xref: /freebsd/sys/kern/uipc_socket.c (revision 5dae51da3da0cc94d17bd67b308fad304ebec7e0)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.
4  * Copyright (c) 2004 The FreeBSD Foundation
5  * Copyright (c) 2004-2008 Robert N. M. Watson
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)uipc_socket.c	8.3 (Berkeley) 4/15/94
33  */
34 
35 /*
36  * Comments on the socket life cycle:
37  *
38  * soalloc() sets of socket layer state for a socket, called only by
39  * socreate() and sonewconn().  Socket layer private.
40  *
41  * sodealloc() tears down socket layer state for a socket, called only by
42  * sofree() and sonewconn().  Socket layer private.
43  *
44  * pru_attach() associates protocol layer state with an allocated socket;
45  * called only once, may fail, aborting socket allocation.  This is called
46  * from socreate() and sonewconn().  Socket layer private.
47  *
48  * pru_detach() disassociates protocol layer state from an attached socket,
49  * and will be called exactly once for sockets in which pru_attach() has
50  * been successfully called.  If pru_attach() returned an error,
51  * pru_detach() will not be called.  Socket layer private.
52  *
53  * pru_abort() and pru_close() notify the protocol layer that the last
54  * consumer of a socket is starting to tear down the socket, and that the
55  * protocol should terminate the connection.  Historically, pru_abort() also
56  * detached protocol state from the socket state, but this is no longer the
57  * case.
58  *
59  * socreate() creates a socket and attaches protocol state.  This is a public
60  * interface that may be used by socket layer consumers to create new
61  * sockets.
62  *
63  * sonewconn() creates a socket and attaches protocol state.  This is a
64  * public interface  that may be used by protocols to create new sockets when
65  * a new connection is received and will be available for accept() on a
66  * listen socket.
67  *
68  * soclose() destroys a socket after possibly waiting for it to disconnect.
69  * This is a public interface that socket consumers should use to close and
70  * release a socket when done with it.
71  *
72  * soabort() destroys a socket without waiting for it to disconnect (used
73  * only for incoming connections that are already partially or fully
74  * connected).  This is used internally by the socket layer when clearing
75  * listen socket queues (due to overflow or close on the listen socket), but
76  * is also a public interface protocols may use to abort connections in
77  * their incomplete listen queues should they no longer be required.  Sockets
78  * placed in completed connection listen queues should not be aborted for
79  * reasons described in the comment above the soclose() implementation.  This
80  * is not a general purpose close routine, and except in the specific
81  * circumstances described here, should not be used.
82  *
83  * sofree() will free a socket and its protocol state if all references on
84  * the socket have been released, and is the public interface to attempt to
85  * free a socket when a reference is removed.  This is a socket layer private
86  * interface.
87  *
88  * NOTE: In addition to socreate() and soclose(), which provide a single
89  * socket reference to the consumer to be managed as required, there are two
90  * calls to explicitly manage socket references, soref(), and sorele().
91  * Currently, these are generally required only when transitioning a socket
92  * from a listen queue to a file descriptor, in order to prevent garbage
93  * collection of the socket at an untimely moment.  For a number of reasons,
94  * these interfaces are not preferred, and should be avoided.
95  *
96  * NOTE: With regard to VNETs the general rule is that callers do not set
97  * curvnet. Exceptions to this rule include soabort(), sodisconnect(),
98  * sofree() (and with that sorele(), sotryfree()), as well as sonewconn()
99  * and sorflush(), which are usually called from a pre-set VNET context.
100  * sopoll() currently does not need a VNET context to be set.
101  */
102 
103 #include <sys/cdefs.h>
104 __FBSDID("$FreeBSD$");
105 
106 #include "opt_inet.h"
107 #include "opt_inet6.h"
108 #include "opt_compat.h"
109 
110 #include <sys/param.h>
111 #include <sys/systm.h>
112 #include <sys/fcntl.h>
113 #include <sys/limits.h>
114 #include <sys/lock.h>
115 #include <sys/mac.h>
116 #include <sys/malloc.h>
117 #include <sys/mbuf.h>
118 #include <sys/mutex.h>
119 #include <sys/domain.h>
120 #include <sys/file.h>			/* for struct knote */
121 #include <sys/hhook.h>
122 #include <sys/kernel.h>
123 #include <sys/khelp.h>
124 #include <sys/event.h>
125 #include <sys/eventhandler.h>
126 #include <sys/poll.h>
127 #include <sys/proc.h>
128 #include <sys/protosw.h>
129 #include <sys/socket.h>
130 #include <sys/socketvar.h>
131 #include <sys/resourcevar.h>
132 #include <net/route.h>
133 #include <sys/signalvar.h>
134 #include <sys/stat.h>
135 #include <sys/sx.h>
136 #include <sys/sysctl.h>
137 #include <sys/taskqueue.h>
138 #include <sys/uio.h>
139 #include <sys/jail.h>
140 #include <sys/syslog.h>
141 #include <netinet/in.h>
142 
143 #include <net/vnet.h>
144 
145 #include <security/mac/mac_framework.h>
146 
147 #include <vm/uma.h>
148 
149 #ifdef COMPAT_FREEBSD32
150 #include <sys/mount.h>
151 #include <sys/sysent.h>
152 #include <compat/freebsd32/freebsd32.h>
153 #endif
154 
155 static int	soreceive_rcvoob(struct socket *so, struct uio *uio,
156 		    int flags);
157 
158 static void	filt_sordetach(struct knote *kn);
159 static int	filt_soread(struct knote *kn, long hint);
160 static void	filt_sowdetach(struct knote *kn);
161 static int	filt_sowrite(struct knote *kn, long hint);
162 static int	filt_solisten(struct knote *kn, long hint);
163 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id);
164 fo_kqfilter_t	soo_kqfilter;
165 
166 static struct filterops solisten_filtops = {
167 	.f_isfd = 1,
168 	.f_detach = filt_sordetach,
169 	.f_event = filt_solisten,
170 };
171 static struct filterops soread_filtops = {
172 	.f_isfd = 1,
173 	.f_detach = filt_sordetach,
174 	.f_event = filt_soread,
175 };
176 static struct filterops sowrite_filtops = {
177 	.f_isfd = 1,
178 	.f_detach = filt_sowdetach,
179 	.f_event = filt_sowrite,
180 };
181 
182 so_gen_t	so_gencnt;	/* generation count for sockets */
183 
184 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
185 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
186 
187 #define	VNET_SO_ASSERT(so)						\
188 	VNET_ASSERT(curvnet != NULL,					\
189 	    ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so)));
190 
191 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]);
192 #define	V_socket_hhh		VNET(socket_hhh)
193 
194 /*
195  * Limit on the number of connections in the listen queue waiting
196  * for accept(2).
197  * NB: The original sysctl somaxconn is still available but hidden
198  * to prevent confusion about the actual purpose of this number.
199  */
200 static u_int somaxconn = SOMAXCONN;
201 
202 static int
203 sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
204 {
205 	int error;
206 	int val;
207 
208 	val = somaxconn;
209 	error = sysctl_handle_int(oidp, &val, 0, req);
210 	if (error || !req->newptr )
211 		return (error);
212 
213 	/*
214 	 * The purpose of the UINT_MAX / 3 limit, is so that the formula
215 	 *   3 * so_qlimit / 2
216 	 * below, will not overflow.
217          */
218 
219 	if (val < 1 || val > UINT_MAX / 3)
220 		return (EINVAL);
221 
222 	somaxconn = val;
223 	return (0);
224 }
225 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue, CTLTYPE_UINT | CTLFLAG_RW,
226     0, sizeof(int), sysctl_somaxconn, "I",
227     "Maximum listen socket pending connection accept queue size");
228 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn,
229     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP,
230     0, sizeof(int), sysctl_somaxconn, "I",
231     "Maximum listen socket pending connection accept queue size (compat)");
232 
233 static int numopensockets;
234 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,
235     &numopensockets, 0, "Number of open sockets");
236 
237 /*
238  * accept_mtx locks down per-socket fields relating to accept queues.  See
239  * socketvar.h for an annotation of the protected fields of struct socket.
240  */
241 struct mtx accept_mtx;
242 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF);
243 
244 /*
245  * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
246  * so_gencnt field.
247  */
248 static struct mtx so_global_mtx;
249 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
250 
251 /*
252  * General IPC sysctl name space, used by sockets and a variety of other IPC
253  * types.
254  */
255 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
256 
257 /*
258  * Initialize the socket subsystem and set up the socket
259  * memory allocator.
260  */
261 static uma_zone_t socket_zone;
262 int	maxsockets;
263 
264 static void
265 socket_zone_change(void *tag)
266 {
267 
268 	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
269 }
270 
271 static void
272 socket_hhook_register(int subtype)
273 {
274 
275 	if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype,
276 	    &V_socket_hhh[subtype],
277 	    HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
278 		printf("%s: WARNING: unable to register hook\n", __func__);
279 }
280 
281 static void
282 socket_hhook_deregister(int subtype)
283 {
284 
285 	if (hhook_head_deregister(V_socket_hhh[subtype]) != 0)
286 		printf("%s: WARNING: unable to deregister hook\n", __func__);
287 }
288 
289 static void
290 socket_init(void *tag)
291 {
292 
293 	socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL,
294 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
295 	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
296 	uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached");
297 	EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL,
298 	    EVENTHANDLER_PRI_FIRST);
299 }
300 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL);
301 
302 static void
303 socket_vnet_init(const void *unused __unused)
304 {
305 	int i;
306 
307 	/* We expect a contiguous range */
308 	for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
309 		socket_hhook_register(i);
310 }
311 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
312     socket_vnet_init, NULL);
313 
314 static void
315 socket_vnet_uninit(const void *unused __unused)
316 {
317 	int i;
318 
319 	for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
320 		socket_hhook_deregister(i);
321 }
322 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
323     socket_vnet_uninit, NULL);
324 
325 /*
326  * Initialise maxsockets.  This SYSINIT must be run after
327  * tunable_mbinit().
328  */
329 static void
330 init_maxsockets(void *ignored)
331 {
332 
333 	TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
334 	maxsockets = imax(maxsockets, maxfiles);
335 }
336 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
337 
338 /*
339  * Sysctl to get and set the maximum global sockets limit.  Notify protocols
340  * of the change so that they can update their dependent limits as required.
341  */
342 static int
343 sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
344 {
345 	int error, newmaxsockets;
346 
347 	newmaxsockets = maxsockets;
348 	error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
349 	if (error == 0 && req->newptr) {
350 		if (newmaxsockets > maxsockets &&
351 		    newmaxsockets <= maxfiles) {
352 			maxsockets = newmaxsockets;
353 			EVENTHANDLER_INVOKE(maxsockets_change);
354 		} else
355 			error = EINVAL;
356 	}
357 	return (error);
358 }
359 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, CTLTYPE_INT|CTLFLAG_RW,
360     &maxsockets, 0, sysctl_maxsockets, "IU",
361     "Maximum number of sockets available");
362 
363 /*
364  * Socket operation routines.  These routines are called by the routines in
365  * sys_socket.c or from a system process, and implement the semantics of
366  * socket operations by switching out to the protocol specific routines.
367  */
368 
369 /*
370  * Get a socket structure from our zone, and initialize it.  Note that it
371  * would probably be better to allocate socket and PCB at the same time, but
372  * I'm not convinced that all the protocols can be easily modified to do
373  * this.
374  *
375  * soalloc() returns a socket with a ref count of 0.
376  */
377 static struct socket *
378 soalloc(struct vnet *vnet)
379 {
380 	struct socket *so;
381 
382 	so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
383 	if (so == NULL)
384 		return (NULL);
385 #ifdef MAC
386 	if (mac_socket_init(so, M_NOWAIT) != 0) {
387 		uma_zfree(socket_zone, so);
388 		return (NULL);
389 	}
390 #endif
391 	if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) {
392 		uma_zfree(socket_zone, so);
393 		return (NULL);
394 	}
395 
396 	SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd");
397 	SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv");
398 	sx_init(&so->so_snd.sb_sx, "so_snd_sx");
399 	sx_init(&so->so_rcv.sb_sx, "so_rcv_sx");
400 	TAILQ_INIT(&so->so_snd.sb_aiojobq);
401 	TAILQ_INIT(&so->so_rcv.sb_aiojobq);
402 	TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so);
403 	TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so);
404 #ifdef VIMAGE
405 	VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p",
406 	    __func__, __LINE__, so));
407 	so->so_vnet = vnet;
408 #endif
409 	/* We shouldn't need the so_global_mtx */
410 	if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) {
411 		/* Do we need more comprehensive error returns? */
412 		uma_zfree(socket_zone, so);
413 		return (NULL);
414 	}
415 	mtx_lock(&so_global_mtx);
416 	so->so_gencnt = ++so_gencnt;
417 	++numopensockets;
418 #ifdef VIMAGE
419 	vnet->vnet_sockcnt++;
420 #endif
421 	mtx_unlock(&so_global_mtx);
422 
423 	return (so);
424 }
425 
426 /*
427  * Free the storage associated with a socket at the socket layer, tear down
428  * locks, labels, etc.  All protocol state is assumed already to have been
429  * torn down (and possibly never set up) by the caller.
430  */
431 static void
432 sodealloc(struct socket *so)
433 {
434 
435 	KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
436 	KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
437 
438 	mtx_lock(&so_global_mtx);
439 	so->so_gencnt = ++so_gencnt;
440 	--numopensockets;	/* Could be below, but faster here. */
441 #ifdef VIMAGE
442 	VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p",
443 	    __func__, __LINE__, so));
444 	so->so_vnet->vnet_sockcnt--;
445 #endif
446 	mtx_unlock(&so_global_mtx);
447 	if (so->so_rcv.sb_hiwat)
448 		(void)chgsbsize(so->so_cred->cr_uidinfo,
449 		    &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
450 	if (so->so_snd.sb_hiwat)
451 		(void)chgsbsize(so->so_cred->cr_uidinfo,
452 		    &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
453 	/* remove accept filter if one is present. */
454 	if (so->so_accf != NULL)
455 		do_setopt_accept_filter(so, NULL);
456 #ifdef MAC
457 	mac_socket_destroy(so);
458 #endif
459 	hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE);
460 
461 	crfree(so->so_cred);
462 	khelp_destroy_osd(&so->osd);
463 	sx_destroy(&so->so_snd.sb_sx);
464 	sx_destroy(&so->so_rcv.sb_sx);
465 	SOCKBUF_LOCK_DESTROY(&so->so_snd);
466 	SOCKBUF_LOCK_DESTROY(&so->so_rcv);
467 	uma_zfree(socket_zone, so);
468 }
469 
470 /*
471  * socreate returns a socket with a ref count of 1.  The socket should be
472  * closed with soclose().
473  */
474 int
475 socreate(int dom, struct socket **aso, int type, int proto,
476     struct ucred *cred, struct thread *td)
477 {
478 	struct protosw *prp;
479 	struct socket *so;
480 	int error;
481 
482 	if (proto)
483 		prp = pffindproto(dom, proto, type);
484 	else
485 		prp = pffindtype(dom, type);
486 
487 	if (prp == NULL) {
488 		/* No support for domain. */
489 		if (pffinddomain(dom) == NULL)
490 			return (EAFNOSUPPORT);
491 		/* No support for socket type. */
492 		if (proto == 0 && type != 0)
493 			return (EPROTOTYPE);
494 		return (EPROTONOSUPPORT);
495 	}
496 	if (prp->pr_usrreqs->pru_attach == NULL ||
497 	    prp->pr_usrreqs->pru_attach == pru_attach_notsupp)
498 		return (EPROTONOSUPPORT);
499 
500 	if (prison_check_af(cred, prp->pr_domain->dom_family) != 0)
501 		return (EPROTONOSUPPORT);
502 
503 	if (prp->pr_type != type)
504 		return (EPROTOTYPE);
505 	so = soalloc(CRED_TO_VNET(cred));
506 	if (so == NULL)
507 		return (ENOBUFS);
508 
509 	TAILQ_INIT(&so->so_incomp);
510 	TAILQ_INIT(&so->so_comp);
511 	so->so_type = type;
512 	so->so_cred = crhold(cred);
513 	if ((prp->pr_domain->dom_family == PF_INET) ||
514 	    (prp->pr_domain->dom_family == PF_INET6) ||
515 	    (prp->pr_domain->dom_family == PF_ROUTE))
516 		so->so_fibnum = td->td_proc->p_fibnum;
517 	else
518 		so->so_fibnum = 0;
519 	so->so_proto = prp;
520 #ifdef MAC
521 	mac_socket_create(cred, so);
522 #endif
523 	knlist_init_mtx(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv));
524 	knlist_init_mtx(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd));
525 	so->so_count = 1;
526 	/*
527 	 * Auto-sizing of socket buffers is managed by the protocols and
528 	 * the appropriate flags must be set in the pru_attach function.
529 	 */
530 	CURVNET_SET(so->so_vnet);
531 	error = (*prp->pr_usrreqs->pru_attach)(so, proto, td);
532 	CURVNET_RESTORE();
533 	if (error) {
534 		KASSERT(so->so_count == 1, ("socreate: so_count %d",
535 		    so->so_count));
536 		so->so_count = 0;
537 		sodealloc(so);
538 		return (error);
539 	}
540 	*aso = so;
541 	return (0);
542 }
543 
544 #ifdef REGRESSION
545 static int regression_sonewconn_earlytest = 1;
546 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
547     &regression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
548 #endif
549 
550 /*
551  * When an attempt at a new connection is noted on a socket which accepts
552  * connections, sonewconn is called.  If the connection is possible (subject
553  * to space constraints, etc.) then we allocate a new structure, properly
554  * linked into the data structure of the original socket, and return this.
555  * Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED.
556  *
557  * Note: the ref count on the socket is 0 on return.
558  */
559 struct socket *
560 sonewconn(struct socket *head, int connstatus)
561 {
562 	static struct timeval lastover;
563 	static struct timeval overinterval = { 60, 0 };
564 	static int overcount;
565 
566 	struct socket *so;
567 	int over;
568 
569 	ACCEPT_LOCK();
570 	over = (head->so_qlen > 3 * head->so_qlimit / 2);
571 	ACCEPT_UNLOCK();
572 #ifdef REGRESSION
573 	if (regression_sonewconn_earlytest && over) {
574 #else
575 	if (over) {
576 #endif
577 		overcount++;
578 
579 		if (ratecheck(&lastover, &overinterval)) {
580 			log(LOG_DEBUG, "%s: pcb %p: Listen queue overflow: "
581 			    "%i already in queue awaiting acceptance "
582 			    "(%d occurrences)\n",
583 			    __func__, head->so_pcb, head->so_qlen, overcount);
584 
585 			overcount = 0;
586 		}
587 
588 		return (NULL);
589 	}
590 	VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p",
591 	    __func__, __LINE__, head));
592 	so = soalloc(head->so_vnet);
593 	if (so == NULL) {
594 		log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
595 		    "limit reached or out of memory\n",
596 		    __func__, head->so_pcb);
597 		return (NULL);
598 	}
599 	if ((head->so_options & SO_ACCEPTFILTER) != 0)
600 		connstatus = 0;
601 	so->so_head = head;
602 	so->so_type = head->so_type;
603 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
604 	so->so_linger = head->so_linger;
605 	so->so_state = head->so_state | SS_NOFDREF;
606 	so->so_fibnum = head->so_fibnum;
607 	so->so_proto = head->so_proto;
608 	so->so_cred = crhold(head->so_cred);
609 #ifdef MAC
610 	mac_socket_newconn(head, so);
611 #endif
612 	knlist_init_mtx(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv));
613 	knlist_init_mtx(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd));
614 	VNET_SO_ASSERT(head);
615 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
616 		sodealloc(so);
617 		log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
618 		    __func__, head->so_pcb);
619 		return (NULL);
620 	}
621 	if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
622 		sodealloc(so);
623 		log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n",
624 		    __func__, head->so_pcb);
625 		return (NULL);
626 	}
627 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
628 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
629 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
630 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
631 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
632 	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
633 	so->so_state |= connstatus;
634 	ACCEPT_LOCK();
635 	/*
636 	 * The accept socket may be tearing down but we just
637 	 * won a race on the ACCEPT_LOCK.
638 	 * However, if sctp_peeloff() is called on a 1-to-many
639 	 * style socket, the SO_ACCEPTCONN doesn't need to be set.
640 	 */
641 	if (!(head->so_options & SO_ACCEPTCONN) &&
642 	    ((head->so_proto->pr_protocol != IPPROTO_SCTP) ||
643 	     (head->so_type != SOCK_SEQPACKET))) {
644 		SOCK_LOCK(so);
645 		so->so_head = NULL;
646 		sofree(so);		/* NB: returns ACCEPT_UNLOCK'ed. */
647 		return (NULL);
648 	}
649 	if (connstatus) {
650 		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
651 		so->so_qstate |= SQ_COMP;
652 		head->so_qlen++;
653 	} else {
654 		/*
655 		 * Keep removing sockets from the head until there's room for
656 		 * us to insert on the tail.  In pre-locking revisions, this
657 		 * was a simple if(), but as we could be racing with other
658 		 * threads and soabort() requires dropping locks, we must
659 		 * loop waiting for the condition to be true.
660 		 */
661 		while (head->so_incqlen > head->so_qlimit) {
662 			struct socket *sp;
663 			sp = TAILQ_FIRST(&head->so_incomp);
664 			TAILQ_REMOVE(&head->so_incomp, sp, so_list);
665 			head->so_incqlen--;
666 			sp->so_qstate &= ~SQ_INCOMP;
667 			sp->so_head = NULL;
668 			ACCEPT_UNLOCK();
669 			soabort(sp);
670 			ACCEPT_LOCK();
671 		}
672 		TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
673 		so->so_qstate |= SQ_INCOMP;
674 		head->so_incqlen++;
675 	}
676 	ACCEPT_UNLOCK();
677 	if (connstatus) {
678 		sorwakeup(head);
679 		wakeup_one(&head->so_timeo);
680 	}
681 	return (so);
682 }
683 
684 int
685 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
686 {
687 	int error;
688 
689 	CURVNET_SET(so->so_vnet);
690 	error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td);
691 	CURVNET_RESTORE();
692 	return (error);
693 }
694 
695 int
696 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
697 {
698 	int error;
699 
700 	CURVNET_SET(so->so_vnet);
701 	error = (*so->so_proto->pr_usrreqs->pru_bindat)(fd, so, nam, td);
702 	CURVNET_RESTORE();
703 	return (error);
704 }
705 
706 /*
707  * solisten() transitions a socket from a non-listening state to a listening
708  * state, but can also be used to update the listen queue depth on an
709  * existing listen socket.  The protocol will call back into the sockets
710  * layer using solisten_proto_check() and solisten_proto() to check and set
711  * socket-layer listen state.  Call backs are used so that the protocol can
712  * acquire both protocol and socket layer locks in whatever order is required
713  * by the protocol.
714  *
715  * Protocol implementors are advised to hold the socket lock across the
716  * socket-layer test and set to avoid races at the socket layer.
717  */
718 int
719 solisten(struct socket *so, int backlog, struct thread *td)
720 {
721 	int error;
722 
723 	CURVNET_SET(so->so_vnet);
724 	error = (*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td);
725 	CURVNET_RESTORE();
726 	return (error);
727 }
728 
729 int
730 solisten_proto_check(struct socket *so)
731 {
732 
733 	SOCK_LOCK_ASSERT(so);
734 
735 	if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
736 	    SS_ISDISCONNECTING))
737 		return (EINVAL);
738 	return (0);
739 }
740 
741 void
742 solisten_proto(struct socket *so, int backlog)
743 {
744 
745 	SOCK_LOCK_ASSERT(so);
746 
747 	if (backlog < 0 || backlog > somaxconn)
748 		backlog = somaxconn;
749 	so->so_qlimit = backlog;
750 	so->so_options |= SO_ACCEPTCONN;
751 }
752 
753 /*
754  * Evaluate the reference count and named references on a socket; if no
755  * references remain, free it.  This should be called whenever a reference is
756  * released, such as in sorele(), but also when named reference flags are
757  * cleared in socket or protocol code.
758  *
759  * sofree() will free the socket if:
760  *
761  * - There are no outstanding file descriptor references or related consumers
762  *   (so_count == 0).
763  *
764  * - The socket has been closed by user space, if ever open (SS_NOFDREF).
765  *
766  * - The protocol does not have an outstanding strong reference on the socket
767  *   (SS_PROTOREF).
768  *
769  * - The socket is not in a completed connection queue, so a process has been
770  *   notified that it is present.  If it is removed, the user process may
771  *   block in accept() despite select() saying the socket was ready.
772  */
773 void
774 sofree(struct socket *so)
775 {
776 	struct protosw *pr = so->so_proto;
777 	struct socket *head;
778 
779 	ACCEPT_LOCK_ASSERT();
780 	SOCK_LOCK_ASSERT(so);
781 
782 	if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 ||
783 	    (so->so_state & SS_PROTOREF) || (so->so_qstate & SQ_COMP)) {
784 		SOCK_UNLOCK(so);
785 		ACCEPT_UNLOCK();
786 		return;
787 	}
788 
789 	head = so->so_head;
790 	if (head != NULL) {
791 		KASSERT((so->so_qstate & SQ_COMP) != 0 ||
792 		    (so->so_qstate & SQ_INCOMP) != 0,
793 		    ("sofree: so_head != NULL, but neither SQ_COMP nor "
794 		    "SQ_INCOMP"));
795 		KASSERT((so->so_qstate & SQ_COMP) == 0 ||
796 		    (so->so_qstate & SQ_INCOMP) == 0,
797 		    ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP"));
798 		TAILQ_REMOVE(&head->so_incomp, so, so_list);
799 		head->so_incqlen--;
800 		so->so_qstate &= ~SQ_INCOMP;
801 		so->so_head = NULL;
802 	}
803 	KASSERT((so->so_qstate & SQ_COMP) == 0 &&
804 	    (so->so_qstate & SQ_INCOMP) == 0,
805 	    ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)",
806 	    so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP));
807 	if (so->so_options & SO_ACCEPTCONN) {
808 		KASSERT((TAILQ_EMPTY(&so->so_comp)),
809 		    ("sofree: so_comp populated"));
810 		KASSERT((TAILQ_EMPTY(&so->so_incomp)),
811 		    ("sofree: so_incomp populated"));
812 	}
813 	SOCK_UNLOCK(so);
814 	ACCEPT_UNLOCK();
815 
816 	VNET_SO_ASSERT(so);
817 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
818 		(*pr->pr_domain->dom_dispose)(so);
819 	if (pr->pr_usrreqs->pru_detach != NULL)
820 		(*pr->pr_usrreqs->pru_detach)(so);
821 
822 	/*
823 	 * From this point on, we assume that no other references to this
824 	 * socket exist anywhere else in the stack.  Therefore, no locks need
825 	 * to be acquired or held.
826 	 *
827 	 * We used to do a lot of socket buffer and socket locking here, as
828 	 * well as invoke sorflush() and perform wakeups.  The direct call to
829 	 * dom_dispose() and sbrelease_internal() are an inlining of what was
830 	 * necessary from sorflush().
831 	 *
832 	 * Notice that the socket buffer and kqueue state are torn down
833 	 * before calling pru_detach.  This means that protocols shold not
834 	 * assume they can perform socket wakeups, etc, in their detach code.
835 	 */
836 	sbdestroy(&so->so_snd, so);
837 	sbdestroy(&so->so_rcv, so);
838 	seldrain(&so->so_snd.sb_sel);
839 	seldrain(&so->so_rcv.sb_sel);
840 	knlist_destroy(&so->so_rcv.sb_sel.si_note);
841 	knlist_destroy(&so->so_snd.sb_sel.si_note);
842 	sodealloc(so);
843 }
844 
845 /*
846  * Close a socket on last file table reference removal.  Initiate disconnect
847  * if connected.  Free socket when disconnect complete.
848  *
849  * This function will sorele() the socket.  Note that soclose() may be called
850  * prior to the ref count reaching zero.  The actual socket structure will
851  * not be freed until the ref count reaches zero.
852  */
853 int
854 soclose(struct socket *so)
855 {
856 	int error = 0;
857 
858 	KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter"));
859 
860 	CURVNET_SET(so->so_vnet);
861 	funsetown(&so->so_sigio);
862 	if (so->so_state & SS_ISCONNECTED) {
863 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
864 			error = sodisconnect(so);
865 			if (error) {
866 				if (error == ENOTCONN)
867 					error = 0;
868 				goto drop;
869 			}
870 		}
871 		if (so->so_options & SO_LINGER) {
872 			if ((so->so_state & SS_ISDISCONNECTING) &&
873 			    (so->so_state & SS_NBIO))
874 				goto drop;
875 			while (so->so_state & SS_ISCONNECTED) {
876 				error = tsleep(&so->so_timeo,
877 				    PSOCK | PCATCH, "soclos",
878 				    so->so_linger * hz);
879 				if (error)
880 					break;
881 			}
882 		}
883 	}
884 
885 drop:
886 	if (so->so_proto->pr_usrreqs->pru_close != NULL)
887 		(*so->so_proto->pr_usrreqs->pru_close)(so);
888 	ACCEPT_LOCK();
889 	if (so->so_options & SO_ACCEPTCONN) {
890 		struct socket *sp;
891 		/*
892 		 * Prevent new additions to the accept queues due
893 		 * to ACCEPT_LOCK races while we are draining them.
894 		 */
895 		so->so_options &= ~SO_ACCEPTCONN;
896 		while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) {
897 			TAILQ_REMOVE(&so->so_incomp, sp, so_list);
898 			so->so_incqlen--;
899 			sp->so_qstate &= ~SQ_INCOMP;
900 			sp->so_head = NULL;
901 			ACCEPT_UNLOCK();
902 			soabort(sp);
903 			ACCEPT_LOCK();
904 		}
905 		while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) {
906 			TAILQ_REMOVE(&so->so_comp, sp, so_list);
907 			so->so_qlen--;
908 			sp->so_qstate &= ~SQ_COMP;
909 			sp->so_head = NULL;
910 			ACCEPT_UNLOCK();
911 			soabort(sp);
912 			ACCEPT_LOCK();
913 		}
914 		KASSERT((TAILQ_EMPTY(&so->so_comp)),
915 		    ("%s: so_comp populated", __func__));
916 		KASSERT((TAILQ_EMPTY(&so->so_incomp)),
917 		    ("%s: so_incomp populated", __func__));
918 	}
919 	SOCK_LOCK(so);
920 	KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF"));
921 	so->so_state |= SS_NOFDREF;
922 	sorele(so);			/* NB: Returns with ACCEPT_UNLOCK(). */
923 	CURVNET_RESTORE();
924 	return (error);
925 }
926 
927 /*
928  * soabort() is used to abruptly tear down a connection, such as when a
929  * resource limit is reached (listen queue depth exceeded), or if a listen
930  * socket is closed while there are sockets waiting to be accepted.
931  *
932  * This interface is tricky, because it is called on an unreferenced socket,
933  * and must be called only by a thread that has actually removed the socket
934  * from the listen queue it was on, or races with other threads are risked.
935  *
936  * This interface will call into the protocol code, so must not be called
937  * with any socket locks held.  Protocols do call it while holding their own
938  * recursible protocol mutexes, but this is something that should be subject
939  * to review in the future.
940  */
941 void
942 soabort(struct socket *so)
943 {
944 
945 	/*
946 	 * In as much as is possible, assert that no references to this
947 	 * socket are held.  This is not quite the same as asserting that the
948 	 * current thread is responsible for arranging for no references, but
949 	 * is as close as we can get for now.
950 	 */
951 	KASSERT(so->so_count == 0, ("soabort: so_count"));
952 	KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF"));
953 	KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF"));
954 	KASSERT((so->so_state & SQ_COMP) == 0, ("soabort: SQ_COMP"));
955 	KASSERT((so->so_state & SQ_INCOMP) == 0, ("soabort: SQ_INCOMP"));
956 	VNET_SO_ASSERT(so);
957 
958 	if (so->so_proto->pr_usrreqs->pru_abort != NULL)
959 		(*so->so_proto->pr_usrreqs->pru_abort)(so);
960 	ACCEPT_LOCK();
961 	SOCK_LOCK(so);
962 	sofree(so);
963 }
964 
965 int
966 soaccept(struct socket *so, struct sockaddr **nam)
967 {
968 	int error;
969 
970 	SOCK_LOCK(so);
971 	KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF"));
972 	so->so_state &= ~SS_NOFDREF;
973 	SOCK_UNLOCK(so);
974 
975 	CURVNET_SET(so->so_vnet);
976 	error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam);
977 	CURVNET_RESTORE();
978 	return (error);
979 }
980 
981 int
982 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
983 {
984 
985 	return (soconnectat(AT_FDCWD, so, nam, td));
986 }
987 
988 int
989 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
990 {
991 	int error;
992 
993 	if (so->so_options & SO_ACCEPTCONN)
994 		return (EOPNOTSUPP);
995 
996 	CURVNET_SET(so->so_vnet);
997 	/*
998 	 * If protocol is connection-based, can only connect once.
999 	 * Otherwise, if connected, try to disconnect first.  This allows
1000 	 * user to disconnect by connecting to, e.g., a null address.
1001 	 */
1002 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
1003 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
1004 	    (error = sodisconnect(so)))) {
1005 		error = EISCONN;
1006 	} else {
1007 		/*
1008 		 * Prevent accumulated error from previous connection from
1009 		 * biting us.
1010 		 */
1011 		so->so_error = 0;
1012 		if (fd == AT_FDCWD) {
1013 			error = (*so->so_proto->pr_usrreqs->pru_connect)(so,
1014 			    nam, td);
1015 		} else {
1016 			error = (*so->so_proto->pr_usrreqs->pru_connectat)(fd,
1017 			    so, nam, td);
1018 		}
1019 	}
1020 	CURVNET_RESTORE();
1021 
1022 	return (error);
1023 }
1024 
1025 int
1026 soconnect2(struct socket *so1, struct socket *so2)
1027 {
1028 	int error;
1029 
1030 	CURVNET_SET(so1->so_vnet);
1031 	error = (*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2);
1032 	CURVNET_RESTORE();
1033 	return (error);
1034 }
1035 
1036 int
1037 sodisconnect(struct socket *so)
1038 {
1039 	int error;
1040 
1041 	if ((so->so_state & SS_ISCONNECTED) == 0)
1042 		return (ENOTCONN);
1043 	if (so->so_state & SS_ISDISCONNECTING)
1044 		return (EALREADY);
1045 	VNET_SO_ASSERT(so);
1046 	error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so);
1047 	return (error);
1048 }
1049 
1050 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT)
1051 
1052 int
1053 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
1054     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1055 {
1056 	long space;
1057 	ssize_t resid;
1058 	int clen = 0, error, dontroute;
1059 
1060 	KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM"));
1061 	KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
1062 	    ("sosend_dgram: !PR_ATOMIC"));
1063 
1064 	if (uio != NULL)
1065 		resid = uio->uio_resid;
1066 	else
1067 		resid = top->m_pkthdr.len;
1068 	/*
1069 	 * In theory resid should be unsigned.  However, space must be
1070 	 * signed, as it might be less than 0 if we over-committed, and we
1071 	 * must use a signed comparison of space and resid.  On the other
1072 	 * hand, a negative resid causes us to loop sending 0-length
1073 	 * segments to the protocol.
1074 	 */
1075 	if (resid < 0) {
1076 		error = EINVAL;
1077 		goto out;
1078 	}
1079 
1080 	dontroute =
1081 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
1082 	if (td != NULL)
1083 		td->td_ru.ru_msgsnd++;
1084 	if (control != NULL)
1085 		clen = control->m_len;
1086 
1087 	SOCKBUF_LOCK(&so->so_snd);
1088 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1089 		SOCKBUF_UNLOCK(&so->so_snd);
1090 		error = EPIPE;
1091 		goto out;
1092 	}
1093 	if (so->so_error) {
1094 		error = so->so_error;
1095 		so->so_error = 0;
1096 		SOCKBUF_UNLOCK(&so->so_snd);
1097 		goto out;
1098 	}
1099 	if ((so->so_state & SS_ISCONNECTED) == 0) {
1100 		/*
1101 		 * `sendto' and `sendmsg' is allowed on a connection-based
1102 		 * socket if it supports implied connect.  Return ENOTCONN if
1103 		 * not connected and no address is supplied.
1104 		 */
1105 		if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1106 		    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1107 			if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1108 			    !(resid == 0 && clen != 0)) {
1109 				SOCKBUF_UNLOCK(&so->so_snd);
1110 				error = ENOTCONN;
1111 				goto out;
1112 			}
1113 		} else if (addr == NULL) {
1114 			if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1115 				error = ENOTCONN;
1116 			else
1117 				error = EDESTADDRREQ;
1118 			SOCKBUF_UNLOCK(&so->so_snd);
1119 			goto out;
1120 		}
1121 	}
1122 
1123 	/*
1124 	 * Do we need MSG_OOB support in SOCK_DGRAM?  Signs here may be a
1125 	 * problem and need fixing.
1126 	 */
1127 	space = sbspace(&so->so_snd);
1128 	if (flags & MSG_OOB)
1129 		space += 1024;
1130 	space -= clen;
1131 	SOCKBUF_UNLOCK(&so->so_snd);
1132 	if (resid > space) {
1133 		error = EMSGSIZE;
1134 		goto out;
1135 	}
1136 	if (uio == NULL) {
1137 		resid = 0;
1138 		if (flags & MSG_EOR)
1139 			top->m_flags |= M_EOR;
1140 	} else {
1141 		/*
1142 		 * Copy the data from userland into a mbuf chain.
1143 		 * If no data is to be copied in, a single empty mbuf
1144 		 * is returned.
1145 		 */
1146 		top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
1147 		    (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
1148 		if (top == NULL) {
1149 			error = EFAULT;	/* only possible error */
1150 			goto out;
1151 		}
1152 		space -= resid - uio->uio_resid;
1153 		resid = uio->uio_resid;
1154 	}
1155 	KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
1156 	/*
1157 	 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
1158 	 * than with.
1159 	 */
1160 	if (dontroute) {
1161 		SOCK_LOCK(so);
1162 		so->so_options |= SO_DONTROUTE;
1163 		SOCK_UNLOCK(so);
1164 	}
1165 	/*
1166 	 * XXX all the SBS_CANTSENDMORE checks previously done could be out
1167 	 * of date.  We could have received a reset packet in an interrupt or
1168 	 * maybe we slept while doing page faults in uiomove() etc.  We could
1169 	 * probably recheck again inside the locking protection here, but
1170 	 * there are probably other places that this also happens.  We must
1171 	 * rethink this.
1172 	 */
1173 	VNET_SO_ASSERT(so);
1174 	error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1175 	    (flags & MSG_OOB) ? PRUS_OOB :
1176 	/*
1177 	 * If the user set MSG_EOF, the protocol understands this flag and
1178 	 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
1179 	 */
1180 	    ((flags & MSG_EOF) &&
1181 	     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1182 	     (resid <= 0)) ?
1183 		PRUS_EOF :
1184 		/* If there is more to send set PRUS_MORETOCOME */
1185 		(resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1186 		top, addr, control, td);
1187 	if (dontroute) {
1188 		SOCK_LOCK(so);
1189 		so->so_options &= ~SO_DONTROUTE;
1190 		SOCK_UNLOCK(so);
1191 	}
1192 	clen = 0;
1193 	control = NULL;
1194 	top = NULL;
1195 out:
1196 	if (top != NULL)
1197 		m_freem(top);
1198 	if (control != NULL)
1199 		m_freem(control);
1200 	return (error);
1201 }
1202 
1203 /*
1204  * Send on a socket.  If send must go all at once and message is larger than
1205  * send buffering, then hard error.  Lock against other senders.  If must go
1206  * all at once and not enough room now, then inform user that this would
1207  * block and do nothing.  Otherwise, if nonblocking, send as much as
1208  * possible.  The data to be sent is described by "uio" if nonzero, otherwise
1209  * by the mbuf chain "top" (which must be null if uio is not).  Data provided
1210  * in mbuf chain must be small enough to send all at once.
1211  *
1212  * Returns nonzero on error, timeout or signal; callers must check for short
1213  * counts if EINTR/ERESTART are returned.  Data and control buffers are freed
1214  * on return.
1215  */
1216 int
1217 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
1218     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1219 {
1220 	long space;
1221 	ssize_t resid;
1222 	int clen = 0, error, dontroute;
1223 	int atomic = sosendallatonce(so) || top;
1224 
1225 	if (uio != NULL)
1226 		resid = uio->uio_resid;
1227 	else
1228 		resid = top->m_pkthdr.len;
1229 	/*
1230 	 * In theory resid should be unsigned.  However, space must be
1231 	 * signed, as it might be less than 0 if we over-committed, and we
1232 	 * must use a signed comparison of space and resid.  On the other
1233 	 * hand, a negative resid causes us to loop sending 0-length
1234 	 * segments to the protocol.
1235 	 *
1236 	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
1237 	 * type sockets since that's an error.
1238 	 */
1239 	if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
1240 		error = EINVAL;
1241 		goto out;
1242 	}
1243 
1244 	dontroute =
1245 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
1246 	    (so->so_proto->pr_flags & PR_ATOMIC);
1247 	if (td != NULL)
1248 		td->td_ru.ru_msgsnd++;
1249 	if (control != NULL)
1250 		clen = control->m_len;
1251 
1252 	error = sblock(&so->so_snd, SBLOCKWAIT(flags));
1253 	if (error)
1254 		goto out;
1255 
1256 restart:
1257 	do {
1258 		SOCKBUF_LOCK(&so->so_snd);
1259 		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1260 			SOCKBUF_UNLOCK(&so->so_snd);
1261 			error = EPIPE;
1262 			goto release;
1263 		}
1264 		if (so->so_error) {
1265 			error = so->so_error;
1266 			so->so_error = 0;
1267 			SOCKBUF_UNLOCK(&so->so_snd);
1268 			goto release;
1269 		}
1270 		if ((so->so_state & SS_ISCONNECTED) == 0) {
1271 			/*
1272 			 * `sendto' and `sendmsg' is allowed on a connection-
1273 			 * based socket if it supports implied connect.
1274 			 * Return ENOTCONN if not connected and no address is
1275 			 * supplied.
1276 			 */
1277 			if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1278 			    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1279 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1280 				    !(resid == 0 && clen != 0)) {
1281 					SOCKBUF_UNLOCK(&so->so_snd);
1282 					error = ENOTCONN;
1283 					goto release;
1284 				}
1285 			} else if (addr == NULL) {
1286 				SOCKBUF_UNLOCK(&so->so_snd);
1287 				if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1288 					error = ENOTCONN;
1289 				else
1290 					error = EDESTADDRREQ;
1291 				goto release;
1292 			}
1293 		}
1294 		space = sbspace(&so->so_snd);
1295 		if (flags & MSG_OOB)
1296 			space += 1024;
1297 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
1298 		    clen > so->so_snd.sb_hiwat) {
1299 			SOCKBUF_UNLOCK(&so->so_snd);
1300 			error = EMSGSIZE;
1301 			goto release;
1302 		}
1303 		if (space < resid + clen &&
1304 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
1305 			if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
1306 				SOCKBUF_UNLOCK(&so->so_snd);
1307 				error = EWOULDBLOCK;
1308 				goto release;
1309 			}
1310 			error = sbwait(&so->so_snd);
1311 			SOCKBUF_UNLOCK(&so->so_snd);
1312 			if (error)
1313 				goto release;
1314 			goto restart;
1315 		}
1316 		SOCKBUF_UNLOCK(&so->so_snd);
1317 		space -= clen;
1318 		do {
1319 			if (uio == NULL) {
1320 				resid = 0;
1321 				if (flags & MSG_EOR)
1322 					top->m_flags |= M_EOR;
1323 			} else {
1324 				/*
1325 				 * Copy the data from userland into a mbuf
1326 				 * chain.  If resid is 0, which can happen
1327 				 * only if we have control to send, then
1328 				 * a single empty mbuf is returned.  This
1329 				 * is a workaround to prevent protocol send
1330 				 * methods to panic.
1331 				 */
1332 				top = m_uiotombuf(uio, M_WAITOK, space,
1333 				    (atomic ? max_hdr : 0),
1334 				    (atomic ? M_PKTHDR : 0) |
1335 				    ((flags & MSG_EOR) ? M_EOR : 0));
1336 				if (top == NULL) {
1337 					error = EFAULT; /* only possible error */
1338 					goto release;
1339 				}
1340 				space -= resid - uio->uio_resid;
1341 				resid = uio->uio_resid;
1342 			}
1343 			if (dontroute) {
1344 				SOCK_LOCK(so);
1345 				so->so_options |= SO_DONTROUTE;
1346 				SOCK_UNLOCK(so);
1347 			}
1348 			/*
1349 			 * XXX all the SBS_CANTSENDMORE checks previously
1350 			 * done could be out of date.  We could have received
1351 			 * a reset packet in an interrupt or maybe we slept
1352 			 * while doing page faults in uiomove() etc.  We
1353 			 * could probably recheck again inside the locking
1354 			 * protection here, but there are probably other
1355 			 * places that this also happens.  We must rethink
1356 			 * this.
1357 			 */
1358 			VNET_SO_ASSERT(so);
1359 			error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1360 			    (flags & MSG_OOB) ? PRUS_OOB :
1361 			/*
1362 			 * If the user set MSG_EOF, the protocol understands
1363 			 * this flag and nothing left to send then use
1364 			 * PRU_SEND_EOF instead of PRU_SEND.
1365 			 */
1366 			    ((flags & MSG_EOF) &&
1367 			     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1368 			     (resid <= 0)) ?
1369 				PRUS_EOF :
1370 			/* If there is more to send set PRUS_MORETOCOME. */
1371 			    (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1372 			    top, addr, control, td);
1373 			if (dontroute) {
1374 				SOCK_LOCK(so);
1375 				so->so_options &= ~SO_DONTROUTE;
1376 				SOCK_UNLOCK(so);
1377 			}
1378 			clen = 0;
1379 			control = NULL;
1380 			top = NULL;
1381 			if (error)
1382 				goto release;
1383 		} while (resid && space > 0);
1384 	} while (resid);
1385 
1386 release:
1387 	sbunlock(&so->so_snd);
1388 out:
1389 	if (top != NULL)
1390 		m_freem(top);
1391 	if (control != NULL)
1392 		m_freem(control);
1393 	return (error);
1394 }
1395 
1396 int
1397 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
1398     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1399 {
1400 	int error;
1401 
1402 	CURVNET_SET(so->so_vnet);
1403 	error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, top,
1404 	    control, flags, td);
1405 	CURVNET_RESTORE();
1406 	return (error);
1407 }
1408 
1409 /*
1410  * The part of soreceive() that implements reading non-inline out-of-band
1411  * data from a socket.  For more complete comments, see soreceive(), from
1412  * which this code originated.
1413  *
1414  * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
1415  * unable to return an mbuf chain to the caller.
1416  */
1417 static int
1418 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
1419 {
1420 	struct protosw *pr = so->so_proto;
1421 	struct mbuf *m;
1422 	int error;
1423 
1424 	KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
1425 	VNET_SO_ASSERT(so);
1426 
1427 	m = m_get(M_WAITOK, MT_DATA);
1428 	error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK);
1429 	if (error)
1430 		goto bad;
1431 	do {
1432 		error = uiomove(mtod(m, void *),
1433 		    (int) min(uio->uio_resid, m->m_len), uio);
1434 		m = m_free(m);
1435 	} while (uio->uio_resid && error == 0 && m);
1436 bad:
1437 	if (m != NULL)
1438 		m_freem(m);
1439 	return (error);
1440 }
1441 
1442 /*
1443  * Following replacement or removal of the first mbuf on the first mbuf chain
1444  * of a socket buffer, push necessary state changes back into the socket
1445  * buffer so that other consumers see the values consistently.  'nextrecord'
1446  * is the callers locally stored value of the original value of
1447  * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
1448  * NOTE: 'nextrecord' may be NULL.
1449  */
1450 static __inline void
1451 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
1452 {
1453 
1454 	SOCKBUF_LOCK_ASSERT(sb);
1455 	/*
1456 	 * First, update for the new value of nextrecord.  If necessary, make
1457 	 * it the first record.
1458 	 */
1459 	if (sb->sb_mb != NULL)
1460 		sb->sb_mb->m_nextpkt = nextrecord;
1461 	else
1462 		sb->sb_mb = nextrecord;
1463 
1464 	/*
1465 	 * Now update any dependent socket buffer fields to reflect the new
1466 	 * state.  This is an expanded inline of SB_EMPTY_FIXUP(), with the
1467 	 * addition of a second clause that takes care of the case where
1468 	 * sb_mb has been updated, but remains the last record.
1469 	 */
1470 	if (sb->sb_mb == NULL) {
1471 		sb->sb_mbtail = NULL;
1472 		sb->sb_lastrecord = NULL;
1473 	} else if (sb->sb_mb->m_nextpkt == NULL)
1474 		sb->sb_lastrecord = sb->sb_mb;
1475 }
1476 
1477 /*
1478  * Implement receive operations on a socket.  We depend on the way that
1479  * records are added to the sockbuf by sbappend.  In particular, each record
1480  * (mbufs linked through m_next) must begin with an address if the protocol
1481  * so specifies, followed by an optional mbuf or mbufs containing ancillary
1482  * data, and then zero or more mbufs of data.  In order to allow parallelism
1483  * between network receive and copying to user space, as well as avoid
1484  * sleeping with a mutex held, we release the socket buffer mutex during the
1485  * user space copy.  Although the sockbuf is locked, new data may still be
1486  * appended, and thus we must maintain consistency of the sockbuf during that
1487  * time.
1488  *
1489  * The caller may receive the data as a single mbuf chain by supplying an
1490  * mbuf **mp0 for use in returning the chain.  The uio is then used only for
1491  * the count in uio_resid.
1492  */
1493 int
1494 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
1495     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1496 {
1497 	struct mbuf *m, **mp;
1498 	int flags, error, offset;
1499 	ssize_t len;
1500 	struct protosw *pr = so->so_proto;
1501 	struct mbuf *nextrecord;
1502 	int moff, type = 0;
1503 	ssize_t orig_resid = uio->uio_resid;
1504 
1505 	mp = mp0;
1506 	if (psa != NULL)
1507 		*psa = NULL;
1508 	if (controlp != NULL)
1509 		*controlp = NULL;
1510 	if (flagsp != NULL)
1511 		flags = *flagsp &~ MSG_EOR;
1512 	else
1513 		flags = 0;
1514 	if (flags & MSG_OOB)
1515 		return (soreceive_rcvoob(so, uio, flags));
1516 	if (mp != NULL)
1517 		*mp = NULL;
1518 	if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING)
1519 	    && uio->uio_resid) {
1520 		VNET_SO_ASSERT(so);
1521 		(*pr->pr_usrreqs->pru_rcvd)(so, 0);
1522 	}
1523 
1524 	error = sblock(&so->so_rcv, SBLOCKWAIT(flags));
1525 	if (error)
1526 		return (error);
1527 
1528 restart:
1529 	SOCKBUF_LOCK(&so->so_rcv);
1530 	m = so->so_rcv.sb_mb;
1531 	/*
1532 	 * If we have less data than requested, block awaiting more (subject
1533 	 * to any timeout) if:
1534 	 *   1. the current count is less than the low water mark, or
1535 	 *   2. MSG_DONTWAIT is not set
1536 	 */
1537 	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
1538 	    sbavail(&so->so_rcv) < uio->uio_resid) &&
1539 	    sbavail(&so->so_rcv) < so->so_rcv.sb_lowat &&
1540 	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
1541 		KASSERT(m != NULL || !sbavail(&so->so_rcv),
1542 		    ("receive: m == %p sbavail == %u",
1543 		    m, sbavail(&so->so_rcv)));
1544 		if (so->so_error) {
1545 			if (m != NULL)
1546 				goto dontblock;
1547 			error = so->so_error;
1548 			if ((flags & MSG_PEEK) == 0)
1549 				so->so_error = 0;
1550 			SOCKBUF_UNLOCK(&so->so_rcv);
1551 			goto release;
1552 		}
1553 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1554 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1555 			if (m == NULL) {
1556 				SOCKBUF_UNLOCK(&so->so_rcv);
1557 				goto release;
1558 			} else
1559 				goto dontblock;
1560 		}
1561 		for (; m != NULL; m = m->m_next)
1562 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
1563 				m = so->so_rcv.sb_mb;
1564 				goto dontblock;
1565 			}
1566 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1567 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1568 			SOCKBUF_UNLOCK(&so->so_rcv);
1569 			error = ENOTCONN;
1570 			goto release;
1571 		}
1572 		if (uio->uio_resid == 0) {
1573 			SOCKBUF_UNLOCK(&so->so_rcv);
1574 			goto release;
1575 		}
1576 		if ((so->so_state & SS_NBIO) ||
1577 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1578 			SOCKBUF_UNLOCK(&so->so_rcv);
1579 			error = EWOULDBLOCK;
1580 			goto release;
1581 		}
1582 		SBLASTRECORDCHK(&so->so_rcv);
1583 		SBLASTMBUFCHK(&so->so_rcv);
1584 		error = sbwait(&so->so_rcv);
1585 		SOCKBUF_UNLOCK(&so->so_rcv);
1586 		if (error)
1587 			goto release;
1588 		goto restart;
1589 	}
1590 dontblock:
1591 	/*
1592 	 * From this point onward, we maintain 'nextrecord' as a cache of the
1593 	 * pointer to the next record in the socket buffer.  We must keep the
1594 	 * various socket buffer pointers and local stack versions of the
1595 	 * pointers in sync, pushing out modifications before dropping the
1596 	 * socket buffer mutex, and re-reading them when picking it up.
1597 	 *
1598 	 * Otherwise, we will race with the network stack appending new data
1599 	 * or records onto the socket buffer by using inconsistent/stale
1600 	 * versions of the field, possibly resulting in socket buffer
1601 	 * corruption.
1602 	 *
1603 	 * By holding the high-level sblock(), we prevent simultaneous
1604 	 * readers from pulling off the front of the socket buffer.
1605 	 */
1606 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1607 	if (uio->uio_td)
1608 		uio->uio_td->td_ru.ru_msgrcv++;
1609 	KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
1610 	SBLASTRECORDCHK(&so->so_rcv);
1611 	SBLASTMBUFCHK(&so->so_rcv);
1612 	nextrecord = m->m_nextpkt;
1613 	if (pr->pr_flags & PR_ADDR) {
1614 		KASSERT(m->m_type == MT_SONAME,
1615 		    ("m->m_type == %d", m->m_type));
1616 		orig_resid = 0;
1617 		if (psa != NULL)
1618 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
1619 			    M_NOWAIT);
1620 		if (flags & MSG_PEEK) {
1621 			m = m->m_next;
1622 		} else {
1623 			sbfree(&so->so_rcv, m);
1624 			so->so_rcv.sb_mb = m_free(m);
1625 			m = so->so_rcv.sb_mb;
1626 			sockbuf_pushsync(&so->so_rcv, nextrecord);
1627 		}
1628 	}
1629 
1630 	/*
1631 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
1632 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
1633 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
1634 	 * perform externalization (or freeing if controlp == NULL).
1635 	 */
1636 	if (m != NULL && m->m_type == MT_CONTROL) {
1637 		struct mbuf *cm = NULL, *cmn;
1638 		struct mbuf **cme = &cm;
1639 
1640 		do {
1641 			if (flags & MSG_PEEK) {
1642 				if (controlp != NULL) {
1643 					*controlp = m_copym(m, 0, m->m_len,
1644 					    M_NOWAIT);
1645 					controlp = &(*controlp)->m_next;
1646 				}
1647 				m = m->m_next;
1648 			} else {
1649 				sbfree(&so->so_rcv, m);
1650 				so->so_rcv.sb_mb = m->m_next;
1651 				m->m_next = NULL;
1652 				*cme = m;
1653 				cme = &(*cme)->m_next;
1654 				m = so->so_rcv.sb_mb;
1655 			}
1656 		} while (m != NULL && m->m_type == MT_CONTROL);
1657 		if ((flags & MSG_PEEK) == 0)
1658 			sockbuf_pushsync(&so->so_rcv, nextrecord);
1659 		while (cm != NULL) {
1660 			cmn = cm->m_next;
1661 			cm->m_next = NULL;
1662 			if (pr->pr_domain->dom_externalize != NULL) {
1663 				SOCKBUF_UNLOCK(&so->so_rcv);
1664 				VNET_SO_ASSERT(so);
1665 				error = (*pr->pr_domain->dom_externalize)
1666 				    (cm, controlp, flags);
1667 				SOCKBUF_LOCK(&so->so_rcv);
1668 			} else if (controlp != NULL)
1669 				*controlp = cm;
1670 			else
1671 				m_freem(cm);
1672 			if (controlp != NULL) {
1673 				orig_resid = 0;
1674 				while (*controlp != NULL)
1675 					controlp = &(*controlp)->m_next;
1676 			}
1677 			cm = cmn;
1678 		}
1679 		if (m != NULL)
1680 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1681 		else
1682 			nextrecord = so->so_rcv.sb_mb;
1683 		orig_resid = 0;
1684 	}
1685 	if (m != NULL) {
1686 		if ((flags & MSG_PEEK) == 0) {
1687 			KASSERT(m->m_nextpkt == nextrecord,
1688 			    ("soreceive: post-control, nextrecord !sync"));
1689 			if (nextrecord == NULL) {
1690 				KASSERT(so->so_rcv.sb_mb == m,
1691 				    ("soreceive: post-control, sb_mb!=m"));
1692 				KASSERT(so->so_rcv.sb_lastrecord == m,
1693 				    ("soreceive: post-control, lastrecord!=m"));
1694 			}
1695 		}
1696 		type = m->m_type;
1697 		if (type == MT_OOBDATA)
1698 			flags |= MSG_OOB;
1699 	} else {
1700 		if ((flags & MSG_PEEK) == 0) {
1701 			KASSERT(so->so_rcv.sb_mb == nextrecord,
1702 			    ("soreceive: sb_mb != nextrecord"));
1703 			if (so->so_rcv.sb_mb == NULL) {
1704 				KASSERT(so->so_rcv.sb_lastrecord == NULL,
1705 				    ("soreceive: sb_lastercord != NULL"));
1706 			}
1707 		}
1708 	}
1709 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1710 	SBLASTRECORDCHK(&so->so_rcv);
1711 	SBLASTMBUFCHK(&so->so_rcv);
1712 
1713 	/*
1714 	 * Now continue to read any data mbufs off of the head of the socket
1715 	 * buffer until the read request is satisfied.  Note that 'type' is
1716 	 * used to store the type of any mbuf reads that have happened so far
1717 	 * such that soreceive() can stop reading if the type changes, which
1718 	 * causes soreceive() to return only one of regular data and inline
1719 	 * out-of-band data in a single socket receive operation.
1720 	 */
1721 	moff = 0;
1722 	offset = 0;
1723 	while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0
1724 	    && error == 0) {
1725 		/*
1726 		 * If the type of mbuf has changed since the last mbuf
1727 		 * examined ('type'), end the receive operation.
1728 		 */
1729 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1730 		if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) {
1731 			if (type != m->m_type)
1732 				break;
1733 		} else if (type == MT_OOBDATA)
1734 			break;
1735 		else
1736 		    KASSERT(m->m_type == MT_DATA,
1737 			("m->m_type == %d", m->m_type));
1738 		so->so_rcv.sb_state &= ~SBS_RCVATMARK;
1739 		len = uio->uio_resid;
1740 		if (so->so_oobmark && len > so->so_oobmark - offset)
1741 			len = so->so_oobmark - offset;
1742 		if (len > m->m_len - moff)
1743 			len = m->m_len - moff;
1744 		/*
1745 		 * If mp is set, just pass back the mbufs.  Otherwise copy
1746 		 * them out via the uio, then free.  Sockbuf must be
1747 		 * consistent here (points to current mbuf, it points to next
1748 		 * record) when we drop priority; we must note any additions
1749 		 * to the sockbuf when we block interrupts again.
1750 		 */
1751 		if (mp == NULL) {
1752 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1753 			SBLASTRECORDCHK(&so->so_rcv);
1754 			SBLASTMBUFCHK(&so->so_rcv);
1755 			SOCKBUF_UNLOCK(&so->so_rcv);
1756 			error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1757 			SOCKBUF_LOCK(&so->so_rcv);
1758 			if (error) {
1759 				/*
1760 				 * The MT_SONAME mbuf has already been removed
1761 				 * from the record, so it is necessary to
1762 				 * remove the data mbufs, if any, to preserve
1763 				 * the invariant in the case of PR_ADDR that
1764 				 * requires MT_SONAME mbufs at the head of
1765 				 * each record.
1766 				 */
1767 				if (m && pr->pr_flags & PR_ATOMIC &&
1768 				    ((flags & MSG_PEEK) == 0))
1769 					(void)sbdroprecord_locked(&so->so_rcv);
1770 				SOCKBUF_UNLOCK(&so->so_rcv);
1771 				goto release;
1772 			}
1773 		} else
1774 			uio->uio_resid -= len;
1775 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1776 		if (len == m->m_len - moff) {
1777 			if (m->m_flags & M_EOR)
1778 				flags |= MSG_EOR;
1779 			if (flags & MSG_PEEK) {
1780 				m = m->m_next;
1781 				moff = 0;
1782 			} else {
1783 				nextrecord = m->m_nextpkt;
1784 				sbfree(&so->so_rcv, m);
1785 				if (mp != NULL) {
1786 					m->m_nextpkt = NULL;
1787 					*mp = m;
1788 					mp = &m->m_next;
1789 					so->so_rcv.sb_mb = m = m->m_next;
1790 					*mp = NULL;
1791 				} else {
1792 					so->so_rcv.sb_mb = m_free(m);
1793 					m = so->so_rcv.sb_mb;
1794 				}
1795 				sockbuf_pushsync(&so->so_rcv, nextrecord);
1796 				SBLASTRECORDCHK(&so->so_rcv);
1797 				SBLASTMBUFCHK(&so->so_rcv);
1798 			}
1799 		} else {
1800 			if (flags & MSG_PEEK)
1801 				moff += len;
1802 			else {
1803 				if (mp != NULL) {
1804 					if (flags & MSG_DONTWAIT) {
1805 						*mp = m_copym(m, 0, len,
1806 						    M_NOWAIT);
1807 						if (*mp == NULL) {
1808 							/*
1809 							 * m_copym() couldn't
1810 							 * allocate an mbuf.
1811 							 * Adjust uio_resid back
1812 							 * (it was adjusted
1813 							 * down by len bytes,
1814 							 * which we didn't end
1815 							 * up "copying" over).
1816 							 */
1817 							uio->uio_resid += len;
1818 							break;
1819 						}
1820 					} else {
1821 						SOCKBUF_UNLOCK(&so->so_rcv);
1822 						*mp = m_copym(m, 0, len,
1823 						    M_WAITOK);
1824 						SOCKBUF_LOCK(&so->so_rcv);
1825 					}
1826 				}
1827 				sbcut_locked(&so->so_rcv, len);
1828 			}
1829 		}
1830 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1831 		if (so->so_oobmark) {
1832 			if ((flags & MSG_PEEK) == 0) {
1833 				so->so_oobmark -= len;
1834 				if (so->so_oobmark == 0) {
1835 					so->so_rcv.sb_state |= SBS_RCVATMARK;
1836 					break;
1837 				}
1838 			} else {
1839 				offset += len;
1840 				if (offset == so->so_oobmark)
1841 					break;
1842 			}
1843 		}
1844 		if (flags & MSG_EOR)
1845 			break;
1846 		/*
1847 		 * If the MSG_WAITALL flag is set (for non-atomic socket), we
1848 		 * must not quit until "uio->uio_resid == 0" or an error
1849 		 * termination.  If a signal/timeout occurs, return with a
1850 		 * short count but without error.  Keep sockbuf locked
1851 		 * against other readers.
1852 		 */
1853 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1854 		    !sosendallatonce(so) && nextrecord == NULL) {
1855 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1856 			if (so->so_error ||
1857 			    so->so_rcv.sb_state & SBS_CANTRCVMORE)
1858 				break;
1859 			/*
1860 			 * Notify the protocol that some data has been
1861 			 * drained before blocking.
1862 			 */
1863 			if (pr->pr_flags & PR_WANTRCVD) {
1864 				SOCKBUF_UNLOCK(&so->so_rcv);
1865 				VNET_SO_ASSERT(so);
1866 				(*pr->pr_usrreqs->pru_rcvd)(so, flags);
1867 				SOCKBUF_LOCK(&so->so_rcv);
1868 			}
1869 			SBLASTRECORDCHK(&so->so_rcv);
1870 			SBLASTMBUFCHK(&so->so_rcv);
1871 			/*
1872 			 * We could receive some data while was notifying
1873 			 * the protocol. Skip blocking in this case.
1874 			 */
1875 			if (so->so_rcv.sb_mb == NULL) {
1876 				error = sbwait(&so->so_rcv);
1877 				if (error) {
1878 					SOCKBUF_UNLOCK(&so->so_rcv);
1879 					goto release;
1880 				}
1881 			}
1882 			m = so->so_rcv.sb_mb;
1883 			if (m != NULL)
1884 				nextrecord = m->m_nextpkt;
1885 		}
1886 	}
1887 
1888 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1889 	if (m != NULL && pr->pr_flags & PR_ATOMIC) {
1890 		flags |= MSG_TRUNC;
1891 		if ((flags & MSG_PEEK) == 0)
1892 			(void) sbdroprecord_locked(&so->so_rcv);
1893 	}
1894 	if ((flags & MSG_PEEK) == 0) {
1895 		if (m == NULL) {
1896 			/*
1897 			 * First part is an inline SB_EMPTY_FIXUP().  Second
1898 			 * part makes sure sb_lastrecord is up-to-date if
1899 			 * there is still data in the socket buffer.
1900 			 */
1901 			so->so_rcv.sb_mb = nextrecord;
1902 			if (so->so_rcv.sb_mb == NULL) {
1903 				so->so_rcv.sb_mbtail = NULL;
1904 				so->so_rcv.sb_lastrecord = NULL;
1905 			} else if (nextrecord->m_nextpkt == NULL)
1906 				so->so_rcv.sb_lastrecord = nextrecord;
1907 		}
1908 		SBLASTRECORDCHK(&so->so_rcv);
1909 		SBLASTMBUFCHK(&so->so_rcv);
1910 		/*
1911 		 * If soreceive() is being done from the socket callback,
1912 		 * then don't need to generate ACK to peer to update window,
1913 		 * since ACK will be generated on return to TCP.
1914 		 */
1915 		if (!(flags & MSG_SOCALLBCK) &&
1916 		    (pr->pr_flags & PR_WANTRCVD)) {
1917 			SOCKBUF_UNLOCK(&so->so_rcv);
1918 			VNET_SO_ASSERT(so);
1919 			(*pr->pr_usrreqs->pru_rcvd)(so, flags);
1920 			SOCKBUF_LOCK(&so->so_rcv);
1921 		}
1922 	}
1923 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1924 	if (orig_resid == uio->uio_resid && orig_resid &&
1925 	    (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
1926 		SOCKBUF_UNLOCK(&so->so_rcv);
1927 		goto restart;
1928 	}
1929 	SOCKBUF_UNLOCK(&so->so_rcv);
1930 
1931 	if (flagsp != NULL)
1932 		*flagsp |= flags;
1933 release:
1934 	sbunlock(&so->so_rcv);
1935 	return (error);
1936 }
1937 
1938 /*
1939  * Optimized version of soreceive() for stream (TCP) sockets.
1940  * XXXAO: (MSG_WAITALL | MSG_PEEK) isn't properly handled.
1941  */
1942 int
1943 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio,
1944     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1945 {
1946 	int len = 0, error = 0, flags, oresid;
1947 	struct sockbuf *sb;
1948 	struct mbuf *m, *n = NULL;
1949 
1950 	/* We only do stream sockets. */
1951 	if (so->so_type != SOCK_STREAM)
1952 		return (EINVAL);
1953 	if (psa != NULL)
1954 		*psa = NULL;
1955 	if (controlp != NULL)
1956 		return (EINVAL);
1957 	if (flagsp != NULL)
1958 		flags = *flagsp &~ MSG_EOR;
1959 	else
1960 		flags = 0;
1961 	if (flags & MSG_OOB)
1962 		return (soreceive_rcvoob(so, uio, flags));
1963 	if (mp0 != NULL)
1964 		*mp0 = NULL;
1965 
1966 	sb = &so->so_rcv;
1967 
1968 	/* Prevent other readers from entering the socket. */
1969 	error = sblock(sb, SBLOCKWAIT(flags));
1970 	if (error)
1971 		goto out;
1972 	SOCKBUF_LOCK(sb);
1973 
1974 	/* Easy one, no space to copyout anything. */
1975 	if (uio->uio_resid == 0) {
1976 		error = EINVAL;
1977 		goto out;
1978 	}
1979 	oresid = uio->uio_resid;
1980 
1981 	/* We will never ever get anything unless we are or were connected. */
1982 	if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
1983 		error = ENOTCONN;
1984 		goto out;
1985 	}
1986 
1987 restart:
1988 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1989 
1990 	/* Abort if socket has reported problems. */
1991 	if (so->so_error) {
1992 		if (sbavail(sb) > 0)
1993 			goto deliver;
1994 		if (oresid > uio->uio_resid)
1995 			goto out;
1996 		error = so->so_error;
1997 		if (!(flags & MSG_PEEK))
1998 			so->so_error = 0;
1999 		goto out;
2000 	}
2001 
2002 	/* Door is closed.  Deliver what is left, if any. */
2003 	if (sb->sb_state & SBS_CANTRCVMORE) {
2004 		if (sbavail(sb) > 0)
2005 			goto deliver;
2006 		else
2007 			goto out;
2008 	}
2009 
2010 	/* Socket buffer is empty and we shall not block. */
2011 	if (sbavail(sb) == 0 &&
2012 	    ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) {
2013 		error = EAGAIN;
2014 		goto out;
2015 	}
2016 
2017 	/* Socket buffer got some data that we shall deliver now. */
2018 	if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) &&
2019 	    ((so->so_state & SS_NBIO) ||
2020 	     (flags & (MSG_DONTWAIT|MSG_NBIO)) ||
2021 	     sbavail(sb) >= sb->sb_lowat ||
2022 	     sbavail(sb) >= uio->uio_resid ||
2023 	     sbavail(sb) >= sb->sb_hiwat) ) {
2024 		goto deliver;
2025 	}
2026 
2027 	/* On MSG_WAITALL we must wait until all data or error arrives. */
2028 	if ((flags & MSG_WAITALL) &&
2029 	    (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat))
2030 		goto deliver;
2031 
2032 	/*
2033 	 * Wait and block until (more) data comes in.
2034 	 * NB: Drops the sockbuf lock during wait.
2035 	 */
2036 	error = sbwait(sb);
2037 	if (error)
2038 		goto out;
2039 	goto restart;
2040 
2041 deliver:
2042 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2043 	KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__));
2044 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__));
2045 
2046 	/* Statistics. */
2047 	if (uio->uio_td)
2048 		uio->uio_td->td_ru.ru_msgrcv++;
2049 
2050 	/* Fill uio until full or current end of socket buffer is reached. */
2051 	len = min(uio->uio_resid, sbavail(sb));
2052 	if (mp0 != NULL) {
2053 		/* Dequeue as many mbufs as possible. */
2054 		if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) {
2055 			if (*mp0 == NULL)
2056 				*mp0 = sb->sb_mb;
2057 			else
2058 				m_cat(*mp0, sb->sb_mb);
2059 			for (m = sb->sb_mb;
2060 			     m != NULL && m->m_len <= len;
2061 			     m = m->m_next) {
2062 				KASSERT(!(m->m_flags & M_NOTAVAIL),
2063 				    ("%s: m %p not available", __func__, m));
2064 				len -= m->m_len;
2065 				uio->uio_resid -= m->m_len;
2066 				sbfree(sb, m);
2067 				n = m;
2068 			}
2069 			n->m_next = NULL;
2070 			sb->sb_mb = m;
2071 			sb->sb_lastrecord = sb->sb_mb;
2072 			if (sb->sb_mb == NULL)
2073 				SB_EMPTY_FIXUP(sb);
2074 		}
2075 		/* Copy the remainder. */
2076 		if (len > 0) {
2077 			KASSERT(sb->sb_mb != NULL,
2078 			    ("%s: len > 0 && sb->sb_mb empty", __func__));
2079 
2080 			m = m_copym(sb->sb_mb, 0, len, M_NOWAIT);
2081 			if (m == NULL)
2082 				len = 0;	/* Don't flush data from sockbuf. */
2083 			else
2084 				uio->uio_resid -= len;
2085 			if (*mp0 != NULL)
2086 				m_cat(*mp0, m);
2087 			else
2088 				*mp0 = m;
2089 			if (*mp0 == NULL) {
2090 				error = ENOBUFS;
2091 				goto out;
2092 			}
2093 		}
2094 	} else {
2095 		/* NB: Must unlock socket buffer as uiomove may sleep. */
2096 		SOCKBUF_UNLOCK(sb);
2097 		error = m_mbuftouio(uio, sb->sb_mb, len);
2098 		SOCKBUF_LOCK(sb);
2099 		if (error)
2100 			goto out;
2101 	}
2102 	SBLASTRECORDCHK(sb);
2103 	SBLASTMBUFCHK(sb);
2104 
2105 	/*
2106 	 * Remove the delivered data from the socket buffer unless we
2107 	 * were only peeking.
2108 	 */
2109 	if (!(flags & MSG_PEEK)) {
2110 		if (len > 0)
2111 			sbdrop_locked(sb, len);
2112 
2113 		/* Notify protocol that we drained some data. */
2114 		if ((so->so_proto->pr_flags & PR_WANTRCVD) &&
2115 		    (((flags & MSG_WAITALL) && uio->uio_resid > 0) ||
2116 		     !(flags & MSG_SOCALLBCK))) {
2117 			SOCKBUF_UNLOCK(sb);
2118 			VNET_SO_ASSERT(so);
2119 			(*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags);
2120 			SOCKBUF_LOCK(sb);
2121 		}
2122 	}
2123 
2124 	/*
2125 	 * For MSG_WAITALL we may have to loop again and wait for
2126 	 * more data to come in.
2127 	 */
2128 	if ((flags & MSG_WAITALL) && uio->uio_resid > 0)
2129 		goto restart;
2130 out:
2131 	SOCKBUF_LOCK_ASSERT(sb);
2132 	SBLASTRECORDCHK(sb);
2133 	SBLASTMBUFCHK(sb);
2134 	SOCKBUF_UNLOCK(sb);
2135 	sbunlock(sb);
2136 	return (error);
2137 }
2138 
2139 /*
2140  * Optimized version of soreceive() for simple datagram cases from userspace.
2141  * Unlike in the stream case, we're able to drop a datagram if copyout()
2142  * fails, and because we handle datagrams atomically, we don't need to use a
2143  * sleep lock to prevent I/O interlacing.
2144  */
2145 int
2146 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
2147     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2148 {
2149 	struct mbuf *m, *m2;
2150 	int flags, error;
2151 	ssize_t len;
2152 	struct protosw *pr = so->so_proto;
2153 	struct mbuf *nextrecord;
2154 
2155 	if (psa != NULL)
2156 		*psa = NULL;
2157 	if (controlp != NULL)
2158 		*controlp = NULL;
2159 	if (flagsp != NULL)
2160 		flags = *flagsp &~ MSG_EOR;
2161 	else
2162 		flags = 0;
2163 
2164 	/*
2165 	 * For any complicated cases, fall back to the full
2166 	 * soreceive_generic().
2167 	 */
2168 	if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB))
2169 		return (soreceive_generic(so, psa, uio, mp0, controlp,
2170 		    flagsp));
2171 
2172 	/*
2173 	 * Enforce restrictions on use.
2174 	 */
2175 	KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
2176 	    ("soreceive_dgram: wantrcvd"));
2177 	KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
2178 	KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
2179 	    ("soreceive_dgram: SBS_RCVATMARK"));
2180 	KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
2181 	    ("soreceive_dgram: P_CONNREQUIRED"));
2182 
2183 	/*
2184 	 * Loop blocking while waiting for a datagram.
2185 	 */
2186 	SOCKBUF_LOCK(&so->so_rcv);
2187 	while ((m = so->so_rcv.sb_mb) == NULL) {
2188 		KASSERT(sbavail(&so->so_rcv) == 0,
2189 		    ("soreceive_dgram: sb_mb NULL but sbavail %u",
2190 		    sbavail(&so->so_rcv)));
2191 		if (so->so_error) {
2192 			error = so->so_error;
2193 			so->so_error = 0;
2194 			SOCKBUF_UNLOCK(&so->so_rcv);
2195 			return (error);
2196 		}
2197 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
2198 		    uio->uio_resid == 0) {
2199 			SOCKBUF_UNLOCK(&so->so_rcv);
2200 			return (0);
2201 		}
2202 		if ((so->so_state & SS_NBIO) ||
2203 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
2204 			SOCKBUF_UNLOCK(&so->so_rcv);
2205 			return (EWOULDBLOCK);
2206 		}
2207 		SBLASTRECORDCHK(&so->so_rcv);
2208 		SBLASTMBUFCHK(&so->so_rcv);
2209 		error = sbwait(&so->so_rcv);
2210 		if (error) {
2211 			SOCKBUF_UNLOCK(&so->so_rcv);
2212 			return (error);
2213 		}
2214 	}
2215 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2216 
2217 	if (uio->uio_td)
2218 		uio->uio_td->td_ru.ru_msgrcv++;
2219 	SBLASTRECORDCHK(&so->so_rcv);
2220 	SBLASTMBUFCHK(&so->so_rcv);
2221 	nextrecord = m->m_nextpkt;
2222 	if (nextrecord == NULL) {
2223 		KASSERT(so->so_rcv.sb_lastrecord == m,
2224 		    ("soreceive_dgram: lastrecord != m"));
2225 	}
2226 
2227 	KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
2228 	    ("soreceive_dgram: m_nextpkt != nextrecord"));
2229 
2230 	/*
2231 	 * Pull 'm' and its chain off the front of the packet queue.
2232 	 */
2233 	so->so_rcv.sb_mb = NULL;
2234 	sockbuf_pushsync(&so->so_rcv, nextrecord);
2235 
2236 	/*
2237 	 * Walk 'm's chain and free that many bytes from the socket buffer.
2238 	 */
2239 	for (m2 = m; m2 != NULL; m2 = m2->m_next)
2240 		sbfree(&so->so_rcv, m2);
2241 
2242 	/*
2243 	 * Do a few last checks before we let go of the lock.
2244 	 */
2245 	SBLASTRECORDCHK(&so->so_rcv);
2246 	SBLASTMBUFCHK(&so->so_rcv);
2247 	SOCKBUF_UNLOCK(&so->so_rcv);
2248 
2249 	if (pr->pr_flags & PR_ADDR) {
2250 		KASSERT(m->m_type == MT_SONAME,
2251 		    ("m->m_type == %d", m->m_type));
2252 		if (psa != NULL)
2253 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
2254 			    M_NOWAIT);
2255 		m = m_free(m);
2256 	}
2257 	if (m == NULL) {
2258 		/* XXXRW: Can this happen? */
2259 		return (0);
2260 	}
2261 
2262 	/*
2263 	 * Packet to copyout() is now in 'm' and it is disconnected from the
2264 	 * queue.
2265 	 *
2266 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
2267 	 * in the first mbuf chain on the socket buffer.  We call into the
2268 	 * protocol to perform externalization (or freeing if controlp ==
2269 	 * NULL). In some cases there can be only MT_CONTROL mbufs without
2270 	 * MT_DATA mbufs.
2271 	 */
2272 	if (m->m_type == MT_CONTROL) {
2273 		struct mbuf *cm = NULL, *cmn;
2274 		struct mbuf **cme = &cm;
2275 
2276 		do {
2277 			m2 = m->m_next;
2278 			m->m_next = NULL;
2279 			*cme = m;
2280 			cme = &(*cme)->m_next;
2281 			m = m2;
2282 		} while (m != NULL && m->m_type == MT_CONTROL);
2283 		while (cm != NULL) {
2284 			cmn = cm->m_next;
2285 			cm->m_next = NULL;
2286 			if (pr->pr_domain->dom_externalize != NULL) {
2287 				error = (*pr->pr_domain->dom_externalize)
2288 				    (cm, controlp, flags);
2289 			} else if (controlp != NULL)
2290 				*controlp = cm;
2291 			else
2292 				m_freem(cm);
2293 			if (controlp != NULL) {
2294 				while (*controlp != NULL)
2295 					controlp = &(*controlp)->m_next;
2296 			}
2297 			cm = cmn;
2298 		}
2299 	}
2300 	KASSERT(m == NULL || m->m_type == MT_DATA,
2301 	    ("soreceive_dgram: !data"));
2302 	while (m != NULL && uio->uio_resid > 0) {
2303 		len = uio->uio_resid;
2304 		if (len > m->m_len)
2305 			len = m->m_len;
2306 		error = uiomove(mtod(m, char *), (int)len, uio);
2307 		if (error) {
2308 			m_freem(m);
2309 			return (error);
2310 		}
2311 		if (len == m->m_len)
2312 			m = m_free(m);
2313 		else {
2314 			m->m_data += len;
2315 			m->m_len -= len;
2316 		}
2317 	}
2318 	if (m != NULL) {
2319 		flags |= MSG_TRUNC;
2320 		m_freem(m);
2321 	}
2322 	if (flagsp != NULL)
2323 		*flagsp |= flags;
2324 	return (0);
2325 }
2326 
2327 int
2328 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
2329     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2330 {
2331 	int error;
2332 
2333 	CURVNET_SET(so->so_vnet);
2334 	error = (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, mp0,
2335 	    controlp, flagsp));
2336 	CURVNET_RESTORE();
2337 	return (error);
2338 }
2339 
2340 int
2341 soshutdown(struct socket *so, int how)
2342 {
2343 	struct protosw *pr = so->so_proto;
2344 	int error;
2345 
2346 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
2347 		return (EINVAL);
2348 	if ((so->so_state &
2349 	    (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0)
2350 		return (ENOTCONN);
2351 
2352 	CURVNET_SET(so->so_vnet);
2353 	if (pr->pr_usrreqs->pru_flush != NULL)
2354 		(*pr->pr_usrreqs->pru_flush)(so, how);
2355 	if (how != SHUT_WR)
2356 		sorflush(so);
2357 	if (how != SHUT_RD) {
2358 		error = (*pr->pr_usrreqs->pru_shutdown)(so);
2359 		wakeup(&so->so_timeo);
2360 		CURVNET_RESTORE();
2361 		return (error);
2362 	}
2363 	wakeup(&so->so_timeo);
2364 	CURVNET_RESTORE();
2365 	return (0);
2366 }
2367 
2368 void
2369 sorflush(struct socket *so)
2370 {
2371 	struct sockbuf *sb = &so->so_rcv;
2372 	struct protosw *pr = so->so_proto;
2373 	struct socket aso;
2374 
2375 	VNET_SO_ASSERT(so);
2376 
2377 	/*
2378 	 * In order to avoid calling dom_dispose with the socket buffer mutex
2379 	 * held, and in order to generally avoid holding the lock for a long
2380 	 * time, we make a copy of the socket buffer and clear the original
2381 	 * (except locks, state).  The new socket buffer copy won't have
2382 	 * initialized locks so we can only call routines that won't use or
2383 	 * assert those locks.
2384 	 *
2385 	 * Dislodge threads currently blocked in receive and wait to acquire
2386 	 * a lock against other simultaneous readers before clearing the
2387 	 * socket buffer.  Don't let our acquire be interrupted by a signal
2388 	 * despite any existing socket disposition on interruptable waiting.
2389 	 */
2390 	socantrcvmore(so);
2391 	(void) sblock(sb, SBL_WAIT | SBL_NOINTR);
2392 
2393 	/*
2394 	 * Invalidate/clear most of the sockbuf structure, but leave selinfo
2395 	 * and mutex data unchanged.
2396 	 */
2397 	SOCKBUF_LOCK(sb);
2398 	bzero(&aso, sizeof(aso));
2399 	aso.so_pcb = so->so_pcb;
2400 	bcopy(&sb->sb_startzero, &aso.so_rcv.sb_startzero,
2401 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
2402 	bzero(&sb->sb_startzero,
2403 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
2404 	SOCKBUF_UNLOCK(sb);
2405 	sbunlock(sb);
2406 
2407 	/*
2408 	 * Dispose of special rights and flush the copied socket.  Don't call
2409 	 * any unsafe routines (that rely on locks being initialized) on aso.
2410 	 */
2411 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
2412 		(*pr->pr_domain->dom_dispose)(&aso);
2413 	sbrelease_internal(&aso.so_rcv, so);
2414 }
2415 
2416 /*
2417  * Wrapper for Socket established helper hook.
2418  * Parameters: socket, context of the hook point, hook id.
2419  */
2420 static int inline
2421 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id)
2422 {
2423 	struct socket_hhook_data hhook_data = {
2424 		.so = so,
2425 		.hctx = hctx,
2426 		.m = NULL,
2427 		.status = 0
2428 	};
2429 
2430 	CURVNET_SET(so->so_vnet);
2431 	HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd);
2432 	CURVNET_RESTORE();
2433 
2434 	/* Ugly but needed, since hhooks return void for now */
2435 	return (hhook_data.status);
2436 }
2437 
2438 /*
2439  * Perhaps this routine, and sooptcopyout(), below, ought to come in an
2440  * additional variant to handle the case where the option value needs to be
2441  * some kind of integer, but not a specific size.  In addition to their use
2442  * here, these functions are also called by the protocol-level pr_ctloutput()
2443  * routines.
2444  */
2445 int
2446 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
2447 {
2448 	size_t	valsize;
2449 
2450 	/*
2451 	 * If the user gives us more than we wanted, we ignore it, but if we
2452 	 * don't get the minimum length the caller wants, we return EINVAL.
2453 	 * On success, sopt->sopt_valsize is set to however much we actually
2454 	 * retrieved.
2455 	 */
2456 	if ((valsize = sopt->sopt_valsize) < minlen)
2457 		return EINVAL;
2458 	if (valsize > len) {
2459 #if _BYTE_ORDER == _BIG_ENDIAN
2460 		sopt->sopt_val = (void *)((uintptr_t)sopt->sopt_val + (valsize - len));
2461 #endif
2462 		sopt->sopt_valsize = valsize = len;
2463 	}
2464 
2465 	if (sopt->sopt_td != NULL)
2466 		return (copyin(sopt->sopt_val, buf, valsize));
2467 
2468 	bcopy(sopt->sopt_val, buf, valsize);
2469 	return (0);
2470 }
2471 
2472 /*
2473  * Kernel version of setsockopt(2).
2474  *
2475  * XXX: optlen is size_t, not socklen_t
2476  */
2477 int
2478 so_setsockopt(struct socket *so, int level, int optname, void *optval,
2479     size_t optlen)
2480 {
2481 	struct sockopt sopt;
2482 
2483 	sopt.sopt_level = level;
2484 	sopt.sopt_name = optname;
2485 	sopt.sopt_dir = SOPT_SET;
2486 	sopt.sopt_val = optval;
2487 	sopt.sopt_valsize = optlen;
2488 	sopt.sopt_td = NULL;
2489 	return (sosetopt(so, &sopt));
2490 }
2491 
2492 int
2493 sosetopt(struct socket *so, struct sockopt *sopt)
2494 {
2495 	int	error, optval;
2496 	struct	linger l;
2497 	struct	timeval tv;
2498 	sbintime_t val;
2499 	uint32_t val32;
2500 #ifdef MAC
2501 	struct mac extmac;
2502 #endif
2503 
2504 	CURVNET_SET(so->so_vnet);
2505 	error = 0;
2506 	if (sopt->sopt_level != SOL_SOCKET) {
2507 		if (so->so_proto->pr_ctloutput != NULL) {
2508 			error = (*so->so_proto->pr_ctloutput)(so, sopt);
2509 			CURVNET_RESTORE();
2510 			return (error);
2511 		}
2512 		error = ENOPROTOOPT;
2513 	} else {
2514 		switch (sopt->sopt_name) {
2515 		case SO_ACCEPTFILTER:
2516 			error = do_setopt_accept_filter(so, sopt);
2517 			if (error)
2518 				goto bad;
2519 			break;
2520 
2521 		case SO_LINGER:
2522 			error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
2523 			if (error)
2524 				goto bad;
2525 
2526 			SOCK_LOCK(so);
2527 			so->so_linger = l.l_linger;
2528 			if (l.l_onoff)
2529 				so->so_options |= SO_LINGER;
2530 			else
2531 				so->so_options &= ~SO_LINGER;
2532 			SOCK_UNLOCK(so);
2533 			break;
2534 
2535 		case SO_DEBUG:
2536 		case SO_KEEPALIVE:
2537 		case SO_DONTROUTE:
2538 		case SO_USELOOPBACK:
2539 		case SO_BROADCAST:
2540 		case SO_REUSEADDR:
2541 		case SO_REUSEPORT:
2542 		case SO_OOBINLINE:
2543 		case SO_TIMESTAMP:
2544 		case SO_BINTIME:
2545 		case SO_NOSIGPIPE:
2546 		case SO_NO_DDP:
2547 		case SO_NO_OFFLOAD:
2548 			error = sooptcopyin(sopt, &optval, sizeof optval,
2549 			    sizeof optval);
2550 			if (error)
2551 				goto bad;
2552 			SOCK_LOCK(so);
2553 			if (optval)
2554 				so->so_options |= sopt->sopt_name;
2555 			else
2556 				so->so_options &= ~sopt->sopt_name;
2557 			SOCK_UNLOCK(so);
2558 			break;
2559 
2560 		case SO_SETFIB:
2561 			error = sooptcopyin(sopt, &optval, sizeof optval,
2562 			    sizeof optval);
2563 			if (error)
2564 				goto bad;
2565 
2566 			if (optval < 0 || optval >= rt_numfibs) {
2567 				error = EINVAL;
2568 				goto bad;
2569 			}
2570 			if (((so->so_proto->pr_domain->dom_family == PF_INET) ||
2571 			   (so->so_proto->pr_domain->dom_family == PF_INET6) ||
2572 			   (so->so_proto->pr_domain->dom_family == PF_ROUTE)))
2573 				so->so_fibnum = optval;
2574 			else
2575 				so->so_fibnum = 0;
2576 			break;
2577 
2578 		case SO_USER_COOKIE:
2579 			error = sooptcopyin(sopt, &val32, sizeof val32,
2580 			    sizeof val32);
2581 			if (error)
2582 				goto bad;
2583 			so->so_user_cookie = val32;
2584 			break;
2585 
2586 		case SO_SNDBUF:
2587 		case SO_RCVBUF:
2588 		case SO_SNDLOWAT:
2589 		case SO_RCVLOWAT:
2590 			error = sooptcopyin(sopt, &optval, sizeof optval,
2591 			    sizeof optval);
2592 			if (error)
2593 				goto bad;
2594 
2595 			/*
2596 			 * Values < 1 make no sense for any of these options,
2597 			 * so disallow them.
2598 			 */
2599 			if (optval < 1) {
2600 				error = EINVAL;
2601 				goto bad;
2602 			}
2603 
2604 			switch (sopt->sopt_name) {
2605 			case SO_SNDBUF:
2606 			case SO_RCVBUF:
2607 				if (sbreserve(sopt->sopt_name == SO_SNDBUF ?
2608 				    &so->so_snd : &so->so_rcv, (u_long)optval,
2609 				    so, curthread) == 0) {
2610 					error = ENOBUFS;
2611 					goto bad;
2612 				}
2613 				(sopt->sopt_name == SO_SNDBUF ? &so->so_snd :
2614 				    &so->so_rcv)->sb_flags &= ~SB_AUTOSIZE;
2615 				break;
2616 
2617 			/*
2618 			 * Make sure the low-water is never greater than the
2619 			 * high-water.
2620 			 */
2621 			case SO_SNDLOWAT:
2622 				SOCKBUF_LOCK(&so->so_snd);
2623 				so->so_snd.sb_lowat =
2624 				    (optval > so->so_snd.sb_hiwat) ?
2625 				    so->so_snd.sb_hiwat : optval;
2626 				SOCKBUF_UNLOCK(&so->so_snd);
2627 				break;
2628 			case SO_RCVLOWAT:
2629 				SOCKBUF_LOCK(&so->so_rcv);
2630 				so->so_rcv.sb_lowat =
2631 				    (optval > so->so_rcv.sb_hiwat) ?
2632 				    so->so_rcv.sb_hiwat : optval;
2633 				SOCKBUF_UNLOCK(&so->so_rcv);
2634 				break;
2635 			}
2636 			break;
2637 
2638 		case SO_SNDTIMEO:
2639 		case SO_RCVTIMEO:
2640 #ifdef COMPAT_FREEBSD32
2641 			if (SV_CURPROC_FLAG(SV_ILP32)) {
2642 				struct timeval32 tv32;
2643 
2644 				error = sooptcopyin(sopt, &tv32, sizeof tv32,
2645 				    sizeof tv32);
2646 				CP(tv32, tv, tv_sec);
2647 				CP(tv32, tv, tv_usec);
2648 			} else
2649 #endif
2650 				error = sooptcopyin(sopt, &tv, sizeof tv,
2651 				    sizeof tv);
2652 			if (error)
2653 				goto bad;
2654 			if (tv.tv_sec < 0 || tv.tv_usec < 0 ||
2655 			    tv.tv_usec >= 1000000) {
2656 				error = EDOM;
2657 				goto bad;
2658 			}
2659 			if (tv.tv_sec > INT32_MAX)
2660 				val = SBT_MAX;
2661 			else
2662 				val = tvtosbt(tv);
2663 			switch (sopt->sopt_name) {
2664 			case SO_SNDTIMEO:
2665 				so->so_snd.sb_timeo = val;
2666 				break;
2667 			case SO_RCVTIMEO:
2668 				so->so_rcv.sb_timeo = val;
2669 				break;
2670 			}
2671 			break;
2672 
2673 		case SO_LABEL:
2674 #ifdef MAC
2675 			error = sooptcopyin(sopt, &extmac, sizeof extmac,
2676 			    sizeof extmac);
2677 			if (error)
2678 				goto bad;
2679 			error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
2680 			    so, &extmac);
2681 #else
2682 			error = EOPNOTSUPP;
2683 #endif
2684 			break;
2685 
2686 		default:
2687 			if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
2688 				error = hhook_run_socket(so, sopt,
2689 				    HHOOK_SOCKET_OPT);
2690 			else
2691 				error = ENOPROTOOPT;
2692 			break;
2693 		}
2694 		if (error == 0 && so->so_proto->pr_ctloutput != NULL)
2695 			(void)(*so->so_proto->pr_ctloutput)(so, sopt);
2696 	}
2697 bad:
2698 	CURVNET_RESTORE();
2699 	return (error);
2700 }
2701 
2702 /*
2703  * Helper routine for getsockopt.
2704  */
2705 int
2706 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
2707 {
2708 	int	error;
2709 	size_t	valsize;
2710 
2711 	error = 0;
2712 
2713 	/*
2714 	 * Documented get behavior is that we always return a value, possibly
2715 	 * truncated to fit in the user's buffer.  Traditional behavior is
2716 	 * that we always tell the user precisely how much we copied, rather
2717 	 * than something useful like the total amount we had available for
2718 	 * her.  Note that this interface is not idempotent; the entire
2719 	 * answer must be generated ahead of time.
2720 	 */
2721 	valsize = min(len, sopt->sopt_valsize);
2722 	sopt->sopt_valsize = valsize;
2723 	if (sopt->sopt_val != NULL) {
2724 		if (sopt->sopt_td != NULL)
2725 			error = copyout(buf, sopt->sopt_val, valsize);
2726 		else
2727 			bcopy(buf, sopt->sopt_val, valsize);
2728 	}
2729 	return (error);
2730 }
2731 
2732 int
2733 sogetopt(struct socket *so, struct sockopt *sopt)
2734 {
2735 	int	error, optval;
2736 	struct	linger l;
2737 	struct	timeval tv;
2738 #ifdef MAC
2739 	struct mac extmac;
2740 #endif
2741 
2742 	CURVNET_SET(so->so_vnet);
2743 	error = 0;
2744 	if (sopt->sopt_level != SOL_SOCKET) {
2745 		if (so->so_proto->pr_ctloutput != NULL)
2746 			error = (*so->so_proto->pr_ctloutput)(so, sopt);
2747 		else
2748 			error = ENOPROTOOPT;
2749 		CURVNET_RESTORE();
2750 		return (error);
2751 	} else {
2752 		switch (sopt->sopt_name) {
2753 		case SO_ACCEPTFILTER:
2754 			error = do_getopt_accept_filter(so, sopt);
2755 			break;
2756 
2757 		case SO_LINGER:
2758 			SOCK_LOCK(so);
2759 			l.l_onoff = so->so_options & SO_LINGER;
2760 			l.l_linger = so->so_linger;
2761 			SOCK_UNLOCK(so);
2762 			error = sooptcopyout(sopt, &l, sizeof l);
2763 			break;
2764 
2765 		case SO_USELOOPBACK:
2766 		case SO_DONTROUTE:
2767 		case SO_DEBUG:
2768 		case SO_KEEPALIVE:
2769 		case SO_REUSEADDR:
2770 		case SO_REUSEPORT:
2771 		case SO_BROADCAST:
2772 		case SO_OOBINLINE:
2773 		case SO_ACCEPTCONN:
2774 		case SO_TIMESTAMP:
2775 		case SO_BINTIME:
2776 		case SO_NOSIGPIPE:
2777 			optval = so->so_options & sopt->sopt_name;
2778 integer:
2779 			error = sooptcopyout(sopt, &optval, sizeof optval);
2780 			break;
2781 
2782 		case SO_TYPE:
2783 			optval = so->so_type;
2784 			goto integer;
2785 
2786 		case SO_PROTOCOL:
2787 			optval = so->so_proto->pr_protocol;
2788 			goto integer;
2789 
2790 		case SO_ERROR:
2791 			SOCK_LOCK(so);
2792 			optval = so->so_error;
2793 			so->so_error = 0;
2794 			SOCK_UNLOCK(so);
2795 			goto integer;
2796 
2797 		case SO_SNDBUF:
2798 			optval = so->so_snd.sb_hiwat;
2799 			goto integer;
2800 
2801 		case SO_RCVBUF:
2802 			optval = so->so_rcv.sb_hiwat;
2803 			goto integer;
2804 
2805 		case SO_SNDLOWAT:
2806 			optval = so->so_snd.sb_lowat;
2807 			goto integer;
2808 
2809 		case SO_RCVLOWAT:
2810 			optval = so->so_rcv.sb_lowat;
2811 			goto integer;
2812 
2813 		case SO_SNDTIMEO:
2814 		case SO_RCVTIMEO:
2815 			tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ?
2816 			    so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
2817 #ifdef COMPAT_FREEBSD32
2818 			if (SV_CURPROC_FLAG(SV_ILP32)) {
2819 				struct timeval32 tv32;
2820 
2821 				CP(tv, tv32, tv_sec);
2822 				CP(tv, tv32, tv_usec);
2823 				error = sooptcopyout(sopt, &tv32, sizeof tv32);
2824 			} else
2825 #endif
2826 				error = sooptcopyout(sopt, &tv, sizeof tv);
2827 			break;
2828 
2829 		case SO_LABEL:
2830 #ifdef MAC
2831 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
2832 			    sizeof(extmac));
2833 			if (error)
2834 				goto bad;
2835 			error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
2836 			    so, &extmac);
2837 			if (error)
2838 				goto bad;
2839 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
2840 #else
2841 			error = EOPNOTSUPP;
2842 #endif
2843 			break;
2844 
2845 		case SO_PEERLABEL:
2846 #ifdef MAC
2847 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
2848 			    sizeof(extmac));
2849 			if (error)
2850 				goto bad;
2851 			error = mac_getsockopt_peerlabel(
2852 			    sopt->sopt_td->td_ucred, so, &extmac);
2853 			if (error)
2854 				goto bad;
2855 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
2856 #else
2857 			error = EOPNOTSUPP;
2858 #endif
2859 			break;
2860 
2861 		case SO_LISTENQLIMIT:
2862 			optval = so->so_qlimit;
2863 			goto integer;
2864 
2865 		case SO_LISTENQLEN:
2866 			optval = so->so_qlen;
2867 			goto integer;
2868 
2869 		case SO_LISTENINCQLEN:
2870 			optval = so->so_incqlen;
2871 			goto integer;
2872 
2873 		default:
2874 			if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
2875 				error = hhook_run_socket(so, sopt,
2876 				    HHOOK_SOCKET_OPT);
2877 			else
2878 				error = ENOPROTOOPT;
2879 			break;
2880 		}
2881 	}
2882 #ifdef MAC
2883 bad:
2884 #endif
2885 	CURVNET_RESTORE();
2886 	return (error);
2887 }
2888 
2889 int
2890 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
2891 {
2892 	struct mbuf *m, *m_prev;
2893 	int sopt_size = sopt->sopt_valsize;
2894 
2895 	MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
2896 	if (m == NULL)
2897 		return ENOBUFS;
2898 	if (sopt_size > MLEN) {
2899 		MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT);
2900 		if ((m->m_flags & M_EXT) == 0) {
2901 			m_free(m);
2902 			return ENOBUFS;
2903 		}
2904 		m->m_len = min(MCLBYTES, sopt_size);
2905 	} else {
2906 		m->m_len = min(MLEN, sopt_size);
2907 	}
2908 	sopt_size -= m->m_len;
2909 	*mp = m;
2910 	m_prev = m;
2911 
2912 	while (sopt_size) {
2913 		MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
2914 		if (m == NULL) {
2915 			m_freem(*mp);
2916 			return ENOBUFS;
2917 		}
2918 		if (sopt_size > MLEN) {
2919 			MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK :
2920 			    M_NOWAIT);
2921 			if ((m->m_flags & M_EXT) == 0) {
2922 				m_freem(m);
2923 				m_freem(*mp);
2924 				return ENOBUFS;
2925 			}
2926 			m->m_len = min(MCLBYTES, sopt_size);
2927 		} else {
2928 			m->m_len = min(MLEN, sopt_size);
2929 		}
2930 		sopt_size -= m->m_len;
2931 		m_prev->m_next = m;
2932 		m_prev = m;
2933 	}
2934 	return (0);
2935 }
2936 
2937 int
2938 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
2939 {
2940 	struct mbuf *m0 = m;
2941 
2942 	if (sopt->sopt_val == NULL)
2943 		return (0);
2944 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
2945 		if (sopt->sopt_td != NULL) {
2946 			int error;
2947 
2948 			error = copyin(sopt->sopt_val, mtod(m, char *),
2949 			    m->m_len);
2950 			if (error != 0) {
2951 				m_freem(m0);
2952 				return(error);
2953 			}
2954 		} else
2955 			bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
2956 		sopt->sopt_valsize -= m->m_len;
2957 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
2958 		m = m->m_next;
2959 	}
2960 	if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
2961 		panic("ip6_sooptmcopyin");
2962 	return (0);
2963 }
2964 
2965 int
2966 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
2967 {
2968 	struct mbuf *m0 = m;
2969 	size_t valsize = 0;
2970 
2971 	if (sopt->sopt_val == NULL)
2972 		return (0);
2973 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
2974 		if (sopt->sopt_td != NULL) {
2975 			int error;
2976 
2977 			error = copyout(mtod(m, char *), sopt->sopt_val,
2978 			    m->m_len);
2979 			if (error != 0) {
2980 				m_freem(m0);
2981 				return(error);
2982 			}
2983 		} else
2984 			bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
2985 		sopt->sopt_valsize -= m->m_len;
2986 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
2987 		valsize += m->m_len;
2988 		m = m->m_next;
2989 	}
2990 	if (m != NULL) {
2991 		/* enough soopt buffer should be given from user-land */
2992 		m_freem(m0);
2993 		return(EINVAL);
2994 	}
2995 	sopt->sopt_valsize = valsize;
2996 	return (0);
2997 }
2998 
2999 /*
3000  * sohasoutofband(): protocol notifies socket layer of the arrival of new
3001  * out-of-band data, which will then notify socket consumers.
3002  */
3003 void
3004 sohasoutofband(struct socket *so)
3005 {
3006 
3007 	if (so->so_sigio != NULL)
3008 		pgsigio(&so->so_sigio, SIGURG, 0);
3009 	selwakeuppri(&so->so_rcv.sb_sel, PSOCK);
3010 }
3011 
3012 int
3013 sopoll(struct socket *so, int events, struct ucred *active_cred,
3014     struct thread *td)
3015 {
3016 
3017 	/*
3018 	 * We do not need to set or assert curvnet as long as everyone uses
3019 	 * sopoll_generic().
3020 	 */
3021 	return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred,
3022 	    td));
3023 }
3024 
3025 int
3026 sopoll_generic(struct socket *so, int events, struct ucred *active_cred,
3027     struct thread *td)
3028 {
3029 	int revents = 0;
3030 
3031 	SOCKBUF_LOCK(&so->so_snd);
3032 	SOCKBUF_LOCK(&so->so_rcv);
3033 	if (events & (POLLIN | POLLRDNORM))
3034 		if (soreadabledata(so))
3035 			revents |= events & (POLLIN | POLLRDNORM);
3036 
3037 	if (events & (POLLOUT | POLLWRNORM))
3038 		if (sowriteable(so))
3039 			revents |= events & (POLLOUT | POLLWRNORM);
3040 
3041 	if (events & (POLLPRI | POLLRDBAND))
3042 		if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK))
3043 			revents |= events & (POLLPRI | POLLRDBAND);
3044 
3045 	if ((events & POLLINIGNEOF) == 0) {
3046 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3047 			revents |= events & (POLLIN | POLLRDNORM);
3048 			if (so->so_snd.sb_state & SBS_CANTSENDMORE)
3049 				revents |= POLLHUP;
3050 		}
3051 	}
3052 
3053 	if (revents == 0) {
3054 		if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
3055 			selrecord(td, &so->so_rcv.sb_sel);
3056 			so->so_rcv.sb_flags |= SB_SEL;
3057 		}
3058 
3059 		if (events & (POLLOUT | POLLWRNORM)) {
3060 			selrecord(td, &so->so_snd.sb_sel);
3061 			so->so_snd.sb_flags |= SB_SEL;
3062 		}
3063 	}
3064 
3065 	SOCKBUF_UNLOCK(&so->so_rcv);
3066 	SOCKBUF_UNLOCK(&so->so_snd);
3067 	return (revents);
3068 }
3069 
3070 int
3071 soo_kqfilter(struct file *fp, struct knote *kn)
3072 {
3073 	struct socket *so = kn->kn_fp->f_data;
3074 	struct sockbuf *sb;
3075 
3076 	switch (kn->kn_filter) {
3077 	case EVFILT_READ:
3078 		if (so->so_options & SO_ACCEPTCONN)
3079 			kn->kn_fop = &solisten_filtops;
3080 		else
3081 			kn->kn_fop = &soread_filtops;
3082 		sb = &so->so_rcv;
3083 		break;
3084 	case EVFILT_WRITE:
3085 		kn->kn_fop = &sowrite_filtops;
3086 		sb = &so->so_snd;
3087 		break;
3088 	default:
3089 		return (EINVAL);
3090 	}
3091 
3092 	SOCKBUF_LOCK(sb);
3093 	knlist_add(&sb->sb_sel.si_note, kn, 1);
3094 	sb->sb_flags |= SB_KNOTE;
3095 	SOCKBUF_UNLOCK(sb);
3096 	return (0);
3097 }
3098 
3099 /*
3100  * Some routines that return EOPNOTSUPP for entry points that are not
3101  * supported by a protocol.  Fill in as needed.
3102  */
3103 int
3104 pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
3105 {
3106 
3107 	return EOPNOTSUPP;
3108 }
3109 
3110 int
3111 pru_aio_queue_notsupp(struct socket *so, struct kaiocb *job)
3112 {
3113 
3114 	return EOPNOTSUPP;
3115 }
3116 
3117 int
3118 pru_attach_notsupp(struct socket *so, int proto, struct thread *td)
3119 {
3120 
3121 	return EOPNOTSUPP;
3122 }
3123 
3124 int
3125 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
3126 {
3127 
3128 	return EOPNOTSUPP;
3129 }
3130 
3131 int
3132 pru_bindat_notsupp(int fd, struct socket *so, struct sockaddr *nam,
3133     struct thread *td)
3134 {
3135 
3136 	return EOPNOTSUPP;
3137 }
3138 
3139 int
3140 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
3141 {
3142 
3143 	return EOPNOTSUPP;
3144 }
3145 
3146 int
3147 pru_connectat_notsupp(int fd, struct socket *so, struct sockaddr *nam,
3148     struct thread *td)
3149 {
3150 
3151 	return EOPNOTSUPP;
3152 }
3153 
3154 int
3155 pru_connect2_notsupp(struct socket *so1, struct socket *so2)
3156 {
3157 
3158 	return EOPNOTSUPP;
3159 }
3160 
3161 int
3162 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
3163     struct ifnet *ifp, struct thread *td)
3164 {
3165 
3166 	return EOPNOTSUPP;
3167 }
3168 
3169 int
3170 pru_disconnect_notsupp(struct socket *so)
3171 {
3172 
3173 	return EOPNOTSUPP;
3174 }
3175 
3176 int
3177 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td)
3178 {
3179 
3180 	return EOPNOTSUPP;
3181 }
3182 
3183 int
3184 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam)
3185 {
3186 
3187 	return EOPNOTSUPP;
3188 }
3189 
3190 int
3191 pru_rcvd_notsupp(struct socket *so, int flags)
3192 {
3193 
3194 	return EOPNOTSUPP;
3195 }
3196 
3197 int
3198 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
3199 {
3200 
3201 	return EOPNOTSUPP;
3202 }
3203 
3204 int
3205 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m,
3206     struct sockaddr *addr, struct mbuf *control, struct thread *td)
3207 {
3208 
3209 	return EOPNOTSUPP;
3210 }
3211 
3212 int
3213 pru_ready_notsupp(struct socket *so, struct mbuf *m, int count)
3214 {
3215 
3216 	return (EOPNOTSUPP);
3217 }
3218 
3219 /*
3220  * This isn't really a ``null'' operation, but it's the default one and
3221  * doesn't do anything destructive.
3222  */
3223 int
3224 pru_sense_null(struct socket *so, struct stat *sb)
3225 {
3226 
3227 	sb->st_blksize = so->so_snd.sb_hiwat;
3228 	return 0;
3229 }
3230 
3231 int
3232 pru_shutdown_notsupp(struct socket *so)
3233 {
3234 
3235 	return EOPNOTSUPP;
3236 }
3237 
3238 int
3239 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam)
3240 {
3241 
3242 	return EOPNOTSUPP;
3243 }
3244 
3245 int
3246 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio,
3247     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
3248 {
3249 
3250 	return EOPNOTSUPP;
3251 }
3252 
3253 int
3254 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr,
3255     struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3256 {
3257 
3258 	return EOPNOTSUPP;
3259 }
3260 
3261 int
3262 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred,
3263     struct thread *td)
3264 {
3265 
3266 	return EOPNOTSUPP;
3267 }
3268 
3269 static void
3270 filt_sordetach(struct knote *kn)
3271 {
3272 	struct socket *so = kn->kn_fp->f_data;
3273 
3274 	SOCKBUF_LOCK(&so->so_rcv);
3275 	knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1);
3276 	if (knlist_empty(&so->so_rcv.sb_sel.si_note))
3277 		so->so_rcv.sb_flags &= ~SB_KNOTE;
3278 	SOCKBUF_UNLOCK(&so->so_rcv);
3279 }
3280 
3281 /*ARGSUSED*/
3282 static int
3283 filt_soread(struct knote *kn, long hint)
3284 {
3285 	struct socket *so;
3286 
3287 	so = kn->kn_fp->f_data;
3288 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3289 
3290 	kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl;
3291 	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3292 		kn->kn_flags |= EV_EOF;
3293 		kn->kn_fflags = so->so_error;
3294 		return (1);
3295 	} else if (so->so_error)	/* temporary udp error */
3296 		return (1);
3297 
3298 	if (kn->kn_sfflags & NOTE_LOWAT) {
3299 		if (kn->kn_data >= kn->kn_sdata)
3300 			return 1;
3301 	} else {
3302 		if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat)
3303 			return 1;
3304 	}
3305 
3306 	/* This hook returning non-zero indicates an event, not error */
3307 	return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD));
3308 }
3309 
3310 static void
3311 filt_sowdetach(struct knote *kn)
3312 {
3313 	struct socket *so = kn->kn_fp->f_data;
3314 
3315 	SOCKBUF_LOCK(&so->so_snd);
3316 	knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1);
3317 	if (knlist_empty(&so->so_snd.sb_sel.si_note))
3318 		so->so_snd.sb_flags &= ~SB_KNOTE;
3319 	SOCKBUF_UNLOCK(&so->so_snd);
3320 }
3321 
3322 /*ARGSUSED*/
3323 static int
3324 filt_sowrite(struct knote *kn, long hint)
3325 {
3326 	struct socket *so;
3327 
3328 	so = kn->kn_fp->f_data;
3329 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
3330 	kn->kn_data = sbspace(&so->so_snd);
3331 
3332 	hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE);
3333 
3334 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
3335 		kn->kn_flags |= EV_EOF;
3336 		kn->kn_fflags = so->so_error;
3337 		return (1);
3338 	} else if (so->so_error)	/* temporary udp error */
3339 		return (1);
3340 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
3341 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
3342 		return (0);
3343 	else if (kn->kn_sfflags & NOTE_LOWAT)
3344 		return (kn->kn_data >= kn->kn_sdata);
3345 	else
3346 		return (kn->kn_data >= so->so_snd.sb_lowat);
3347 }
3348 
3349 /*ARGSUSED*/
3350 static int
3351 filt_solisten(struct knote *kn, long hint)
3352 {
3353 	struct socket *so = kn->kn_fp->f_data;
3354 
3355 	kn->kn_data = so->so_qlen;
3356 	return (!TAILQ_EMPTY(&so->so_comp));
3357 }
3358 
3359 int
3360 socheckuid(struct socket *so, uid_t uid)
3361 {
3362 
3363 	if (so == NULL)
3364 		return (EPERM);
3365 	if (so->so_cred->cr_uid != uid)
3366 		return (EPERM);
3367 	return (0);
3368 }
3369 
3370 /*
3371  * These functions are used by protocols to notify the socket layer (and its
3372  * consumers) of state changes in the sockets driven by protocol-side events.
3373  */
3374 
3375 /*
3376  * Procedures to manipulate state flags of socket and do appropriate wakeups.
3377  *
3378  * Normal sequence from the active (originating) side is that
3379  * soisconnecting() is called during processing of connect() call, resulting
3380  * in an eventual call to soisconnected() if/when the connection is
3381  * established.  When the connection is torn down soisdisconnecting() is
3382  * called during processing of disconnect() call, and soisdisconnected() is
3383  * called when the connection to the peer is totally severed.  The semantics
3384  * of these routines are such that connectionless protocols can call
3385  * soisconnected() and soisdisconnected() only, bypassing the in-progress
3386  * calls when setting up a ``connection'' takes no time.
3387  *
3388  * From the passive side, a socket is created with two queues of sockets:
3389  * so_incomp for connections in progress and so_comp for connections already
3390  * made and awaiting user acceptance.  As a protocol is preparing incoming
3391  * connections, it creates a socket structure queued on so_incomp by calling
3392  * sonewconn().  When the connection is established, soisconnected() is
3393  * called, and transfers the socket structure to so_comp, making it available
3394  * to accept().
3395  *
3396  * If a socket is closed with sockets on either so_incomp or so_comp, these
3397  * sockets are dropped.
3398  *
3399  * If higher-level protocols are implemented in the kernel, the wakeups done
3400  * here will sometimes cause software-interrupt process scheduling.
3401  */
3402 void
3403 soisconnecting(struct socket *so)
3404 {
3405 
3406 	SOCK_LOCK(so);
3407 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
3408 	so->so_state |= SS_ISCONNECTING;
3409 	SOCK_UNLOCK(so);
3410 }
3411 
3412 void
3413 soisconnected(struct socket *so)
3414 {
3415 	struct socket *head;
3416 	int ret;
3417 
3418 restart:
3419 	ACCEPT_LOCK();
3420 	SOCK_LOCK(so);
3421 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
3422 	so->so_state |= SS_ISCONNECTED;
3423 	head = so->so_head;
3424 	if (head != NULL && (so->so_qstate & SQ_INCOMP)) {
3425 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
3426 			SOCK_UNLOCK(so);
3427 			TAILQ_REMOVE(&head->so_incomp, so, so_list);
3428 			head->so_incqlen--;
3429 			so->so_qstate &= ~SQ_INCOMP;
3430 			TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
3431 			head->so_qlen++;
3432 			so->so_qstate |= SQ_COMP;
3433 			ACCEPT_UNLOCK();
3434 			sorwakeup(head);
3435 			wakeup_one(&head->so_timeo);
3436 		} else {
3437 			ACCEPT_UNLOCK();
3438 			soupcall_set(so, SO_RCV,
3439 			    head->so_accf->so_accept_filter->accf_callback,
3440 			    head->so_accf->so_accept_filter_arg);
3441 			so->so_options &= ~SO_ACCEPTFILTER;
3442 			ret = head->so_accf->so_accept_filter->accf_callback(so,
3443 			    head->so_accf->so_accept_filter_arg, M_NOWAIT);
3444 			if (ret == SU_ISCONNECTED)
3445 				soupcall_clear(so, SO_RCV);
3446 			SOCK_UNLOCK(so);
3447 			if (ret == SU_ISCONNECTED)
3448 				goto restart;
3449 		}
3450 		return;
3451 	}
3452 	SOCK_UNLOCK(so);
3453 	ACCEPT_UNLOCK();
3454 	wakeup(&so->so_timeo);
3455 	sorwakeup(so);
3456 	sowwakeup(so);
3457 }
3458 
3459 void
3460 soisdisconnecting(struct socket *so)
3461 {
3462 
3463 	/*
3464 	 * Note: This code assumes that SOCK_LOCK(so) and
3465 	 * SOCKBUF_LOCK(&so->so_rcv) are the same.
3466 	 */
3467 	SOCKBUF_LOCK(&so->so_rcv);
3468 	so->so_state &= ~SS_ISCONNECTING;
3469 	so->so_state |= SS_ISDISCONNECTING;
3470 	socantrcvmore_locked(so);
3471 	SOCKBUF_LOCK(&so->so_snd);
3472 	socantsendmore_locked(so);
3473 	wakeup(&so->so_timeo);
3474 }
3475 
3476 void
3477 soisdisconnected(struct socket *so)
3478 {
3479 
3480 	/*
3481 	 * Note: This code assumes that SOCK_LOCK(so) and
3482 	 * SOCKBUF_LOCK(&so->so_rcv) are the same.
3483 	 */
3484 	SOCKBUF_LOCK(&so->so_rcv);
3485 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
3486 	so->so_state |= SS_ISDISCONNECTED;
3487 	socantrcvmore_locked(so);
3488 	SOCKBUF_LOCK(&so->so_snd);
3489 	sbdrop_locked(&so->so_snd, sbused(&so->so_snd));
3490 	socantsendmore_locked(so);
3491 	wakeup(&so->so_timeo);
3492 }
3493 
3494 /*
3495  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
3496  */
3497 struct sockaddr *
3498 sodupsockaddr(const struct sockaddr *sa, int mflags)
3499 {
3500 	struct sockaddr *sa2;
3501 
3502 	sa2 = malloc(sa->sa_len, M_SONAME, mflags);
3503 	if (sa2)
3504 		bcopy(sa, sa2, sa->sa_len);
3505 	return sa2;
3506 }
3507 
3508 /*
3509  * Register per-socket buffer upcalls.
3510  */
3511 void
3512 soupcall_set(struct socket *so, int which,
3513     int (*func)(struct socket *, void *, int), void *arg)
3514 {
3515 	struct sockbuf *sb;
3516 
3517 	switch (which) {
3518 	case SO_RCV:
3519 		sb = &so->so_rcv;
3520 		break;
3521 	case SO_SND:
3522 		sb = &so->so_snd;
3523 		break;
3524 	default:
3525 		panic("soupcall_set: bad which");
3526 	}
3527 	SOCKBUF_LOCK_ASSERT(sb);
3528 #if 0
3529 	/* XXX: accf_http actually wants to do this on purpose. */
3530 	KASSERT(sb->sb_upcall == NULL, ("soupcall_set: overwriting upcall"));
3531 #endif
3532 	sb->sb_upcall = func;
3533 	sb->sb_upcallarg = arg;
3534 	sb->sb_flags |= SB_UPCALL;
3535 }
3536 
3537 void
3538 soupcall_clear(struct socket *so, int which)
3539 {
3540 	struct sockbuf *sb;
3541 
3542 	switch (which) {
3543 	case SO_RCV:
3544 		sb = &so->so_rcv;
3545 		break;
3546 	case SO_SND:
3547 		sb = &so->so_snd;
3548 		break;
3549 	default:
3550 		panic("soupcall_clear: bad which");
3551 	}
3552 	SOCKBUF_LOCK_ASSERT(sb);
3553 	KASSERT(sb->sb_upcall != NULL, ("soupcall_clear: no upcall to clear"));
3554 	sb->sb_upcall = NULL;
3555 	sb->sb_upcallarg = NULL;
3556 	sb->sb_flags &= ~SB_UPCALL;
3557 }
3558 
3559 /*
3560  * Create an external-format (``xsocket'') structure using the information in
3561  * the kernel-format socket structure pointed to by so.  This is done to
3562  * reduce the spew of irrelevant information over this interface, to isolate
3563  * user code from changes in the kernel structure, and potentially to provide
3564  * information-hiding if we decide that some of this information should be
3565  * hidden from users.
3566  */
3567 void
3568 sotoxsocket(struct socket *so, struct xsocket *xso)
3569 {
3570 
3571 	xso->xso_len = sizeof *xso;
3572 	xso->xso_so = so;
3573 	xso->so_type = so->so_type;
3574 	xso->so_options = so->so_options;
3575 	xso->so_linger = so->so_linger;
3576 	xso->so_state = so->so_state;
3577 	xso->so_pcb = so->so_pcb;
3578 	xso->xso_protocol = so->so_proto->pr_protocol;
3579 	xso->xso_family = so->so_proto->pr_domain->dom_family;
3580 	xso->so_qlen = so->so_qlen;
3581 	xso->so_incqlen = so->so_incqlen;
3582 	xso->so_qlimit = so->so_qlimit;
3583 	xso->so_timeo = so->so_timeo;
3584 	xso->so_error = so->so_error;
3585 	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
3586 	xso->so_oobmark = so->so_oobmark;
3587 	sbtoxsockbuf(&so->so_snd, &xso->so_snd);
3588 	sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
3589 	xso->so_uid = so->so_cred->cr_uid;
3590 }
3591 
3592 
3593 /*
3594  * Socket accessor functions to provide external consumers with
3595  * a safe interface to socket state
3596  *
3597  */
3598 
3599 void
3600 so_listeners_apply_all(struct socket *so, void (*func)(struct socket *, void *),
3601     void *arg)
3602 {
3603 
3604 	TAILQ_FOREACH(so, &so->so_comp, so_list)
3605 		func(so, arg);
3606 }
3607 
3608 struct sockbuf *
3609 so_sockbuf_rcv(struct socket *so)
3610 {
3611 
3612 	return (&so->so_rcv);
3613 }
3614 
3615 struct sockbuf *
3616 so_sockbuf_snd(struct socket *so)
3617 {
3618 
3619 	return (&so->so_snd);
3620 }
3621 
3622 int
3623 so_state_get(const struct socket *so)
3624 {
3625 
3626 	return (so->so_state);
3627 }
3628 
3629 void
3630 so_state_set(struct socket *so, int val)
3631 {
3632 
3633 	so->so_state = val;
3634 }
3635 
3636 int
3637 so_options_get(const struct socket *so)
3638 {
3639 
3640 	return (so->so_options);
3641 }
3642 
3643 void
3644 so_options_set(struct socket *so, int val)
3645 {
3646 
3647 	so->so_options = val;
3648 }
3649 
3650 int
3651 so_error_get(const struct socket *so)
3652 {
3653 
3654 	return (so->so_error);
3655 }
3656 
3657 void
3658 so_error_set(struct socket *so, int val)
3659 {
3660 
3661 	so->so_error = val;
3662 }
3663 
3664 int
3665 so_linger_get(const struct socket *so)
3666 {
3667 
3668 	return (so->so_linger);
3669 }
3670 
3671 void
3672 so_linger_set(struct socket *so, int val)
3673 {
3674 
3675 	so->so_linger = val;
3676 }
3677 
3678 struct protosw *
3679 so_protosw_get(const struct socket *so)
3680 {
3681 
3682 	return (so->so_proto);
3683 }
3684 
3685 void
3686 so_protosw_set(struct socket *so, struct protosw *val)
3687 {
3688 
3689 	so->so_proto = val;
3690 }
3691 
3692 void
3693 so_sorwakeup(struct socket *so)
3694 {
3695 
3696 	sorwakeup(so);
3697 }
3698 
3699 void
3700 so_sowwakeup(struct socket *so)
3701 {
3702 
3703 	sowwakeup(so);
3704 }
3705 
3706 void
3707 so_sorwakeup_locked(struct socket *so)
3708 {
3709 
3710 	sorwakeup_locked(so);
3711 }
3712 
3713 void
3714 so_sowwakeup_locked(struct socket *so)
3715 {
3716 
3717 	sowwakeup_locked(so);
3718 }
3719 
3720 void
3721 so_lock(struct socket *so)
3722 {
3723 
3724 	SOCK_LOCK(so);
3725 }
3726 
3727 void
3728 so_unlock(struct socket *so)
3729 {
3730 
3731 	SOCK_UNLOCK(so);
3732 }
3733