1105 if (m != NULL && m->m_type == MT_CONTROL) { 1106 struct mbuf *cm = NULL, *cmn; 1107 struct mbuf **cme = &cm; 1108 1109 do { 1110 if (flags & MSG_PEEK) { 1111 if (controlp != NULL) { 1112 *controlp = m_copy(m, 0, m->m_len); 1113 controlp = &(*controlp)->m_next; 1114 } 1115 m = m->m_next; 1116 } else { 1117 sbfree(&so->so_rcv, m); 1118 so->so_rcv.sb_mb = m->m_next; 1119 m->m_next = NULL; 1120 *cme = m; 1121 cme = &(*cme)->m_next; 1122 m = so->so_rcv.sb_mb; 1123 } 1124 } while (m != NULL && m->m_type == MT_CONTROL); 1125 if ((flags & MSG_PEEK) == 0) 1126 sockbuf_pushsync(&so->so_rcv, nextrecord); 1127 while (cm != NULL) { 1128 cmn = cm->m_next; 1129 cm->m_next = NULL; 1130 if (pr->pr_domain->dom_externalize != NULL) { 1131 SOCKBUF_UNLOCK(&so->so_rcv); 1132 error = (*pr->pr_domain->dom_externalize) 1133 (cm, controlp); 1134 SOCKBUF_LOCK(&so->so_rcv); 1135 } else if (controlp != NULL) 1136 *controlp = cm; 1137 else 1138 m_freem(cm); 1139 if (controlp != NULL) { 1140 orig_resid = 0; 1141 while (*controlp != NULL) 1142 controlp = &(*controlp)->m_next; 1143 } 1144 cm = cmn; 1145 } 1146 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 1147 orig_resid = 0; 1148 } 1149 if (m != NULL) { 1150 if ((flags & MSG_PEEK) == 0) { 1151 KASSERT(m->m_nextpkt == nextrecord, 1152 ("soreceive: post-control, nextrecord !sync")); 1153 if (nextrecord == NULL) { 1154 KASSERT(so->so_rcv.sb_mb == m, 1155 ("soreceive: post-control, sb_mb!=m")); 1156 KASSERT(so->so_rcv.sb_lastrecord == m, 1157 ("soreceive: post-control, lastrecord!=m")); 1158 } 1159 } 1160 type = m->m_type; 1161 if (type == MT_OOBDATA) 1162 flags |= MSG_OOB; 1163 } else { 1164 if ((flags & MSG_PEEK) == 0) { 1165 KASSERT(so->so_rcv.sb_mb == nextrecord, 1166 ("soreceive: sb_mb != nextrecord")); 1167 if (so->so_rcv.sb_mb == NULL) { 1168 KASSERT(so->so_rcv.sb_lastrecord == NULL, 1169 ("soreceive: sb_lastercord != NULL")); 1170 } 1171 } 1172 } 1173 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1174 SBLASTRECORDCHK(&so->so_rcv); 1175 SBLASTMBUFCHK(&so->so_rcv); 1176 1177 /* 1178 * Now continue to read any data mbufs off of the head of the socket 1179 * buffer until the read request is satisfied. Note that 'type' is 1180 * used to store the type of any mbuf reads that have happened so far 1181 * such that soreceive() can stop reading if the type changes, which 1182 * causes soreceive() to return only one of regular data and inline 1183 * out-of-band data in a single socket receive operation. 1184 */ 1185 moff = 0; 1186 offset = 0; 1187 while (m != NULL && uio->uio_resid > 0 && error == 0) { 1188 /* 1189 * If the type of mbuf has changed since the last mbuf 1190 * examined ('type'), end the receive operation. 1191 */ 1192 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1193 if (m->m_type == MT_OOBDATA) { 1194 if (type != MT_OOBDATA) 1195 break; 1196 } else if (type == MT_OOBDATA) 1197 break; 1198 else 1199 KASSERT(m->m_type == MT_DATA || m->m_type == MT_HEADER, 1200 ("m->m_type == %d", m->m_type)); 1201 so->so_rcv.sb_state &= ~SBS_RCVATMARK; 1202 len = uio->uio_resid; 1203 if (so->so_oobmark && len > so->so_oobmark - offset) 1204 len = so->so_oobmark - offset; 1205 if (len > m->m_len - moff) 1206 len = m->m_len - moff; 1207 /* 1208 * If mp is set, just pass back the mbufs. 1209 * Otherwise copy them out via the uio, then free. 1210 * Sockbuf must be consistent here (points to current mbuf, 1211 * it points to next record) when we drop priority; 1212 * we must note any additions to the sockbuf when we 1213 * block interrupts again. 1214 */ 1215 if (mp == NULL) { 1216 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1217 SBLASTRECORDCHK(&so->so_rcv); 1218 SBLASTMBUFCHK(&so->so_rcv); 1219 SOCKBUF_UNLOCK(&so->so_rcv); 1220 #ifdef ZERO_COPY_SOCKETS 1221 if (so_zero_copy_receive) { 1222 int disposable; 1223 1224 if ((m->m_flags & M_EXT) 1225 && (m->m_ext.ext_type == EXT_DISPOSABLE)) 1226 disposable = 1; 1227 else 1228 disposable = 0; 1229 1230 error = uiomoveco(mtod(m, char *) + moff, 1231 (int)len, uio, 1232 disposable); 1233 } else 1234 #endif /* ZERO_COPY_SOCKETS */ 1235 error = uiomove(mtod(m, char *) + moff, (int)len, uio); 1236 SOCKBUF_LOCK(&so->so_rcv); 1237 if (error) 1238 goto release; 1239 } else 1240 uio->uio_resid -= len; 1241 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1242 if (len == m->m_len - moff) { 1243 if (m->m_flags & M_EOR) 1244 flags |= MSG_EOR; 1245 if (flags & MSG_PEEK) { 1246 m = m->m_next; 1247 moff = 0; 1248 } else { 1249 nextrecord = m->m_nextpkt; 1250 sbfree(&so->so_rcv, m); 1251 if (mp != NULL) { 1252 *mp = m; 1253 mp = &m->m_next; 1254 so->so_rcv.sb_mb = m = m->m_next; 1255 *mp = NULL; 1256 } else { 1257 so->so_rcv.sb_mb = m_free(m); 1258 m = so->so_rcv.sb_mb; 1259 } 1260 if (m != NULL) { 1261 m->m_nextpkt = nextrecord; 1262 if (nextrecord == NULL) 1263 so->so_rcv.sb_lastrecord = m; 1264 } else { 1265 so->so_rcv.sb_mb = nextrecord; 1266 SB_EMPTY_FIXUP(&so->so_rcv); 1267 } 1268 SBLASTRECORDCHK(&so->so_rcv); 1269 SBLASTMBUFCHK(&so->so_rcv); 1270 } 1271 } else { 1272 if (flags & MSG_PEEK) 1273 moff += len; 1274 else { 1275 if (mp != NULL) { 1276 int copy_flag; 1277 1278 if (flags & MSG_DONTWAIT) 1279 copy_flag = M_DONTWAIT; 1280 else 1281 copy_flag = M_TRYWAIT; 1282 if (copy_flag == M_TRYWAIT) 1283 SOCKBUF_UNLOCK(&so->so_rcv); 1284 *mp = m_copym(m, 0, len, copy_flag); 1285 if (copy_flag == M_TRYWAIT) 1286 SOCKBUF_LOCK(&so->so_rcv); 1287 if (*mp == NULL) { 1288 /* 1289 * m_copym() couldn't allocate an mbuf. 1290 * Adjust uio_resid back (it was adjusted 1291 * down by len bytes, which we didn't end 1292 * up "copying" over). 1293 */ 1294 uio->uio_resid += len; 1295 break; 1296 } 1297 } 1298 m->m_data += len; 1299 m->m_len -= len; 1300 so->so_rcv.sb_cc -= len; 1301 } 1302 } 1303 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1304 if (so->so_oobmark) { 1305 if ((flags & MSG_PEEK) == 0) { 1306 so->so_oobmark -= len; 1307 if (so->so_oobmark == 0) { 1308 so->so_rcv.sb_state |= SBS_RCVATMARK; 1309 break; 1310 } 1311 } else { 1312 offset += len; 1313 if (offset == so->so_oobmark) 1314 break; 1315 } 1316 } 1317 if (flags & MSG_EOR) 1318 break; 1319 /* 1320 * If the MSG_WAITALL flag is set (for non-atomic socket), 1321 * we must not quit until "uio->uio_resid == 0" or an error 1322 * termination. If a signal/timeout occurs, return 1323 * with a short count but without error. 1324 * Keep sockbuf locked against other readers. 1325 */ 1326 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 1327 !sosendallatonce(so) && nextrecord == NULL) { 1328 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1329 if (so->so_error || so->so_rcv.sb_state & SBS_CANTRCVMORE) 1330 break; 1331 /* 1332 * Notify the protocol that some data has been 1333 * drained before blocking. 1334 */ 1335 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb != NULL) { 1336 SOCKBUF_UNLOCK(&so->so_rcv); 1337 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 1338 SOCKBUF_LOCK(&so->so_rcv); 1339 } 1340 SBLASTRECORDCHK(&so->so_rcv); 1341 SBLASTMBUFCHK(&so->so_rcv); 1342 error = sbwait(&so->so_rcv); 1343 if (error) 1344 goto release; 1345 m = so->so_rcv.sb_mb; 1346 if (m != NULL) 1347 nextrecord = m->m_nextpkt; 1348 } 1349 } 1350 1351 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1352 if (m != NULL && pr->pr_flags & PR_ATOMIC) { 1353 flags |= MSG_TRUNC; 1354 if ((flags & MSG_PEEK) == 0) 1355 (void) sbdroprecord_locked(&so->so_rcv); 1356 } 1357 if ((flags & MSG_PEEK) == 0) { 1358 if (m == NULL) { 1359 /* 1360 * First part is an inline SB_EMPTY_FIXUP(). Second 1361 * part makes sure sb_lastrecord is up-to-date if 1362 * there is still data in the socket buffer. 1363 */ 1364 so->so_rcv.sb_mb = nextrecord; 1365 if (so->so_rcv.sb_mb == NULL) { 1366 so->so_rcv.sb_mbtail = NULL; 1367 so->so_rcv.sb_lastrecord = NULL; 1368 } else if (nextrecord->m_nextpkt == NULL) 1369 so->so_rcv.sb_lastrecord = nextrecord; 1370 } 1371 SBLASTRECORDCHK(&so->so_rcv); 1372 SBLASTMBUFCHK(&so->so_rcv); 1373 /* 1374 * If soreceive() is being done from the socket callback, then 1375 * don't need to generate ACK to peer to update window, since 1376 * ACK will be generated on return to TCP. 1377 */ 1378 if (!(flags & MSG_SOCALLBCK) && 1379 (pr->pr_flags & PR_WANTRCVD) && so->so_pcb) { 1380 SOCKBUF_UNLOCK(&so->so_rcv); 1381 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 1382 SOCKBUF_LOCK(&so->so_rcv); 1383 } 1384 } 1385 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1386 if (orig_resid == uio->uio_resid && orig_resid && 1387 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { 1388 sbunlock(&so->so_rcv); 1389 goto restart; 1390 } 1391 1392 if (flagsp != NULL) 1393 *flagsp |= flags; 1394 release: 1395 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1396 sbunlock(&so->so_rcv); 1397 out: 1398 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1399 SOCKBUF_UNLOCK(&so->so_rcv); 1400 return (error); 1401 } 1402 1403 int 1404 soshutdown(so, how) 1405 struct socket *so; 1406 int how; 1407 { 1408 struct protosw *pr = so->so_proto; 1409 1410 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 1411 return (EINVAL); 1412 1413 if (how != SHUT_WR) 1414 sorflush(so); 1415 if (how != SHUT_RD) 1416 return ((*pr->pr_usrreqs->pru_shutdown)(so)); 1417 return (0); 1418 } 1419 1420 void 1421 sorflush(so) 1422 struct socket *so; 1423 { 1424 struct sockbuf *sb = &so->so_rcv; 1425 struct protosw *pr = so->so_proto; 1426 struct sockbuf asb; 1427 1428 /* 1429 * XXXRW: This is quite ugly. Previously, this code made a copy of 1430 * the socket buffer, then zero'd the original to clear the buffer 1431 * fields. However, with mutexes in the socket buffer, this causes 1432 * problems. We only clear the zeroable bits of the original; 1433 * however, we have to initialize and destroy the mutex in the copy 1434 * so that dom_dispose() and sbrelease() can lock t as needed. 1435 */ 1436 SOCKBUF_LOCK(sb); 1437 sb->sb_flags |= SB_NOINTR; 1438 (void) sblock(sb, M_WAITOK); 1439 /* 1440 * socantrcvmore_locked() drops the socket buffer mutex so that it 1441 * can safely perform wakeups. Re-acquire the mutex before 1442 * continuing. 1443 */ 1444 socantrcvmore_locked(so); 1445 SOCKBUF_LOCK(sb); 1446 sbunlock(sb); 1447 /* 1448 * Invalidate/clear most of the sockbuf structure, but leave 1449 * selinfo and mutex data unchanged. 1450 */ 1451 bzero(&asb, offsetof(struct sockbuf, sb_startzero)); 1452 bcopy(&sb->sb_startzero, &asb.sb_startzero, 1453 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 1454 bzero(&sb->sb_startzero, 1455 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 1456 SOCKBUF_UNLOCK(sb); 1457 1458 SOCKBUF_LOCK_INIT(&asb, "so_rcv"); 1459 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 1460 (*pr->pr_domain->dom_dispose)(asb.sb_mb); 1461 sbrelease(&asb, so); 1462 SOCKBUF_LOCK_DESTROY(&asb); 1463 } 1464 1465 #ifdef INET 1466 static int 1467 do_setopt_accept_filter(so, sopt) 1468 struct socket *so; 1469 struct sockopt *sopt; 1470 { 1471 struct accept_filter_arg *afap; 1472 struct accept_filter *afp; 1473 struct so_accf *newaf; 1474 int error = 0; 1475 1476 newaf = NULL; 1477 afap = NULL; 1478 1479 /* 1480 * XXXRW: Configuring accept filters should be an atomic test-and-set 1481 * operation to prevent races during setup and attach. There may be 1482 * more general issues of racing and ordering here that are not yet 1483 * addressed by locking. 1484 */ 1485 /* do not set/remove accept filters on non listen sockets */ 1486 SOCK_LOCK(so); 1487 if ((so->so_options & SO_ACCEPTCONN) == 0) { 1488 SOCK_UNLOCK(so); 1489 return (EINVAL); 1490 } 1491 1492 /* removing the filter */ 1493 if (sopt == NULL) { 1494 if (so->so_accf != NULL) { 1495 struct so_accf *af = so->so_accf; 1496 if (af->so_accept_filter != NULL && 1497 af->so_accept_filter->accf_destroy != NULL) { 1498 af->so_accept_filter->accf_destroy(so); 1499 } 1500 if (af->so_accept_filter_str != NULL) { 1501 FREE(af->so_accept_filter_str, M_ACCF); 1502 } 1503 FREE(af, M_ACCF); 1504 so->so_accf = NULL; 1505 } 1506 so->so_options &= ~SO_ACCEPTFILTER; 1507 SOCK_UNLOCK(so); 1508 return (0); 1509 } 1510 SOCK_UNLOCK(so); 1511 1512 /*- 1513 * Adding a filter. 1514 * 1515 * Do memory allocation, copyin, and filter lookup now while we're 1516 * not holding any locks. Avoids sleeping with a mutex, as well as 1517 * introducing a lock order between accept filter locks and socket 1518 * locks here. 1519 */ 1520 MALLOC(afap, struct accept_filter_arg *, sizeof(*afap), M_TEMP, 1521 M_WAITOK); 1522 /* don't put large objects on the kernel stack */ 1523 error = sooptcopyin(sopt, afap, sizeof *afap, sizeof *afap); 1524 afap->af_name[sizeof(afap->af_name)-1] = '\0'; 1525 afap->af_arg[sizeof(afap->af_arg)-1] = '\0'; 1526 if (error) { 1527 FREE(afap, M_TEMP); 1528 return (error); 1529 } 1530 afp = accept_filt_get(afap->af_name); 1531 if (afp == NULL) { 1532 FREE(afap, M_TEMP); 1533 return (ENOENT); 1534 } 1535 1536 /* 1537 * Allocate the new accept filter instance storage. We may have to 1538 * free it again later if we fail to attach it. If attached 1539 * properly, 'newaf' is NULLed to avoid a free() while in use. 1540 */ 1541 MALLOC(newaf, struct so_accf *, sizeof(*newaf), M_ACCF, M_WAITOK | 1542 M_ZERO); 1543 if (afp->accf_create != NULL && afap->af_name[0] != '\0') { 1544 int len = strlen(afap->af_name) + 1; 1545 MALLOC(newaf->so_accept_filter_str, char *, len, M_ACCF, 1546 M_WAITOK); 1547 strcpy(newaf->so_accept_filter_str, afap->af_name); 1548 } 1549 1550 SOCK_LOCK(so); 1551 /* must remove previous filter first */ 1552 if (so->so_accf != NULL) { 1553 error = EINVAL; 1554 goto out; 1555 } 1556 /* 1557 * Invoke the accf_create() method of the filter if required. 1558 * XXXRW: the socket mutex is held over this call, so the create 1559 * method cannot block. This may be something we have to change, but 1560 * it would require addressing possible races. 1561 */ 1562 if (afp->accf_create != NULL) { 1563 newaf->so_accept_filter_arg = 1564 afp->accf_create(so, afap->af_arg); 1565 if (newaf->so_accept_filter_arg == NULL) { 1566 error = EINVAL; 1567 goto out; 1568 } 1569 } 1570 newaf->so_accept_filter = afp; 1571 so->so_accf = newaf; 1572 so->so_options |= SO_ACCEPTFILTER; 1573 newaf = NULL; 1574 out: 1575 SOCK_UNLOCK(so); 1576 if (newaf != NULL) { 1577 if (newaf->so_accept_filter_str != NULL) 1578 FREE(newaf->so_accept_filter_str, M_ACCF); 1579 FREE(newaf, M_ACCF); 1580 } 1581 if (afap != NULL) 1582 FREE(afap, M_TEMP); 1583 return (error); 1584 } 1585 #endif /* INET */ 1586 1587 /* 1588 * Perhaps this routine, and sooptcopyout(), below, ought to come in 1589 * an additional variant to handle the case where the option value needs 1590 * to be some kind of integer, but not a specific size. 1591 * In addition to their use here, these functions are also called by the 1592 * protocol-level pr_ctloutput() routines. 1593 */ 1594 int 1595 sooptcopyin(sopt, buf, len, minlen) 1596 struct sockopt *sopt; 1597 void *buf; 1598 size_t len; 1599 size_t minlen; 1600 { 1601 size_t valsize; 1602 1603 /* 1604 * If the user gives us more than we wanted, we ignore it, 1605 * but if we don't get the minimum length the caller 1606 * wants, we return EINVAL. On success, sopt->sopt_valsize 1607 * is set to however much we actually retrieved. 1608 */ 1609 if ((valsize = sopt->sopt_valsize) < minlen) 1610 return EINVAL; 1611 if (valsize > len) 1612 sopt->sopt_valsize = valsize = len; 1613 1614 if (sopt->sopt_td != NULL) 1615 return (copyin(sopt->sopt_val, buf, valsize)); 1616 1617 bcopy(sopt->sopt_val, buf, valsize); 1618 return 0; 1619 } 1620 1621 /* 1622 * Kernel version of setsockopt(2)/ 1623 * XXX: optlen is size_t, not socklen_t 1624 */ 1625 int 1626 so_setsockopt(struct socket *so, int level, int optname, void *optval, 1627 size_t optlen) 1628 { 1629 struct sockopt sopt; 1630 1631 sopt.sopt_level = level; 1632 sopt.sopt_name = optname; 1633 sopt.sopt_dir = SOPT_SET; 1634 sopt.sopt_val = optval; 1635 sopt.sopt_valsize = optlen; 1636 sopt.sopt_td = NULL; 1637 return (sosetopt(so, &sopt)); 1638 } 1639 1640 int 1641 sosetopt(so, sopt) 1642 struct socket *so; 1643 struct sockopt *sopt; 1644 { 1645 int error, optval; 1646 struct linger l; 1647 struct timeval tv; 1648 u_long val; 1649 #ifdef MAC 1650 struct mac extmac; 1651 #endif 1652 1653 error = 0; 1654 if (sopt->sopt_level != SOL_SOCKET) { 1655 if (so->so_proto && so->so_proto->pr_ctloutput) 1656 return ((*so->so_proto->pr_ctloutput) 1657 (so, sopt)); 1658 error = ENOPROTOOPT; 1659 } else { 1660 switch (sopt->sopt_name) { 1661 #ifdef INET 1662 case SO_ACCEPTFILTER: 1663 error = do_setopt_accept_filter(so, sopt); 1664 if (error) 1665 goto bad; 1666 break; 1667 #endif 1668 case SO_LINGER: 1669 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 1670 if (error) 1671 goto bad; 1672 1673 SOCK_LOCK(so); 1674 so->so_linger = l.l_linger; 1675 if (l.l_onoff) 1676 so->so_options |= SO_LINGER; 1677 else 1678 so->so_options &= ~SO_LINGER; 1679 SOCK_UNLOCK(so); 1680 break; 1681 1682 case SO_DEBUG: 1683 case SO_KEEPALIVE: 1684 case SO_DONTROUTE: 1685 case SO_USELOOPBACK: 1686 case SO_BROADCAST: 1687 case SO_REUSEADDR: 1688 case SO_REUSEPORT: 1689 case SO_OOBINLINE: 1690 case SO_TIMESTAMP: 1691 case SO_BINTIME: 1692 case SO_NOSIGPIPE: 1693 error = sooptcopyin(sopt, &optval, sizeof optval, 1694 sizeof optval); 1695 if (error) 1696 goto bad; 1697 SOCK_LOCK(so); 1698 if (optval) 1699 so->so_options |= sopt->sopt_name; 1700 else 1701 so->so_options &= ~sopt->sopt_name; 1702 SOCK_UNLOCK(so); 1703 break; 1704 1705 case SO_SNDBUF: 1706 case SO_RCVBUF: 1707 case SO_SNDLOWAT: 1708 case SO_RCVLOWAT: 1709 error = sooptcopyin(sopt, &optval, sizeof optval, 1710 sizeof optval); 1711 if (error) 1712 goto bad; 1713 1714 /* 1715 * Values < 1 make no sense for any of these 1716 * options, so disallow them. 1717 */ 1718 if (optval < 1) { 1719 error = EINVAL; 1720 goto bad; 1721 } 1722 1723 switch (sopt->sopt_name) { 1724 case SO_SNDBUF: 1725 case SO_RCVBUF: 1726 if (sbreserve(sopt->sopt_name == SO_SNDBUF ? 1727 &so->so_snd : &so->so_rcv, (u_long)optval, 1728 so, curthread) == 0) { 1729 error = ENOBUFS; 1730 goto bad; 1731 } 1732 break; 1733 1734 /* 1735 * Make sure the low-water is never greater than 1736 * the high-water. 1737 */ 1738 case SO_SNDLOWAT: 1739 SOCKBUF_LOCK(&so->so_snd); 1740 so->so_snd.sb_lowat = 1741 (optval > so->so_snd.sb_hiwat) ? 1742 so->so_snd.sb_hiwat : optval; 1743 SOCKBUF_UNLOCK(&so->so_snd); 1744 break; 1745 case SO_RCVLOWAT: 1746 SOCKBUF_LOCK(&so->so_rcv); 1747 so->so_rcv.sb_lowat = 1748 (optval > so->so_rcv.sb_hiwat) ? 1749 so->so_rcv.sb_hiwat : optval; 1750 SOCKBUF_UNLOCK(&so->so_rcv); 1751 break; 1752 } 1753 break; 1754 1755 case SO_SNDTIMEO: 1756 case SO_RCVTIMEO: 1757 error = sooptcopyin(sopt, &tv, sizeof tv, 1758 sizeof tv); 1759 if (error) 1760 goto bad; 1761 1762 /* assert(hz > 0); */ 1763 if (tv.tv_sec < 0 || tv.tv_sec > INT_MAX / hz || 1764 tv.tv_usec < 0 || tv.tv_usec >= 1000000) { 1765 error = EDOM; 1766 goto bad; 1767 } 1768 /* assert(tick > 0); */ 1769 /* assert(ULONG_MAX - INT_MAX >= 1000000); */ 1770 val = (u_long)(tv.tv_sec * hz) + tv.tv_usec / tick; 1771 if (val > INT_MAX) { 1772 error = EDOM; 1773 goto bad; 1774 } 1775 if (val == 0 && tv.tv_usec != 0) 1776 val = 1; 1777 1778 switch (sopt->sopt_name) { 1779 case SO_SNDTIMEO: 1780 so->so_snd.sb_timeo = val; 1781 break; 1782 case SO_RCVTIMEO: 1783 so->so_rcv.sb_timeo = val; 1784 break; 1785 } 1786 break; 1787 case SO_LABEL: 1788 #ifdef MAC 1789 error = sooptcopyin(sopt, &extmac, sizeof extmac, 1790 sizeof extmac); 1791 if (error) 1792 goto bad; 1793 error = mac_setsockopt_label(sopt->sopt_td->td_ucred, 1794 so, &extmac); 1795 #else 1796 error = EOPNOTSUPP; 1797 #endif 1798 break; 1799 default: 1800 error = ENOPROTOOPT; 1801 break; 1802 } 1803 if (error == 0 && so->so_proto != NULL && 1804 so->so_proto->pr_ctloutput != NULL) { 1805 (void) ((*so->so_proto->pr_ctloutput) 1806 (so, sopt)); 1807 } 1808 } 1809 bad: 1810 return (error); 1811 } 1812 1813 /* Helper routine for getsockopt */ 1814 int 1815 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 1816 { 1817 int error; 1818 size_t valsize; 1819 1820 error = 0; 1821 1822 /* 1823 * Documented get behavior is that we always return a value, 1824 * possibly truncated to fit in the user's buffer. 1825 * Traditional behavior is that we always tell the user 1826 * precisely how much we copied, rather than something useful 1827 * like the total amount we had available for her. 1828 * Note that this interface is not idempotent; the entire answer must 1829 * generated ahead of time. 1830 */ 1831 valsize = min(len, sopt->sopt_valsize); 1832 sopt->sopt_valsize = valsize; 1833 if (sopt->sopt_val != NULL) { 1834 if (sopt->sopt_td != NULL) 1835 error = copyout(buf, sopt->sopt_val, valsize); 1836 else 1837 bcopy(buf, sopt->sopt_val, valsize); 1838 } 1839 return error; 1840 } 1841 1842 int 1843 sogetopt(so, sopt) 1844 struct socket *so; 1845 struct sockopt *sopt; 1846 { 1847 int error, optval; 1848 struct linger l; 1849 struct timeval tv; 1850 #ifdef INET 1851 struct accept_filter_arg *afap; 1852 #endif 1853 #ifdef MAC 1854 struct mac extmac; 1855 #endif 1856 1857 error = 0; 1858 if (sopt->sopt_level != SOL_SOCKET) { 1859 if (so->so_proto && so->so_proto->pr_ctloutput) { 1860 return ((*so->so_proto->pr_ctloutput) 1861 (so, sopt)); 1862 } else 1863 return (ENOPROTOOPT); 1864 } else { 1865 switch (sopt->sopt_name) { 1866 #ifdef INET 1867 case SO_ACCEPTFILTER: 1868 /* Unlocked read. */ 1869 if ((so->so_options & SO_ACCEPTCONN) == 0) 1870 return (EINVAL); 1871 MALLOC(afap, struct accept_filter_arg *, sizeof(*afap), 1872 M_TEMP, M_WAITOK | M_ZERO); 1873 SOCK_LOCK(so); 1874 if ((so->so_options & SO_ACCEPTFILTER) != 0) { 1875 strcpy(afap->af_name, so->so_accf->so_accept_filter->accf_name); 1876 if (so->so_accf->so_accept_filter_str != NULL) 1877 strcpy(afap->af_arg, so->so_accf->so_accept_filter_str); 1878 } 1879 SOCK_UNLOCK(so); 1880 error = sooptcopyout(sopt, afap, sizeof(*afap)); 1881 FREE(afap, M_TEMP); 1882 break; 1883 #endif 1884 1885 case SO_LINGER: 1886 SOCK_LOCK(so); 1887 l.l_onoff = so->so_options & SO_LINGER; 1888 l.l_linger = so->so_linger; 1889 SOCK_UNLOCK(so); 1890 error = sooptcopyout(sopt, &l, sizeof l); 1891 break; 1892 1893 case SO_USELOOPBACK: 1894 case SO_DONTROUTE: 1895 case SO_DEBUG: 1896 case SO_KEEPALIVE: 1897 case SO_REUSEADDR: 1898 case SO_REUSEPORT: 1899 case SO_BROADCAST: 1900 case SO_OOBINLINE: 1901 case SO_TIMESTAMP: 1902 case SO_BINTIME: 1903 case SO_NOSIGPIPE: 1904 optval = so->so_options & sopt->sopt_name; 1905 integer: 1906 error = sooptcopyout(sopt, &optval, sizeof optval); 1907 break; 1908 1909 case SO_TYPE: 1910 optval = so->so_type; 1911 goto integer; 1912 1913 case SO_ERROR: 1914 optval = so->so_error; 1915 so->so_error = 0; 1916 goto integer; 1917 1918 case SO_SNDBUF: 1919 optval = so->so_snd.sb_hiwat; 1920 goto integer; 1921 1922 case SO_RCVBUF: 1923 optval = so->so_rcv.sb_hiwat; 1924 goto integer; 1925 1926 case SO_SNDLOWAT: 1927 optval = so->so_snd.sb_lowat; 1928 goto integer; 1929 1930 case SO_RCVLOWAT: 1931 optval = so->so_rcv.sb_lowat; 1932 goto integer; 1933 1934 case SO_SNDTIMEO: 1935 case SO_RCVTIMEO: 1936 optval = (sopt->sopt_name == SO_SNDTIMEO ? 1937 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 1938 1939 tv.tv_sec = optval / hz; 1940 tv.tv_usec = (optval % hz) * tick; 1941 error = sooptcopyout(sopt, &tv, sizeof tv); 1942 break; 1943 case SO_LABEL: 1944 #ifdef MAC 1945 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 1946 sizeof(extmac)); 1947 if (error) 1948 return (error); 1949 error = mac_getsockopt_label(sopt->sopt_td->td_ucred, 1950 so, &extmac); 1951 if (error) 1952 return (error); 1953 error = sooptcopyout(sopt, &extmac, sizeof extmac); 1954 #else 1955 error = EOPNOTSUPP; 1956 #endif 1957 break; 1958 case SO_PEERLABEL: 1959 #ifdef MAC 1960 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 1961 sizeof(extmac)); 1962 if (error) 1963 return (error); 1964 error = mac_getsockopt_peerlabel( 1965 sopt->sopt_td->td_ucred, so, &extmac); 1966 if (error) 1967 return (error); 1968 error = sooptcopyout(sopt, &extmac, sizeof extmac); 1969 #else 1970 error = EOPNOTSUPP; 1971 #endif 1972 break; 1973 default: 1974 error = ENOPROTOOPT; 1975 break; 1976 } 1977 return (error); 1978 } 1979 } 1980 1981 /* XXX; prepare mbuf for (__FreeBSD__ < 3) routines. */ 1982 int 1983 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 1984 { 1985 struct mbuf *m, *m_prev; 1986 int sopt_size = sopt->sopt_valsize; 1987 1988 MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA); 1989 if (m == NULL) 1990 return ENOBUFS; 1991 if (sopt_size > MLEN) { 1992 MCLGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT); 1993 if ((m->m_flags & M_EXT) == 0) { 1994 m_free(m); 1995 return ENOBUFS; 1996 } 1997 m->m_len = min(MCLBYTES, sopt_size); 1998 } else { 1999 m->m_len = min(MLEN, sopt_size); 2000 } 2001 sopt_size -= m->m_len; 2002 *mp = m; 2003 m_prev = m; 2004 2005 while (sopt_size) { 2006 MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA); 2007 if (m == NULL) { 2008 m_freem(*mp); 2009 return ENOBUFS; 2010 } 2011 if (sopt_size > MLEN) { 2012 MCLGET(m, sopt->sopt_td != NULL ? M_TRYWAIT : 2013 M_DONTWAIT); 2014 if ((m->m_flags & M_EXT) == 0) { 2015 m_freem(m); 2016 m_freem(*mp); 2017 return ENOBUFS; 2018 } 2019 m->m_len = min(MCLBYTES, sopt_size); 2020 } else { 2021 m->m_len = min(MLEN, sopt_size); 2022 } 2023 sopt_size -= m->m_len; 2024 m_prev->m_next = m; 2025 m_prev = m; 2026 } 2027 return 0; 2028 } 2029 2030 /* XXX; copyin sopt data into mbuf chain for (__FreeBSD__ < 3) routines. */ 2031 int 2032 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 2033 { 2034 struct mbuf *m0 = m; 2035 2036 if (sopt->sopt_val == NULL) 2037 return 0; 2038 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 2039 if (sopt->sopt_td != NULL) { 2040 int error; 2041 2042 error = copyin(sopt->sopt_val, mtod(m, char *), 2043 m->m_len); 2044 if (error != 0) { 2045 m_freem(m0); 2046 return(error); 2047 } 2048 } else 2049 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 2050 sopt->sopt_valsize -= m->m_len; 2051 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 2052 m = m->m_next; 2053 } 2054 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 2055 panic("ip6_sooptmcopyin"); 2056 return 0; 2057 } 2058 2059 /* XXX; copyout mbuf chain data into soopt for (__FreeBSD__ < 3) routines. */ 2060 int 2061 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 2062 { 2063 struct mbuf *m0 = m; 2064 size_t valsize = 0; 2065 2066 if (sopt->sopt_val == NULL) 2067 return 0; 2068 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 2069 if (sopt->sopt_td != NULL) { 2070 int error; 2071 2072 error = copyout(mtod(m, char *), sopt->sopt_val, 2073 m->m_len); 2074 if (error != 0) { 2075 m_freem(m0); 2076 return(error); 2077 } 2078 } else 2079 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 2080 sopt->sopt_valsize -= m->m_len; 2081 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 2082 valsize += m->m_len; 2083 m = m->m_next; 2084 } 2085 if (m != NULL) { 2086 /* enough soopt buffer should be given from user-land */ 2087 m_freem(m0); 2088 return(EINVAL); 2089 } 2090 sopt->sopt_valsize = valsize; 2091 return 0; 2092 } 2093 2094 void 2095 sohasoutofband(so) 2096 struct socket *so; 2097 { 2098 if (so->so_sigio != NULL) 2099 pgsigio(&so->so_sigio, SIGURG, 0); 2100 selwakeuppri(&so->so_rcv.sb_sel, PSOCK); 2101 } 2102 2103 int 2104 sopoll(struct socket *so, int events, struct ucred *active_cred, 2105 struct thread *td) 2106 { 2107 int revents = 0; 2108 2109 SOCKBUF_LOCK(&so->so_snd); 2110 SOCKBUF_LOCK(&so->so_rcv); 2111 if (events & (POLLIN | POLLRDNORM)) 2112 if (soreadable(so)) 2113 revents |= events & (POLLIN | POLLRDNORM); 2114 2115 if (events & POLLINIGNEOF) 2116 if (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat || 2117 !TAILQ_EMPTY(&so->so_comp) || so->so_error) 2118 revents |= POLLINIGNEOF; 2119 2120 if (events & (POLLOUT | POLLWRNORM)) 2121 if (sowriteable(so)) 2122 revents |= events & (POLLOUT | POLLWRNORM); 2123 2124 if (events & (POLLPRI | POLLRDBAND)) 2125 if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK)) 2126 revents |= events & (POLLPRI | POLLRDBAND); 2127 2128 if (revents == 0) { 2129 if (events & 2130 (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | 2131 POLLRDBAND)) { 2132 selrecord(td, &so->so_rcv.sb_sel); 2133 so->so_rcv.sb_flags |= SB_SEL; 2134 } 2135 2136 if (events & (POLLOUT | POLLWRNORM)) { 2137 selrecord(td, &so->so_snd.sb_sel); 2138 so->so_snd.sb_flags |= SB_SEL; 2139 } 2140 } 2141 2142 SOCKBUF_UNLOCK(&so->so_rcv); 2143 SOCKBUF_UNLOCK(&so->so_snd); 2144 return (revents); 2145 } 2146 2147 int 2148 soo_kqfilter(struct file *fp, struct knote *kn) 2149 { 2150 struct socket *so = kn->kn_fp->f_data; 2151 struct sockbuf *sb; 2152 2153 switch (kn->kn_filter) { 2154 case EVFILT_READ: 2155 if (so->so_options & SO_ACCEPTCONN) 2156 kn->kn_fop = &solisten_filtops; 2157 else 2158 kn->kn_fop = &soread_filtops; 2159 sb = &so->so_rcv; 2160 break; 2161 case EVFILT_WRITE: 2162 kn->kn_fop = &sowrite_filtops; 2163 sb = &so->so_snd; 2164 break; 2165 default: 2166 return (EINVAL); 2167 } 2168 2169 SOCKBUF_LOCK(sb); 2170 knlist_add(&sb->sb_sel.si_note, kn, 1); 2171 sb->sb_flags |= SB_KNOTE; 2172 SOCKBUF_UNLOCK(sb); 2173 return (0); 2174 } 2175 2176 static void 2177 filt_sordetach(struct knote *kn) 2178 { 2179 struct socket *so = kn->kn_fp->f_data; 2180 2181 SOCKBUF_LOCK(&so->so_rcv); 2182 knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1); 2183 if (knlist_empty(&so->so_rcv.sb_sel.si_note)) 2184 so->so_rcv.sb_flags &= ~SB_KNOTE; 2185 SOCKBUF_UNLOCK(&so->so_rcv); 2186 } 2187 2188 /*ARGSUSED*/ 2189 static int 2190 filt_soread(struct knote *kn, long hint) 2191 { 2192 struct socket *so; 2193 2194 so = kn->kn_fp->f_data; 2195 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2196 2197 kn->kn_data = so->so_rcv.sb_cc - so->so_rcv.sb_ctl; 2198 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 2199 kn->kn_flags |= EV_EOF; 2200 kn->kn_fflags = so->so_error; 2201 return (1); 2202 } else if (so->so_error) /* temporary udp error */ 2203 return (1); 2204 else if (kn->kn_sfflags & NOTE_LOWAT) 2205 return (kn->kn_data >= kn->kn_sdata); 2206 else 2207 return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat); 2208 } 2209 2210 static void 2211 filt_sowdetach(struct knote *kn) 2212 { 2213 struct socket *so = kn->kn_fp->f_data; 2214 2215 SOCKBUF_LOCK(&so->so_snd); 2216 knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1); 2217 if (knlist_empty(&so->so_snd.sb_sel.si_note)) 2218 so->so_snd.sb_flags &= ~SB_KNOTE; 2219 SOCKBUF_UNLOCK(&so->so_snd); 2220 } 2221 2222 /*ARGSUSED*/ 2223 static int 2224 filt_sowrite(struct knote *kn, long hint) 2225 { 2226 struct socket *so; 2227 2228 so = kn->kn_fp->f_data; 2229 SOCKBUF_LOCK_ASSERT(&so->so_snd); 2230 kn->kn_data = sbspace(&so->so_snd); 2231 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 2232 kn->kn_flags |= EV_EOF; 2233 kn->kn_fflags = so->so_error; 2234 return (1); 2235 } else if (so->so_error) /* temporary udp error */ 2236 return (1); 2237 else if (((so->so_state & SS_ISCONNECTED) == 0) && 2238 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 2239 return (0); 2240 else if (kn->kn_sfflags & NOTE_LOWAT) 2241 return (kn->kn_data >= kn->kn_sdata); 2242 else 2243 return (kn->kn_data >= so->so_snd.sb_lowat); 2244 } 2245 2246 /*ARGSUSED*/ 2247 static int 2248 filt_solisten(struct knote *kn, long hint) 2249 { 2250 struct socket *so = kn->kn_fp->f_data; 2251 2252 kn->kn_data = so->so_qlen; 2253 return (! TAILQ_EMPTY(&so->so_comp)); 2254 } 2255 2256 int 2257 socheckuid(struct socket *so, uid_t uid) 2258 { 2259 2260 if (so == NULL) 2261 return (EPERM); 2262 if (so->so_cred->cr_uid == uid) 2263 return (0); 2264 return (EPERM); 2265 } 2266