xref: /freebsd/sys/kern/uipc_socket.c (revision 6186fd1857626de0f7cb1a9e4dff19082f9ebb11)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.
4  * Copyright (c) 2004 The FreeBSD Foundation
5  * Copyright (c) 2004-2008 Robert N. M. Watson
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)uipc_socket.c	8.3 (Berkeley) 4/15/94
33  */
34 
35 /*
36  * Comments on the socket life cycle:
37  *
38  * soalloc() sets of socket layer state for a socket, called only by
39  * socreate() and sonewconn().  Socket layer private.
40  *
41  * sodealloc() tears down socket layer state for a socket, called only by
42  * sofree() and sonewconn().  Socket layer private.
43  *
44  * pru_attach() associates protocol layer state with an allocated socket;
45  * called only once, may fail, aborting socket allocation.  This is called
46  * from socreate() and sonewconn().  Socket layer private.
47  *
48  * pru_detach() disassociates protocol layer state from an attached socket,
49  * and will be called exactly once for sockets in which pru_attach() has
50  * been successfully called.  If pru_attach() returned an error,
51  * pru_detach() will not be called.  Socket layer private.
52  *
53  * pru_abort() and pru_close() notify the protocol layer that the last
54  * consumer of a socket is starting to tear down the socket, and that the
55  * protocol should terminate the connection.  Historically, pru_abort() also
56  * detached protocol state from the socket state, but this is no longer the
57  * case.
58  *
59  * socreate() creates a socket and attaches protocol state.  This is a public
60  * interface that may be used by socket layer consumers to create new
61  * sockets.
62  *
63  * sonewconn() creates a socket and attaches protocol state.  This is a
64  * public interface  that may be used by protocols to create new sockets when
65  * a new connection is received and will be available for accept() on a
66  * listen socket.
67  *
68  * soclose() destroys a socket after possibly waiting for it to disconnect.
69  * This is a public interface that socket consumers should use to close and
70  * release a socket when done with it.
71  *
72  * soabort() destroys a socket without waiting for it to disconnect (used
73  * only for incoming connections that are already partially or fully
74  * connected).  This is used internally by the socket layer when clearing
75  * listen socket queues (due to overflow or close on the listen socket), but
76  * is also a public interface protocols may use to abort connections in
77  * their incomplete listen queues should they no longer be required.  Sockets
78  * placed in completed connection listen queues should not be aborted for
79  * reasons described in the comment above the soclose() implementation.  This
80  * is not a general purpose close routine, and except in the specific
81  * circumstances described here, should not be used.
82  *
83  * sofree() will free a socket and its protocol state if all references on
84  * the socket have been released, and is the public interface to attempt to
85  * free a socket when a reference is removed.  This is a socket layer private
86  * interface.
87  *
88  * NOTE: In addition to socreate() and soclose(), which provide a single
89  * socket reference to the consumer to be managed as required, there are two
90  * calls to explicitly manage socket references, soref(), and sorele().
91  * Currently, these are generally required only when transitioning a socket
92  * from a listen queue to a file descriptor, in order to prevent garbage
93  * collection of the socket at an untimely moment.  For a number of reasons,
94  * these interfaces are not preferred, and should be avoided.
95  *
96  * NOTE: With regard to VNETs the general rule is that callers do not set
97  * curvnet. Exceptions to this rule include soabort(), sodisconnect(),
98  * sofree() (and with that sorele(), sotryfree()), as well as sonewconn()
99  * and sorflush(), which are usually called from a pre-set VNET context.
100  * sopoll() currently does not need a VNET context to be set.
101  */
102 
103 #include <sys/cdefs.h>
104 __FBSDID("$FreeBSD$");
105 
106 #include "opt_inet.h"
107 #include "opt_inet6.h"
108 #include "opt_compat.h"
109 
110 #include <sys/param.h>
111 #include <sys/systm.h>
112 #include <sys/fcntl.h>
113 #include <sys/limits.h>
114 #include <sys/lock.h>
115 #include <sys/mac.h>
116 #include <sys/malloc.h>
117 #include <sys/mbuf.h>
118 #include <sys/mutex.h>
119 #include <sys/domain.h>
120 #include <sys/file.h>			/* for struct knote */
121 #include <sys/hhook.h>
122 #include <sys/kernel.h>
123 #include <sys/khelp.h>
124 #include <sys/event.h>
125 #include <sys/eventhandler.h>
126 #include <sys/poll.h>
127 #include <sys/proc.h>
128 #include <sys/protosw.h>
129 #include <sys/socket.h>
130 #include <sys/socketvar.h>
131 #include <sys/resourcevar.h>
132 #include <net/route.h>
133 #include <sys/signalvar.h>
134 #include <sys/stat.h>
135 #include <sys/sx.h>
136 #include <sys/sysctl.h>
137 #include <sys/uio.h>
138 #include <sys/jail.h>
139 #include <sys/syslog.h>
140 #include <netinet/in.h>
141 
142 #include <net/vnet.h>
143 
144 #include <security/mac/mac_framework.h>
145 
146 #include <vm/uma.h>
147 
148 #ifdef COMPAT_FREEBSD32
149 #include <sys/mount.h>
150 #include <sys/sysent.h>
151 #include <compat/freebsd32/freebsd32.h>
152 #endif
153 
154 static int	soreceive_rcvoob(struct socket *so, struct uio *uio,
155 		    int flags);
156 
157 static void	filt_sordetach(struct knote *kn);
158 static int	filt_soread(struct knote *kn, long hint);
159 static void	filt_sowdetach(struct knote *kn);
160 static int	filt_sowrite(struct knote *kn, long hint);
161 static int	filt_solisten(struct knote *kn, long hint);
162 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id);
163 fo_kqfilter_t	soo_kqfilter;
164 
165 static struct filterops solisten_filtops = {
166 	.f_isfd = 1,
167 	.f_detach = filt_sordetach,
168 	.f_event = filt_solisten,
169 };
170 static struct filterops soread_filtops = {
171 	.f_isfd = 1,
172 	.f_detach = filt_sordetach,
173 	.f_event = filt_soread,
174 };
175 static struct filterops sowrite_filtops = {
176 	.f_isfd = 1,
177 	.f_detach = filt_sowdetach,
178 	.f_event = filt_sowrite,
179 };
180 
181 so_gen_t	so_gencnt;	/* generation count for sockets */
182 
183 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
184 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
185 
186 #define	VNET_SO_ASSERT(so)						\
187 	VNET_ASSERT(curvnet != NULL,					\
188 	    ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so)));
189 
190 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]);
191 #define	V_socket_hhh		VNET(socket_hhh)
192 
193 /*
194  * Limit on the number of connections in the listen queue waiting
195  * for accept(2).
196  * NB: The orginal sysctl somaxconn is still available but hidden
197  * to prevent confusion about the actual purpose of this number.
198  */
199 static int somaxconn = SOMAXCONN;
200 
201 static int
202 sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
203 {
204 	int error;
205 	int val;
206 
207 	val = somaxconn;
208 	error = sysctl_handle_int(oidp, &val, 0, req);
209 	if (error || !req->newptr )
210 		return (error);
211 
212 	if (val < 1 || val > USHRT_MAX)
213 		return (EINVAL);
214 
215 	somaxconn = val;
216 	return (0);
217 }
218 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue, CTLTYPE_UINT | CTLFLAG_RW,
219     0, sizeof(int), sysctl_somaxconn, "I",
220     "Maximum listen socket pending connection accept queue size");
221 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn,
222     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP,
223     0, sizeof(int), sysctl_somaxconn, "I",
224     "Maximum listen socket pending connection accept queue size (compat)");
225 
226 static int numopensockets;
227 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,
228     &numopensockets, 0, "Number of open sockets");
229 
230 /*
231  * accept_mtx locks down per-socket fields relating to accept queues.  See
232  * socketvar.h for an annotation of the protected fields of struct socket.
233  */
234 struct mtx accept_mtx;
235 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF);
236 
237 /*
238  * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
239  * so_gencnt field.
240  */
241 static struct mtx so_global_mtx;
242 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
243 
244 /*
245  * General IPC sysctl name space, used by sockets and a variety of other IPC
246  * types.
247  */
248 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
249 
250 /*
251  * Initialize the socket subsystem and set up the socket
252  * memory allocator.
253  */
254 static uma_zone_t socket_zone;
255 int	maxsockets;
256 
257 static void
258 socket_zone_change(void *tag)
259 {
260 
261 	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
262 }
263 
264 static void
265 socket_hhook_register(int subtype)
266 {
267 
268 	if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype,
269 	    &V_socket_hhh[subtype],
270 	    HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
271 		printf("%s: WARNING: unable to register hook\n", __func__);
272 }
273 
274 static void
275 socket_hhook_deregister(int subtype)
276 {
277 
278 	if (hhook_head_deregister(V_socket_hhh[subtype]) != 0)
279 		printf("%s: WARNING: unable to deregister hook\n", __func__);
280 }
281 
282 static void
283 socket_init(void *tag)
284 {
285 
286 	socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL,
287 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
288 	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
289 	uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached");
290 	EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL,
291 	    EVENTHANDLER_PRI_FIRST);
292 }
293 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL);
294 
295 static void
296 socket_vnet_init(const void *unused __unused)
297 {
298 	int i;
299 
300 	/* We expect a contiguous range */
301 	for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
302 		socket_hhook_register(i);
303 }
304 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
305     socket_vnet_init, NULL);
306 
307 static void
308 socket_vnet_uninit(const void *unused __unused)
309 {
310 	int i;
311 
312 	for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
313 		socket_hhook_deregister(i);
314 }
315 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
316     socket_vnet_uninit, NULL);
317 
318 /*
319  * Initialise maxsockets.  This SYSINIT must be run after
320  * tunable_mbinit().
321  */
322 static void
323 init_maxsockets(void *ignored)
324 {
325 
326 	TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
327 	maxsockets = imax(maxsockets, maxfiles);
328 }
329 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
330 
331 /*
332  * Sysctl to get and set the maximum global sockets limit.  Notify protocols
333  * of the change so that they can update their dependent limits as required.
334  */
335 static int
336 sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
337 {
338 	int error, newmaxsockets;
339 
340 	newmaxsockets = maxsockets;
341 	error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
342 	if (error == 0 && req->newptr) {
343 		if (newmaxsockets > maxsockets &&
344 		    newmaxsockets <= maxfiles) {
345 			maxsockets = newmaxsockets;
346 			EVENTHANDLER_INVOKE(maxsockets_change);
347 		} else
348 			error = EINVAL;
349 	}
350 	return (error);
351 }
352 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, CTLTYPE_INT|CTLFLAG_RW,
353     &maxsockets, 0, sysctl_maxsockets, "IU",
354     "Maximum number of sockets avaliable");
355 
356 /*
357  * Socket operation routines.  These routines are called by the routines in
358  * sys_socket.c or from a system process, and implement the semantics of
359  * socket operations by switching out to the protocol specific routines.
360  */
361 
362 /*
363  * Get a socket structure from our zone, and initialize it.  Note that it
364  * would probably be better to allocate socket and PCB at the same time, but
365  * I'm not convinced that all the protocols can be easily modified to do
366  * this.
367  *
368  * soalloc() returns a socket with a ref count of 0.
369  */
370 static struct socket *
371 soalloc(struct vnet *vnet)
372 {
373 	struct socket *so;
374 
375 	so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
376 	if (so == NULL)
377 		return (NULL);
378 #ifdef MAC
379 	if (mac_socket_init(so, M_NOWAIT) != 0) {
380 		uma_zfree(socket_zone, so);
381 		return (NULL);
382 	}
383 #endif
384 	if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) {
385 		uma_zfree(socket_zone, so);
386 		return (NULL);
387 	}
388 
389 	SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd");
390 	SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv");
391 	sx_init(&so->so_snd.sb_sx, "so_snd_sx");
392 	sx_init(&so->so_rcv.sb_sx, "so_rcv_sx");
393 	TAILQ_INIT(&so->so_aiojobq);
394 #ifdef VIMAGE
395 	VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p",
396 	    __func__, __LINE__, so));
397 	so->so_vnet = vnet;
398 #endif
399 	/* We shouldn't need the so_global_mtx */
400 	if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) {
401 		/* Do we need more comprehensive error returns? */
402 		uma_zfree(socket_zone, so);
403 		return (NULL);
404 	}
405 	mtx_lock(&so_global_mtx);
406 	so->so_gencnt = ++so_gencnt;
407 	++numopensockets;
408 #ifdef VIMAGE
409 	vnet->vnet_sockcnt++;
410 #endif
411 	mtx_unlock(&so_global_mtx);
412 
413 	return (so);
414 }
415 
416 /*
417  * Free the storage associated with a socket at the socket layer, tear down
418  * locks, labels, etc.  All protocol state is assumed already to have been
419  * torn down (and possibly never set up) by the caller.
420  */
421 static void
422 sodealloc(struct socket *so)
423 {
424 
425 	KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
426 	KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
427 
428 	mtx_lock(&so_global_mtx);
429 	so->so_gencnt = ++so_gencnt;
430 	--numopensockets;	/* Could be below, but faster here. */
431 #ifdef VIMAGE
432 	VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p",
433 	    __func__, __LINE__, so));
434 	so->so_vnet->vnet_sockcnt--;
435 #endif
436 	mtx_unlock(&so_global_mtx);
437 	if (so->so_rcv.sb_hiwat)
438 		(void)chgsbsize(so->so_cred->cr_uidinfo,
439 		    &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
440 	if (so->so_snd.sb_hiwat)
441 		(void)chgsbsize(so->so_cred->cr_uidinfo,
442 		    &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
443 	/* remove acccept filter if one is present. */
444 	if (so->so_accf != NULL)
445 		do_setopt_accept_filter(so, NULL);
446 #ifdef MAC
447 	mac_socket_destroy(so);
448 #endif
449 	hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE);
450 
451 	crfree(so->so_cred);
452 	khelp_destroy_osd(&so->osd);
453 	sx_destroy(&so->so_snd.sb_sx);
454 	sx_destroy(&so->so_rcv.sb_sx);
455 	SOCKBUF_LOCK_DESTROY(&so->so_snd);
456 	SOCKBUF_LOCK_DESTROY(&so->so_rcv);
457 	uma_zfree(socket_zone, so);
458 }
459 
460 /*
461  * socreate returns a socket with a ref count of 1.  The socket should be
462  * closed with soclose().
463  */
464 int
465 socreate(int dom, struct socket **aso, int type, int proto,
466     struct ucred *cred, struct thread *td)
467 {
468 	struct protosw *prp;
469 	struct socket *so;
470 	int error;
471 
472 	if (proto)
473 		prp = pffindproto(dom, proto, type);
474 	else
475 		prp = pffindtype(dom, type);
476 
477 	if (prp == NULL) {
478 		/* No support for domain. */
479 		if (pffinddomain(dom) == NULL)
480 			return (EAFNOSUPPORT);
481 		/* No support for socket type. */
482 		if (proto == 0 && type != 0)
483 			return (EPROTOTYPE);
484 		return (EPROTONOSUPPORT);
485 	}
486 	if (prp->pr_usrreqs->pru_attach == NULL ||
487 	    prp->pr_usrreqs->pru_attach == pru_attach_notsupp)
488 		return (EPROTONOSUPPORT);
489 
490 	if (prison_check_af(cred, prp->pr_domain->dom_family) != 0)
491 		return (EPROTONOSUPPORT);
492 
493 	if (prp->pr_type != type)
494 		return (EPROTOTYPE);
495 	so = soalloc(CRED_TO_VNET(cred));
496 	if (so == NULL)
497 		return (ENOBUFS);
498 
499 	TAILQ_INIT(&so->so_incomp);
500 	TAILQ_INIT(&so->so_comp);
501 	so->so_type = type;
502 	so->so_cred = crhold(cred);
503 	if ((prp->pr_domain->dom_family == PF_INET) ||
504 	    (prp->pr_domain->dom_family == PF_INET6) ||
505 	    (prp->pr_domain->dom_family == PF_ROUTE))
506 		so->so_fibnum = td->td_proc->p_fibnum;
507 	else
508 		so->so_fibnum = 0;
509 	so->so_proto = prp;
510 #ifdef MAC
511 	mac_socket_create(cred, so);
512 #endif
513 	knlist_init_mtx(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv));
514 	knlist_init_mtx(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd));
515 	so->so_count = 1;
516 	/*
517 	 * Auto-sizing of socket buffers is managed by the protocols and
518 	 * the appropriate flags must be set in the pru_attach function.
519 	 */
520 	CURVNET_SET(so->so_vnet);
521 	error = (*prp->pr_usrreqs->pru_attach)(so, proto, td);
522 	CURVNET_RESTORE();
523 	if (error) {
524 		KASSERT(so->so_count == 1, ("socreate: so_count %d",
525 		    so->so_count));
526 		so->so_count = 0;
527 		sodealloc(so);
528 		return (error);
529 	}
530 	*aso = so;
531 	return (0);
532 }
533 
534 #ifdef REGRESSION
535 static int regression_sonewconn_earlytest = 1;
536 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
537     &regression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
538 #endif
539 
540 /*
541  * When an attempt at a new connection is noted on a socket which accepts
542  * connections, sonewconn is called.  If the connection is possible (subject
543  * to space constraints, etc.) then we allocate a new structure, propoerly
544  * linked into the data structure of the original socket, and return this.
545  * Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED.
546  *
547  * Note: the ref count on the socket is 0 on return.
548  */
549 struct socket *
550 sonewconn(struct socket *head, int connstatus)
551 {
552 	static struct timeval lastover;
553 	static struct timeval overinterval = { 60, 0 };
554 	static int overcount;
555 
556 	struct socket *so;
557 	int over;
558 
559 	ACCEPT_LOCK();
560 	over = (head->so_qlen > 3 * head->so_qlimit / 2);
561 	ACCEPT_UNLOCK();
562 #ifdef REGRESSION
563 	if (regression_sonewconn_earlytest && over) {
564 #else
565 	if (over) {
566 #endif
567 		overcount++;
568 
569 		if (ratecheck(&lastover, &overinterval)) {
570 			log(LOG_DEBUG, "%s: pcb %p: Listen queue overflow: "
571 			    "%i already in queue awaiting acceptance "
572 			    "(%d occurrences)\n",
573 			    __func__, head->so_pcb, head->so_qlen, overcount);
574 
575 			overcount = 0;
576 		}
577 
578 		return (NULL);
579 	}
580 	VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p",
581 	    __func__, __LINE__, head));
582 	so = soalloc(head->so_vnet);
583 	if (so == NULL) {
584 		log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
585 		    "limit reached or out of memory\n",
586 		    __func__, head->so_pcb);
587 		return (NULL);
588 	}
589 	if ((head->so_options & SO_ACCEPTFILTER) != 0)
590 		connstatus = 0;
591 	so->so_head = head;
592 	so->so_type = head->so_type;
593 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
594 	so->so_linger = head->so_linger;
595 	so->so_state = head->so_state | SS_NOFDREF;
596 	so->so_fibnum = head->so_fibnum;
597 	so->so_proto = head->so_proto;
598 	so->so_cred = crhold(head->so_cred);
599 #ifdef MAC
600 	mac_socket_newconn(head, so);
601 #endif
602 	knlist_init_mtx(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv));
603 	knlist_init_mtx(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd));
604 	VNET_SO_ASSERT(head);
605 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
606 		sodealloc(so);
607 		log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
608 		    __func__, head->so_pcb);
609 		return (NULL);
610 	}
611 	if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
612 		sodealloc(so);
613 		log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n",
614 		    __func__, head->so_pcb);
615 		return (NULL);
616 	}
617 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
618 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
619 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
620 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
621 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
622 	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
623 	so->so_state |= connstatus;
624 	ACCEPT_LOCK();
625 	/*
626 	 * The accept socket may be tearing down but we just
627 	 * won a race on the ACCEPT_LOCK.
628 	 * However, if sctp_peeloff() is called on a 1-to-many
629 	 * style socket, the SO_ACCEPTCONN doesn't need to be set.
630 	 */
631 	if (!(head->so_options & SO_ACCEPTCONN) &&
632 	    ((head->so_proto->pr_protocol != IPPROTO_SCTP) ||
633 	     (head->so_type != SOCK_SEQPACKET))) {
634 		SOCK_LOCK(so);
635 		so->so_head = NULL;
636 		sofree(so);		/* NB: returns ACCEPT_UNLOCK'ed. */
637 		return (NULL);
638 	}
639 	if (connstatus) {
640 		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
641 		so->so_qstate |= SQ_COMP;
642 		head->so_qlen++;
643 	} else {
644 		/*
645 		 * Keep removing sockets from the head until there's room for
646 		 * us to insert on the tail.  In pre-locking revisions, this
647 		 * was a simple if(), but as we could be racing with other
648 		 * threads and soabort() requires dropping locks, we must
649 		 * loop waiting for the condition to be true.
650 		 */
651 		while (head->so_incqlen > head->so_qlimit) {
652 			struct socket *sp;
653 			sp = TAILQ_FIRST(&head->so_incomp);
654 			TAILQ_REMOVE(&head->so_incomp, sp, so_list);
655 			head->so_incqlen--;
656 			sp->so_qstate &= ~SQ_INCOMP;
657 			sp->so_head = NULL;
658 			ACCEPT_UNLOCK();
659 			soabort(sp);
660 			ACCEPT_LOCK();
661 		}
662 		TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
663 		so->so_qstate |= SQ_INCOMP;
664 		head->so_incqlen++;
665 	}
666 	ACCEPT_UNLOCK();
667 	if (connstatus) {
668 		sorwakeup(head);
669 		wakeup_one(&head->so_timeo);
670 	}
671 	return (so);
672 }
673 
674 int
675 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
676 {
677 	int error;
678 
679 	CURVNET_SET(so->so_vnet);
680 	error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td);
681 	CURVNET_RESTORE();
682 	return (error);
683 }
684 
685 int
686 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
687 {
688 	int error;
689 
690 	CURVNET_SET(so->so_vnet);
691 	error = (*so->so_proto->pr_usrreqs->pru_bindat)(fd, so, nam, td);
692 	CURVNET_RESTORE();
693 	return (error);
694 }
695 
696 /*
697  * solisten() transitions a socket from a non-listening state to a listening
698  * state, but can also be used to update the listen queue depth on an
699  * existing listen socket.  The protocol will call back into the sockets
700  * layer using solisten_proto_check() and solisten_proto() to check and set
701  * socket-layer listen state.  Call backs are used so that the protocol can
702  * acquire both protocol and socket layer locks in whatever order is required
703  * by the protocol.
704  *
705  * Protocol implementors are advised to hold the socket lock across the
706  * socket-layer test and set to avoid races at the socket layer.
707  */
708 int
709 solisten(struct socket *so, int backlog, struct thread *td)
710 {
711 	int error;
712 
713 	CURVNET_SET(so->so_vnet);
714 	error = (*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td);
715 	CURVNET_RESTORE();
716 	return (error);
717 }
718 
719 int
720 solisten_proto_check(struct socket *so)
721 {
722 
723 	SOCK_LOCK_ASSERT(so);
724 
725 	if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
726 	    SS_ISDISCONNECTING))
727 		return (EINVAL);
728 	return (0);
729 }
730 
731 void
732 solisten_proto(struct socket *so, int backlog)
733 {
734 
735 	SOCK_LOCK_ASSERT(so);
736 
737 	if (backlog < 0 || backlog > somaxconn)
738 		backlog = somaxconn;
739 	so->so_qlimit = backlog;
740 	so->so_options |= SO_ACCEPTCONN;
741 }
742 
743 /*
744  * Evaluate the reference count and named references on a socket; if no
745  * references remain, free it.  This should be called whenever a reference is
746  * released, such as in sorele(), but also when named reference flags are
747  * cleared in socket or protocol code.
748  *
749  * sofree() will free the socket if:
750  *
751  * - There are no outstanding file descriptor references or related consumers
752  *   (so_count == 0).
753  *
754  * - The socket has been closed by user space, if ever open (SS_NOFDREF).
755  *
756  * - The protocol does not have an outstanding strong reference on the socket
757  *   (SS_PROTOREF).
758  *
759  * - The socket is not in a completed connection queue, so a process has been
760  *   notified that it is present.  If it is removed, the user process may
761  *   block in accept() despite select() saying the socket was ready.
762  */
763 void
764 sofree(struct socket *so)
765 {
766 	struct protosw *pr = so->so_proto;
767 	struct socket *head;
768 
769 	ACCEPT_LOCK_ASSERT();
770 	SOCK_LOCK_ASSERT(so);
771 
772 	if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 ||
773 	    (so->so_state & SS_PROTOREF) || (so->so_qstate & SQ_COMP)) {
774 		SOCK_UNLOCK(so);
775 		ACCEPT_UNLOCK();
776 		return;
777 	}
778 
779 	head = so->so_head;
780 	if (head != NULL) {
781 		KASSERT((so->so_qstate & SQ_COMP) != 0 ||
782 		    (so->so_qstate & SQ_INCOMP) != 0,
783 		    ("sofree: so_head != NULL, but neither SQ_COMP nor "
784 		    "SQ_INCOMP"));
785 		KASSERT((so->so_qstate & SQ_COMP) == 0 ||
786 		    (so->so_qstate & SQ_INCOMP) == 0,
787 		    ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP"));
788 		TAILQ_REMOVE(&head->so_incomp, so, so_list);
789 		head->so_incqlen--;
790 		so->so_qstate &= ~SQ_INCOMP;
791 		so->so_head = NULL;
792 	}
793 	KASSERT((so->so_qstate & SQ_COMP) == 0 &&
794 	    (so->so_qstate & SQ_INCOMP) == 0,
795 	    ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)",
796 	    so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP));
797 	if (so->so_options & SO_ACCEPTCONN) {
798 		KASSERT((TAILQ_EMPTY(&so->so_comp)),
799 		    ("sofree: so_comp populated"));
800 		KASSERT((TAILQ_EMPTY(&so->so_incomp)),
801 		    ("sofree: so_incomp populated"));
802 	}
803 	SOCK_UNLOCK(so);
804 	ACCEPT_UNLOCK();
805 
806 	VNET_SO_ASSERT(so);
807 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
808 		(*pr->pr_domain->dom_dispose)(so->so_rcv.sb_mb);
809 	if (pr->pr_usrreqs->pru_detach != NULL)
810 		(*pr->pr_usrreqs->pru_detach)(so);
811 
812 	/*
813 	 * From this point on, we assume that no other references to this
814 	 * socket exist anywhere else in the stack.  Therefore, no locks need
815 	 * to be acquired or held.
816 	 *
817 	 * We used to do a lot of socket buffer and socket locking here, as
818 	 * well as invoke sorflush() and perform wakeups.  The direct call to
819 	 * dom_dispose() and sbrelease_internal() are an inlining of what was
820 	 * necessary from sorflush().
821 	 *
822 	 * Notice that the socket buffer and kqueue state are torn down
823 	 * before calling pru_detach.  This means that protocols shold not
824 	 * assume they can perform socket wakeups, etc, in their detach code.
825 	 */
826 	sbdestroy(&so->so_snd, so);
827 	sbdestroy(&so->so_rcv, so);
828 	seldrain(&so->so_snd.sb_sel);
829 	seldrain(&so->so_rcv.sb_sel);
830 	knlist_destroy(&so->so_rcv.sb_sel.si_note);
831 	knlist_destroy(&so->so_snd.sb_sel.si_note);
832 	sodealloc(so);
833 }
834 
835 /*
836  * Close a socket on last file table reference removal.  Initiate disconnect
837  * if connected.  Free socket when disconnect complete.
838  *
839  * This function will sorele() the socket.  Note that soclose() may be called
840  * prior to the ref count reaching zero.  The actual socket structure will
841  * not be freed until the ref count reaches zero.
842  */
843 int
844 soclose(struct socket *so)
845 {
846 	int error = 0;
847 
848 	KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter"));
849 
850 	CURVNET_SET(so->so_vnet);
851 	funsetown(&so->so_sigio);
852 	if (so->so_state & SS_ISCONNECTED) {
853 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
854 			error = sodisconnect(so);
855 			if (error) {
856 				if (error == ENOTCONN)
857 					error = 0;
858 				goto drop;
859 			}
860 		}
861 		if (so->so_options & SO_LINGER) {
862 			if ((so->so_state & SS_ISDISCONNECTING) &&
863 			    (so->so_state & SS_NBIO))
864 				goto drop;
865 			while (so->so_state & SS_ISCONNECTED) {
866 				error = tsleep(&so->so_timeo,
867 				    PSOCK | PCATCH, "soclos",
868 				    so->so_linger * hz);
869 				if (error)
870 					break;
871 			}
872 		}
873 	}
874 
875 drop:
876 	if (so->so_proto->pr_usrreqs->pru_close != NULL)
877 		(*so->so_proto->pr_usrreqs->pru_close)(so);
878 	ACCEPT_LOCK();
879 	if (so->so_options & SO_ACCEPTCONN) {
880 		struct socket *sp;
881 		/*
882 		 * Prevent new additions to the accept queues due
883 		 * to ACCEPT_LOCK races while we are draining them.
884 		 */
885 		so->so_options &= ~SO_ACCEPTCONN;
886 		while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) {
887 			TAILQ_REMOVE(&so->so_incomp, sp, so_list);
888 			so->so_incqlen--;
889 			sp->so_qstate &= ~SQ_INCOMP;
890 			sp->so_head = NULL;
891 			ACCEPT_UNLOCK();
892 			soabort(sp);
893 			ACCEPT_LOCK();
894 		}
895 		while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) {
896 			TAILQ_REMOVE(&so->so_comp, sp, so_list);
897 			so->so_qlen--;
898 			sp->so_qstate &= ~SQ_COMP;
899 			sp->so_head = NULL;
900 			ACCEPT_UNLOCK();
901 			soabort(sp);
902 			ACCEPT_LOCK();
903 		}
904 		KASSERT((TAILQ_EMPTY(&so->so_comp)),
905 		    ("%s: so_comp populated", __func__));
906 		KASSERT((TAILQ_EMPTY(&so->so_incomp)),
907 		    ("%s: so_incomp populated", __func__));
908 	}
909 	SOCK_LOCK(so);
910 	KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF"));
911 	so->so_state |= SS_NOFDREF;
912 	sorele(so);			/* NB: Returns with ACCEPT_UNLOCK(). */
913 	CURVNET_RESTORE();
914 	return (error);
915 }
916 
917 /*
918  * soabort() is used to abruptly tear down a connection, such as when a
919  * resource limit is reached (listen queue depth exceeded), or if a listen
920  * socket is closed while there are sockets waiting to be accepted.
921  *
922  * This interface is tricky, because it is called on an unreferenced socket,
923  * and must be called only by a thread that has actually removed the socket
924  * from the listen queue it was on, or races with other threads are risked.
925  *
926  * This interface will call into the protocol code, so must not be called
927  * with any socket locks held.  Protocols do call it while holding their own
928  * recursible protocol mutexes, but this is something that should be subject
929  * to review in the future.
930  */
931 void
932 soabort(struct socket *so)
933 {
934 
935 	/*
936 	 * In as much as is possible, assert that no references to this
937 	 * socket are held.  This is not quite the same as asserting that the
938 	 * current thread is responsible for arranging for no references, but
939 	 * is as close as we can get for now.
940 	 */
941 	KASSERT(so->so_count == 0, ("soabort: so_count"));
942 	KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF"));
943 	KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF"));
944 	KASSERT((so->so_state & SQ_COMP) == 0, ("soabort: SQ_COMP"));
945 	KASSERT((so->so_state & SQ_INCOMP) == 0, ("soabort: SQ_INCOMP"));
946 	VNET_SO_ASSERT(so);
947 
948 	if (so->so_proto->pr_usrreqs->pru_abort != NULL)
949 		(*so->so_proto->pr_usrreqs->pru_abort)(so);
950 	ACCEPT_LOCK();
951 	SOCK_LOCK(so);
952 	sofree(so);
953 }
954 
955 int
956 soaccept(struct socket *so, struct sockaddr **nam)
957 {
958 	int error;
959 
960 	SOCK_LOCK(so);
961 	KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF"));
962 	so->so_state &= ~SS_NOFDREF;
963 	SOCK_UNLOCK(so);
964 
965 	CURVNET_SET(so->so_vnet);
966 	error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam);
967 	CURVNET_RESTORE();
968 	return (error);
969 }
970 
971 int
972 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
973 {
974 
975 	return (soconnectat(AT_FDCWD, so, nam, td));
976 }
977 
978 int
979 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
980 {
981 	int error;
982 
983 	if (so->so_options & SO_ACCEPTCONN)
984 		return (EOPNOTSUPP);
985 
986 	CURVNET_SET(so->so_vnet);
987 	/*
988 	 * If protocol is connection-based, can only connect once.
989 	 * Otherwise, if connected, try to disconnect first.  This allows
990 	 * user to disconnect by connecting to, e.g., a null address.
991 	 */
992 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
993 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
994 	    (error = sodisconnect(so)))) {
995 		error = EISCONN;
996 	} else {
997 		/*
998 		 * Prevent accumulated error from previous connection from
999 		 * biting us.
1000 		 */
1001 		so->so_error = 0;
1002 		if (fd == AT_FDCWD) {
1003 			error = (*so->so_proto->pr_usrreqs->pru_connect)(so,
1004 			    nam, td);
1005 		} else {
1006 			error = (*so->so_proto->pr_usrreqs->pru_connectat)(fd,
1007 			    so, nam, td);
1008 		}
1009 	}
1010 	CURVNET_RESTORE();
1011 
1012 	return (error);
1013 }
1014 
1015 int
1016 soconnect2(struct socket *so1, struct socket *so2)
1017 {
1018 	int error;
1019 
1020 	CURVNET_SET(so1->so_vnet);
1021 	error = (*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2);
1022 	CURVNET_RESTORE();
1023 	return (error);
1024 }
1025 
1026 int
1027 sodisconnect(struct socket *so)
1028 {
1029 	int error;
1030 
1031 	if ((so->so_state & SS_ISCONNECTED) == 0)
1032 		return (ENOTCONN);
1033 	if (so->so_state & SS_ISDISCONNECTING)
1034 		return (EALREADY);
1035 	VNET_SO_ASSERT(so);
1036 	error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so);
1037 	return (error);
1038 }
1039 
1040 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT)
1041 
1042 int
1043 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
1044     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1045 {
1046 	long space;
1047 	ssize_t resid;
1048 	int clen = 0, error, dontroute;
1049 
1050 	KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM"));
1051 	KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
1052 	    ("sosend_dgram: !PR_ATOMIC"));
1053 
1054 	if (uio != NULL)
1055 		resid = uio->uio_resid;
1056 	else
1057 		resid = top->m_pkthdr.len;
1058 	/*
1059 	 * In theory resid should be unsigned.  However, space must be
1060 	 * signed, as it might be less than 0 if we over-committed, and we
1061 	 * must use a signed comparison of space and resid.  On the other
1062 	 * hand, a negative resid causes us to loop sending 0-length
1063 	 * segments to the protocol.
1064 	 */
1065 	if (resid < 0) {
1066 		error = EINVAL;
1067 		goto out;
1068 	}
1069 
1070 	dontroute =
1071 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
1072 	if (td != NULL)
1073 		td->td_ru.ru_msgsnd++;
1074 	if (control != NULL)
1075 		clen = control->m_len;
1076 
1077 	SOCKBUF_LOCK(&so->so_snd);
1078 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1079 		SOCKBUF_UNLOCK(&so->so_snd);
1080 		error = EPIPE;
1081 		goto out;
1082 	}
1083 	if (so->so_error) {
1084 		error = so->so_error;
1085 		so->so_error = 0;
1086 		SOCKBUF_UNLOCK(&so->so_snd);
1087 		goto out;
1088 	}
1089 	if ((so->so_state & SS_ISCONNECTED) == 0) {
1090 		/*
1091 		 * `sendto' and `sendmsg' is allowed on a connection-based
1092 		 * socket if it supports implied connect.  Return ENOTCONN if
1093 		 * not connected and no address is supplied.
1094 		 */
1095 		if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1096 		    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1097 			if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1098 			    !(resid == 0 && clen != 0)) {
1099 				SOCKBUF_UNLOCK(&so->so_snd);
1100 				error = ENOTCONN;
1101 				goto out;
1102 			}
1103 		} else if (addr == NULL) {
1104 			if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1105 				error = ENOTCONN;
1106 			else
1107 				error = EDESTADDRREQ;
1108 			SOCKBUF_UNLOCK(&so->so_snd);
1109 			goto out;
1110 		}
1111 	}
1112 
1113 	/*
1114 	 * Do we need MSG_OOB support in SOCK_DGRAM?  Signs here may be a
1115 	 * problem and need fixing.
1116 	 */
1117 	space = sbspace(&so->so_snd);
1118 	if (flags & MSG_OOB)
1119 		space += 1024;
1120 	space -= clen;
1121 	SOCKBUF_UNLOCK(&so->so_snd);
1122 	if (resid > space) {
1123 		error = EMSGSIZE;
1124 		goto out;
1125 	}
1126 	if (uio == NULL) {
1127 		resid = 0;
1128 		if (flags & MSG_EOR)
1129 			top->m_flags |= M_EOR;
1130 	} else {
1131 		/*
1132 		 * Copy the data from userland into a mbuf chain.
1133 		 * If no data is to be copied in, a single empty mbuf
1134 		 * is returned.
1135 		 */
1136 		top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
1137 		    (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
1138 		if (top == NULL) {
1139 			error = EFAULT;	/* only possible error */
1140 			goto out;
1141 		}
1142 		space -= resid - uio->uio_resid;
1143 		resid = uio->uio_resid;
1144 	}
1145 	KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
1146 	/*
1147 	 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
1148 	 * than with.
1149 	 */
1150 	if (dontroute) {
1151 		SOCK_LOCK(so);
1152 		so->so_options |= SO_DONTROUTE;
1153 		SOCK_UNLOCK(so);
1154 	}
1155 	/*
1156 	 * XXX all the SBS_CANTSENDMORE checks previously done could be out
1157 	 * of date.  We could have recieved a reset packet in an interrupt or
1158 	 * maybe we slept while doing page faults in uiomove() etc.  We could
1159 	 * probably recheck again inside the locking protection here, but
1160 	 * there are probably other places that this also happens.  We must
1161 	 * rethink this.
1162 	 */
1163 	VNET_SO_ASSERT(so);
1164 	error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1165 	    (flags & MSG_OOB) ? PRUS_OOB :
1166 	/*
1167 	 * If the user set MSG_EOF, the protocol understands this flag and
1168 	 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
1169 	 */
1170 	    ((flags & MSG_EOF) &&
1171 	     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1172 	     (resid <= 0)) ?
1173 		PRUS_EOF :
1174 		/* If there is more to send set PRUS_MORETOCOME */
1175 		(resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1176 		top, addr, control, td);
1177 	if (dontroute) {
1178 		SOCK_LOCK(so);
1179 		so->so_options &= ~SO_DONTROUTE;
1180 		SOCK_UNLOCK(so);
1181 	}
1182 	clen = 0;
1183 	control = NULL;
1184 	top = NULL;
1185 out:
1186 	if (top != NULL)
1187 		m_freem(top);
1188 	if (control != NULL)
1189 		m_freem(control);
1190 	return (error);
1191 }
1192 
1193 /*
1194  * Send on a socket.  If send must go all at once and message is larger than
1195  * send buffering, then hard error.  Lock against other senders.  If must go
1196  * all at once and not enough room now, then inform user that this would
1197  * block and do nothing.  Otherwise, if nonblocking, send as much as
1198  * possible.  The data to be sent is described by "uio" if nonzero, otherwise
1199  * by the mbuf chain "top" (which must be null if uio is not).  Data provided
1200  * in mbuf chain must be small enough to send all at once.
1201  *
1202  * Returns nonzero on error, timeout or signal; callers must check for short
1203  * counts if EINTR/ERESTART are returned.  Data and control buffers are freed
1204  * on return.
1205  */
1206 int
1207 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
1208     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1209 {
1210 	long space;
1211 	ssize_t resid;
1212 	int clen = 0, error, dontroute;
1213 	int atomic = sosendallatonce(so) || top;
1214 
1215 	if (uio != NULL)
1216 		resid = uio->uio_resid;
1217 	else
1218 		resid = top->m_pkthdr.len;
1219 	/*
1220 	 * In theory resid should be unsigned.  However, space must be
1221 	 * signed, as it might be less than 0 if we over-committed, and we
1222 	 * must use a signed comparison of space and resid.  On the other
1223 	 * hand, a negative resid causes us to loop sending 0-length
1224 	 * segments to the protocol.
1225 	 *
1226 	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
1227 	 * type sockets since that's an error.
1228 	 */
1229 	if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
1230 		error = EINVAL;
1231 		goto out;
1232 	}
1233 
1234 	dontroute =
1235 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
1236 	    (so->so_proto->pr_flags & PR_ATOMIC);
1237 	if (td != NULL)
1238 		td->td_ru.ru_msgsnd++;
1239 	if (control != NULL)
1240 		clen = control->m_len;
1241 
1242 	error = sblock(&so->so_snd, SBLOCKWAIT(flags));
1243 	if (error)
1244 		goto out;
1245 
1246 restart:
1247 	do {
1248 		SOCKBUF_LOCK(&so->so_snd);
1249 		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1250 			SOCKBUF_UNLOCK(&so->so_snd);
1251 			error = EPIPE;
1252 			goto release;
1253 		}
1254 		if (so->so_error) {
1255 			error = so->so_error;
1256 			so->so_error = 0;
1257 			SOCKBUF_UNLOCK(&so->so_snd);
1258 			goto release;
1259 		}
1260 		if ((so->so_state & SS_ISCONNECTED) == 0) {
1261 			/*
1262 			 * `sendto' and `sendmsg' is allowed on a connection-
1263 			 * based socket if it supports implied connect.
1264 			 * Return ENOTCONN if not connected and no address is
1265 			 * supplied.
1266 			 */
1267 			if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1268 			    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1269 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1270 				    !(resid == 0 && clen != 0)) {
1271 					SOCKBUF_UNLOCK(&so->so_snd);
1272 					error = ENOTCONN;
1273 					goto release;
1274 				}
1275 			} else if (addr == NULL) {
1276 				SOCKBUF_UNLOCK(&so->so_snd);
1277 				if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1278 					error = ENOTCONN;
1279 				else
1280 					error = EDESTADDRREQ;
1281 				goto release;
1282 			}
1283 		}
1284 		space = sbspace(&so->so_snd);
1285 		if (flags & MSG_OOB)
1286 			space += 1024;
1287 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
1288 		    clen > so->so_snd.sb_hiwat) {
1289 			SOCKBUF_UNLOCK(&so->so_snd);
1290 			error = EMSGSIZE;
1291 			goto release;
1292 		}
1293 		if (space < resid + clen &&
1294 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
1295 			if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
1296 				SOCKBUF_UNLOCK(&so->so_snd);
1297 				error = EWOULDBLOCK;
1298 				goto release;
1299 			}
1300 			error = sbwait(&so->so_snd);
1301 			SOCKBUF_UNLOCK(&so->so_snd);
1302 			if (error)
1303 				goto release;
1304 			goto restart;
1305 		}
1306 		SOCKBUF_UNLOCK(&so->so_snd);
1307 		space -= clen;
1308 		do {
1309 			if (uio == NULL) {
1310 				resid = 0;
1311 				if (flags & MSG_EOR)
1312 					top->m_flags |= M_EOR;
1313 			} else {
1314 				/*
1315 				 * Copy the data from userland into a mbuf
1316 				 * chain.  If no data is to be copied in,
1317 				 * a single empty mbuf is returned.
1318 				 */
1319 				top = m_uiotombuf(uio, M_WAITOK, space,
1320 				    (atomic ? max_hdr : 0),
1321 				    (atomic ? M_PKTHDR : 0) |
1322 				    ((flags & MSG_EOR) ? M_EOR : 0));
1323 				if (top == NULL) {
1324 					error = EFAULT; /* only possible error */
1325 					goto release;
1326 				}
1327 				space -= resid - uio->uio_resid;
1328 				resid = uio->uio_resid;
1329 			}
1330 			if (dontroute) {
1331 				SOCK_LOCK(so);
1332 				so->so_options |= SO_DONTROUTE;
1333 				SOCK_UNLOCK(so);
1334 			}
1335 			/*
1336 			 * XXX all the SBS_CANTSENDMORE checks previously
1337 			 * done could be out of date.  We could have recieved
1338 			 * a reset packet in an interrupt or maybe we slept
1339 			 * while doing page faults in uiomove() etc.  We
1340 			 * could probably recheck again inside the locking
1341 			 * protection here, but there are probably other
1342 			 * places that this also happens.  We must rethink
1343 			 * this.
1344 			 */
1345 			VNET_SO_ASSERT(so);
1346 			error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1347 			    (flags & MSG_OOB) ? PRUS_OOB :
1348 			/*
1349 			 * If the user set MSG_EOF, the protocol understands
1350 			 * this flag and nothing left to send then use
1351 			 * PRU_SEND_EOF instead of PRU_SEND.
1352 			 */
1353 			    ((flags & MSG_EOF) &&
1354 			     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1355 			     (resid <= 0)) ?
1356 				PRUS_EOF :
1357 			/* If there is more to send set PRUS_MORETOCOME. */
1358 			    (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1359 			    top, addr, control, td);
1360 			if (dontroute) {
1361 				SOCK_LOCK(so);
1362 				so->so_options &= ~SO_DONTROUTE;
1363 				SOCK_UNLOCK(so);
1364 			}
1365 			clen = 0;
1366 			control = NULL;
1367 			top = NULL;
1368 			if (error)
1369 				goto release;
1370 		} while (resid && space > 0);
1371 	} while (resid);
1372 
1373 release:
1374 	sbunlock(&so->so_snd);
1375 out:
1376 	if (top != NULL)
1377 		m_freem(top);
1378 	if (control != NULL)
1379 		m_freem(control);
1380 	return (error);
1381 }
1382 
1383 int
1384 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
1385     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1386 {
1387 	int error;
1388 
1389 	CURVNET_SET(so->so_vnet);
1390 	error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, top,
1391 	    control, flags, td);
1392 	CURVNET_RESTORE();
1393 	return (error);
1394 }
1395 
1396 /*
1397  * The part of soreceive() that implements reading non-inline out-of-band
1398  * data from a socket.  For more complete comments, see soreceive(), from
1399  * which this code originated.
1400  *
1401  * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
1402  * unable to return an mbuf chain to the caller.
1403  */
1404 static int
1405 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
1406 {
1407 	struct protosw *pr = so->so_proto;
1408 	struct mbuf *m;
1409 	int error;
1410 
1411 	KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
1412 	VNET_SO_ASSERT(so);
1413 
1414 	m = m_get(M_WAITOK, MT_DATA);
1415 	error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK);
1416 	if (error)
1417 		goto bad;
1418 	do {
1419 		error = uiomove(mtod(m, void *),
1420 		    (int) min(uio->uio_resid, m->m_len), uio);
1421 		m = m_free(m);
1422 	} while (uio->uio_resid && error == 0 && m);
1423 bad:
1424 	if (m != NULL)
1425 		m_freem(m);
1426 	return (error);
1427 }
1428 
1429 /*
1430  * Following replacement or removal of the first mbuf on the first mbuf chain
1431  * of a socket buffer, push necessary state changes back into the socket
1432  * buffer so that other consumers see the values consistently.  'nextrecord'
1433  * is the callers locally stored value of the original value of
1434  * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
1435  * NOTE: 'nextrecord' may be NULL.
1436  */
1437 static __inline void
1438 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
1439 {
1440 
1441 	SOCKBUF_LOCK_ASSERT(sb);
1442 	/*
1443 	 * First, update for the new value of nextrecord.  If necessary, make
1444 	 * it the first record.
1445 	 */
1446 	if (sb->sb_mb != NULL)
1447 		sb->sb_mb->m_nextpkt = nextrecord;
1448 	else
1449 		sb->sb_mb = nextrecord;
1450 
1451 	/*
1452 	 * Now update any dependent socket buffer fields to reflect the new
1453 	 * state.  This is an expanded inline of SB_EMPTY_FIXUP(), with the
1454 	 * addition of a second clause that takes care of the case where
1455 	 * sb_mb has been updated, but remains the last record.
1456 	 */
1457 	if (sb->sb_mb == NULL) {
1458 		sb->sb_mbtail = NULL;
1459 		sb->sb_lastrecord = NULL;
1460 	} else if (sb->sb_mb->m_nextpkt == NULL)
1461 		sb->sb_lastrecord = sb->sb_mb;
1462 }
1463 
1464 /*
1465  * Implement receive operations on a socket.  We depend on the way that
1466  * records are added to the sockbuf by sbappend.  In particular, each record
1467  * (mbufs linked through m_next) must begin with an address if the protocol
1468  * so specifies, followed by an optional mbuf or mbufs containing ancillary
1469  * data, and then zero or more mbufs of data.  In order to allow parallelism
1470  * between network receive and copying to user space, as well as avoid
1471  * sleeping with a mutex held, we release the socket buffer mutex during the
1472  * user space copy.  Although the sockbuf is locked, new data may still be
1473  * appended, and thus we must maintain consistency of the sockbuf during that
1474  * time.
1475  *
1476  * The caller may receive the data as a single mbuf chain by supplying an
1477  * mbuf **mp0 for use in returning the chain.  The uio is then used only for
1478  * the count in uio_resid.
1479  */
1480 int
1481 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
1482     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1483 {
1484 	struct mbuf *m, **mp;
1485 	int flags, error, offset;
1486 	ssize_t len;
1487 	struct protosw *pr = so->so_proto;
1488 	struct mbuf *nextrecord;
1489 	int moff, type = 0;
1490 	ssize_t orig_resid = uio->uio_resid;
1491 
1492 	mp = mp0;
1493 	if (psa != NULL)
1494 		*psa = NULL;
1495 	if (controlp != NULL)
1496 		*controlp = NULL;
1497 	if (flagsp != NULL)
1498 		flags = *flagsp &~ MSG_EOR;
1499 	else
1500 		flags = 0;
1501 	if (flags & MSG_OOB)
1502 		return (soreceive_rcvoob(so, uio, flags));
1503 	if (mp != NULL)
1504 		*mp = NULL;
1505 	if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING)
1506 	    && uio->uio_resid) {
1507 		VNET_SO_ASSERT(so);
1508 		(*pr->pr_usrreqs->pru_rcvd)(so, 0);
1509 	}
1510 
1511 	error = sblock(&so->so_rcv, SBLOCKWAIT(flags));
1512 	if (error)
1513 		return (error);
1514 
1515 restart:
1516 	SOCKBUF_LOCK(&so->so_rcv);
1517 	m = so->so_rcv.sb_mb;
1518 	/*
1519 	 * If we have less data than requested, block awaiting more (subject
1520 	 * to any timeout) if:
1521 	 *   1. the current count is less than the low water mark, or
1522 	 *   2. MSG_DONTWAIT is not set
1523 	 */
1524 	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
1525 	    so->so_rcv.sb_cc < uio->uio_resid) &&
1526 	    so->so_rcv.sb_cc < so->so_rcv.sb_lowat &&
1527 	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
1528 		KASSERT(m != NULL || !so->so_rcv.sb_cc,
1529 		    ("receive: m == %p so->so_rcv.sb_cc == %u",
1530 		    m, so->so_rcv.sb_cc));
1531 		if (so->so_error) {
1532 			if (m != NULL)
1533 				goto dontblock;
1534 			error = so->so_error;
1535 			if ((flags & MSG_PEEK) == 0)
1536 				so->so_error = 0;
1537 			SOCKBUF_UNLOCK(&so->so_rcv);
1538 			goto release;
1539 		}
1540 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1541 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1542 			if (m == NULL) {
1543 				SOCKBUF_UNLOCK(&so->so_rcv);
1544 				goto release;
1545 			} else
1546 				goto dontblock;
1547 		}
1548 		for (; m != NULL; m = m->m_next)
1549 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
1550 				m = so->so_rcv.sb_mb;
1551 				goto dontblock;
1552 			}
1553 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1554 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1555 			SOCKBUF_UNLOCK(&so->so_rcv);
1556 			error = ENOTCONN;
1557 			goto release;
1558 		}
1559 		if (uio->uio_resid == 0) {
1560 			SOCKBUF_UNLOCK(&so->so_rcv);
1561 			goto release;
1562 		}
1563 		if ((so->so_state & SS_NBIO) ||
1564 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1565 			SOCKBUF_UNLOCK(&so->so_rcv);
1566 			error = EWOULDBLOCK;
1567 			goto release;
1568 		}
1569 		SBLASTRECORDCHK(&so->so_rcv);
1570 		SBLASTMBUFCHK(&so->so_rcv);
1571 		error = sbwait(&so->so_rcv);
1572 		SOCKBUF_UNLOCK(&so->so_rcv);
1573 		if (error)
1574 			goto release;
1575 		goto restart;
1576 	}
1577 dontblock:
1578 	/*
1579 	 * From this point onward, we maintain 'nextrecord' as a cache of the
1580 	 * pointer to the next record in the socket buffer.  We must keep the
1581 	 * various socket buffer pointers and local stack versions of the
1582 	 * pointers in sync, pushing out modifications before dropping the
1583 	 * socket buffer mutex, and re-reading them when picking it up.
1584 	 *
1585 	 * Otherwise, we will race with the network stack appending new data
1586 	 * or records onto the socket buffer by using inconsistent/stale
1587 	 * versions of the field, possibly resulting in socket buffer
1588 	 * corruption.
1589 	 *
1590 	 * By holding the high-level sblock(), we prevent simultaneous
1591 	 * readers from pulling off the front of the socket buffer.
1592 	 */
1593 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1594 	if (uio->uio_td)
1595 		uio->uio_td->td_ru.ru_msgrcv++;
1596 	KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
1597 	SBLASTRECORDCHK(&so->so_rcv);
1598 	SBLASTMBUFCHK(&so->so_rcv);
1599 	nextrecord = m->m_nextpkt;
1600 	if (pr->pr_flags & PR_ADDR) {
1601 		KASSERT(m->m_type == MT_SONAME,
1602 		    ("m->m_type == %d", m->m_type));
1603 		orig_resid = 0;
1604 		if (psa != NULL)
1605 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
1606 			    M_NOWAIT);
1607 		if (flags & MSG_PEEK) {
1608 			m = m->m_next;
1609 		} else {
1610 			sbfree(&so->so_rcv, m);
1611 			so->so_rcv.sb_mb = m_free(m);
1612 			m = so->so_rcv.sb_mb;
1613 			sockbuf_pushsync(&so->so_rcv, nextrecord);
1614 		}
1615 	}
1616 
1617 	/*
1618 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
1619 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
1620 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
1621 	 * perform externalization (or freeing if controlp == NULL).
1622 	 */
1623 	if (m != NULL && m->m_type == MT_CONTROL) {
1624 		struct mbuf *cm = NULL, *cmn;
1625 		struct mbuf **cme = &cm;
1626 
1627 		do {
1628 			if (flags & MSG_PEEK) {
1629 				if (controlp != NULL) {
1630 					*controlp = m_copy(m, 0, m->m_len);
1631 					controlp = &(*controlp)->m_next;
1632 				}
1633 				m = m->m_next;
1634 			} else {
1635 				sbfree(&so->so_rcv, m);
1636 				so->so_rcv.sb_mb = m->m_next;
1637 				m->m_next = NULL;
1638 				*cme = m;
1639 				cme = &(*cme)->m_next;
1640 				m = so->so_rcv.sb_mb;
1641 			}
1642 		} while (m != NULL && m->m_type == MT_CONTROL);
1643 		if ((flags & MSG_PEEK) == 0)
1644 			sockbuf_pushsync(&so->so_rcv, nextrecord);
1645 		while (cm != NULL) {
1646 			cmn = cm->m_next;
1647 			cm->m_next = NULL;
1648 			if (pr->pr_domain->dom_externalize != NULL) {
1649 				SOCKBUF_UNLOCK(&so->so_rcv);
1650 				VNET_SO_ASSERT(so);
1651 				error = (*pr->pr_domain->dom_externalize)
1652 				    (cm, controlp, flags);
1653 				SOCKBUF_LOCK(&so->so_rcv);
1654 			} else if (controlp != NULL)
1655 				*controlp = cm;
1656 			else
1657 				m_freem(cm);
1658 			if (controlp != NULL) {
1659 				orig_resid = 0;
1660 				while (*controlp != NULL)
1661 					controlp = &(*controlp)->m_next;
1662 			}
1663 			cm = cmn;
1664 		}
1665 		if (m != NULL)
1666 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1667 		else
1668 			nextrecord = so->so_rcv.sb_mb;
1669 		orig_resid = 0;
1670 	}
1671 	if (m != NULL) {
1672 		if ((flags & MSG_PEEK) == 0) {
1673 			KASSERT(m->m_nextpkt == nextrecord,
1674 			    ("soreceive: post-control, nextrecord !sync"));
1675 			if (nextrecord == NULL) {
1676 				KASSERT(so->so_rcv.sb_mb == m,
1677 				    ("soreceive: post-control, sb_mb!=m"));
1678 				KASSERT(so->so_rcv.sb_lastrecord == m,
1679 				    ("soreceive: post-control, lastrecord!=m"));
1680 			}
1681 		}
1682 		type = m->m_type;
1683 		if (type == MT_OOBDATA)
1684 			flags |= MSG_OOB;
1685 	} else {
1686 		if ((flags & MSG_PEEK) == 0) {
1687 			KASSERT(so->so_rcv.sb_mb == nextrecord,
1688 			    ("soreceive: sb_mb != nextrecord"));
1689 			if (so->so_rcv.sb_mb == NULL) {
1690 				KASSERT(so->so_rcv.sb_lastrecord == NULL,
1691 				    ("soreceive: sb_lastercord != NULL"));
1692 			}
1693 		}
1694 	}
1695 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1696 	SBLASTRECORDCHK(&so->so_rcv);
1697 	SBLASTMBUFCHK(&so->so_rcv);
1698 
1699 	/*
1700 	 * Now continue to read any data mbufs off of the head of the socket
1701 	 * buffer until the read request is satisfied.  Note that 'type' is
1702 	 * used to store the type of any mbuf reads that have happened so far
1703 	 * such that soreceive() can stop reading if the type changes, which
1704 	 * causes soreceive() to return only one of regular data and inline
1705 	 * out-of-band data in a single socket receive operation.
1706 	 */
1707 	moff = 0;
1708 	offset = 0;
1709 	while (m != NULL && uio->uio_resid > 0 && error == 0) {
1710 		/*
1711 		 * If the type of mbuf has changed since the last mbuf
1712 		 * examined ('type'), end the receive operation.
1713 		 */
1714 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1715 		if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) {
1716 			if (type != m->m_type)
1717 				break;
1718 		} else if (type == MT_OOBDATA)
1719 			break;
1720 		else
1721 		    KASSERT(m->m_type == MT_DATA,
1722 			("m->m_type == %d", m->m_type));
1723 		so->so_rcv.sb_state &= ~SBS_RCVATMARK;
1724 		len = uio->uio_resid;
1725 		if (so->so_oobmark && len > so->so_oobmark - offset)
1726 			len = so->so_oobmark - offset;
1727 		if (len > m->m_len - moff)
1728 			len = m->m_len - moff;
1729 		/*
1730 		 * If mp is set, just pass back the mbufs.  Otherwise copy
1731 		 * them out via the uio, then free.  Sockbuf must be
1732 		 * consistent here (points to current mbuf, it points to next
1733 		 * record) when we drop priority; we must note any additions
1734 		 * to the sockbuf when we block interrupts again.
1735 		 */
1736 		if (mp == NULL) {
1737 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1738 			SBLASTRECORDCHK(&so->so_rcv);
1739 			SBLASTMBUFCHK(&so->so_rcv);
1740 			SOCKBUF_UNLOCK(&so->so_rcv);
1741 			error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1742 			SOCKBUF_LOCK(&so->so_rcv);
1743 			if (error) {
1744 				/*
1745 				 * The MT_SONAME mbuf has already been removed
1746 				 * from the record, so it is necessary to
1747 				 * remove the data mbufs, if any, to preserve
1748 				 * the invariant in the case of PR_ADDR that
1749 				 * requires MT_SONAME mbufs at the head of
1750 				 * each record.
1751 				 */
1752 				if (m && pr->pr_flags & PR_ATOMIC &&
1753 				    ((flags & MSG_PEEK) == 0))
1754 					(void)sbdroprecord_locked(&so->so_rcv);
1755 				SOCKBUF_UNLOCK(&so->so_rcv);
1756 				goto release;
1757 			}
1758 		} else
1759 			uio->uio_resid -= len;
1760 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1761 		if (len == m->m_len - moff) {
1762 			if (m->m_flags & M_EOR)
1763 				flags |= MSG_EOR;
1764 			if (flags & MSG_PEEK) {
1765 				m = m->m_next;
1766 				moff = 0;
1767 			} else {
1768 				nextrecord = m->m_nextpkt;
1769 				sbfree(&so->so_rcv, m);
1770 				if (mp != NULL) {
1771 					m->m_nextpkt = NULL;
1772 					*mp = m;
1773 					mp = &m->m_next;
1774 					so->so_rcv.sb_mb = m = m->m_next;
1775 					*mp = NULL;
1776 				} else {
1777 					so->so_rcv.sb_mb = m_free(m);
1778 					m = so->so_rcv.sb_mb;
1779 				}
1780 				sockbuf_pushsync(&so->so_rcv, nextrecord);
1781 				SBLASTRECORDCHK(&so->so_rcv);
1782 				SBLASTMBUFCHK(&so->so_rcv);
1783 			}
1784 		} else {
1785 			if (flags & MSG_PEEK)
1786 				moff += len;
1787 			else {
1788 				if (mp != NULL) {
1789 					if (flags & MSG_DONTWAIT) {
1790 						*mp = m_copym(m, 0, len,
1791 						    M_NOWAIT);
1792 						if (*mp == NULL) {
1793 							/*
1794 							 * m_copym() couldn't
1795 							 * allocate an mbuf.
1796 							 * Adjust uio_resid back
1797 							 * (it was adjusted
1798 							 * down by len bytes,
1799 							 * which we didn't end
1800 							 * up "copying" over).
1801 							 */
1802 							uio->uio_resid += len;
1803 							break;
1804 						}
1805 					} else {
1806 						SOCKBUF_UNLOCK(&so->so_rcv);
1807 						*mp = m_copym(m, 0, len,
1808 						    M_WAITOK);
1809 						SOCKBUF_LOCK(&so->so_rcv);
1810 					}
1811 				}
1812 				m->m_data += len;
1813 				m->m_len -= len;
1814 				so->so_rcv.sb_cc -= len;
1815 			}
1816 		}
1817 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1818 		if (so->so_oobmark) {
1819 			if ((flags & MSG_PEEK) == 0) {
1820 				so->so_oobmark -= len;
1821 				if (so->so_oobmark == 0) {
1822 					so->so_rcv.sb_state |= SBS_RCVATMARK;
1823 					break;
1824 				}
1825 			} else {
1826 				offset += len;
1827 				if (offset == so->so_oobmark)
1828 					break;
1829 			}
1830 		}
1831 		if (flags & MSG_EOR)
1832 			break;
1833 		/*
1834 		 * If the MSG_WAITALL flag is set (for non-atomic socket), we
1835 		 * must not quit until "uio->uio_resid == 0" or an error
1836 		 * termination.  If a signal/timeout occurs, return with a
1837 		 * short count but without error.  Keep sockbuf locked
1838 		 * against other readers.
1839 		 */
1840 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1841 		    !sosendallatonce(so) && nextrecord == NULL) {
1842 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1843 			if (so->so_error ||
1844 			    so->so_rcv.sb_state & SBS_CANTRCVMORE)
1845 				break;
1846 			/*
1847 			 * Notify the protocol that some data has been
1848 			 * drained before blocking.
1849 			 */
1850 			if (pr->pr_flags & PR_WANTRCVD) {
1851 				SOCKBUF_UNLOCK(&so->so_rcv);
1852 				VNET_SO_ASSERT(so);
1853 				(*pr->pr_usrreqs->pru_rcvd)(so, flags);
1854 				SOCKBUF_LOCK(&so->so_rcv);
1855 			}
1856 			SBLASTRECORDCHK(&so->so_rcv);
1857 			SBLASTMBUFCHK(&so->so_rcv);
1858 			/*
1859 			 * We could receive some data while was notifying
1860 			 * the protocol. Skip blocking in this case.
1861 			 */
1862 			if (so->so_rcv.sb_mb == NULL) {
1863 				error = sbwait(&so->so_rcv);
1864 				if (error) {
1865 					SOCKBUF_UNLOCK(&so->so_rcv);
1866 					goto release;
1867 				}
1868 			}
1869 			m = so->so_rcv.sb_mb;
1870 			if (m != NULL)
1871 				nextrecord = m->m_nextpkt;
1872 		}
1873 	}
1874 
1875 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1876 	if (m != NULL && pr->pr_flags & PR_ATOMIC) {
1877 		flags |= MSG_TRUNC;
1878 		if ((flags & MSG_PEEK) == 0)
1879 			(void) sbdroprecord_locked(&so->so_rcv);
1880 	}
1881 	if ((flags & MSG_PEEK) == 0) {
1882 		if (m == NULL) {
1883 			/*
1884 			 * First part is an inline SB_EMPTY_FIXUP().  Second
1885 			 * part makes sure sb_lastrecord is up-to-date if
1886 			 * there is still data in the socket buffer.
1887 			 */
1888 			so->so_rcv.sb_mb = nextrecord;
1889 			if (so->so_rcv.sb_mb == NULL) {
1890 				so->so_rcv.sb_mbtail = NULL;
1891 				so->so_rcv.sb_lastrecord = NULL;
1892 			} else if (nextrecord->m_nextpkt == NULL)
1893 				so->so_rcv.sb_lastrecord = nextrecord;
1894 		}
1895 		SBLASTRECORDCHK(&so->so_rcv);
1896 		SBLASTMBUFCHK(&so->so_rcv);
1897 		/*
1898 		 * If soreceive() is being done from the socket callback,
1899 		 * then don't need to generate ACK to peer to update window,
1900 		 * since ACK will be generated on return to TCP.
1901 		 */
1902 		if (!(flags & MSG_SOCALLBCK) &&
1903 		    (pr->pr_flags & PR_WANTRCVD)) {
1904 			SOCKBUF_UNLOCK(&so->so_rcv);
1905 			VNET_SO_ASSERT(so);
1906 			(*pr->pr_usrreqs->pru_rcvd)(so, flags);
1907 			SOCKBUF_LOCK(&so->so_rcv);
1908 		}
1909 	}
1910 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1911 	if (orig_resid == uio->uio_resid && orig_resid &&
1912 	    (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
1913 		SOCKBUF_UNLOCK(&so->so_rcv);
1914 		goto restart;
1915 	}
1916 	SOCKBUF_UNLOCK(&so->so_rcv);
1917 
1918 	if (flagsp != NULL)
1919 		*flagsp |= flags;
1920 release:
1921 	sbunlock(&so->so_rcv);
1922 	return (error);
1923 }
1924 
1925 /*
1926  * Optimized version of soreceive() for stream (TCP) sockets.
1927  * XXXAO: (MSG_WAITALL | MSG_PEEK) isn't properly handled.
1928  */
1929 int
1930 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio,
1931     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1932 {
1933 	int len = 0, error = 0, flags, oresid;
1934 	struct sockbuf *sb;
1935 	struct mbuf *m, *n = NULL;
1936 
1937 	/* We only do stream sockets. */
1938 	if (so->so_type != SOCK_STREAM)
1939 		return (EINVAL);
1940 	if (psa != NULL)
1941 		*psa = NULL;
1942 	if (controlp != NULL)
1943 		return (EINVAL);
1944 	if (flagsp != NULL)
1945 		flags = *flagsp &~ MSG_EOR;
1946 	else
1947 		flags = 0;
1948 	if (flags & MSG_OOB)
1949 		return (soreceive_rcvoob(so, uio, flags));
1950 	if (mp0 != NULL)
1951 		*mp0 = NULL;
1952 
1953 	sb = &so->so_rcv;
1954 
1955 	/* Prevent other readers from entering the socket. */
1956 	error = sblock(sb, SBLOCKWAIT(flags));
1957 	if (error)
1958 		goto out;
1959 	SOCKBUF_LOCK(sb);
1960 
1961 	/* Easy one, no space to copyout anything. */
1962 	if (uio->uio_resid == 0) {
1963 		error = EINVAL;
1964 		goto out;
1965 	}
1966 	oresid = uio->uio_resid;
1967 
1968 	/* We will never ever get anything unless we are or were connected. */
1969 	if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
1970 		error = ENOTCONN;
1971 		goto out;
1972 	}
1973 
1974 restart:
1975 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1976 
1977 	/* Abort if socket has reported problems. */
1978 	if (so->so_error) {
1979 		if (sb->sb_cc > 0)
1980 			goto deliver;
1981 		if (oresid > uio->uio_resid)
1982 			goto out;
1983 		error = so->so_error;
1984 		if (!(flags & MSG_PEEK))
1985 			so->so_error = 0;
1986 		goto out;
1987 	}
1988 
1989 	/* Door is closed.  Deliver what is left, if any. */
1990 	if (sb->sb_state & SBS_CANTRCVMORE) {
1991 		if (sb->sb_cc > 0)
1992 			goto deliver;
1993 		else
1994 			goto out;
1995 	}
1996 
1997 	/* Socket buffer is empty and we shall not block. */
1998 	if (sb->sb_cc == 0 &&
1999 	    ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) {
2000 		error = EAGAIN;
2001 		goto out;
2002 	}
2003 
2004 	/* Socket buffer got some data that we shall deliver now. */
2005 	if (sb->sb_cc > 0 && !(flags & MSG_WAITALL) &&
2006 	    ((sb->sb_flags & SS_NBIO) ||
2007 	     (flags & (MSG_DONTWAIT|MSG_NBIO)) ||
2008 	     sb->sb_cc >= sb->sb_lowat ||
2009 	     sb->sb_cc >= uio->uio_resid ||
2010 	     sb->sb_cc >= sb->sb_hiwat) ) {
2011 		goto deliver;
2012 	}
2013 
2014 	/* On MSG_WAITALL we must wait until all data or error arrives. */
2015 	if ((flags & MSG_WAITALL) &&
2016 	    (sb->sb_cc >= uio->uio_resid || sb->sb_cc >= sb->sb_hiwat))
2017 		goto deliver;
2018 
2019 	/*
2020 	 * Wait and block until (more) data comes in.
2021 	 * NB: Drops the sockbuf lock during wait.
2022 	 */
2023 	error = sbwait(sb);
2024 	if (error)
2025 		goto out;
2026 	goto restart;
2027 
2028 deliver:
2029 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2030 	KASSERT(sb->sb_cc > 0, ("%s: sockbuf empty", __func__));
2031 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__));
2032 
2033 	/* Statistics. */
2034 	if (uio->uio_td)
2035 		uio->uio_td->td_ru.ru_msgrcv++;
2036 
2037 	/* Fill uio until full or current end of socket buffer is reached. */
2038 	len = min(uio->uio_resid, sb->sb_cc);
2039 	if (mp0 != NULL) {
2040 		/* Dequeue as many mbufs as possible. */
2041 		if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) {
2042 			if (*mp0 == NULL)
2043 				*mp0 = sb->sb_mb;
2044 			else
2045 				m_cat(*mp0, sb->sb_mb);
2046 			for (m = sb->sb_mb;
2047 			     m != NULL && m->m_len <= len;
2048 			     m = m->m_next) {
2049 				len -= m->m_len;
2050 				uio->uio_resid -= m->m_len;
2051 				sbfree(sb, m);
2052 				n = m;
2053 			}
2054 			n->m_next = NULL;
2055 			sb->sb_mb = m;
2056 			sb->sb_lastrecord = sb->sb_mb;
2057 			if (sb->sb_mb == NULL)
2058 				SB_EMPTY_FIXUP(sb);
2059 		}
2060 		/* Copy the remainder. */
2061 		if (len > 0) {
2062 			KASSERT(sb->sb_mb != NULL,
2063 			    ("%s: len > 0 && sb->sb_mb empty", __func__));
2064 
2065 			m = m_copym(sb->sb_mb, 0, len, M_NOWAIT);
2066 			if (m == NULL)
2067 				len = 0;	/* Don't flush data from sockbuf. */
2068 			else
2069 				uio->uio_resid -= len;
2070 			if (*mp0 != NULL)
2071 				m_cat(*mp0, m);
2072 			else
2073 				*mp0 = m;
2074 			if (*mp0 == NULL) {
2075 				error = ENOBUFS;
2076 				goto out;
2077 			}
2078 		}
2079 	} else {
2080 		/* NB: Must unlock socket buffer as uiomove may sleep. */
2081 		SOCKBUF_UNLOCK(sb);
2082 		error = m_mbuftouio(uio, sb->sb_mb, len);
2083 		SOCKBUF_LOCK(sb);
2084 		if (error)
2085 			goto out;
2086 	}
2087 	SBLASTRECORDCHK(sb);
2088 	SBLASTMBUFCHK(sb);
2089 
2090 	/*
2091 	 * Remove the delivered data from the socket buffer unless we
2092 	 * were only peeking.
2093 	 */
2094 	if (!(flags & MSG_PEEK)) {
2095 		if (len > 0)
2096 			sbdrop_locked(sb, len);
2097 
2098 		/* Notify protocol that we drained some data. */
2099 		if ((so->so_proto->pr_flags & PR_WANTRCVD) &&
2100 		    (((flags & MSG_WAITALL) && uio->uio_resid > 0) ||
2101 		     !(flags & MSG_SOCALLBCK))) {
2102 			SOCKBUF_UNLOCK(sb);
2103 			VNET_SO_ASSERT(so);
2104 			(*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags);
2105 			SOCKBUF_LOCK(sb);
2106 		}
2107 	}
2108 
2109 	/*
2110 	 * For MSG_WAITALL we may have to loop again and wait for
2111 	 * more data to come in.
2112 	 */
2113 	if ((flags & MSG_WAITALL) && uio->uio_resid > 0)
2114 		goto restart;
2115 out:
2116 	SOCKBUF_LOCK_ASSERT(sb);
2117 	SBLASTRECORDCHK(sb);
2118 	SBLASTMBUFCHK(sb);
2119 	SOCKBUF_UNLOCK(sb);
2120 	sbunlock(sb);
2121 	return (error);
2122 }
2123 
2124 /*
2125  * Optimized version of soreceive() for simple datagram cases from userspace.
2126  * Unlike in the stream case, we're able to drop a datagram if copyout()
2127  * fails, and because we handle datagrams atomically, we don't need to use a
2128  * sleep lock to prevent I/O interlacing.
2129  */
2130 int
2131 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
2132     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2133 {
2134 	struct mbuf *m, *m2;
2135 	int flags, error;
2136 	ssize_t len;
2137 	struct protosw *pr = so->so_proto;
2138 	struct mbuf *nextrecord;
2139 
2140 	if (psa != NULL)
2141 		*psa = NULL;
2142 	if (controlp != NULL)
2143 		*controlp = NULL;
2144 	if (flagsp != NULL)
2145 		flags = *flagsp &~ MSG_EOR;
2146 	else
2147 		flags = 0;
2148 
2149 	/*
2150 	 * For any complicated cases, fall back to the full
2151 	 * soreceive_generic().
2152 	 */
2153 	if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB))
2154 		return (soreceive_generic(so, psa, uio, mp0, controlp,
2155 		    flagsp));
2156 
2157 	/*
2158 	 * Enforce restrictions on use.
2159 	 */
2160 	KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
2161 	    ("soreceive_dgram: wantrcvd"));
2162 	KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
2163 	KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
2164 	    ("soreceive_dgram: SBS_RCVATMARK"));
2165 	KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
2166 	    ("soreceive_dgram: P_CONNREQUIRED"));
2167 
2168 	/*
2169 	 * Loop blocking while waiting for a datagram.
2170 	 */
2171 	SOCKBUF_LOCK(&so->so_rcv);
2172 	while ((m = so->so_rcv.sb_mb) == NULL) {
2173 		KASSERT(so->so_rcv.sb_cc == 0,
2174 		    ("soreceive_dgram: sb_mb NULL but sb_cc %u",
2175 		    so->so_rcv.sb_cc));
2176 		if (so->so_error) {
2177 			error = so->so_error;
2178 			so->so_error = 0;
2179 			SOCKBUF_UNLOCK(&so->so_rcv);
2180 			return (error);
2181 		}
2182 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
2183 		    uio->uio_resid == 0) {
2184 			SOCKBUF_UNLOCK(&so->so_rcv);
2185 			return (0);
2186 		}
2187 		if ((so->so_state & SS_NBIO) ||
2188 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
2189 			SOCKBUF_UNLOCK(&so->so_rcv);
2190 			return (EWOULDBLOCK);
2191 		}
2192 		SBLASTRECORDCHK(&so->so_rcv);
2193 		SBLASTMBUFCHK(&so->so_rcv);
2194 		error = sbwait(&so->so_rcv);
2195 		if (error) {
2196 			SOCKBUF_UNLOCK(&so->so_rcv);
2197 			return (error);
2198 		}
2199 	}
2200 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2201 
2202 	if (uio->uio_td)
2203 		uio->uio_td->td_ru.ru_msgrcv++;
2204 	SBLASTRECORDCHK(&so->so_rcv);
2205 	SBLASTMBUFCHK(&so->so_rcv);
2206 	nextrecord = m->m_nextpkt;
2207 	if (nextrecord == NULL) {
2208 		KASSERT(so->so_rcv.sb_lastrecord == m,
2209 		    ("soreceive_dgram: lastrecord != m"));
2210 	}
2211 
2212 	KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
2213 	    ("soreceive_dgram: m_nextpkt != nextrecord"));
2214 
2215 	/*
2216 	 * Pull 'm' and its chain off the front of the packet queue.
2217 	 */
2218 	so->so_rcv.sb_mb = NULL;
2219 	sockbuf_pushsync(&so->so_rcv, nextrecord);
2220 
2221 	/*
2222 	 * Walk 'm's chain and free that many bytes from the socket buffer.
2223 	 */
2224 	for (m2 = m; m2 != NULL; m2 = m2->m_next)
2225 		sbfree(&so->so_rcv, m2);
2226 
2227 	/*
2228 	 * Do a few last checks before we let go of the lock.
2229 	 */
2230 	SBLASTRECORDCHK(&so->so_rcv);
2231 	SBLASTMBUFCHK(&so->so_rcv);
2232 	SOCKBUF_UNLOCK(&so->so_rcv);
2233 
2234 	if (pr->pr_flags & PR_ADDR) {
2235 		KASSERT(m->m_type == MT_SONAME,
2236 		    ("m->m_type == %d", m->m_type));
2237 		if (psa != NULL)
2238 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
2239 			    M_NOWAIT);
2240 		m = m_free(m);
2241 	}
2242 	if (m == NULL) {
2243 		/* XXXRW: Can this happen? */
2244 		return (0);
2245 	}
2246 
2247 	/*
2248 	 * Packet to copyout() is now in 'm' and it is disconnected from the
2249 	 * queue.
2250 	 *
2251 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
2252 	 * in the first mbuf chain on the socket buffer.  We call into the
2253 	 * protocol to perform externalization (or freeing if controlp ==
2254 	 * NULL).
2255 	 */
2256 	if (m->m_type == MT_CONTROL) {
2257 		struct mbuf *cm = NULL, *cmn;
2258 		struct mbuf **cme = &cm;
2259 
2260 		do {
2261 			m2 = m->m_next;
2262 			m->m_next = NULL;
2263 			*cme = m;
2264 			cme = &(*cme)->m_next;
2265 			m = m2;
2266 		} while (m != NULL && m->m_type == MT_CONTROL);
2267 		while (cm != NULL) {
2268 			cmn = cm->m_next;
2269 			cm->m_next = NULL;
2270 			if (pr->pr_domain->dom_externalize != NULL) {
2271 				error = (*pr->pr_domain->dom_externalize)
2272 				    (cm, controlp, flags);
2273 			} else if (controlp != NULL)
2274 				*controlp = cm;
2275 			else
2276 				m_freem(cm);
2277 			if (controlp != NULL) {
2278 				while (*controlp != NULL)
2279 					controlp = &(*controlp)->m_next;
2280 			}
2281 			cm = cmn;
2282 		}
2283 	}
2284 	KASSERT(m->m_type == MT_DATA, ("soreceive_dgram: !data"));
2285 
2286 	while (m != NULL && uio->uio_resid > 0) {
2287 		len = uio->uio_resid;
2288 		if (len > m->m_len)
2289 			len = m->m_len;
2290 		error = uiomove(mtod(m, char *), (int)len, uio);
2291 		if (error) {
2292 			m_freem(m);
2293 			return (error);
2294 		}
2295 		if (len == m->m_len)
2296 			m = m_free(m);
2297 		else {
2298 			m->m_data += len;
2299 			m->m_len -= len;
2300 		}
2301 	}
2302 	if (m != NULL)
2303 		flags |= MSG_TRUNC;
2304 	m_freem(m);
2305 	if (flagsp != NULL)
2306 		*flagsp |= flags;
2307 	return (0);
2308 }
2309 
2310 int
2311 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
2312     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2313 {
2314 	int error;
2315 
2316 	CURVNET_SET(so->so_vnet);
2317 	error = (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, mp0,
2318 	    controlp, flagsp));
2319 	CURVNET_RESTORE();
2320 	return (error);
2321 }
2322 
2323 int
2324 soshutdown(struct socket *so, int how)
2325 {
2326 	struct protosw *pr = so->so_proto;
2327 	int error;
2328 
2329 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
2330 		return (EINVAL);
2331 
2332 	CURVNET_SET(so->so_vnet);
2333 	if (pr->pr_usrreqs->pru_flush != NULL)
2334 		(*pr->pr_usrreqs->pru_flush)(so, how);
2335 	if (how != SHUT_WR)
2336 		sorflush(so);
2337 	if (how != SHUT_RD) {
2338 		error = (*pr->pr_usrreqs->pru_shutdown)(so);
2339 		wakeup(&so->so_timeo);
2340 		CURVNET_RESTORE();
2341 		return (error);
2342 	}
2343 	wakeup(&so->so_timeo);
2344 	CURVNET_RESTORE();
2345 	return (0);
2346 }
2347 
2348 void
2349 sorflush(struct socket *so)
2350 {
2351 	struct sockbuf *sb = &so->so_rcv;
2352 	struct protosw *pr = so->so_proto;
2353 	struct sockbuf asb;
2354 
2355 	VNET_SO_ASSERT(so);
2356 
2357 	/*
2358 	 * In order to avoid calling dom_dispose with the socket buffer mutex
2359 	 * held, and in order to generally avoid holding the lock for a long
2360 	 * time, we make a copy of the socket buffer and clear the original
2361 	 * (except locks, state).  The new socket buffer copy won't have
2362 	 * initialized locks so we can only call routines that won't use or
2363 	 * assert those locks.
2364 	 *
2365 	 * Dislodge threads currently blocked in receive and wait to acquire
2366 	 * a lock against other simultaneous readers before clearing the
2367 	 * socket buffer.  Don't let our acquire be interrupted by a signal
2368 	 * despite any existing socket disposition on interruptable waiting.
2369 	 */
2370 	socantrcvmore(so);
2371 	(void) sblock(sb, SBL_WAIT | SBL_NOINTR);
2372 
2373 	/*
2374 	 * Invalidate/clear most of the sockbuf structure, but leave selinfo
2375 	 * and mutex data unchanged.
2376 	 */
2377 	SOCKBUF_LOCK(sb);
2378 	bzero(&asb, offsetof(struct sockbuf, sb_startzero));
2379 	bcopy(&sb->sb_startzero, &asb.sb_startzero,
2380 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
2381 	bzero(&sb->sb_startzero,
2382 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
2383 	SOCKBUF_UNLOCK(sb);
2384 	sbunlock(sb);
2385 
2386 	/*
2387 	 * Dispose of special rights and flush the socket buffer.  Don't call
2388 	 * any unsafe routines (that rely on locks being initialized) on asb.
2389 	 */
2390 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
2391 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
2392 	sbrelease_internal(&asb, so);
2393 }
2394 
2395 /*
2396  * Wrapper for Socket established helper hook.
2397  * Parameters: socket, context of the hook point, hook id.
2398  */
2399 static int inline
2400 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id)
2401 {
2402 	struct socket_hhook_data hhook_data = {
2403 		.so = so,
2404 		.hctx = hctx,
2405 		.m = NULL,
2406 		.status = 0
2407 	};
2408 
2409 	CURVNET_SET(so->so_vnet);
2410 	HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd);
2411 	CURVNET_RESTORE();
2412 
2413 	/* Ugly but needed, since hhooks return void for now */
2414 	return (hhook_data.status);
2415 }
2416 
2417 /*
2418  * Perhaps this routine, and sooptcopyout(), below, ought to come in an
2419  * additional variant to handle the case where the option value needs to be
2420  * some kind of integer, but not a specific size.  In addition to their use
2421  * here, these functions are also called by the protocol-level pr_ctloutput()
2422  * routines.
2423  */
2424 int
2425 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
2426 {
2427 	size_t	valsize;
2428 
2429 	/*
2430 	 * If the user gives us more than we wanted, we ignore it, but if we
2431 	 * don't get the minimum length the caller wants, we return EINVAL.
2432 	 * On success, sopt->sopt_valsize is set to however much we actually
2433 	 * retrieved.
2434 	 */
2435 	if ((valsize = sopt->sopt_valsize) < minlen)
2436 		return EINVAL;
2437 	if (valsize > len)
2438 		sopt->sopt_valsize = valsize = len;
2439 
2440 	if (sopt->sopt_td != NULL)
2441 		return (copyin(sopt->sopt_val, buf, valsize));
2442 
2443 	bcopy(sopt->sopt_val, buf, valsize);
2444 	return (0);
2445 }
2446 
2447 /*
2448  * Kernel version of setsockopt(2).
2449  *
2450  * XXX: optlen is size_t, not socklen_t
2451  */
2452 int
2453 so_setsockopt(struct socket *so, int level, int optname, void *optval,
2454     size_t optlen)
2455 {
2456 	struct sockopt sopt;
2457 
2458 	sopt.sopt_level = level;
2459 	sopt.sopt_name = optname;
2460 	sopt.sopt_dir = SOPT_SET;
2461 	sopt.sopt_val = optval;
2462 	sopt.sopt_valsize = optlen;
2463 	sopt.sopt_td = NULL;
2464 	return (sosetopt(so, &sopt));
2465 }
2466 
2467 int
2468 sosetopt(struct socket *so, struct sockopt *sopt)
2469 {
2470 	int	error, optval;
2471 	struct	linger l;
2472 	struct	timeval tv;
2473 	sbintime_t val;
2474 	uint32_t val32;
2475 #ifdef MAC
2476 	struct mac extmac;
2477 #endif
2478 
2479 	CURVNET_SET(so->so_vnet);
2480 	error = 0;
2481 	if (sopt->sopt_level != SOL_SOCKET) {
2482 		if (so->so_proto->pr_ctloutput != NULL) {
2483 			error = (*so->so_proto->pr_ctloutput)(so, sopt);
2484 			CURVNET_RESTORE();
2485 			return (error);
2486 		}
2487 		error = ENOPROTOOPT;
2488 	} else {
2489 		switch (sopt->sopt_name) {
2490 		case SO_ACCEPTFILTER:
2491 			error = do_setopt_accept_filter(so, sopt);
2492 			if (error)
2493 				goto bad;
2494 			break;
2495 
2496 		case SO_LINGER:
2497 			error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
2498 			if (error)
2499 				goto bad;
2500 
2501 			SOCK_LOCK(so);
2502 			so->so_linger = l.l_linger;
2503 			if (l.l_onoff)
2504 				so->so_options |= SO_LINGER;
2505 			else
2506 				so->so_options &= ~SO_LINGER;
2507 			SOCK_UNLOCK(so);
2508 			break;
2509 
2510 		case SO_DEBUG:
2511 		case SO_KEEPALIVE:
2512 		case SO_DONTROUTE:
2513 		case SO_USELOOPBACK:
2514 		case SO_BROADCAST:
2515 		case SO_REUSEADDR:
2516 		case SO_REUSEPORT:
2517 		case SO_OOBINLINE:
2518 		case SO_TIMESTAMP:
2519 		case SO_BINTIME:
2520 		case SO_NOSIGPIPE:
2521 		case SO_NO_DDP:
2522 		case SO_NO_OFFLOAD:
2523 			error = sooptcopyin(sopt, &optval, sizeof optval,
2524 			    sizeof optval);
2525 			if (error)
2526 				goto bad;
2527 			SOCK_LOCK(so);
2528 			if (optval)
2529 				so->so_options |= sopt->sopt_name;
2530 			else
2531 				so->so_options &= ~sopt->sopt_name;
2532 			SOCK_UNLOCK(so);
2533 			break;
2534 
2535 		case SO_SETFIB:
2536 			error = sooptcopyin(sopt, &optval, sizeof optval,
2537 			    sizeof optval);
2538 			if (error)
2539 				goto bad;
2540 
2541 			if (optval < 0 || optval >= rt_numfibs) {
2542 				error = EINVAL;
2543 				goto bad;
2544 			}
2545 			if (((so->so_proto->pr_domain->dom_family == PF_INET) ||
2546 			   (so->so_proto->pr_domain->dom_family == PF_INET6) ||
2547 			   (so->so_proto->pr_domain->dom_family == PF_ROUTE)))
2548 				so->so_fibnum = optval;
2549 			else
2550 				so->so_fibnum = 0;
2551 			break;
2552 
2553 		case SO_USER_COOKIE:
2554 			error = sooptcopyin(sopt, &val32, sizeof val32,
2555 			    sizeof val32);
2556 			if (error)
2557 				goto bad;
2558 			so->so_user_cookie = val32;
2559 			break;
2560 
2561 		case SO_SNDBUF:
2562 		case SO_RCVBUF:
2563 		case SO_SNDLOWAT:
2564 		case SO_RCVLOWAT:
2565 			error = sooptcopyin(sopt, &optval, sizeof optval,
2566 			    sizeof optval);
2567 			if (error)
2568 				goto bad;
2569 
2570 			/*
2571 			 * Values < 1 make no sense for any of these options,
2572 			 * so disallow them.
2573 			 */
2574 			if (optval < 1) {
2575 				error = EINVAL;
2576 				goto bad;
2577 			}
2578 
2579 			switch (sopt->sopt_name) {
2580 			case SO_SNDBUF:
2581 			case SO_RCVBUF:
2582 				if (sbreserve(sopt->sopt_name == SO_SNDBUF ?
2583 				    &so->so_snd : &so->so_rcv, (u_long)optval,
2584 				    so, curthread) == 0) {
2585 					error = ENOBUFS;
2586 					goto bad;
2587 				}
2588 				(sopt->sopt_name == SO_SNDBUF ? &so->so_snd :
2589 				    &so->so_rcv)->sb_flags &= ~SB_AUTOSIZE;
2590 				break;
2591 
2592 			/*
2593 			 * Make sure the low-water is never greater than the
2594 			 * high-water.
2595 			 */
2596 			case SO_SNDLOWAT:
2597 				SOCKBUF_LOCK(&so->so_snd);
2598 				so->so_snd.sb_lowat =
2599 				    (optval > so->so_snd.sb_hiwat) ?
2600 				    so->so_snd.sb_hiwat : optval;
2601 				SOCKBUF_UNLOCK(&so->so_snd);
2602 				break;
2603 			case SO_RCVLOWAT:
2604 				SOCKBUF_LOCK(&so->so_rcv);
2605 				so->so_rcv.sb_lowat =
2606 				    (optval > so->so_rcv.sb_hiwat) ?
2607 				    so->so_rcv.sb_hiwat : optval;
2608 				SOCKBUF_UNLOCK(&so->so_rcv);
2609 				break;
2610 			}
2611 			break;
2612 
2613 		case SO_SNDTIMEO:
2614 		case SO_RCVTIMEO:
2615 #ifdef COMPAT_FREEBSD32
2616 			if (SV_CURPROC_FLAG(SV_ILP32)) {
2617 				struct timeval32 tv32;
2618 
2619 				error = sooptcopyin(sopt, &tv32, sizeof tv32,
2620 				    sizeof tv32);
2621 				CP(tv32, tv, tv_sec);
2622 				CP(tv32, tv, tv_usec);
2623 			} else
2624 #endif
2625 				error = sooptcopyin(sopt, &tv, sizeof tv,
2626 				    sizeof tv);
2627 			if (error)
2628 				goto bad;
2629 			if (tv.tv_sec < 0 || tv.tv_usec < 0 ||
2630 			    tv.tv_usec >= 1000000) {
2631 				error = EDOM;
2632 				goto bad;
2633 			}
2634 			if (tv.tv_sec > INT32_MAX)
2635 				val = SBT_MAX;
2636 			else
2637 				val = tvtosbt(tv);
2638 			switch (sopt->sopt_name) {
2639 			case SO_SNDTIMEO:
2640 				so->so_snd.sb_timeo = val;
2641 				break;
2642 			case SO_RCVTIMEO:
2643 				so->so_rcv.sb_timeo = val;
2644 				break;
2645 			}
2646 			break;
2647 
2648 		case SO_LABEL:
2649 #ifdef MAC
2650 			error = sooptcopyin(sopt, &extmac, sizeof extmac,
2651 			    sizeof extmac);
2652 			if (error)
2653 				goto bad;
2654 			error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
2655 			    so, &extmac);
2656 #else
2657 			error = EOPNOTSUPP;
2658 #endif
2659 			break;
2660 
2661 		default:
2662 			if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
2663 				error = hhook_run_socket(so, sopt,
2664 				    HHOOK_SOCKET_OPT);
2665 			else
2666 				error = ENOPROTOOPT;
2667 			break;
2668 		}
2669 		if (error == 0 && so->so_proto->pr_ctloutput != NULL)
2670 			(void)(*so->so_proto->pr_ctloutput)(so, sopt);
2671 	}
2672 bad:
2673 	CURVNET_RESTORE();
2674 	return (error);
2675 }
2676 
2677 /*
2678  * Helper routine for getsockopt.
2679  */
2680 int
2681 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
2682 {
2683 	int	error;
2684 	size_t	valsize;
2685 
2686 	error = 0;
2687 
2688 	/*
2689 	 * Documented get behavior is that we always return a value, possibly
2690 	 * truncated to fit in the user's buffer.  Traditional behavior is
2691 	 * that we always tell the user precisely how much we copied, rather
2692 	 * than something useful like the total amount we had available for
2693 	 * her.  Note that this interface is not idempotent; the entire
2694 	 * answer must generated ahead of time.
2695 	 */
2696 	valsize = min(len, sopt->sopt_valsize);
2697 	sopt->sopt_valsize = valsize;
2698 	if (sopt->sopt_val != NULL) {
2699 		if (sopt->sopt_td != NULL)
2700 			error = copyout(buf, sopt->sopt_val, valsize);
2701 		else
2702 			bcopy(buf, sopt->sopt_val, valsize);
2703 	}
2704 	return (error);
2705 }
2706 
2707 int
2708 sogetopt(struct socket *so, struct sockopt *sopt)
2709 {
2710 	int	error, optval;
2711 	struct	linger l;
2712 	struct	timeval tv;
2713 #ifdef MAC
2714 	struct mac extmac;
2715 #endif
2716 
2717 	CURVNET_SET(so->so_vnet);
2718 	error = 0;
2719 	if (sopt->sopt_level != SOL_SOCKET) {
2720 		if (so->so_proto->pr_ctloutput != NULL)
2721 			error = (*so->so_proto->pr_ctloutput)(so, sopt);
2722 		else
2723 			error = ENOPROTOOPT;
2724 		CURVNET_RESTORE();
2725 		return (error);
2726 	} else {
2727 		switch (sopt->sopt_name) {
2728 		case SO_ACCEPTFILTER:
2729 			error = do_getopt_accept_filter(so, sopt);
2730 			break;
2731 
2732 		case SO_LINGER:
2733 			SOCK_LOCK(so);
2734 			l.l_onoff = so->so_options & SO_LINGER;
2735 			l.l_linger = so->so_linger;
2736 			SOCK_UNLOCK(so);
2737 			error = sooptcopyout(sopt, &l, sizeof l);
2738 			break;
2739 
2740 		case SO_USELOOPBACK:
2741 		case SO_DONTROUTE:
2742 		case SO_DEBUG:
2743 		case SO_KEEPALIVE:
2744 		case SO_REUSEADDR:
2745 		case SO_REUSEPORT:
2746 		case SO_BROADCAST:
2747 		case SO_OOBINLINE:
2748 		case SO_ACCEPTCONN:
2749 		case SO_TIMESTAMP:
2750 		case SO_BINTIME:
2751 		case SO_NOSIGPIPE:
2752 			optval = so->so_options & sopt->sopt_name;
2753 integer:
2754 			error = sooptcopyout(sopt, &optval, sizeof optval);
2755 			break;
2756 
2757 		case SO_TYPE:
2758 			optval = so->so_type;
2759 			goto integer;
2760 
2761 		case SO_PROTOCOL:
2762 			optval = so->so_proto->pr_protocol;
2763 			goto integer;
2764 
2765 		case SO_ERROR:
2766 			SOCK_LOCK(so);
2767 			optval = so->so_error;
2768 			so->so_error = 0;
2769 			SOCK_UNLOCK(so);
2770 			goto integer;
2771 
2772 		case SO_SNDBUF:
2773 			optval = so->so_snd.sb_hiwat;
2774 			goto integer;
2775 
2776 		case SO_RCVBUF:
2777 			optval = so->so_rcv.sb_hiwat;
2778 			goto integer;
2779 
2780 		case SO_SNDLOWAT:
2781 			optval = so->so_snd.sb_lowat;
2782 			goto integer;
2783 
2784 		case SO_RCVLOWAT:
2785 			optval = so->so_rcv.sb_lowat;
2786 			goto integer;
2787 
2788 		case SO_SNDTIMEO:
2789 		case SO_RCVTIMEO:
2790 			tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ?
2791 			    so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
2792 #ifdef COMPAT_FREEBSD32
2793 			if (SV_CURPROC_FLAG(SV_ILP32)) {
2794 				struct timeval32 tv32;
2795 
2796 				CP(tv, tv32, tv_sec);
2797 				CP(tv, tv32, tv_usec);
2798 				error = sooptcopyout(sopt, &tv32, sizeof tv32);
2799 			} else
2800 #endif
2801 				error = sooptcopyout(sopt, &tv, sizeof tv);
2802 			break;
2803 
2804 		case SO_LABEL:
2805 #ifdef MAC
2806 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
2807 			    sizeof(extmac));
2808 			if (error)
2809 				goto bad;
2810 			error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
2811 			    so, &extmac);
2812 			if (error)
2813 				goto bad;
2814 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
2815 #else
2816 			error = EOPNOTSUPP;
2817 #endif
2818 			break;
2819 
2820 		case SO_PEERLABEL:
2821 #ifdef MAC
2822 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
2823 			    sizeof(extmac));
2824 			if (error)
2825 				goto bad;
2826 			error = mac_getsockopt_peerlabel(
2827 			    sopt->sopt_td->td_ucred, so, &extmac);
2828 			if (error)
2829 				goto bad;
2830 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
2831 #else
2832 			error = EOPNOTSUPP;
2833 #endif
2834 			break;
2835 
2836 		case SO_LISTENQLIMIT:
2837 			optval = so->so_qlimit;
2838 			goto integer;
2839 
2840 		case SO_LISTENQLEN:
2841 			optval = so->so_qlen;
2842 			goto integer;
2843 
2844 		case SO_LISTENINCQLEN:
2845 			optval = so->so_incqlen;
2846 			goto integer;
2847 
2848 		default:
2849 			if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
2850 				error = hhook_run_socket(so, sopt,
2851 				    HHOOK_SOCKET_OPT);
2852 			else
2853 				error = ENOPROTOOPT;
2854 			break;
2855 		}
2856 	}
2857 #ifdef MAC
2858 bad:
2859 #endif
2860 	CURVNET_RESTORE();
2861 	return (error);
2862 }
2863 
2864 int
2865 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
2866 {
2867 	struct mbuf *m, *m_prev;
2868 	int sopt_size = sopt->sopt_valsize;
2869 
2870 	MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
2871 	if (m == NULL)
2872 		return ENOBUFS;
2873 	if (sopt_size > MLEN) {
2874 		MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT);
2875 		if ((m->m_flags & M_EXT) == 0) {
2876 			m_free(m);
2877 			return ENOBUFS;
2878 		}
2879 		m->m_len = min(MCLBYTES, sopt_size);
2880 	} else {
2881 		m->m_len = min(MLEN, sopt_size);
2882 	}
2883 	sopt_size -= m->m_len;
2884 	*mp = m;
2885 	m_prev = m;
2886 
2887 	while (sopt_size) {
2888 		MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
2889 		if (m == NULL) {
2890 			m_freem(*mp);
2891 			return ENOBUFS;
2892 		}
2893 		if (sopt_size > MLEN) {
2894 			MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK :
2895 			    M_NOWAIT);
2896 			if ((m->m_flags & M_EXT) == 0) {
2897 				m_freem(m);
2898 				m_freem(*mp);
2899 				return ENOBUFS;
2900 			}
2901 			m->m_len = min(MCLBYTES, sopt_size);
2902 		} else {
2903 			m->m_len = min(MLEN, sopt_size);
2904 		}
2905 		sopt_size -= m->m_len;
2906 		m_prev->m_next = m;
2907 		m_prev = m;
2908 	}
2909 	return (0);
2910 }
2911 
2912 int
2913 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
2914 {
2915 	struct mbuf *m0 = m;
2916 
2917 	if (sopt->sopt_val == NULL)
2918 		return (0);
2919 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
2920 		if (sopt->sopt_td != NULL) {
2921 			int error;
2922 
2923 			error = copyin(sopt->sopt_val, mtod(m, char *),
2924 			    m->m_len);
2925 			if (error != 0) {
2926 				m_freem(m0);
2927 				return(error);
2928 			}
2929 		} else
2930 			bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
2931 		sopt->sopt_valsize -= m->m_len;
2932 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
2933 		m = m->m_next;
2934 	}
2935 	if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
2936 		panic("ip6_sooptmcopyin");
2937 	return (0);
2938 }
2939 
2940 int
2941 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
2942 {
2943 	struct mbuf *m0 = m;
2944 	size_t valsize = 0;
2945 
2946 	if (sopt->sopt_val == NULL)
2947 		return (0);
2948 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
2949 		if (sopt->sopt_td != NULL) {
2950 			int error;
2951 
2952 			error = copyout(mtod(m, char *), sopt->sopt_val,
2953 			    m->m_len);
2954 			if (error != 0) {
2955 				m_freem(m0);
2956 				return(error);
2957 			}
2958 		} else
2959 			bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
2960 		sopt->sopt_valsize -= m->m_len;
2961 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
2962 		valsize += m->m_len;
2963 		m = m->m_next;
2964 	}
2965 	if (m != NULL) {
2966 		/* enough soopt buffer should be given from user-land */
2967 		m_freem(m0);
2968 		return(EINVAL);
2969 	}
2970 	sopt->sopt_valsize = valsize;
2971 	return (0);
2972 }
2973 
2974 /*
2975  * sohasoutofband(): protocol notifies socket layer of the arrival of new
2976  * out-of-band data, which will then notify socket consumers.
2977  */
2978 void
2979 sohasoutofband(struct socket *so)
2980 {
2981 
2982 	if (so->so_sigio != NULL)
2983 		pgsigio(&so->so_sigio, SIGURG, 0);
2984 	selwakeuppri(&so->so_rcv.sb_sel, PSOCK);
2985 }
2986 
2987 int
2988 sopoll(struct socket *so, int events, struct ucred *active_cred,
2989     struct thread *td)
2990 {
2991 
2992 	/*
2993 	 * We do not need to set or assert curvnet as long as everyone uses
2994 	 * sopoll_generic().
2995 	 */
2996 	return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred,
2997 	    td));
2998 }
2999 
3000 int
3001 sopoll_generic(struct socket *so, int events, struct ucred *active_cred,
3002     struct thread *td)
3003 {
3004 	int revents = 0;
3005 
3006 	SOCKBUF_LOCK(&so->so_snd);
3007 	SOCKBUF_LOCK(&so->so_rcv);
3008 	if (events & (POLLIN | POLLRDNORM))
3009 		if (soreadabledata(so))
3010 			revents |= events & (POLLIN | POLLRDNORM);
3011 
3012 	if (events & (POLLOUT | POLLWRNORM))
3013 		if (sowriteable(so))
3014 			revents |= events & (POLLOUT | POLLWRNORM);
3015 
3016 	if (events & (POLLPRI | POLLRDBAND))
3017 		if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK))
3018 			revents |= events & (POLLPRI | POLLRDBAND);
3019 
3020 	if ((events & POLLINIGNEOF) == 0) {
3021 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3022 			revents |= events & (POLLIN | POLLRDNORM);
3023 			if (so->so_snd.sb_state & SBS_CANTSENDMORE)
3024 				revents |= POLLHUP;
3025 		}
3026 	}
3027 
3028 	if (revents == 0) {
3029 		if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
3030 			selrecord(td, &so->so_rcv.sb_sel);
3031 			so->so_rcv.sb_flags |= SB_SEL;
3032 		}
3033 
3034 		if (events & (POLLOUT | POLLWRNORM)) {
3035 			selrecord(td, &so->so_snd.sb_sel);
3036 			so->so_snd.sb_flags |= SB_SEL;
3037 		}
3038 	}
3039 
3040 	SOCKBUF_UNLOCK(&so->so_rcv);
3041 	SOCKBUF_UNLOCK(&so->so_snd);
3042 	return (revents);
3043 }
3044 
3045 int
3046 soo_kqfilter(struct file *fp, struct knote *kn)
3047 {
3048 	struct socket *so = kn->kn_fp->f_data;
3049 	struct sockbuf *sb;
3050 
3051 	switch (kn->kn_filter) {
3052 	case EVFILT_READ:
3053 		if (so->so_options & SO_ACCEPTCONN)
3054 			kn->kn_fop = &solisten_filtops;
3055 		else
3056 			kn->kn_fop = &soread_filtops;
3057 		sb = &so->so_rcv;
3058 		break;
3059 	case EVFILT_WRITE:
3060 		kn->kn_fop = &sowrite_filtops;
3061 		sb = &so->so_snd;
3062 		break;
3063 	default:
3064 		return (EINVAL);
3065 	}
3066 
3067 	SOCKBUF_LOCK(sb);
3068 	knlist_add(&sb->sb_sel.si_note, kn, 1);
3069 	sb->sb_flags |= SB_KNOTE;
3070 	SOCKBUF_UNLOCK(sb);
3071 	return (0);
3072 }
3073 
3074 /*
3075  * Some routines that return EOPNOTSUPP for entry points that are not
3076  * supported by a protocol.  Fill in as needed.
3077  */
3078 int
3079 pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
3080 {
3081 
3082 	return EOPNOTSUPP;
3083 }
3084 
3085 int
3086 pru_attach_notsupp(struct socket *so, int proto, struct thread *td)
3087 {
3088 
3089 	return EOPNOTSUPP;
3090 }
3091 
3092 int
3093 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
3094 {
3095 
3096 	return EOPNOTSUPP;
3097 }
3098 
3099 int
3100 pru_bindat_notsupp(int fd, struct socket *so, struct sockaddr *nam,
3101     struct thread *td)
3102 {
3103 
3104 	return EOPNOTSUPP;
3105 }
3106 
3107 int
3108 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
3109 {
3110 
3111 	return EOPNOTSUPP;
3112 }
3113 
3114 int
3115 pru_connectat_notsupp(int fd, struct socket *so, struct sockaddr *nam,
3116     struct thread *td)
3117 {
3118 
3119 	return EOPNOTSUPP;
3120 }
3121 
3122 int
3123 pru_connect2_notsupp(struct socket *so1, struct socket *so2)
3124 {
3125 
3126 	return EOPNOTSUPP;
3127 }
3128 
3129 int
3130 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
3131     struct ifnet *ifp, struct thread *td)
3132 {
3133 
3134 	return EOPNOTSUPP;
3135 }
3136 
3137 int
3138 pru_disconnect_notsupp(struct socket *so)
3139 {
3140 
3141 	return EOPNOTSUPP;
3142 }
3143 
3144 int
3145 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td)
3146 {
3147 
3148 	return EOPNOTSUPP;
3149 }
3150 
3151 int
3152 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam)
3153 {
3154 
3155 	return EOPNOTSUPP;
3156 }
3157 
3158 int
3159 pru_rcvd_notsupp(struct socket *so, int flags)
3160 {
3161 
3162 	return EOPNOTSUPP;
3163 }
3164 
3165 int
3166 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
3167 {
3168 
3169 	return EOPNOTSUPP;
3170 }
3171 
3172 int
3173 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m,
3174     struct sockaddr *addr, struct mbuf *control, struct thread *td)
3175 {
3176 
3177 	return EOPNOTSUPP;
3178 }
3179 
3180 /*
3181  * This isn't really a ``null'' operation, but it's the default one and
3182  * doesn't do anything destructive.
3183  */
3184 int
3185 pru_sense_null(struct socket *so, struct stat *sb)
3186 {
3187 
3188 	sb->st_blksize = so->so_snd.sb_hiwat;
3189 	return 0;
3190 }
3191 
3192 int
3193 pru_shutdown_notsupp(struct socket *so)
3194 {
3195 
3196 	return EOPNOTSUPP;
3197 }
3198 
3199 int
3200 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam)
3201 {
3202 
3203 	return EOPNOTSUPP;
3204 }
3205 
3206 int
3207 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio,
3208     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
3209 {
3210 
3211 	return EOPNOTSUPP;
3212 }
3213 
3214 int
3215 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr,
3216     struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3217 {
3218 
3219 	return EOPNOTSUPP;
3220 }
3221 
3222 int
3223 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred,
3224     struct thread *td)
3225 {
3226 
3227 	return EOPNOTSUPP;
3228 }
3229 
3230 static void
3231 filt_sordetach(struct knote *kn)
3232 {
3233 	struct socket *so = kn->kn_fp->f_data;
3234 
3235 	SOCKBUF_LOCK(&so->so_rcv);
3236 	knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1);
3237 	if (knlist_empty(&so->so_rcv.sb_sel.si_note))
3238 		so->so_rcv.sb_flags &= ~SB_KNOTE;
3239 	SOCKBUF_UNLOCK(&so->so_rcv);
3240 }
3241 
3242 /*ARGSUSED*/
3243 static int
3244 filt_soread(struct knote *kn, long hint)
3245 {
3246 	struct socket *so;
3247 
3248 	so = kn->kn_fp->f_data;
3249 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3250 
3251 	kn->kn_data = so->so_rcv.sb_cc - so->so_rcv.sb_ctl;
3252 	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3253 		kn->kn_flags |= EV_EOF;
3254 		kn->kn_fflags = so->so_error;
3255 		return (1);
3256 	} else if (so->so_error)	/* temporary udp error */
3257 		return (1);
3258 
3259 	if (kn->kn_sfflags & NOTE_LOWAT) {
3260 		if (kn->kn_data >= kn->kn_sdata)
3261 			return 1;
3262 	} else {
3263 		if (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat)
3264 			return 1;
3265 	}
3266 
3267 	/* This hook returning non-zero indicates an event, not error */
3268 	return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD));
3269 }
3270 
3271 static void
3272 filt_sowdetach(struct knote *kn)
3273 {
3274 	struct socket *so = kn->kn_fp->f_data;
3275 
3276 	SOCKBUF_LOCK(&so->so_snd);
3277 	knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1);
3278 	if (knlist_empty(&so->so_snd.sb_sel.si_note))
3279 		so->so_snd.sb_flags &= ~SB_KNOTE;
3280 	SOCKBUF_UNLOCK(&so->so_snd);
3281 }
3282 
3283 /*ARGSUSED*/
3284 static int
3285 filt_sowrite(struct knote *kn, long hint)
3286 {
3287 	struct socket *so;
3288 
3289 	so = kn->kn_fp->f_data;
3290 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
3291 	kn->kn_data = sbspace(&so->so_snd);
3292 
3293 	hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE);
3294 
3295 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
3296 		kn->kn_flags |= EV_EOF;
3297 		kn->kn_fflags = so->so_error;
3298 		return (1);
3299 	} else if (so->so_error)	/* temporary udp error */
3300 		return (1);
3301 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
3302 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
3303 		return (0);
3304 	else if (kn->kn_sfflags & NOTE_LOWAT)
3305 		return (kn->kn_data >= kn->kn_sdata);
3306 	else
3307 		return (kn->kn_data >= so->so_snd.sb_lowat);
3308 }
3309 
3310 /*ARGSUSED*/
3311 static int
3312 filt_solisten(struct knote *kn, long hint)
3313 {
3314 	struct socket *so = kn->kn_fp->f_data;
3315 
3316 	kn->kn_data = so->so_qlen;
3317 	return (!TAILQ_EMPTY(&so->so_comp));
3318 }
3319 
3320 int
3321 socheckuid(struct socket *so, uid_t uid)
3322 {
3323 
3324 	if (so == NULL)
3325 		return (EPERM);
3326 	if (so->so_cred->cr_uid != uid)
3327 		return (EPERM);
3328 	return (0);
3329 }
3330 
3331 /*
3332  * These functions are used by protocols to notify the socket layer (and its
3333  * consumers) of state changes in the sockets driven by protocol-side events.
3334  */
3335 
3336 /*
3337  * Procedures to manipulate state flags of socket and do appropriate wakeups.
3338  *
3339  * Normal sequence from the active (originating) side is that
3340  * soisconnecting() is called during processing of connect() call, resulting
3341  * in an eventual call to soisconnected() if/when the connection is
3342  * established.  When the connection is torn down soisdisconnecting() is
3343  * called during processing of disconnect() call, and soisdisconnected() is
3344  * called when the connection to the peer is totally severed.  The semantics
3345  * of these routines are such that connectionless protocols can call
3346  * soisconnected() and soisdisconnected() only, bypassing the in-progress
3347  * calls when setting up a ``connection'' takes no time.
3348  *
3349  * From the passive side, a socket is created with two queues of sockets:
3350  * so_incomp for connections in progress and so_comp for connections already
3351  * made and awaiting user acceptance.  As a protocol is preparing incoming
3352  * connections, it creates a socket structure queued on so_incomp by calling
3353  * sonewconn().  When the connection is established, soisconnected() is
3354  * called, and transfers the socket structure to so_comp, making it available
3355  * to accept().
3356  *
3357  * If a socket is closed with sockets on either so_incomp or so_comp, these
3358  * sockets are dropped.
3359  *
3360  * If higher-level protocols are implemented in the kernel, the wakeups done
3361  * here will sometimes cause software-interrupt process scheduling.
3362  */
3363 void
3364 soisconnecting(struct socket *so)
3365 {
3366 
3367 	SOCK_LOCK(so);
3368 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
3369 	so->so_state |= SS_ISCONNECTING;
3370 	SOCK_UNLOCK(so);
3371 }
3372 
3373 void
3374 soisconnected(struct socket *so)
3375 {
3376 	struct socket *head;
3377 	int ret;
3378 
3379 restart:
3380 	ACCEPT_LOCK();
3381 	SOCK_LOCK(so);
3382 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
3383 	so->so_state |= SS_ISCONNECTED;
3384 	head = so->so_head;
3385 	if (head != NULL && (so->so_qstate & SQ_INCOMP)) {
3386 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
3387 			SOCK_UNLOCK(so);
3388 			TAILQ_REMOVE(&head->so_incomp, so, so_list);
3389 			head->so_incqlen--;
3390 			so->so_qstate &= ~SQ_INCOMP;
3391 			TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
3392 			head->so_qlen++;
3393 			so->so_qstate |= SQ_COMP;
3394 			ACCEPT_UNLOCK();
3395 			sorwakeup(head);
3396 			wakeup_one(&head->so_timeo);
3397 		} else {
3398 			ACCEPT_UNLOCK();
3399 			soupcall_set(so, SO_RCV,
3400 			    head->so_accf->so_accept_filter->accf_callback,
3401 			    head->so_accf->so_accept_filter_arg);
3402 			so->so_options &= ~SO_ACCEPTFILTER;
3403 			ret = head->so_accf->so_accept_filter->accf_callback(so,
3404 			    head->so_accf->so_accept_filter_arg, M_NOWAIT);
3405 			if (ret == SU_ISCONNECTED)
3406 				soupcall_clear(so, SO_RCV);
3407 			SOCK_UNLOCK(so);
3408 			if (ret == SU_ISCONNECTED)
3409 				goto restart;
3410 		}
3411 		return;
3412 	}
3413 	SOCK_UNLOCK(so);
3414 	ACCEPT_UNLOCK();
3415 	wakeup(&so->so_timeo);
3416 	sorwakeup(so);
3417 	sowwakeup(so);
3418 }
3419 
3420 void
3421 soisdisconnecting(struct socket *so)
3422 {
3423 
3424 	/*
3425 	 * Note: This code assumes that SOCK_LOCK(so) and
3426 	 * SOCKBUF_LOCK(&so->so_rcv) are the same.
3427 	 */
3428 	SOCKBUF_LOCK(&so->so_rcv);
3429 	so->so_state &= ~SS_ISCONNECTING;
3430 	so->so_state |= SS_ISDISCONNECTING;
3431 	so->so_rcv.sb_state |= SBS_CANTRCVMORE;
3432 	sorwakeup_locked(so);
3433 	SOCKBUF_LOCK(&so->so_snd);
3434 	so->so_snd.sb_state |= SBS_CANTSENDMORE;
3435 	sowwakeup_locked(so);
3436 	wakeup(&so->so_timeo);
3437 }
3438 
3439 void
3440 soisdisconnected(struct socket *so)
3441 {
3442 
3443 	/*
3444 	 * Note: This code assumes that SOCK_LOCK(so) and
3445 	 * SOCKBUF_LOCK(&so->so_rcv) are the same.
3446 	 */
3447 	SOCKBUF_LOCK(&so->so_rcv);
3448 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
3449 	so->so_state |= SS_ISDISCONNECTED;
3450 	so->so_rcv.sb_state |= SBS_CANTRCVMORE;
3451 	sorwakeup_locked(so);
3452 	SOCKBUF_LOCK(&so->so_snd);
3453 	so->so_snd.sb_state |= SBS_CANTSENDMORE;
3454 	sbdrop_locked(&so->so_snd, so->so_snd.sb_cc);
3455 	sowwakeup_locked(so);
3456 	wakeup(&so->so_timeo);
3457 }
3458 
3459 /*
3460  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
3461  */
3462 struct sockaddr *
3463 sodupsockaddr(const struct sockaddr *sa, int mflags)
3464 {
3465 	struct sockaddr *sa2;
3466 
3467 	sa2 = malloc(sa->sa_len, M_SONAME, mflags);
3468 	if (sa2)
3469 		bcopy(sa, sa2, sa->sa_len);
3470 	return sa2;
3471 }
3472 
3473 /*
3474  * Register per-socket buffer upcalls.
3475  */
3476 void
3477 soupcall_set(struct socket *so, int which,
3478     int (*func)(struct socket *, void *, int), void *arg)
3479 {
3480 	struct sockbuf *sb;
3481 
3482 	switch (which) {
3483 	case SO_RCV:
3484 		sb = &so->so_rcv;
3485 		break;
3486 	case SO_SND:
3487 		sb = &so->so_snd;
3488 		break;
3489 	default:
3490 		panic("soupcall_set: bad which");
3491 	}
3492 	SOCKBUF_LOCK_ASSERT(sb);
3493 #if 0
3494 	/* XXX: accf_http actually wants to do this on purpose. */
3495 	KASSERT(sb->sb_upcall == NULL, ("soupcall_set: overwriting upcall"));
3496 #endif
3497 	sb->sb_upcall = func;
3498 	sb->sb_upcallarg = arg;
3499 	sb->sb_flags |= SB_UPCALL;
3500 }
3501 
3502 void
3503 soupcall_clear(struct socket *so, int which)
3504 {
3505 	struct sockbuf *sb;
3506 
3507 	switch (which) {
3508 	case SO_RCV:
3509 		sb = &so->so_rcv;
3510 		break;
3511 	case SO_SND:
3512 		sb = &so->so_snd;
3513 		break;
3514 	default:
3515 		panic("soupcall_clear: bad which");
3516 	}
3517 	SOCKBUF_LOCK_ASSERT(sb);
3518 	KASSERT(sb->sb_upcall != NULL, ("soupcall_clear: no upcall to clear"));
3519 	sb->sb_upcall = NULL;
3520 	sb->sb_upcallarg = NULL;
3521 	sb->sb_flags &= ~SB_UPCALL;
3522 }
3523 
3524 /*
3525  * Create an external-format (``xsocket'') structure using the information in
3526  * the kernel-format socket structure pointed to by so.  This is done to
3527  * reduce the spew of irrelevant information over this interface, to isolate
3528  * user code from changes in the kernel structure, and potentially to provide
3529  * information-hiding if we decide that some of this information should be
3530  * hidden from users.
3531  */
3532 void
3533 sotoxsocket(struct socket *so, struct xsocket *xso)
3534 {
3535 
3536 	xso->xso_len = sizeof *xso;
3537 	xso->xso_so = so;
3538 	xso->so_type = so->so_type;
3539 	xso->so_options = so->so_options;
3540 	xso->so_linger = so->so_linger;
3541 	xso->so_state = so->so_state;
3542 	xso->so_pcb = so->so_pcb;
3543 	xso->xso_protocol = so->so_proto->pr_protocol;
3544 	xso->xso_family = so->so_proto->pr_domain->dom_family;
3545 	xso->so_qlen = so->so_qlen;
3546 	xso->so_incqlen = so->so_incqlen;
3547 	xso->so_qlimit = so->so_qlimit;
3548 	xso->so_timeo = so->so_timeo;
3549 	xso->so_error = so->so_error;
3550 	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
3551 	xso->so_oobmark = so->so_oobmark;
3552 	sbtoxsockbuf(&so->so_snd, &xso->so_snd);
3553 	sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
3554 	xso->so_uid = so->so_cred->cr_uid;
3555 }
3556 
3557 
3558 /*
3559  * Socket accessor functions to provide external consumers with
3560  * a safe interface to socket state
3561  *
3562  */
3563 
3564 void
3565 so_listeners_apply_all(struct socket *so, void (*func)(struct socket *, void *),
3566     void *arg)
3567 {
3568 
3569 	TAILQ_FOREACH(so, &so->so_comp, so_list)
3570 		func(so, arg);
3571 }
3572 
3573 struct sockbuf *
3574 so_sockbuf_rcv(struct socket *so)
3575 {
3576 
3577 	return (&so->so_rcv);
3578 }
3579 
3580 struct sockbuf *
3581 so_sockbuf_snd(struct socket *so)
3582 {
3583 
3584 	return (&so->so_snd);
3585 }
3586 
3587 int
3588 so_state_get(const struct socket *so)
3589 {
3590 
3591 	return (so->so_state);
3592 }
3593 
3594 void
3595 so_state_set(struct socket *so, int val)
3596 {
3597 
3598 	so->so_state = val;
3599 }
3600 
3601 int
3602 so_options_get(const struct socket *so)
3603 {
3604 
3605 	return (so->so_options);
3606 }
3607 
3608 void
3609 so_options_set(struct socket *so, int val)
3610 {
3611 
3612 	so->so_options = val;
3613 }
3614 
3615 int
3616 so_error_get(const struct socket *so)
3617 {
3618 
3619 	return (so->so_error);
3620 }
3621 
3622 void
3623 so_error_set(struct socket *so, int val)
3624 {
3625 
3626 	so->so_error = val;
3627 }
3628 
3629 int
3630 so_linger_get(const struct socket *so)
3631 {
3632 
3633 	return (so->so_linger);
3634 }
3635 
3636 void
3637 so_linger_set(struct socket *so, int val)
3638 {
3639 
3640 	so->so_linger = val;
3641 }
3642 
3643 struct protosw *
3644 so_protosw_get(const struct socket *so)
3645 {
3646 
3647 	return (so->so_proto);
3648 }
3649 
3650 void
3651 so_protosw_set(struct socket *so, struct protosw *val)
3652 {
3653 
3654 	so->so_proto = val;
3655 }
3656 
3657 void
3658 so_sorwakeup(struct socket *so)
3659 {
3660 
3661 	sorwakeup(so);
3662 }
3663 
3664 void
3665 so_sowwakeup(struct socket *so)
3666 {
3667 
3668 	sowwakeup(so);
3669 }
3670 
3671 void
3672 so_sorwakeup_locked(struct socket *so)
3673 {
3674 
3675 	sorwakeup_locked(so);
3676 }
3677 
3678 void
3679 so_sowwakeup_locked(struct socket *so)
3680 {
3681 
3682 	sowwakeup_locked(so);
3683 }
3684 
3685 void
3686 so_lock(struct socket *so)
3687 {
3688 
3689 	SOCK_LOCK(so);
3690 }
3691 
3692 void
3693 so_unlock(struct socket *so)
3694 {
3695 
3696 	SOCK_UNLOCK(so);
3697 }
3698