xref: /freebsd/sys/kern/uipc_socket.c (revision 6683132d54bd6d589889e43dabdc53d35e38a028)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
5  *	The Regents of the University of California.
6  * Copyright (c) 2004 The FreeBSD Foundation
7  * Copyright (c) 2004-2008 Robert N. M. Watson
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)uipc_socket.c	8.3 (Berkeley) 4/15/94
35  */
36 
37 /*
38  * Comments on the socket life cycle:
39  *
40  * soalloc() sets of socket layer state for a socket, called only by
41  * socreate() and sonewconn().  Socket layer private.
42  *
43  * sodealloc() tears down socket layer state for a socket, called only by
44  * sofree() and sonewconn().  Socket layer private.
45  *
46  * pru_attach() associates protocol layer state with an allocated socket;
47  * called only once, may fail, aborting socket allocation.  This is called
48  * from socreate() and sonewconn().  Socket layer private.
49  *
50  * pru_detach() disassociates protocol layer state from an attached socket,
51  * and will be called exactly once for sockets in which pru_attach() has
52  * been successfully called.  If pru_attach() returned an error,
53  * pru_detach() will not be called.  Socket layer private.
54  *
55  * pru_abort() and pru_close() notify the protocol layer that the last
56  * consumer of a socket is starting to tear down the socket, and that the
57  * protocol should terminate the connection.  Historically, pru_abort() also
58  * detached protocol state from the socket state, but this is no longer the
59  * case.
60  *
61  * socreate() creates a socket and attaches protocol state.  This is a public
62  * interface that may be used by socket layer consumers to create new
63  * sockets.
64  *
65  * sonewconn() creates a socket and attaches protocol state.  This is a
66  * public interface  that may be used by protocols to create new sockets when
67  * a new connection is received and will be available for accept() on a
68  * listen socket.
69  *
70  * soclose() destroys a socket after possibly waiting for it to disconnect.
71  * This is a public interface that socket consumers should use to close and
72  * release a socket when done with it.
73  *
74  * soabort() destroys a socket without waiting for it to disconnect (used
75  * only for incoming connections that are already partially or fully
76  * connected).  This is used internally by the socket layer when clearing
77  * listen socket queues (due to overflow or close on the listen socket), but
78  * is also a public interface protocols may use to abort connections in
79  * their incomplete listen queues should they no longer be required.  Sockets
80  * placed in completed connection listen queues should not be aborted for
81  * reasons described in the comment above the soclose() implementation.  This
82  * is not a general purpose close routine, and except in the specific
83  * circumstances described here, should not be used.
84  *
85  * sofree() will free a socket and its protocol state if all references on
86  * the socket have been released, and is the public interface to attempt to
87  * free a socket when a reference is removed.  This is a socket layer private
88  * interface.
89  *
90  * NOTE: In addition to socreate() and soclose(), which provide a single
91  * socket reference to the consumer to be managed as required, there are two
92  * calls to explicitly manage socket references, soref(), and sorele().
93  * Currently, these are generally required only when transitioning a socket
94  * from a listen queue to a file descriptor, in order to prevent garbage
95  * collection of the socket at an untimely moment.  For a number of reasons,
96  * these interfaces are not preferred, and should be avoided.
97  *
98  * NOTE: With regard to VNETs the general rule is that callers do not set
99  * curvnet. Exceptions to this rule include soabort(), sodisconnect(),
100  * sofree() (and with that sorele(), sotryfree()), as well as sonewconn()
101  * and sorflush(), which are usually called from a pre-set VNET context.
102  * sopoll() currently does not need a VNET context to be set.
103  */
104 
105 #include <sys/cdefs.h>
106 __FBSDID("$FreeBSD$");
107 
108 #include "opt_inet.h"
109 #include "opt_inet6.h"
110 #include "opt_sctp.h"
111 
112 #include <sys/param.h>
113 #include <sys/systm.h>
114 #include <sys/fcntl.h>
115 #include <sys/limits.h>
116 #include <sys/lock.h>
117 #include <sys/mac.h>
118 #include <sys/malloc.h>
119 #include <sys/mbuf.h>
120 #include <sys/mutex.h>
121 #include <sys/domain.h>
122 #include <sys/file.h>			/* for struct knote */
123 #include <sys/hhook.h>
124 #include <sys/kernel.h>
125 #include <sys/khelp.h>
126 #include <sys/event.h>
127 #include <sys/eventhandler.h>
128 #include <sys/poll.h>
129 #include <sys/proc.h>
130 #include <sys/protosw.h>
131 #include <sys/socket.h>
132 #include <sys/socketvar.h>
133 #include <sys/resourcevar.h>
134 #include <net/route.h>
135 #include <sys/signalvar.h>
136 #include <sys/stat.h>
137 #include <sys/sx.h>
138 #include <sys/sysctl.h>
139 #include <sys/taskqueue.h>
140 #include <sys/uio.h>
141 #include <sys/jail.h>
142 #include <sys/syslog.h>
143 #include <netinet/in.h>
144 
145 #include <net/vnet.h>
146 
147 #include <security/mac/mac_framework.h>
148 
149 #include <vm/uma.h>
150 
151 #ifdef COMPAT_FREEBSD32
152 #include <sys/mount.h>
153 #include <sys/sysent.h>
154 #include <compat/freebsd32/freebsd32.h>
155 #endif
156 
157 static int	soreceive_rcvoob(struct socket *so, struct uio *uio,
158 		    int flags);
159 static void	so_rdknl_lock(void *);
160 static void	so_rdknl_unlock(void *);
161 static void	so_rdknl_assert_locked(void *);
162 static void	so_rdknl_assert_unlocked(void *);
163 static void	so_wrknl_lock(void *);
164 static void	so_wrknl_unlock(void *);
165 static void	so_wrknl_assert_locked(void *);
166 static void	so_wrknl_assert_unlocked(void *);
167 
168 static void	filt_sordetach(struct knote *kn);
169 static int	filt_soread(struct knote *kn, long hint);
170 static void	filt_sowdetach(struct knote *kn);
171 static int	filt_sowrite(struct knote *kn, long hint);
172 static int	filt_soempty(struct knote *kn, long hint);
173 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id);
174 fo_kqfilter_t	soo_kqfilter;
175 
176 static struct filterops soread_filtops = {
177 	.f_isfd = 1,
178 	.f_detach = filt_sordetach,
179 	.f_event = filt_soread,
180 };
181 static struct filterops sowrite_filtops = {
182 	.f_isfd = 1,
183 	.f_detach = filt_sowdetach,
184 	.f_event = filt_sowrite,
185 };
186 static struct filterops soempty_filtops = {
187 	.f_isfd = 1,
188 	.f_detach = filt_sowdetach,
189 	.f_event = filt_soempty,
190 };
191 
192 so_gen_t	so_gencnt;	/* generation count for sockets */
193 
194 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
195 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
196 
197 #define	VNET_SO_ASSERT(so)						\
198 	VNET_ASSERT(curvnet != NULL,					\
199 	    ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so)));
200 
201 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]);
202 #define	V_socket_hhh		VNET(socket_hhh)
203 
204 /*
205  * Limit on the number of connections in the listen queue waiting
206  * for accept(2).
207  * NB: The original sysctl somaxconn is still available but hidden
208  * to prevent confusion about the actual purpose of this number.
209  */
210 static u_int somaxconn = SOMAXCONN;
211 
212 static int
213 sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
214 {
215 	int error;
216 	int val;
217 
218 	val = somaxconn;
219 	error = sysctl_handle_int(oidp, &val, 0, req);
220 	if (error || !req->newptr )
221 		return (error);
222 
223 	/*
224 	 * The purpose of the UINT_MAX / 3 limit, is so that the formula
225 	 *   3 * so_qlimit / 2
226 	 * below, will not overflow.
227          */
228 
229 	if (val < 1 || val > UINT_MAX / 3)
230 		return (EINVAL);
231 
232 	somaxconn = val;
233 	return (0);
234 }
235 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue, CTLTYPE_UINT | CTLFLAG_RW,
236     0, sizeof(int), sysctl_somaxconn, "I",
237     "Maximum listen socket pending connection accept queue size");
238 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn,
239     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP,
240     0, sizeof(int), sysctl_somaxconn, "I",
241     "Maximum listen socket pending connection accept queue size (compat)");
242 
243 static int numopensockets;
244 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,
245     &numopensockets, 0, "Number of open sockets");
246 
247 /*
248  * accept_mtx locks down per-socket fields relating to accept queues.  See
249  * socketvar.h for an annotation of the protected fields of struct socket.
250  */
251 struct mtx accept_mtx;
252 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF);
253 
254 /*
255  * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
256  * so_gencnt field.
257  */
258 static struct mtx so_global_mtx;
259 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
260 
261 /*
262  * General IPC sysctl name space, used by sockets and a variety of other IPC
263  * types.
264  */
265 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
266 
267 /*
268  * Initialize the socket subsystem and set up the socket
269  * memory allocator.
270  */
271 static uma_zone_t socket_zone;
272 int	maxsockets;
273 
274 static void
275 socket_zone_change(void *tag)
276 {
277 
278 	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
279 }
280 
281 static void
282 socket_hhook_register(int subtype)
283 {
284 
285 	if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype,
286 	    &V_socket_hhh[subtype],
287 	    HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
288 		printf("%s: WARNING: unable to register hook\n", __func__);
289 }
290 
291 static void
292 socket_hhook_deregister(int subtype)
293 {
294 
295 	if (hhook_head_deregister(V_socket_hhh[subtype]) != 0)
296 		printf("%s: WARNING: unable to deregister hook\n", __func__);
297 }
298 
299 static void
300 socket_init(void *tag)
301 {
302 
303 	socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL,
304 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
305 	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
306 	uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached");
307 	EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL,
308 	    EVENTHANDLER_PRI_FIRST);
309 }
310 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL);
311 
312 static void
313 socket_vnet_init(const void *unused __unused)
314 {
315 	int i;
316 
317 	/* We expect a contiguous range */
318 	for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
319 		socket_hhook_register(i);
320 }
321 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
322     socket_vnet_init, NULL);
323 
324 static void
325 socket_vnet_uninit(const void *unused __unused)
326 {
327 	int i;
328 
329 	for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
330 		socket_hhook_deregister(i);
331 }
332 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
333     socket_vnet_uninit, NULL);
334 
335 /*
336  * Initialise maxsockets.  This SYSINIT must be run after
337  * tunable_mbinit().
338  */
339 static void
340 init_maxsockets(void *ignored)
341 {
342 
343 	TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
344 	maxsockets = imax(maxsockets, maxfiles);
345 }
346 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
347 
348 /*
349  * Sysctl to get and set the maximum global sockets limit.  Notify protocols
350  * of the change so that they can update their dependent limits as required.
351  */
352 static int
353 sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
354 {
355 	int error, newmaxsockets;
356 
357 	newmaxsockets = maxsockets;
358 	error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
359 	if (error == 0 && req->newptr) {
360 		if (newmaxsockets > maxsockets &&
361 		    newmaxsockets <= maxfiles) {
362 			maxsockets = newmaxsockets;
363 			EVENTHANDLER_INVOKE(maxsockets_change);
364 		} else
365 			error = EINVAL;
366 	}
367 	return (error);
368 }
369 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, CTLTYPE_INT|CTLFLAG_RW,
370     &maxsockets, 0, sysctl_maxsockets, "IU",
371     "Maximum number of sockets available");
372 
373 /*
374  * Socket operation routines.  These routines are called by the routines in
375  * sys_socket.c or from a system process, and implement the semantics of
376  * socket operations by switching out to the protocol specific routines.
377  */
378 
379 /*
380  * Get a socket structure from our zone, and initialize it.  Note that it
381  * would probably be better to allocate socket and PCB at the same time, but
382  * I'm not convinced that all the protocols can be easily modified to do
383  * this.
384  *
385  * soalloc() returns a socket with a ref count of 0.
386  */
387 static struct socket *
388 soalloc(struct vnet *vnet)
389 {
390 	struct socket *so;
391 
392 	so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
393 	if (so == NULL)
394 		return (NULL);
395 #ifdef MAC
396 	if (mac_socket_init(so, M_NOWAIT) != 0) {
397 		uma_zfree(socket_zone, so);
398 		return (NULL);
399 	}
400 #endif
401 	if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) {
402 		uma_zfree(socket_zone, so);
403 		return (NULL);
404 	}
405 
406 	/*
407 	 * The socket locking protocol allows to lock 2 sockets at a time,
408 	 * however, the first one must be a listening socket.  WITNESS lacks
409 	 * a feature to change class of an existing lock, so we use DUPOK.
410 	 */
411 	mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK);
412 	SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd");
413 	SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv");
414 	so->so_rcv.sb_sel = &so->so_rdsel;
415 	so->so_snd.sb_sel = &so->so_wrsel;
416 	sx_init(&so->so_snd.sb_sx, "so_snd_sx");
417 	sx_init(&so->so_rcv.sb_sx, "so_rcv_sx");
418 	TAILQ_INIT(&so->so_snd.sb_aiojobq);
419 	TAILQ_INIT(&so->so_rcv.sb_aiojobq);
420 	TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so);
421 	TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so);
422 #ifdef VIMAGE
423 	VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p",
424 	    __func__, __LINE__, so));
425 	so->so_vnet = vnet;
426 #endif
427 	/* We shouldn't need the so_global_mtx */
428 	if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) {
429 		/* Do we need more comprehensive error returns? */
430 		uma_zfree(socket_zone, so);
431 		return (NULL);
432 	}
433 	mtx_lock(&so_global_mtx);
434 	so->so_gencnt = ++so_gencnt;
435 	++numopensockets;
436 #ifdef VIMAGE
437 	vnet->vnet_sockcnt++;
438 #endif
439 	mtx_unlock(&so_global_mtx);
440 
441 	return (so);
442 }
443 
444 /*
445  * Free the storage associated with a socket at the socket layer, tear down
446  * locks, labels, etc.  All protocol state is assumed already to have been
447  * torn down (and possibly never set up) by the caller.
448  */
449 static void
450 sodealloc(struct socket *so)
451 {
452 
453 	KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
454 	KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
455 
456 	mtx_lock(&so_global_mtx);
457 	so->so_gencnt = ++so_gencnt;
458 	--numopensockets;	/* Could be below, but faster here. */
459 #ifdef VIMAGE
460 	VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p",
461 	    __func__, __LINE__, so));
462 	so->so_vnet->vnet_sockcnt--;
463 #endif
464 	mtx_unlock(&so_global_mtx);
465 #ifdef MAC
466 	mac_socket_destroy(so);
467 #endif
468 	hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE);
469 
470 	crfree(so->so_cred);
471 	khelp_destroy_osd(&so->osd);
472 	if (SOLISTENING(so)) {
473 		if (so->sol_accept_filter != NULL)
474 			accept_filt_setopt(so, NULL);
475 	} else {
476 		if (so->so_rcv.sb_hiwat)
477 			(void)chgsbsize(so->so_cred->cr_uidinfo,
478 			    &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
479 		if (so->so_snd.sb_hiwat)
480 			(void)chgsbsize(so->so_cred->cr_uidinfo,
481 			    &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
482 		sx_destroy(&so->so_snd.sb_sx);
483 		sx_destroy(&so->so_rcv.sb_sx);
484 		SOCKBUF_LOCK_DESTROY(&so->so_snd);
485 		SOCKBUF_LOCK_DESTROY(&so->so_rcv);
486 	}
487 	mtx_destroy(&so->so_lock);
488 	uma_zfree(socket_zone, so);
489 }
490 
491 /*
492  * socreate returns a socket with a ref count of 1.  The socket should be
493  * closed with soclose().
494  */
495 int
496 socreate(int dom, struct socket **aso, int type, int proto,
497     struct ucred *cred, struct thread *td)
498 {
499 	struct protosw *prp;
500 	struct socket *so;
501 	int error;
502 
503 	if (proto)
504 		prp = pffindproto(dom, proto, type);
505 	else
506 		prp = pffindtype(dom, type);
507 
508 	if (prp == NULL) {
509 		/* No support for domain. */
510 		if (pffinddomain(dom) == NULL)
511 			return (EAFNOSUPPORT);
512 		/* No support for socket type. */
513 		if (proto == 0 && type != 0)
514 			return (EPROTOTYPE);
515 		return (EPROTONOSUPPORT);
516 	}
517 	if (prp->pr_usrreqs->pru_attach == NULL ||
518 	    prp->pr_usrreqs->pru_attach == pru_attach_notsupp)
519 		return (EPROTONOSUPPORT);
520 
521 	if (prison_check_af(cred, prp->pr_domain->dom_family) != 0)
522 		return (EPROTONOSUPPORT);
523 
524 	if (prp->pr_type != type)
525 		return (EPROTOTYPE);
526 	so = soalloc(CRED_TO_VNET(cred));
527 	if (so == NULL)
528 		return (ENOBUFS);
529 
530 	so->so_type = type;
531 	so->so_cred = crhold(cred);
532 	if ((prp->pr_domain->dom_family == PF_INET) ||
533 	    (prp->pr_domain->dom_family == PF_INET6) ||
534 	    (prp->pr_domain->dom_family == PF_ROUTE))
535 		so->so_fibnum = td->td_proc->p_fibnum;
536 	else
537 		so->so_fibnum = 0;
538 	so->so_proto = prp;
539 #ifdef MAC
540 	mac_socket_create(cred, so);
541 #endif
542 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
543 	    so_rdknl_assert_locked, so_rdknl_assert_unlocked);
544 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
545 	    so_wrknl_assert_locked, so_wrknl_assert_unlocked);
546 	/*
547 	 * Auto-sizing of socket buffers is managed by the protocols and
548 	 * the appropriate flags must be set in the pru_attach function.
549 	 */
550 	CURVNET_SET(so->so_vnet);
551 	error = (*prp->pr_usrreqs->pru_attach)(so, proto, td);
552 	CURVNET_RESTORE();
553 	if (error) {
554 		sodealloc(so);
555 		return (error);
556 	}
557 	soref(so);
558 	*aso = so;
559 	return (0);
560 }
561 
562 #ifdef REGRESSION
563 static int regression_sonewconn_earlytest = 1;
564 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
565     &regression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
566 #endif
567 
568 /*
569  * When an attempt at a new connection is noted on a socket which accepts
570  * connections, sonewconn is called.  If the connection is possible (subject
571  * to space constraints, etc.) then we allocate a new structure, properly
572  * linked into the data structure of the original socket, and return this.
573  * Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED.
574  *
575  * Note: the ref count on the socket is 0 on return.
576  */
577 struct socket *
578 sonewconn(struct socket *head, int connstatus)
579 {
580 	static struct timeval lastover;
581 	static struct timeval overinterval = { 60, 0 };
582 	static int overcount;
583 
584 	struct socket *so;
585 	u_int over;
586 
587 	SOLISTEN_LOCK(head);
588 	over = (head->sol_qlen > 3 * head->sol_qlimit / 2);
589 	SOLISTEN_UNLOCK(head);
590 #ifdef REGRESSION
591 	if (regression_sonewconn_earlytest && over) {
592 #else
593 	if (over) {
594 #endif
595 		overcount++;
596 
597 		if (ratecheck(&lastover, &overinterval)) {
598 			log(LOG_DEBUG, "%s: pcb %p: Listen queue overflow: "
599 			    "%i already in queue awaiting acceptance "
600 			    "(%d occurrences)\n",
601 			    __func__, head->so_pcb, head->sol_qlen, overcount);
602 
603 			overcount = 0;
604 		}
605 
606 		return (NULL);
607 	}
608 	VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL",
609 	    __func__, head));
610 	so = soalloc(head->so_vnet);
611 	if (so == NULL) {
612 		log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
613 		    "limit reached or out of memory\n",
614 		    __func__, head->so_pcb);
615 		return (NULL);
616 	}
617 	so->so_listen = head;
618 	so->so_type = head->so_type;
619 	so->so_linger = head->so_linger;
620 	so->so_state = head->so_state | SS_NOFDREF;
621 	so->so_fibnum = head->so_fibnum;
622 	so->so_proto = head->so_proto;
623 	so->so_cred = crhold(head->so_cred);
624 #ifdef MAC
625 	mac_socket_newconn(head, so);
626 #endif
627 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
628 	    so_rdknl_assert_locked, so_rdknl_assert_unlocked);
629 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
630 	    so_wrknl_assert_locked, so_wrknl_assert_unlocked);
631 	VNET_SO_ASSERT(head);
632 	if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) {
633 		sodealloc(so);
634 		log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
635 		    __func__, head->so_pcb);
636 		return (NULL);
637 	}
638 	if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
639 		sodealloc(so);
640 		log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n",
641 		    __func__, head->so_pcb);
642 		return (NULL);
643 	}
644 	so->so_rcv.sb_lowat = head->sol_sbrcv_lowat;
645 	so->so_snd.sb_lowat = head->sol_sbsnd_lowat;
646 	so->so_rcv.sb_timeo = head->sol_sbrcv_timeo;
647 	so->so_snd.sb_timeo = head->sol_sbsnd_timeo;
648 	so->so_rcv.sb_flags |= head->sol_sbrcv_flags & SB_AUTOSIZE;
649 	so->so_snd.sb_flags |= head->sol_sbsnd_flags & SB_AUTOSIZE;
650 
651 	SOLISTEN_LOCK(head);
652 	if (head->sol_accept_filter != NULL)
653 		connstatus = 0;
654 	so->so_state |= connstatus;
655 	so->so_options = head->so_options & ~SO_ACCEPTCONN;
656 	soref(head); /* A socket on (in)complete queue refs head. */
657 	if (connstatus) {
658 		TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
659 		so->so_qstate = SQ_COMP;
660 		head->sol_qlen++;
661 		solisten_wakeup(head);	/* unlocks */
662 	} else {
663 		/*
664 		 * Keep removing sockets from the head until there's room for
665 		 * us to insert on the tail.  In pre-locking revisions, this
666 		 * was a simple if(), but as we could be racing with other
667 		 * threads and soabort() requires dropping locks, we must
668 		 * loop waiting for the condition to be true.
669 		 */
670 		while (head->sol_incqlen > head->sol_qlimit) {
671 			struct socket *sp;
672 
673 			sp = TAILQ_FIRST(&head->sol_incomp);
674 			TAILQ_REMOVE(&head->sol_incomp, sp, so_list);
675 			head->sol_incqlen--;
676 			SOCK_LOCK(sp);
677 			sp->so_qstate = SQ_NONE;
678 			sp->so_listen = NULL;
679 			SOCK_UNLOCK(sp);
680 			sorele(head);	/* does SOLISTEN_UNLOCK, head stays */
681 			soabort(sp);
682 			SOLISTEN_LOCK(head);
683 		}
684 		TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list);
685 		so->so_qstate = SQ_INCOMP;
686 		head->sol_incqlen++;
687 		SOLISTEN_UNLOCK(head);
688 	}
689 	return (so);
690 }
691 
692 #ifdef SCTP
693 /*
694  * Socket part of sctp_peeloff().  Detach a new socket from an
695  * association.  The new socket is returned with a reference.
696  */
697 struct socket *
698 sopeeloff(struct socket *head)
699 {
700 	struct socket *so;
701 
702 	VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p",
703 	    __func__, __LINE__, head));
704 	so = soalloc(head->so_vnet);
705 	if (so == NULL) {
706 		log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
707 		    "limit reached or out of memory\n",
708 		    __func__, head->so_pcb);
709 		return (NULL);
710 	}
711 	so->so_type = head->so_type;
712 	so->so_options = head->so_options;
713 	so->so_linger = head->so_linger;
714 	so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED;
715 	so->so_fibnum = head->so_fibnum;
716 	so->so_proto = head->so_proto;
717 	so->so_cred = crhold(head->so_cred);
718 #ifdef MAC
719 	mac_socket_newconn(head, so);
720 #endif
721 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
722 	    so_rdknl_assert_locked, so_rdknl_assert_unlocked);
723 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
724 	    so_wrknl_assert_locked, so_wrknl_assert_unlocked);
725 	VNET_SO_ASSERT(head);
726 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
727 		sodealloc(so);
728 		log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
729 		    __func__, head->so_pcb);
730 		return (NULL);
731 	}
732 	if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
733 		sodealloc(so);
734 		log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n",
735 		    __func__, head->so_pcb);
736 		return (NULL);
737 	}
738 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
739 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
740 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
741 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
742 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
743 	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
744 
745 	soref(so);
746 
747 	return (so);
748 }
749 #endif	/* SCTP */
750 
751 int
752 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
753 {
754 	int error;
755 
756 	CURVNET_SET(so->so_vnet);
757 	error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td);
758 	CURVNET_RESTORE();
759 	return (error);
760 }
761 
762 int
763 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
764 {
765 	int error;
766 
767 	CURVNET_SET(so->so_vnet);
768 	error = (*so->so_proto->pr_usrreqs->pru_bindat)(fd, so, nam, td);
769 	CURVNET_RESTORE();
770 	return (error);
771 }
772 
773 /*
774  * solisten() transitions a socket from a non-listening state to a listening
775  * state, but can also be used to update the listen queue depth on an
776  * existing listen socket.  The protocol will call back into the sockets
777  * layer using solisten_proto_check() and solisten_proto() to check and set
778  * socket-layer listen state.  Call backs are used so that the protocol can
779  * acquire both protocol and socket layer locks in whatever order is required
780  * by the protocol.
781  *
782  * Protocol implementors are advised to hold the socket lock across the
783  * socket-layer test and set to avoid races at the socket layer.
784  */
785 int
786 solisten(struct socket *so, int backlog, struct thread *td)
787 {
788 	int error;
789 
790 	CURVNET_SET(so->so_vnet);
791 	error = (*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td);
792 	CURVNET_RESTORE();
793 	return (error);
794 }
795 
796 int
797 solisten_proto_check(struct socket *so)
798 {
799 
800 	SOCK_LOCK_ASSERT(so);
801 
802 	if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
803 	    SS_ISDISCONNECTING))
804 		return (EINVAL);
805 	return (0);
806 }
807 
808 void
809 solisten_proto(struct socket *so, int backlog)
810 {
811 	int sbrcv_lowat, sbsnd_lowat;
812 	u_int sbrcv_hiwat, sbsnd_hiwat;
813 	short sbrcv_flags, sbsnd_flags;
814 	sbintime_t sbrcv_timeo, sbsnd_timeo;
815 
816 	SOCK_LOCK_ASSERT(so);
817 
818 	if (SOLISTENING(so))
819 		goto listening;
820 
821 	/*
822 	 * Change this socket to listening state.
823 	 */
824 	sbrcv_lowat = so->so_rcv.sb_lowat;
825 	sbsnd_lowat = so->so_snd.sb_lowat;
826 	sbrcv_hiwat = so->so_rcv.sb_hiwat;
827 	sbsnd_hiwat = so->so_snd.sb_hiwat;
828 	sbrcv_flags = so->so_rcv.sb_flags;
829 	sbsnd_flags = so->so_snd.sb_flags;
830 	sbrcv_timeo = so->so_rcv.sb_timeo;
831 	sbsnd_timeo = so->so_snd.sb_timeo;
832 
833 	sbdestroy(&so->so_snd, so);
834 	sbdestroy(&so->so_rcv, so);
835 	sx_destroy(&so->so_snd.sb_sx);
836 	sx_destroy(&so->so_rcv.sb_sx);
837 	SOCKBUF_LOCK_DESTROY(&so->so_snd);
838 	SOCKBUF_LOCK_DESTROY(&so->so_rcv);
839 
840 #ifdef INVARIANTS
841 	bzero(&so->so_rcv,
842 	    sizeof(struct socket) - offsetof(struct socket, so_rcv));
843 #endif
844 
845 	so->sol_sbrcv_lowat = sbrcv_lowat;
846 	so->sol_sbsnd_lowat = sbsnd_lowat;
847 	so->sol_sbrcv_hiwat = sbrcv_hiwat;
848 	so->sol_sbsnd_hiwat = sbsnd_hiwat;
849 	so->sol_sbrcv_flags = sbrcv_flags;
850 	so->sol_sbsnd_flags = sbsnd_flags;
851 	so->sol_sbrcv_timeo = sbrcv_timeo;
852 	so->sol_sbsnd_timeo = sbsnd_timeo;
853 
854 	so->sol_qlen = so->sol_incqlen = 0;
855 	TAILQ_INIT(&so->sol_incomp);
856 	TAILQ_INIT(&so->sol_comp);
857 
858 	so->sol_accept_filter = NULL;
859 	so->sol_accept_filter_arg = NULL;
860 	so->sol_accept_filter_str = NULL;
861 
862 	so->sol_upcall = NULL;
863 	so->sol_upcallarg = NULL;
864 
865 	so->so_options |= SO_ACCEPTCONN;
866 
867 listening:
868 	if (backlog < 0 || backlog > somaxconn)
869 		backlog = somaxconn;
870 	so->sol_qlimit = backlog;
871 }
872 
873 /*
874  * Wakeup listeners/subsystems once we have a complete connection.
875  * Enters with lock, returns unlocked.
876  */
877 void
878 solisten_wakeup(struct socket *sol)
879 {
880 
881 	if (sol->sol_upcall != NULL)
882 		(void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT);
883 	else {
884 		selwakeuppri(&sol->so_rdsel, PSOCK);
885 		KNOTE_LOCKED(&sol->so_rdsel.si_note, 0);
886 	}
887 	SOLISTEN_UNLOCK(sol);
888 	wakeup_one(&sol->sol_comp);
889 	if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL)
890 		pgsigio(&sol->so_sigio, SIGIO, 0);
891 }
892 
893 /*
894  * Return single connection off a listening socket queue.  Main consumer of
895  * the function is kern_accept4().  Some modules, that do their own accept
896  * management also use the function.
897  *
898  * Listening socket must be locked on entry and is returned unlocked on
899  * return.
900  * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT.
901  */
902 int
903 solisten_dequeue(struct socket *head, struct socket **ret, int flags)
904 {
905 	struct socket *so;
906 	int error;
907 
908 	SOLISTEN_LOCK_ASSERT(head);
909 
910 	while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) &&
911 	    head->so_error == 0) {
912 		error = msleep(&head->sol_comp, &head->so_lock, PSOCK | PCATCH,
913 		    "accept", 0);
914 		if (error != 0) {
915 			SOLISTEN_UNLOCK(head);
916 			return (error);
917 		}
918 	}
919 	if (head->so_error) {
920 		error = head->so_error;
921 		head->so_error = 0;
922 	} else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp))
923 		error = EWOULDBLOCK;
924 	else
925 		error = 0;
926 	if (error) {
927 		SOLISTEN_UNLOCK(head);
928 		return (error);
929 	}
930 	so = TAILQ_FIRST(&head->sol_comp);
931 	SOCK_LOCK(so);
932 	KASSERT(so->so_qstate == SQ_COMP,
933 	    ("%s: so %p not SQ_COMP", __func__, so));
934 	soref(so);
935 	head->sol_qlen--;
936 	so->so_qstate = SQ_NONE;
937 	so->so_listen = NULL;
938 	TAILQ_REMOVE(&head->sol_comp, so, so_list);
939 	if (flags & ACCEPT4_INHERIT)
940 		so->so_state |= (head->so_state & SS_NBIO);
941 	else
942 		so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0;
943 	SOCK_UNLOCK(so);
944 	sorele(head);
945 
946 	*ret = so;
947 	return (0);
948 }
949 
950 /*
951  * Evaluate the reference count and named references on a socket; if no
952  * references remain, free it.  This should be called whenever a reference is
953  * released, such as in sorele(), but also when named reference flags are
954  * cleared in socket or protocol code.
955  *
956  * sofree() will free the socket if:
957  *
958  * - There are no outstanding file descriptor references or related consumers
959  *   (so_count == 0).
960  *
961  * - The socket has been closed by user space, if ever open (SS_NOFDREF).
962  *
963  * - The protocol does not have an outstanding strong reference on the socket
964  *   (SS_PROTOREF).
965  *
966  * - The socket is not in a completed connection queue, so a process has been
967  *   notified that it is present.  If it is removed, the user process may
968  *   block in accept() despite select() saying the socket was ready.
969  */
970 void
971 sofree(struct socket *so)
972 {
973 	struct protosw *pr = so->so_proto;
974 
975 	SOCK_LOCK_ASSERT(so);
976 
977 	if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 ||
978 	    (so->so_state & SS_PROTOREF) || (so->so_qstate == SQ_COMP)) {
979 		SOCK_UNLOCK(so);
980 		return;
981 	}
982 
983 	if (!SOLISTENING(so) && so->so_qstate == SQ_INCOMP) {
984 		struct socket *sol;
985 
986 		sol = so->so_listen;
987 		KASSERT(sol, ("%s: so %p on incomp of NULL", __func__, so));
988 
989 		/*
990 		 * To solve race between close of a listening socket and
991 		 * a socket on its incomplete queue, we need to lock both.
992 		 * The order is first listening socket, then regular.
993 		 * Since we don't have SS_NOFDREF neither SS_PROTOREF, this
994 		 * function and the listening socket are the only pointers
995 		 * to so.  To preserve so and sol, we reference both and then
996 		 * relock.
997 		 * After relock the socket may not move to so_comp since it
998 		 * doesn't have PCB already, but it may be removed from
999 		 * so_incomp. If that happens, we share responsiblity on
1000 		 * freeing the socket, but soclose() has already removed
1001 		 * it from queue.
1002 		 */
1003 		soref(sol);
1004 		soref(so);
1005 		SOCK_UNLOCK(so);
1006 		SOLISTEN_LOCK(sol);
1007 		SOCK_LOCK(so);
1008 		if (so->so_qstate == SQ_INCOMP) {
1009 			KASSERT(so->so_listen == sol,
1010 			    ("%s: so %p migrated out of sol %p",
1011 			    __func__, so, sol));
1012 			TAILQ_REMOVE(&sol->sol_incomp, so, so_list);
1013 			sol->sol_incqlen--;
1014 			/* This is guarenteed not to be the last. */
1015 			refcount_release(&sol->so_count);
1016 			so->so_qstate = SQ_NONE;
1017 			so->so_listen = NULL;
1018 		} else
1019 			KASSERT(so->so_listen == NULL,
1020 			    ("%s: so %p not on (in)comp with so_listen",
1021 			    __func__, so));
1022 		sorele(sol);
1023 		KASSERT(so->so_count == 1,
1024 		    ("%s: so %p count %u", __func__, so, so->so_count));
1025 		so->so_count = 0;
1026 	}
1027 	if (SOLISTENING(so))
1028 		so->so_error = ECONNABORTED;
1029 	SOCK_UNLOCK(so);
1030 
1031 	if (so->so_dtor != NULL)
1032 		so->so_dtor(so);
1033 
1034 	VNET_SO_ASSERT(so);
1035 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
1036 		(*pr->pr_domain->dom_dispose)(so);
1037 	if (pr->pr_usrreqs->pru_detach != NULL)
1038 		(*pr->pr_usrreqs->pru_detach)(so);
1039 
1040 	/*
1041 	 * From this point on, we assume that no other references to this
1042 	 * socket exist anywhere else in the stack.  Therefore, no locks need
1043 	 * to be acquired or held.
1044 	 *
1045 	 * We used to do a lot of socket buffer and socket locking here, as
1046 	 * well as invoke sorflush() and perform wakeups.  The direct call to
1047 	 * dom_dispose() and sbdestroy() are an inlining of what was
1048 	 * necessary from sorflush().
1049 	 *
1050 	 * Notice that the socket buffer and kqueue state are torn down
1051 	 * before calling pru_detach.  This means that protocols shold not
1052 	 * assume they can perform socket wakeups, etc, in their detach code.
1053 	 */
1054 	if (!SOLISTENING(so)) {
1055 		sbdestroy(&so->so_snd, so);
1056 		sbdestroy(&so->so_rcv, so);
1057 	}
1058 	seldrain(&so->so_rdsel);
1059 	seldrain(&so->so_wrsel);
1060 	knlist_destroy(&so->so_rdsel.si_note);
1061 	knlist_destroy(&so->so_wrsel.si_note);
1062 	sodealloc(so);
1063 }
1064 
1065 /*
1066  * Close a socket on last file table reference removal.  Initiate disconnect
1067  * if connected.  Free socket when disconnect complete.
1068  *
1069  * This function will sorele() the socket.  Note that soclose() may be called
1070  * prior to the ref count reaching zero.  The actual socket structure will
1071  * not be freed until the ref count reaches zero.
1072  */
1073 int
1074 soclose(struct socket *so)
1075 {
1076 	struct accept_queue lqueue;
1077 	bool listening;
1078 	int error = 0;
1079 
1080 	KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter"));
1081 
1082 	CURVNET_SET(so->so_vnet);
1083 	funsetown(&so->so_sigio);
1084 	if (so->so_state & SS_ISCONNECTED) {
1085 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
1086 			error = sodisconnect(so);
1087 			if (error) {
1088 				if (error == ENOTCONN)
1089 					error = 0;
1090 				goto drop;
1091 			}
1092 		}
1093 		if (so->so_options & SO_LINGER) {
1094 			if ((so->so_state & SS_ISDISCONNECTING) &&
1095 			    (so->so_state & SS_NBIO))
1096 				goto drop;
1097 			while (so->so_state & SS_ISCONNECTED) {
1098 				error = tsleep(&so->so_timeo,
1099 				    PSOCK | PCATCH, "soclos",
1100 				    so->so_linger * hz);
1101 				if (error)
1102 					break;
1103 			}
1104 		}
1105 	}
1106 
1107 drop:
1108 	if (so->so_proto->pr_usrreqs->pru_close != NULL)
1109 		(*so->so_proto->pr_usrreqs->pru_close)(so);
1110 
1111 	SOCK_LOCK(so);
1112 	if ((listening = (so->so_options & SO_ACCEPTCONN))) {
1113 		struct socket *sp;
1114 
1115 		TAILQ_INIT(&lqueue);
1116 		TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list);
1117 		TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list);
1118 
1119 		so->sol_qlen = so->sol_incqlen = 0;
1120 
1121 		TAILQ_FOREACH(sp, &lqueue, so_list) {
1122 			SOCK_LOCK(sp);
1123 			sp->so_qstate = SQ_NONE;
1124 			sp->so_listen = NULL;
1125 			SOCK_UNLOCK(sp);
1126 			/* Guaranteed not to be the last. */
1127 			refcount_release(&so->so_count);
1128 		}
1129 	}
1130 	KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF"));
1131 	so->so_state |= SS_NOFDREF;
1132 	sorele(so);
1133 	if (listening) {
1134 		struct socket *sp;
1135 
1136 		TAILQ_FOREACH(sp, &lqueue, so_list) {
1137 			SOCK_LOCK(sp);
1138 			if (sp->so_count == 0) {
1139 				SOCK_UNLOCK(sp);
1140 				soabort(sp);
1141 			} else
1142 				/* sp is now in sofree() */
1143 				SOCK_UNLOCK(sp);
1144 		}
1145 	}
1146 	CURVNET_RESTORE();
1147 	return (error);
1148 }
1149 
1150 /*
1151  * soabort() is used to abruptly tear down a connection, such as when a
1152  * resource limit is reached (listen queue depth exceeded), or if a listen
1153  * socket is closed while there are sockets waiting to be accepted.
1154  *
1155  * This interface is tricky, because it is called on an unreferenced socket,
1156  * and must be called only by a thread that has actually removed the socket
1157  * from the listen queue it was on, or races with other threads are risked.
1158  *
1159  * This interface will call into the protocol code, so must not be called
1160  * with any socket locks held.  Protocols do call it while holding their own
1161  * recursible protocol mutexes, but this is something that should be subject
1162  * to review in the future.
1163  */
1164 void
1165 soabort(struct socket *so)
1166 {
1167 
1168 	/*
1169 	 * In as much as is possible, assert that no references to this
1170 	 * socket are held.  This is not quite the same as asserting that the
1171 	 * current thread is responsible for arranging for no references, but
1172 	 * is as close as we can get for now.
1173 	 */
1174 	KASSERT(so->so_count == 0, ("soabort: so_count"));
1175 	KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF"));
1176 	KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF"));
1177 	VNET_SO_ASSERT(so);
1178 
1179 	if (so->so_proto->pr_usrreqs->pru_abort != NULL)
1180 		(*so->so_proto->pr_usrreqs->pru_abort)(so);
1181 	SOCK_LOCK(so);
1182 	sofree(so);
1183 }
1184 
1185 int
1186 soaccept(struct socket *so, struct sockaddr **nam)
1187 {
1188 	int error;
1189 
1190 	SOCK_LOCK(so);
1191 	KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF"));
1192 	so->so_state &= ~SS_NOFDREF;
1193 	SOCK_UNLOCK(so);
1194 
1195 	CURVNET_SET(so->so_vnet);
1196 	error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam);
1197 	CURVNET_RESTORE();
1198 	return (error);
1199 }
1200 
1201 int
1202 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
1203 {
1204 
1205 	return (soconnectat(AT_FDCWD, so, nam, td));
1206 }
1207 
1208 int
1209 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
1210 {
1211 	int error;
1212 
1213 	if (so->so_options & SO_ACCEPTCONN)
1214 		return (EOPNOTSUPP);
1215 
1216 	CURVNET_SET(so->so_vnet);
1217 	/*
1218 	 * If protocol is connection-based, can only connect once.
1219 	 * Otherwise, if connected, try to disconnect first.  This allows
1220 	 * user to disconnect by connecting to, e.g., a null address.
1221 	 */
1222 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
1223 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
1224 	    (error = sodisconnect(so)))) {
1225 		error = EISCONN;
1226 	} else {
1227 		/*
1228 		 * Prevent accumulated error from previous connection from
1229 		 * biting us.
1230 		 */
1231 		so->so_error = 0;
1232 		if (fd == AT_FDCWD) {
1233 			error = (*so->so_proto->pr_usrreqs->pru_connect)(so,
1234 			    nam, td);
1235 		} else {
1236 			error = (*so->so_proto->pr_usrreqs->pru_connectat)(fd,
1237 			    so, nam, td);
1238 		}
1239 	}
1240 	CURVNET_RESTORE();
1241 
1242 	return (error);
1243 }
1244 
1245 int
1246 soconnect2(struct socket *so1, struct socket *so2)
1247 {
1248 	int error;
1249 
1250 	CURVNET_SET(so1->so_vnet);
1251 	error = (*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2);
1252 	CURVNET_RESTORE();
1253 	return (error);
1254 }
1255 
1256 int
1257 sodisconnect(struct socket *so)
1258 {
1259 	int error;
1260 
1261 	if ((so->so_state & SS_ISCONNECTED) == 0)
1262 		return (ENOTCONN);
1263 	if (so->so_state & SS_ISDISCONNECTING)
1264 		return (EALREADY);
1265 	VNET_SO_ASSERT(so);
1266 	error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so);
1267 	return (error);
1268 }
1269 
1270 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT)
1271 
1272 int
1273 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
1274     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1275 {
1276 	long space;
1277 	ssize_t resid;
1278 	int clen = 0, error, dontroute;
1279 
1280 	KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM"));
1281 	KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
1282 	    ("sosend_dgram: !PR_ATOMIC"));
1283 
1284 	if (uio != NULL)
1285 		resid = uio->uio_resid;
1286 	else
1287 		resid = top->m_pkthdr.len;
1288 	/*
1289 	 * In theory resid should be unsigned.  However, space must be
1290 	 * signed, as it might be less than 0 if we over-committed, and we
1291 	 * must use a signed comparison of space and resid.  On the other
1292 	 * hand, a negative resid causes us to loop sending 0-length
1293 	 * segments to the protocol.
1294 	 */
1295 	if (resid < 0) {
1296 		error = EINVAL;
1297 		goto out;
1298 	}
1299 
1300 	dontroute =
1301 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
1302 	if (td != NULL)
1303 		td->td_ru.ru_msgsnd++;
1304 	if (control != NULL)
1305 		clen = control->m_len;
1306 
1307 	SOCKBUF_LOCK(&so->so_snd);
1308 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1309 		SOCKBUF_UNLOCK(&so->so_snd);
1310 		error = EPIPE;
1311 		goto out;
1312 	}
1313 	if (so->so_error) {
1314 		error = so->so_error;
1315 		so->so_error = 0;
1316 		SOCKBUF_UNLOCK(&so->so_snd);
1317 		goto out;
1318 	}
1319 	if ((so->so_state & SS_ISCONNECTED) == 0) {
1320 		/*
1321 		 * `sendto' and `sendmsg' is allowed on a connection-based
1322 		 * socket if it supports implied connect.  Return ENOTCONN if
1323 		 * not connected and no address is supplied.
1324 		 */
1325 		if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1326 		    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1327 			if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1328 			    !(resid == 0 && clen != 0)) {
1329 				SOCKBUF_UNLOCK(&so->so_snd);
1330 				error = ENOTCONN;
1331 				goto out;
1332 			}
1333 		} else if (addr == NULL) {
1334 			if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1335 				error = ENOTCONN;
1336 			else
1337 				error = EDESTADDRREQ;
1338 			SOCKBUF_UNLOCK(&so->so_snd);
1339 			goto out;
1340 		}
1341 	}
1342 
1343 	/*
1344 	 * Do we need MSG_OOB support in SOCK_DGRAM?  Signs here may be a
1345 	 * problem and need fixing.
1346 	 */
1347 	space = sbspace(&so->so_snd);
1348 	if (flags & MSG_OOB)
1349 		space += 1024;
1350 	space -= clen;
1351 	SOCKBUF_UNLOCK(&so->so_snd);
1352 	if (resid > space) {
1353 		error = EMSGSIZE;
1354 		goto out;
1355 	}
1356 	if (uio == NULL) {
1357 		resid = 0;
1358 		if (flags & MSG_EOR)
1359 			top->m_flags |= M_EOR;
1360 	} else {
1361 		/*
1362 		 * Copy the data from userland into a mbuf chain.
1363 		 * If no data is to be copied in, a single empty mbuf
1364 		 * is returned.
1365 		 */
1366 		top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
1367 		    (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
1368 		if (top == NULL) {
1369 			error = EFAULT;	/* only possible error */
1370 			goto out;
1371 		}
1372 		space -= resid - uio->uio_resid;
1373 		resid = uio->uio_resid;
1374 	}
1375 	KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
1376 	/*
1377 	 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
1378 	 * than with.
1379 	 */
1380 	if (dontroute) {
1381 		SOCK_LOCK(so);
1382 		so->so_options |= SO_DONTROUTE;
1383 		SOCK_UNLOCK(so);
1384 	}
1385 	/*
1386 	 * XXX all the SBS_CANTSENDMORE checks previously done could be out
1387 	 * of date.  We could have received a reset packet in an interrupt or
1388 	 * maybe we slept while doing page faults in uiomove() etc.  We could
1389 	 * probably recheck again inside the locking protection here, but
1390 	 * there are probably other places that this also happens.  We must
1391 	 * rethink this.
1392 	 */
1393 	VNET_SO_ASSERT(so);
1394 	error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1395 	    (flags & MSG_OOB) ? PRUS_OOB :
1396 	/*
1397 	 * If the user set MSG_EOF, the protocol understands this flag and
1398 	 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
1399 	 */
1400 	    ((flags & MSG_EOF) &&
1401 	     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1402 	     (resid <= 0)) ?
1403 		PRUS_EOF :
1404 		/* If there is more to send set PRUS_MORETOCOME */
1405 		(flags & MSG_MORETOCOME) ||
1406 		(resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1407 		top, addr, control, td);
1408 	if (dontroute) {
1409 		SOCK_LOCK(so);
1410 		so->so_options &= ~SO_DONTROUTE;
1411 		SOCK_UNLOCK(so);
1412 	}
1413 	clen = 0;
1414 	control = NULL;
1415 	top = NULL;
1416 out:
1417 	if (top != NULL)
1418 		m_freem(top);
1419 	if (control != NULL)
1420 		m_freem(control);
1421 	return (error);
1422 }
1423 
1424 /*
1425  * Send on a socket.  If send must go all at once and message is larger than
1426  * send buffering, then hard error.  Lock against other senders.  If must go
1427  * all at once and not enough room now, then inform user that this would
1428  * block and do nothing.  Otherwise, if nonblocking, send as much as
1429  * possible.  The data to be sent is described by "uio" if nonzero, otherwise
1430  * by the mbuf chain "top" (which must be null if uio is not).  Data provided
1431  * in mbuf chain must be small enough to send all at once.
1432  *
1433  * Returns nonzero on error, timeout or signal; callers must check for short
1434  * counts if EINTR/ERESTART are returned.  Data and control buffers are freed
1435  * on return.
1436  */
1437 int
1438 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
1439     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1440 {
1441 	long space;
1442 	ssize_t resid;
1443 	int clen = 0, error, dontroute;
1444 	int atomic = sosendallatonce(so) || top;
1445 
1446 	if (uio != NULL)
1447 		resid = uio->uio_resid;
1448 	else
1449 		resid = top->m_pkthdr.len;
1450 	/*
1451 	 * In theory resid should be unsigned.  However, space must be
1452 	 * signed, as it might be less than 0 if we over-committed, and we
1453 	 * must use a signed comparison of space and resid.  On the other
1454 	 * hand, a negative resid causes us to loop sending 0-length
1455 	 * segments to the protocol.
1456 	 *
1457 	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
1458 	 * type sockets since that's an error.
1459 	 */
1460 	if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
1461 		error = EINVAL;
1462 		goto out;
1463 	}
1464 
1465 	dontroute =
1466 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
1467 	    (so->so_proto->pr_flags & PR_ATOMIC);
1468 	if (td != NULL)
1469 		td->td_ru.ru_msgsnd++;
1470 	if (control != NULL)
1471 		clen = control->m_len;
1472 
1473 	error = sblock(&so->so_snd, SBLOCKWAIT(flags));
1474 	if (error)
1475 		goto out;
1476 
1477 restart:
1478 	do {
1479 		SOCKBUF_LOCK(&so->so_snd);
1480 		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1481 			SOCKBUF_UNLOCK(&so->so_snd);
1482 			error = EPIPE;
1483 			goto release;
1484 		}
1485 		if (so->so_error) {
1486 			error = so->so_error;
1487 			so->so_error = 0;
1488 			SOCKBUF_UNLOCK(&so->so_snd);
1489 			goto release;
1490 		}
1491 		if ((so->so_state & SS_ISCONNECTED) == 0) {
1492 			/*
1493 			 * `sendto' and `sendmsg' is allowed on a connection-
1494 			 * based socket if it supports implied connect.
1495 			 * Return ENOTCONN if not connected and no address is
1496 			 * supplied.
1497 			 */
1498 			if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1499 			    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1500 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1501 				    !(resid == 0 && clen != 0)) {
1502 					SOCKBUF_UNLOCK(&so->so_snd);
1503 					error = ENOTCONN;
1504 					goto release;
1505 				}
1506 			} else if (addr == NULL) {
1507 				SOCKBUF_UNLOCK(&so->so_snd);
1508 				if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1509 					error = ENOTCONN;
1510 				else
1511 					error = EDESTADDRREQ;
1512 				goto release;
1513 			}
1514 		}
1515 		space = sbspace(&so->so_snd);
1516 		if (flags & MSG_OOB)
1517 			space += 1024;
1518 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
1519 		    clen > so->so_snd.sb_hiwat) {
1520 			SOCKBUF_UNLOCK(&so->so_snd);
1521 			error = EMSGSIZE;
1522 			goto release;
1523 		}
1524 		if (space < resid + clen &&
1525 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
1526 			if ((so->so_state & SS_NBIO) ||
1527 			    (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) {
1528 				SOCKBUF_UNLOCK(&so->so_snd);
1529 				error = EWOULDBLOCK;
1530 				goto release;
1531 			}
1532 			error = sbwait(&so->so_snd);
1533 			SOCKBUF_UNLOCK(&so->so_snd);
1534 			if (error)
1535 				goto release;
1536 			goto restart;
1537 		}
1538 		SOCKBUF_UNLOCK(&so->so_snd);
1539 		space -= clen;
1540 		do {
1541 			if (uio == NULL) {
1542 				resid = 0;
1543 				if (flags & MSG_EOR)
1544 					top->m_flags |= M_EOR;
1545 			} else {
1546 				/*
1547 				 * Copy the data from userland into a mbuf
1548 				 * chain.  If resid is 0, which can happen
1549 				 * only if we have control to send, then
1550 				 * a single empty mbuf is returned.  This
1551 				 * is a workaround to prevent protocol send
1552 				 * methods to panic.
1553 				 */
1554 				top = m_uiotombuf(uio, M_WAITOK, space,
1555 				    (atomic ? max_hdr : 0),
1556 				    (atomic ? M_PKTHDR : 0) |
1557 				    ((flags & MSG_EOR) ? M_EOR : 0));
1558 				if (top == NULL) {
1559 					error = EFAULT; /* only possible error */
1560 					goto release;
1561 				}
1562 				space -= resid - uio->uio_resid;
1563 				resid = uio->uio_resid;
1564 			}
1565 			if (dontroute) {
1566 				SOCK_LOCK(so);
1567 				so->so_options |= SO_DONTROUTE;
1568 				SOCK_UNLOCK(so);
1569 			}
1570 			/*
1571 			 * XXX all the SBS_CANTSENDMORE checks previously
1572 			 * done could be out of date.  We could have received
1573 			 * a reset packet in an interrupt or maybe we slept
1574 			 * while doing page faults in uiomove() etc.  We
1575 			 * could probably recheck again inside the locking
1576 			 * protection here, but there are probably other
1577 			 * places that this also happens.  We must rethink
1578 			 * this.
1579 			 */
1580 			VNET_SO_ASSERT(so);
1581 			error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1582 			    (flags & MSG_OOB) ? PRUS_OOB :
1583 			/*
1584 			 * If the user set MSG_EOF, the protocol understands
1585 			 * this flag and nothing left to send then use
1586 			 * PRU_SEND_EOF instead of PRU_SEND.
1587 			 */
1588 			    ((flags & MSG_EOF) &&
1589 			     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1590 			     (resid <= 0)) ?
1591 				PRUS_EOF :
1592 			/* If there is more to send set PRUS_MORETOCOME. */
1593 			    (flags & MSG_MORETOCOME) ||
1594 			    (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1595 			    top, addr, control, td);
1596 			if (dontroute) {
1597 				SOCK_LOCK(so);
1598 				so->so_options &= ~SO_DONTROUTE;
1599 				SOCK_UNLOCK(so);
1600 			}
1601 			clen = 0;
1602 			control = NULL;
1603 			top = NULL;
1604 			if (error)
1605 				goto release;
1606 		} while (resid && space > 0);
1607 	} while (resid);
1608 
1609 release:
1610 	sbunlock(&so->so_snd);
1611 out:
1612 	if (top != NULL)
1613 		m_freem(top);
1614 	if (control != NULL)
1615 		m_freem(control);
1616 	return (error);
1617 }
1618 
1619 int
1620 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
1621     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1622 {
1623 	int error;
1624 
1625 	CURVNET_SET(so->so_vnet);
1626 	if (!SOLISTENING(so))
1627 		error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio,
1628 		    top, control, flags, td);
1629 	else {
1630 		m_freem(top);
1631 		m_freem(control);
1632 		error = ENOTCONN;
1633 	}
1634 	CURVNET_RESTORE();
1635 	return (error);
1636 }
1637 
1638 /*
1639  * The part of soreceive() that implements reading non-inline out-of-band
1640  * data from a socket.  For more complete comments, see soreceive(), from
1641  * which this code originated.
1642  *
1643  * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
1644  * unable to return an mbuf chain to the caller.
1645  */
1646 static int
1647 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
1648 {
1649 	struct protosw *pr = so->so_proto;
1650 	struct mbuf *m;
1651 	int error;
1652 
1653 	KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
1654 	VNET_SO_ASSERT(so);
1655 
1656 	m = m_get(M_WAITOK, MT_DATA);
1657 	error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK);
1658 	if (error)
1659 		goto bad;
1660 	do {
1661 		error = uiomove(mtod(m, void *),
1662 		    (int) min(uio->uio_resid, m->m_len), uio);
1663 		m = m_free(m);
1664 	} while (uio->uio_resid && error == 0 && m);
1665 bad:
1666 	if (m != NULL)
1667 		m_freem(m);
1668 	return (error);
1669 }
1670 
1671 /*
1672  * Following replacement or removal of the first mbuf on the first mbuf chain
1673  * of a socket buffer, push necessary state changes back into the socket
1674  * buffer so that other consumers see the values consistently.  'nextrecord'
1675  * is the callers locally stored value of the original value of
1676  * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
1677  * NOTE: 'nextrecord' may be NULL.
1678  */
1679 static __inline void
1680 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
1681 {
1682 
1683 	SOCKBUF_LOCK_ASSERT(sb);
1684 	/*
1685 	 * First, update for the new value of nextrecord.  If necessary, make
1686 	 * it the first record.
1687 	 */
1688 	if (sb->sb_mb != NULL)
1689 		sb->sb_mb->m_nextpkt = nextrecord;
1690 	else
1691 		sb->sb_mb = nextrecord;
1692 
1693 	/*
1694 	 * Now update any dependent socket buffer fields to reflect the new
1695 	 * state.  This is an expanded inline of SB_EMPTY_FIXUP(), with the
1696 	 * addition of a second clause that takes care of the case where
1697 	 * sb_mb has been updated, but remains the last record.
1698 	 */
1699 	if (sb->sb_mb == NULL) {
1700 		sb->sb_mbtail = NULL;
1701 		sb->sb_lastrecord = NULL;
1702 	} else if (sb->sb_mb->m_nextpkt == NULL)
1703 		sb->sb_lastrecord = sb->sb_mb;
1704 }
1705 
1706 /*
1707  * Implement receive operations on a socket.  We depend on the way that
1708  * records are added to the sockbuf by sbappend.  In particular, each record
1709  * (mbufs linked through m_next) must begin with an address if the protocol
1710  * so specifies, followed by an optional mbuf or mbufs containing ancillary
1711  * data, and then zero or more mbufs of data.  In order to allow parallelism
1712  * between network receive and copying to user space, as well as avoid
1713  * sleeping with a mutex held, we release the socket buffer mutex during the
1714  * user space copy.  Although the sockbuf is locked, new data may still be
1715  * appended, and thus we must maintain consistency of the sockbuf during that
1716  * time.
1717  *
1718  * The caller may receive the data as a single mbuf chain by supplying an
1719  * mbuf **mp0 for use in returning the chain.  The uio is then used only for
1720  * the count in uio_resid.
1721  */
1722 int
1723 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
1724     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1725 {
1726 	struct mbuf *m, **mp;
1727 	int flags, error, offset;
1728 	ssize_t len;
1729 	struct protosw *pr = so->so_proto;
1730 	struct mbuf *nextrecord;
1731 	int moff, type = 0;
1732 	ssize_t orig_resid = uio->uio_resid;
1733 
1734 	mp = mp0;
1735 	if (psa != NULL)
1736 		*psa = NULL;
1737 	if (controlp != NULL)
1738 		*controlp = NULL;
1739 	if (flagsp != NULL)
1740 		flags = *flagsp &~ MSG_EOR;
1741 	else
1742 		flags = 0;
1743 	if (flags & MSG_OOB)
1744 		return (soreceive_rcvoob(so, uio, flags));
1745 	if (mp != NULL)
1746 		*mp = NULL;
1747 	if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING)
1748 	    && uio->uio_resid) {
1749 		VNET_SO_ASSERT(so);
1750 		(*pr->pr_usrreqs->pru_rcvd)(so, 0);
1751 	}
1752 
1753 	error = sblock(&so->so_rcv, SBLOCKWAIT(flags));
1754 	if (error)
1755 		return (error);
1756 
1757 restart:
1758 	SOCKBUF_LOCK(&so->so_rcv);
1759 	m = so->so_rcv.sb_mb;
1760 	/*
1761 	 * If we have less data than requested, block awaiting more (subject
1762 	 * to any timeout) if:
1763 	 *   1. the current count is less than the low water mark, or
1764 	 *   2. MSG_DONTWAIT is not set
1765 	 */
1766 	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
1767 	    sbavail(&so->so_rcv) < uio->uio_resid) &&
1768 	    sbavail(&so->so_rcv) < so->so_rcv.sb_lowat &&
1769 	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
1770 		KASSERT(m != NULL || !sbavail(&so->so_rcv),
1771 		    ("receive: m == %p sbavail == %u",
1772 		    m, sbavail(&so->so_rcv)));
1773 		if (so->so_error) {
1774 			if (m != NULL)
1775 				goto dontblock;
1776 			error = so->so_error;
1777 			if ((flags & MSG_PEEK) == 0)
1778 				so->so_error = 0;
1779 			SOCKBUF_UNLOCK(&so->so_rcv);
1780 			goto release;
1781 		}
1782 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1783 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1784 			if (m == NULL) {
1785 				SOCKBUF_UNLOCK(&so->so_rcv);
1786 				goto release;
1787 			} else
1788 				goto dontblock;
1789 		}
1790 		for (; m != NULL; m = m->m_next)
1791 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
1792 				m = so->so_rcv.sb_mb;
1793 				goto dontblock;
1794 			}
1795 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1796 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1797 			SOCKBUF_UNLOCK(&so->so_rcv);
1798 			error = ENOTCONN;
1799 			goto release;
1800 		}
1801 		if (uio->uio_resid == 0) {
1802 			SOCKBUF_UNLOCK(&so->so_rcv);
1803 			goto release;
1804 		}
1805 		if ((so->so_state & SS_NBIO) ||
1806 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1807 			SOCKBUF_UNLOCK(&so->so_rcv);
1808 			error = EWOULDBLOCK;
1809 			goto release;
1810 		}
1811 		SBLASTRECORDCHK(&so->so_rcv);
1812 		SBLASTMBUFCHK(&so->so_rcv);
1813 		error = sbwait(&so->so_rcv);
1814 		SOCKBUF_UNLOCK(&so->so_rcv);
1815 		if (error)
1816 			goto release;
1817 		goto restart;
1818 	}
1819 dontblock:
1820 	/*
1821 	 * From this point onward, we maintain 'nextrecord' as a cache of the
1822 	 * pointer to the next record in the socket buffer.  We must keep the
1823 	 * various socket buffer pointers and local stack versions of the
1824 	 * pointers in sync, pushing out modifications before dropping the
1825 	 * socket buffer mutex, and re-reading them when picking it up.
1826 	 *
1827 	 * Otherwise, we will race with the network stack appending new data
1828 	 * or records onto the socket buffer by using inconsistent/stale
1829 	 * versions of the field, possibly resulting in socket buffer
1830 	 * corruption.
1831 	 *
1832 	 * By holding the high-level sblock(), we prevent simultaneous
1833 	 * readers from pulling off the front of the socket buffer.
1834 	 */
1835 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1836 	if (uio->uio_td)
1837 		uio->uio_td->td_ru.ru_msgrcv++;
1838 	KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
1839 	SBLASTRECORDCHK(&so->so_rcv);
1840 	SBLASTMBUFCHK(&so->so_rcv);
1841 	nextrecord = m->m_nextpkt;
1842 	if (pr->pr_flags & PR_ADDR) {
1843 		KASSERT(m->m_type == MT_SONAME,
1844 		    ("m->m_type == %d", m->m_type));
1845 		orig_resid = 0;
1846 		if (psa != NULL)
1847 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
1848 			    M_NOWAIT);
1849 		if (flags & MSG_PEEK) {
1850 			m = m->m_next;
1851 		} else {
1852 			sbfree(&so->so_rcv, m);
1853 			so->so_rcv.sb_mb = m_free(m);
1854 			m = so->so_rcv.sb_mb;
1855 			sockbuf_pushsync(&so->so_rcv, nextrecord);
1856 		}
1857 	}
1858 
1859 	/*
1860 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
1861 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
1862 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
1863 	 * perform externalization (or freeing if controlp == NULL).
1864 	 */
1865 	if (m != NULL && m->m_type == MT_CONTROL) {
1866 		struct mbuf *cm = NULL, *cmn;
1867 		struct mbuf **cme = &cm;
1868 
1869 		do {
1870 			if (flags & MSG_PEEK) {
1871 				if (controlp != NULL) {
1872 					*controlp = m_copym(m, 0, m->m_len,
1873 					    M_NOWAIT);
1874 					controlp = &(*controlp)->m_next;
1875 				}
1876 				m = m->m_next;
1877 			} else {
1878 				sbfree(&so->so_rcv, m);
1879 				so->so_rcv.sb_mb = m->m_next;
1880 				m->m_next = NULL;
1881 				*cme = m;
1882 				cme = &(*cme)->m_next;
1883 				m = so->so_rcv.sb_mb;
1884 			}
1885 		} while (m != NULL && m->m_type == MT_CONTROL);
1886 		if ((flags & MSG_PEEK) == 0)
1887 			sockbuf_pushsync(&so->so_rcv, nextrecord);
1888 		while (cm != NULL) {
1889 			cmn = cm->m_next;
1890 			cm->m_next = NULL;
1891 			if (pr->pr_domain->dom_externalize != NULL) {
1892 				SOCKBUF_UNLOCK(&so->so_rcv);
1893 				VNET_SO_ASSERT(so);
1894 				error = (*pr->pr_domain->dom_externalize)
1895 				    (cm, controlp, flags);
1896 				SOCKBUF_LOCK(&so->so_rcv);
1897 			} else if (controlp != NULL)
1898 				*controlp = cm;
1899 			else
1900 				m_freem(cm);
1901 			if (controlp != NULL) {
1902 				orig_resid = 0;
1903 				while (*controlp != NULL)
1904 					controlp = &(*controlp)->m_next;
1905 			}
1906 			cm = cmn;
1907 		}
1908 		if (m != NULL)
1909 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1910 		else
1911 			nextrecord = so->so_rcv.sb_mb;
1912 		orig_resid = 0;
1913 	}
1914 	if (m != NULL) {
1915 		if ((flags & MSG_PEEK) == 0) {
1916 			KASSERT(m->m_nextpkt == nextrecord,
1917 			    ("soreceive: post-control, nextrecord !sync"));
1918 			if (nextrecord == NULL) {
1919 				KASSERT(so->so_rcv.sb_mb == m,
1920 				    ("soreceive: post-control, sb_mb!=m"));
1921 				KASSERT(so->so_rcv.sb_lastrecord == m,
1922 				    ("soreceive: post-control, lastrecord!=m"));
1923 			}
1924 		}
1925 		type = m->m_type;
1926 		if (type == MT_OOBDATA)
1927 			flags |= MSG_OOB;
1928 	} else {
1929 		if ((flags & MSG_PEEK) == 0) {
1930 			KASSERT(so->so_rcv.sb_mb == nextrecord,
1931 			    ("soreceive: sb_mb != nextrecord"));
1932 			if (so->so_rcv.sb_mb == NULL) {
1933 				KASSERT(so->so_rcv.sb_lastrecord == NULL,
1934 				    ("soreceive: sb_lastercord != NULL"));
1935 			}
1936 		}
1937 	}
1938 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1939 	SBLASTRECORDCHK(&so->so_rcv);
1940 	SBLASTMBUFCHK(&so->so_rcv);
1941 
1942 	/*
1943 	 * Now continue to read any data mbufs off of the head of the socket
1944 	 * buffer until the read request is satisfied.  Note that 'type' is
1945 	 * used to store the type of any mbuf reads that have happened so far
1946 	 * such that soreceive() can stop reading if the type changes, which
1947 	 * causes soreceive() to return only one of regular data and inline
1948 	 * out-of-band data in a single socket receive operation.
1949 	 */
1950 	moff = 0;
1951 	offset = 0;
1952 	while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0
1953 	    && error == 0) {
1954 		/*
1955 		 * If the type of mbuf has changed since the last mbuf
1956 		 * examined ('type'), end the receive operation.
1957 		 */
1958 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1959 		if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) {
1960 			if (type != m->m_type)
1961 				break;
1962 		} else if (type == MT_OOBDATA)
1963 			break;
1964 		else
1965 		    KASSERT(m->m_type == MT_DATA,
1966 			("m->m_type == %d", m->m_type));
1967 		so->so_rcv.sb_state &= ~SBS_RCVATMARK;
1968 		len = uio->uio_resid;
1969 		if (so->so_oobmark && len > so->so_oobmark - offset)
1970 			len = so->so_oobmark - offset;
1971 		if (len > m->m_len - moff)
1972 			len = m->m_len - moff;
1973 		/*
1974 		 * If mp is set, just pass back the mbufs.  Otherwise copy
1975 		 * them out via the uio, then free.  Sockbuf must be
1976 		 * consistent here (points to current mbuf, it points to next
1977 		 * record) when we drop priority; we must note any additions
1978 		 * to the sockbuf when we block interrupts again.
1979 		 */
1980 		if (mp == NULL) {
1981 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1982 			SBLASTRECORDCHK(&so->so_rcv);
1983 			SBLASTMBUFCHK(&so->so_rcv);
1984 			SOCKBUF_UNLOCK(&so->so_rcv);
1985 			if ((m->m_flags & M_NOMAP) != 0)
1986 				error = m_unmappedtouio(m, moff, uio, (int)len);
1987 			else
1988 				error = uiomove(mtod(m, char *) + moff,
1989 				    (int)len, uio);
1990 			SOCKBUF_LOCK(&so->so_rcv);
1991 			if (error) {
1992 				/*
1993 				 * The MT_SONAME mbuf has already been removed
1994 				 * from the record, so it is necessary to
1995 				 * remove the data mbufs, if any, to preserve
1996 				 * the invariant in the case of PR_ADDR that
1997 				 * requires MT_SONAME mbufs at the head of
1998 				 * each record.
1999 				 */
2000 				if (pr->pr_flags & PR_ATOMIC &&
2001 				    ((flags & MSG_PEEK) == 0))
2002 					(void)sbdroprecord_locked(&so->so_rcv);
2003 				SOCKBUF_UNLOCK(&so->so_rcv);
2004 				goto release;
2005 			}
2006 		} else
2007 			uio->uio_resid -= len;
2008 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2009 		if (len == m->m_len - moff) {
2010 			if (m->m_flags & M_EOR)
2011 				flags |= MSG_EOR;
2012 			if (flags & MSG_PEEK) {
2013 				m = m->m_next;
2014 				moff = 0;
2015 			} else {
2016 				nextrecord = m->m_nextpkt;
2017 				sbfree(&so->so_rcv, m);
2018 				if (mp != NULL) {
2019 					m->m_nextpkt = NULL;
2020 					*mp = m;
2021 					mp = &m->m_next;
2022 					so->so_rcv.sb_mb = m = m->m_next;
2023 					*mp = NULL;
2024 				} else {
2025 					so->so_rcv.sb_mb = m_free(m);
2026 					m = so->so_rcv.sb_mb;
2027 				}
2028 				sockbuf_pushsync(&so->so_rcv, nextrecord);
2029 				SBLASTRECORDCHK(&so->so_rcv);
2030 				SBLASTMBUFCHK(&so->so_rcv);
2031 			}
2032 		} else {
2033 			if (flags & MSG_PEEK)
2034 				moff += len;
2035 			else {
2036 				if (mp != NULL) {
2037 					if (flags & MSG_DONTWAIT) {
2038 						*mp = m_copym(m, 0, len,
2039 						    M_NOWAIT);
2040 						if (*mp == NULL) {
2041 							/*
2042 							 * m_copym() couldn't
2043 							 * allocate an mbuf.
2044 							 * Adjust uio_resid back
2045 							 * (it was adjusted
2046 							 * down by len bytes,
2047 							 * which we didn't end
2048 							 * up "copying" over).
2049 							 */
2050 							uio->uio_resid += len;
2051 							break;
2052 						}
2053 					} else {
2054 						SOCKBUF_UNLOCK(&so->so_rcv);
2055 						*mp = m_copym(m, 0, len,
2056 						    M_WAITOK);
2057 						SOCKBUF_LOCK(&so->so_rcv);
2058 					}
2059 				}
2060 				sbcut_locked(&so->so_rcv, len);
2061 			}
2062 		}
2063 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2064 		if (so->so_oobmark) {
2065 			if ((flags & MSG_PEEK) == 0) {
2066 				so->so_oobmark -= len;
2067 				if (so->so_oobmark == 0) {
2068 					so->so_rcv.sb_state |= SBS_RCVATMARK;
2069 					break;
2070 				}
2071 			} else {
2072 				offset += len;
2073 				if (offset == so->so_oobmark)
2074 					break;
2075 			}
2076 		}
2077 		if (flags & MSG_EOR)
2078 			break;
2079 		/*
2080 		 * If the MSG_WAITALL flag is set (for non-atomic socket), we
2081 		 * must not quit until "uio->uio_resid == 0" or an error
2082 		 * termination.  If a signal/timeout occurs, return with a
2083 		 * short count but without error.  Keep sockbuf locked
2084 		 * against other readers.
2085 		 */
2086 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
2087 		    !sosendallatonce(so) && nextrecord == NULL) {
2088 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2089 			if (so->so_error ||
2090 			    so->so_rcv.sb_state & SBS_CANTRCVMORE)
2091 				break;
2092 			/*
2093 			 * Notify the protocol that some data has been
2094 			 * drained before blocking.
2095 			 */
2096 			if (pr->pr_flags & PR_WANTRCVD) {
2097 				SOCKBUF_UNLOCK(&so->so_rcv);
2098 				VNET_SO_ASSERT(so);
2099 				(*pr->pr_usrreqs->pru_rcvd)(so, flags);
2100 				SOCKBUF_LOCK(&so->so_rcv);
2101 			}
2102 			SBLASTRECORDCHK(&so->so_rcv);
2103 			SBLASTMBUFCHK(&so->so_rcv);
2104 			/*
2105 			 * We could receive some data while was notifying
2106 			 * the protocol. Skip blocking in this case.
2107 			 */
2108 			if (so->so_rcv.sb_mb == NULL) {
2109 				error = sbwait(&so->so_rcv);
2110 				if (error) {
2111 					SOCKBUF_UNLOCK(&so->so_rcv);
2112 					goto release;
2113 				}
2114 			}
2115 			m = so->so_rcv.sb_mb;
2116 			if (m != NULL)
2117 				nextrecord = m->m_nextpkt;
2118 		}
2119 	}
2120 
2121 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2122 	if (m != NULL && pr->pr_flags & PR_ATOMIC) {
2123 		flags |= MSG_TRUNC;
2124 		if ((flags & MSG_PEEK) == 0)
2125 			(void) sbdroprecord_locked(&so->so_rcv);
2126 	}
2127 	if ((flags & MSG_PEEK) == 0) {
2128 		if (m == NULL) {
2129 			/*
2130 			 * First part is an inline SB_EMPTY_FIXUP().  Second
2131 			 * part makes sure sb_lastrecord is up-to-date if
2132 			 * there is still data in the socket buffer.
2133 			 */
2134 			so->so_rcv.sb_mb = nextrecord;
2135 			if (so->so_rcv.sb_mb == NULL) {
2136 				so->so_rcv.sb_mbtail = NULL;
2137 				so->so_rcv.sb_lastrecord = NULL;
2138 			} else if (nextrecord->m_nextpkt == NULL)
2139 				so->so_rcv.sb_lastrecord = nextrecord;
2140 		}
2141 		SBLASTRECORDCHK(&so->so_rcv);
2142 		SBLASTMBUFCHK(&so->so_rcv);
2143 		/*
2144 		 * If soreceive() is being done from the socket callback,
2145 		 * then don't need to generate ACK to peer to update window,
2146 		 * since ACK will be generated on return to TCP.
2147 		 */
2148 		if (!(flags & MSG_SOCALLBCK) &&
2149 		    (pr->pr_flags & PR_WANTRCVD)) {
2150 			SOCKBUF_UNLOCK(&so->so_rcv);
2151 			VNET_SO_ASSERT(so);
2152 			(*pr->pr_usrreqs->pru_rcvd)(so, flags);
2153 			SOCKBUF_LOCK(&so->so_rcv);
2154 		}
2155 	}
2156 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2157 	if (orig_resid == uio->uio_resid && orig_resid &&
2158 	    (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
2159 		SOCKBUF_UNLOCK(&so->so_rcv);
2160 		goto restart;
2161 	}
2162 	SOCKBUF_UNLOCK(&so->so_rcv);
2163 
2164 	if (flagsp != NULL)
2165 		*flagsp |= flags;
2166 release:
2167 	sbunlock(&so->so_rcv);
2168 	return (error);
2169 }
2170 
2171 /*
2172  * Optimized version of soreceive() for stream (TCP) sockets.
2173  */
2174 int
2175 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio,
2176     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2177 {
2178 	int len = 0, error = 0, flags, oresid;
2179 	struct sockbuf *sb;
2180 	struct mbuf *m, *n = NULL;
2181 
2182 	/* We only do stream sockets. */
2183 	if (so->so_type != SOCK_STREAM)
2184 		return (EINVAL);
2185 	if (psa != NULL)
2186 		*psa = NULL;
2187 	if (flagsp != NULL)
2188 		flags = *flagsp &~ MSG_EOR;
2189 	else
2190 		flags = 0;
2191 	if (controlp != NULL)
2192 		*controlp = NULL;
2193 	if (flags & MSG_OOB)
2194 		return (soreceive_rcvoob(so, uio, flags));
2195 	if (mp0 != NULL)
2196 		*mp0 = NULL;
2197 
2198 	sb = &so->so_rcv;
2199 
2200 	/* Prevent other readers from entering the socket. */
2201 	error = sblock(sb, SBLOCKWAIT(flags));
2202 	if (error)
2203 		goto out;
2204 	SOCKBUF_LOCK(sb);
2205 
2206 	/* Easy one, no space to copyout anything. */
2207 	if (uio->uio_resid == 0) {
2208 		error = EINVAL;
2209 		goto out;
2210 	}
2211 	oresid = uio->uio_resid;
2212 
2213 	/* We will never ever get anything unless we are or were connected. */
2214 	if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
2215 		error = ENOTCONN;
2216 		goto out;
2217 	}
2218 
2219 restart:
2220 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2221 
2222 	/* Abort if socket has reported problems. */
2223 	if (so->so_error) {
2224 		if (sbavail(sb) > 0)
2225 			goto deliver;
2226 		if (oresid > uio->uio_resid)
2227 			goto out;
2228 		error = so->so_error;
2229 		if (!(flags & MSG_PEEK))
2230 			so->so_error = 0;
2231 		goto out;
2232 	}
2233 
2234 	/* Door is closed.  Deliver what is left, if any. */
2235 	if (sb->sb_state & SBS_CANTRCVMORE) {
2236 		if (sbavail(sb) > 0)
2237 			goto deliver;
2238 		else
2239 			goto out;
2240 	}
2241 
2242 	/* Socket buffer is empty and we shall not block. */
2243 	if (sbavail(sb) == 0 &&
2244 	    ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) {
2245 		error = EAGAIN;
2246 		goto out;
2247 	}
2248 
2249 	/* Socket buffer got some data that we shall deliver now. */
2250 	if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) &&
2251 	    ((so->so_state & SS_NBIO) ||
2252 	     (flags & (MSG_DONTWAIT|MSG_NBIO)) ||
2253 	     sbavail(sb) >= sb->sb_lowat ||
2254 	     sbavail(sb) >= uio->uio_resid ||
2255 	     sbavail(sb) >= sb->sb_hiwat) ) {
2256 		goto deliver;
2257 	}
2258 
2259 	/* On MSG_WAITALL we must wait until all data or error arrives. */
2260 	if ((flags & MSG_WAITALL) &&
2261 	    (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat))
2262 		goto deliver;
2263 
2264 	/*
2265 	 * Wait and block until (more) data comes in.
2266 	 * NB: Drops the sockbuf lock during wait.
2267 	 */
2268 	error = sbwait(sb);
2269 	if (error)
2270 		goto out;
2271 	goto restart;
2272 
2273 deliver:
2274 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2275 	KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__));
2276 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__));
2277 
2278 	/* Statistics. */
2279 	if (uio->uio_td)
2280 		uio->uio_td->td_ru.ru_msgrcv++;
2281 
2282 	/* Fill uio until full or current end of socket buffer is reached. */
2283 	len = min(uio->uio_resid, sbavail(sb));
2284 	if (mp0 != NULL) {
2285 		/* Dequeue as many mbufs as possible. */
2286 		if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) {
2287 			if (*mp0 == NULL)
2288 				*mp0 = sb->sb_mb;
2289 			else
2290 				m_cat(*mp0, sb->sb_mb);
2291 			for (m = sb->sb_mb;
2292 			     m != NULL && m->m_len <= len;
2293 			     m = m->m_next) {
2294 				KASSERT(!(m->m_flags & M_NOTAVAIL),
2295 				    ("%s: m %p not available", __func__, m));
2296 				len -= m->m_len;
2297 				uio->uio_resid -= m->m_len;
2298 				sbfree(sb, m);
2299 				n = m;
2300 			}
2301 			n->m_next = NULL;
2302 			sb->sb_mb = m;
2303 			sb->sb_lastrecord = sb->sb_mb;
2304 			if (sb->sb_mb == NULL)
2305 				SB_EMPTY_FIXUP(sb);
2306 		}
2307 		/* Copy the remainder. */
2308 		if (len > 0) {
2309 			KASSERT(sb->sb_mb != NULL,
2310 			    ("%s: len > 0 && sb->sb_mb empty", __func__));
2311 
2312 			m = m_copym(sb->sb_mb, 0, len, M_NOWAIT);
2313 			if (m == NULL)
2314 				len = 0;	/* Don't flush data from sockbuf. */
2315 			else
2316 				uio->uio_resid -= len;
2317 			if (*mp0 != NULL)
2318 				m_cat(*mp0, m);
2319 			else
2320 				*mp0 = m;
2321 			if (*mp0 == NULL) {
2322 				error = ENOBUFS;
2323 				goto out;
2324 			}
2325 		}
2326 	} else {
2327 		/* NB: Must unlock socket buffer as uiomove may sleep. */
2328 		SOCKBUF_UNLOCK(sb);
2329 		error = m_mbuftouio(uio, sb->sb_mb, len);
2330 		SOCKBUF_LOCK(sb);
2331 		if (error)
2332 			goto out;
2333 	}
2334 	SBLASTRECORDCHK(sb);
2335 	SBLASTMBUFCHK(sb);
2336 
2337 	/*
2338 	 * Remove the delivered data from the socket buffer unless we
2339 	 * were only peeking.
2340 	 */
2341 	if (!(flags & MSG_PEEK)) {
2342 		if (len > 0)
2343 			sbdrop_locked(sb, len);
2344 
2345 		/* Notify protocol that we drained some data. */
2346 		if ((so->so_proto->pr_flags & PR_WANTRCVD) &&
2347 		    (((flags & MSG_WAITALL) && uio->uio_resid > 0) ||
2348 		     !(flags & MSG_SOCALLBCK))) {
2349 			SOCKBUF_UNLOCK(sb);
2350 			VNET_SO_ASSERT(so);
2351 			(*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags);
2352 			SOCKBUF_LOCK(sb);
2353 		}
2354 	}
2355 
2356 	/*
2357 	 * For MSG_WAITALL we may have to loop again and wait for
2358 	 * more data to come in.
2359 	 */
2360 	if ((flags & MSG_WAITALL) && uio->uio_resid > 0)
2361 		goto restart;
2362 out:
2363 	SOCKBUF_LOCK_ASSERT(sb);
2364 	SBLASTRECORDCHK(sb);
2365 	SBLASTMBUFCHK(sb);
2366 	SOCKBUF_UNLOCK(sb);
2367 	sbunlock(sb);
2368 	return (error);
2369 }
2370 
2371 /*
2372  * Optimized version of soreceive() for simple datagram cases from userspace.
2373  * Unlike in the stream case, we're able to drop a datagram if copyout()
2374  * fails, and because we handle datagrams atomically, we don't need to use a
2375  * sleep lock to prevent I/O interlacing.
2376  */
2377 int
2378 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
2379     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2380 {
2381 	struct mbuf *m, *m2;
2382 	int flags, error;
2383 	ssize_t len;
2384 	struct protosw *pr = so->so_proto;
2385 	struct mbuf *nextrecord;
2386 
2387 	if (psa != NULL)
2388 		*psa = NULL;
2389 	if (controlp != NULL)
2390 		*controlp = NULL;
2391 	if (flagsp != NULL)
2392 		flags = *flagsp &~ MSG_EOR;
2393 	else
2394 		flags = 0;
2395 
2396 	/*
2397 	 * For any complicated cases, fall back to the full
2398 	 * soreceive_generic().
2399 	 */
2400 	if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB))
2401 		return (soreceive_generic(so, psa, uio, mp0, controlp,
2402 		    flagsp));
2403 
2404 	/*
2405 	 * Enforce restrictions on use.
2406 	 */
2407 	KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
2408 	    ("soreceive_dgram: wantrcvd"));
2409 	KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
2410 	KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
2411 	    ("soreceive_dgram: SBS_RCVATMARK"));
2412 	KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
2413 	    ("soreceive_dgram: P_CONNREQUIRED"));
2414 
2415 	/*
2416 	 * Loop blocking while waiting for a datagram.
2417 	 */
2418 	SOCKBUF_LOCK(&so->so_rcv);
2419 	while ((m = so->so_rcv.sb_mb) == NULL) {
2420 		KASSERT(sbavail(&so->so_rcv) == 0,
2421 		    ("soreceive_dgram: sb_mb NULL but sbavail %u",
2422 		    sbavail(&so->so_rcv)));
2423 		if (so->so_error) {
2424 			error = so->so_error;
2425 			so->so_error = 0;
2426 			SOCKBUF_UNLOCK(&so->so_rcv);
2427 			return (error);
2428 		}
2429 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
2430 		    uio->uio_resid == 0) {
2431 			SOCKBUF_UNLOCK(&so->so_rcv);
2432 			return (0);
2433 		}
2434 		if ((so->so_state & SS_NBIO) ||
2435 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
2436 			SOCKBUF_UNLOCK(&so->so_rcv);
2437 			return (EWOULDBLOCK);
2438 		}
2439 		SBLASTRECORDCHK(&so->so_rcv);
2440 		SBLASTMBUFCHK(&so->so_rcv);
2441 		error = sbwait(&so->so_rcv);
2442 		if (error) {
2443 			SOCKBUF_UNLOCK(&so->so_rcv);
2444 			return (error);
2445 		}
2446 	}
2447 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2448 
2449 	if (uio->uio_td)
2450 		uio->uio_td->td_ru.ru_msgrcv++;
2451 	SBLASTRECORDCHK(&so->so_rcv);
2452 	SBLASTMBUFCHK(&so->so_rcv);
2453 	nextrecord = m->m_nextpkt;
2454 	if (nextrecord == NULL) {
2455 		KASSERT(so->so_rcv.sb_lastrecord == m,
2456 		    ("soreceive_dgram: lastrecord != m"));
2457 	}
2458 
2459 	KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
2460 	    ("soreceive_dgram: m_nextpkt != nextrecord"));
2461 
2462 	/*
2463 	 * Pull 'm' and its chain off the front of the packet queue.
2464 	 */
2465 	so->so_rcv.sb_mb = NULL;
2466 	sockbuf_pushsync(&so->so_rcv, nextrecord);
2467 
2468 	/*
2469 	 * Walk 'm's chain and free that many bytes from the socket buffer.
2470 	 */
2471 	for (m2 = m; m2 != NULL; m2 = m2->m_next)
2472 		sbfree(&so->so_rcv, m2);
2473 
2474 	/*
2475 	 * Do a few last checks before we let go of the lock.
2476 	 */
2477 	SBLASTRECORDCHK(&so->so_rcv);
2478 	SBLASTMBUFCHK(&so->so_rcv);
2479 	SOCKBUF_UNLOCK(&so->so_rcv);
2480 
2481 	if (pr->pr_flags & PR_ADDR) {
2482 		KASSERT(m->m_type == MT_SONAME,
2483 		    ("m->m_type == %d", m->m_type));
2484 		if (psa != NULL)
2485 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
2486 			    M_NOWAIT);
2487 		m = m_free(m);
2488 	}
2489 	if (m == NULL) {
2490 		/* XXXRW: Can this happen? */
2491 		return (0);
2492 	}
2493 
2494 	/*
2495 	 * Packet to copyout() is now in 'm' and it is disconnected from the
2496 	 * queue.
2497 	 *
2498 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
2499 	 * in the first mbuf chain on the socket buffer.  We call into the
2500 	 * protocol to perform externalization (or freeing if controlp ==
2501 	 * NULL). In some cases there can be only MT_CONTROL mbufs without
2502 	 * MT_DATA mbufs.
2503 	 */
2504 	if (m->m_type == MT_CONTROL) {
2505 		struct mbuf *cm = NULL, *cmn;
2506 		struct mbuf **cme = &cm;
2507 
2508 		do {
2509 			m2 = m->m_next;
2510 			m->m_next = NULL;
2511 			*cme = m;
2512 			cme = &(*cme)->m_next;
2513 			m = m2;
2514 		} while (m != NULL && m->m_type == MT_CONTROL);
2515 		while (cm != NULL) {
2516 			cmn = cm->m_next;
2517 			cm->m_next = NULL;
2518 			if (pr->pr_domain->dom_externalize != NULL) {
2519 				error = (*pr->pr_domain->dom_externalize)
2520 				    (cm, controlp, flags);
2521 			} else if (controlp != NULL)
2522 				*controlp = cm;
2523 			else
2524 				m_freem(cm);
2525 			if (controlp != NULL) {
2526 				while (*controlp != NULL)
2527 					controlp = &(*controlp)->m_next;
2528 			}
2529 			cm = cmn;
2530 		}
2531 	}
2532 	KASSERT(m == NULL || m->m_type == MT_DATA,
2533 	    ("soreceive_dgram: !data"));
2534 	while (m != NULL && uio->uio_resid > 0) {
2535 		len = uio->uio_resid;
2536 		if (len > m->m_len)
2537 			len = m->m_len;
2538 		error = uiomove(mtod(m, char *), (int)len, uio);
2539 		if (error) {
2540 			m_freem(m);
2541 			return (error);
2542 		}
2543 		if (len == m->m_len)
2544 			m = m_free(m);
2545 		else {
2546 			m->m_data += len;
2547 			m->m_len -= len;
2548 		}
2549 	}
2550 	if (m != NULL) {
2551 		flags |= MSG_TRUNC;
2552 		m_freem(m);
2553 	}
2554 	if (flagsp != NULL)
2555 		*flagsp |= flags;
2556 	return (0);
2557 }
2558 
2559 int
2560 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
2561     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2562 {
2563 	int error;
2564 
2565 	CURVNET_SET(so->so_vnet);
2566 	if (!SOLISTENING(so))
2567 		error = (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio,
2568 		    mp0, controlp, flagsp));
2569 	else
2570 		error = ENOTCONN;
2571 	CURVNET_RESTORE();
2572 	return (error);
2573 }
2574 
2575 int
2576 soshutdown(struct socket *so, int how)
2577 {
2578 	struct protosw *pr = so->so_proto;
2579 	int error, soerror_enotconn;
2580 
2581 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
2582 		return (EINVAL);
2583 
2584 	soerror_enotconn = 0;
2585 	if ((so->so_state &
2586 	    (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) {
2587 		/*
2588 		 * POSIX mandates us to return ENOTCONN when shutdown(2) is
2589 		 * invoked on a datagram sockets, however historically we would
2590 		 * actually tear socket down. This is known to be leveraged by
2591 		 * some applications to unblock process waiting in recvXXX(2)
2592 		 * by other process that it shares that socket with. Try to meet
2593 		 * both backward-compatibility and POSIX requirements by forcing
2594 		 * ENOTCONN but still asking protocol to perform pru_shutdown().
2595 		 */
2596 		if (so->so_type != SOCK_DGRAM && !SOLISTENING(so))
2597 			return (ENOTCONN);
2598 		soerror_enotconn = 1;
2599 	}
2600 
2601 	if (SOLISTENING(so)) {
2602 		if (how != SHUT_WR) {
2603 			SOLISTEN_LOCK(so);
2604 			so->so_error = ECONNABORTED;
2605 			solisten_wakeup(so);	/* unlocks so */
2606 		}
2607 		goto done;
2608 	}
2609 
2610 	CURVNET_SET(so->so_vnet);
2611 	if (pr->pr_usrreqs->pru_flush != NULL)
2612 		(*pr->pr_usrreqs->pru_flush)(so, how);
2613 	if (how != SHUT_WR)
2614 		sorflush(so);
2615 	if (how != SHUT_RD) {
2616 		error = (*pr->pr_usrreqs->pru_shutdown)(so);
2617 		wakeup(&so->so_timeo);
2618 		CURVNET_RESTORE();
2619 		return ((error == 0 && soerror_enotconn) ? ENOTCONN : error);
2620 	}
2621 	wakeup(&so->so_timeo);
2622 	CURVNET_RESTORE();
2623 
2624 done:
2625 	return (soerror_enotconn ? ENOTCONN : 0);
2626 }
2627 
2628 void
2629 sorflush(struct socket *so)
2630 {
2631 	struct sockbuf *sb = &so->so_rcv;
2632 	struct protosw *pr = so->so_proto;
2633 	struct socket aso;
2634 
2635 	VNET_SO_ASSERT(so);
2636 
2637 	/*
2638 	 * In order to avoid calling dom_dispose with the socket buffer mutex
2639 	 * held, and in order to generally avoid holding the lock for a long
2640 	 * time, we make a copy of the socket buffer and clear the original
2641 	 * (except locks, state).  The new socket buffer copy won't have
2642 	 * initialized locks so we can only call routines that won't use or
2643 	 * assert those locks.
2644 	 *
2645 	 * Dislodge threads currently blocked in receive and wait to acquire
2646 	 * a lock against other simultaneous readers before clearing the
2647 	 * socket buffer.  Don't let our acquire be interrupted by a signal
2648 	 * despite any existing socket disposition on interruptable waiting.
2649 	 */
2650 	socantrcvmore(so);
2651 	(void) sblock(sb, SBL_WAIT | SBL_NOINTR);
2652 
2653 	/*
2654 	 * Invalidate/clear most of the sockbuf structure, but leave selinfo
2655 	 * and mutex data unchanged.
2656 	 */
2657 	SOCKBUF_LOCK(sb);
2658 	bzero(&aso, sizeof(aso));
2659 	aso.so_pcb = so->so_pcb;
2660 	bcopy(&sb->sb_startzero, &aso.so_rcv.sb_startzero,
2661 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
2662 	bzero(&sb->sb_startzero,
2663 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
2664 	SOCKBUF_UNLOCK(sb);
2665 	sbunlock(sb);
2666 
2667 	/*
2668 	 * Dispose of special rights and flush the copied socket.  Don't call
2669 	 * any unsafe routines (that rely on locks being initialized) on aso.
2670 	 */
2671 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
2672 		(*pr->pr_domain->dom_dispose)(&aso);
2673 	sbrelease_internal(&aso.so_rcv, so);
2674 }
2675 
2676 /*
2677  * Wrapper for Socket established helper hook.
2678  * Parameters: socket, context of the hook point, hook id.
2679  */
2680 static int inline
2681 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id)
2682 {
2683 	struct socket_hhook_data hhook_data = {
2684 		.so = so,
2685 		.hctx = hctx,
2686 		.m = NULL,
2687 		.status = 0
2688 	};
2689 
2690 	CURVNET_SET(so->so_vnet);
2691 	HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd);
2692 	CURVNET_RESTORE();
2693 
2694 	/* Ugly but needed, since hhooks return void for now */
2695 	return (hhook_data.status);
2696 }
2697 
2698 /*
2699  * Perhaps this routine, and sooptcopyout(), below, ought to come in an
2700  * additional variant to handle the case where the option value needs to be
2701  * some kind of integer, but not a specific size.  In addition to their use
2702  * here, these functions are also called by the protocol-level pr_ctloutput()
2703  * routines.
2704  */
2705 int
2706 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
2707 {
2708 	size_t	valsize;
2709 
2710 	/*
2711 	 * If the user gives us more than we wanted, we ignore it, but if we
2712 	 * don't get the minimum length the caller wants, we return EINVAL.
2713 	 * On success, sopt->sopt_valsize is set to however much we actually
2714 	 * retrieved.
2715 	 */
2716 	if ((valsize = sopt->sopt_valsize) < minlen)
2717 		return EINVAL;
2718 	if (valsize > len)
2719 		sopt->sopt_valsize = valsize = len;
2720 
2721 	if (sopt->sopt_td != NULL)
2722 		return (copyin(sopt->sopt_val, buf, valsize));
2723 
2724 	bcopy(sopt->sopt_val, buf, valsize);
2725 	return (0);
2726 }
2727 
2728 /*
2729  * Kernel version of setsockopt(2).
2730  *
2731  * XXX: optlen is size_t, not socklen_t
2732  */
2733 int
2734 so_setsockopt(struct socket *so, int level, int optname, void *optval,
2735     size_t optlen)
2736 {
2737 	struct sockopt sopt;
2738 
2739 	sopt.sopt_level = level;
2740 	sopt.sopt_name = optname;
2741 	sopt.sopt_dir = SOPT_SET;
2742 	sopt.sopt_val = optval;
2743 	sopt.sopt_valsize = optlen;
2744 	sopt.sopt_td = NULL;
2745 	return (sosetopt(so, &sopt));
2746 }
2747 
2748 int
2749 sosetopt(struct socket *so, struct sockopt *sopt)
2750 {
2751 	int	error, optval;
2752 	struct	linger l;
2753 	struct	timeval tv;
2754 	sbintime_t val;
2755 	uint32_t val32;
2756 #ifdef MAC
2757 	struct mac extmac;
2758 #endif
2759 
2760 	CURVNET_SET(so->so_vnet);
2761 	error = 0;
2762 	if (sopt->sopt_level != SOL_SOCKET) {
2763 		if (so->so_proto->pr_ctloutput != NULL)
2764 			error = (*so->so_proto->pr_ctloutput)(so, sopt);
2765 		else
2766 			error = ENOPROTOOPT;
2767 	} else {
2768 		switch (sopt->sopt_name) {
2769 		case SO_ACCEPTFILTER:
2770 			error = accept_filt_setopt(so, sopt);
2771 			if (error)
2772 				goto bad;
2773 			break;
2774 
2775 		case SO_LINGER:
2776 			error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
2777 			if (error)
2778 				goto bad;
2779 
2780 			SOCK_LOCK(so);
2781 			so->so_linger = l.l_linger;
2782 			if (l.l_onoff)
2783 				so->so_options |= SO_LINGER;
2784 			else
2785 				so->so_options &= ~SO_LINGER;
2786 			SOCK_UNLOCK(so);
2787 			break;
2788 
2789 		case SO_DEBUG:
2790 		case SO_KEEPALIVE:
2791 		case SO_DONTROUTE:
2792 		case SO_USELOOPBACK:
2793 		case SO_BROADCAST:
2794 		case SO_REUSEADDR:
2795 		case SO_REUSEPORT:
2796 		case SO_REUSEPORT_LB:
2797 		case SO_OOBINLINE:
2798 		case SO_TIMESTAMP:
2799 		case SO_BINTIME:
2800 		case SO_NOSIGPIPE:
2801 		case SO_NO_DDP:
2802 		case SO_NO_OFFLOAD:
2803 			error = sooptcopyin(sopt, &optval, sizeof optval,
2804 			    sizeof optval);
2805 			if (error)
2806 				goto bad;
2807 			SOCK_LOCK(so);
2808 			if (optval)
2809 				so->so_options |= sopt->sopt_name;
2810 			else
2811 				so->so_options &= ~sopt->sopt_name;
2812 			SOCK_UNLOCK(so);
2813 			break;
2814 
2815 		case SO_SETFIB:
2816 			error = sooptcopyin(sopt, &optval, sizeof optval,
2817 			    sizeof optval);
2818 			if (error)
2819 				goto bad;
2820 
2821 			if (optval < 0 || optval >= rt_numfibs) {
2822 				error = EINVAL;
2823 				goto bad;
2824 			}
2825 			if (((so->so_proto->pr_domain->dom_family == PF_INET) ||
2826 			   (so->so_proto->pr_domain->dom_family == PF_INET6) ||
2827 			   (so->so_proto->pr_domain->dom_family == PF_ROUTE)))
2828 				so->so_fibnum = optval;
2829 			else
2830 				so->so_fibnum = 0;
2831 			break;
2832 
2833 		case SO_USER_COOKIE:
2834 			error = sooptcopyin(sopt, &val32, sizeof val32,
2835 			    sizeof val32);
2836 			if (error)
2837 				goto bad;
2838 			so->so_user_cookie = val32;
2839 			break;
2840 
2841 		case SO_SNDBUF:
2842 		case SO_RCVBUF:
2843 		case SO_SNDLOWAT:
2844 		case SO_RCVLOWAT:
2845 			error = sooptcopyin(sopt, &optval, sizeof optval,
2846 			    sizeof optval);
2847 			if (error)
2848 				goto bad;
2849 
2850 			/*
2851 			 * Values < 1 make no sense for any of these options,
2852 			 * so disallow them.
2853 			 */
2854 			if (optval < 1) {
2855 				error = EINVAL;
2856 				goto bad;
2857 			}
2858 
2859 			error = sbsetopt(so, sopt->sopt_name, optval);
2860 			break;
2861 
2862 		case SO_SNDTIMEO:
2863 		case SO_RCVTIMEO:
2864 #ifdef COMPAT_FREEBSD32
2865 			if (SV_CURPROC_FLAG(SV_ILP32)) {
2866 				struct timeval32 tv32;
2867 
2868 				error = sooptcopyin(sopt, &tv32, sizeof tv32,
2869 				    sizeof tv32);
2870 				CP(tv32, tv, tv_sec);
2871 				CP(tv32, tv, tv_usec);
2872 			} else
2873 #endif
2874 				error = sooptcopyin(sopt, &tv, sizeof tv,
2875 				    sizeof tv);
2876 			if (error)
2877 				goto bad;
2878 			if (tv.tv_sec < 0 || tv.tv_usec < 0 ||
2879 			    tv.tv_usec >= 1000000) {
2880 				error = EDOM;
2881 				goto bad;
2882 			}
2883 			if (tv.tv_sec > INT32_MAX)
2884 				val = SBT_MAX;
2885 			else
2886 				val = tvtosbt(tv);
2887 			switch (sopt->sopt_name) {
2888 			case SO_SNDTIMEO:
2889 				so->so_snd.sb_timeo = val;
2890 				break;
2891 			case SO_RCVTIMEO:
2892 				so->so_rcv.sb_timeo = val;
2893 				break;
2894 			}
2895 			break;
2896 
2897 		case SO_LABEL:
2898 #ifdef MAC
2899 			error = sooptcopyin(sopt, &extmac, sizeof extmac,
2900 			    sizeof extmac);
2901 			if (error)
2902 				goto bad;
2903 			error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
2904 			    so, &extmac);
2905 #else
2906 			error = EOPNOTSUPP;
2907 #endif
2908 			break;
2909 
2910 		case SO_TS_CLOCK:
2911 			error = sooptcopyin(sopt, &optval, sizeof optval,
2912 			    sizeof optval);
2913 			if (error)
2914 				goto bad;
2915 			if (optval < 0 || optval > SO_TS_CLOCK_MAX) {
2916 				error = EINVAL;
2917 				goto bad;
2918 			}
2919 			so->so_ts_clock = optval;
2920 			break;
2921 
2922 		case SO_MAX_PACING_RATE:
2923 			error = sooptcopyin(sopt, &val32, sizeof(val32),
2924 			    sizeof(val32));
2925 			if (error)
2926 				goto bad;
2927 			so->so_max_pacing_rate = val32;
2928 			break;
2929 
2930 		default:
2931 			if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
2932 				error = hhook_run_socket(so, sopt,
2933 				    HHOOK_SOCKET_OPT);
2934 			else
2935 				error = ENOPROTOOPT;
2936 			break;
2937 		}
2938 		if (error == 0 && so->so_proto->pr_ctloutput != NULL)
2939 			(void)(*so->so_proto->pr_ctloutput)(so, sopt);
2940 	}
2941 bad:
2942 	CURVNET_RESTORE();
2943 	return (error);
2944 }
2945 
2946 /*
2947  * Helper routine for getsockopt.
2948  */
2949 int
2950 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
2951 {
2952 	int	error;
2953 	size_t	valsize;
2954 
2955 	error = 0;
2956 
2957 	/*
2958 	 * Documented get behavior is that we always return a value, possibly
2959 	 * truncated to fit in the user's buffer.  Traditional behavior is
2960 	 * that we always tell the user precisely how much we copied, rather
2961 	 * than something useful like the total amount we had available for
2962 	 * her.  Note that this interface is not idempotent; the entire
2963 	 * answer must be generated ahead of time.
2964 	 */
2965 	valsize = min(len, sopt->sopt_valsize);
2966 	sopt->sopt_valsize = valsize;
2967 	if (sopt->sopt_val != NULL) {
2968 		if (sopt->sopt_td != NULL)
2969 			error = copyout(buf, sopt->sopt_val, valsize);
2970 		else
2971 			bcopy(buf, sopt->sopt_val, valsize);
2972 	}
2973 	return (error);
2974 }
2975 
2976 int
2977 sogetopt(struct socket *so, struct sockopt *sopt)
2978 {
2979 	int	error, optval;
2980 	struct	linger l;
2981 	struct	timeval tv;
2982 #ifdef MAC
2983 	struct mac extmac;
2984 #endif
2985 
2986 	CURVNET_SET(so->so_vnet);
2987 	error = 0;
2988 	if (sopt->sopt_level != SOL_SOCKET) {
2989 		if (so->so_proto->pr_ctloutput != NULL)
2990 			error = (*so->so_proto->pr_ctloutput)(so, sopt);
2991 		else
2992 			error = ENOPROTOOPT;
2993 		CURVNET_RESTORE();
2994 		return (error);
2995 	} else {
2996 		switch (sopt->sopt_name) {
2997 		case SO_ACCEPTFILTER:
2998 			error = accept_filt_getopt(so, sopt);
2999 			break;
3000 
3001 		case SO_LINGER:
3002 			SOCK_LOCK(so);
3003 			l.l_onoff = so->so_options & SO_LINGER;
3004 			l.l_linger = so->so_linger;
3005 			SOCK_UNLOCK(so);
3006 			error = sooptcopyout(sopt, &l, sizeof l);
3007 			break;
3008 
3009 		case SO_USELOOPBACK:
3010 		case SO_DONTROUTE:
3011 		case SO_DEBUG:
3012 		case SO_KEEPALIVE:
3013 		case SO_REUSEADDR:
3014 		case SO_REUSEPORT:
3015 		case SO_REUSEPORT_LB:
3016 		case SO_BROADCAST:
3017 		case SO_OOBINLINE:
3018 		case SO_ACCEPTCONN:
3019 		case SO_TIMESTAMP:
3020 		case SO_BINTIME:
3021 		case SO_NOSIGPIPE:
3022 			optval = so->so_options & sopt->sopt_name;
3023 integer:
3024 			error = sooptcopyout(sopt, &optval, sizeof optval);
3025 			break;
3026 
3027 		case SO_DOMAIN:
3028 			optval = so->so_proto->pr_domain->dom_family;
3029 			goto integer;
3030 
3031 		case SO_TYPE:
3032 			optval = so->so_type;
3033 			goto integer;
3034 
3035 		case SO_PROTOCOL:
3036 			optval = so->so_proto->pr_protocol;
3037 			goto integer;
3038 
3039 		case SO_ERROR:
3040 			SOCK_LOCK(so);
3041 			optval = so->so_error;
3042 			so->so_error = 0;
3043 			SOCK_UNLOCK(so);
3044 			goto integer;
3045 
3046 		case SO_SNDBUF:
3047 			optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat :
3048 			    so->so_snd.sb_hiwat;
3049 			goto integer;
3050 
3051 		case SO_RCVBUF:
3052 			optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat :
3053 			    so->so_rcv.sb_hiwat;
3054 			goto integer;
3055 
3056 		case SO_SNDLOWAT:
3057 			optval = SOLISTENING(so) ? so->sol_sbsnd_lowat :
3058 			    so->so_snd.sb_lowat;
3059 			goto integer;
3060 
3061 		case SO_RCVLOWAT:
3062 			optval = SOLISTENING(so) ? so->sol_sbrcv_lowat :
3063 			    so->so_rcv.sb_lowat;
3064 			goto integer;
3065 
3066 		case SO_SNDTIMEO:
3067 		case SO_RCVTIMEO:
3068 			tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ?
3069 			    so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
3070 #ifdef COMPAT_FREEBSD32
3071 			if (SV_CURPROC_FLAG(SV_ILP32)) {
3072 				struct timeval32 tv32;
3073 
3074 				CP(tv, tv32, tv_sec);
3075 				CP(tv, tv32, tv_usec);
3076 				error = sooptcopyout(sopt, &tv32, sizeof tv32);
3077 			} else
3078 #endif
3079 				error = sooptcopyout(sopt, &tv, sizeof tv);
3080 			break;
3081 
3082 		case SO_LABEL:
3083 #ifdef MAC
3084 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
3085 			    sizeof(extmac));
3086 			if (error)
3087 				goto bad;
3088 			error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
3089 			    so, &extmac);
3090 			if (error)
3091 				goto bad;
3092 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
3093 #else
3094 			error = EOPNOTSUPP;
3095 #endif
3096 			break;
3097 
3098 		case SO_PEERLABEL:
3099 #ifdef MAC
3100 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
3101 			    sizeof(extmac));
3102 			if (error)
3103 				goto bad;
3104 			error = mac_getsockopt_peerlabel(
3105 			    sopt->sopt_td->td_ucred, so, &extmac);
3106 			if (error)
3107 				goto bad;
3108 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
3109 #else
3110 			error = EOPNOTSUPP;
3111 #endif
3112 			break;
3113 
3114 		case SO_LISTENQLIMIT:
3115 			optval = SOLISTENING(so) ? so->sol_qlimit : 0;
3116 			goto integer;
3117 
3118 		case SO_LISTENQLEN:
3119 			optval = SOLISTENING(so) ? so->sol_qlen : 0;
3120 			goto integer;
3121 
3122 		case SO_LISTENINCQLEN:
3123 			optval = SOLISTENING(so) ? so->sol_incqlen : 0;
3124 			goto integer;
3125 
3126 		case SO_TS_CLOCK:
3127 			optval = so->so_ts_clock;
3128 			goto integer;
3129 
3130 		case SO_MAX_PACING_RATE:
3131 			optval = so->so_max_pacing_rate;
3132 			goto integer;
3133 
3134 		default:
3135 			if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
3136 				error = hhook_run_socket(so, sopt,
3137 				    HHOOK_SOCKET_OPT);
3138 			else
3139 				error = ENOPROTOOPT;
3140 			break;
3141 		}
3142 	}
3143 #ifdef MAC
3144 bad:
3145 #endif
3146 	CURVNET_RESTORE();
3147 	return (error);
3148 }
3149 
3150 int
3151 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
3152 {
3153 	struct mbuf *m, *m_prev;
3154 	int sopt_size = sopt->sopt_valsize;
3155 
3156 	MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
3157 	if (m == NULL)
3158 		return ENOBUFS;
3159 	if (sopt_size > MLEN) {
3160 		MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT);
3161 		if ((m->m_flags & M_EXT) == 0) {
3162 			m_free(m);
3163 			return ENOBUFS;
3164 		}
3165 		m->m_len = min(MCLBYTES, sopt_size);
3166 	} else {
3167 		m->m_len = min(MLEN, sopt_size);
3168 	}
3169 	sopt_size -= m->m_len;
3170 	*mp = m;
3171 	m_prev = m;
3172 
3173 	while (sopt_size) {
3174 		MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
3175 		if (m == NULL) {
3176 			m_freem(*mp);
3177 			return ENOBUFS;
3178 		}
3179 		if (sopt_size > MLEN) {
3180 			MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK :
3181 			    M_NOWAIT);
3182 			if ((m->m_flags & M_EXT) == 0) {
3183 				m_freem(m);
3184 				m_freem(*mp);
3185 				return ENOBUFS;
3186 			}
3187 			m->m_len = min(MCLBYTES, sopt_size);
3188 		} else {
3189 			m->m_len = min(MLEN, sopt_size);
3190 		}
3191 		sopt_size -= m->m_len;
3192 		m_prev->m_next = m;
3193 		m_prev = m;
3194 	}
3195 	return (0);
3196 }
3197 
3198 int
3199 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
3200 {
3201 	struct mbuf *m0 = m;
3202 
3203 	if (sopt->sopt_val == NULL)
3204 		return (0);
3205 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
3206 		if (sopt->sopt_td != NULL) {
3207 			int error;
3208 
3209 			error = copyin(sopt->sopt_val, mtod(m, char *),
3210 			    m->m_len);
3211 			if (error != 0) {
3212 				m_freem(m0);
3213 				return(error);
3214 			}
3215 		} else
3216 			bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
3217 		sopt->sopt_valsize -= m->m_len;
3218 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
3219 		m = m->m_next;
3220 	}
3221 	if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
3222 		panic("ip6_sooptmcopyin");
3223 	return (0);
3224 }
3225 
3226 int
3227 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
3228 {
3229 	struct mbuf *m0 = m;
3230 	size_t valsize = 0;
3231 
3232 	if (sopt->sopt_val == NULL)
3233 		return (0);
3234 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
3235 		if (sopt->sopt_td != NULL) {
3236 			int error;
3237 
3238 			error = copyout(mtod(m, char *), sopt->sopt_val,
3239 			    m->m_len);
3240 			if (error != 0) {
3241 				m_freem(m0);
3242 				return(error);
3243 			}
3244 		} else
3245 			bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
3246 		sopt->sopt_valsize -= m->m_len;
3247 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
3248 		valsize += m->m_len;
3249 		m = m->m_next;
3250 	}
3251 	if (m != NULL) {
3252 		/* enough soopt buffer should be given from user-land */
3253 		m_freem(m0);
3254 		return(EINVAL);
3255 	}
3256 	sopt->sopt_valsize = valsize;
3257 	return (0);
3258 }
3259 
3260 /*
3261  * sohasoutofband(): protocol notifies socket layer of the arrival of new
3262  * out-of-band data, which will then notify socket consumers.
3263  */
3264 void
3265 sohasoutofband(struct socket *so)
3266 {
3267 
3268 	if (so->so_sigio != NULL)
3269 		pgsigio(&so->so_sigio, SIGURG, 0);
3270 	selwakeuppri(&so->so_rdsel, PSOCK);
3271 }
3272 
3273 int
3274 sopoll(struct socket *so, int events, struct ucred *active_cred,
3275     struct thread *td)
3276 {
3277 
3278 	/*
3279 	 * We do not need to set or assert curvnet as long as everyone uses
3280 	 * sopoll_generic().
3281 	 */
3282 	return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred,
3283 	    td));
3284 }
3285 
3286 int
3287 sopoll_generic(struct socket *so, int events, struct ucred *active_cred,
3288     struct thread *td)
3289 {
3290 	int revents;
3291 
3292 	SOCK_LOCK(so);
3293 	if (SOLISTENING(so)) {
3294 		if (!(events & (POLLIN | POLLRDNORM)))
3295 			revents = 0;
3296 		else if (!TAILQ_EMPTY(&so->sol_comp))
3297 			revents = events & (POLLIN | POLLRDNORM);
3298 		else if ((events & POLLINIGNEOF) == 0 && so->so_error)
3299 			revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP;
3300 		else {
3301 			selrecord(td, &so->so_rdsel);
3302 			revents = 0;
3303 		}
3304 	} else {
3305 		revents = 0;
3306 		SOCKBUF_LOCK(&so->so_snd);
3307 		SOCKBUF_LOCK(&so->so_rcv);
3308 		if (events & (POLLIN | POLLRDNORM))
3309 			if (soreadabledata(so))
3310 				revents |= events & (POLLIN | POLLRDNORM);
3311 		if (events & (POLLOUT | POLLWRNORM))
3312 			if (sowriteable(so))
3313 				revents |= events & (POLLOUT | POLLWRNORM);
3314 		if (events & (POLLPRI | POLLRDBAND))
3315 			if (so->so_oobmark ||
3316 			    (so->so_rcv.sb_state & SBS_RCVATMARK))
3317 				revents |= events & (POLLPRI | POLLRDBAND);
3318 		if ((events & POLLINIGNEOF) == 0) {
3319 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3320 				revents |= events & (POLLIN | POLLRDNORM);
3321 				if (so->so_snd.sb_state & SBS_CANTSENDMORE)
3322 					revents |= POLLHUP;
3323 			}
3324 		}
3325 		if (revents == 0) {
3326 			if (events &
3327 			    (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
3328 				selrecord(td, &so->so_rdsel);
3329 				so->so_rcv.sb_flags |= SB_SEL;
3330 			}
3331 			if (events & (POLLOUT | POLLWRNORM)) {
3332 				selrecord(td, &so->so_wrsel);
3333 				so->so_snd.sb_flags |= SB_SEL;
3334 			}
3335 		}
3336 		SOCKBUF_UNLOCK(&so->so_rcv);
3337 		SOCKBUF_UNLOCK(&so->so_snd);
3338 	}
3339 	SOCK_UNLOCK(so);
3340 	return (revents);
3341 }
3342 
3343 int
3344 soo_kqfilter(struct file *fp, struct knote *kn)
3345 {
3346 	struct socket *so = kn->kn_fp->f_data;
3347 	struct sockbuf *sb;
3348 	struct knlist *knl;
3349 
3350 	switch (kn->kn_filter) {
3351 	case EVFILT_READ:
3352 		kn->kn_fop = &soread_filtops;
3353 		knl = &so->so_rdsel.si_note;
3354 		sb = &so->so_rcv;
3355 		break;
3356 	case EVFILT_WRITE:
3357 		kn->kn_fop = &sowrite_filtops;
3358 		knl = &so->so_wrsel.si_note;
3359 		sb = &so->so_snd;
3360 		break;
3361 	case EVFILT_EMPTY:
3362 		kn->kn_fop = &soempty_filtops;
3363 		knl = &so->so_wrsel.si_note;
3364 		sb = &so->so_snd;
3365 		break;
3366 	default:
3367 		return (EINVAL);
3368 	}
3369 
3370 	SOCK_LOCK(so);
3371 	if (SOLISTENING(so)) {
3372 		knlist_add(knl, kn, 1);
3373 	} else {
3374 		SOCKBUF_LOCK(sb);
3375 		knlist_add(knl, kn, 1);
3376 		sb->sb_flags |= SB_KNOTE;
3377 		SOCKBUF_UNLOCK(sb);
3378 	}
3379 	SOCK_UNLOCK(so);
3380 	return (0);
3381 }
3382 
3383 /*
3384  * Some routines that return EOPNOTSUPP for entry points that are not
3385  * supported by a protocol.  Fill in as needed.
3386  */
3387 int
3388 pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
3389 {
3390 
3391 	return EOPNOTSUPP;
3392 }
3393 
3394 int
3395 pru_aio_queue_notsupp(struct socket *so, struct kaiocb *job)
3396 {
3397 
3398 	return EOPNOTSUPP;
3399 }
3400 
3401 int
3402 pru_attach_notsupp(struct socket *so, int proto, struct thread *td)
3403 {
3404 
3405 	return EOPNOTSUPP;
3406 }
3407 
3408 int
3409 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
3410 {
3411 
3412 	return EOPNOTSUPP;
3413 }
3414 
3415 int
3416 pru_bindat_notsupp(int fd, struct socket *so, struct sockaddr *nam,
3417     struct thread *td)
3418 {
3419 
3420 	return EOPNOTSUPP;
3421 }
3422 
3423 int
3424 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
3425 {
3426 
3427 	return EOPNOTSUPP;
3428 }
3429 
3430 int
3431 pru_connectat_notsupp(int fd, struct socket *so, struct sockaddr *nam,
3432     struct thread *td)
3433 {
3434 
3435 	return EOPNOTSUPP;
3436 }
3437 
3438 int
3439 pru_connect2_notsupp(struct socket *so1, struct socket *so2)
3440 {
3441 
3442 	return EOPNOTSUPP;
3443 }
3444 
3445 int
3446 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
3447     struct ifnet *ifp, struct thread *td)
3448 {
3449 
3450 	return EOPNOTSUPP;
3451 }
3452 
3453 int
3454 pru_disconnect_notsupp(struct socket *so)
3455 {
3456 
3457 	return EOPNOTSUPP;
3458 }
3459 
3460 int
3461 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td)
3462 {
3463 
3464 	return EOPNOTSUPP;
3465 }
3466 
3467 int
3468 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam)
3469 {
3470 
3471 	return EOPNOTSUPP;
3472 }
3473 
3474 int
3475 pru_rcvd_notsupp(struct socket *so, int flags)
3476 {
3477 
3478 	return EOPNOTSUPP;
3479 }
3480 
3481 int
3482 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
3483 {
3484 
3485 	return EOPNOTSUPP;
3486 }
3487 
3488 int
3489 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m,
3490     struct sockaddr *addr, struct mbuf *control, struct thread *td)
3491 {
3492 
3493 	return EOPNOTSUPP;
3494 }
3495 
3496 int
3497 pru_ready_notsupp(struct socket *so, struct mbuf *m, int count)
3498 {
3499 
3500 	return (EOPNOTSUPP);
3501 }
3502 
3503 /*
3504  * This isn't really a ``null'' operation, but it's the default one and
3505  * doesn't do anything destructive.
3506  */
3507 int
3508 pru_sense_null(struct socket *so, struct stat *sb)
3509 {
3510 
3511 	sb->st_blksize = so->so_snd.sb_hiwat;
3512 	return 0;
3513 }
3514 
3515 int
3516 pru_shutdown_notsupp(struct socket *so)
3517 {
3518 
3519 	return EOPNOTSUPP;
3520 }
3521 
3522 int
3523 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam)
3524 {
3525 
3526 	return EOPNOTSUPP;
3527 }
3528 
3529 int
3530 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio,
3531     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
3532 {
3533 
3534 	return EOPNOTSUPP;
3535 }
3536 
3537 int
3538 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr,
3539     struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3540 {
3541 
3542 	return EOPNOTSUPP;
3543 }
3544 
3545 int
3546 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred,
3547     struct thread *td)
3548 {
3549 
3550 	return EOPNOTSUPP;
3551 }
3552 
3553 static void
3554 filt_sordetach(struct knote *kn)
3555 {
3556 	struct socket *so = kn->kn_fp->f_data;
3557 
3558 	so_rdknl_lock(so);
3559 	knlist_remove(&so->so_rdsel.si_note, kn, 1);
3560 	if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note))
3561 		so->so_rcv.sb_flags &= ~SB_KNOTE;
3562 	so_rdknl_unlock(so);
3563 }
3564 
3565 /*ARGSUSED*/
3566 static int
3567 filt_soread(struct knote *kn, long hint)
3568 {
3569 	struct socket *so;
3570 
3571 	so = kn->kn_fp->f_data;
3572 
3573 	if (SOLISTENING(so)) {
3574 		SOCK_LOCK_ASSERT(so);
3575 		kn->kn_data = so->sol_qlen;
3576 		if (so->so_error) {
3577 			kn->kn_flags |= EV_EOF;
3578 			kn->kn_fflags = so->so_error;
3579 			return (1);
3580 		}
3581 		return (!TAILQ_EMPTY(&so->sol_comp));
3582 	}
3583 
3584 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3585 
3586 	kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl;
3587 	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3588 		kn->kn_flags |= EV_EOF;
3589 		kn->kn_fflags = so->so_error;
3590 		return (1);
3591 	} else if (so->so_error)	/* temporary udp error */
3592 		return (1);
3593 
3594 	if (kn->kn_sfflags & NOTE_LOWAT) {
3595 		if (kn->kn_data >= kn->kn_sdata)
3596 			return (1);
3597 	} else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat)
3598 		return (1);
3599 
3600 	/* This hook returning non-zero indicates an event, not error */
3601 	return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD));
3602 }
3603 
3604 static void
3605 filt_sowdetach(struct knote *kn)
3606 {
3607 	struct socket *so = kn->kn_fp->f_data;
3608 
3609 	so_wrknl_lock(so);
3610 	knlist_remove(&so->so_wrsel.si_note, kn, 1);
3611 	if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note))
3612 		so->so_snd.sb_flags &= ~SB_KNOTE;
3613 	so_wrknl_unlock(so);
3614 }
3615 
3616 /*ARGSUSED*/
3617 static int
3618 filt_sowrite(struct knote *kn, long hint)
3619 {
3620 	struct socket *so;
3621 
3622 	so = kn->kn_fp->f_data;
3623 
3624 	if (SOLISTENING(so))
3625 		return (0);
3626 
3627 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
3628 	kn->kn_data = sbspace(&so->so_snd);
3629 
3630 	hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE);
3631 
3632 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
3633 		kn->kn_flags |= EV_EOF;
3634 		kn->kn_fflags = so->so_error;
3635 		return (1);
3636 	} else if (so->so_error)	/* temporary udp error */
3637 		return (1);
3638 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
3639 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
3640 		return (0);
3641 	else if (kn->kn_sfflags & NOTE_LOWAT)
3642 		return (kn->kn_data >= kn->kn_sdata);
3643 	else
3644 		return (kn->kn_data >= so->so_snd.sb_lowat);
3645 }
3646 
3647 static int
3648 filt_soempty(struct knote *kn, long hint)
3649 {
3650 	struct socket *so;
3651 
3652 	so = kn->kn_fp->f_data;
3653 
3654 	if (SOLISTENING(so))
3655 		return (1);
3656 
3657 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
3658 	kn->kn_data = sbused(&so->so_snd);
3659 
3660 	if (kn->kn_data == 0)
3661 		return (1);
3662 	else
3663 		return (0);
3664 }
3665 
3666 int
3667 socheckuid(struct socket *so, uid_t uid)
3668 {
3669 
3670 	if (so == NULL)
3671 		return (EPERM);
3672 	if (so->so_cred->cr_uid != uid)
3673 		return (EPERM);
3674 	return (0);
3675 }
3676 
3677 /*
3678  * These functions are used by protocols to notify the socket layer (and its
3679  * consumers) of state changes in the sockets driven by protocol-side events.
3680  */
3681 
3682 /*
3683  * Procedures to manipulate state flags of socket and do appropriate wakeups.
3684  *
3685  * Normal sequence from the active (originating) side is that
3686  * soisconnecting() is called during processing of connect() call, resulting
3687  * in an eventual call to soisconnected() if/when the connection is
3688  * established.  When the connection is torn down soisdisconnecting() is
3689  * called during processing of disconnect() call, and soisdisconnected() is
3690  * called when the connection to the peer is totally severed.  The semantics
3691  * of these routines are such that connectionless protocols can call
3692  * soisconnected() and soisdisconnected() only, bypassing the in-progress
3693  * calls when setting up a ``connection'' takes no time.
3694  *
3695  * From the passive side, a socket is created with two queues of sockets:
3696  * so_incomp for connections in progress and so_comp for connections already
3697  * made and awaiting user acceptance.  As a protocol is preparing incoming
3698  * connections, it creates a socket structure queued on so_incomp by calling
3699  * sonewconn().  When the connection is established, soisconnected() is
3700  * called, and transfers the socket structure to so_comp, making it available
3701  * to accept().
3702  *
3703  * If a socket is closed with sockets on either so_incomp or so_comp, these
3704  * sockets are dropped.
3705  *
3706  * If higher-level protocols are implemented in the kernel, the wakeups done
3707  * here will sometimes cause software-interrupt process scheduling.
3708  */
3709 void
3710 soisconnecting(struct socket *so)
3711 {
3712 
3713 	SOCK_LOCK(so);
3714 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
3715 	so->so_state |= SS_ISCONNECTING;
3716 	SOCK_UNLOCK(so);
3717 }
3718 
3719 void
3720 soisconnected(struct socket *so)
3721 {
3722 
3723 	SOCK_LOCK(so);
3724 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
3725 	so->so_state |= SS_ISCONNECTED;
3726 
3727 	if (so->so_qstate == SQ_INCOMP) {
3728 		struct socket *head = so->so_listen;
3729 		int ret;
3730 
3731 		KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so));
3732 		/*
3733 		 * Promoting a socket from incomplete queue to complete, we
3734 		 * need to go through reverse order of locking.  We first do
3735 		 * trylock, and if that doesn't succeed, we go the hard way
3736 		 * leaving a reference and rechecking consistency after proper
3737 		 * locking.
3738 		 */
3739 		if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) {
3740 			soref(head);
3741 			SOCK_UNLOCK(so);
3742 			SOLISTEN_LOCK(head);
3743 			SOCK_LOCK(so);
3744 			if (__predict_false(head != so->so_listen)) {
3745 				/*
3746 				 * The socket went off the listen queue,
3747 				 * should be lost race to close(2) of sol.
3748 				 * The socket is about to soabort().
3749 				 */
3750 				SOCK_UNLOCK(so);
3751 				sorele(head);
3752 				return;
3753 			}
3754 			/* Not the last one, as so holds a ref. */
3755 			refcount_release(&head->so_count);
3756 		}
3757 again:
3758 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
3759 			TAILQ_REMOVE(&head->sol_incomp, so, so_list);
3760 			head->sol_incqlen--;
3761 			TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
3762 			head->sol_qlen++;
3763 			so->so_qstate = SQ_COMP;
3764 			SOCK_UNLOCK(so);
3765 			solisten_wakeup(head);	/* unlocks */
3766 		} else {
3767 			SOCKBUF_LOCK(&so->so_rcv);
3768 			soupcall_set(so, SO_RCV,
3769 			    head->sol_accept_filter->accf_callback,
3770 			    head->sol_accept_filter_arg);
3771 			so->so_options &= ~SO_ACCEPTFILTER;
3772 			ret = head->sol_accept_filter->accf_callback(so,
3773 			    head->sol_accept_filter_arg, M_NOWAIT);
3774 			if (ret == SU_ISCONNECTED) {
3775 				soupcall_clear(so, SO_RCV);
3776 				SOCKBUF_UNLOCK(&so->so_rcv);
3777 				goto again;
3778 			}
3779 			SOCKBUF_UNLOCK(&so->so_rcv);
3780 			SOCK_UNLOCK(so);
3781 			SOLISTEN_UNLOCK(head);
3782 		}
3783 		return;
3784 	}
3785 	SOCK_UNLOCK(so);
3786 	wakeup(&so->so_timeo);
3787 	sorwakeup(so);
3788 	sowwakeup(so);
3789 }
3790 
3791 void
3792 soisdisconnecting(struct socket *so)
3793 {
3794 
3795 	SOCK_LOCK(so);
3796 	so->so_state &= ~SS_ISCONNECTING;
3797 	so->so_state |= SS_ISDISCONNECTING;
3798 
3799 	if (!SOLISTENING(so)) {
3800 		SOCKBUF_LOCK(&so->so_rcv);
3801 		socantrcvmore_locked(so);
3802 		SOCKBUF_LOCK(&so->so_snd);
3803 		socantsendmore_locked(so);
3804 	}
3805 	SOCK_UNLOCK(so);
3806 	wakeup(&so->so_timeo);
3807 }
3808 
3809 void
3810 soisdisconnected(struct socket *so)
3811 {
3812 
3813 	SOCK_LOCK(so);
3814 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
3815 	so->so_state |= SS_ISDISCONNECTED;
3816 
3817 	if (!SOLISTENING(so)) {
3818 		SOCK_UNLOCK(so);
3819 		SOCKBUF_LOCK(&so->so_rcv);
3820 		socantrcvmore_locked(so);
3821 		SOCKBUF_LOCK(&so->so_snd);
3822 		sbdrop_locked(&so->so_snd, sbused(&so->so_snd));
3823 		socantsendmore_locked(so);
3824 	} else
3825 		SOCK_UNLOCK(so);
3826 	wakeup(&so->so_timeo);
3827 }
3828 
3829 /*
3830  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
3831  */
3832 struct sockaddr *
3833 sodupsockaddr(const struct sockaddr *sa, int mflags)
3834 {
3835 	struct sockaddr *sa2;
3836 
3837 	sa2 = malloc(sa->sa_len, M_SONAME, mflags);
3838 	if (sa2)
3839 		bcopy(sa, sa2, sa->sa_len);
3840 	return sa2;
3841 }
3842 
3843 /*
3844  * Register per-socket destructor.
3845  */
3846 void
3847 sodtor_set(struct socket *so, so_dtor_t *func)
3848 {
3849 
3850 	SOCK_LOCK_ASSERT(so);
3851 	so->so_dtor = func;
3852 }
3853 
3854 /*
3855  * Register per-socket buffer upcalls.
3856  */
3857 void
3858 soupcall_set(struct socket *so, int which, so_upcall_t func, void *arg)
3859 {
3860 	struct sockbuf *sb;
3861 
3862 	KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
3863 
3864 	switch (which) {
3865 	case SO_RCV:
3866 		sb = &so->so_rcv;
3867 		break;
3868 	case SO_SND:
3869 		sb = &so->so_snd;
3870 		break;
3871 	default:
3872 		panic("soupcall_set: bad which");
3873 	}
3874 	SOCKBUF_LOCK_ASSERT(sb);
3875 	sb->sb_upcall = func;
3876 	sb->sb_upcallarg = arg;
3877 	sb->sb_flags |= SB_UPCALL;
3878 }
3879 
3880 void
3881 soupcall_clear(struct socket *so, int which)
3882 {
3883 	struct sockbuf *sb;
3884 
3885 	KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
3886 
3887 	switch (which) {
3888 	case SO_RCV:
3889 		sb = &so->so_rcv;
3890 		break;
3891 	case SO_SND:
3892 		sb = &so->so_snd;
3893 		break;
3894 	default:
3895 		panic("soupcall_clear: bad which");
3896 	}
3897 	SOCKBUF_LOCK_ASSERT(sb);
3898 	KASSERT(sb->sb_upcall != NULL,
3899 	    ("%s: so %p no upcall to clear", __func__, so));
3900 	sb->sb_upcall = NULL;
3901 	sb->sb_upcallarg = NULL;
3902 	sb->sb_flags &= ~SB_UPCALL;
3903 }
3904 
3905 void
3906 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg)
3907 {
3908 
3909 	SOLISTEN_LOCK_ASSERT(so);
3910 	so->sol_upcall = func;
3911 	so->sol_upcallarg = arg;
3912 }
3913 
3914 static void
3915 so_rdknl_lock(void *arg)
3916 {
3917 	struct socket *so = arg;
3918 
3919 	if (SOLISTENING(so))
3920 		SOCK_LOCK(so);
3921 	else
3922 		SOCKBUF_LOCK(&so->so_rcv);
3923 }
3924 
3925 static void
3926 so_rdknl_unlock(void *arg)
3927 {
3928 	struct socket *so = arg;
3929 
3930 	if (SOLISTENING(so))
3931 		SOCK_UNLOCK(so);
3932 	else
3933 		SOCKBUF_UNLOCK(&so->so_rcv);
3934 }
3935 
3936 static void
3937 so_rdknl_assert_locked(void *arg)
3938 {
3939 	struct socket *so = arg;
3940 
3941 	if (SOLISTENING(so))
3942 		SOCK_LOCK_ASSERT(so);
3943 	else
3944 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3945 }
3946 
3947 static void
3948 so_rdknl_assert_unlocked(void *arg)
3949 {
3950 	struct socket *so = arg;
3951 
3952 	if (SOLISTENING(so))
3953 		SOCK_UNLOCK_ASSERT(so);
3954 	else
3955 		SOCKBUF_UNLOCK_ASSERT(&so->so_rcv);
3956 }
3957 
3958 static void
3959 so_wrknl_lock(void *arg)
3960 {
3961 	struct socket *so = arg;
3962 
3963 	if (SOLISTENING(so))
3964 		SOCK_LOCK(so);
3965 	else
3966 		SOCKBUF_LOCK(&so->so_snd);
3967 }
3968 
3969 static void
3970 so_wrknl_unlock(void *arg)
3971 {
3972 	struct socket *so = arg;
3973 
3974 	if (SOLISTENING(so))
3975 		SOCK_UNLOCK(so);
3976 	else
3977 		SOCKBUF_UNLOCK(&so->so_snd);
3978 }
3979 
3980 static void
3981 so_wrknl_assert_locked(void *arg)
3982 {
3983 	struct socket *so = arg;
3984 
3985 	if (SOLISTENING(so))
3986 		SOCK_LOCK_ASSERT(so);
3987 	else
3988 		SOCKBUF_LOCK_ASSERT(&so->so_snd);
3989 }
3990 
3991 static void
3992 so_wrknl_assert_unlocked(void *arg)
3993 {
3994 	struct socket *so = arg;
3995 
3996 	if (SOLISTENING(so))
3997 		SOCK_UNLOCK_ASSERT(so);
3998 	else
3999 		SOCKBUF_UNLOCK_ASSERT(&so->so_snd);
4000 }
4001 
4002 /*
4003  * Create an external-format (``xsocket'') structure using the information in
4004  * the kernel-format socket structure pointed to by so.  This is done to
4005  * reduce the spew of irrelevant information over this interface, to isolate
4006  * user code from changes in the kernel structure, and potentially to provide
4007  * information-hiding if we decide that some of this information should be
4008  * hidden from users.
4009  */
4010 void
4011 sotoxsocket(struct socket *so, struct xsocket *xso)
4012 {
4013 
4014 	bzero(xso, sizeof(*xso));
4015 	xso->xso_len = sizeof *xso;
4016 	xso->xso_so = (uintptr_t)so;
4017 	xso->so_type = so->so_type;
4018 	xso->so_options = so->so_options;
4019 	xso->so_linger = so->so_linger;
4020 	xso->so_state = so->so_state;
4021 	xso->so_pcb = (uintptr_t)so->so_pcb;
4022 	xso->xso_protocol = so->so_proto->pr_protocol;
4023 	xso->xso_family = so->so_proto->pr_domain->dom_family;
4024 	xso->so_timeo = so->so_timeo;
4025 	xso->so_error = so->so_error;
4026 	xso->so_uid = so->so_cred->cr_uid;
4027 	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
4028 	if (SOLISTENING(so)) {
4029 		xso->so_qlen = so->sol_qlen;
4030 		xso->so_incqlen = so->sol_incqlen;
4031 		xso->so_qlimit = so->sol_qlimit;
4032 		xso->so_oobmark = 0;
4033 	} else {
4034 		xso->so_state |= so->so_qstate;
4035 		xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0;
4036 		xso->so_oobmark = so->so_oobmark;
4037 		sbtoxsockbuf(&so->so_snd, &xso->so_snd);
4038 		sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
4039 	}
4040 }
4041 
4042 struct sockbuf *
4043 so_sockbuf_rcv(struct socket *so)
4044 {
4045 
4046 	return (&so->so_rcv);
4047 }
4048 
4049 struct sockbuf *
4050 so_sockbuf_snd(struct socket *so)
4051 {
4052 
4053 	return (&so->so_snd);
4054 }
4055 
4056 int
4057 so_state_get(const struct socket *so)
4058 {
4059 
4060 	return (so->so_state);
4061 }
4062 
4063 void
4064 so_state_set(struct socket *so, int val)
4065 {
4066 
4067 	so->so_state = val;
4068 }
4069 
4070 int
4071 so_options_get(const struct socket *so)
4072 {
4073 
4074 	return (so->so_options);
4075 }
4076 
4077 void
4078 so_options_set(struct socket *so, int val)
4079 {
4080 
4081 	so->so_options = val;
4082 }
4083 
4084 int
4085 so_error_get(const struct socket *so)
4086 {
4087 
4088 	return (so->so_error);
4089 }
4090 
4091 void
4092 so_error_set(struct socket *so, int val)
4093 {
4094 
4095 	so->so_error = val;
4096 }
4097 
4098 int
4099 so_linger_get(const struct socket *so)
4100 {
4101 
4102 	return (so->so_linger);
4103 }
4104 
4105 void
4106 so_linger_set(struct socket *so, int val)
4107 {
4108 
4109 	so->so_linger = val;
4110 }
4111 
4112 struct protosw *
4113 so_protosw_get(const struct socket *so)
4114 {
4115 
4116 	return (so->so_proto);
4117 }
4118 
4119 void
4120 so_protosw_set(struct socket *so, struct protosw *val)
4121 {
4122 
4123 	so->so_proto = val;
4124 }
4125 
4126 void
4127 so_sorwakeup(struct socket *so)
4128 {
4129 
4130 	sorwakeup(so);
4131 }
4132 
4133 void
4134 so_sowwakeup(struct socket *so)
4135 {
4136 
4137 	sowwakeup(so);
4138 }
4139 
4140 void
4141 so_sorwakeup_locked(struct socket *so)
4142 {
4143 
4144 	sorwakeup_locked(so);
4145 }
4146 
4147 void
4148 so_sowwakeup_locked(struct socket *so)
4149 {
4150 
4151 	sowwakeup_locked(so);
4152 }
4153 
4154 void
4155 so_lock(struct socket *so)
4156 {
4157 
4158 	SOCK_LOCK(so);
4159 }
4160 
4161 void
4162 so_unlock(struct socket *so)
4163 {
4164 
4165 	SOCK_UNLOCK(so);
4166 }
4167