xref: /freebsd/sys/kern/uipc_socket.c (revision 69d94f4c7608e41505996559367450706e91fbb8)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
5  *	The Regents of the University of California.
6  * Copyright (c) 2004 The FreeBSD Foundation
7  * Copyright (c) 2004-2008 Robert N. M. Watson
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)uipc_socket.c	8.3 (Berkeley) 4/15/94
35  */
36 
37 /*
38  * Comments on the socket life cycle:
39  *
40  * soalloc() sets of socket layer state for a socket, called only by
41  * socreate() and sonewconn().  Socket layer private.
42  *
43  * sodealloc() tears down socket layer state for a socket, called only by
44  * sofree() and sonewconn().  Socket layer private.
45  *
46  * pru_attach() associates protocol layer state with an allocated socket;
47  * called only once, may fail, aborting socket allocation.  This is called
48  * from socreate() and sonewconn().  Socket layer private.
49  *
50  * pru_detach() disassociates protocol layer state from an attached socket,
51  * and will be called exactly once for sockets in which pru_attach() has
52  * been successfully called.  If pru_attach() returned an error,
53  * pru_detach() will not be called.  Socket layer private.
54  *
55  * pru_abort() and pru_close() notify the protocol layer that the last
56  * consumer of a socket is starting to tear down the socket, and that the
57  * protocol should terminate the connection.  Historically, pru_abort() also
58  * detached protocol state from the socket state, but this is no longer the
59  * case.
60  *
61  * socreate() creates a socket and attaches protocol state.  This is a public
62  * interface that may be used by socket layer consumers to create new
63  * sockets.
64  *
65  * sonewconn() creates a socket and attaches protocol state.  This is a
66  * public interface  that may be used by protocols to create new sockets when
67  * a new connection is received and will be available for accept() on a
68  * listen socket.
69  *
70  * soclose() destroys a socket after possibly waiting for it to disconnect.
71  * This is a public interface that socket consumers should use to close and
72  * release a socket when done with it.
73  *
74  * soabort() destroys a socket without waiting for it to disconnect (used
75  * only for incoming connections that are already partially or fully
76  * connected).  This is used internally by the socket layer when clearing
77  * listen socket queues (due to overflow or close on the listen socket), but
78  * is also a public interface protocols may use to abort connections in
79  * their incomplete listen queues should they no longer be required.  Sockets
80  * placed in completed connection listen queues should not be aborted for
81  * reasons described in the comment above the soclose() implementation.  This
82  * is not a general purpose close routine, and except in the specific
83  * circumstances described here, should not be used.
84  *
85  * sofree() will free a socket and its protocol state if all references on
86  * the socket have been released, and is the public interface to attempt to
87  * free a socket when a reference is removed.  This is a socket layer private
88  * interface.
89  *
90  * NOTE: In addition to socreate() and soclose(), which provide a single
91  * socket reference to the consumer to be managed as required, there are two
92  * calls to explicitly manage socket references, soref(), and sorele().
93  * Currently, these are generally required only when transitioning a socket
94  * from a listen queue to a file descriptor, in order to prevent garbage
95  * collection of the socket at an untimely moment.  For a number of reasons,
96  * these interfaces are not preferred, and should be avoided.
97  *
98  * NOTE: With regard to VNETs the general rule is that callers do not set
99  * curvnet. Exceptions to this rule include soabort(), sodisconnect(),
100  * sofree() (and with that sorele(), sotryfree()), as well as sonewconn()
101  * and sorflush(), which are usually called from a pre-set VNET context.
102  * sopoll() currently does not need a VNET context to be set.
103  */
104 
105 #include <sys/cdefs.h>
106 __FBSDID("$FreeBSD$");
107 
108 #include "opt_inet.h"
109 #include "opt_inet6.h"
110 #include "opt_kern_tls.h"
111 #include "opt_sctp.h"
112 
113 #include <sys/param.h>
114 #include <sys/systm.h>
115 #include <sys/capsicum.h>
116 #include <sys/fcntl.h>
117 #include <sys/limits.h>
118 #include <sys/lock.h>
119 #include <sys/mac.h>
120 #include <sys/malloc.h>
121 #include <sys/mbuf.h>
122 #include <sys/mutex.h>
123 #include <sys/domain.h>
124 #include <sys/file.h>			/* for struct knote */
125 #include <sys/hhook.h>
126 #include <sys/kernel.h>
127 #include <sys/khelp.h>
128 #include <sys/ktls.h>
129 #include <sys/event.h>
130 #include <sys/eventhandler.h>
131 #include <sys/poll.h>
132 #include <sys/proc.h>
133 #include <sys/protosw.h>
134 #include <sys/sbuf.h>
135 #include <sys/socket.h>
136 #include <sys/socketvar.h>
137 #include <sys/resourcevar.h>
138 #include <net/route.h>
139 #include <sys/signalvar.h>
140 #include <sys/stat.h>
141 #include <sys/sx.h>
142 #include <sys/sysctl.h>
143 #include <sys/taskqueue.h>
144 #include <sys/uio.h>
145 #include <sys/un.h>
146 #include <sys/unpcb.h>
147 #include <sys/jail.h>
148 #include <sys/syslog.h>
149 #include <netinet/in.h>
150 #include <netinet/in_pcb.h>
151 #include <netinet/tcp.h>
152 
153 #include <net/vnet.h>
154 
155 #include <security/mac/mac_framework.h>
156 
157 #include <vm/uma.h>
158 
159 #ifdef COMPAT_FREEBSD32
160 #include <sys/mount.h>
161 #include <sys/sysent.h>
162 #include <compat/freebsd32/freebsd32.h>
163 #endif
164 
165 static int	soreceive_rcvoob(struct socket *so, struct uio *uio,
166 		    int flags);
167 static void	so_rdknl_lock(void *);
168 static void	so_rdknl_unlock(void *);
169 static void	so_rdknl_assert_lock(void *, int);
170 static void	so_wrknl_lock(void *);
171 static void	so_wrknl_unlock(void *);
172 static void	so_wrknl_assert_lock(void *, int);
173 
174 static void	filt_sordetach(struct knote *kn);
175 static int	filt_soread(struct knote *kn, long hint);
176 static void	filt_sowdetach(struct knote *kn);
177 static int	filt_sowrite(struct knote *kn, long hint);
178 static int	filt_soempty(struct knote *kn, long hint);
179 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id);
180 fo_kqfilter_t	soo_kqfilter;
181 
182 static struct filterops soread_filtops = {
183 	.f_isfd = 1,
184 	.f_detach = filt_sordetach,
185 	.f_event = filt_soread,
186 };
187 static struct filterops sowrite_filtops = {
188 	.f_isfd = 1,
189 	.f_detach = filt_sowdetach,
190 	.f_event = filt_sowrite,
191 };
192 static struct filterops soempty_filtops = {
193 	.f_isfd = 1,
194 	.f_detach = filt_sowdetach,
195 	.f_event = filt_soempty,
196 };
197 
198 so_gen_t	so_gencnt;	/* generation count for sockets */
199 
200 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
201 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
202 
203 #define	VNET_SO_ASSERT(so)						\
204 	VNET_ASSERT(curvnet != NULL,					\
205 	    ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so)));
206 
207 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]);
208 #define	V_socket_hhh		VNET(socket_hhh)
209 
210 /*
211  * Limit on the number of connections in the listen queue waiting
212  * for accept(2).
213  * NB: The original sysctl somaxconn is still available but hidden
214  * to prevent confusion about the actual purpose of this number.
215  */
216 static u_int somaxconn = SOMAXCONN;
217 
218 static int
219 sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
220 {
221 	int error;
222 	int val;
223 
224 	val = somaxconn;
225 	error = sysctl_handle_int(oidp, &val, 0, req);
226 	if (error || !req->newptr )
227 		return (error);
228 
229 	/*
230 	 * The purpose of the UINT_MAX / 3 limit, is so that the formula
231 	 *   3 * so_qlimit / 2
232 	 * below, will not overflow.
233          */
234 
235 	if (val < 1 || val > UINT_MAX / 3)
236 		return (EINVAL);
237 
238 	somaxconn = val;
239 	return (0);
240 }
241 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue,
242     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, sizeof(int),
243     sysctl_somaxconn, "I",
244     "Maximum listen socket pending connection accept queue size");
245 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn,
246     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE, 0,
247     sizeof(int), sysctl_somaxconn, "I",
248     "Maximum listen socket pending connection accept queue size (compat)");
249 
250 static int numopensockets;
251 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,
252     &numopensockets, 0, "Number of open sockets");
253 
254 /*
255  * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
256  * so_gencnt field.
257  */
258 static struct mtx so_global_mtx;
259 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
260 
261 /*
262  * General IPC sysctl name space, used by sockets and a variety of other IPC
263  * types.
264  */
265 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
266     "IPC");
267 
268 /*
269  * Initialize the socket subsystem and set up the socket
270  * memory allocator.
271  */
272 static uma_zone_t socket_zone;
273 int	maxsockets;
274 
275 static void
276 socket_zone_change(void *tag)
277 {
278 
279 	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
280 }
281 
282 static void
283 socket_hhook_register(int subtype)
284 {
285 
286 	if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype,
287 	    &V_socket_hhh[subtype],
288 	    HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
289 		printf("%s: WARNING: unable to register hook\n", __func__);
290 }
291 
292 static void
293 socket_hhook_deregister(int subtype)
294 {
295 
296 	if (hhook_head_deregister(V_socket_hhh[subtype]) != 0)
297 		printf("%s: WARNING: unable to deregister hook\n", __func__);
298 }
299 
300 static void
301 socket_init(void *tag)
302 {
303 
304 	socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL,
305 	    NULL, NULL, UMA_ALIGN_PTR, 0);
306 	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
307 	uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached");
308 	EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL,
309 	    EVENTHANDLER_PRI_FIRST);
310 }
311 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL);
312 
313 static void
314 socket_vnet_init(const void *unused __unused)
315 {
316 	int i;
317 
318 	/* We expect a contiguous range */
319 	for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
320 		socket_hhook_register(i);
321 }
322 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
323     socket_vnet_init, NULL);
324 
325 static void
326 socket_vnet_uninit(const void *unused __unused)
327 {
328 	int i;
329 
330 	for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
331 		socket_hhook_deregister(i);
332 }
333 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
334     socket_vnet_uninit, NULL);
335 
336 /*
337  * Initialise maxsockets.  This SYSINIT must be run after
338  * tunable_mbinit().
339  */
340 static void
341 init_maxsockets(void *ignored)
342 {
343 
344 	TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
345 	maxsockets = imax(maxsockets, maxfiles);
346 }
347 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
348 
349 /*
350  * Sysctl to get and set the maximum global sockets limit.  Notify protocols
351  * of the change so that they can update their dependent limits as required.
352  */
353 static int
354 sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
355 {
356 	int error, newmaxsockets;
357 
358 	newmaxsockets = maxsockets;
359 	error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
360 	if (error == 0 && req->newptr && newmaxsockets != maxsockets) {
361 		if (newmaxsockets > maxsockets &&
362 		    newmaxsockets <= maxfiles) {
363 			maxsockets = newmaxsockets;
364 			EVENTHANDLER_INVOKE(maxsockets_change);
365 		} else
366 			error = EINVAL;
367 	}
368 	return (error);
369 }
370 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets,
371     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, &maxsockets, 0,
372     sysctl_maxsockets, "IU",
373     "Maximum number of sockets available");
374 
375 /*
376  * Socket operation routines.  These routines are called by the routines in
377  * sys_socket.c or from a system process, and implement the semantics of
378  * socket operations by switching out to the protocol specific routines.
379  */
380 
381 /*
382  * Get a socket structure from our zone, and initialize it.  Note that it
383  * would probably be better to allocate socket and PCB at the same time, but
384  * I'm not convinced that all the protocols can be easily modified to do
385  * this.
386  *
387  * soalloc() returns a socket with a ref count of 0.
388  */
389 static struct socket *
390 soalloc(struct vnet *vnet)
391 {
392 	struct socket *so;
393 
394 	so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
395 	if (so == NULL)
396 		return (NULL);
397 #ifdef MAC
398 	if (mac_socket_init(so, M_NOWAIT) != 0) {
399 		uma_zfree(socket_zone, so);
400 		return (NULL);
401 	}
402 #endif
403 	if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) {
404 		uma_zfree(socket_zone, so);
405 		return (NULL);
406 	}
407 
408 	/*
409 	 * The socket locking protocol allows to lock 2 sockets at a time,
410 	 * however, the first one must be a listening socket.  WITNESS lacks
411 	 * a feature to change class of an existing lock, so we use DUPOK.
412 	 */
413 	mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK);
414 	mtx_init(&so->so_snd_mtx, "so_snd", NULL, MTX_DEF);
415 	mtx_init(&so->so_rcv_mtx, "so_rcv", NULL, MTX_DEF);
416 	so->so_rcv.sb_sel = &so->so_rdsel;
417 	so->so_snd.sb_sel = &so->so_wrsel;
418 	sx_init(&so->so_snd_sx, "so_snd_sx");
419 	sx_init(&so->so_rcv_sx, "so_rcv_sx");
420 	TAILQ_INIT(&so->so_snd.sb_aiojobq);
421 	TAILQ_INIT(&so->so_rcv.sb_aiojobq);
422 	TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so);
423 	TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so);
424 #ifdef VIMAGE
425 	VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p",
426 	    __func__, __LINE__, so));
427 	so->so_vnet = vnet;
428 #endif
429 	/* We shouldn't need the so_global_mtx */
430 	if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) {
431 		/* Do we need more comprehensive error returns? */
432 		uma_zfree(socket_zone, so);
433 		return (NULL);
434 	}
435 	mtx_lock(&so_global_mtx);
436 	so->so_gencnt = ++so_gencnt;
437 	++numopensockets;
438 #ifdef VIMAGE
439 	vnet->vnet_sockcnt++;
440 #endif
441 	mtx_unlock(&so_global_mtx);
442 
443 	return (so);
444 }
445 
446 /*
447  * Free the storage associated with a socket at the socket layer, tear down
448  * locks, labels, etc.  All protocol state is assumed already to have been
449  * torn down (and possibly never set up) by the caller.
450  */
451 void
452 sodealloc(struct socket *so)
453 {
454 
455 	KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
456 	KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
457 
458 	mtx_lock(&so_global_mtx);
459 	so->so_gencnt = ++so_gencnt;
460 	--numopensockets;	/* Could be below, but faster here. */
461 #ifdef VIMAGE
462 	VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p",
463 	    __func__, __LINE__, so));
464 	so->so_vnet->vnet_sockcnt--;
465 #endif
466 	mtx_unlock(&so_global_mtx);
467 #ifdef MAC
468 	mac_socket_destroy(so);
469 #endif
470 	hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE);
471 
472 	khelp_destroy_osd(&so->osd);
473 	if (SOLISTENING(so)) {
474 		if (so->sol_accept_filter != NULL)
475 			accept_filt_setopt(so, NULL);
476 	} else {
477 		if (so->so_rcv.sb_hiwat)
478 			(void)chgsbsize(so->so_cred->cr_uidinfo,
479 			    &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
480 		if (so->so_snd.sb_hiwat)
481 			(void)chgsbsize(so->so_cred->cr_uidinfo,
482 			    &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
483 		sx_destroy(&so->so_snd_sx);
484 		sx_destroy(&so->so_rcv_sx);
485 		mtx_destroy(&so->so_snd_mtx);
486 		mtx_destroy(&so->so_rcv_mtx);
487 	}
488 	crfree(so->so_cred);
489 	mtx_destroy(&so->so_lock);
490 	uma_zfree(socket_zone, so);
491 }
492 
493 /*
494  * socreate returns a socket with a ref count of 1 and a file descriptor
495  * reference.  The socket should be closed with soclose().
496  */
497 int
498 socreate(int dom, struct socket **aso, int type, int proto,
499     struct ucred *cred, struct thread *td)
500 {
501 	struct protosw *prp;
502 	struct socket *so;
503 	int error;
504 
505 	/*
506 	 * XXX: divert(4) historically abused PF_INET.  Keep this compatibility
507 	 * shim until all applications have been updated.
508 	 */
509 	if (__predict_false(dom == PF_INET && type == SOCK_RAW &&
510 	    proto == IPPROTO_DIVERT)) {
511 		dom = PF_DIVERT;
512 		printf("%s uses obsolete way to create divert(4) socket\n",
513 		    td->td_proc->p_comm);
514 	}
515 
516 	prp = pffindproto(dom, type, proto);
517 	if (prp == NULL) {
518 		/* No support for domain. */
519 		if (pffinddomain(dom) == NULL)
520 			return (EAFNOSUPPORT);
521 		/* No support for socket type. */
522 		if (proto == 0 && type != 0)
523 			return (EPROTOTYPE);
524 		return (EPROTONOSUPPORT);
525 	}
526 
527 	MPASS(prp->pr_attach);
528 
529 	if (IN_CAPABILITY_MODE(td) && (prp->pr_flags & PR_CAPATTACH) == 0)
530 		return (ECAPMODE);
531 
532 	if (prison_check_af(cred, prp->pr_domain->dom_family) != 0)
533 		return (EPROTONOSUPPORT);
534 
535 	so = soalloc(CRED_TO_VNET(cred));
536 	if (so == NULL)
537 		return (ENOBUFS);
538 
539 	so->so_type = type;
540 	so->so_cred = crhold(cred);
541 	if ((prp->pr_domain->dom_family == PF_INET) ||
542 	    (prp->pr_domain->dom_family == PF_INET6) ||
543 	    (prp->pr_domain->dom_family == PF_ROUTE))
544 		so->so_fibnum = td->td_proc->p_fibnum;
545 	else
546 		so->so_fibnum = 0;
547 	so->so_proto = prp;
548 #ifdef MAC
549 	mac_socket_create(cred, so);
550 #endif
551 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
552 	    so_rdknl_assert_lock);
553 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
554 	    so_wrknl_assert_lock);
555 	if ((prp->pr_flags & PR_SOCKBUF) == 0) {
556 		so->so_snd.sb_mtx = &so->so_snd_mtx;
557 		so->so_rcv.sb_mtx = &so->so_rcv_mtx;
558 	}
559 	/*
560 	 * Auto-sizing of socket buffers is managed by the protocols and
561 	 * the appropriate flags must be set in the pru_attach function.
562 	 */
563 	CURVNET_SET(so->so_vnet);
564 	error = prp->pr_attach(so, proto, td);
565 	CURVNET_RESTORE();
566 	if (error) {
567 		sodealloc(so);
568 		return (error);
569 	}
570 	soref(so);
571 	*aso = so;
572 	return (0);
573 }
574 
575 #ifdef REGRESSION
576 static int regression_sonewconn_earlytest = 1;
577 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
578     &regression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
579 #endif
580 
581 static struct timeval overinterval = { 60, 0 };
582 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW,
583     &overinterval,
584     "Delay in seconds between warnings for listen socket overflows");
585 
586 /*
587  * When an attempt at a new connection is noted on a socket which supports
588  * accept(2), the protocol has two options:
589  * 1) Call legacy sonewconn() function, which would call protocol attach
590  *    method, same as used for socket(2).
591  * 2) Call solisten_clone(), do attach that is specific to a cloned connection,
592  *    and then call solisten_enqueue().
593  *
594  * Note: the ref count on the socket is 0 on return.
595  */
596 struct socket *
597 solisten_clone(struct socket *head)
598 {
599 	struct sbuf descrsb;
600 	struct socket *so;
601 	int len, overcount;
602 	u_int qlen;
603 	const char localprefix[] = "local:";
604 	char descrbuf[SUNPATHLEN + sizeof(localprefix)];
605 #if defined(INET6)
606 	char addrbuf[INET6_ADDRSTRLEN];
607 #elif defined(INET)
608 	char addrbuf[INET_ADDRSTRLEN];
609 #endif
610 	bool dolog, over;
611 
612 	SOLISTEN_LOCK(head);
613 	over = (head->sol_qlen > 3 * head->sol_qlimit / 2);
614 #ifdef REGRESSION
615 	if (regression_sonewconn_earlytest && over) {
616 #else
617 	if (over) {
618 #endif
619 		head->sol_overcount++;
620 		dolog = !!ratecheck(&head->sol_lastover, &overinterval);
621 
622 		/*
623 		 * If we're going to log, copy the overflow count and queue
624 		 * length from the listen socket before dropping the lock.
625 		 * Also, reset the overflow count.
626 		 */
627 		if (dolog) {
628 			overcount = head->sol_overcount;
629 			head->sol_overcount = 0;
630 			qlen = head->sol_qlen;
631 		}
632 		SOLISTEN_UNLOCK(head);
633 
634 		if (dolog) {
635 			/*
636 			 * Try to print something descriptive about the
637 			 * socket for the error message.
638 			 */
639 			sbuf_new(&descrsb, descrbuf, sizeof(descrbuf),
640 			    SBUF_FIXEDLEN);
641 			switch (head->so_proto->pr_domain->dom_family) {
642 #if defined(INET) || defined(INET6)
643 #ifdef INET
644 			case AF_INET:
645 #endif
646 #ifdef INET6
647 			case AF_INET6:
648 				if (head->so_proto->pr_domain->dom_family ==
649 				    AF_INET6 ||
650 				    (sotoinpcb(head)->inp_inc.inc_flags &
651 				    INC_ISIPV6)) {
652 					ip6_sprintf(addrbuf,
653 					    &sotoinpcb(head)->inp_inc.inc6_laddr);
654 					sbuf_printf(&descrsb, "[%s]", addrbuf);
655 				} else
656 #endif
657 				{
658 #ifdef INET
659 					inet_ntoa_r(
660 					    sotoinpcb(head)->inp_inc.inc_laddr,
661 					    addrbuf);
662 					sbuf_cat(&descrsb, addrbuf);
663 #endif
664 				}
665 				sbuf_printf(&descrsb, ":%hu (proto %u)",
666 				    ntohs(sotoinpcb(head)->inp_inc.inc_lport),
667 				    head->so_proto->pr_protocol);
668 				break;
669 #endif /* INET || INET6 */
670 			case AF_UNIX:
671 				sbuf_cat(&descrsb, localprefix);
672 				if (sotounpcb(head)->unp_addr != NULL)
673 					len =
674 					    sotounpcb(head)->unp_addr->sun_len -
675 					    offsetof(struct sockaddr_un,
676 					    sun_path);
677 				else
678 					len = 0;
679 				if (len > 0)
680 					sbuf_bcat(&descrsb,
681 					    sotounpcb(head)->unp_addr->sun_path,
682 					    len);
683 				else
684 					sbuf_cat(&descrsb, "(unknown)");
685 				break;
686 			}
687 
688 			/*
689 			 * If we can't print something more specific, at least
690 			 * print the domain name.
691 			 */
692 			if (sbuf_finish(&descrsb) != 0 ||
693 			    sbuf_len(&descrsb) <= 0) {
694 				sbuf_clear(&descrsb);
695 				sbuf_cat(&descrsb,
696 				    head->so_proto->pr_domain->dom_name ?:
697 				    "unknown");
698 				sbuf_finish(&descrsb);
699 			}
700 			KASSERT(sbuf_len(&descrsb) > 0,
701 			    ("%s: sbuf creation failed", __func__));
702 			/*
703 			 * Preserve the historic listen queue overflow log
704 			 * message, that starts with "sonewconn:".  It has
705 			 * been known to sysadmins for years and also test
706 			 * sys/kern/sonewconn_overflow checks for it.
707 			 */
708 			if (head->so_cred == 0) {
709 				log(LOG_DEBUG, "sonewconn: pcb %p (%s): "
710 				    "Listen queue overflow: %i already in "
711 				    "queue awaiting acceptance (%d "
712 				    "occurrences)\n", head->so_pcb,
713 				    sbuf_data(&descrsb),
714 			    	qlen, overcount);
715 			} else {
716 				log(LOG_DEBUG, "sonewconn: pcb %p (%s): "
717 				    "Listen queue overflow: "
718 				    "%i already in queue awaiting acceptance "
719 				    "(%d occurrences), euid %d, rgid %d, jail %s\n",
720 				    head->so_pcb, sbuf_data(&descrsb), qlen,
721 				    overcount, head->so_cred->cr_uid,
722 				    head->so_cred->cr_rgid,
723 				    head->so_cred->cr_prison ?
724 					head->so_cred->cr_prison->pr_name :
725 					"not_jailed");
726 			}
727 			sbuf_delete(&descrsb);
728 
729 			overcount = 0;
730 		}
731 
732 		return (NULL);
733 	}
734 	SOLISTEN_UNLOCK(head);
735 	VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL",
736 	    __func__, head));
737 	so = soalloc(head->so_vnet);
738 	if (so == NULL) {
739 		log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
740 		    "limit reached or out of memory\n",
741 		    __func__, head->so_pcb);
742 		return (NULL);
743 	}
744 	so->so_listen = head;
745 	so->so_type = head->so_type;
746 	so->so_options = head->so_options & ~SO_ACCEPTCONN;
747 	so->so_linger = head->so_linger;
748 	so->so_state = head->so_state;
749 	so->so_fibnum = head->so_fibnum;
750 	so->so_proto = head->so_proto;
751 	so->so_cred = crhold(head->so_cred);
752 #ifdef MAC
753 	mac_socket_newconn(head, so);
754 #endif
755 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
756 	    so_rdknl_assert_lock);
757 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
758 	    so_wrknl_assert_lock);
759 	VNET_SO_ASSERT(head);
760 	if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) {
761 		sodealloc(so);
762 		log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
763 		    __func__, head->so_pcb);
764 		return (NULL);
765 	}
766 	so->so_rcv.sb_lowat = head->sol_sbrcv_lowat;
767 	so->so_snd.sb_lowat = head->sol_sbsnd_lowat;
768 	so->so_rcv.sb_timeo = head->sol_sbrcv_timeo;
769 	so->so_snd.sb_timeo = head->sol_sbsnd_timeo;
770 	so->so_rcv.sb_flags = head->sol_sbrcv_flags & SB_AUTOSIZE;
771 	so->so_snd.sb_flags = head->sol_sbsnd_flags & SB_AUTOSIZE;
772 	if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) {
773 		so->so_snd.sb_mtx = &so->so_snd_mtx;
774 		so->so_rcv.sb_mtx = &so->so_rcv_mtx;
775 	}
776 
777 	return (so);
778 }
779 
780 /* Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED. */
781 struct socket *
782 sonewconn(struct socket *head, int connstatus)
783 {
784 	struct socket *so;
785 
786 	if ((so = solisten_clone(head)) == NULL)
787 		return (NULL);
788 
789 	if (so->so_proto->pr_attach(so, 0, NULL) != 0) {
790 		sodealloc(so);
791 		log(LOG_DEBUG, "%s: pcb %p: pr_attach() failed\n",
792 		    __func__, head->so_pcb);
793 		return (NULL);
794 	}
795 
796 	(void)solisten_enqueue(so, connstatus);
797 
798 	return (so);
799 }
800 
801 /*
802  * Enqueue socket cloned by solisten_clone() to the listen queue of the
803  * listener it has been cloned from.
804  *
805  * Return 'true' if socket landed on complete queue, otherwise 'false'.
806  */
807 bool
808 solisten_enqueue(struct socket *so, int connstatus)
809 {
810 	struct socket *head = so->so_listen;
811 
812 	MPASS(refcount_load(&so->so_count) == 0);
813 	refcount_init(&so->so_count, 1);
814 
815 	SOLISTEN_LOCK(head);
816 	if (head->sol_accept_filter != NULL)
817 		connstatus = 0;
818 	so->so_state |= connstatus;
819 	soref(head); /* A socket on (in)complete queue refs head. */
820 	if (connstatus) {
821 		TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
822 		so->so_qstate = SQ_COMP;
823 		head->sol_qlen++;
824 		solisten_wakeup(head);	/* unlocks */
825 		return (true);
826 	} else {
827 		/*
828 		 * Keep removing sockets from the head until there's room for
829 		 * us to insert on the tail.  In pre-locking revisions, this
830 		 * was a simple if(), but as we could be racing with other
831 		 * threads and soabort() requires dropping locks, we must
832 		 * loop waiting for the condition to be true.
833 		 */
834 		while (head->sol_incqlen > head->sol_qlimit) {
835 			struct socket *sp;
836 
837 			sp = TAILQ_FIRST(&head->sol_incomp);
838 			TAILQ_REMOVE(&head->sol_incomp, sp, so_list);
839 			head->sol_incqlen--;
840 			SOCK_LOCK(sp);
841 			sp->so_qstate = SQ_NONE;
842 			sp->so_listen = NULL;
843 			SOCK_UNLOCK(sp);
844 			sorele_locked(head);	/* does SOLISTEN_UNLOCK, head stays */
845 			soabort(sp);
846 			SOLISTEN_LOCK(head);
847 		}
848 		TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list);
849 		so->so_qstate = SQ_INCOMP;
850 		head->sol_incqlen++;
851 		SOLISTEN_UNLOCK(head);
852 		return (false);
853 	}
854 }
855 
856 #if defined(SCTP) || defined(SCTP_SUPPORT)
857 /*
858  * Socket part of sctp_peeloff().  Detach a new socket from an
859  * association.  The new socket is returned with a reference.
860  *
861  * XXXGL: reduce copy-paste with solisten_clone().
862  */
863 struct socket *
864 sopeeloff(struct socket *head)
865 {
866 	struct socket *so;
867 
868 	VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p",
869 	    __func__, __LINE__, head));
870 	so = soalloc(head->so_vnet);
871 	if (so == NULL) {
872 		log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
873 		    "limit reached or out of memory\n",
874 		    __func__, head->so_pcb);
875 		return (NULL);
876 	}
877 	so->so_type = head->so_type;
878 	so->so_options = head->so_options;
879 	so->so_linger = head->so_linger;
880 	so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED;
881 	so->so_fibnum = head->so_fibnum;
882 	so->so_proto = head->so_proto;
883 	so->so_cred = crhold(head->so_cred);
884 #ifdef MAC
885 	mac_socket_newconn(head, so);
886 #endif
887 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
888 	    so_rdknl_assert_lock);
889 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
890 	    so_wrknl_assert_lock);
891 	VNET_SO_ASSERT(head);
892 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
893 		sodealloc(so);
894 		log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
895 		    __func__, head->so_pcb);
896 		return (NULL);
897 	}
898 	if ((*so->so_proto->pr_attach)(so, 0, NULL)) {
899 		sodealloc(so);
900 		log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n",
901 		    __func__, head->so_pcb);
902 		return (NULL);
903 	}
904 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
905 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
906 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
907 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
908 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
909 	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
910 
911 	soref(so);
912 
913 	return (so);
914 }
915 #endif	/* SCTP */
916 
917 int
918 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
919 {
920 	int error;
921 
922 	CURVNET_SET(so->so_vnet);
923 	error = so->so_proto->pr_bind(so, nam, td);
924 	CURVNET_RESTORE();
925 	return (error);
926 }
927 
928 int
929 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
930 {
931 	int error;
932 
933 	CURVNET_SET(so->so_vnet);
934 	error = so->so_proto->pr_bindat(fd, so, nam, td);
935 	CURVNET_RESTORE();
936 	return (error);
937 }
938 
939 /*
940  * solisten() transitions a socket from a non-listening state to a listening
941  * state, but can also be used to update the listen queue depth on an
942  * existing listen socket.  The protocol will call back into the sockets
943  * layer using solisten_proto_check() and solisten_proto() to check and set
944  * socket-layer listen state.  Call backs are used so that the protocol can
945  * acquire both protocol and socket layer locks in whatever order is required
946  * by the protocol.
947  *
948  * Protocol implementors are advised to hold the socket lock across the
949  * socket-layer test and set to avoid races at the socket layer.
950  */
951 int
952 solisten(struct socket *so, int backlog, struct thread *td)
953 {
954 	int error;
955 
956 	CURVNET_SET(so->so_vnet);
957 	error = so->so_proto->pr_listen(so, backlog, td);
958 	CURVNET_RESTORE();
959 	return (error);
960 }
961 
962 /*
963  * Prepare for a call to solisten_proto().  Acquire all socket buffer locks in
964  * order to interlock with socket I/O.
965  */
966 int
967 solisten_proto_check(struct socket *so)
968 {
969 	SOCK_LOCK_ASSERT(so);
970 
971 	if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
972 	    SS_ISDISCONNECTING)) != 0)
973 		return (EINVAL);
974 
975 	/*
976 	 * Sleeping is not permitted here, so simply fail if userspace is
977 	 * attempting to transmit or receive on the socket.  This kind of
978 	 * transient failure is not ideal, but it should occur only if userspace
979 	 * is misusing the socket interfaces.
980 	 */
981 	if (!sx_try_xlock(&so->so_snd_sx))
982 		return (EAGAIN);
983 	if (!sx_try_xlock(&so->so_rcv_sx)) {
984 		sx_xunlock(&so->so_snd_sx);
985 		return (EAGAIN);
986 	}
987 	mtx_lock(&so->so_snd_mtx);
988 	mtx_lock(&so->so_rcv_mtx);
989 
990 	/* Interlock with soo_aio_queue(). */
991 	if (!SOLISTENING(so) &&
992 	   ((so->so_snd.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0 ||
993 	   (so->so_rcv.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0)) {
994 		solisten_proto_abort(so);
995 		return (EINVAL);
996 	}
997 	return (0);
998 }
999 
1000 /*
1001  * Undo the setup done by solisten_proto_check().
1002  */
1003 void
1004 solisten_proto_abort(struct socket *so)
1005 {
1006 	mtx_unlock(&so->so_snd_mtx);
1007 	mtx_unlock(&so->so_rcv_mtx);
1008 	sx_xunlock(&so->so_snd_sx);
1009 	sx_xunlock(&so->so_rcv_sx);
1010 }
1011 
1012 void
1013 solisten_proto(struct socket *so, int backlog)
1014 {
1015 	int sbrcv_lowat, sbsnd_lowat;
1016 	u_int sbrcv_hiwat, sbsnd_hiwat;
1017 	short sbrcv_flags, sbsnd_flags;
1018 	sbintime_t sbrcv_timeo, sbsnd_timeo;
1019 
1020 	SOCK_LOCK_ASSERT(so);
1021 	KASSERT((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
1022 	    SS_ISDISCONNECTING)) == 0,
1023 	    ("%s: bad socket state %p", __func__, so));
1024 
1025 	if (SOLISTENING(so))
1026 		goto listening;
1027 
1028 	/*
1029 	 * Change this socket to listening state.
1030 	 */
1031 	sbrcv_lowat = so->so_rcv.sb_lowat;
1032 	sbsnd_lowat = so->so_snd.sb_lowat;
1033 	sbrcv_hiwat = so->so_rcv.sb_hiwat;
1034 	sbsnd_hiwat = so->so_snd.sb_hiwat;
1035 	sbrcv_flags = so->so_rcv.sb_flags;
1036 	sbsnd_flags = so->so_snd.sb_flags;
1037 	sbrcv_timeo = so->so_rcv.sb_timeo;
1038 	sbsnd_timeo = so->so_snd.sb_timeo;
1039 
1040 	sbdestroy(so, SO_SND);
1041 	sbdestroy(so, SO_RCV);
1042 
1043 #ifdef INVARIANTS
1044 	bzero(&so->so_rcv,
1045 	    sizeof(struct socket) - offsetof(struct socket, so_rcv));
1046 #endif
1047 
1048 	so->sol_sbrcv_lowat = sbrcv_lowat;
1049 	so->sol_sbsnd_lowat = sbsnd_lowat;
1050 	so->sol_sbrcv_hiwat = sbrcv_hiwat;
1051 	so->sol_sbsnd_hiwat = sbsnd_hiwat;
1052 	so->sol_sbrcv_flags = sbrcv_flags;
1053 	so->sol_sbsnd_flags = sbsnd_flags;
1054 	so->sol_sbrcv_timeo = sbrcv_timeo;
1055 	so->sol_sbsnd_timeo = sbsnd_timeo;
1056 
1057 	so->sol_qlen = so->sol_incqlen = 0;
1058 	TAILQ_INIT(&so->sol_incomp);
1059 	TAILQ_INIT(&so->sol_comp);
1060 
1061 	so->sol_accept_filter = NULL;
1062 	so->sol_accept_filter_arg = NULL;
1063 	so->sol_accept_filter_str = NULL;
1064 
1065 	so->sol_upcall = NULL;
1066 	so->sol_upcallarg = NULL;
1067 
1068 	so->so_options |= SO_ACCEPTCONN;
1069 
1070 listening:
1071 	if (backlog < 0 || backlog > somaxconn)
1072 		backlog = somaxconn;
1073 	so->sol_qlimit = backlog;
1074 
1075 	mtx_unlock(&so->so_snd_mtx);
1076 	mtx_unlock(&so->so_rcv_mtx);
1077 	sx_xunlock(&so->so_snd_sx);
1078 	sx_xunlock(&so->so_rcv_sx);
1079 }
1080 
1081 /*
1082  * Wakeup listeners/subsystems once we have a complete connection.
1083  * Enters with lock, returns unlocked.
1084  */
1085 void
1086 solisten_wakeup(struct socket *sol)
1087 {
1088 
1089 	if (sol->sol_upcall != NULL)
1090 		(void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT);
1091 	else {
1092 		selwakeuppri(&sol->so_rdsel, PSOCK);
1093 		KNOTE_LOCKED(&sol->so_rdsel.si_note, 0);
1094 	}
1095 	SOLISTEN_UNLOCK(sol);
1096 	wakeup_one(&sol->sol_comp);
1097 	if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL)
1098 		pgsigio(&sol->so_sigio, SIGIO, 0);
1099 }
1100 
1101 /*
1102  * Return single connection off a listening socket queue.  Main consumer of
1103  * the function is kern_accept4().  Some modules, that do their own accept
1104  * management also use the function.  The socket reference held by the
1105  * listen queue is handed to the caller.
1106  *
1107  * Listening socket must be locked on entry and is returned unlocked on
1108  * return.
1109  * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT.
1110  */
1111 int
1112 solisten_dequeue(struct socket *head, struct socket **ret, int flags)
1113 {
1114 	struct socket *so;
1115 	int error;
1116 
1117 	SOLISTEN_LOCK_ASSERT(head);
1118 
1119 	while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) &&
1120 	    head->so_error == 0) {
1121 		error = msleep(&head->sol_comp, SOCK_MTX(head), PSOCK | PCATCH,
1122 		    "accept", 0);
1123 		if (error != 0) {
1124 			SOLISTEN_UNLOCK(head);
1125 			return (error);
1126 		}
1127 	}
1128 	if (head->so_error) {
1129 		error = head->so_error;
1130 		head->so_error = 0;
1131 	} else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp))
1132 		error = EWOULDBLOCK;
1133 	else
1134 		error = 0;
1135 	if (error) {
1136 		SOLISTEN_UNLOCK(head);
1137 		return (error);
1138 	}
1139 	so = TAILQ_FIRST(&head->sol_comp);
1140 	SOCK_LOCK(so);
1141 	KASSERT(so->so_qstate == SQ_COMP,
1142 	    ("%s: so %p not SQ_COMP", __func__, so));
1143 	head->sol_qlen--;
1144 	so->so_qstate = SQ_NONE;
1145 	so->so_listen = NULL;
1146 	TAILQ_REMOVE(&head->sol_comp, so, so_list);
1147 	if (flags & ACCEPT4_INHERIT)
1148 		so->so_state |= (head->so_state & SS_NBIO);
1149 	else
1150 		so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0;
1151 	SOCK_UNLOCK(so);
1152 	sorele_locked(head);
1153 
1154 	*ret = so;
1155 	return (0);
1156 }
1157 
1158 /*
1159  * Free socket upon release of the very last reference.
1160  */
1161 static void
1162 sofree(struct socket *so)
1163 {
1164 	struct protosw *pr = so->so_proto;
1165 
1166 	SOCK_LOCK_ASSERT(so);
1167 	KASSERT(refcount_load(&so->so_count) == 0,
1168 	    ("%s: so %p has references", __func__, so));
1169 	KASSERT(SOLISTENING(so) || so->so_qstate == SQ_NONE,
1170 	    ("%s: so %p is on listen queue", __func__, so));
1171 
1172 	SOCK_UNLOCK(so);
1173 
1174 	if (so->so_dtor != NULL)
1175 		so->so_dtor(so);
1176 
1177 	VNET_SO_ASSERT(so);
1178 	if ((pr->pr_flags & PR_RIGHTS) && !SOLISTENING(so)) {
1179 		MPASS(pr->pr_domain->dom_dispose != NULL);
1180 		(*pr->pr_domain->dom_dispose)(so);
1181 	}
1182 	if (pr->pr_detach != NULL)
1183 		pr->pr_detach(so);
1184 
1185 	/*
1186 	 * From this point on, we assume that no other references to this
1187 	 * socket exist anywhere else in the stack.  Therefore, no locks need
1188 	 * to be acquired or held.
1189 	 */
1190 	if (!(pr->pr_flags & PR_SOCKBUF) && !SOLISTENING(so)) {
1191 		sbdestroy(so, SO_SND);
1192 		sbdestroy(so, SO_RCV);
1193 	}
1194 	seldrain(&so->so_rdsel);
1195 	seldrain(&so->so_wrsel);
1196 	knlist_destroy(&so->so_rdsel.si_note);
1197 	knlist_destroy(&so->so_wrsel.si_note);
1198 	sodealloc(so);
1199 }
1200 
1201 /*
1202  * Release a reference on a socket while holding the socket lock.
1203  * Unlocks the socket lock before returning.
1204  */
1205 void
1206 sorele_locked(struct socket *so)
1207 {
1208 	SOCK_LOCK_ASSERT(so);
1209 	if (refcount_release(&so->so_count))
1210 		sofree(so);
1211 	else
1212 		SOCK_UNLOCK(so);
1213 }
1214 
1215 /*
1216  * Close a socket on last file table reference removal.  Initiate disconnect
1217  * if connected.  Free socket when disconnect complete.
1218  *
1219  * This function will sorele() the socket.  Note that soclose() may be called
1220  * prior to the ref count reaching zero.  The actual socket structure will
1221  * not be freed until the ref count reaches zero.
1222  */
1223 int
1224 soclose(struct socket *so)
1225 {
1226 	struct accept_queue lqueue;
1227 	int error = 0;
1228 	bool listening, last __diagused;
1229 
1230 	CURVNET_SET(so->so_vnet);
1231 	funsetown(&so->so_sigio);
1232 	if (so->so_state & SS_ISCONNECTED) {
1233 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
1234 			error = sodisconnect(so);
1235 			if (error) {
1236 				if (error == ENOTCONN)
1237 					error = 0;
1238 				goto drop;
1239 			}
1240 		}
1241 
1242 		if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) {
1243 			if ((so->so_state & SS_ISDISCONNECTING) &&
1244 			    (so->so_state & SS_NBIO))
1245 				goto drop;
1246 			while (so->so_state & SS_ISCONNECTED) {
1247 				error = tsleep(&so->so_timeo,
1248 				    PSOCK | PCATCH, "soclos",
1249 				    so->so_linger * hz);
1250 				if (error)
1251 					break;
1252 			}
1253 		}
1254 	}
1255 
1256 drop:
1257 	if (so->so_proto->pr_close != NULL)
1258 		so->so_proto->pr_close(so);
1259 
1260 	SOCK_LOCK(so);
1261 	if ((listening = SOLISTENING(so))) {
1262 		struct socket *sp;
1263 
1264 		TAILQ_INIT(&lqueue);
1265 		TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list);
1266 		TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list);
1267 
1268 		so->sol_qlen = so->sol_incqlen = 0;
1269 
1270 		TAILQ_FOREACH(sp, &lqueue, so_list) {
1271 			SOCK_LOCK(sp);
1272 			sp->so_qstate = SQ_NONE;
1273 			sp->so_listen = NULL;
1274 			SOCK_UNLOCK(sp);
1275 			last = refcount_release(&so->so_count);
1276 			KASSERT(!last, ("%s: released last reference for %p",
1277 			    __func__, so));
1278 		}
1279 	}
1280 	sorele_locked(so);
1281 	if (listening) {
1282 		struct socket *sp, *tsp;
1283 
1284 		TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp)
1285 			soabort(sp);
1286 	}
1287 	CURVNET_RESTORE();
1288 	return (error);
1289 }
1290 
1291 /*
1292  * soabort() is used to abruptly tear down a connection, such as when a
1293  * resource limit is reached (listen queue depth exceeded), or if a listen
1294  * socket is closed while there are sockets waiting to be accepted.
1295  *
1296  * This interface is tricky, because it is called on an unreferenced socket,
1297  * and must be called only by a thread that has actually removed the socket
1298  * from the listen queue it was on.  Likely this thread holds the last
1299  * reference on the socket and soabort() will proceed with sofree().  But
1300  * it might be not the last, as the sockets on the listen queues are seen
1301  * from the protocol side.
1302  *
1303  * This interface will call into the protocol code, so must not be called
1304  * with any socket locks held.  Protocols do call it while holding their own
1305  * recursible protocol mutexes, but this is something that should be subject
1306  * to review in the future.
1307  *
1308  * Usually socket should have a single reference left, but this is not a
1309  * requirement.  In the past, when we have had named references for file
1310  * descriptor and protocol, we asserted that none of them are being held.
1311  */
1312 void
1313 soabort(struct socket *so)
1314 {
1315 
1316 	VNET_SO_ASSERT(so);
1317 
1318 	if (so->so_proto->pr_abort != NULL)
1319 		so->so_proto->pr_abort(so);
1320 	SOCK_LOCK(so);
1321 	sorele_locked(so);
1322 }
1323 
1324 int
1325 soaccept(struct socket *so, struct sockaddr **nam)
1326 {
1327 	int error;
1328 
1329 	CURVNET_SET(so->so_vnet);
1330 	error = so->so_proto->pr_accept(so, nam);
1331 	CURVNET_RESTORE();
1332 	return (error);
1333 }
1334 
1335 int
1336 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
1337 {
1338 
1339 	return (soconnectat(AT_FDCWD, so, nam, td));
1340 }
1341 
1342 int
1343 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
1344 {
1345 	int error;
1346 
1347 	CURVNET_SET(so->so_vnet);
1348 	/*
1349 	 * If protocol is connection-based, can only connect once.
1350 	 * Otherwise, if connected, try to disconnect first.  This allows
1351 	 * user to disconnect by connecting to, e.g., a null address.
1352 	 */
1353 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
1354 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
1355 	    (error = sodisconnect(so)))) {
1356 		error = EISCONN;
1357 	} else {
1358 		/*
1359 		 * Prevent accumulated error from previous connection from
1360 		 * biting us.
1361 		 */
1362 		so->so_error = 0;
1363 		if (fd == AT_FDCWD) {
1364 			error = so->so_proto->pr_connect(so, nam, td);
1365 		} else {
1366 			error = so->so_proto->pr_connectat(fd, so, nam, td);
1367 		}
1368 	}
1369 	CURVNET_RESTORE();
1370 
1371 	return (error);
1372 }
1373 
1374 int
1375 soconnect2(struct socket *so1, struct socket *so2)
1376 {
1377 	int error;
1378 
1379 	CURVNET_SET(so1->so_vnet);
1380 	error = so1->so_proto->pr_connect2(so1, so2);
1381 	CURVNET_RESTORE();
1382 	return (error);
1383 }
1384 
1385 int
1386 sodisconnect(struct socket *so)
1387 {
1388 	int error;
1389 
1390 	if ((so->so_state & SS_ISCONNECTED) == 0)
1391 		return (ENOTCONN);
1392 	if (so->so_state & SS_ISDISCONNECTING)
1393 		return (EALREADY);
1394 	VNET_SO_ASSERT(so);
1395 	error = so->so_proto->pr_disconnect(so);
1396 	return (error);
1397 }
1398 
1399 int
1400 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
1401     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1402 {
1403 	long space;
1404 	ssize_t resid;
1405 	int clen = 0, error, dontroute;
1406 
1407 	KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM"));
1408 	KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
1409 	    ("sosend_dgram: !PR_ATOMIC"));
1410 
1411 	if (uio != NULL)
1412 		resid = uio->uio_resid;
1413 	else
1414 		resid = top->m_pkthdr.len;
1415 	/*
1416 	 * In theory resid should be unsigned.  However, space must be
1417 	 * signed, as it might be less than 0 if we over-committed, and we
1418 	 * must use a signed comparison of space and resid.  On the other
1419 	 * hand, a negative resid causes us to loop sending 0-length
1420 	 * segments to the protocol.
1421 	 */
1422 	if (resid < 0) {
1423 		error = EINVAL;
1424 		goto out;
1425 	}
1426 
1427 	dontroute =
1428 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
1429 	if (td != NULL)
1430 		td->td_ru.ru_msgsnd++;
1431 	if (control != NULL)
1432 		clen = control->m_len;
1433 
1434 	SOCKBUF_LOCK(&so->so_snd);
1435 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1436 		SOCKBUF_UNLOCK(&so->so_snd);
1437 		error = EPIPE;
1438 		goto out;
1439 	}
1440 	if (so->so_error) {
1441 		error = so->so_error;
1442 		so->so_error = 0;
1443 		SOCKBUF_UNLOCK(&so->so_snd);
1444 		goto out;
1445 	}
1446 	if ((so->so_state & SS_ISCONNECTED) == 0) {
1447 		/*
1448 		 * `sendto' and `sendmsg' is allowed on a connection-based
1449 		 * socket if it supports implied connect.  Return ENOTCONN if
1450 		 * not connected and no address is supplied.
1451 		 */
1452 		if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1453 		    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1454 			if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1455 			    !(resid == 0 && clen != 0)) {
1456 				SOCKBUF_UNLOCK(&so->so_snd);
1457 				error = ENOTCONN;
1458 				goto out;
1459 			}
1460 		} else if (addr == NULL) {
1461 			if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1462 				error = ENOTCONN;
1463 			else
1464 				error = EDESTADDRREQ;
1465 			SOCKBUF_UNLOCK(&so->so_snd);
1466 			goto out;
1467 		}
1468 	}
1469 
1470 	/*
1471 	 * Do we need MSG_OOB support in SOCK_DGRAM?  Signs here may be a
1472 	 * problem and need fixing.
1473 	 */
1474 	space = sbspace(&so->so_snd);
1475 	if (flags & MSG_OOB)
1476 		space += 1024;
1477 	space -= clen;
1478 	SOCKBUF_UNLOCK(&so->so_snd);
1479 	if (resid > space) {
1480 		error = EMSGSIZE;
1481 		goto out;
1482 	}
1483 	if (uio == NULL) {
1484 		resid = 0;
1485 		if (flags & MSG_EOR)
1486 			top->m_flags |= M_EOR;
1487 	} else {
1488 		/*
1489 		 * Copy the data from userland into a mbuf chain.
1490 		 * If no data is to be copied in, a single empty mbuf
1491 		 * is returned.
1492 		 */
1493 		top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
1494 		    (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
1495 		if (top == NULL) {
1496 			error = EFAULT;	/* only possible error */
1497 			goto out;
1498 		}
1499 		space -= resid - uio->uio_resid;
1500 		resid = uio->uio_resid;
1501 	}
1502 	KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
1503 	/*
1504 	 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
1505 	 * than with.
1506 	 */
1507 	if (dontroute) {
1508 		SOCK_LOCK(so);
1509 		so->so_options |= SO_DONTROUTE;
1510 		SOCK_UNLOCK(so);
1511 	}
1512 	/*
1513 	 * XXX all the SBS_CANTSENDMORE checks previously done could be out
1514 	 * of date.  We could have received a reset packet in an interrupt or
1515 	 * maybe we slept while doing page faults in uiomove() etc.  We could
1516 	 * probably recheck again inside the locking protection here, but
1517 	 * there are probably other places that this also happens.  We must
1518 	 * rethink this.
1519 	 */
1520 	VNET_SO_ASSERT(so);
1521 	error = so->so_proto->pr_send(so, (flags & MSG_OOB) ? PRUS_OOB :
1522 	/*
1523 	 * If the user set MSG_EOF, the protocol understands this flag and
1524 	 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
1525 	 */
1526 	    ((flags & MSG_EOF) &&
1527 	     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1528 	     (resid <= 0)) ?
1529 		PRUS_EOF :
1530 		/* If there is more to send set PRUS_MORETOCOME */
1531 		(flags & MSG_MORETOCOME) ||
1532 		(resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1533 		top, addr, control, td);
1534 	if (dontroute) {
1535 		SOCK_LOCK(so);
1536 		so->so_options &= ~SO_DONTROUTE;
1537 		SOCK_UNLOCK(so);
1538 	}
1539 	clen = 0;
1540 	control = NULL;
1541 	top = NULL;
1542 out:
1543 	if (top != NULL)
1544 		m_freem(top);
1545 	if (control != NULL)
1546 		m_freem(control);
1547 	return (error);
1548 }
1549 
1550 /*
1551  * Send on a socket.  If send must go all at once and message is larger than
1552  * send buffering, then hard error.  Lock against other senders.  If must go
1553  * all at once and not enough room now, then inform user that this would
1554  * block and do nothing.  Otherwise, if nonblocking, send as much as
1555  * possible.  The data to be sent is described by "uio" if nonzero, otherwise
1556  * by the mbuf chain "top" (which must be null if uio is not).  Data provided
1557  * in mbuf chain must be small enough to send all at once.
1558  *
1559  * Returns nonzero on error, timeout or signal; callers must check for short
1560  * counts if EINTR/ERESTART are returned.  Data and control buffers are freed
1561  * on return.
1562  */
1563 int
1564 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
1565     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1566 {
1567 	long space;
1568 	ssize_t resid;
1569 	int clen = 0, error, dontroute;
1570 	int atomic = sosendallatonce(so) || top;
1571 	int pr_send_flag;
1572 #ifdef KERN_TLS
1573 	struct ktls_session *tls;
1574 	int tls_enq_cnt, tls_send_flag;
1575 	uint8_t tls_rtype;
1576 
1577 	tls = NULL;
1578 	tls_rtype = TLS_RLTYPE_APP;
1579 #endif
1580 	if (uio != NULL)
1581 		resid = uio->uio_resid;
1582 	else if ((top->m_flags & M_PKTHDR) != 0)
1583 		resid = top->m_pkthdr.len;
1584 	else
1585 		resid = m_length(top, NULL);
1586 	/*
1587 	 * In theory resid should be unsigned.  However, space must be
1588 	 * signed, as it might be less than 0 if we over-committed, and we
1589 	 * must use a signed comparison of space and resid.  On the other
1590 	 * hand, a negative resid causes us to loop sending 0-length
1591 	 * segments to the protocol.
1592 	 *
1593 	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
1594 	 * type sockets since that's an error.
1595 	 */
1596 	if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
1597 		error = EINVAL;
1598 		goto out;
1599 	}
1600 
1601 	dontroute =
1602 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
1603 	    (so->so_proto->pr_flags & PR_ATOMIC);
1604 	if (td != NULL)
1605 		td->td_ru.ru_msgsnd++;
1606 	if (control != NULL)
1607 		clen = control->m_len;
1608 
1609 	error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags));
1610 	if (error)
1611 		goto out;
1612 
1613 #ifdef KERN_TLS
1614 	tls_send_flag = 0;
1615 	tls = ktls_hold(so->so_snd.sb_tls_info);
1616 	if (tls != NULL) {
1617 		if (tls->mode == TCP_TLS_MODE_SW)
1618 			tls_send_flag = PRUS_NOTREADY;
1619 
1620 		if (control != NULL) {
1621 			struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1622 
1623 			if (clen >= sizeof(*cm) &&
1624 			    cm->cmsg_type == TLS_SET_RECORD_TYPE) {
1625 				tls_rtype = *((uint8_t *)CMSG_DATA(cm));
1626 				clen = 0;
1627 				m_freem(control);
1628 				control = NULL;
1629 				atomic = 1;
1630 			}
1631 		}
1632 
1633 		if (resid == 0 && !ktls_permit_empty_frames(tls)) {
1634 			error = EINVAL;
1635 			goto release;
1636 		}
1637 	}
1638 #endif
1639 
1640 restart:
1641 	do {
1642 		SOCKBUF_LOCK(&so->so_snd);
1643 		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1644 			SOCKBUF_UNLOCK(&so->so_snd);
1645 			error = EPIPE;
1646 			goto release;
1647 		}
1648 		if (so->so_error) {
1649 			error = so->so_error;
1650 			so->so_error = 0;
1651 			SOCKBUF_UNLOCK(&so->so_snd);
1652 			goto release;
1653 		}
1654 		if ((so->so_state & SS_ISCONNECTED) == 0) {
1655 			/*
1656 			 * `sendto' and `sendmsg' is allowed on a connection-
1657 			 * based socket if it supports implied connect.
1658 			 * Return ENOTCONN if not connected and no address is
1659 			 * supplied.
1660 			 */
1661 			if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1662 			    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1663 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1664 				    !(resid == 0 && clen != 0)) {
1665 					SOCKBUF_UNLOCK(&so->so_snd);
1666 					error = ENOTCONN;
1667 					goto release;
1668 				}
1669 			} else if (addr == NULL) {
1670 				SOCKBUF_UNLOCK(&so->so_snd);
1671 				if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1672 					error = ENOTCONN;
1673 				else
1674 					error = EDESTADDRREQ;
1675 				goto release;
1676 			}
1677 		}
1678 		space = sbspace(&so->so_snd);
1679 		if (flags & MSG_OOB)
1680 			space += 1024;
1681 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
1682 		    clen > so->so_snd.sb_hiwat) {
1683 			SOCKBUF_UNLOCK(&so->so_snd);
1684 			error = EMSGSIZE;
1685 			goto release;
1686 		}
1687 		if (space < resid + clen &&
1688 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
1689 			if ((so->so_state & SS_NBIO) ||
1690 			    (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) {
1691 				SOCKBUF_UNLOCK(&so->so_snd);
1692 				error = EWOULDBLOCK;
1693 				goto release;
1694 			}
1695 			error = sbwait(so, SO_SND);
1696 			SOCKBUF_UNLOCK(&so->so_snd);
1697 			if (error)
1698 				goto release;
1699 			goto restart;
1700 		}
1701 		SOCKBUF_UNLOCK(&so->so_snd);
1702 		space -= clen;
1703 		do {
1704 			if (uio == NULL) {
1705 				resid = 0;
1706 				if (flags & MSG_EOR)
1707 					top->m_flags |= M_EOR;
1708 #ifdef KERN_TLS
1709 				if (tls != NULL) {
1710 					ktls_frame(top, tls, &tls_enq_cnt,
1711 					    tls_rtype);
1712 					tls_rtype = TLS_RLTYPE_APP;
1713 				}
1714 #endif
1715 			} else {
1716 				/*
1717 				 * Copy the data from userland into a mbuf
1718 				 * chain.  If resid is 0, which can happen
1719 				 * only if we have control to send, then
1720 				 * a single empty mbuf is returned.  This
1721 				 * is a workaround to prevent protocol send
1722 				 * methods to panic.
1723 				 */
1724 #ifdef KERN_TLS
1725 				if (tls != NULL) {
1726 					top = m_uiotombuf(uio, M_WAITOK, space,
1727 					    tls->params.max_frame_len,
1728 					    M_EXTPG |
1729 					    ((flags & MSG_EOR) ? M_EOR : 0));
1730 					if (top != NULL) {
1731 						ktls_frame(top, tls,
1732 						    &tls_enq_cnt, tls_rtype);
1733 					}
1734 					tls_rtype = TLS_RLTYPE_APP;
1735 				} else
1736 #endif
1737 					top = m_uiotombuf(uio, M_WAITOK, space,
1738 					    (atomic ? max_hdr : 0),
1739 					    (atomic ? M_PKTHDR : 0) |
1740 					    ((flags & MSG_EOR) ? M_EOR : 0));
1741 				if (top == NULL) {
1742 					error = EFAULT; /* only possible error */
1743 					goto release;
1744 				}
1745 				space -= resid - uio->uio_resid;
1746 				resid = uio->uio_resid;
1747 			}
1748 			if (dontroute) {
1749 				SOCK_LOCK(so);
1750 				so->so_options |= SO_DONTROUTE;
1751 				SOCK_UNLOCK(so);
1752 			}
1753 			/*
1754 			 * XXX all the SBS_CANTSENDMORE checks previously
1755 			 * done could be out of date.  We could have received
1756 			 * a reset packet in an interrupt or maybe we slept
1757 			 * while doing page faults in uiomove() etc.  We
1758 			 * could probably recheck again inside the locking
1759 			 * protection here, but there are probably other
1760 			 * places that this also happens.  We must rethink
1761 			 * this.
1762 			 */
1763 			VNET_SO_ASSERT(so);
1764 
1765 			pr_send_flag = (flags & MSG_OOB) ? PRUS_OOB :
1766 			/*
1767 			 * If the user set MSG_EOF, the protocol understands
1768 			 * this flag and nothing left to send then use
1769 			 * PRU_SEND_EOF instead of PRU_SEND.
1770 			 */
1771 			    ((flags & MSG_EOF) &&
1772 			     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1773 			     (resid <= 0)) ?
1774 				PRUS_EOF :
1775 			/* If there is more to send set PRUS_MORETOCOME. */
1776 			    (flags & MSG_MORETOCOME) ||
1777 			    (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0;
1778 
1779 #ifdef KERN_TLS
1780 			pr_send_flag |= tls_send_flag;
1781 #endif
1782 
1783 			error = so->so_proto->pr_send(so, pr_send_flag, top,
1784 			    addr, control, td);
1785 
1786 			if (dontroute) {
1787 				SOCK_LOCK(so);
1788 				so->so_options &= ~SO_DONTROUTE;
1789 				SOCK_UNLOCK(so);
1790 			}
1791 
1792 #ifdef KERN_TLS
1793 			if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) {
1794 				if (error != 0) {
1795 					m_freem(top);
1796 					top = NULL;
1797 				} else {
1798 					soref(so);
1799 					ktls_enqueue(top, so, tls_enq_cnt);
1800 				}
1801 			}
1802 #endif
1803 			clen = 0;
1804 			control = NULL;
1805 			top = NULL;
1806 			if (error)
1807 				goto release;
1808 		} while (resid && space > 0);
1809 	} while (resid);
1810 
1811 release:
1812 	SOCK_IO_SEND_UNLOCK(so);
1813 out:
1814 #ifdef KERN_TLS
1815 	if (tls != NULL)
1816 		ktls_free(tls);
1817 #endif
1818 	if (top != NULL)
1819 		m_freem(top);
1820 	if (control != NULL)
1821 		m_freem(control);
1822 	return (error);
1823 }
1824 
1825 /*
1826  * Send to a socket from a kernel thread.
1827  *
1828  * XXXGL: in almost all cases uio is NULL and the mbuf is supplied.
1829  * Exception is nfs/bootp_subr.c.  It is arguable that the VNET context needs
1830  * to be set at all.  This function should just boil down to a static inline
1831  * calling the protocol method.
1832  */
1833 int
1834 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
1835     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1836 {
1837 	int error;
1838 
1839 	CURVNET_SET(so->so_vnet);
1840 	error = so->so_proto->pr_sosend(so, addr, uio,
1841 	    top, control, flags, td);
1842 	CURVNET_RESTORE();
1843 	return (error);
1844 }
1845 
1846 /*
1847  * send(2), write(2) or aio_write(2) on a socket.
1848  */
1849 int
1850 sousrsend(struct socket *so, struct sockaddr *addr, struct uio *uio,
1851     struct mbuf *control, int flags, struct proc *userproc)
1852 {
1853 	struct thread *td;
1854 	ssize_t len;
1855 	int error;
1856 
1857 	td = uio->uio_td;
1858 	len = uio->uio_resid;
1859 	CURVNET_SET(so->so_vnet);
1860 	error = so->so_proto->pr_sosend(so, addr, uio, NULL, control, flags,
1861 	    td);
1862 	CURVNET_RESTORE();
1863 	if (error != 0) {
1864 		/*
1865 		 * Clear transient errors for stream protocols if they made
1866 		 * some progress.  Make exclusion for aio(4) that would
1867 		 * schedule a new write in case of EWOULDBLOCK and clear
1868 		 * error itself.  See soaio_process_job().
1869 		 */
1870 		if (uio->uio_resid != len &&
1871 		    (so->so_proto->pr_flags & PR_ATOMIC) == 0 &&
1872 		    userproc == NULL &&
1873 		    (error == ERESTART || error == EINTR ||
1874 		    error == EWOULDBLOCK))
1875 			error = 0;
1876 		/* Generation of SIGPIPE can be controlled per socket. */
1877 		if (error == EPIPE && (so->so_options & SO_NOSIGPIPE) == 0 &&
1878 		    (flags & MSG_NOSIGNAL) == 0) {
1879 			if (userproc != NULL) {
1880 				/* aio(4) job */
1881 				PROC_LOCK(userproc);
1882 				kern_psignal(userproc, SIGPIPE);
1883 				PROC_UNLOCK(userproc);
1884 			} else {
1885 				PROC_LOCK(td->td_proc);
1886 				tdsignal(td, SIGPIPE);
1887 				PROC_UNLOCK(td->td_proc);
1888 			}
1889 		}
1890 	}
1891 	return (error);
1892 }
1893 
1894 /*
1895  * The part of soreceive() that implements reading non-inline out-of-band
1896  * data from a socket.  For more complete comments, see soreceive(), from
1897  * which this code originated.
1898  *
1899  * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
1900  * unable to return an mbuf chain to the caller.
1901  */
1902 static int
1903 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
1904 {
1905 	struct protosw *pr = so->so_proto;
1906 	struct mbuf *m;
1907 	int error;
1908 
1909 	KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
1910 	VNET_SO_ASSERT(so);
1911 
1912 	m = m_get(M_WAITOK, MT_DATA);
1913 	error = pr->pr_rcvoob(so, m, flags & MSG_PEEK);
1914 	if (error)
1915 		goto bad;
1916 	do {
1917 		error = uiomove(mtod(m, void *),
1918 		    (int) min(uio->uio_resid, m->m_len), uio);
1919 		m = m_free(m);
1920 	} while (uio->uio_resid && error == 0 && m);
1921 bad:
1922 	if (m != NULL)
1923 		m_freem(m);
1924 	return (error);
1925 }
1926 
1927 /*
1928  * Following replacement or removal of the first mbuf on the first mbuf chain
1929  * of a socket buffer, push necessary state changes back into the socket
1930  * buffer so that other consumers see the values consistently.  'nextrecord'
1931  * is the callers locally stored value of the original value of
1932  * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
1933  * NOTE: 'nextrecord' may be NULL.
1934  */
1935 static __inline void
1936 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
1937 {
1938 
1939 	SOCKBUF_LOCK_ASSERT(sb);
1940 	/*
1941 	 * First, update for the new value of nextrecord.  If necessary, make
1942 	 * it the first record.
1943 	 */
1944 	if (sb->sb_mb != NULL)
1945 		sb->sb_mb->m_nextpkt = nextrecord;
1946 	else
1947 		sb->sb_mb = nextrecord;
1948 
1949 	/*
1950 	 * Now update any dependent socket buffer fields to reflect the new
1951 	 * state.  This is an expanded inline of SB_EMPTY_FIXUP(), with the
1952 	 * addition of a second clause that takes care of the case where
1953 	 * sb_mb has been updated, but remains the last record.
1954 	 */
1955 	if (sb->sb_mb == NULL) {
1956 		sb->sb_mbtail = NULL;
1957 		sb->sb_lastrecord = NULL;
1958 	} else if (sb->sb_mb->m_nextpkt == NULL)
1959 		sb->sb_lastrecord = sb->sb_mb;
1960 }
1961 
1962 /*
1963  * Implement receive operations on a socket.  We depend on the way that
1964  * records are added to the sockbuf by sbappend.  In particular, each record
1965  * (mbufs linked through m_next) must begin with an address if the protocol
1966  * so specifies, followed by an optional mbuf or mbufs containing ancillary
1967  * data, and then zero or more mbufs of data.  In order to allow parallelism
1968  * between network receive and copying to user space, as well as avoid
1969  * sleeping with a mutex held, we release the socket buffer mutex during the
1970  * user space copy.  Although the sockbuf is locked, new data may still be
1971  * appended, and thus we must maintain consistency of the sockbuf during that
1972  * time.
1973  *
1974  * The caller may receive the data as a single mbuf chain by supplying an
1975  * mbuf **mp0 for use in returning the chain.  The uio is then used only for
1976  * the count in uio_resid.
1977  */
1978 int
1979 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
1980     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1981 {
1982 	struct mbuf *m, **mp;
1983 	int flags, error, offset;
1984 	ssize_t len;
1985 	struct protosw *pr = so->so_proto;
1986 	struct mbuf *nextrecord;
1987 	int moff, type = 0;
1988 	ssize_t orig_resid = uio->uio_resid;
1989 	bool report_real_len = false;
1990 
1991 	mp = mp0;
1992 	if (psa != NULL)
1993 		*psa = NULL;
1994 	if (controlp != NULL)
1995 		*controlp = NULL;
1996 	if (flagsp != NULL) {
1997 		report_real_len = *flagsp & MSG_TRUNC;
1998 		*flagsp &= ~MSG_TRUNC;
1999 		flags = *flagsp &~ MSG_EOR;
2000 	} else
2001 		flags = 0;
2002 	if (flags & MSG_OOB)
2003 		return (soreceive_rcvoob(so, uio, flags));
2004 	if (mp != NULL)
2005 		*mp = NULL;
2006 	if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING)
2007 	    && uio->uio_resid) {
2008 		VNET_SO_ASSERT(so);
2009 		pr->pr_rcvd(so, 0);
2010 	}
2011 
2012 	error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
2013 	if (error)
2014 		return (error);
2015 
2016 restart:
2017 	SOCKBUF_LOCK(&so->so_rcv);
2018 	m = so->so_rcv.sb_mb;
2019 	/*
2020 	 * If we have less data than requested, block awaiting more (subject
2021 	 * to any timeout) if:
2022 	 *   1. the current count is less than the low water mark, or
2023 	 *   2. MSG_DONTWAIT is not set
2024 	 */
2025 	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
2026 	    sbavail(&so->so_rcv) < uio->uio_resid) &&
2027 	    sbavail(&so->so_rcv) < so->so_rcv.sb_lowat &&
2028 	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
2029 		KASSERT(m != NULL || !sbavail(&so->so_rcv),
2030 		    ("receive: m == %p sbavail == %u",
2031 		    m, sbavail(&so->so_rcv)));
2032 		if (so->so_error || so->so_rerror) {
2033 			if (m != NULL)
2034 				goto dontblock;
2035 			if (so->so_error)
2036 				error = so->so_error;
2037 			else
2038 				error = so->so_rerror;
2039 			if ((flags & MSG_PEEK) == 0) {
2040 				if (so->so_error)
2041 					so->so_error = 0;
2042 				else
2043 					so->so_rerror = 0;
2044 			}
2045 			SOCKBUF_UNLOCK(&so->so_rcv);
2046 			goto release;
2047 		}
2048 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2049 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2050 			if (m != NULL)
2051 				goto dontblock;
2052 #ifdef KERN_TLS
2053 			else if (so->so_rcv.sb_tlsdcc == 0 &&
2054 			    so->so_rcv.sb_tlscc == 0) {
2055 #else
2056 			else {
2057 #endif
2058 				SOCKBUF_UNLOCK(&so->so_rcv);
2059 				goto release;
2060 			}
2061 		}
2062 		for (; m != NULL; m = m->m_next)
2063 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
2064 				m = so->so_rcv.sb_mb;
2065 				goto dontblock;
2066 			}
2067 		if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED |
2068 		    SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 &&
2069 		    (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
2070 			SOCKBUF_UNLOCK(&so->so_rcv);
2071 			error = ENOTCONN;
2072 			goto release;
2073 		}
2074 		if (uio->uio_resid == 0 && !report_real_len) {
2075 			SOCKBUF_UNLOCK(&so->so_rcv);
2076 			goto release;
2077 		}
2078 		if ((so->so_state & SS_NBIO) ||
2079 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
2080 			SOCKBUF_UNLOCK(&so->so_rcv);
2081 			error = EWOULDBLOCK;
2082 			goto release;
2083 		}
2084 		SBLASTRECORDCHK(&so->so_rcv);
2085 		SBLASTMBUFCHK(&so->so_rcv);
2086 		error = sbwait(so, SO_RCV);
2087 		SOCKBUF_UNLOCK(&so->so_rcv);
2088 		if (error)
2089 			goto release;
2090 		goto restart;
2091 	}
2092 dontblock:
2093 	/*
2094 	 * From this point onward, we maintain 'nextrecord' as a cache of the
2095 	 * pointer to the next record in the socket buffer.  We must keep the
2096 	 * various socket buffer pointers and local stack versions of the
2097 	 * pointers in sync, pushing out modifications before dropping the
2098 	 * socket buffer mutex, and re-reading them when picking it up.
2099 	 *
2100 	 * Otherwise, we will race with the network stack appending new data
2101 	 * or records onto the socket buffer by using inconsistent/stale
2102 	 * versions of the field, possibly resulting in socket buffer
2103 	 * corruption.
2104 	 *
2105 	 * By holding the high-level sblock(), we prevent simultaneous
2106 	 * readers from pulling off the front of the socket buffer.
2107 	 */
2108 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2109 	if (uio->uio_td)
2110 		uio->uio_td->td_ru.ru_msgrcv++;
2111 	KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
2112 	SBLASTRECORDCHK(&so->so_rcv);
2113 	SBLASTMBUFCHK(&so->so_rcv);
2114 	nextrecord = m->m_nextpkt;
2115 	if (pr->pr_flags & PR_ADDR) {
2116 		KASSERT(m->m_type == MT_SONAME,
2117 		    ("m->m_type == %d", m->m_type));
2118 		orig_resid = 0;
2119 		if (psa != NULL)
2120 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
2121 			    M_NOWAIT);
2122 		if (flags & MSG_PEEK) {
2123 			m = m->m_next;
2124 		} else {
2125 			sbfree(&so->so_rcv, m);
2126 			so->so_rcv.sb_mb = m_free(m);
2127 			m = so->so_rcv.sb_mb;
2128 			sockbuf_pushsync(&so->so_rcv, nextrecord);
2129 		}
2130 	}
2131 
2132 	/*
2133 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
2134 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
2135 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
2136 	 * perform externalization (or freeing if controlp == NULL).
2137 	 */
2138 	if (m != NULL && m->m_type == MT_CONTROL) {
2139 		struct mbuf *cm = NULL, *cmn;
2140 		struct mbuf **cme = &cm;
2141 #ifdef KERN_TLS
2142 		struct cmsghdr *cmsg;
2143 		struct tls_get_record tgr;
2144 
2145 		/*
2146 		 * For MSG_TLSAPPDATA, check for an alert record.
2147 		 * If found, return ENXIO without removing
2148 		 * it from the receive queue.  This allows a subsequent
2149 		 * call without MSG_TLSAPPDATA to receive it.
2150 		 * Note that, for TLS, there should only be a single
2151 		 * control mbuf with the TLS_GET_RECORD message in it.
2152 		 */
2153 		if (flags & MSG_TLSAPPDATA) {
2154 			cmsg = mtod(m, struct cmsghdr *);
2155 			if (cmsg->cmsg_type == TLS_GET_RECORD &&
2156 			    cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) {
2157 				memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr));
2158 				if (__predict_false(tgr.tls_type ==
2159 				    TLS_RLTYPE_ALERT)) {
2160 					SOCKBUF_UNLOCK(&so->so_rcv);
2161 					error = ENXIO;
2162 					goto release;
2163 				}
2164 			}
2165 		}
2166 #endif
2167 
2168 		do {
2169 			if (flags & MSG_PEEK) {
2170 				if (controlp != NULL) {
2171 					*controlp = m_copym(m, 0, m->m_len,
2172 					    M_NOWAIT);
2173 					controlp = &(*controlp)->m_next;
2174 				}
2175 				m = m->m_next;
2176 			} else {
2177 				sbfree(&so->so_rcv, m);
2178 				so->so_rcv.sb_mb = m->m_next;
2179 				m->m_next = NULL;
2180 				*cme = m;
2181 				cme = &(*cme)->m_next;
2182 				m = so->so_rcv.sb_mb;
2183 			}
2184 		} while (m != NULL && m->m_type == MT_CONTROL);
2185 		if ((flags & MSG_PEEK) == 0)
2186 			sockbuf_pushsync(&so->so_rcv, nextrecord);
2187 		while (cm != NULL) {
2188 			cmn = cm->m_next;
2189 			cm->m_next = NULL;
2190 			if (pr->pr_domain->dom_externalize != NULL) {
2191 				SOCKBUF_UNLOCK(&so->so_rcv);
2192 				VNET_SO_ASSERT(so);
2193 				error = (*pr->pr_domain->dom_externalize)
2194 				    (cm, controlp, flags);
2195 				SOCKBUF_LOCK(&so->so_rcv);
2196 			} else if (controlp != NULL)
2197 				*controlp = cm;
2198 			else
2199 				m_freem(cm);
2200 			if (controlp != NULL) {
2201 				while (*controlp != NULL)
2202 					controlp = &(*controlp)->m_next;
2203 			}
2204 			cm = cmn;
2205 		}
2206 		if (m != NULL)
2207 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
2208 		else
2209 			nextrecord = so->so_rcv.sb_mb;
2210 		orig_resid = 0;
2211 	}
2212 	if (m != NULL) {
2213 		if ((flags & MSG_PEEK) == 0) {
2214 			KASSERT(m->m_nextpkt == nextrecord,
2215 			    ("soreceive: post-control, nextrecord !sync"));
2216 			if (nextrecord == NULL) {
2217 				KASSERT(so->so_rcv.sb_mb == m,
2218 				    ("soreceive: post-control, sb_mb!=m"));
2219 				KASSERT(so->so_rcv.sb_lastrecord == m,
2220 				    ("soreceive: post-control, lastrecord!=m"));
2221 			}
2222 		}
2223 		type = m->m_type;
2224 		if (type == MT_OOBDATA)
2225 			flags |= MSG_OOB;
2226 	} else {
2227 		if ((flags & MSG_PEEK) == 0) {
2228 			KASSERT(so->so_rcv.sb_mb == nextrecord,
2229 			    ("soreceive: sb_mb != nextrecord"));
2230 			if (so->so_rcv.sb_mb == NULL) {
2231 				KASSERT(so->so_rcv.sb_lastrecord == NULL,
2232 				    ("soreceive: sb_lastercord != NULL"));
2233 			}
2234 		}
2235 	}
2236 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2237 	SBLASTRECORDCHK(&so->so_rcv);
2238 	SBLASTMBUFCHK(&so->so_rcv);
2239 
2240 	/*
2241 	 * Now continue to read any data mbufs off of the head of the socket
2242 	 * buffer until the read request is satisfied.  Note that 'type' is
2243 	 * used to store the type of any mbuf reads that have happened so far
2244 	 * such that soreceive() can stop reading if the type changes, which
2245 	 * causes soreceive() to return only one of regular data and inline
2246 	 * out-of-band data in a single socket receive operation.
2247 	 */
2248 	moff = 0;
2249 	offset = 0;
2250 	while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0
2251 	    && error == 0) {
2252 		/*
2253 		 * If the type of mbuf has changed since the last mbuf
2254 		 * examined ('type'), end the receive operation.
2255 		 */
2256 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2257 		if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) {
2258 			if (type != m->m_type)
2259 				break;
2260 		} else if (type == MT_OOBDATA)
2261 			break;
2262 		else
2263 		    KASSERT(m->m_type == MT_DATA,
2264 			("m->m_type == %d", m->m_type));
2265 		so->so_rcv.sb_state &= ~SBS_RCVATMARK;
2266 		len = uio->uio_resid;
2267 		if (so->so_oobmark && len > so->so_oobmark - offset)
2268 			len = so->so_oobmark - offset;
2269 		if (len > m->m_len - moff)
2270 			len = m->m_len - moff;
2271 		/*
2272 		 * If mp is set, just pass back the mbufs.  Otherwise copy
2273 		 * them out via the uio, then free.  Sockbuf must be
2274 		 * consistent here (points to current mbuf, it points to next
2275 		 * record) when we drop priority; we must note any additions
2276 		 * to the sockbuf when we block interrupts again.
2277 		 */
2278 		if (mp == NULL) {
2279 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2280 			SBLASTRECORDCHK(&so->so_rcv);
2281 			SBLASTMBUFCHK(&so->so_rcv);
2282 			SOCKBUF_UNLOCK(&so->so_rcv);
2283 			if ((m->m_flags & M_EXTPG) != 0)
2284 				error = m_unmapped_uiomove(m, moff, uio,
2285 				    (int)len);
2286 			else
2287 				error = uiomove(mtod(m, char *) + moff,
2288 				    (int)len, uio);
2289 			SOCKBUF_LOCK(&so->so_rcv);
2290 			if (error) {
2291 				/*
2292 				 * The MT_SONAME mbuf has already been removed
2293 				 * from the record, so it is necessary to
2294 				 * remove the data mbufs, if any, to preserve
2295 				 * the invariant in the case of PR_ADDR that
2296 				 * requires MT_SONAME mbufs at the head of
2297 				 * each record.
2298 				 */
2299 				if (pr->pr_flags & PR_ATOMIC &&
2300 				    ((flags & MSG_PEEK) == 0))
2301 					(void)sbdroprecord_locked(&so->so_rcv);
2302 				SOCKBUF_UNLOCK(&so->so_rcv);
2303 				goto release;
2304 			}
2305 		} else
2306 			uio->uio_resid -= len;
2307 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2308 		if (len == m->m_len - moff) {
2309 			if (m->m_flags & M_EOR)
2310 				flags |= MSG_EOR;
2311 			if (flags & MSG_PEEK) {
2312 				m = m->m_next;
2313 				moff = 0;
2314 			} else {
2315 				nextrecord = m->m_nextpkt;
2316 				sbfree(&so->so_rcv, m);
2317 				if (mp != NULL) {
2318 					m->m_nextpkt = NULL;
2319 					*mp = m;
2320 					mp = &m->m_next;
2321 					so->so_rcv.sb_mb = m = m->m_next;
2322 					*mp = NULL;
2323 				} else {
2324 					so->so_rcv.sb_mb = m_free(m);
2325 					m = so->so_rcv.sb_mb;
2326 				}
2327 				sockbuf_pushsync(&so->so_rcv, nextrecord);
2328 				SBLASTRECORDCHK(&so->so_rcv);
2329 				SBLASTMBUFCHK(&so->so_rcv);
2330 			}
2331 		} else {
2332 			if (flags & MSG_PEEK)
2333 				moff += len;
2334 			else {
2335 				if (mp != NULL) {
2336 					if (flags & MSG_DONTWAIT) {
2337 						*mp = m_copym(m, 0, len,
2338 						    M_NOWAIT);
2339 						if (*mp == NULL) {
2340 							/*
2341 							 * m_copym() couldn't
2342 							 * allocate an mbuf.
2343 							 * Adjust uio_resid back
2344 							 * (it was adjusted
2345 							 * down by len bytes,
2346 							 * which we didn't end
2347 							 * up "copying" over).
2348 							 */
2349 							uio->uio_resid += len;
2350 							break;
2351 						}
2352 					} else {
2353 						SOCKBUF_UNLOCK(&so->so_rcv);
2354 						*mp = m_copym(m, 0, len,
2355 						    M_WAITOK);
2356 						SOCKBUF_LOCK(&so->so_rcv);
2357 					}
2358 				}
2359 				sbcut_locked(&so->so_rcv, len);
2360 			}
2361 		}
2362 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2363 		if (so->so_oobmark) {
2364 			if ((flags & MSG_PEEK) == 0) {
2365 				so->so_oobmark -= len;
2366 				if (so->so_oobmark == 0) {
2367 					so->so_rcv.sb_state |= SBS_RCVATMARK;
2368 					break;
2369 				}
2370 			} else {
2371 				offset += len;
2372 				if (offset == so->so_oobmark)
2373 					break;
2374 			}
2375 		}
2376 		if (flags & MSG_EOR)
2377 			break;
2378 		/*
2379 		 * If the MSG_WAITALL flag is set (for non-atomic socket), we
2380 		 * must not quit until "uio->uio_resid == 0" or an error
2381 		 * termination.  If a signal/timeout occurs, return with a
2382 		 * short count but without error.  Keep sockbuf locked
2383 		 * against other readers.
2384 		 */
2385 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
2386 		    !sosendallatonce(so) && nextrecord == NULL) {
2387 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2388 			if (so->so_error || so->so_rerror ||
2389 			    so->so_rcv.sb_state & SBS_CANTRCVMORE)
2390 				break;
2391 			/*
2392 			 * Notify the protocol that some data has been
2393 			 * drained before blocking.
2394 			 */
2395 			if (pr->pr_flags & PR_WANTRCVD) {
2396 				SOCKBUF_UNLOCK(&so->so_rcv);
2397 				VNET_SO_ASSERT(so);
2398 				pr->pr_rcvd(so, flags);
2399 				SOCKBUF_LOCK(&so->so_rcv);
2400 			}
2401 			SBLASTRECORDCHK(&so->so_rcv);
2402 			SBLASTMBUFCHK(&so->so_rcv);
2403 			/*
2404 			 * We could receive some data while was notifying
2405 			 * the protocol. Skip blocking in this case.
2406 			 */
2407 			if (so->so_rcv.sb_mb == NULL) {
2408 				error = sbwait(so, SO_RCV);
2409 				if (error) {
2410 					SOCKBUF_UNLOCK(&so->so_rcv);
2411 					goto release;
2412 				}
2413 			}
2414 			m = so->so_rcv.sb_mb;
2415 			if (m != NULL)
2416 				nextrecord = m->m_nextpkt;
2417 		}
2418 	}
2419 
2420 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2421 	if (m != NULL && pr->pr_flags & PR_ATOMIC) {
2422 		if (report_real_len)
2423 			uio->uio_resid -= m_length(m, NULL) - moff;
2424 		flags |= MSG_TRUNC;
2425 		if ((flags & MSG_PEEK) == 0)
2426 			(void) sbdroprecord_locked(&so->so_rcv);
2427 	}
2428 	if ((flags & MSG_PEEK) == 0) {
2429 		if (m == NULL) {
2430 			/*
2431 			 * First part is an inline SB_EMPTY_FIXUP().  Second
2432 			 * part makes sure sb_lastrecord is up-to-date if
2433 			 * there is still data in the socket buffer.
2434 			 */
2435 			so->so_rcv.sb_mb = nextrecord;
2436 			if (so->so_rcv.sb_mb == NULL) {
2437 				so->so_rcv.sb_mbtail = NULL;
2438 				so->so_rcv.sb_lastrecord = NULL;
2439 			} else if (nextrecord->m_nextpkt == NULL)
2440 				so->so_rcv.sb_lastrecord = nextrecord;
2441 		}
2442 		SBLASTRECORDCHK(&so->so_rcv);
2443 		SBLASTMBUFCHK(&so->so_rcv);
2444 		/*
2445 		 * If soreceive() is being done from the socket callback,
2446 		 * then don't need to generate ACK to peer to update window,
2447 		 * since ACK will be generated on return to TCP.
2448 		 */
2449 		if (!(flags & MSG_SOCALLBCK) &&
2450 		    (pr->pr_flags & PR_WANTRCVD)) {
2451 			SOCKBUF_UNLOCK(&so->so_rcv);
2452 			VNET_SO_ASSERT(so);
2453 			pr->pr_rcvd(so, flags);
2454 			SOCKBUF_LOCK(&so->so_rcv);
2455 		}
2456 	}
2457 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2458 	if (orig_resid == uio->uio_resid && orig_resid &&
2459 	    (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
2460 		SOCKBUF_UNLOCK(&so->so_rcv);
2461 		goto restart;
2462 	}
2463 	SOCKBUF_UNLOCK(&so->so_rcv);
2464 
2465 	if (flagsp != NULL)
2466 		*flagsp |= flags;
2467 release:
2468 	SOCK_IO_RECV_UNLOCK(so);
2469 	return (error);
2470 }
2471 
2472 /*
2473  * Optimized version of soreceive() for stream (TCP) sockets.
2474  */
2475 int
2476 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio,
2477     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2478 {
2479 	int len = 0, error = 0, flags, oresid;
2480 	struct sockbuf *sb;
2481 	struct mbuf *m, *n = NULL;
2482 
2483 	/* We only do stream sockets. */
2484 	if (so->so_type != SOCK_STREAM)
2485 		return (EINVAL);
2486 	if (psa != NULL)
2487 		*psa = NULL;
2488 	if (flagsp != NULL)
2489 		flags = *flagsp &~ MSG_EOR;
2490 	else
2491 		flags = 0;
2492 	if (controlp != NULL)
2493 		*controlp = NULL;
2494 	if (flags & MSG_OOB)
2495 		return (soreceive_rcvoob(so, uio, flags));
2496 	if (mp0 != NULL)
2497 		*mp0 = NULL;
2498 
2499 	sb = &so->so_rcv;
2500 
2501 #ifdef KERN_TLS
2502 	/*
2503 	 * KTLS store TLS records as records with a control message to
2504 	 * describe the framing.
2505 	 *
2506 	 * We check once here before acquiring locks to optimize the
2507 	 * common case.
2508 	 */
2509 	if (sb->sb_tls_info != NULL)
2510 		return (soreceive_generic(so, psa, uio, mp0, controlp,
2511 		    flagsp));
2512 #endif
2513 
2514 	/* Prevent other readers from entering the socket. */
2515 	error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
2516 	if (error)
2517 		return (error);
2518 	SOCKBUF_LOCK(sb);
2519 
2520 #ifdef KERN_TLS
2521 	if (sb->sb_tls_info != NULL) {
2522 		SOCKBUF_UNLOCK(sb);
2523 		SOCK_IO_RECV_UNLOCK(so);
2524 		return (soreceive_generic(so, psa, uio, mp0, controlp,
2525 		    flagsp));
2526 	}
2527 #endif
2528 
2529 	/* Easy one, no space to copyout anything. */
2530 	if (uio->uio_resid == 0) {
2531 		error = EINVAL;
2532 		goto out;
2533 	}
2534 	oresid = uio->uio_resid;
2535 
2536 	/* We will never ever get anything unless we are or were connected. */
2537 	if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
2538 		error = ENOTCONN;
2539 		goto out;
2540 	}
2541 
2542 restart:
2543 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2544 
2545 	/* Abort if socket has reported problems. */
2546 	if (so->so_error) {
2547 		if (sbavail(sb) > 0)
2548 			goto deliver;
2549 		if (oresid > uio->uio_resid)
2550 			goto out;
2551 		error = so->so_error;
2552 		if (!(flags & MSG_PEEK))
2553 			so->so_error = 0;
2554 		goto out;
2555 	}
2556 
2557 	/* Door is closed.  Deliver what is left, if any. */
2558 	if (sb->sb_state & SBS_CANTRCVMORE) {
2559 		if (sbavail(sb) > 0)
2560 			goto deliver;
2561 		else
2562 			goto out;
2563 	}
2564 
2565 	/* Socket buffer is empty and we shall not block. */
2566 	if (sbavail(sb) == 0 &&
2567 	    ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) {
2568 		error = EAGAIN;
2569 		goto out;
2570 	}
2571 
2572 	/* Socket buffer got some data that we shall deliver now. */
2573 	if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) &&
2574 	    ((so->so_state & SS_NBIO) ||
2575 	     (flags & (MSG_DONTWAIT|MSG_NBIO)) ||
2576 	     sbavail(sb) >= sb->sb_lowat ||
2577 	     sbavail(sb) >= uio->uio_resid ||
2578 	     sbavail(sb) >= sb->sb_hiwat) ) {
2579 		goto deliver;
2580 	}
2581 
2582 	/* On MSG_WAITALL we must wait until all data or error arrives. */
2583 	if ((flags & MSG_WAITALL) &&
2584 	    (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat))
2585 		goto deliver;
2586 
2587 	/*
2588 	 * Wait and block until (more) data comes in.
2589 	 * NB: Drops the sockbuf lock during wait.
2590 	 */
2591 	error = sbwait(so, SO_RCV);
2592 	if (error)
2593 		goto out;
2594 	goto restart;
2595 
2596 deliver:
2597 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2598 	KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__));
2599 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__));
2600 
2601 	/* Statistics. */
2602 	if (uio->uio_td)
2603 		uio->uio_td->td_ru.ru_msgrcv++;
2604 
2605 	/* Fill uio until full or current end of socket buffer is reached. */
2606 	len = min(uio->uio_resid, sbavail(sb));
2607 	if (mp0 != NULL) {
2608 		/* Dequeue as many mbufs as possible. */
2609 		if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) {
2610 			if (*mp0 == NULL)
2611 				*mp0 = sb->sb_mb;
2612 			else
2613 				m_cat(*mp0, sb->sb_mb);
2614 			for (m = sb->sb_mb;
2615 			     m != NULL && m->m_len <= len;
2616 			     m = m->m_next) {
2617 				KASSERT(!(m->m_flags & M_NOTAVAIL),
2618 				    ("%s: m %p not available", __func__, m));
2619 				len -= m->m_len;
2620 				uio->uio_resid -= m->m_len;
2621 				sbfree(sb, m);
2622 				n = m;
2623 			}
2624 			n->m_next = NULL;
2625 			sb->sb_mb = m;
2626 			sb->sb_lastrecord = sb->sb_mb;
2627 			if (sb->sb_mb == NULL)
2628 				SB_EMPTY_FIXUP(sb);
2629 		}
2630 		/* Copy the remainder. */
2631 		if (len > 0) {
2632 			KASSERT(sb->sb_mb != NULL,
2633 			    ("%s: len > 0 && sb->sb_mb empty", __func__));
2634 
2635 			m = m_copym(sb->sb_mb, 0, len, M_NOWAIT);
2636 			if (m == NULL)
2637 				len = 0;	/* Don't flush data from sockbuf. */
2638 			else
2639 				uio->uio_resid -= len;
2640 			if (*mp0 != NULL)
2641 				m_cat(*mp0, m);
2642 			else
2643 				*mp0 = m;
2644 			if (*mp0 == NULL) {
2645 				error = ENOBUFS;
2646 				goto out;
2647 			}
2648 		}
2649 	} else {
2650 		/* NB: Must unlock socket buffer as uiomove may sleep. */
2651 		SOCKBUF_UNLOCK(sb);
2652 		error = m_mbuftouio(uio, sb->sb_mb, len);
2653 		SOCKBUF_LOCK(sb);
2654 		if (error)
2655 			goto out;
2656 	}
2657 	SBLASTRECORDCHK(sb);
2658 	SBLASTMBUFCHK(sb);
2659 
2660 	/*
2661 	 * Remove the delivered data from the socket buffer unless we
2662 	 * were only peeking.
2663 	 */
2664 	if (!(flags & MSG_PEEK)) {
2665 		if (len > 0)
2666 			sbdrop_locked(sb, len);
2667 
2668 		/* Notify protocol that we drained some data. */
2669 		if ((so->so_proto->pr_flags & PR_WANTRCVD) &&
2670 		    (((flags & MSG_WAITALL) && uio->uio_resid > 0) ||
2671 		     !(flags & MSG_SOCALLBCK))) {
2672 			SOCKBUF_UNLOCK(sb);
2673 			VNET_SO_ASSERT(so);
2674 			so->so_proto->pr_rcvd(so, flags);
2675 			SOCKBUF_LOCK(sb);
2676 		}
2677 	}
2678 
2679 	/*
2680 	 * For MSG_WAITALL we may have to loop again and wait for
2681 	 * more data to come in.
2682 	 */
2683 	if ((flags & MSG_WAITALL) && uio->uio_resid > 0)
2684 		goto restart;
2685 out:
2686 	SBLASTRECORDCHK(sb);
2687 	SBLASTMBUFCHK(sb);
2688 	SOCKBUF_UNLOCK(sb);
2689 	SOCK_IO_RECV_UNLOCK(so);
2690 	return (error);
2691 }
2692 
2693 /*
2694  * Optimized version of soreceive() for simple datagram cases from userspace.
2695  * Unlike in the stream case, we're able to drop a datagram if copyout()
2696  * fails, and because we handle datagrams atomically, we don't need to use a
2697  * sleep lock to prevent I/O interlacing.
2698  */
2699 int
2700 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
2701     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2702 {
2703 	struct mbuf *m, *m2;
2704 	int flags, error;
2705 	ssize_t len;
2706 	struct protosw *pr = so->so_proto;
2707 	struct mbuf *nextrecord;
2708 
2709 	if (psa != NULL)
2710 		*psa = NULL;
2711 	if (controlp != NULL)
2712 		*controlp = NULL;
2713 	if (flagsp != NULL)
2714 		flags = *flagsp &~ MSG_EOR;
2715 	else
2716 		flags = 0;
2717 
2718 	/*
2719 	 * For any complicated cases, fall back to the full
2720 	 * soreceive_generic().
2721 	 */
2722 	if (mp0 != NULL || (flags & (MSG_PEEK | MSG_OOB | MSG_TRUNC)))
2723 		return (soreceive_generic(so, psa, uio, mp0, controlp,
2724 		    flagsp));
2725 
2726 	/*
2727 	 * Enforce restrictions on use.
2728 	 */
2729 	KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
2730 	    ("soreceive_dgram: wantrcvd"));
2731 	KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
2732 	KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
2733 	    ("soreceive_dgram: SBS_RCVATMARK"));
2734 	KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
2735 	    ("soreceive_dgram: P_CONNREQUIRED"));
2736 
2737 	/*
2738 	 * Loop blocking while waiting for a datagram.
2739 	 */
2740 	SOCKBUF_LOCK(&so->so_rcv);
2741 	while ((m = so->so_rcv.sb_mb) == NULL) {
2742 		KASSERT(sbavail(&so->so_rcv) == 0,
2743 		    ("soreceive_dgram: sb_mb NULL but sbavail %u",
2744 		    sbavail(&so->so_rcv)));
2745 		if (so->so_error) {
2746 			error = so->so_error;
2747 			so->so_error = 0;
2748 			SOCKBUF_UNLOCK(&so->so_rcv);
2749 			return (error);
2750 		}
2751 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
2752 		    uio->uio_resid == 0) {
2753 			SOCKBUF_UNLOCK(&so->so_rcv);
2754 			return (0);
2755 		}
2756 		if ((so->so_state & SS_NBIO) ||
2757 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
2758 			SOCKBUF_UNLOCK(&so->so_rcv);
2759 			return (EWOULDBLOCK);
2760 		}
2761 		SBLASTRECORDCHK(&so->so_rcv);
2762 		SBLASTMBUFCHK(&so->so_rcv);
2763 		error = sbwait(so, SO_RCV);
2764 		if (error) {
2765 			SOCKBUF_UNLOCK(&so->so_rcv);
2766 			return (error);
2767 		}
2768 	}
2769 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2770 
2771 	if (uio->uio_td)
2772 		uio->uio_td->td_ru.ru_msgrcv++;
2773 	SBLASTRECORDCHK(&so->so_rcv);
2774 	SBLASTMBUFCHK(&so->so_rcv);
2775 	nextrecord = m->m_nextpkt;
2776 	if (nextrecord == NULL) {
2777 		KASSERT(so->so_rcv.sb_lastrecord == m,
2778 		    ("soreceive_dgram: lastrecord != m"));
2779 	}
2780 
2781 	KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
2782 	    ("soreceive_dgram: m_nextpkt != nextrecord"));
2783 
2784 	/*
2785 	 * Pull 'm' and its chain off the front of the packet queue.
2786 	 */
2787 	so->so_rcv.sb_mb = NULL;
2788 	sockbuf_pushsync(&so->so_rcv, nextrecord);
2789 
2790 	/*
2791 	 * Walk 'm's chain and free that many bytes from the socket buffer.
2792 	 */
2793 	for (m2 = m; m2 != NULL; m2 = m2->m_next)
2794 		sbfree(&so->so_rcv, m2);
2795 
2796 	/*
2797 	 * Do a few last checks before we let go of the lock.
2798 	 */
2799 	SBLASTRECORDCHK(&so->so_rcv);
2800 	SBLASTMBUFCHK(&so->so_rcv);
2801 	SOCKBUF_UNLOCK(&so->so_rcv);
2802 
2803 	if (pr->pr_flags & PR_ADDR) {
2804 		KASSERT(m->m_type == MT_SONAME,
2805 		    ("m->m_type == %d", m->m_type));
2806 		if (psa != NULL)
2807 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
2808 			    M_NOWAIT);
2809 		m = m_free(m);
2810 	}
2811 	if (m == NULL) {
2812 		/* XXXRW: Can this happen? */
2813 		return (0);
2814 	}
2815 
2816 	/*
2817 	 * Packet to copyout() is now in 'm' and it is disconnected from the
2818 	 * queue.
2819 	 *
2820 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
2821 	 * in the first mbuf chain on the socket buffer.  We call into the
2822 	 * protocol to perform externalization (or freeing if controlp ==
2823 	 * NULL). In some cases there can be only MT_CONTROL mbufs without
2824 	 * MT_DATA mbufs.
2825 	 */
2826 	if (m->m_type == MT_CONTROL) {
2827 		struct mbuf *cm = NULL, *cmn;
2828 		struct mbuf **cme = &cm;
2829 
2830 		do {
2831 			m2 = m->m_next;
2832 			m->m_next = NULL;
2833 			*cme = m;
2834 			cme = &(*cme)->m_next;
2835 			m = m2;
2836 		} while (m != NULL && m->m_type == MT_CONTROL);
2837 		while (cm != NULL) {
2838 			cmn = cm->m_next;
2839 			cm->m_next = NULL;
2840 			if (pr->pr_domain->dom_externalize != NULL) {
2841 				error = (*pr->pr_domain->dom_externalize)
2842 				    (cm, controlp, flags);
2843 			} else if (controlp != NULL)
2844 				*controlp = cm;
2845 			else
2846 				m_freem(cm);
2847 			if (controlp != NULL) {
2848 				while (*controlp != NULL)
2849 					controlp = &(*controlp)->m_next;
2850 			}
2851 			cm = cmn;
2852 		}
2853 	}
2854 	KASSERT(m == NULL || m->m_type == MT_DATA,
2855 	    ("soreceive_dgram: !data"));
2856 	while (m != NULL && uio->uio_resid > 0) {
2857 		len = uio->uio_resid;
2858 		if (len > m->m_len)
2859 			len = m->m_len;
2860 		error = uiomove(mtod(m, char *), (int)len, uio);
2861 		if (error) {
2862 			m_freem(m);
2863 			return (error);
2864 		}
2865 		if (len == m->m_len)
2866 			m = m_free(m);
2867 		else {
2868 			m->m_data += len;
2869 			m->m_len -= len;
2870 		}
2871 	}
2872 	if (m != NULL) {
2873 		flags |= MSG_TRUNC;
2874 		m_freem(m);
2875 	}
2876 	if (flagsp != NULL)
2877 		*flagsp |= flags;
2878 	return (0);
2879 }
2880 
2881 int
2882 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
2883     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2884 {
2885 	int error;
2886 
2887 	CURVNET_SET(so->so_vnet);
2888 	error = so->so_proto->pr_soreceive(so, psa, uio, mp0, controlp, flagsp);
2889 	CURVNET_RESTORE();
2890 	return (error);
2891 }
2892 
2893 int
2894 soshutdown(struct socket *so, int how)
2895 {
2896 	struct protosw *pr;
2897 	int error, soerror_enotconn;
2898 
2899 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
2900 		return (EINVAL);
2901 
2902 	soerror_enotconn = 0;
2903 	SOCK_LOCK(so);
2904 	if ((so->so_state &
2905 	    (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) {
2906 		/*
2907 		 * POSIX mandates us to return ENOTCONN when shutdown(2) is
2908 		 * invoked on a datagram sockets, however historically we would
2909 		 * actually tear socket down. This is known to be leveraged by
2910 		 * some applications to unblock process waiting in recvXXX(2)
2911 		 * by other process that it shares that socket with. Try to meet
2912 		 * both backward-compatibility and POSIX requirements by forcing
2913 		 * ENOTCONN but still asking protocol to perform pru_shutdown().
2914 		 */
2915 		if (so->so_type != SOCK_DGRAM && !SOLISTENING(so)) {
2916 			SOCK_UNLOCK(so);
2917 			return (ENOTCONN);
2918 		}
2919 		soerror_enotconn = 1;
2920 	}
2921 
2922 	if (SOLISTENING(so)) {
2923 		if (how != SHUT_WR) {
2924 			so->so_error = ECONNABORTED;
2925 			solisten_wakeup(so);	/* unlocks so */
2926 		} else {
2927 			SOCK_UNLOCK(so);
2928 		}
2929 		goto done;
2930 	}
2931 	SOCK_UNLOCK(so);
2932 
2933 	CURVNET_SET(so->so_vnet);
2934 	pr = so->so_proto;
2935 	if (pr->pr_flush != NULL)
2936 		pr->pr_flush(so, how);
2937 	if (how != SHUT_WR)
2938 		sorflush(so);
2939 	if (how != SHUT_RD) {
2940 		error = pr->pr_shutdown(so);
2941 		wakeup(&so->so_timeo);
2942 		CURVNET_RESTORE();
2943 		return ((error == 0 && soerror_enotconn) ? ENOTCONN : error);
2944 	}
2945 	wakeup(&so->so_timeo);
2946 	CURVNET_RESTORE();
2947 
2948 done:
2949 	return (soerror_enotconn ? ENOTCONN : 0);
2950 }
2951 
2952 void
2953 sorflush(struct socket *so)
2954 {
2955 	struct protosw *pr;
2956 	int error;
2957 
2958 	VNET_SO_ASSERT(so);
2959 
2960 	/*
2961 	 * Dislodge threads currently blocked in receive and wait to acquire
2962 	 * a lock against other simultaneous readers before clearing the
2963 	 * socket buffer.  Don't let our acquire be interrupted by a signal
2964 	 * despite any existing socket disposition on interruptable waiting.
2965 	 */
2966 	socantrcvmore(so);
2967 
2968 	error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR);
2969 	if (error != 0) {
2970 		KASSERT(SOLISTENING(so),
2971 		    ("%s: soiolock(%p) failed", __func__, so));
2972 		return;
2973 	}
2974 
2975 	pr = so->so_proto;
2976 	if (pr->pr_flags & PR_RIGHTS) {
2977 		MPASS(pr->pr_domain->dom_dispose != NULL);
2978 		(*pr->pr_domain->dom_dispose)(so);
2979 	} else {
2980 		sbrelease(so, SO_RCV);
2981 		SOCK_IO_RECV_UNLOCK(so);
2982 	}
2983 
2984 }
2985 
2986 /*
2987  * Wrapper for Socket established helper hook.
2988  * Parameters: socket, context of the hook point, hook id.
2989  */
2990 static int inline
2991 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id)
2992 {
2993 	struct socket_hhook_data hhook_data = {
2994 		.so = so,
2995 		.hctx = hctx,
2996 		.m = NULL,
2997 		.status = 0
2998 	};
2999 
3000 	CURVNET_SET(so->so_vnet);
3001 	HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd);
3002 	CURVNET_RESTORE();
3003 
3004 	/* Ugly but needed, since hhooks return void for now */
3005 	return (hhook_data.status);
3006 }
3007 
3008 /*
3009  * Perhaps this routine, and sooptcopyout(), below, ought to come in an
3010  * additional variant to handle the case where the option value needs to be
3011  * some kind of integer, but not a specific size.  In addition to their use
3012  * here, these functions are also called by the protocol-level pr_ctloutput()
3013  * routines.
3014  */
3015 int
3016 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
3017 {
3018 	size_t	valsize;
3019 
3020 	/*
3021 	 * If the user gives us more than we wanted, we ignore it, but if we
3022 	 * don't get the minimum length the caller wants, we return EINVAL.
3023 	 * On success, sopt->sopt_valsize is set to however much we actually
3024 	 * retrieved.
3025 	 */
3026 	if ((valsize = sopt->sopt_valsize) < minlen)
3027 		return EINVAL;
3028 	if (valsize > len)
3029 		sopt->sopt_valsize = valsize = len;
3030 
3031 	if (sopt->sopt_td != NULL)
3032 		return (copyin(sopt->sopt_val, buf, valsize));
3033 
3034 	bcopy(sopt->sopt_val, buf, valsize);
3035 	return (0);
3036 }
3037 
3038 /*
3039  * Kernel version of setsockopt(2).
3040  *
3041  * XXX: optlen is size_t, not socklen_t
3042  */
3043 int
3044 so_setsockopt(struct socket *so, int level, int optname, void *optval,
3045     size_t optlen)
3046 {
3047 	struct sockopt sopt;
3048 
3049 	sopt.sopt_level = level;
3050 	sopt.sopt_name = optname;
3051 	sopt.sopt_dir = SOPT_SET;
3052 	sopt.sopt_val = optval;
3053 	sopt.sopt_valsize = optlen;
3054 	sopt.sopt_td = NULL;
3055 	return (sosetopt(so, &sopt));
3056 }
3057 
3058 int
3059 sosetopt(struct socket *so, struct sockopt *sopt)
3060 {
3061 	int	error, optval;
3062 	struct	linger l;
3063 	struct	timeval tv;
3064 	sbintime_t val, *valp;
3065 	uint32_t val32;
3066 #ifdef MAC
3067 	struct mac extmac;
3068 #endif
3069 
3070 	CURVNET_SET(so->so_vnet);
3071 	error = 0;
3072 	if (sopt->sopt_level != SOL_SOCKET) {
3073 		if (so->so_proto->pr_ctloutput != NULL)
3074 			error = (*so->so_proto->pr_ctloutput)(so, sopt);
3075 		else
3076 			error = ENOPROTOOPT;
3077 	} else {
3078 		switch (sopt->sopt_name) {
3079 		case SO_ACCEPTFILTER:
3080 			error = accept_filt_setopt(so, sopt);
3081 			if (error)
3082 				goto bad;
3083 			break;
3084 
3085 		case SO_LINGER:
3086 			error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
3087 			if (error)
3088 				goto bad;
3089 			if (l.l_linger < 0 ||
3090 			    l.l_linger > USHRT_MAX ||
3091 			    l.l_linger > (INT_MAX / hz)) {
3092 				error = EDOM;
3093 				goto bad;
3094 			}
3095 			SOCK_LOCK(so);
3096 			so->so_linger = l.l_linger;
3097 			if (l.l_onoff)
3098 				so->so_options |= SO_LINGER;
3099 			else
3100 				so->so_options &= ~SO_LINGER;
3101 			SOCK_UNLOCK(so);
3102 			break;
3103 
3104 		case SO_DEBUG:
3105 		case SO_KEEPALIVE:
3106 		case SO_DONTROUTE:
3107 		case SO_USELOOPBACK:
3108 		case SO_BROADCAST:
3109 		case SO_REUSEADDR:
3110 		case SO_REUSEPORT:
3111 		case SO_REUSEPORT_LB:
3112 		case SO_OOBINLINE:
3113 		case SO_TIMESTAMP:
3114 		case SO_BINTIME:
3115 		case SO_NOSIGPIPE:
3116 		case SO_NO_DDP:
3117 		case SO_NO_OFFLOAD:
3118 		case SO_RERROR:
3119 			error = sooptcopyin(sopt, &optval, sizeof optval,
3120 			    sizeof optval);
3121 			if (error)
3122 				goto bad;
3123 			SOCK_LOCK(so);
3124 			if (optval)
3125 				so->so_options |= sopt->sopt_name;
3126 			else
3127 				so->so_options &= ~sopt->sopt_name;
3128 			SOCK_UNLOCK(so);
3129 			break;
3130 
3131 		case SO_SETFIB:
3132 			error = sooptcopyin(sopt, &optval, sizeof optval,
3133 			    sizeof optval);
3134 			if (error)
3135 				goto bad;
3136 
3137 			if (optval < 0 || optval >= rt_numfibs) {
3138 				error = EINVAL;
3139 				goto bad;
3140 			}
3141 			if (((so->so_proto->pr_domain->dom_family == PF_INET) ||
3142 			   (so->so_proto->pr_domain->dom_family == PF_INET6) ||
3143 			   (so->so_proto->pr_domain->dom_family == PF_ROUTE)))
3144 				so->so_fibnum = optval;
3145 			else
3146 				so->so_fibnum = 0;
3147 			break;
3148 
3149 		case SO_USER_COOKIE:
3150 			error = sooptcopyin(sopt, &val32, sizeof val32,
3151 			    sizeof val32);
3152 			if (error)
3153 				goto bad;
3154 			so->so_user_cookie = val32;
3155 			break;
3156 
3157 		case SO_SNDBUF:
3158 		case SO_RCVBUF:
3159 		case SO_SNDLOWAT:
3160 		case SO_RCVLOWAT:
3161 			error = so->so_proto->pr_setsbopt(so, sopt);
3162 			if (error)
3163 				goto bad;
3164 			break;
3165 
3166 		case SO_SNDTIMEO:
3167 		case SO_RCVTIMEO:
3168 #ifdef COMPAT_FREEBSD32
3169 			if (SV_CURPROC_FLAG(SV_ILP32)) {
3170 				struct timeval32 tv32;
3171 
3172 				error = sooptcopyin(sopt, &tv32, sizeof tv32,
3173 				    sizeof tv32);
3174 				CP(tv32, tv, tv_sec);
3175 				CP(tv32, tv, tv_usec);
3176 			} else
3177 #endif
3178 				error = sooptcopyin(sopt, &tv, sizeof tv,
3179 				    sizeof tv);
3180 			if (error)
3181 				goto bad;
3182 			if (tv.tv_sec < 0 || tv.tv_usec < 0 ||
3183 			    tv.tv_usec >= 1000000) {
3184 				error = EDOM;
3185 				goto bad;
3186 			}
3187 			if (tv.tv_sec > INT32_MAX)
3188 				val = SBT_MAX;
3189 			else
3190 				val = tvtosbt(tv);
3191 			SOCK_LOCK(so);
3192 			valp = sopt->sopt_name == SO_SNDTIMEO ?
3193 			    (SOLISTENING(so) ? &so->sol_sbsnd_timeo :
3194 			    &so->so_snd.sb_timeo) :
3195 			    (SOLISTENING(so) ? &so->sol_sbrcv_timeo :
3196 			    &so->so_rcv.sb_timeo);
3197 			*valp = val;
3198 			SOCK_UNLOCK(so);
3199 			break;
3200 
3201 		case SO_LABEL:
3202 #ifdef MAC
3203 			error = sooptcopyin(sopt, &extmac, sizeof extmac,
3204 			    sizeof extmac);
3205 			if (error)
3206 				goto bad;
3207 			error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
3208 			    so, &extmac);
3209 #else
3210 			error = EOPNOTSUPP;
3211 #endif
3212 			break;
3213 
3214 		case SO_TS_CLOCK:
3215 			error = sooptcopyin(sopt, &optval, sizeof optval,
3216 			    sizeof optval);
3217 			if (error)
3218 				goto bad;
3219 			if (optval < 0 || optval > SO_TS_CLOCK_MAX) {
3220 				error = EINVAL;
3221 				goto bad;
3222 			}
3223 			so->so_ts_clock = optval;
3224 			break;
3225 
3226 		case SO_MAX_PACING_RATE:
3227 			error = sooptcopyin(sopt, &val32, sizeof(val32),
3228 			    sizeof(val32));
3229 			if (error)
3230 				goto bad;
3231 			so->so_max_pacing_rate = val32;
3232 			break;
3233 
3234 		default:
3235 			if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
3236 				error = hhook_run_socket(so, sopt,
3237 				    HHOOK_SOCKET_OPT);
3238 			else
3239 				error = ENOPROTOOPT;
3240 			break;
3241 		}
3242 		if (error == 0 && so->so_proto->pr_ctloutput != NULL)
3243 			(void)(*so->so_proto->pr_ctloutput)(so, sopt);
3244 	}
3245 bad:
3246 	CURVNET_RESTORE();
3247 	return (error);
3248 }
3249 
3250 /*
3251  * Helper routine for getsockopt.
3252  */
3253 int
3254 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
3255 {
3256 	int	error;
3257 	size_t	valsize;
3258 
3259 	error = 0;
3260 
3261 	/*
3262 	 * Documented get behavior is that we always return a value, possibly
3263 	 * truncated to fit in the user's buffer.  Traditional behavior is
3264 	 * that we always tell the user precisely how much we copied, rather
3265 	 * than something useful like the total amount we had available for
3266 	 * her.  Note that this interface is not idempotent; the entire
3267 	 * answer must be generated ahead of time.
3268 	 */
3269 	valsize = min(len, sopt->sopt_valsize);
3270 	sopt->sopt_valsize = valsize;
3271 	if (sopt->sopt_val != NULL) {
3272 		if (sopt->sopt_td != NULL)
3273 			error = copyout(buf, sopt->sopt_val, valsize);
3274 		else
3275 			bcopy(buf, sopt->sopt_val, valsize);
3276 	}
3277 	return (error);
3278 }
3279 
3280 int
3281 sogetopt(struct socket *so, struct sockopt *sopt)
3282 {
3283 	int	error, optval;
3284 	struct	linger l;
3285 	struct	timeval tv;
3286 #ifdef MAC
3287 	struct mac extmac;
3288 #endif
3289 
3290 	CURVNET_SET(so->so_vnet);
3291 	error = 0;
3292 	if (sopt->sopt_level != SOL_SOCKET) {
3293 		if (so->so_proto->pr_ctloutput != NULL)
3294 			error = (*so->so_proto->pr_ctloutput)(so, sopt);
3295 		else
3296 			error = ENOPROTOOPT;
3297 		CURVNET_RESTORE();
3298 		return (error);
3299 	} else {
3300 		switch (sopt->sopt_name) {
3301 		case SO_ACCEPTFILTER:
3302 			error = accept_filt_getopt(so, sopt);
3303 			break;
3304 
3305 		case SO_LINGER:
3306 			SOCK_LOCK(so);
3307 			l.l_onoff = so->so_options & SO_LINGER;
3308 			l.l_linger = so->so_linger;
3309 			SOCK_UNLOCK(so);
3310 			error = sooptcopyout(sopt, &l, sizeof l);
3311 			break;
3312 
3313 		case SO_USELOOPBACK:
3314 		case SO_DONTROUTE:
3315 		case SO_DEBUG:
3316 		case SO_KEEPALIVE:
3317 		case SO_REUSEADDR:
3318 		case SO_REUSEPORT:
3319 		case SO_REUSEPORT_LB:
3320 		case SO_BROADCAST:
3321 		case SO_OOBINLINE:
3322 		case SO_ACCEPTCONN:
3323 		case SO_TIMESTAMP:
3324 		case SO_BINTIME:
3325 		case SO_NOSIGPIPE:
3326 		case SO_NO_DDP:
3327 		case SO_NO_OFFLOAD:
3328 		case SO_RERROR:
3329 			optval = so->so_options & sopt->sopt_name;
3330 integer:
3331 			error = sooptcopyout(sopt, &optval, sizeof optval);
3332 			break;
3333 
3334 		case SO_DOMAIN:
3335 			optval = so->so_proto->pr_domain->dom_family;
3336 			goto integer;
3337 
3338 		case SO_TYPE:
3339 			optval = so->so_type;
3340 			goto integer;
3341 
3342 		case SO_PROTOCOL:
3343 			optval = so->so_proto->pr_protocol;
3344 			goto integer;
3345 
3346 		case SO_ERROR:
3347 			SOCK_LOCK(so);
3348 			if (so->so_error) {
3349 				optval = so->so_error;
3350 				so->so_error = 0;
3351 			} else {
3352 				optval = so->so_rerror;
3353 				so->so_rerror = 0;
3354 			}
3355 			SOCK_UNLOCK(so);
3356 			goto integer;
3357 
3358 		case SO_SNDBUF:
3359 			optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat :
3360 			    so->so_snd.sb_hiwat;
3361 			goto integer;
3362 
3363 		case SO_RCVBUF:
3364 			optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat :
3365 			    so->so_rcv.sb_hiwat;
3366 			goto integer;
3367 
3368 		case SO_SNDLOWAT:
3369 			optval = SOLISTENING(so) ? so->sol_sbsnd_lowat :
3370 			    so->so_snd.sb_lowat;
3371 			goto integer;
3372 
3373 		case SO_RCVLOWAT:
3374 			optval = SOLISTENING(so) ? so->sol_sbrcv_lowat :
3375 			    so->so_rcv.sb_lowat;
3376 			goto integer;
3377 
3378 		case SO_SNDTIMEO:
3379 		case SO_RCVTIMEO:
3380 			SOCK_LOCK(so);
3381 			tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ?
3382 			    (SOLISTENING(so) ? so->sol_sbsnd_timeo :
3383 			    so->so_snd.sb_timeo) :
3384 			    (SOLISTENING(so) ? so->sol_sbrcv_timeo :
3385 			    so->so_rcv.sb_timeo));
3386 			SOCK_UNLOCK(so);
3387 #ifdef COMPAT_FREEBSD32
3388 			if (SV_CURPROC_FLAG(SV_ILP32)) {
3389 				struct timeval32 tv32;
3390 
3391 				CP(tv, tv32, tv_sec);
3392 				CP(tv, tv32, tv_usec);
3393 				error = sooptcopyout(sopt, &tv32, sizeof tv32);
3394 			} else
3395 #endif
3396 				error = sooptcopyout(sopt, &tv, sizeof tv);
3397 			break;
3398 
3399 		case SO_LABEL:
3400 #ifdef MAC
3401 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
3402 			    sizeof(extmac));
3403 			if (error)
3404 				goto bad;
3405 			error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
3406 			    so, &extmac);
3407 			if (error)
3408 				goto bad;
3409 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
3410 #else
3411 			error = EOPNOTSUPP;
3412 #endif
3413 			break;
3414 
3415 		case SO_PEERLABEL:
3416 #ifdef MAC
3417 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
3418 			    sizeof(extmac));
3419 			if (error)
3420 				goto bad;
3421 			error = mac_getsockopt_peerlabel(
3422 			    sopt->sopt_td->td_ucred, so, &extmac);
3423 			if (error)
3424 				goto bad;
3425 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
3426 #else
3427 			error = EOPNOTSUPP;
3428 #endif
3429 			break;
3430 
3431 		case SO_LISTENQLIMIT:
3432 			optval = SOLISTENING(so) ? so->sol_qlimit : 0;
3433 			goto integer;
3434 
3435 		case SO_LISTENQLEN:
3436 			optval = SOLISTENING(so) ? so->sol_qlen : 0;
3437 			goto integer;
3438 
3439 		case SO_LISTENINCQLEN:
3440 			optval = SOLISTENING(so) ? so->sol_incqlen : 0;
3441 			goto integer;
3442 
3443 		case SO_TS_CLOCK:
3444 			optval = so->so_ts_clock;
3445 			goto integer;
3446 
3447 		case SO_MAX_PACING_RATE:
3448 			optval = so->so_max_pacing_rate;
3449 			goto integer;
3450 
3451 		default:
3452 			if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
3453 				error = hhook_run_socket(so, sopt,
3454 				    HHOOK_SOCKET_OPT);
3455 			else
3456 				error = ENOPROTOOPT;
3457 			break;
3458 		}
3459 	}
3460 #ifdef MAC
3461 bad:
3462 #endif
3463 	CURVNET_RESTORE();
3464 	return (error);
3465 }
3466 
3467 int
3468 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
3469 {
3470 	struct mbuf *m, *m_prev;
3471 	int sopt_size = sopt->sopt_valsize;
3472 
3473 	MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
3474 	if (m == NULL)
3475 		return ENOBUFS;
3476 	if (sopt_size > MLEN) {
3477 		MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT);
3478 		if ((m->m_flags & M_EXT) == 0) {
3479 			m_free(m);
3480 			return ENOBUFS;
3481 		}
3482 		m->m_len = min(MCLBYTES, sopt_size);
3483 	} else {
3484 		m->m_len = min(MLEN, sopt_size);
3485 	}
3486 	sopt_size -= m->m_len;
3487 	*mp = m;
3488 	m_prev = m;
3489 
3490 	while (sopt_size) {
3491 		MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
3492 		if (m == NULL) {
3493 			m_freem(*mp);
3494 			return ENOBUFS;
3495 		}
3496 		if (sopt_size > MLEN) {
3497 			MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK :
3498 			    M_NOWAIT);
3499 			if ((m->m_flags & M_EXT) == 0) {
3500 				m_freem(m);
3501 				m_freem(*mp);
3502 				return ENOBUFS;
3503 			}
3504 			m->m_len = min(MCLBYTES, sopt_size);
3505 		} else {
3506 			m->m_len = min(MLEN, sopt_size);
3507 		}
3508 		sopt_size -= m->m_len;
3509 		m_prev->m_next = m;
3510 		m_prev = m;
3511 	}
3512 	return (0);
3513 }
3514 
3515 int
3516 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
3517 {
3518 	struct mbuf *m0 = m;
3519 
3520 	if (sopt->sopt_val == NULL)
3521 		return (0);
3522 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
3523 		if (sopt->sopt_td != NULL) {
3524 			int error;
3525 
3526 			error = copyin(sopt->sopt_val, mtod(m, char *),
3527 			    m->m_len);
3528 			if (error != 0) {
3529 				m_freem(m0);
3530 				return(error);
3531 			}
3532 		} else
3533 			bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
3534 		sopt->sopt_valsize -= m->m_len;
3535 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
3536 		m = m->m_next;
3537 	}
3538 	if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
3539 		panic("ip6_sooptmcopyin");
3540 	return (0);
3541 }
3542 
3543 int
3544 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
3545 {
3546 	struct mbuf *m0 = m;
3547 	size_t valsize = 0;
3548 
3549 	if (sopt->sopt_val == NULL)
3550 		return (0);
3551 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
3552 		if (sopt->sopt_td != NULL) {
3553 			int error;
3554 
3555 			error = copyout(mtod(m, char *), sopt->sopt_val,
3556 			    m->m_len);
3557 			if (error != 0) {
3558 				m_freem(m0);
3559 				return(error);
3560 			}
3561 		} else
3562 			bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
3563 		sopt->sopt_valsize -= m->m_len;
3564 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
3565 		valsize += m->m_len;
3566 		m = m->m_next;
3567 	}
3568 	if (m != NULL) {
3569 		/* enough soopt buffer should be given from user-land */
3570 		m_freem(m0);
3571 		return(EINVAL);
3572 	}
3573 	sopt->sopt_valsize = valsize;
3574 	return (0);
3575 }
3576 
3577 /*
3578  * sohasoutofband(): protocol notifies socket layer of the arrival of new
3579  * out-of-band data, which will then notify socket consumers.
3580  */
3581 void
3582 sohasoutofband(struct socket *so)
3583 {
3584 
3585 	if (so->so_sigio != NULL)
3586 		pgsigio(&so->so_sigio, SIGURG, 0);
3587 	selwakeuppri(&so->so_rdsel, PSOCK);
3588 }
3589 
3590 int
3591 sopoll(struct socket *so, int events, struct ucred *active_cred,
3592     struct thread *td)
3593 {
3594 
3595 	/*
3596 	 * We do not need to set or assert curvnet as long as everyone uses
3597 	 * sopoll_generic().
3598 	 */
3599 	return (so->so_proto->pr_sopoll(so, events, active_cred, td));
3600 }
3601 
3602 int
3603 sopoll_generic(struct socket *so, int events, struct ucred *active_cred,
3604     struct thread *td)
3605 {
3606 	int revents;
3607 
3608 	SOCK_LOCK(so);
3609 	if (SOLISTENING(so)) {
3610 		if (!(events & (POLLIN | POLLRDNORM)))
3611 			revents = 0;
3612 		else if (!TAILQ_EMPTY(&so->sol_comp))
3613 			revents = events & (POLLIN | POLLRDNORM);
3614 		else if ((events & POLLINIGNEOF) == 0 && so->so_error)
3615 			revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP;
3616 		else {
3617 			selrecord(td, &so->so_rdsel);
3618 			revents = 0;
3619 		}
3620 	} else {
3621 		revents = 0;
3622 		SOCK_SENDBUF_LOCK(so);
3623 		SOCK_RECVBUF_LOCK(so);
3624 		if (events & (POLLIN | POLLRDNORM))
3625 			if (soreadabledata(so))
3626 				revents |= events & (POLLIN | POLLRDNORM);
3627 		if (events & (POLLOUT | POLLWRNORM))
3628 			if (sowriteable(so))
3629 				revents |= events & (POLLOUT | POLLWRNORM);
3630 		if (events & (POLLPRI | POLLRDBAND))
3631 			if (so->so_oobmark ||
3632 			    (so->so_rcv.sb_state & SBS_RCVATMARK))
3633 				revents |= events & (POLLPRI | POLLRDBAND);
3634 		if ((events & POLLINIGNEOF) == 0) {
3635 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3636 				revents |= events & (POLLIN | POLLRDNORM);
3637 				if (so->so_snd.sb_state & SBS_CANTSENDMORE)
3638 					revents |= POLLHUP;
3639 			}
3640 		}
3641 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
3642 			revents |= events & POLLRDHUP;
3643 		if (revents == 0) {
3644 			if (events &
3645 			    (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND | POLLRDHUP)) {
3646 				selrecord(td, &so->so_rdsel);
3647 				so->so_rcv.sb_flags |= SB_SEL;
3648 			}
3649 			if (events & (POLLOUT | POLLWRNORM)) {
3650 				selrecord(td, &so->so_wrsel);
3651 				so->so_snd.sb_flags |= SB_SEL;
3652 			}
3653 		}
3654 		SOCK_RECVBUF_UNLOCK(so);
3655 		SOCK_SENDBUF_UNLOCK(so);
3656 	}
3657 	SOCK_UNLOCK(so);
3658 	return (revents);
3659 }
3660 
3661 int
3662 soo_kqfilter(struct file *fp, struct knote *kn)
3663 {
3664 	struct socket *so = kn->kn_fp->f_data;
3665 	struct sockbuf *sb;
3666 	sb_which which;
3667 	struct knlist *knl;
3668 
3669 	switch (kn->kn_filter) {
3670 	case EVFILT_READ:
3671 		kn->kn_fop = &soread_filtops;
3672 		knl = &so->so_rdsel.si_note;
3673 		sb = &so->so_rcv;
3674 		which = SO_RCV;
3675 		break;
3676 	case EVFILT_WRITE:
3677 		kn->kn_fop = &sowrite_filtops;
3678 		knl = &so->so_wrsel.si_note;
3679 		sb = &so->so_snd;
3680 		which = SO_SND;
3681 		break;
3682 	case EVFILT_EMPTY:
3683 		kn->kn_fop = &soempty_filtops;
3684 		knl = &so->so_wrsel.si_note;
3685 		sb = &so->so_snd;
3686 		which = SO_SND;
3687 		break;
3688 	default:
3689 		return (EINVAL);
3690 	}
3691 
3692 	SOCK_LOCK(so);
3693 	if (SOLISTENING(so)) {
3694 		knlist_add(knl, kn, 1);
3695 	} else {
3696 		SOCK_BUF_LOCK(so, which);
3697 		knlist_add(knl, kn, 1);
3698 		sb->sb_flags |= SB_KNOTE;
3699 		SOCK_BUF_UNLOCK(so, which);
3700 	}
3701 	SOCK_UNLOCK(so);
3702 	return (0);
3703 }
3704 
3705 static void
3706 filt_sordetach(struct knote *kn)
3707 {
3708 	struct socket *so = kn->kn_fp->f_data;
3709 
3710 	so_rdknl_lock(so);
3711 	knlist_remove(&so->so_rdsel.si_note, kn, 1);
3712 	if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note))
3713 		so->so_rcv.sb_flags &= ~SB_KNOTE;
3714 	so_rdknl_unlock(so);
3715 }
3716 
3717 /*ARGSUSED*/
3718 static int
3719 filt_soread(struct knote *kn, long hint)
3720 {
3721 	struct socket *so;
3722 
3723 	so = kn->kn_fp->f_data;
3724 
3725 	if (SOLISTENING(so)) {
3726 		SOCK_LOCK_ASSERT(so);
3727 		kn->kn_data = so->sol_qlen;
3728 		if (so->so_error) {
3729 			kn->kn_flags |= EV_EOF;
3730 			kn->kn_fflags = so->so_error;
3731 			return (1);
3732 		}
3733 		return (!TAILQ_EMPTY(&so->sol_comp));
3734 	}
3735 
3736 	SOCK_RECVBUF_LOCK_ASSERT(so);
3737 
3738 	kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl;
3739 	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3740 		kn->kn_flags |= EV_EOF;
3741 		kn->kn_fflags = so->so_error;
3742 		return (1);
3743 	} else if (so->so_error || so->so_rerror)
3744 		return (1);
3745 
3746 	if (kn->kn_sfflags & NOTE_LOWAT) {
3747 		if (kn->kn_data >= kn->kn_sdata)
3748 			return (1);
3749 	} else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat)
3750 		return (1);
3751 
3752 	/* This hook returning non-zero indicates an event, not error */
3753 	return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD));
3754 }
3755 
3756 static void
3757 filt_sowdetach(struct knote *kn)
3758 {
3759 	struct socket *so = kn->kn_fp->f_data;
3760 
3761 	so_wrknl_lock(so);
3762 	knlist_remove(&so->so_wrsel.si_note, kn, 1);
3763 	if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note))
3764 		so->so_snd.sb_flags &= ~SB_KNOTE;
3765 	so_wrknl_unlock(so);
3766 }
3767 
3768 /*ARGSUSED*/
3769 static int
3770 filt_sowrite(struct knote *kn, long hint)
3771 {
3772 	struct socket *so;
3773 
3774 	so = kn->kn_fp->f_data;
3775 
3776 	if (SOLISTENING(so))
3777 		return (0);
3778 
3779 	SOCK_SENDBUF_LOCK_ASSERT(so);
3780 	kn->kn_data = sbspace(&so->so_snd);
3781 
3782 	hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE);
3783 
3784 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
3785 		kn->kn_flags |= EV_EOF;
3786 		kn->kn_fflags = so->so_error;
3787 		return (1);
3788 	} else if (so->so_error)	/* temporary udp error */
3789 		return (1);
3790 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
3791 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
3792 		return (0);
3793 	else if (kn->kn_sfflags & NOTE_LOWAT)
3794 		return (kn->kn_data >= kn->kn_sdata);
3795 	else
3796 		return (kn->kn_data >= so->so_snd.sb_lowat);
3797 }
3798 
3799 static int
3800 filt_soempty(struct knote *kn, long hint)
3801 {
3802 	struct socket *so;
3803 
3804 	so = kn->kn_fp->f_data;
3805 
3806 	if (SOLISTENING(so))
3807 		return (1);
3808 
3809 	SOCK_SENDBUF_LOCK_ASSERT(so);
3810 	kn->kn_data = sbused(&so->so_snd);
3811 
3812 	if (kn->kn_data == 0)
3813 		return (1);
3814 	else
3815 		return (0);
3816 }
3817 
3818 int
3819 socheckuid(struct socket *so, uid_t uid)
3820 {
3821 
3822 	if (so == NULL)
3823 		return (EPERM);
3824 	if (so->so_cred->cr_uid != uid)
3825 		return (EPERM);
3826 	return (0);
3827 }
3828 
3829 /*
3830  * These functions are used by protocols to notify the socket layer (and its
3831  * consumers) of state changes in the sockets driven by protocol-side events.
3832  */
3833 
3834 /*
3835  * Procedures to manipulate state flags of socket and do appropriate wakeups.
3836  *
3837  * Normal sequence from the active (originating) side is that
3838  * soisconnecting() is called during processing of connect() call, resulting
3839  * in an eventual call to soisconnected() if/when the connection is
3840  * established.  When the connection is torn down soisdisconnecting() is
3841  * called during processing of disconnect() call, and soisdisconnected() is
3842  * called when the connection to the peer is totally severed.  The semantics
3843  * of these routines are such that connectionless protocols can call
3844  * soisconnected() and soisdisconnected() only, bypassing the in-progress
3845  * calls when setting up a ``connection'' takes no time.
3846  *
3847  * From the passive side, a socket is created with two queues of sockets:
3848  * so_incomp for connections in progress and so_comp for connections already
3849  * made and awaiting user acceptance.  As a protocol is preparing incoming
3850  * connections, it creates a socket structure queued on so_incomp by calling
3851  * sonewconn().  When the connection is established, soisconnected() is
3852  * called, and transfers the socket structure to so_comp, making it available
3853  * to accept().
3854  *
3855  * If a socket is closed with sockets on either so_incomp or so_comp, these
3856  * sockets are dropped.
3857  *
3858  * If higher-level protocols are implemented in the kernel, the wakeups done
3859  * here will sometimes cause software-interrupt process scheduling.
3860  */
3861 void
3862 soisconnecting(struct socket *so)
3863 {
3864 
3865 	SOCK_LOCK(so);
3866 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
3867 	so->so_state |= SS_ISCONNECTING;
3868 	SOCK_UNLOCK(so);
3869 }
3870 
3871 void
3872 soisconnected(struct socket *so)
3873 {
3874 	bool last __diagused;
3875 
3876 	SOCK_LOCK(so);
3877 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
3878 	so->so_state |= SS_ISCONNECTED;
3879 
3880 	if (so->so_qstate == SQ_INCOMP) {
3881 		struct socket *head = so->so_listen;
3882 		int ret;
3883 
3884 		KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so));
3885 		/*
3886 		 * Promoting a socket from incomplete queue to complete, we
3887 		 * need to go through reverse order of locking.  We first do
3888 		 * trylock, and if that doesn't succeed, we go the hard way
3889 		 * leaving a reference and rechecking consistency after proper
3890 		 * locking.
3891 		 */
3892 		if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) {
3893 			soref(head);
3894 			SOCK_UNLOCK(so);
3895 			SOLISTEN_LOCK(head);
3896 			SOCK_LOCK(so);
3897 			if (__predict_false(head != so->so_listen)) {
3898 				/*
3899 				 * The socket went off the listen queue,
3900 				 * should be lost race to close(2) of sol.
3901 				 * The socket is about to soabort().
3902 				 */
3903 				SOCK_UNLOCK(so);
3904 				sorele_locked(head);
3905 				return;
3906 			}
3907 			last = refcount_release(&head->so_count);
3908 			KASSERT(!last, ("%s: released last reference for %p",
3909 			    __func__, head));
3910 		}
3911 again:
3912 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
3913 			TAILQ_REMOVE(&head->sol_incomp, so, so_list);
3914 			head->sol_incqlen--;
3915 			TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
3916 			head->sol_qlen++;
3917 			so->so_qstate = SQ_COMP;
3918 			SOCK_UNLOCK(so);
3919 			solisten_wakeup(head);	/* unlocks */
3920 		} else {
3921 			SOCK_RECVBUF_LOCK(so);
3922 			soupcall_set(so, SO_RCV,
3923 			    head->sol_accept_filter->accf_callback,
3924 			    head->sol_accept_filter_arg);
3925 			so->so_options &= ~SO_ACCEPTFILTER;
3926 			ret = head->sol_accept_filter->accf_callback(so,
3927 			    head->sol_accept_filter_arg, M_NOWAIT);
3928 			if (ret == SU_ISCONNECTED) {
3929 				soupcall_clear(so, SO_RCV);
3930 				SOCK_RECVBUF_UNLOCK(so);
3931 				goto again;
3932 			}
3933 			SOCK_RECVBUF_UNLOCK(so);
3934 			SOCK_UNLOCK(so);
3935 			SOLISTEN_UNLOCK(head);
3936 		}
3937 		return;
3938 	}
3939 	SOCK_UNLOCK(so);
3940 	wakeup(&so->so_timeo);
3941 	sorwakeup(so);
3942 	sowwakeup(so);
3943 }
3944 
3945 void
3946 soisdisconnecting(struct socket *so)
3947 {
3948 
3949 	SOCK_LOCK(so);
3950 	so->so_state &= ~SS_ISCONNECTING;
3951 	so->so_state |= SS_ISDISCONNECTING;
3952 
3953 	if (!SOLISTENING(so)) {
3954 		SOCK_RECVBUF_LOCK(so);
3955 		socantrcvmore_locked(so);
3956 		SOCK_SENDBUF_LOCK(so);
3957 		socantsendmore_locked(so);
3958 	}
3959 	SOCK_UNLOCK(so);
3960 	wakeup(&so->so_timeo);
3961 }
3962 
3963 void
3964 soisdisconnected(struct socket *so)
3965 {
3966 
3967 	SOCK_LOCK(so);
3968 
3969 	/*
3970 	 * There is at least one reader of so_state that does not
3971 	 * acquire socket lock, namely soreceive_generic().  Ensure
3972 	 * that it never sees all flags that track connection status
3973 	 * cleared, by ordering the update with a barrier semantic of
3974 	 * our release thread fence.
3975 	 */
3976 	so->so_state |= SS_ISDISCONNECTED;
3977 	atomic_thread_fence_rel();
3978 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
3979 
3980 	if (!SOLISTENING(so)) {
3981 		SOCK_UNLOCK(so);
3982 		SOCK_RECVBUF_LOCK(so);
3983 		socantrcvmore_locked(so);
3984 		SOCK_SENDBUF_LOCK(so);
3985 		sbdrop_locked(&so->so_snd, sbused(&so->so_snd));
3986 		socantsendmore_locked(so);
3987 	} else
3988 		SOCK_UNLOCK(so);
3989 	wakeup(&so->so_timeo);
3990 }
3991 
3992 int
3993 soiolock(struct socket *so, struct sx *sx, int flags)
3994 {
3995 	int error;
3996 
3997 	KASSERT((flags & SBL_VALID) == flags,
3998 	    ("soiolock: invalid flags %#x", flags));
3999 
4000 	if ((flags & SBL_WAIT) != 0) {
4001 		if ((flags & SBL_NOINTR) != 0) {
4002 			sx_xlock(sx);
4003 		} else {
4004 			error = sx_xlock_sig(sx);
4005 			if (error != 0)
4006 				return (error);
4007 		}
4008 	} else if (!sx_try_xlock(sx)) {
4009 		return (EWOULDBLOCK);
4010 	}
4011 
4012 	if (__predict_false(SOLISTENING(so))) {
4013 		sx_xunlock(sx);
4014 		return (ENOTCONN);
4015 	}
4016 	return (0);
4017 }
4018 
4019 void
4020 soiounlock(struct sx *sx)
4021 {
4022 	sx_xunlock(sx);
4023 }
4024 
4025 /*
4026  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
4027  */
4028 struct sockaddr *
4029 sodupsockaddr(const struct sockaddr *sa, int mflags)
4030 {
4031 	struct sockaddr *sa2;
4032 
4033 	sa2 = malloc(sa->sa_len, M_SONAME, mflags);
4034 	if (sa2)
4035 		bcopy(sa, sa2, sa->sa_len);
4036 	return sa2;
4037 }
4038 
4039 /*
4040  * Register per-socket destructor.
4041  */
4042 void
4043 sodtor_set(struct socket *so, so_dtor_t *func)
4044 {
4045 
4046 	SOCK_LOCK_ASSERT(so);
4047 	so->so_dtor = func;
4048 }
4049 
4050 /*
4051  * Register per-socket buffer upcalls.
4052  */
4053 void
4054 soupcall_set(struct socket *so, sb_which which, so_upcall_t func, void *arg)
4055 {
4056 	struct sockbuf *sb;
4057 
4058 	KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4059 
4060 	switch (which) {
4061 	case SO_RCV:
4062 		sb = &so->so_rcv;
4063 		break;
4064 	case SO_SND:
4065 		sb = &so->so_snd;
4066 		break;
4067 	}
4068 	SOCK_BUF_LOCK_ASSERT(so, which);
4069 	sb->sb_upcall = func;
4070 	sb->sb_upcallarg = arg;
4071 	sb->sb_flags |= SB_UPCALL;
4072 }
4073 
4074 void
4075 soupcall_clear(struct socket *so, sb_which which)
4076 {
4077 	struct sockbuf *sb;
4078 
4079 	KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4080 
4081 	switch (which) {
4082 	case SO_RCV:
4083 		sb = &so->so_rcv;
4084 		break;
4085 	case SO_SND:
4086 		sb = &so->so_snd;
4087 		break;
4088 	}
4089 	SOCK_BUF_LOCK_ASSERT(so, which);
4090 	KASSERT(sb->sb_upcall != NULL,
4091 	    ("%s: so %p no upcall to clear", __func__, so));
4092 	sb->sb_upcall = NULL;
4093 	sb->sb_upcallarg = NULL;
4094 	sb->sb_flags &= ~SB_UPCALL;
4095 }
4096 
4097 void
4098 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg)
4099 {
4100 
4101 	SOLISTEN_LOCK_ASSERT(so);
4102 	so->sol_upcall = func;
4103 	so->sol_upcallarg = arg;
4104 }
4105 
4106 static void
4107 so_rdknl_lock(void *arg)
4108 {
4109 	struct socket *so = arg;
4110 
4111 retry:
4112 	if (SOLISTENING(so)) {
4113 		SOLISTEN_LOCK(so);
4114 	} else {
4115 		SOCK_RECVBUF_LOCK(so);
4116 		if (__predict_false(SOLISTENING(so))) {
4117 			SOCK_RECVBUF_UNLOCK(so);
4118 			goto retry;
4119 		}
4120 	}
4121 }
4122 
4123 static void
4124 so_rdknl_unlock(void *arg)
4125 {
4126 	struct socket *so = arg;
4127 
4128 	if (SOLISTENING(so))
4129 		SOLISTEN_UNLOCK(so);
4130 	else
4131 		SOCK_RECVBUF_UNLOCK(so);
4132 }
4133 
4134 static void
4135 so_rdknl_assert_lock(void *arg, int what)
4136 {
4137 	struct socket *so = arg;
4138 
4139 	if (what == LA_LOCKED) {
4140 		if (SOLISTENING(so))
4141 			SOLISTEN_LOCK_ASSERT(so);
4142 		else
4143 			SOCK_RECVBUF_LOCK_ASSERT(so);
4144 	} else {
4145 		if (SOLISTENING(so))
4146 			SOLISTEN_UNLOCK_ASSERT(so);
4147 		else
4148 			SOCK_RECVBUF_UNLOCK_ASSERT(so);
4149 	}
4150 }
4151 
4152 static void
4153 so_wrknl_lock(void *arg)
4154 {
4155 	struct socket *so = arg;
4156 
4157 retry:
4158 	if (SOLISTENING(so)) {
4159 		SOLISTEN_LOCK(so);
4160 	} else {
4161 		SOCK_SENDBUF_LOCK(so);
4162 		if (__predict_false(SOLISTENING(so))) {
4163 			SOCK_SENDBUF_UNLOCK(so);
4164 			goto retry;
4165 		}
4166 	}
4167 }
4168 
4169 static void
4170 so_wrknl_unlock(void *arg)
4171 {
4172 	struct socket *so = arg;
4173 
4174 	if (SOLISTENING(so))
4175 		SOLISTEN_UNLOCK(so);
4176 	else
4177 		SOCK_SENDBUF_UNLOCK(so);
4178 }
4179 
4180 static void
4181 so_wrknl_assert_lock(void *arg, int what)
4182 {
4183 	struct socket *so = arg;
4184 
4185 	if (what == LA_LOCKED) {
4186 		if (SOLISTENING(so))
4187 			SOLISTEN_LOCK_ASSERT(so);
4188 		else
4189 			SOCK_SENDBUF_LOCK_ASSERT(so);
4190 	} else {
4191 		if (SOLISTENING(so))
4192 			SOLISTEN_UNLOCK_ASSERT(so);
4193 		else
4194 			SOCK_SENDBUF_UNLOCK_ASSERT(so);
4195 	}
4196 }
4197 
4198 /*
4199  * Create an external-format (``xsocket'') structure using the information in
4200  * the kernel-format socket structure pointed to by so.  This is done to
4201  * reduce the spew of irrelevant information over this interface, to isolate
4202  * user code from changes in the kernel structure, and potentially to provide
4203  * information-hiding if we decide that some of this information should be
4204  * hidden from users.
4205  */
4206 void
4207 sotoxsocket(struct socket *so, struct xsocket *xso)
4208 {
4209 
4210 	bzero(xso, sizeof(*xso));
4211 	xso->xso_len = sizeof *xso;
4212 	xso->xso_so = (uintptr_t)so;
4213 	xso->so_type = so->so_type;
4214 	xso->so_options = so->so_options;
4215 	xso->so_linger = so->so_linger;
4216 	xso->so_state = so->so_state;
4217 	xso->so_pcb = (uintptr_t)so->so_pcb;
4218 	xso->xso_protocol = so->so_proto->pr_protocol;
4219 	xso->xso_family = so->so_proto->pr_domain->dom_family;
4220 	xso->so_timeo = so->so_timeo;
4221 	xso->so_error = so->so_error;
4222 	xso->so_uid = so->so_cred->cr_uid;
4223 	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
4224 	if (SOLISTENING(so)) {
4225 		xso->so_qlen = so->sol_qlen;
4226 		xso->so_incqlen = so->sol_incqlen;
4227 		xso->so_qlimit = so->sol_qlimit;
4228 		xso->so_oobmark = 0;
4229 	} else {
4230 		xso->so_state |= so->so_qstate;
4231 		xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0;
4232 		xso->so_oobmark = so->so_oobmark;
4233 		sbtoxsockbuf(&so->so_snd, &xso->so_snd);
4234 		sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
4235 	}
4236 }
4237 
4238 struct sockbuf *
4239 so_sockbuf_rcv(struct socket *so)
4240 {
4241 
4242 	return (&so->so_rcv);
4243 }
4244 
4245 struct sockbuf *
4246 so_sockbuf_snd(struct socket *so)
4247 {
4248 
4249 	return (&so->so_snd);
4250 }
4251 
4252 int
4253 so_state_get(const struct socket *so)
4254 {
4255 
4256 	return (so->so_state);
4257 }
4258 
4259 void
4260 so_state_set(struct socket *so, int val)
4261 {
4262 
4263 	so->so_state = val;
4264 }
4265 
4266 int
4267 so_options_get(const struct socket *so)
4268 {
4269 
4270 	return (so->so_options);
4271 }
4272 
4273 void
4274 so_options_set(struct socket *so, int val)
4275 {
4276 
4277 	so->so_options = val;
4278 }
4279 
4280 int
4281 so_error_get(const struct socket *so)
4282 {
4283 
4284 	return (so->so_error);
4285 }
4286 
4287 void
4288 so_error_set(struct socket *so, int val)
4289 {
4290 
4291 	so->so_error = val;
4292 }
4293 
4294 int
4295 so_linger_get(const struct socket *so)
4296 {
4297 
4298 	return (so->so_linger);
4299 }
4300 
4301 void
4302 so_linger_set(struct socket *so, int val)
4303 {
4304 
4305 	KASSERT(val >= 0 && val <= USHRT_MAX && val <= (INT_MAX / hz),
4306 	    ("%s: val %d out of range", __func__, val));
4307 
4308 	so->so_linger = val;
4309 }
4310 
4311 struct protosw *
4312 so_protosw_get(const struct socket *so)
4313 {
4314 
4315 	return (so->so_proto);
4316 }
4317 
4318 void
4319 so_protosw_set(struct socket *so, struct protosw *val)
4320 {
4321 
4322 	so->so_proto = val;
4323 }
4324 
4325 void
4326 so_sorwakeup(struct socket *so)
4327 {
4328 
4329 	sorwakeup(so);
4330 }
4331 
4332 void
4333 so_sowwakeup(struct socket *so)
4334 {
4335 
4336 	sowwakeup(so);
4337 }
4338 
4339 void
4340 so_sorwakeup_locked(struct socket *so)
4341 {
4342 
4343 	sorwakeup_locked(so);
4344 }
4345 
4346 void
4347 so_sowwakeup_locked(struct socket *so)
4348 {
4349 
4350 	sowwakeup_locked(so);
4351 }
4352 
4353 void
4354 so_lock(struct socket *so)
4355 {
4356 
4357 	SOCK_LOCK(so);
4358 }
4359 
4360 void
4361 so_unlock(struct socket *so)
4362 {
4363 
4364 	SOCK_UNLOCK(so);
4365 }
4366