1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. 6 * Copyright (c) 2004 The FreeBSD Foundation 7 * Copyright (c) 2004-2008 Robert N. M. Watson 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 /* 36 * Comments on the socket life cycle: 37 * 38 * soalloc() sets of socket layer state for a socket, called only by 39 * socreate() and sonewconn(). Socket layer private. 40 * 41 * sodealloc() tears down socket layer state for a socket, called only by 42 * sofree() and sonewconn(). Socket layer private. 43 * 44 * pru_attach() associates protocol layer state with an allocated socket; 45 * called only once, may fail, aborting socket allocation. This is called 46 * from socreate() and sonewconn(). Socket layer private. 47 * 48 * pru_detach() disassociates protocol layer state from an attached socket, 49 * and will be called exactly once for sockets in which pru_attach() has 50 * been successfully called. If pru_attach() returned an error, 51 * pru_detach() will not be called. Socket layer private. 52 * 53 * pru_abort() and pru_close() notify the protocol layer that the last 54 * consumer of a socket is starting to tear down the socket, and that the 55 * protocol should terminate the connection. Historically, pru_abort() also 56 * detached protocol state from the socket state, but this is no longer the 57 * case. 58 * 59 * socreate() creates a socket and attaches protocol state. This is a public 60 * interface that may be used by socket layer consumers to create new 61 * sockets. 62 * 63 * sonewconn() creates a socket and attaches protocol state. This is a 64 * public interface that may be used by protocols to create new sockets when 65 * a new connection is received and will be available for accept() on a 66 * listen socket. 67 * 68 * soclose() destroys a socket after possibly waiting for it to disconnect. 69 * This is a public interface that socket consumers should use to close and 70 * release a socket when done with it. 71 * 72 * soabort() destroys a socket without waiting for it to disconnect (used 73 * only for incoming connections that are already partially or fully 74 * connected). This is used internally by the socket layer when clearing 75 * listen socket queues (due to overflow or close on the listen socket), but 76 * is also a public interface protocols may use to abort connections in 77 * their incomplete listen queues should they no longer be required. Sockets 78 * placed in completed connection listen queues should not be aborted for 79 * reasons described in the comment above the soclose() implementation. This 80 * is not a general purpose close routine, and except in the specific 81 * circumstances described here, should not be used. 82 * 83 * sofree() will free a socket and its protocol state if all references on 84 * the socket have been released, and is the public interface to attempt to 85 * free a socket when a reference is removed. This is a socket layer private 86 * interface. 87 * 88 * NOTE: In addition to socreate() and soclose(), which provide a single 89 * socket reference to the consumer to be managed as required, there are two 90 * calls to explicitly manage socket references, soref(), and sorele(). 91 * Currently, these are generally required only when transitioning a socket 92 * from a listen queue to a file descriptor, in order to prevent garbage 93 * collection of the socket at an untimely moment. For a number of reasons, 94 * these interfaces are not preferred, and should be avoided. 95 * 96 * NOTE: With regard to VNETs the general rule is that callers do not set 97 * curvnet. Exceptions to this rule include soabort(), sodisconnect(), 98 * sofree(), sorele(), sonewconn() and sorflush(), which are usually called 99 * from a pre-set VNET context. sopoll() currently does not need a VNET 100 * context to be set. 101 */ 102 103 #include <sys/cdefs.h> 104 #include "opt_inet.h" 105 #include "opt_inet6.h" 106 #include "opt_kern_tls.h" 107 #include "opt_sctp.h" 108 109 #include <sys/param.h> 110 #include <sys/systm.h> 111 #include <sys/capsicum.h> 112 #include <sys/fcntl.h> 113 #include <sys/limits.h> 114 #include <sys/lock.h> 115 #include <sys/mac.h> 116 #include <sys/malloc.h> 117 #include <sys/mbuf.h> 118 #include <sys/mutex.h> 119 #include <sys/domain.h> 120 #include <sys/file.h> /* for struct knote */ 121 #include <sys/hhook.h> 122 #include <sys/kernel.h> 123 #include <sys/khelp.h> 124 #include <sys/ktls.h> 125 #include <sys/event.h> 126 #include <sys/eventhandler.h> 127 #include <sys/poll.h> 128 #include <sys/proc.h> 129 #include <sys/protosw.h> 130 #include <sys/sbuf.h> 131 #include <sys/socket.h> 132 #include <sys/socketvar.h> 133 #include <sys/resourcevar.h> 134 #include <net/route.h> 135 #include <sys/signalvar.h> 136 #include <sys/stat.h> 137 #include <sys/sx.h> 138 #include <sys/sysctl.h> 139 #include <sys/taskqueue.h> 140 #include <sys/uio.h> 141 #include <sys/un.h> 142 #include <sys/unpcb.h> 143 #include <sys/jail.h> 144 #include <sys/syslog.h> 145 #include <netinet/in.h> 146 #include <netinet/in_pcb.h> 147 #include <netinet/tcp.h> 148 149 #include <net/vnet.h> 150 151 #include <security/mac/mac_framework.h> 152 153 #include <vm/uma.h> 154 155 #ifdef COMPAT_FREEBSD32 156 #include <sys/mount.h> 157 #include <sys/sysent.h> 158 #include <compat/freebsd32/freebsd32.h> 159 #endif 160 161 static int soreceive_rcvoob(struct socket *so, struct uio *uio, 162 int flags); 163 static void so_rdknl_lock(void *); 164 static void so_rdknl_unlock(void *); 165 static void so_rdknl_assert_lock(void *, int); 166 static void so_wrknl_lock(void *); 167 static void so_wrknl_unlock(void *); 168 static void so_wrknl_assert_lock(void *, int); 169 170 static void filt_sordetach(struct knote *kn); 171 static int filt_soread(struct knote *kn, long hint); 172 static void filt_sowdetach(struct knote *kn); 173 static int filt_sowrite(struct knote *kn, long hint); 174 static int filt_soempty(struct knote *kn, long hint); 175 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id); 176 fo_kqfilter_t soo_kqfilter; 177 178 static struct filterops soread_filtops = { 179 .f_isfd = 1, 180 .f_detach = filt_sordetach, 181 .f_event = filt_soread, 182 }; 183 static struct filterops sowrite_filtops = { 184 .f_isfd = 1, 185 .f_detach = filt_sowdetach, 186 .f_event = filt_sowrite, 187 }; 188 static struct filterops soempty_filtops = { 189 .f_isfd = 1, 190 .f_detach = filt_sowdetach, 191 .f_event = filt_soempty, 192 }; 193 194 so_gen_t so_gencnt; /* generation count for sockets */ 195 196 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 197 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 198 199 #define VNET_SO_ASSERT(so) \ 200 VNET_ASSERT(curvnet != NULL, \ 201 ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so))); 202 203 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]); 204 #define V_socket_hhh VNET(socket_hhh) 205 206 /* 207 * Limit on the number of connections in the listen queue waiting 208 * for accept(2). 209 * NB: The original sysctl somaxconn is still available but hidden 210 * to prevent confusion about the actual purpose of this number. 211 */ 212 static u_int somaxconn = SOMAXCONN; 213 214 static int 215 sysctl_somaxconn(SYSCTL_HANDLER_ARGS) 216 { 217 int error; 218 int val; 219 220 val = somaxconn; 221 error = sysctl_handle_int(oidp, &val, 0, req); 222 if (error || !req->newptr ) 223 return (error); 224 225 /* 226 * The purpose of the UINT_MAX / 3 limit, is so that the formula 227 * 3 * so_qlimit / 2 228 * below, will not overflow. 229 */ 230 231 if (val < 1 || val > UINT_MAX / 3) 232 return (EINVAL); 233 234 somaxconn = val; 235 return (0); 236 } 237 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue, 238 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, sizeof(int), 239 sysctl_somaxconn, "I", 240 "Maximum listen socket pending connection accept queue size"); 241 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, 242 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE, 0, 243 sizeof(int), sysctl_somaxconn, "I", 244 "Maximum listen socket pending connection accept queue size (compat)"); 245 246 static int numopensockets; 247 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, 248 &numopensockets, 0, "Number of open sockets"); 249 250 /* 251 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket 252 * so_gencnt field. 253 */ 254 static struct mtx so_global_mtx; 255 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); 256 257 /* 258 * General IPC sysctl name space, used by sockets and a variety of other IPC 259 * types. 260 */ 261 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 262 "IPC"); 263 264 /* 265 * Initialize the socket subsystem and set up the socket 266 * memory allocator. 267 */ 268 static uma_zone_t socket_zone; 269 int maxsockets; 270 271 static void 272 socket_zone_change(void *tag) 273 { 274 275 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 276 } 277 278 static void 279 socket_hhook_register(int subtype) 280 { 281 282 if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype, 283 &V_socket_hhh[subtype], 284 HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 285 printf("%s: WARNING: unable to register hook\n", __func__); 286 } 287 288 static void 289 socket_hhook_deregister(int subtype) 290 { 291 292 if (hhook_head_deregister(V_socket_hhh[subtype]) != 0) 293 printf("%s: WARNING: unable to deregister hook\n", __func__); 294 } 295 296 static void 297 socket_init(void *tag) 298 { 299 300 socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL, 301 NULL, NULL, UMA_ALIGN_PTR, 0); 302 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 303 uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached"); 304 EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL, 305 EVENTHANDLER_PRI_FIRST); 306 } 307 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL); 308 309 static void 310 socket_vnet_init(const void *unused __unused) 311 { 312 int i; 313 314 /* We expect a contiguous range */ 315 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 316 socket_hhook_register(i); 317 } 318 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 319 socket_vnet_init, NULL); 320 321 static void 322 socket_vnet_uninit(const void *unused __unused) 323 { 324 int i; 325 326 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 327 socket_hhook_deregister(i); 328 } 329 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 330 socket_vnet_uninit, NULL); 331 332 /* 333 * Initialise maxsockets. This SYSINIT must be run after 334 * tunable_mbinit(). 335 */ 336 static void 337 init_maxsockets(void *ignored) 338 { 339 340 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 341 maxsockets = imax(maxsockets, maxfiles); 342 } 343 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 344 345 /* 346 * Sysctl to get and set the maximum global sockets limit. Notify protocols 347 * of the change so that they can update their dependent limits as required. 348 */ 349 static int 350 sysctl_maxsockets(SYSCTL_HANDLER_ARGS) 351 { 352 int error, newmaxsockets; 353 354 newmaxsockets = maxsockets; 355 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req); 356 if (error == 0 && req->newptr && newmaxsockets != maxsockets) { 357 if (newmaxsockets > maxsockets && 358 newmaxsockets <= maxfiles) { 359 maxsockets = newmaxsockets; 360 EVENTHANDLER_INVOKE(maxsockets_change); 361 } else 362 error = EINVAL; 363 } 364 return (error); 365 } 366 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, 367 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE, 368 &maxsockets, 0, sysctl_maxsockets, "IU", 369 "Maximum number of sockets available"); 370 371 /* 372 * Socket operation routines. These routines are called by the routines in 373 * sys_socket.c or from a system process, and implement the semantics of 374 * socket operations by switching out to the protocol specific routines. 375 */ 376 377 /* 378 * Get a socket structure from our zone, and initialize it. Note that it 379 * would probably be better to allocate socket and PCB at the same time, but 380 * I'm not convinced that all the protocols can be easily modified to do 381 * this. 382 * 383 * soalloc() returns a socket with a ref count of 0. 384 */ 385 static struct socket * 386 soalloc(struct vnet *vnet) 387 { 388 struct socket *so; 389 390 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO); 391 if (so == NULL) 392 return (NULL); 393 #ifdef MAC 394 if (mac_socket_init(so, M_NOWAIT) != 0) { 395 uma_zfree(socket_zone, so); 396 return (NULL); 397 } 398 #endif 399 if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) { 400 uma_zfree(socket_zone, so); 401 return (NULL); 402 } 403 404 /* 405 * The socket locking protocol allows to lock 2 sockets at a time, 406 * however, the first one must be a listening socket. WITNESS lacks 407 * a feature to change class of an existing lock, so we use DUPOK. 408 */ 409 mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK); 410 mtx_init(&so->so_snd_mtx, "so_snd", NULL, MTX_DEF); 411 mtx_init(&so->so_rcv_mtx, "so_rcv", NULL, MTX_DEF); 412 so->so_rcv.sb_sel = &so->so_rdsel; 413 so->so_snd.sb_sel = &so->so_wrsel; 414 sx_init(&so->so_snd_sx, "so_snd_sx"); 415 sx_init(&so->so_rcv_sx, "so_rcv_sx"); 416 TAILQ_INIT(&so->so_snd.sb_aiojobq); 417 TAILQ_INIT(&so->so_rcv.sb_aiojobq); 418 TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so); 419 TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so); 420 #ifdef VIMAGE 421 VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p", 422 __func__, __LINE__, so)); 423 so->so_vnet = vnet; 424 #endif 425 /* We shouldn't need the so_global_mtx */ 426 if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) { 427 /* Do we need more comprehensive error returns? */ 428 uma_zfree(socket_zone, so); 429 return (NULL); 430 } 431 mtx_lock(&so_global_mtx); 432 so->so_gencnt = ++so_gencnt; 433 ++numopensockets; 434 #ifdef VIMAGE 435 vnet->vnet_sockcnt++; 436 #endif 437 mtx_unlock(&so_global_mtx); 438 439 return (so); 440 } 441 442 /* 443 * Free the storage associated with a socket at the socket layer, tear down 444 * locks, labels, etc. All protocol state is assumed already to have been 445 * torn down (and possibly never set up) by the caller. 446 */ 447 void 448 sodealloc(struct socket *so) 449 { 450 451 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); 452 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL")); 453 454 mtx_lock(&so_global_mtx); 455 so->so_gencnt = ++so_gencnt; 456 --numopensockets; /* Could be below, but faster here. */ 457 #ifdef VIMAGE 458 VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p", 459 __func__, __LINE__, so)); 460 so->so_vnet->vnet_sockcnt--; 461 #endif 462 mtx_unlock(&so_global_mtx); 463 #ifdef MAC 464 mac_socket_destroy(so); 465 #endif 466 hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE); 467 468 khelp_destroy_osd(&so->osd); 469 if (SOLISTENING(so)) { 470 if (so->sol_accept_filter != NULL) 471 accept_filt_setopt(so, NULL); 472 } else { 473 if (so->so_rcv.sb_hiwat) 474 (void)chgsbsize(so->so_cred->cr_uidinfo, 475 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 476 if (so->so_snd.sb_hiwat) 477 (void)chgsbsize(so->so_cred->cr_uidinfo, 478 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 479 sx_destroy(&so->so_snd_sx); 480 sx_destroy(&so->so_rcv_sx); 481 mtx_destroy(&so->so_snd_mtx); 482 mtx_destroy(&so->so_rcv_mtx); 483 } 484 crfree(so->so_cred); 485 mtx_destroy(&so->so_lock); 486 uma_zfree(socket_zone, so); 487 } 488 489 /* 490 * socreate returns a socket with a ref count of 1 and a file descriptor 491 * reference. The socket should be closed with soclose(). 492 */ 493 int 494 socreate(int dom, struct socket **aso, int type, int proto, 495 struct ucred *cred, struct thread *td) 496 { 497 struct protosw *prp; 498 struct socket *so; 499 int error; 500 501 /* 502 * XXX: divert(4) historically abused PF_INET. Keep this compatibility 503 * shim until all applications have been updated. 504 */ 505 if (__predict_false(dom == PF_INET && type == SOCK_RAW && 506 proto == IPPROTO_DIVERT)) { 507 dom = PF_DIVERT; 508 printf("%s uses obsolete way to create divert(4) socket\n", 509 td->td_proc->p_comm); 510 } 511 512 prp = pffindproto(dom, type, proto); 513 if (prp == NULL) { 514 /* No support for domain. */ 515 if (pffinddomain(dom) == NULL) 516 return (EAFNOSUPPORT); 517 /* No support for socket type. */ 518 if (proto == 0 && type != 0) 519 return (EPROTOTYPE); 520 return (EPROTONOSUPPORT); 521 } 522 523 MPASS(prp->pr_attach); 524 525 if (IN_CAPABILITY_MODE(td) && (prp->pr_flags & PR_CAPATTACH) == 0) 526 return (ECAPMODE); 527 528 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0) 529 return (EPROTONOSUPPORT); 530 531 so = soalloc(CRED_TO_VNET(cred)); 532 if (so == NULL) 533 return (ENOBUFS); 534 535 so->so_type = type; 536 so->so_cred = crhold(cred); 537 if ((prp->pr_domain->dom_family == PF_INET) || 538 (prp->pr_domain->dom_family == PF_INET6) || 539 (prp->pr_domain->dom_family == PF_ROUTE)) 540 so->so_fibnum = td->td_proc->p_fibnum; 541 else 542 so->so_fibnum = 0; 543 so->so_proto = prp; 544 #ifdef MAC 545 mac_socket_create(cred, so); 546 #endif 547 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 548 so_rdknl_assert_lock); 549 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 550 so_wrknl_assert_lock); 551 if ((prp->pr_flags & PR_SOCKBUF) == 0) { 552 so->so_snd.sb_mtx = &so->so_snd_mtx; 553 so->so_rcv.sb_mtx = &so->so_rcv_mtx; 554 } 555 /* 556 * Auto-sizing of socket buffers is managed by the protocols and 557 * the appropriate flags must be set in the pru_attach function. 558 */ 559 CURVNET_SET(so->so_vnet); 560 error = prp->pr_attach(so, proto, td); 561 CURVNET_RESTORE(); 562 if (error) { 563 sodealloc(so); 564 return (error); 565 } 566 soref(so); 567 *aso = so; 568 return (0); 569 } 570 571 #ifdef REGRESSION 572 static int regression_sonewconn_earlytest = 1; 573 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW, 574 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test"); 575 #endif 576 577 static int sooverprio = LOG_DEBUG; 578 SYSCTL_INT(_kern_ipc, OID_AUTO, sooverprio, CTLFLAG_RW, 579 &sooverprio, 0, "Log priority for listen socket overflows: 0..7 or -1 to disable"); 580 581 static struct timeval overinterval = { 60, 0 }; 582 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW, 583 &overinterval, 584 "Delay in seconds between warnings for listen socket overflows"); 585 586 /* 587 * When an attempt at a new connection is noted on a socket which supports 588 * accept(2), the protocol has two options: 589 * 1) Call legacy sonewconn() function, which would call protocol attach 590 * method, same as used for socket(2). 591 * 2) Call solisten_clone(), do attach that is specific to a cloned connection, 592 * and then call solisten_enqueue(). 593 * 594 * Note: the ref count on the socket is 0 on return. 595 */ 596 struct socket * 597 solisten_clone(struct socket *head) 598 { 599 struct sbuf descrsb; 600 struct socket *so; 601 int len, overcount; 602 u_int qlen; 603 const char localprefix[] = "local:"; 604 char descrbuf[SUNPATHLEN + sizeof(localprefix)]; 605 #if defined(INET6) 606 char addrbuf[INET6_ADDRSTRLEN]; 607 #elif defined(INET) 608 char addrbuf[INET_ADDRSTRLEN]; 609 #endif 610 bool dolog, over; 611 612 SOLISTEN_LOCK(head); 613 over = (head->sol_qlen > 3 * head->sol_qlimit / 2); 614 #ifdef REGRESSION 615 if (regression_sonewconn_earlytest && over) { 616 #else 617 if (over) { 618 #endif 619 head->sol_overcount++; 620 dolog = (sooverprio >= 0) && 621 !!ratecheck(&head->sol_lastover, &overinterval); 622 623 /* 624 * If we're going to log, copy the overflow count and queue 625 * length from the listen socket before dropping the lock. 626 * Also, reset the overflow count. 627 */ 628 if (dolog) { 629 overcount = head->sol_overcount; 630 head->sol_overcount = 0; 631 qlen = head->sol_qlen; 632 } 633 SOLISTEN_UNLOCK(head); 634 635 if (dolog) { 636 /* 637 * Try to print something descriptive about the 638 * socket for the error message. 639 */ 640 sbuf_new(&descrsb, descrbuf, sizeof(descrbuf), 641 SBUF_FIXEDLEN); 642 switch (head->so_proto->pr_domain->dom_family) { 643 #if defined(INET) || defined(INET6) 644 #ifdef INET 645 case AF_INET: 646 #endif 647 #ifdef INET6 648 case AF_INET6: 649 if (head->so_proto->pr_domain->dom_family == 650 AF_INET6 || 651 (sotoinpcb(head)->inp_inc.inc_flags & 652 INC_ISIPV6)) { 653 ip6_sprintf(addrbuf, 654 &sotoinpcb(head)->inp_inc.inc6_laddr); 655 sbuf_printf(&descrsb, "[%s]", addrbuf); 656 } else 657 #endif 658 { 659 #ifdef INET 660 inet_ntoa_r( 661 sotoinpcb(head)->inp_inc.inc_laddr, 662 addrbuf); 663 sbuf_cat(&descrsb, addrbuf); 664 #endif 665 } 666 sbuf_printf(&descrsb, ":%hu (proto %u)", 667 ntohs(sotoinpcb(head)->inp_inc.inc_lport), 668 head->so_proto->pr_protocol); 669 break; 670 #endif /* INET || INET6 */ 671 case AF_UNIX: 672 sbuf_cat(&descrsb, localprefix); 673 if (sotounpcb(head)->unp_addr != NULL) 674 len = 675 sotounpcb(head)->unp_addr->sun_len - 676 offsetof(struct sockaddr_un, 677 sun_path); 678 else 679 len = 0; 680 if (len > 0) 681 sbuf_bcat(&descrsb, 682 sotounpcb(head)->unp_addr->sun_path, 683 len); 684 else 685 sbuf_cat(&descrsb, "(unknown)"); 686 break; 687 } 688 689 /* 690 * If we can't print something more specific, at least 691 * print the domain name. 692 */ 693 if (sbuf_finish(&descrsb) != 0 || 694 sbuf_len(&descrsb) <= 0) { 695 sbuf_clear(&descrsb); 696 sbuf_cat(&descrsb, 697 head->so_proto->pr_domain->dom_name ?: 698 "unknown"); 699 sbuf_finish(&descrsb); 700 } 701 KASSERT(sbuf_len(&descrsb) > 0, 702 ("%s: sbuf creation failed", __func__)); 703 /* 704 * Preserve the historic listen queue overflow log 705 * message, that starts with "sonewconn:". It has 706 * been known to sysadmins for years and also test 707 * sys/kern/sonewconn_overflow checks for it. 708 */ 709 if (head->so_cred == 0) { 710 log(LOG_PRI(sooverprio), 711 "sonewconn: pcb %p (%s): " 712 "Listen queue overflow: %i already in " 713 "queue awaiting acceptance (%d " 714 "occurrences)\n", head->so_pcb, 715 sbuf_data(&descrsb), 716 qlen, overcount); 717 } else { 718 log(LOG_PRI(sooverprio), 719 "sonewconn: pcb %p (%s): " 720 "Listen queue overflow: " 721 "%i already in queue awaiting acceptance " 722 "(%d occurrences), euid %d, rgid %d, jail %s\n", 723 head->so_pcb, sbuf_data(&descrsb), qlen, 724 overcount, head->so_cred->cr_uid, 725 head->so_cred->cr_rgid, 726 head->so_cred->cr_prison ? 727 head->so_cred->cr_prison->pr_name : 728 "not_jailed"); 729 } 730 sbuf_delete(&descrsb); 731 732 overcount = 0; 733 } 734 735 return (NULL); 736 } 737 SOLISTEN_UNLOCK(head); 738 VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL", 739 __func__, head)); 740 so = soalloc(head->so_vnet); 741 if (so == NULL) { 742 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 743 "limit reached or out of memory\n", 744 __func__, head->so_pcb); 745 return (NULL); 746 } 747 so->so_listen = head; 748 so->so_type = head->so_type; 749 /* 750 * POSIX is ambiguous on what options an accept(2)ed socket should 751 * inherit from the listener. Words "create a new socket" may be 752 * interpreted as not inheriting anything. Best programming practice 753 * for application developers is to not rely on such inheritance. 754 * FreeBSD had historically inherited all so_options excluding 755 * SO_ACCEPTCONN, which virtually means all SOL_SOCKET level options, 756 * including those completely irrelevant to a new born socket. For 757 * compatibility with older versions we will inherit a list of 758 * meaningful options. 759 */ 760 so->so_options = head->so_options & (SO_KEEPALIVE | SO_DONTROUTE | 761 SO_LINGER | SO_OOBINLINE | SO_NOSIGPIPE); 762 so->so_linger = head->so_linger; 763 so->so_state = head->so_state; 764 so->so_fibnum = head->so_fibnum; 765 so->so_proto = head->so_proto; 766 so->so_cred = crhold(head->so_cred); 767 #ifdef MAC 768 mac_socket_newconn(head, so); 769 #endif 770 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 771 so_rdknl_assert_lock); 772 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 773 so_wrknl_assert_lock); 774 VNET_SO_ASSERT(head); 775 if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) { 776 sodealloc(so); 777 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 778 __func__, head->so_pcb); 779 return (NULL); 780 } 781 so->so_rcv.sb_lowat = head->sol_sbrcv_lowat; 782 so->so_snd.sb_lowat = head->sol_sbsnd_lowat; 783 so->so_rcv.sb_timeo = head->sol_sbrcv_timeo; 784 so->so_snd.sb_timeo = head->sol_sbsnd_timeo; 785 so->so_rcv.sb_flags = head->sol_sbrcv_flags & SB_AUTOSIZE; 786 so->so_snd.sb_flags = head->sol_sbsnd_flags & SB_AUTOSIZE; 787 if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) { 788 so->so_snd.sb_mtx = &so->so_snd_mtx; 789 so->so_rcv.sb_mtx = &so->so_rcv_mtx; 790 } 791 792 return (so); 793 } 794 795 /* Connstatus may be 0 or SS_ISCONNECTED. */ 796 struct socket * 797 sonewconn(struct socket *head, int connstatus) 798 { 799 struct socket *so; 800 801 if ((so = solisten_clone(head)) == NULL) 802 return (NULL); 803 804 if (so->so_proto->pr_attach(so, 0, NULL) != 0) { 805 sodealloc(so); 806 log(LOG_DEBUG, "%s: pcb %p: pr_attach() failed\n", 807 __func__, head->so_pcb); 808 return (NULL); 809 } 810 811 (void)solisten_enqueue(so, connstatus); 812 813 return (so); 814 } 815 816 /* 817 * Enqueue socket cloned by solisten_clone() to the listen queue of the 818 * listener it has been cloned from. 819 * 820 * Return 'true' if socket landed on complete queue, otherwise 'false'. 821 */ 822 bool 823 solisten_enqueue(struct socket *so, int connstatus) 824 { 825 struct socket *head = so->so_listen; 826 827 MPASS(refcount_load(&so->so_count) == 0); 828 refcount_init(&so->so_count, 1); 829 830 SOLISTEN_LOCK(head); 831 if (head->sol_accept_filter != NULL) 832 connstatus = 0; 833 so->so_state |= connstatus; 834 soref(head); /* A socket on (in)complete queue refs head. */ 835 if (connstatus) { 836 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 837 so->so_qstate = SQ_COMP; 838 head->sol_qlen++; 839 solisten_wakeup(head); /* unlocks */ 840 return (true); 841 } else { 842 /* 843 * Keep removing sockets from the head until there's room for 844 * us to insert on the tail. In pre-locking revisions, this 845 * was a simple if(), but as we could be racing with other 846 * threads and soabort() requires dropping locks, we must 847 * loop waiting for the condition to be true. 848 */ 849 while (head->sol_incqlen > head->sol_qlimit) { 850 struct socket *sp; 851 852 sp = TAILQ_FIRST(&head->sol_incomp); 853 TAILQ_REMOVE(&head->sol_incomp, sp, so_list); 854 head->sol_incqlen--; 855 SOCK_LOCK(sp); 856 sp->so_qstate = SQ_NONE; 857 sp->so_listen = NULL; 858 SOCK_UNLOCK(sp); 859 sorele_locked(head); /* does SOLISTEN_UNLOCK, head stays */ 860 soabort(sp); 861 SOLISTEN_LOCK(head); 862 } 863 TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list); 864 so->so_qstate = SQ_INCOMP; 865 head->sol_incqlen++; 866 SOLISTEN_UNLOCK(head); 867 return (false); 868 } 869 } 870 871 #if defined(SCTP) || defined(SCTP_SUPPORT) 872 /* 873 * Socket part of sctp_peeloff(). Detach a new socket from an 874 * association. The new socket is returned with a reference. 875 * 876 * XXXGL: reduce copy-paste with solisten_clone(). 877 */ 878 struct socket * 879 sopeeloff(struct socket *head) 880 { 881 struct socket *so; 882 883 VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p", 884 __func__, __LINE__, head)); 885 so = soalloc(head->so_vnet); 886 if (so == NULL) { 887 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 888 "limit reached or out of memory\n", 889 __func__, head->so_pcb); 890 return (NULL); 891 } 892 so->so_type = head->so_type; 893 so->so_options = head->so_options; 894 so->so_linger = head->so_linger; 895 so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED; 896 so->so_fibnum = head->so_fibnum; 897 so->so_proto = head->so_proto; 898 so->so_cred = crhold(head->so_cred); 899 #ifdef MAC 900 mac_socket_newconn(head, so); 901 #endif 902 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 903 so_rdknl_assert_lock); 904 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 905 so_wrknl_assert_lock); 906 VNET_SO_ASSERT(head); 907 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) { 908 sodealloc(so); 909 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 910 __func__, head->so_pcb); 911 return (NULL); 912 } 913 if ((*so->so_proto->pr_attach)(so, 0, NULL)) { 914 sodealloc(so); 915 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", 916 __func__, head->so_pcb); 917 return (NULL); 918 } 919 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; 920 so->so_snd.sb_lowat = head->so_snd.sb_lowat; 921 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; 922 so->so_snd.sb_timeo = head->so_snd.sb_timeo; 923 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE; 924 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE; 925 926 soref(so); 927 928 return (so); 929 } 930 #endif /* SCTP */ 931 932 int 933 sobind(struct socket *so, struct sockaddr *nam, struct thread *td) 934 { 935 int error; 936 937 CURVNET_SET(so->so_vnet); 938 error = so->so_proto->pr_bind(so, nam, td); 939 CURVNET_RESTORE(); 940 return (error); 941 } 942 943 int 944 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 945 { 946 int error; 947 948 CURVNET_SET(so->so_vnet); 949 error = so->so_proto->pr_bindat(fd, so, nam, td); 950 CURVNET_RESTORE(); 951 return (error); 952 } 953 954 /* 955 * solisten() transitions a socket from a non-listening state to a listening 956 * state, but can also be used to update the listen queue depth on an 957 * existing listen socket. The protocol will call back into the sockets 958 * layer using solisten_proto_check() and solisten_proto() to check and set 959 * socket-layer listen state. Call backs are used so that the protocol can 960 * acquire both protocol and socket layer locks in whatever order is required 961 * by the protocol. 962 * 963 * Protocol implementors are advised to hold the socket lock across the 964 * socket-layer test and set to avoid races at the socket layer. 965 */ 966 int 967 solisten(struct socket *so, int backlog, struct thread *td) 968 { 969 int error; 970 971 CURVNET_SET(so->so_vnet); 972 error = so->so_proto->pr_listen(so, backlog, td); 973 CURVNET_RESTORE(); 974 return (error); 975 } 976 977 /* 978 * Prepare for a call to solisten_proto(). Acquire all socket buffer locks in 979 * order to interlock with socket I/O. 980 */ 981 int 982 solisten_proto_check(struct socket *so) 983 { 984 SOCK_LOCK_ASSERT(so); 985 986 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 987 SS_ISDISCONNECTING)) != 0) 988 return (EINVAL); 989 990 /* 991 * Sleeping is not permitted here, so simply fail if userspace is 992 * attempting to transmit or receive on the socket. This kind of 993 * transient failure is not ideal, but it should occur only if userspace 994 * is misusing the socket interfaces. 995 */ 996 if (!sx_try_xlock(&so->so_snd_sx)) 997 return (EAGAIN); 998 if (!sx_try_xlock(&so->so_rcv_sx)) { 999 sx_xunlock(&so->so_snd_sx); 1000 return (EAGAIN); 1001 } 1002 mtx_lock(&so->so_snd_mtx); 1003 mtx_lock(&so->so_rcv_mtx); 1004 1005 /* Interlock with soo_aio_queue() and KTLS. */ 1006 if (!SOLISTENING(so)) { 1007 bool ktls; 1008 1009 #ifdef KERN_TLS 1010 ktls = so->so_snd.sb_tls_info != NULL || 1011 so->so_rcv.sb_tls_info != NULL; 1012 #else 1013 ktls = false; 1014 #endif 1015 if (ktls || 1016 (so->so_snd.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0 || 1017 (so->so_rcv.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0) { 1018 solisten_proto_abort(so); 1019 return (EINVAL); 1020 } 1021 } 1022 1023 return (0); 1024 } 1025 1026 /* 1027 * Undo the setup done by solisten_proto_check(). 1028 */ 1029 void 1030 solisten_proto_abort(struct socket *so) 1031 { 1032 mtx_unlock(&so->so_snd_mtx); 1033 mtx_unlock(&so->so_rcv_mtx); 1034 sx_xunlock(&so->so_snd_sx); 1035 sx_xunlock(&so->so_rcv_sx); 1036 } 1037 1038 void 1039 solisten_proto(struct socket *so, int backlog) 1040 { 1041 int sbrcv_lowat, sbsnd_lowat; 1042 u_int sbrcv_hiwat, sbsnd_hiwat; 1043 short sbrcv_flags, sbsnd_flags; 1044 sbintime_t sbrcv_timeo, sbsnd_timeo; 1045 1046 SOCK_LOCK_ASSERT(so); 1047 KASSERT((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 1048 SS_ISDISCONNECTING)) == 0, 1049 ("%s: bad socket state %p", __func__, so)); 1050 1051 if (SOLISTENING(so)) 1052 goto listening; 1053 1054 /* 1055 * Change this socket to listening state. 1056 */ 1057 sbrcv_lowat = so->so_rcv.sb_lowat; 1058 sbsnd_lowat = so->so_snd.sb_lowat; 1059 sbrcv_hiwat = so->so_rcv.sb_hiwat; 1060 sbsnd_hiwat = so->so_snd.sb_hiwat; 1061 sbrcv_flags = so->so_rcv.sb_flags; 1062 sbsnd_flags = so->so_snd.sb_flags; 1063 sbrcv_timeo = so->so_rcv.sb_timeo; 1064 sbsnd_timeo = so->so_snd.sb_timeo; 1065 1066 if (!(so->so_proto->pr_flags & PR_SOCKBUF)) { 1067 sbdestroy(so, SO_SND); 1068 sbdestroy(so, SO_RCV); 1069 } 1070 1071 #ifdef INVARIANTS 1072 bzero(&so->so_rcv, 1073 sizeof(struct socket) - offsetof(struct socket, so_rcv)); 1074 #endif 1075 1076 so->sol_sbrcv_lowat = sbrcv_lowat; 1077 so->sol_sbsnd_lowat = sbsnd_lowat; 1078 so->sol_sbrcv_hiwat = sbrcv_hiwat; 1079 so->sol_sbsnd_hiwat = sbsnd_hiwat; 1080 so->sol_sbrcv_flags = sbrcv_flags; 1081 so->sol_sbsnd_flags = sbsnd_flags; 1082 so->sol_sbrcv_timeo = sbrcv_timeo; 1083 so->sol_sbsnd_timeo = sbsnd_timeo; 1084 1085 so->sol_qlen = so->sol_incqlen = 0; 1086 TAILQ_INIT(&so->sol_incomp); 1087 TAILQ_INIT(&so->sol_comp); 1088 1089 so->sol_accept_filter = NULL; 1090 so->sol_accept_filter_arg = NULL; 1091 so->sol_accept_filter_str = NULL; 1092 1093 so->sol_upcall = NULL; 1094 so->sol_upcallarg = NULL; 1095 1096 so->so_options |= SO_ACCEPTCONN; 1097 1098 listening: 1099 if (backlog < 0 || backlog > somaxconn) 1100 backlog = somaxconn; 1101 so->sol_qlimit = backlog; 1102 1103 mtx_unlock(&so->so_snd_mtx); 1104 mtx_unlock(&so->so_rcv_mtx); 1105 sx_xunlock(&so->so_snd_sx); 1106 sx_xunlock(&so->so_rcv_sx); 1107 } 1108 1109 /* 1110 * Wakeup listeners/subsystems once we have a complete connection. 1111 * Enters with lock, returns unlocked. 1112 */ 1113 void 1114 solisten_wakeup(struct socket *sol) 1115 { 1116 1117 if (sol->sol_upcall != NULL) 1118 (void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT); 1119 else { 1120 selwakeuppri(&sol->so_rdsel, PSOCK); 1121 KNOTE_LOCKED(&sol->so_rdsel.si_note, 0); 1122 } 1123 SOLISTEN_UNLOCK(sol); 1124 wakeup_one(&sol->sol_comp); 1125 if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL) 1126 pgsigio(&sol->so_sigio, SIGIO, 0); 1127 } 1128 1129 /* 1130 * Return single connection off a listening socket queue. Main consumer of 1131 * the function is kern_accept4(). Some modules, that do their own accept 1132 * management also use the function. The socket reference held by the 1133 * listen queue is handed to the caller. 1134 * 1135 * Listening socket must be locked on entry and is returned unlocked on 1136 * return. 1137 * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT. 1138 */ 1139 int 1140 solisten_dequeue(struct socket *head, struct socket **ret, int flags) 1141 { 1142 struct socket *so; 1143 int error; 1144 1145 SOLISTEN_LOCK_ASSERT(head); 1146 1147 while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) && 1148 head->so_error == 0) { 1149 error = msleep(&head->sol_comp, SOCK_MTX(head), PSOCK | PCATCH, 1150 "accept", 0); 1151 if (error != 0) { 1152 SOLISTEN_UNLOCK(head); 1153 return (error); 1154 } 1155 } 1156 if (head->so_error) { 1157 error = head->so_error; 1158 head->so_error = 0; 1159 } else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp)) 1160 error = EWOULDBLOCK; 1161 else 1162 error = 0; 1163 if (error) { 1164 SOLISTEN_UNLOCK(head); 1165 return (error); 1166 } 1167 so = TAILQ_FIRST(&head->sol_comp); 1168 SOCK_LOCK(so); 1169 KASSERT(so->so_qstate == SQ_COMP, 1170 ("%s: so %p not SQ_COMP", __func__, so)); 1171 head->sol_qlen--; 1172 so->so_qstate = SQ_NONE; 1173 so->so_listen = NULL; 1174 TAILQ_REMOVE(&head->sol_comp, so, so_list); 1175 if (flags & ACCEPT4_INHERIT) 1176 so->so_state |= (head->so_state & SS_NBIO); 1177 else 1178 so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0; 1179 SOCK_UNLOCK(so); 1180 sorele_locked(head); 1181 1182 *ret = so; 1183 return (0); 1184 } 1185 1186 /* 1187 * Free socket upon release of the very last reference. 1188 */ 1189 static void 1190 sofree(struct socket *so) 1191 { 1192 struct protosw *pr = so->so_proto; 1193 1194 SOCK_LOCK_ASSERT(so); 1195 KASSERT(refcount_load(&so->so_count) == 0, 1196 ("%s: so %p has references", __func__, so)); 1197 KASSERT(SOLISTENING(so) || so->so_qstate == SQ_NONE, 1198 ("%s: so %p is on listen queue", __func__, so)); 1199 1200 SOCK_UNLOCK(so); 1201 1202 if (so->so_dtor != NULL) 1203 so->so_dtor(so); 1204 1205 VNET_SO_ASSERT(so); 1206 if (pr->pr_detach != NULL) 1207 pr->pr_detach(so); 1208 1209 /* 1210 * From this point on, we assume that no other references to this 1211 * socket exist anywhere else in the stack. Therefore, no locks need 1212 * to be acquired or held. 1213 */ 1214 if (!(pr->pr_flags & PR_SOCKBUF) && !SOLISTENING(so)) { 1215 sbdestroy(so, SO_SND); 1216 sbdestroy(so, SO_RCV); 1217 } 1218 seldrain(&so->so_rdsel); 1219 seldrain(&so->so_wrsel); 1220 knlist_destroy(&so->so_rdsel.si_note); 1221 knlist_destroy(&so->so_wrsel.si_note); 1222 sodealloc(so); 1223 } 1224 1225 /* 1226 * Release a reference on a socket while holding the socket lock. 1227 * Unlocks the socket lock before returning. 1228 */ 1229 void 1230 sorele_locked(struct socket *so) 1231 { 1232 SOCK_LOCK_ASSERT(so); 1233 if (refcount_release(&so->so_count)) 1234 sofree(so); 1235 else 1236 SOCK_UNLOCK(so); 1237 } 1238 1239 /* 1240 * Close a socket on last file table reference removal. Initiate disconnect 1241 * if connected. Free socket when disconnect complete. 1242 * 1243 * This function will sorele() the socket. Note that soclose() may be called 1244 * prior to the ref count reaching zero. The actual socket structure will 1245 * not be freed until the ref count reaches zero. 1246 */ 1247 int 1248 soclose(struct socket *so) 1249 { 1250 struct accept_queue lqueue; 1251 int error = 0; 1252 bool listening, last __diagused; 1253 1254 CURVNET_SET(so->so_vnet); 1255 funsetown(&so->so_sigio); 1256 if (so->so_state & SS_ISCONNECTED) { 1257 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 1258 error = sodisconnect(so); 1259 if (error) { 1260 if (error == ENOTCONN) 1261 error = 0; 1262 goto drop; 1263 } 1264 } 1265 1266 if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) { 1267 if ((so->so_state & SS_ISDISCONNECTING) && 1268 (so->so_state & SS_NBIO)) 1269 goto drop; 1270 while (so->so_state & SS_ISCONNECTED) { 1271 error = tsleep(&so->so_timeo, 1272 PSOCK | PCATCH, "soclos", 1273 so->so_linger * hz); 1274 if (error) 1275 break; 1276 } 1277 } 1278 } 1279 1280 drop: 1281 if (so->so_proto->pr_close != NULL) 1282 so->so_proto->pr_close(so); 1283 1284 SOCK_LOCK(so); 1285 if ((listening = SOLISTENING(so))) { 1286 struct socket *sp; 1287 1288 TAILQ_INIT(&lqueue); 1289 TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list); 1290 TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list); 1291 1292 so->sol_qlen = so->sol_incqlen = 0; 1293 1294 TAILQ_FOREACH(sp, &lqueue, so_list) { 1295 SOCK_LOCK(sp); 1296 sp->so_qstate = SQ_NONE; 1297 sp->so_listen = NULL; 1298 SOCK_UNLOCK(sp); 1299 last = refcount_release(&so->so_count); 1300 KASSERT(!last, ("%s: released last reference for %p", 1301 __func__, so)); 1302 } 1303 } 1304 sorele_locked(so); 1305 if (listening) { 1306 struct socket *sp, *tsp; 1307 1308 TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp) 1309 soabort(sp); 1310 } 1311 CURVNET_RESTORE(); 1312 return (error); 1313 } 1314 1315 /* 1316 * soabort() is used to abruptly tear down a connection, such as when a 1317 * resource limit is reached (listen queue depth exceeded), or if a listen 1318 * socket is closed while there are sockets waiting to be accepted. 1319 * 1320 * This interface is tricky, because it is called on an unreferenced socket, 1321 * and must be called only by a thread that has actually removed the socket 1322 * from the listen queue it was on. Likely this thread holds the last 1323 * reference on the socket and soabort() will proceed with sofree(). But 1324 * it might be not the last, as the sockets on the listen queues are seen 1325 * from the protocol side. 1326 * 1327 * This interface will call into the protocol code, so must not be called 1328 * with any socket locks held. Protocols do call it while holding their own 1329 * recursible protocol mutexes, but this is something that should be subject 1330 * to review in the future. 1331 * 1332 * Usually socket should have a single reference left, but this is not a 1333 * requirement. In the past, when we have had named references for file 1334 * descriptor and protocol, we asserted that none of them are being held. 1335 */ 1336 void 1337 soabort(struct socket *so) 1338 { 1339 1340 VNET_SO_ASSERT(so); 1341 1342 if (so->so_proto->pr_abort != NULL) 1343 so->so_proto->pr_abort(so); 1344 SOCK_LOCK(so); 1345 sorele_locked(so); 1346 } 1347 1348 int 1349 soaccept(struct socket *so, struct sockaddr *sa) 1350 { 1351 #ifdef INVARIANTS 1352 u_char len = sa->sa_len; 1353 #endif 1354 int error; 1355 1356 CURVNET_SET(so->so_vnet); 1357 error = so->so_proto->pr_accept(so, sa); 1358 KASSERT(sa->sa_len <= len, 1359 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto)); 1360 CURVNET_RESTORE(); 1361 return (error); 1362 } 1363 1364 int 1365 sopeeraddr(struct socket *so, struct sockaddr *sa) 1366 { 1367 #ifdef INVARIANTS 1368 u_char len = sa->sa_len; 1369 #endif 1370 int error; 1371 1372 CURVNET_SET(so->so_vnet); 1373 error = so->so_proto->pr_peeraddr(so, sa); 1374 KASSERT(sa->sa_len <= len, 1375 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto)); 1376 CURVNET_RESTORE(); 1377 1378 return (error); 1379 } 1380 1381 int 1382 sosockaddr(struct socket *so, struct sockaddr *sa) 1383 { 1384 #ifdef INVARIANTS 1385 u_char len = sa->sa_len; 1386 #endif 1387 int error; 1388 1389 CURVNET_SET(so->so_vnet); 1390 error = so->so_proto->pr_sockaddr(so, sa); 1391 KASSERT(sa->sa_len <= len, 1392 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto)); 1393 CURVNET_RESTORE(); 1394 1395 return (error); 1396 } 1397 1398 int 1399 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td) 1400 { 1401 1402 return (soconnectat(AT_FDCWD, so, nam, td)); 1403 } 1404 1405 int 1406 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 1407 { 1408 int error; 1409 1410 CURVNET_SET(so->so_vnet); 1411 1412 /* 1413 * If protocol is connection-based, can only connect once. 1414 * Otherwise, if connected, try to disconnect first. This allows 1415 * user to disconnect by connecting to, e.g., a null address. 1416 * 1417 * Note, this check is racy and may need to be re-evaluated at the 1418 * protocol layer. 1419 */ 1420 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 1421 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 1422 (error = sodisconnect(so)))) { 1423 error = EISCONN; 1424 } else { 1425 /* 1426 * Prevent accumulated error from previous connection from 1427 * biting us. 1428 */ 1429 so->so_error = 0; 1430 if (fd == AT_FDCWD) { 1431 error = so->so_proto->pr_connect(so, nam, td); 1432 } else { 1433 error = so->so_proto->pr_connectat(fd, so, nam, td); 1434 } 1435 } 1436 CURVNET_RESTORE(); 1437 1438 return (error); 1439 } 1440 1441 int 1442 soconnect2(struct socket *so1, struct socket *so2) 1443 { 1444 int error; 1445 1446 CURVNET_SET(so1->so_vnet); 1447 error = so1->so_proto->pr_connect2(so1, so2); 1448 CURVNET_RESTORE(); 1449 return (error); 1450 } 1451 1452 int 1453 sodisconnect(struct socket *so) 1454 { 1455 int error; 1456 1457 if ((so->so_state & SS_ISCONNECTED) == 0) 1458 return (ENOTCONN); 1459 if (so->so_state & SS_ISDISCONNECTING) 1460 return (EALREADY); 1461 VNET_SO_ASSERT(so); 1462 error = so->so_proto->pr_disconnect(so); 1463 return (error); 1464 } 1465 1466 int 1467 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, 1468 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1469 { 1470 long space; 1471 ssize_t resid; 1472 int clen = 0, error, dontroute; 1473 1474 KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM")); 1475 KASSERT(so->so_proto->pr_flags & PR_ATOMIC, 1476 ("sosend_dgram: !PR_ATOMIC")); 1477 1478 if (uio != NULL) 1479 resid = uio->uio_resid; 1480 else 1481 resid = top->m_pkthdr.len; 1482 /* 1483 * In theory resid should be unsigned. However, space must be 1484 * signed, as it might be less than 0 if we over-committed, and we 1485 * must use a signed comparison of space and resid. On the other 1486 * hand, a negative resid causes us to loop sending 0-length 1487 * segments to the protocol. 1488 */ 1489 if (resid < 0) { 1490 error = EINVAL; 1491 goto out; 1492 } 1493 1494 dontroute = 1495 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0; 1496 if (td != NULL) 1497 td->td_ru.ru_msgsnd++; 1498 if (control != NULL) 1499 clen = control->m_len; 1500 1501 SOCKBUF_LOCK(&so->so_snd); 1502 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1503 SOCKBUF_UNLOCK(&so->so_snd); 1504 error = EPIPE; 1505 goto out; 1506 } 1507 if (so->so_error) { 1508 error = so->so_error; 1509 so->so_error = 0; 1510 SOCKBUF_UNLOCK(&so->so_snd); 1511 goto out; 1512 } 1513 if ((so->so_state & SS_ISCONNECTED) == 0) { 1514 /* 1515 * `sendto' and `sendmsg' is allowed on a connection-based 1516 * socket if it supports implied connect. Return ENOTCONN if 1517 * not connected and no address is supplied. 1518 */ 1519 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1520 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1521 if (!(resid == 0 && clen != 0)) { 1522 SOCKBUF_UNLOCK(&so->so_snd); 1523 error = ENOTCONN; 1524 goto out; 1525 } 1526 } else if (addr == NULL) { 1527 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1528 error = ENOTCONN; 1529 else 1530 error = EDESTADDRREQ; 1531 SOCKBUF_UNLOCK(&so->so_snd); 1532 goto out; 1533 } 1534 } 1535 1536 /* 1537 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a 1538 * problem and need fixing. 1539 */ 1540 space = sbspace(&so->so_snd); 1541 if (flags & MSG_OOB) 1542 space += 1024; 1543 space -= clen; 1544 SOCKBUF_UNLOCK(&so->so_snd); 1545 if (resid > space) { 1546 error = EMSGSIZE; 1547 goto out; 1548 } 1549 if (uio == NULL) { 1550 resid = 0; 1551 if (flags & MSG_EOR) 1552 top->m_flags |= M_EOR; 1553 } else { 1554 /* 1555 * Copy the data from userland into a mbuf chain. 1556 * If no data is to be copied in, a single empty mbuf 1557 * is returned. 1558 */ 1559 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr, 1560 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0))); 1561 if (top == NULL) { 1562 error = EFAULT; /* only possible error */ 1563 goto out; 1564 } 1565 space -= resid - uio->uio_resid; 1566 resid = uio->uio_resid; 1567 } 1568 KASSERT(resid == 0, ("sosend_dgram: resid != 0")); 1569 /* 1570 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock 1571 * than with. 1572 */ 1573 if (dontroute) { 1574 SOCK_LOCK(so); 1575 so->so_options |= SO_DONTROUTE; 1576 SOCK_UNLOCK(so); 1577 } 1578 /* 1579 * XXX all the SBS_CANTSENDMORE checks previously done could be out 1580 * of date. We could have received a reset packet in an interrupt or 1581 * maybe we slept while doing page faults in uiomove() etc. We could 1582 * probably recheck again inside the locking protection here, but 1583 * there are probably other places that this also happens. We must 1584 * rethink this. 1585 */ 1586 VNET_SO_ASSERT(so); 1587 error = so->so_proto->pr_send(so, (flags & MSG_OOB) ? PRUS_OOB : 1588 /* 1589 * If the user set MSG_EOF, the protocol understands this flag and 1590 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND. 1591 */ 1592 ((flags & MSG_EOF) && 1593 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1594 (resid <= 0)) ? 1595 PRUS_EOF : 1596 /* If there is more to send set PRUS_MORETOCOME */ 1597 (flags & MSG_MORETOCOME) || 1598 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1599 top, addr, control, td); 1600 if (dontroute) { 1601 SOCK_LOCK(so); 1602 so->so_options &= ~SO_DONTROUTE; 1603 SOCK_UNLOCK(so); 1604 } 1605 clen = 0; 1606 control = NULL; 1607 top = NULL; 1608 out: 1609 if (top != NULL) 1610 m_freem(top); 1611 if (control != NULL) 1612 m_freem(control); 1613 return (error); 1614 } 1615 1616 /* 1617 * Send on a socket. If send must go all at once and message is larger than 1618 * send buffering, then hard error. Lock against other senders. If must go 1619 * all at once and not enough room now, then inform user that this would 1620 * block and do nothing. Otherwise, if nonblocking, send as much as 1621 * possible. The data to be sent is described by "uio" if nonzero, otherwise 1622 * by the mbuf chain "top" (which must be null if uio is not). Data provided 1623 * in mbuf chain must be small enough to send all at once. 1624 * 1625 * Returns nonzero on error, timeout or signal; callers must check for short 1626 * counts if EINTR/ERESTART are returned. Data and control buffers are freed 1627 * on return. 1628 */ 1629 int 1630 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio, 1631 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1632 { 1633 long space; 1634 ssize_t resid; 1635 int clen = 0, error, dontroute; 1636 int atomic = sosendallatonce(so) || top; 1637 int pr_send_flag; 1638 #ifdef KERN_TLS 1639 struct ktls_session *tls; 1640 int tls_enq_cnt, tls_send_flag; 1641 uint8_t tls_rtype; 1642 1643 tls = NULL; 1644 tls_rtype = TLS_RLTYPE_APP; 1645 #endif 1646 if (uio != NULL) 1647 resid = uio->uio_resid; 1648 else if ((top->m_flags & M_PKTHDR) != 0) 1649 resid = top->m_pkthdr.len; 1650 else 1651 resid = m_length(top, NULL); 1652 /* 1653 * In theory resid should be unsigned. However, space must be 1654 * signed, as it might be less than 0 if we over-committed, and we 1655 * must use a signed comparison of space and resid. On the other 1656 * hand, a negative resid causes us to loop sending 0-length 1657 * segments to the protocol. 1658 * 1659 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 1660 * type sockets since that's an error. 1661 */ 1662 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 1663 error = EINVAL; 1664 goto out; 1665 } 1666 1667 dontroute = 1668 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 1669 (so->so_proto->pr_flags & PR_ATOMIC); 1670 if (td != NULL) 1671 td->td_ru.ru_msgsnd++; 1672 if (control != NULL) 1673 clen = control->m_len; 1674 1675 error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags)); 1676 if (error) 1677 goto out; 1678 1679 #ifdef KERN_TLS 1680 tls_send_flag = 0; 1681 tls = ktls_hold(so->so_snd.sb_tls_info); 1682 if (tls != NULL) { 1683 if (tls->mode == TCP_TLS_MODE_SW) 1684 tls_send_flag = PRUS_NOTREADY; 1685 1686 if (control != NULL) { 1687 struct cmsghdr *cm = mtod(control, struct cmsghdr *); 1688 1689 if (clen >= sizeof(*cm) && 1690 cm->cmsg_type == TLS_SET_RECORD_TYPE) { 1691 tls_rtype = *((uint8_t *)CMSG_DATA(cm)); 1692 clen = 0; 1693 m_freem(control); 1694 control = NULL; 1695 atomic = 1; 1696 } 1697 } 1698 1699 if (resid == 0 && !ktls_permit_empty_frames(tls)) { 1700 error = EINVAL; 1701 goto release; 1702 } 1703 } 1704 #endif 1705 1706 restart: 1707 do { 1708 SOCKBUF_LOCK(&so->so_snd); 1709 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1710 SOCKBUF_UNLOCK(&so->so_snd); 1711 error = EPIPE; 1712 goto release; 1713 } 1714 if (so->so_error) { 1715 error = so->so_error; 1716 so->so_error = 0; 1717 SOCKBUF_UNLOCK(&so->so_snd); 1718 goto release; 1719 } 1720 if ((so->so_state & SS_ISCONNECTED) == 0) { 1721 /* 1722 * `sendto' and `sendmsg' is allowed on a connection- 1723 * based socket if it supports implied connect. 1724 * Return ENOTCONN if not connected and no address is 1725 * supplied. 1726 */ 1727 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1728 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1729 if (!(resid == 0 && clen != 0)) { 1730 SOCKBUF_UNLOCK(&so->so_snd); 1731 error = ENOTCONN; 1732 goto release; 1733 } 1734 } else if (addr == NULL) { 1735 SOCKBUF_UNLOCK(&so->so_snd); 1736 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1737 error = ENOTCONN; 1738 else 1739 error = EDESTADDRREQ; 1740 goto release; 1741 } 1742 } 1743 space = sbspace(&so->so_snd); 1744 if (flags & MSG_OOB) 1745 space += 1024; 1746 if ((atomic && resid > so->so_snd.sb_hiwat) || 1747 clen > so->so_snd.sb_hiwat) { 1748 SOCKBUF_UNLOCK(&so->so_snd); 1749 error = EMSGSIZE; 1750 goto release; 1751 } 1752 if (space < resid + clen && 1753 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 1754 if ((so->so_state & SS_NBIO) || 1755 (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) { 1756 SOCKBUF_UNLOCK(&so->so_snd); 1757 error = EWOULDBLOCK; 1758 goto release; 1759 } 1760 error = sbwait(so, SO_SND); 1761 SOCKBUF_UNLOCK(&so->so_snd); 1762 if (error) 1763 goto release; 1764 goto restart; 1765 } 1766 SOCKBUF_UNLOCK(&so->so_snd); 1767 space -= clen; 1768 do { 1769 if (uio == NULL) { 1770 resid = 0; 1771 if (flags & MSG_EOR) 1772 top->m_flags |= M_EOR; 1773 #ifdef KERN_TLS 1774 if (tls != NULL) { 1775 ktls_frame(top, tls, &tls_enq_cnt, 1776 tls_rtype); 1777 tls_rtype = TLS_RLTYPE_APP; 1778 } 1779 #endif 1780 } else { 1781 /* 1782 * Copy the data from userland into a mbuf 1783 * chain. If resid is 0, which can happen 1784 * only if we have control to send, then 1785 * a single empty mbuf is returned. This 1786 * is a workaround to prevent protocol send 1787 * methods to panic. 1788 */ 1789 #ifdef KERN_TLS 1790 if (tls != NULL) { 1791 top = m_uiotombuf(uio, M_WAITOK, space, 1792 tls->params.max_frame_len, 1793 M_EXTPG | 1794 ((flags & MSG_EOR) ? M_EOR : 0)); 1795 if (top != NULL) { 1796 ktls_frame(top, tls, 1797 &tls_enq_cnt, tls_rtype); 1798 } 1799 tls_rtype = TLS_RLTYPE_APP; 1800 } else 1801 #endif 1802 top = m_uiotombuf(uio, M_WAITOK, space, 1803 (atomic ? max_hdr : 0), 1804 (atomic ? M_PKTHDR : 0) | 1805 ((flags & MSG_EOR) ? M_EOR : 0)); 1806 if (top == NULL) { 1807 error = EFAULT; /* only possible error */ 1808 goto release; 1809 } 1810 space -= resid - uio->uio_resid; 1811 resid = uio->uio_resid; 1812 } 1813 if (dontroute) { 1814 SOCK_LOCK(so); 1815 so->so_options |= SO_DONTROUTE; 1816 SOCK_UNLOCK(so); 1817 } 1818 /* 1819 * XXX all the SBS_CANTSENDMORE checks previously 1820 * done could be out of date. We could have received 1821 * a reset packet in an interrupt or maybe we slept 1822 * while doing page faults in uiomove() etc. We 1823 * could probably recheck again inside the locking 1824 * protection here, but there are probably other 1825 * places that this also happens. We must rethink 1826 * this. 1827 */ 1828 VNET_SO_ASSERT(so); 1829 1830 pr_send_flag = (flags & MSG_OOB) ? PRUS_OOB : 1831 /* 1832 * If the user set MSG_EOF, the protocol understands 1833 * this flag and nothing left to send then use 1834 * PRU_SEND_EOF instead of PRU_SEND. 1835 */ 1836 ((flags & MSG_EOF) && 1837 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1838 (resid <= 0)) ? 1839 PRUS_EOF : 1840 /* If there is more to send set PRUS_MORETOCOME. */ 1841 (flags & MSG_MORETOCOME) || 1842 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0; 1843 1844 #ifdef KERN_TLS 1845 pr_send_flag |= tls_send_flag; 1846 #endif 1847 1848 error = so->so_proto->pr_send(so, pr_send_flag, top, 1849 addr, control, td); 1850 1851 if (dontroute) { 1852 SOCK_LOCK(so); 1853 so->so_options &= ~SO_DONTROUTE; 1854 SOCK_UNLOCK(so); 1855 } 1856 1857 #ifdef KERN_TLS 1858 if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) { 1859 if (error != 0) { 1860 m_freem(top); 1861 top = NULL; 1862 } else { 1863 soref(so); 1864 ktls_enqueue(top, so, tls_enq_cnt); 1865 } 1866 } 1867 #endif 1868 clen = 0; 1869 control = NULL; 1870 top = NULL; 1871 if (error) 1872 goto release; 1873 } while (resid && space > 0); 1874 } while (resid); 1875 1876 release: 1877 SOCK_IO_SEND_UNLOCK(so); 1878 out: 1879 #ifdef KERN_TLS 1880 if (tls != NULL) 1881 ktls_free(tls); 1882 #endif 1883 if (top != NULL) 1884 m_freem(top); 1885 if (control != NULL) 1886 m_freem(control); 1887 return (error); 1888 } 1889 1890 /* 1891 * Send to a socket from a kernel thread. 1892 * 1893 * XXXGL: in almost all cases uio is NULL and the mbuf is supplied. 1894 * Exception is nfs/bootp_subr.c. It is arguable that the VNET context needs 1895 * to be set at all. This function should just boil down to a static inline 1896 * calling the protocol method. 1897 */ 1898 int 1899 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, 1900 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1901 { 1902 int error; 1903 1904 CURVNET_SET(so->so_vnet); 1905 error = so->so_proto->pr_sosend(so, addr, uio, 1906 top, control, flags, td); 1907 CURVNET_RESTORE(); 1908 return (error); 1909 } 1910 1911 /* 1912 * send(2), write(2) or aio_write(2) on a socket. 1913 */ 1914 int 1915 sousrsend(struct socket *so, struct sockaddr *addr, struct uio *uio, 1916 struct mbuf *control, int flags, struct proc *userproc) 1917 { 1918 struct thread *td; 1919 ssize_t len; 1920 int error; 1921 1922 td = uio->uio_td; 1923 len = uio->uio_resid; 1924 CURVNET_SET(so->so_vnet); 1925 error = so->so_proto->pr_sosend(so, addr, uio, NULL, control, flags, 1926 td); 1927 CURVNET_RESTORE(); 1928 if (error != 0) { 1929 /* 1930 * Clear transient errors for stream protocols if they made 1931 * some progress. Make exclusion for aio(4) that would 1932 * schedule a new write in case of EWOULDBLOCK and clear 1933 * error itself. See soaio_process_job(). 1934 */ 1935 if (uio->uio_resid != len && 1936 (so->so_proto->pr_flags & PR_ATOMIC) == 0 && 1937 userproc == NULL && 1938 (error == ERESTART || error == EINTR || 1939 error == EWOULDBLOCK)) 1940 error = 0; 1941 /* Generation of SIGPIPE can be controlled per socket. */ 1942 if (error == EPIPE && (so->so_options & SO_NOSIGPIPE) == 0 && 1943 (flags & MSG_NOSIGNAL) == 0) { 1944 if (userproc != NULL) { 1945 /* aio(4) job */ 1946 PROC_LOCK(userproc); 1947 kern_psignal(userproc, SIGPIPE); 1948 PROC_UNLOCK(userproc); 1949 } else { 1950 PROC_LOCK(td->td_proc); 1951 tdsignal(td, SIGPIPE); 1952 PROC_UNLOCK(td->td_proc); 1953 } 1954 } 1955 } 1956 return (error); 1957 } 1958 1959 /* 1960 * The part of soreceive() that implements reading non-inline out-of-band 1961 * data from a socket. For more complete comments, see soreceive(), from 1962 * which this code originated. 1963 * 1964 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is 1965 * unable to return an mbuf chain to the caller. 1966 */ 1967 static int 1968 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags) 1969 { 1970 struct protosw *pr = so->so_proto; 1971 struct mbuf *m; 1972 int error; 1973 1974 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); 1975 VNET_SO_ASSERT(so); 1976 1977 m = m_get(M_WAITOK, MT_DATA); 1978 error = pr->pr_rcvoob(so, m, flags & MSG_PEEK); 1979 if (error) 1980 goto bad; 1981 do { 1982 error = uiomove(mtod(m, void *), 1983 (int) min(uio->uio_resid, m->m_len), uio); 1984 m = m_free(m); 1985 } while (uio->uio_resid && error == 0 && m); 1986 bad: 1987 if (m != NULL) 1988 m_freem(m); 1989 return (error); 1990 } 1991 1992 /* 1993 * Following replacement or removal of the first mbuf on the first mbuf chain 1994 * of a socket buffer, push necessary state changes back into the socket 1995 * buffer so that other consumers see the values consistently. 'nextrecord' 1996 * is the callers locally stored value of the original value of 1997 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. 1998 * NOTE: 'nextrecord' may be NULL. 1999 */ 2000 static __inline void 2001 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) 2002 { 2003 2004 SOCKBUF_LOCK_ASSERT(sb); 2005 /* 2006 * First, update for the new value of nextrecord. If necessary, make 2007 * it the first record. 2008 */ 2009 if (sb->sb_mb != NULL) 2010 sb->sb_mb->m_nextpkt = nextrecord; 2011 else 2012 sb->sb_mb = nextrecord; 2013 2014 /* 2015 * Now update any dependent socket buffer fields to reflect the new 2016 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the 2017 * addition of a second clause that takes care of the case where 2018 * sb_mb has been updated, but remains the last record. 2019 */ 2020 if (sb->sb_mb == NULL) { 2021 sb->sb_mbtail = NULL; 2022 sb->sb_lastrecord = NULL; 2023 } else if (sb->sb_mb->m_nextpkt == NULL) 2024 sb->sb_lastrecord = sb->sb_mb; 2025 } 2026 2027 /* 2028 * Implement receive operations on a socket. We depend on the way that 2029 * records are added to the sockbuf by sbappend. In particular, each record 2030 * (mbufs linked through m_next) must begin with an address if the protocol 2031 * so specifies, followed by an optional mbuf or mbufs containing ancillary 2032 * data, and then zero or more mbufs of data. In order to allow parallelism 2033 * between network receive and copying to user space, as well as avoid 2034 * sleeping with a mutex held, we release the socket buffer mutex during the 2035 * user space copy. Although the sockbuf is locked, new data may still be 2036 * appended, and thus we must maintain consistency of the sockbuf during that 2037 * time. 2038 * 2039 * The caller may receive the data as a single mbuf chain by supplying an 2040 * mbuf **mp0 for use in returning the chain. The uio is then used only for 2041 * the count in uio_resid. 2042 */ 2043 int 2044 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio, 2045 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2046 { 2047 struct mbuf *m, **mp; 2048 int flags, error, offset; 2049 ssize_t len; 2050 struct protosw *pr = so->so_proto; 2051 struct mbuf *nextrecord; 2052 int moff, type = 0; 2053 ssize_t orig_resid = uio->uio_resid; 2054 bool report_real_len = false; 2055 2056 mp = mp0; 2057 if (psa != NULL) 2058 *psa = NULL; 2059 if (controlp != NULL) 2060 *controlp = NULL; 2061 if (flagsp != NULL) { 2062 report_real_len = *flagsp & MSG_TRUNC; 2063 *flagsp &= ~MSG_TRUNC; 2064 flags = *flagsp &~ MSG_EOR; 2065 } else 2066 flags = 0; 2067 if (flags & MSG_OOB) 2068 return (soreceive_rcvoob(so, uio, flags)); 2069 if (mp != NULL) 2070 *mp = NULL; 2071 2072 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags)); 2073 if (error) 2074 return (error); 2075 2076 restart: 2077 SOCKBUF_LOCK(&so->so_rcv); 2078 m = so->so_rcv.sb_mb; 2079 /* 2080 * If we have less data than requested, block awaiting more (subject 2081 * to any timeout) if: 2082 * 1. the current count is less than the low water mark, or 2083 * 2. MSG_DONTWAIT is not set 2084 */ 2085 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 2086 sbavail(&so->so_rcv) < uio->uio_resid) && 2087 sbavail(&so->so_rcv) < so->so_rcv.sb_lowat && 2088 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 2089 KASSERT(m != NULL || !sbavail(&so->so_rcv), 2090 ("receive: m == %p sbavail == %u", 2091 m, sbavail(&so->so_rcv))); 2092 if (so->so_error || so->so_rerror) { 2093 if (m != NULL) 2094 goto dontblock; 2095 if (so->so_error) 2096 error = so->so_error; 2097 else 2098 error = so->so_rerror; 2099 if ((flags & MSG_PEEK) == 0) { 2100 if (so->so_error) 2101 so->so_error = 0; 2102 else 2103 so->so_rerror = 0; 2104 } 2105 SOCKBUF_UNLOCK(&so->so_rcv); 2106 goto release; 2107 } 2108 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2109 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 2110 if (m != NULL) 2111 goto dontblock; 2112 #ifdef KERN_TLS 2113 else if (so->so_rcv.sb_tlsdcc == 0 && 2114 so->so_rcv.sb_tlscc == 0) { 2115 #else 2116 else { 2117 #endif 2118 SOCKBUF_UNLOCK(&so->so_rcv); 2119 goto release; 2120 } 2121 } 2122 for (; m != NULL; m = m->m_next) 2123 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 2124 m = so->so_rcv.sb_mb; 2125 goto dontblock; 2126 } 2127 if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED | 2128 SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 && 2129 (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) { 2130 SOCKBUF_UNLOCK(&so->so_rcv); 2131 error = ENOTCONN; 2132 goto release; 2133 } 2134 if (uio->uio_resid == 0 && !report_real_len) { 2135 SOCKBUF_UNLOCK(&so->so_rcv); 2136 goto release; 2137 } 2138 if ((so->so_state & SS_NBIO) || 2139 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2140 SOCKBUF_UNLOCK(&so->so_rcv); 2141 error = EWOULDBLOCK; 2142 goto release; 2143 } 2144 SBLASTRECORDCHK(&so->so_rcv); 2145 SBLASTMBUFCHK(&so->so_rcv); 2146 error = sbwait(so, SO_RCV); 2147 SOCKBUF_UNLOCK(&so->so_rcv); 2148 if (error) 2149 goto release; 2150 goto restart; 2151 } 2152 dontblock: 2153 /* 2154 * From this point onward, we maintain 'nextrecord' as a cache of the 2155 * pointer to the next record in the socket buffer. We must keep the 2156 * various socket buffer pointers and local stack versions of the 2157 * pointers in sync, pushing out modifications before dropping the 2158 * socket buffer mutex, and re-reading them when picking it up. 2159 * 2160 * Otherwise, we will race with the network stack appending new data 2161 * or records onto the socket buffer by using inconsistent/stale 2162 * versions of the field, possibly resulting in socket buffer 2163 * corruption. 2164 * 2165 * By holding the high-level sblock(), we prevent simultaneous 2166 * readers from pulling off the front of the socket buffer. 2167 */ 2168 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2169 if (uio->uio_td) 2170 uio->uio_td->td_ru.ru_msgrcv++; 2171 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); 2172 SBLASTRECORDCHK(&so->so_rcv); 2173 SBLASTMBUFCHK(&so->so_rcv); 2174 nextrecord = m->m_nextpkt; 2175 if (pr->pr_flags & PR_ADDR) { 2176 KASSERT(m->m_type == MT_SONAME, 2177 ("m->m_type == %d", m->m_type)); 2178 orig_resid = 0; 2179 if (psa != NULL) 2180 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2181 M_NOWAIT); 2182 if (flags & MSG_PEEK) { 2183 m = m->m_next; 2184 } else { 2185 sbfree(&so->so_rcv, m); 2186 so->so_rcv.sb_mb = m_free(m); 2187 m = so->so_rcv.sb_mb; 2188 sockbuf_pushsync(&so->so_rcv, nextrecord); 2189 } 2190 } 2191 2192 /* 2193 * Process one or more MT_CONTROL mbufs present before any data mbufs 2194 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 2195 * just copy the data; if !MSG_PEEK, we call into the protocol to 2196 * perform externalization (or freeing if controlp == NULL). 2197 */ 2198 if (m != NULL && m->m_type == MT_CONTROL) { 2199 struct mbuf *cm = NULL, *cmn; 2200 struct mbuf **cme = &cm; 2201 #ifdef KERN_TLS 2202 struct cmsghdr *cmsg; 2203 struct tls_get_record tgr; 2204 2205 /* 2206 * For MSG_TLSAPPDATA, check for an alert record. 2207 * If found, return ENXIO without removing 2208 * it from the receive queue. This allows a subsequent 2209 * call without MSG_TLSAPPDATA to receive it. 2210 * Note that, for TLS, there should only be a single 2211 * control mbuf with the TLS_GET_RECORD message in it. 2212 */ 2213 if (flags & MSG_TLSAPPDATA) { 2214 cmsg = mtod(m, struct cmsghdr *); 2215 if (cmsg->cmsg_type == TLS_GET_RECORD && 2216 cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) { 2217 memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr)); 2218 if (__predict_false(tgr.tls_type == 2219 TLS_RLTYPE_ALERT)) { 2220 SOCKBUF_UNLOCK(&so->so_rcv); 2221 error = ENXIO; 2222 goto release; 2223 } 2224 } 2225 } 2226 #endif 2227 2228 do { 2229 if (flags & MSG_PEEK) { 2230 if (controlp != NULL) { 2231 *controlp = m_copym(m, 0, m->m_len, 2232 M_NOWAIT); 2233 controlp = &(*controlp)->m_next; 2234 } 2235 m = m->m_next; 2236 } else { 2237 sbfree(&so->so_rcv, m); 2238 so->so_rcv.sb_mb = m->m_next; 2239 m->m_next = NULL; 2240 *cme = m; 2241 cme = &(*cme)->m_next; 2242 m = so->so_rcv.sb_mb; 2243 } 2244 } while (m != NULL && m->m_type == MT_CONTROL); 2245 if ((flags & MSG_PEEK) == 0) 2246 sockbuf_pushsync(&so->so_rcv, nextrecord); 2247 while (cm != NULL) { 2248 cmn = cm->m_next; 2249 cm->m_next = NULL; 2250 if (pr->pr_domain->dom_externalize != NULL) { 2251 SOCKBUF_UNLOCK(&so->so_rcv); 2252 VNET_SO_ASSERT(so); 2253 error = (*pr->pr_domain->dom_externalize) 2254 (cm, controlp, flags); 2255 SOCKBUF_LOCK(&so->so_rcv); 2256 } else if (controlp != NULL) 2257 *controlp = cm; 2258 else 2259 m_freem(cm); 2260 if (controlp != NULL) { 2261 while (*controlp != NULL) 2262 controlp = &(*controlp)->m_next; 2263 } 2264 cm = cmn; 2265 } 2266 if (m != NULL) 2267 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 2268 else 2269 nextrecord = so->so_rcv.sb_mb; 2270 orig_resid = 0; 2271 } 2272 if (m != NULL) { 2273 if ((flags & MSG_PEEK) == 0) { 2274 KASSERT(m->m_nextpkt == nextrecord, 2275 ("soreceive: post-control, nextrecord !sync")); 2276 if (nextrecord == NULL) { 2277 KASSERT(so->so_rcv.sb_mb == m, 2278 ("soreceive: post-control, sb_mb!=m")); 2279 KASSERT(so->so_rcv.sb_lastrecord == m, 2280 ("soreceive: post-control, lastrecord!=m")); 2281 } 2282 } 2283 type = m->m_type; 2284 if (type == MT_OOBDATA) 2285 flags |= MSG_OOB; 2286 } else { 2287 if ((flags & MSG_PEEK) == 0) { 2288 KASSERT(so->so_rcv.sb_mb == nextrecord, 2289 ("soreceive: sb_mb != nextrecord")); 2290 if (so->so_rcv.sb_mb == NULL) { 2291 KASSERT(so->so_rcv.sb_lastrecord == NULL, 2292 ("soreceive: sb_lastercord != NULL")); 2293 } 2294 } 2295 } 2296 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2297 SBLASTRECORDCHK(&so->so_rcv); 2298 SBLASTMBUFCHK(&so->so_rcv); 2299 2300 /* 2301 * Now continue to read any data mbufs off of the head of the socket 2302 * buffer until the read request is satisfied. Note that 'type' is 2303 * used to store the type of any mbuf reads that have happened so far 2304 * such that soreceive() can stop reading if the type changes, which 2305 * causes soreceive() to return only one of regular data and inline 2306 * out-of-band data in a single socket receive operation. 2307 */ 2308 moff = 0; 2309 offset = 0; 2310 while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0 2311 && error == 0) { 2312 /* 2313 * If the type of mbuf has changed since the last mbuf 2314 * examined ('type'), end the receive operation. 2315 */ 2316 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2317 if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) { 2318 if (type != m->m_type) 2319 break; 2320 } else if (type == MT_OOBDATA) 2321 break; 2322 else 2323 KASSERT(m->m_type == MT_DATA, 2324 ("m->m_type == %d", m->m_type)); 2325 so->so_rcv.sb_state &= ~SBS_RCVATMARK; 2326 len = uio->uio_resid; 2327 if (so->so_oobmark && len > so->so_oobmark - offset) 2328 len = so->so_oobmark - offset; 2329 if (len > m->m_len - moff) 2330 len = m->m_len - moff; 2331 /* 2332 * If mp is set, just pass back the mbufs. Otherwise copy 2333 * them out via the uio, then free. Sockbuf must be 2334 * consistent here (points to current mbuf, it points to next 2335 * record) when we drop priority; we must note any additions 2336 * to the sockbuf when we block interrupts again. 2337 */ 2338 if (mp == NULL) { 2339 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2340 SBLASTRECORDCHK(&so->so_rcv); 2341 SBLASTMBUFCHK(&so->so_rcv); 2342 SOCKBUF_UNLOCK(&so->so_rcv); 2343 if ((m->m_flags & M_EXTPG) != 0) 2344 error = m_unmapped_uiomove(m, moff, uio, 2345 (int)len); 2346 else 2347 error = uiomove(mtod(m, char *) + moff, 2348 (int)len, uio); 2349 SOCKBUF_LOCK(&so->so_rcv); 2350 if (error) { 2351 /* 2352 * The MT_SONAME mbuf has already been removed 2353 * from the record, so it is necessary to 2354 * remove the data mbufs, if any, to preserve 2355 * the invariant in the case of PR_ADDR that 2356 * requires MT_SONAME mbufs at the head of 2357 * each record. 2358 */ 2359 if (pr->pr_flags & PR_ATOMIC && 2360 ((flags & MSG_PEEK) == 0)) 2361 (void)sbdroprecord_locked(&so->so_rcv); 2362 SOCKBUF_UNLOCK(&so->so_rcv); 2363 goto release; 2364 } 2365 } else 2366 uio->uio_resid -= len; 2367 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2368 if (len == m->m_len - moff) { 2369 if (m->m_flags & M_EOR) 2370 flags |= MSG_EOR; 2371 if (flags & MSG_PEEK) { 2372 m = m->m_next; 2373 moff = 0; 2374 } else { 2375 nextrecord = m->m_nextpkt; 2376 sbfree(&so->so_rcv, m); 2377 if (mp != NULL) { 2378 m->m_nextpkt = NULL; 2379 *mp = m; 2380 mp = &m->m_next; 2381 so->so_rcv.sb_mb = m = m->m_next; 2382 *mp = NULL; 2383 } else { 2384 so->so_rcv.sb_mb = m_free(m); 2385 m = so->so_rcv.sb_mb; 2386 } 2387 sockbuf_pushsync(&so->so_rcv, nextrecord); 2388 SBLASTRECORDCHK(&so->so_rcv); 2389 SBLASTMBUFCHK(&so->so_rcv); 2390 } 2391 } else { 2392 if (flags & MSG_PEEK) 2393 moff += len; 2394 else { 2395 if (mp != NULL) { 2396 if (flags & MSG_DONTWAIT) { 2397 *mp = m_copym(m, 0, len, 2398 M_NOWAIT); 2399 if (*mp == NULL) { 2400 /* 2401 * m_copym() couldn't 2402 * allocate an mbuf. 2403 * Adjust uio_resid back 2404 * (it was adjusted 2405 * down by len bytes, 2406 * which we didn't end 2407 * up "copying" over). 2408 */ 2409 uio->uio_resid += len; 2410 break; 2411 } 2412 } else { 2413 SOCKBUF_UNLOCK(&so->so_rcv); 2414 *mp = m_copym(m, 0, len, 2415 M_WAITOK); 2416 SOCKBUF_LOCK(&so->so_rcv); 2417 } 2418 } 2419 sbcut_locked(&so->so_rcv, len); 2420 } 2421 } 2422 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2423 if (so->so_oobmark) { 2424 if ((flags & MSG_PEEK) == 0) { 2425 so->so_oobmark -= len; 2426 if (so->so_oobmark == 0) { 2427 so->so_rcv.sb_state |= SBS_RCVATMARK; 2428 break; 2429 } 2430 } else { 2431 offset += len; 2432 if (offset == so->so_oobmark) 2433 break; 2434 } 2435 } 2436 if (flags & MSG_EOR) 2437 break; 2438 /* 2439 * If the MSG_WAITALL flag is set (for non-atomic socket), we 2440 * must not quit until "uio->uio_resid == 0" or an error 2441 * termination. If a signal/timeout occurs, return with a 2442 * short count but without error. Keep sockbuf locked 2443 * against other readers. 2444 */ 2445 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 2446 !sosendallatonce(so) && nextrecord == NULL) { 2447 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2448 if (so->so_error || so->so_rerror || 2449 so->so_rcv.sb_state & SBS_CANTRCVMORE) 2450 break; 2451 /* 2452 * Notify the protocol that some data has been 2453 * drained before blocking. 2454 */ 2455 if (pr->pr_flags & PR_WANTRCVD) { 2456 SOCKBUF_UNLOCK(&so->so_rcv); 2457 VNET_SO_ASSERT(so); 2458 pr->pr_rcvd(so, flags); 2459 SOCKBUF_LOCK(&so->so_rcv); 2460 if (__predict_false(so->so_rcv.sb_mb == NULL && 2461 (so->so_error || so->so_rerror || 2462 so->so_rcv.sb_state & SBS_CANTRCVMORE))) 2463 break; 2464 } 2465 SBLASTRECORDCHK(&so->so_rcv); 2466 SBLASTMBUFCHK(&so->so_rcv); 2467 /* 2468 * We could receive some data while was notifying 2469 * the protocol. Skip blocking in this case. 2470 */ 2471 if (so->so_rcv.sb_mb == NULL) { 2472 error = sbwait(so, SO_RCV); 2473 if (error) { 2474 SOCKBUF_UNLOCK(&so->so_rcv); 2475 goto release; 2476 } 2477 } 2478 m = so->so_rcv.sb_mb; 2479 if (m != NULL) 2480 nextrecord = m->m_nextpkt; 2481 } 2482 } 2483 2484 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2485 if (m != NULL && pr->pr_flags & PR_ATOMIC) { 2486 if (report_real_len) 2487 uio->uio_resid -= m_length(m, NULL) - moff; 2488 flags |= MSG_TRUNC; 2489 if ((flags & MSG_PEEK) == 0) 2490 (void) sbdroprecord_locked(&so->so_rcv); 2491 } 2492 if ((flags & MSG_PEEK) == 0) { 2493 if (m == NULL) { 2494 /* 2495 * First part is an inline SB_EMPTY_FIXUP(). Second 2496 * part makes sure sb_lastrecord is up-to-date if 2497 * there is still data in the socket buffer. 2498 */ 2499 so->so_rcv.sb_mb = nextrecord; 2500 if (so->so_rcv.sb_mb == NULL) { 2501 so->so_rcv.sb_mbtail = NULL; 2502 so->so_rcv.sb_lastrecord = NULL; 2503 } else if (nextrecord->m_nextpkt == NULL) 2504 so->so_rcv.sb_lastrecord = nextrecord; 2505 } 2506 SBLASTRECORDCHK(&so->so_rcv); 2507 SBLASTMBUFCHK(&so->so_rcv); 2508 /* 2509 * If soreceive() is being done from the socket callback, 2510 * then don't need to generate ACK to peer to update window, 2511 * since ACK will be generated on return to TCP. 2512 */ 2513 if (!(flags & MSG_SOCALLBCK) && 2514 (pr->pr_flags & PR_WANTRCVD)) { 2515 SOCKBUF_UNLOCK(&so->so_rcv); 2516 VNET_SO_ASSERT(so); 2517 pr->pr_rcvd(so, flags); 2518 SOCKBUF_LOCK(&so->so_rcv); 2519 } 2520 } 2521 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2522 if (orig_resid == uio->uio_resid && orig_resid && 2523 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { 2524 SOCKBUF_UNLOCK(&so->so_rcv); 2525 goto restart; 2526 } 2527 SOCKBUF_UNLOCK(&so->so_rcv); 2528 2529 if (flagsp != NULL) 2530 *flagsp |= flags; 2531 release: 2532 SOCK_IO_RECV_UNLOCK(so); 2533 return (error); 2534 } 2535 2536 /* 2537 * Optimized version of soreceive() for stream (TCP) sockets. 2538 */ 2539 int 2540 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio, 2541 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2542 { 2543 int len = 0, error = 0, flags, oresid; 2544 struct sockbuf *sb; 2545 struct mbuf *m, *n = NULL; 2546 2547 /* We only do stream sockets. */ 2548 if (so->so_type != SOCK_STREAM) 2549 return (EINVAL); 2550 if (psa != NULL) 2551 *psa = NULL; 2552 if (flagsp != NULL) 2553 flags = *flagsp &~ MSG_EOR; 2554 else 2555 flags = 0; 2556 if (controlp != NULL) 2557 *controlp = NULL; 2558 if (flags & MSG_OOB) 2559 return (soreceive_rcvoob(so, uio, flags)); 2560 if (mp0 != NULL) 2561 *mp0 = NULL; 2562 2563 sb = &so->so_rcv; 2564 2565 #ifdef KERN_TLS 2566 /* 2567 * KTLS store TLS records as records with a control message to 2568 * describe the framing. 2569 * 2570 * We check once here before acquiring locks to optimize the 2571 * common case. 2572 */ 2573 if (sb->sb_tls_info != NULL) 2574 return (soreceive_generic(so, psa, uio, mp0, controlp, 2575 flagsp)); 2576 #endif 2577 2578 /* Prevent other readers from entering the socket. */ 2579 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags)); 2580 if (error) 2581 return (error); 2582 SOCKBUF_LOCK(sb); 2583 2584 #ifdef KERN_TLS 2585 if (sb->sb_tls_info != NULL) { 2586 SOCKBUF_UNLOCK(sb); 2587 SOCK_IO_RECV_UNLOCK(so); 2588 return (soreceive_generic(so, psa, uio, mp0, controlp, 2589 flagsp)); 2590 } 2591 #endif 2592 2593 /* Easy one, no space to copyout anything. */ 2594 if (uio->uio_resid == 0) { 2595 error = EINVAL; 2596 goto out; 2597 } 2598 oresid = uio->uio_resid; 2599 2600 /* We will never ever get anything unless we are or were connected. */ 2601 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 2602 error = ENOTCONN; 2603 goto out; 2604 } 2605 2606 restart: 2607 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2608 2609 /* Abort if socket has reported problems. */ 2610 if (so->so_error) { 2611 if (sbavail(sb) > 0) 2612 goto deliver; 2613 if (oresid > uio->uio_resid) 2614 goto out; 2615 error = so->so_error; 2616 if (!(flags & MSG_PEEK)) 2617 so->so_error = 0; 2618 goto out; 2619 } 2620 2621 /* Door is closed. Deliver what is left, if any. */ 2622 if (sb->sb_state & SBS_CANTRCVMORE) { 2623 if (sbavail(sb) > 0) 2624 goto deliver; 2625 else 2626 goto out; 2627 } 2628 2629 /* Socket buffer is empty and we shall not block. */ 2630 if (sbavail(sb) == 0 && 2631 ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) { 2632 error = EAGAIN; 2633 goto out; 2634 } 2635 2636 /* Socket buffer got some data that we shall deliver now. */ 2637 if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) && 2638 ((so->so_state & SS_NBIO) || 2639 (flags & (MSG_DONTWAIT|MSG_NBIO)) || 2640 sbavail(sb) >= sb->sb_lowat || 2641 sbavail(sb) >= uio->uio_resid || 2642 sbavail(sb) >= sb->sb_hiwat) ) { 2643 goto deliver; 2644 } 2645 2646 /* On MSG_WAITALL we must wait until all data or error arrives. */ 2647 if ((flags & MSG_WAITALL) && 2648 (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat)) 2649 goto deliver; 2650 2651 /* 2652 * Wait and block until (more) data comes in. 2653 * NB: Drops the sockbuf lock during wait. 2654 */ 2655 error = sbwait(so, SO_RCV); 2656 if (error) 2657 goto out; 2658 goto restart; 2659 2660 deliver: 2661 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2662 KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__)); 2663 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__)); 2664 2665 /* Statistics. */ 2666 if (uio->uio_td) 2667 uio->uio_td->td_ru.ru_msgrcv++; 2668 2669 /* Fill uio until full or current end of socket buffer is reached. */ 2670 len = min(uio->uio_resid, sbavail(sb)); 2671 if (mp0 != NULL) { 2672 /* Dequeue as many mbufs as possible. */ 2673 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) { 2674 if (*mp0 == NULL) 2675 *mp0 = sb->sb_mb; 2676 else 2677 m_cat(*mp0, sb->sb_mb); 2678 for (m = sb->sb_mb; 2679 m != NULL && m->m_len <= len; 2680 m = m->m_next) { 2681 KASSERT(!(m->m_flags & M_NOTAVAIL), 2682 ("%s: m %p not available", __func__, m)); 2683 len -= m->m_len; 2684 uio->uio_resid -= m->m_len; 2685 sbfree(sb, m); 2686 n = m; 2687 } 2688 n->m_next = NULL; 2689 sb->sb_mb = m; 2690 sb->sb_lastrecord = sb->sb_mb; 2691 if (sb->sb_mb == NULL) 2692 SB_EMPTY_FIXUP(sb); 2693 } 2694 /* Copy the remainder. */ 2695 if (len > 0) { 2696 KASSERT(sb->sb_mb != NULL, 2697 ("%s: len > 0 && sb->sb_mb empty", __func__)); 2698 2699 m = m_copym(sb->sb_mb, 0, len, M_NOWAIT); 2700 if (m == NULL) 2701 len = 0; /* Don't flush data from sockbuf. */ 2702 else 2703 uio->uio_resid -= len; 2704 if (*mp0 != NULL) 2705 m_cat(*mp0, m); 2706 else 2707 *mp0 = m; 2708 if (*mp0 == NULL) { 2709 error = ENOBUFS; 2710 goto out; 2711 } 2712 } 2713 } else { 2714 /* NB: Must unlock socket buffer as uiomove may sleep. */ 2715 SOCKBUF_UNLOCK(sb); 2716 error = m_mbuftouio(uio, sb->sb_mb, len); 2717 SOCKBUF_LOCK(sb); 2718 if (error) 2719 goto out; 2720 } 2721 SBLASTRECORDCHK(sb); 2722 SBLASTMBUFCHK(sb); 2723 2724 /* 2725 * Remove the delivered data from the socket buffer unless we 2726 * were only peeking. 2727 */ 2728 if (!(flags & MSG_PEEK)) { 2729 if (len > 0) 2730 sbdrop_locked(sb, len); 2731 2732 /* Notify protocol that we drained some data. */ 2733 if ((so->so_proto->pr_flags & PR_WANTRCVD) && 2734 (((flags & MSG_WAITALL) && uio->uio_resid > 0) || 2735 !(flags & MSG_SOCALLBCK))) { 2736 SOCKBUF_UNLOCK(sb); 2737 VNET_SO_ASSERT(so); 2738 so->so_proto->pr_rcvd(so, flags); 2739 SOCKBUF_LOCK(sb); 2740 } 2741 } 2742 2743 /* 2744 * For MSG_WAITALL we may have to loop again and wait for 2745 * more data to come in. 2746 */ 2747 if ((flags & MSG_WAITALL) && uio->uio_resid > 0) 2748 goto restart; 2749 out: 2750 SBLASTRECORDCHK(sb); 2751 SBLASTMBUFCHK(sb); 2752 SOCKBUF_UNLOCK(sb); 2753 SOCK_IO_RECV_UNLOCK(so); 2754 return (error); 2755 } 2756 2757 /* 2758 * Optimized version of soreceive() for simple datagram cases from userspace. 2759 * Unlike in the stream case, we're able to drop a datagram if copyout() 2760 * fails, and because we handle datagrams atomically, we don't need to use a 2761 * sleep lock to prevent I/O interlacing. 2762 */ 2763 int 2764 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio, 2765 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2766 { 2767 struct mbuf *m, *m2; 2768 int flags, error; 2769 ssize_t len; 2770 struct protosw *pr = so->so_proto; 2771 struct mbuf *nextrecord; 2772 2773 if (psa != NULL) 2774 *psa = NULL; 2775 if (controlp != NULL) 2776 *controlp = NULL; 2777 if (flagsp != NULL) 2778 flags = *flagsp &~ MSG_EOR; 2779 else 2780 flags = 0; 2781 2782 /* 2783 * For any complicated cases, fall back to the full 2784 * soreceive_generic(). 2785 */ 2786 if (mp0 != NULL || (flags & (MSG_PEEK | MSG_OOB | MSG_TRUNC))) 2787 return (soreceive_generic(so, psa, uio, mp0, controlp, 2788 flagsp)); 2789 2790 /* 2791 * Enforce restrictions on use. 2792 */ 2793 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0, 2794 ("soreceive_dgram: wantrcvd")); 2795 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic")); 2796 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0, 2797 ("soreceive_dgram: SBS_RCVATMARK")); 2798 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0, 2799 ("soreceive_dgram: P_CONNREQUIRED")); 2800 2801 /* 2802 * Loop blocking while waiting for a datagram. 2803 */ 2804 SOCKBUF_LOCK(&so->so_rcv); 2805 while ((m = so->so_rcv.sb_mb) == NULL) { 2806 KASSERT(sbavail(&so->so_rcv) == 0, 2807 ("soreceive_dgram: sb_mb NULL but sbavail %u", 2808 sbavail(&so->so_rcv))); 2809 if (so->so_error) { 2810 error = so->so_error; 2811 so->so_error = 0; 2812 SOCKBUF_UNLOCK(&so->so_rcv); 2813 return (error); 2814 } 2815 if (so->so_rcv.sb_state & SBS_CANTRCVMORE || 2816 uio->uio_resid == 0) { 2817 SOCKBUF_UNLOCK(&so->so_rcv); 2818 return (0); 2819 } 2820 if ((so->so_state & SS_NBIO) || 2821 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2822 SOCKBUF_UNLOCK(&so->so_rcv); 2823 return (EWOULDBLOCK); 2824 } 2825 SBLASTRECORDCHK(&so->so_rcv); 2826 SBLASTMBUFCHK(&so->so_rcv); 2827 error = sbwait(so, SO_RCV); 2828 if (error) { 2829 SOCKBUF_UNLOCK(&so->so_rcv); 2830 return (error); 2831 } 2832 } 2833 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2834 2835 if (uio->uio_td) 2836 uio->uio_td->td_ru.ru_msgrcv++; 2837 SBLASTRECORDCHK(&so->so_rcv); 2838 SBLASTMBUFCHK(&so->so_rcv); 2839 nextrecord = m->m_nextpkt; 2840 if (nextrecord == NULL) { 2841 KASSERT(so->so_rcv.sb_lastrecord == m, 2842 ("soreceive_dgram: lastrecord != m")); 2843 } 2844 2845 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord, 2846 ("soreceive_dgram: m_nextpkt != nextrecord")); 2847 2848 /* 2849 * Pull 'm' and its chain off the front of the packet queue. 2850 */ 2851 so->so_rcv.sb_mb = NULL; 2852 sockbuf_pushsync(&so->so_rcv, nextrecord); 2853 2854 /* 2855 * Walk 'm's chain and free that many bytes from the socket buffer. 2856 */ 2857 for (m2 = m; m2 != NULL; m2 = m2->m_next) 2858 sbfree(&so->so_rcv, m2); 2859 2860 /* 2861 * Do a few last checks before we let go of the lock. 2862 */ 2863 SBLASTRECORDCHK(&so->so_rcv); 2864 SBLASTMBUFCHK(&so->so_rcv); 2865 SOCKBUF_UNLOCK(&so->so_rcv); 2866 2867 if (pr->pr_flags & PR_ADDR) { 2868 KASSERT(m->m_type == MT_SONAME, 2869 ("m->m_type == %d", m->m_type)); 2870 if (psa != NULL) 2871 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2872 M_WAITOK); 2873 m = m_free(m); 2874 } 2875 KASSERT(m, ("%s: no data or control after soname", __func__)); 2876 2877 /* 2878 * Packet to copyout() is now in 'm' and it is disconnected from the 2879 * queue. 2880 * 2881 * Process one or more MT_CONTROL mbufs present before any data mbufs 2882 * in the first mbuf chain on the socket buffer. We call into the 2883 * protocol to perform externalization (or freeing if controlp == 2884 * NULL). In some cases there can be only MT_CONTROL mbufs without 2885 * MT_DATA mbufs. 2886 */ 2887 if (m->m_type == MT_CONTROL) { 2888 struct mbuf *cm = NULL, *cmn; 2889 struct mbuf **cme = &cm; 2890 2891 do { 2892 m2 = m->m_next; 2893 m->m_next = NULL; 2894 *cme = m; 2895 cme = &(*cme)->m_next; 2896 m = m2; 2897 } while (m != NULL && m->m_type == MT_CONTROL); 2898 while (cm != NULL) { 2899 cmn = cm->m_next; 2900 cm->m_next = NULL; 2901 if (pr->pr_domain->dom_externalize != NULL) { 2902 error = (*pr->pr_domain->dom_externalize) 2903 (cm, controlp, flags); 2904 } else if (controlp != NULL) 2905 *controlp = cm; 2906 else 2907 m_freem(cm); 2908 if (controlp != NULL) { 2909 while (*controlp != NULL) 2910 controlp = &(*controlp)->m_next; 2911 } 2912 cm = cmn; 2913 } 2914 } 2915 KASSERT(m == NULL || m->m_type == MT_DATA, 2916 ("soreceive_dgram: !data")); 2917 while (m != NULL && uio->uio_resid > 0) { 2918 len = uio->uio_resid; 2919 if (len > m->m_len) 2920 len = m->m_len; 2921 error = uiomove(mtod(m, char *), (int)len, uio); 2922 if (error) { 2923 m_freem(m); 2924 return (error); 2925 } 2926 if (len == m->m_len) 2927 m = m_free(m); 2928 else { 2929 m->m_data += len; 2930 m->m_len -= len; 2931 } 2932 } 2933 if (m != NULL) { 2934 flags |= MSG_TRUNC; 2935 m_freem(m); 2936 } 2937 if (flagsp != NULL) 2938 *flagsp |= flags; 2939 return (0); 2940 } 2941 2942 int 2943 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, 2944 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2945 { 2946 int error; 2947 2948 CURVNET_SET(so->so_vnet); 2949 error = so->so_proto->pr_soreceive(so, psa, uio, mp0, controlp, flagsp); 2950 CURVNET_RESTORE(); 2951 return (error); 2952 } 2953 2954 int 2955 soshutdown(struct socket *so, enum shutdown_how how) 2956 { 2957 int error; 2958 2959 CURVNET_SET(so->so_vnet); 2960 error = so->so_proto->pr_shutdown(so, how); 2961 CURVNET_RESTORE(); 2962 2963 return (error); 2964 } 2965 2966 /* 2967 * Used by several pr_shutdown implementations that use generic socket buffers. 2968 */ 2969 void 2970 sorflush(struct socket *so) 2971 { 2972 int error; 2973 2974 VNET_SO_ASSERT(so); 2975 2976 /* 2977 * Dislodge threads currently blocked in receive and wait to acquire 2978 * a lock against other simultaneous readers before clearing the 2979 * socket buffer. Don't let our acquire be interrupted by a signal 2980 * despite any existing socket disposition on interruptable waiting. 2981 * 2982 * The SOCK_IO_RECV_LOCK() is important here as there some pr_soreceive 2983 * methods that read the top of the socket buffer without acquisition 2984 * of the socket buffer mutex, assuming that top of the buffer 2985 * exclusively belongs to the read(2) syscall. This is handy when 2986 * performing MSG_PEEK. 2987 */ 2988 socantrcvmore(so); 2989 2990 error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR); 2991 if (error != 0) { 2992 KASSERT(SOLISTENING(so), 2993 ("%s: soiolock(%p) failed", __func__, so)); 2994 return; 2995 } 2996 2997 sbrelease(so, SO_RCV); 2998 SOCK_IO_RECV_UNLOCK(so); 2999 3000 } 3001 3002 /* 3003 * Wrapper for Socket established helper hook. 3004 * Parameters: socket, context of the hook point, hook id. 3005 */ 3006 static int inline 3007 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id) 3008 { 3009 struct socket_hhook_data hhook_data = { 3010 .so = so, 3011 .hctx = hctx, 3012 .m = NULL, 3013 .status = 0 3014 }; 3015 3016 CURVNET_SET(so->so_vnet); 3017 HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd); 3018 CURVNET_RESTORE(); 3019 3020 /* Ugly but needed, since hhooks return void for now */ 3021 return (hhook_data.status); 3022 } 3023 3024 /* 3025 * Perhaps this routine, and sooptcopyout(), below, ought to come in an 3026 * additional variant to handle the case where the option value needs to be 3027 * some kind of integer, but not a specific size. In addition to their use 3028 * here, these functions are also called by the protocol-level pr_ctloutput() 3029 * routines. 3030 */ 3031 int 3032 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen) 3033 { 3034 size_t valsize; 3035 3036 /* 3037 * If the user gives us more than we wanted, we ignore it, but if we 3038 * don't get the minimum length the caller wants, we return EINVAL. 3039 * On success, sopt->sopt_valsize is set to however much we actually 3040 * retrieved. 3041 */ 3042 if ((valsize = sopt->sopt_valsize) < minlen) 3043 return EINVAL; 3044 if (valsize > len) 3045 sopt->sopt_valsize = valsize = len; 3046 3047 if (sopt->sopt_td != NULL) 3048 return (copyin(sopt->sopt_val, buf, valsize)); 3049 3050 bcopy(sopt->sopt_val, buf, valsize); 3051 return (0); 3052 } 3053 3054 /* 3055 * Kernel version of setsockopt(2). 3056 * 3057 * XXX: optlen is size_t, not socklen_t 3058 */ 3059 int 3060 so_setsockopt(struct socket *so, int level, int optname, void *optval, 3061 size_t optlen) 3062 { 3063 struct sockopt sopt; 3064 3065 sopt.sopt_level = level; 3066 sopt.sopt_name = optname; 3067 sopt.sopt_dir = SOPT_SET; 3068 sopt.sopt_val = optval; 3069 sopt.sopt_valsize = optlen; 3070 sopt.sopt_td = NULL; 3071 return (sosetopt(so, &sopt)); 3072 } 3073 3074 int 3075 sosetopt(struct socket *so, struct sockopt *sopt) 3076 { 3077 int error, optval; 3078 struct linger l; 3079 struct timeval tv; 3080 sbintime_t val, *valp; 3081 uint32_t val32; 3082 #ifdef MAC 3083 struct mac extmac; 3084 #endif 3085 3086 CURVNET_SET(so->so_vnet); 3087 error = 0; 3088 if (sopt->sopt_level != SOL_SOCKET) { 3089 if (so->so_proto->pr_ctloutput != NULL) 3090 error = (*so->so_proto->pr_ctloutput)(so, sopt); 3091 else 3092 error = ENOPROTOOPT; 3093 } else { 3094 switch (sopt->sopt_name) { 3095 case SO_ACCEPTFILTER: 3096 error = accept_filt_setopt(so, sopt); 3097 if (error) 3098 goto bad; 3099 break; 3100 3101 case SO_LINGER: 3102 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 3103 if (error) 3104 goto bad; 3105 if (l.l_linger < 0 || 3106 l.l_linger > USHRT_MAX || 3107 l.l_linger > (INT_MAX / hz)) { 3108 error = EDOM; 3109 goto bad; 3110 } 3111 SOCK_LOCK(so); 3112 so->so_linger = l.l_linger; 3113 if (l.l_onoff) 3114 so->so_options |= SO_LINGER; 3115 else 3116 so->so_options &= ~SO_LINGER; 3117 SOCK_UNLOCK(so); 3118 break; 3119 3120 case SO_DEBUG: 3121 case SO_KEEPALIVE: 3122 case SO_DONTROUTE: 3123 case SO_USELOOPBACK: 3124 case SO_BROADCAST: 3125 case SO_REUSEADDR: 3126 case SO_REUSEPORT: 3127 case SO_REUSEPORT_LB: 3128 case SO_OOBINLINE: 3129 case SO_TIMESTAMP: 3130 case SO_BINTIME: 3131 case SO_NOSIGPIPE: 3132 case SO_NO_DDP: 3133 case SO_NO_OFFLOAD: 3134 case SO_RERROR: 3135 error = sooptcopyin(sopt, &optval, sizeof optval, 3136 sizeof optval); 3137 if (error) 3138 goto bad; 3139 SOCK_LOCK(so); 3140 if (optval) 3141 so->so_options |= sopt->sopt_name; 3142 else 3143 so->so_options &= ~sopt->sopt_name; 3144 SOCK_UNLOCK(so); 3145 break; 3146 3147 case SO_SETFIB: 3148 error = sooptcopyin(sopt, &optval, sizeof optval, 3149 sizeof optval); 3150 if (error) 3151 goto bad; 3152 3153 if (optval < 0 || optval >= rt_numfibs) { 3154 error = EINVAL; 3155 goto bad; 3156 } 3157 if (((so->so_proto->pr_domain->dom_family == PF_INET) || 3158 (so->so_proto->pr_domain->dom_family == PF_INET6) || 3159 (so->so_proto->pr_domain->dom_family == PF_ROUTE))) 3160 so->so_fibnum = optval; 3161 else 3162 so->so_fibnum = 0; 3163 break; 3164 3165 case SO_USER_COOKIE: 3166 error = sooptcopyin(sopt, &val32, sizeof val32, 3167 sizeof val32); 3168 if (error) 3169 goto bad; 3170 so->so_user_cookie = val32; 3171 break; 3172 3173 case SO_SNDBUF: 3174 case SO_RCVBUF: 3175 case SO_SNDLOWAT: 3176 case SO_RCVLOWAT: 3177 error = so->so_proto->pr_setsbopt(so, sopt); 3178 if (error) 3179 goto bad; 3180 break; 3181 3182 case SO_SNDTIMEO: 3183 case SO_RCVTIMEO: 3184 #ifdef COMPAT_FREEBSD32 3185 if (SV_CURPROC_FLAG(SV_ILP32)) { 3186 struct timeval32 tv32; 3187 3188 error = sooptcopyin(sopt, &tv32, sizeof tv32, 3189 sizeof tv32); 3190 CP(tv32, tv, tv_sec); 3191 CP(tv32, tv, tv_usec); 3192 } else 3193 #endif 3194 error = sooptcopyin(sopt, &tv, sizeof tv, 3195 sizeof tv); 3196 if (error) 3197 goto bad; 3198 if (tv.tv_sec < 0 || tv.tv_usec < 0 || 3199 tv.tv_usec >= 1000000) { 3200 error = EDOM; 3201 goto bad; 3202 } 3203 if (tv.tv_sec > INT32_MAX) 3204 val = SBT_MAX; 3205 else 3206 val = tvtosbt(tv); 3207 SOCK_LOCK(so); 3208 valp = sopt->sopt_name == SO_SNDTIMEO ? 3209 (SOLISTENING(so) ? &so->sol_sbsnd_timeo : 3210 &so->so_snd.sb_timeo) : 3211 (SOLISTENING(so) ? &so->sol_sbrcv_timeo : 3212 &so->so_rcv.sb_timeo); 3213 *valp = val; 3214 SOCK_UNLOCK(so); 3215 break; 3216 3217 case SO_LABEL: 3218 #ifdef MAC 3219 error = sooptcopyin(sopt, &extmac, sizeof extmac, 3220 sizeof extmac); 3221 if (error) 3222 goto bad; 3223 error = mac_setsockopt_label(sopt->sopt_td->td_ucred, 3224 so, &extmac); 3225 #else 3226 error = EOPNOTSUPP; 3227 #endif 3228 break; 3229 3230 case SO_TS_CLOCK: 3231 error = sooptcopyin(sopt, &optval, sizeof optval, 3232 sizeof optval); 3233 if (error) 3234 goto bad; 3235 if (optval < 0 || optval > SO_TS_CLOCK_MAX) { 3236 error = EINVAL; 3237 goto bad; 3238 } 3239 so->so_ts_clock = optval; 3240 break; 3241 3242 case SO_MAX_PACING_RATE: 3243 error = sooptcopyin(sopt, &val32, sizeof(val32), 3244 sizeof(val32)); 3245 if (error) 3246 goto bad; 3247 so->so_max_pacing_rate = val32; 3248 break; 3249 3250 default: 3251 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 3252 error = hhook_run_socket(so, sopt, 3253 HHOOK_SOCKET_OPT); 3254 else 3255 error = ENOPROTOOPT; 3256 break; 3257 } 3258 if (error == 0 && so->so_proto->pr_ctloutput != NULL) 3259 (void)(*so->so_proto->pr_ctloutput)(so, sopt); 3260 } 3261 bad: 3262 CURVNET_RESTORE(); 3263 return (error); 3264 } 3265 3266 /* 3267 * Helper routine for getsockopt. 3268 */ 3269 int 3270 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 3271 { 3272 int error; 3273 size_t valsize; 3274 3275 error = 0; 3276 3277 /* 3278 * Documented get behavior is that we always return a value, possibly 3279 * truncated to fit in the user's buffer. Traditional behavior is 3280 * that we always tell the user precisely how much we copied, rather 3281 * than something useful like the total amount we had available for 3282 * her. Note that this interface is not idempotent; the entire 3283 * answer must be generated ahead of time. 3284 */ 3285 valsize = min(len, sopt->sopt_valsize); 3286 sopt->sopt_valsize = valsize; 3287 if (sopt->sopt_val != NULL) { 3288 if (sopt->sopt_td != NULL) 3289 error = copyout(buf, sopt->sopt_val, valsize); 3290 else 3291 bcopy(buf, sopt->sopt_val, valsize); 3292 } 3293 return (error); 3294 } 3295 3296 int 3297 sogetopt(struct socket *so, struct sockopt *sopt) 3298 { 3299 int error, optval; 3300 struct linger l; 3301 struct timeval tv; 3302 #ifdef MAC 3303 struct mac extmac; 3304 #endif 3305 3306 CURVNET_SET(so->so_vnet); 3307 error = 0; 3308 if (sopt->sopt_level != SOL_SOCKET) { 3309 if (so->so_proto->pr_ctloutput != NULL) 3310 error = (*so->so_proto->pr_ctloutput)(so, sopt); 3311 else 3312 error = ENOPROTOOPT; 3313 CURVNET_RESTORE(); 3314 return (error); 3315 } else { 3316 switch (sopt->sopt_name) { 3317 case SO_ACCEPTFILTER: 3318 error = accept_filt_getopt(so, sopt); 3319 break; 3320 3321 case SO_LINGER: 3322 SOCK_LOCK(so); 3323 l.l_onoff = so->so_options & SO_LINGER; 3324 l.l_linger = so->so_linger; 3325 SOCK_UNLOCK(so); 3326 error = sooptcopyout(sopt, &l, sizeof l); 3327 break; 3328 3329 case SO_USELOOPBACK: 3330 case SO_DONTROUTE: 3331 case SO_DEBUG: 3332 case SO_KEEPALIVE: 3333 case SO_REUSEADDR: 3334 case SO_REUSEPORT: 3335 case SO_REUSEPORT_LB: 3336 case SO_BROADCAST: 3337 case SO_OOBINLINE: 3338 case SO_ACCEPTCONN: 3339 case SO_TIMESTAMP: 3340 case SO_BINTIME: 3341 case SO_NOSIGPIPE: 3342 case SO_NO_DDP: 3343 case SO_NO_OFFLOAD: 3344 case SO_RERROR: 3345 optval = so->so_options & sopt->sopt_name; 3346 integer: 3347 error = sooptcopyout(sopt, &optval, sizeof optval); 3348 break; 3349 3350 case SO_DOMAIN: 3351 optval = so->so_proto->pr_domain->dom_family; 3352 goto integer; 3353 3354 case SO_TYPE: 3355 optval = so->so_type; 3356 goto integer; 3357 3358 case SO_PROTOCOL: 3359 optval = so->so_proto->pr_protocol; 3360 goto integer; 3361 3362 case SO_ERROR: 3363 SOCK_LOCK(so); 3364 if (so->so_error) { 3365 optval = so->so_error; 3366 so->so_error = 0; 3367 } else { 3368 optval = so->so_rerror; 3369 so->so_rerror = 0; 3370 } 3371 SOCK_UNLOCK(so); 3372 goto integer; 3373 3374 case SO_SNDBUF: 3375 optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat : 3376 so->so_snd.sb_hiwat; 3377 goto integer; 3378 3379 case SO_RCVBUF: 3380 optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat : 3381 so->so_rcv.sb_hiwat; 3382 goto integer; 3383 3384 case SO_SNDLOWAT: 3385 optval = SOLISTENING(so) ? so->sol_sbsnd_lowat : 3386 so->so_snd.sb_lowat; 3387 goto integer; 3388 3389 case SO_RCVLOWAT: 3390 optval = SOLISTENING(so) ? so->sol_sbrcv_lowat : 3391 so->so_rcv.sb_lowat; 3392 goto integer; 3393 3394 case SO_SNDTIMEO: 3395 case SO_RCVTIMEO: 3396 SOCK_LOCK(so); 3397 tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ? 3398 (SOLISTENING(so) ? so->sol_sbsnd_timeo : 3399 so->so_snd.sb_timeo) : 3400 (SOLISTENING(so) ? so->sol_sbrcv_timeo : 3401 so->so_rcv.sb_timeo)); 3402 SOCK_UNLOCK(so); 3403 #ifdef COMPAT_FREEBSD32 3404 if (SV_CURPROC_FLAG(SV_ILP32)) { 3405 struct timeval32 tv32; 3406 3407 CP(tv, tv32, tv_sec); 3408 CP(tv, tv32, tv_usec); 3409 error = sooptcopyout(sopt, &tv32, sizeof tv32); 3410 } else 3411 #endif 3412 error = sooptcopyout(sopt, &tv, sizeof tv); 3413 break; 3414 3415 case SO_LABEL: 3416 #ifdef MAC 3417 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 3418 sizeof(extmac)); 3419 if (error) 3420 goto bad; 3421 error = mac_getsockopt_label(sopt->sopt_td->td_ucred, 3422 so, &extmac); 3423 if (error) 3424 goto bad; 3425 /* Don't copy out extmac, it is unchanged. */ 3426 #else 3427 error = EOPNOTSUPP; 3428 #endif 3429 break; 3430 3431 case SO_PEERLABEL: 3432 #ifdef MAC 3433 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 3434 sizeof(extmac)); 3435 if (error) 3436 goto bad; 3437 error = mac_getsockopt_peerlabel( 3438 sopt->sopt_td->td_ucred, so, &extmac); 3439 if (error) 3440 goto bad; 3441 /* Don't copy out extmac, it is unchanged. */ 3442 #else 3443 error = EOPNOTSUPP; 3444 #endif 3445 break; 3446 3447 case SO_LISTENQLIMIT: 3448 optval = SOLISTENING(so) ? so->sol_qlimit : 0; 3449 goto integer; 3450 3451 case SO_LISTENQLEN: 3452 optval = SOLISTENING(so) ? so->sol_qlen : 0; 3453 goto integer; 3454 3455 case SO_LISTENINCQLEN: 3456 optval = SOLISTENING(so) ? so->sol_incqlen : 0; 3457 goto integer; 3458 3459 case SO_TS_CLOCK: 3460 optval = so->so_ts_clock; 3461 goto integer; 3462 3463 case SO_MAX_PACING_RATE: 3464 optval = so->so_max_pacing_rate; 3465 goto integer; 3466 3467 default: 3468 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 3469 error = hhook_run_socket(so, sopt, 3470 HHOOK_SOCKET_OPT); 3471 else 3472 error = ENOPROTOOPT; 3473 break; 3474 } 3475 } 3476 #ifdef MAC 3477 bad: 3478 #endif 3479 CURVNET_RESTORE(); 3480 return (error); 3481 } 3482 3483 int 3484 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 3485 { 3486 struct mbuf *m, *m_prev; 3487 int sopt_size = sopt->sopt_valsize; 3488 3489 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 3490 if (m == NULL) 3491 return ENOBUFS; 3492 if (sopt_size > MLEN) { 3493 MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT); 3494 if ((m->m_flags & M_EXT) == 0) { 3495 m_free(m); 3496 return ENOBUFS; 3497 } 3498 m->m_len = min(MCLBYTES, sopt_size); 3499 } else { 3500 m->m_len = min(MLEN, sopt_size); 3501 } 3502 sopt_size -= m->m_len; 3503 *mp = m; 3504 m_prev = m; 3505 3506 while (sopt_size) { 3507 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 3508 if (m == NULL) { 3509 m_freem(*mp); 3510 return ENOBUFS; 3511 } 3512 if (sopt_size > MLEN) { 3513 MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK : 3514 M_NOWAIT); 3515 if ((m->m_flags & M_EXT) == 0) { 3516 m_freem(m); 3517 m_freem(*mp); 3518 return ENOBUFS; 3519 } 3520 m->m_len = min(MCLBYTES, sopt_size); 3521 } else { 3522 m->m_len = min(MLEN, sopt_size); 3523 } 3524 sopt_size -= m->m_len; 3525 m_prev->m_next = m; 3526 m_prev = m; 3527 } 3528 return (0); 3529 } 3530 3531 int 3532 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 3533 { 3534 struct mbuf *m0 = m; 3535 3536 if (sopt->sopt_val == NULL) 3537 return (0); 3538 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 3539 if (sopt->sopt_td != NULL) { 3540 int error; 3541 3542 error = copyin(sopt->sopt_val, mtod(m, char *), 3543 m->m_len); 3544 if (error != 0) { 3545 m_freem(m0); 3546 return(error); 3547 } 3548 } else 3549 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 3550 sopt->sopt_valsize -= m->m_len; 3551 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 3552 m = m->m_next; 3553 } 3554 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 3555 panic("ip6_sooptmcopyin"); 3556 return (0); 3557 } 3558 3559 int 3560 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 3561 { 3562 struct mbuf *m0 = m; 3563 size_t valsize = 0; 3564 3565 if (sopt->sopt_val == NULL) 3566 return (0); 3567 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 3568 if (sopt->sopt_td != NULL) { 3569 int error; 3570 3571 error = copyout(mtod(m, char *), sopt->sopt_val, 3572 m->m_len); 3573 if (error != 0) { 3574 m_freem(m0); 3575 return(error); 3576 } 3577 } else 3578 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 3579 sopt->sopt_valsize -= m->m_len; 3580 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 3581 valsize += m->m_len; 3582 m = m->m_next; 3583 } 3584 if (m != NULL) { 3585 /* enough soopt buffer should be given from user-land */ 3586 m_freem(m0); 3587 return(EINVAL); 3588 } 3589 sopt->sopt_valsize = valsize; 3590 return (0); 3591 } 3592 3593 /* 3594 * sohasoutofband(): protocol notifies socket layer of the arrival of new 3595 * out-of-band data, which will then notify socket consumers. 3596 */ 3597 void 3598 sohasoutofband(struct socket *so) 3599 { 3600 3601 if (so->so_sigio != NULL) 3602 pgsigio(&so->so_sigio, SIGURG, 0); 3603 selwakeuppri(&so->so_rdsel, PSOCK); 3604 } 3605 3606 int 3607 sopoll(struct socket *so, int events, struct ucred *active_cred, 3608 struct thread *td) 3609 { 3610 3611 /* 3612 * We do not need to set or assert curvnet as long as everyone uses 3613 * sopoll_generic(). 3614 */ 3615 return (so->so_proto->pr_sopoll(so, events, active_cred, td)); 3616 } 3617 3618 int 3619 sopoll_generic(struct socket *so, int events, struct ucred *active_cred, 3620 struct thread *td) 3621 { 3622 int revents; 3623 3624 SOCK_LOCK(so); 3625 if (SOLISTENING(so)) { 3626 if (!(events & (POLLIN | POLLRDNORM))) 3627 revents = 0; 3628 else if (!TAILQ_EMPTY(&so->sol_comp)) 3629 revents = events & (POLLIN | POLLRDNORM); 3630 else if ((events & POLLINIGNEOF) == 0 && so->so_error) 3631 revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP; 3632 else { 3633 selrecord(td, &so->so_rdsel); 3634 revents = 0; 3635 } 3636 } else { 3637 revents = 0; 3638 SOCK_SENDBUF_LOCK(so); 3639 SOCK_RECVBUF_LOCK(so); 3640 if (events & (POLLIN | POLLRDNORM)) 3641 if (soreadabledata(so)) 3642 revents |= events & (POLLIN | POLLRDNORM); 3643 if (events & (POLLOUT | POLLWRNORM)) 3644 if (sowriteable(so)) 3645 revents |= events & (POLLOUT | POLLWRNORM); 3646 if (events & (POLLPRI | POLLRDBAND)) 3647 if (so->so_oobmark || 3648 (so->so_rcv.sb_state & SBS_RCVATMARK)) 3649 revents |= events & (POLLPRI | POLLRDBAND); 3650 if ((events & POLLINIGNEOF) == 0) { 3651 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3652 revents |= events & (POLLIN | POLLRDNORM); 3653 if (so->so_snd.sb_state & SBS_CANTSENDMORE) 3654 revents |= POLLHUP; 3655 } 3656 } 3657 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) 3658 revents |= events & POLLRDHUP; 3659 if (revents == 0) { 3660 if (events & 3661 (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND | POLLRDHUP)) { 3662 selrecord(td, &so->so_rdsel); 3663 so->so_rcv.sb_flags |= SB_SEL; 3664 } 3665 if (events & (POLLOUT | POLLWRNORM)) { 3666 selrecord(td, &so->so_wrsel); 3667 so->so_snd.sb_flags |= SB_SEL; 3668 } 3669 } 3670 SOCK_RECVBUF_UNLOCK(so); 3671 SOCK_SENDBUF_UNLOCK(so); 3672 } 3673 SOCK_UNLOCK(so); 3674 return (revents); 3675 } 3676 3677 int 3678 soo_kqfilter(struct file *fp, struct knote *kn) 3679 { 3680 struct socket *so = kn->kn_fp->f_data; 3681 struct sockbuf *sb; 3682 sb_which which; 3683 struct knlist *knl; 3684 3685 switch (kn->kn_filter) { 3686 case EVFILT_READ: 3687 kn->kn_fop = &soread_filtops; 3688 knl = &so->so_rdsel.si_note; 3689 sb = &so->so_rcv; 3690 which = SO_RCV; 3691 break; 3692 case EVFILT_WRITE: 3693 kn->kn_fop = &sowrite_filtops; 3694 knl = &so->so_wrsel.si_note; 3695 sb = &so->so_snd; 3696 which = SO_SND; 3697 break; 3698 case EVFILT_EMPTY: 3699 kn->kn_fop = &soempty_filtops; 3700 knl = &so->so_wrsel.si_note; 3701 sb = &so->so_snd; 3702 which = SO_SND; 3703 break; 3704 default: 3705 return (EINVAL); 3706 } 3707 3708 SOCK_LOCK(so); 3709 if (SOLISTENING(so)) { 3710 knlist_add(knl, kn, 1); 3711 } else { 3712 SOCK_BUF_LOCK(so, which); 3713 knlist_add(knl, kn, 1); 3714 sb->sb_flags |= SB_KNOTE; 3715 SOCK_BUF_UNLOCK(so, which); 3716 } 3717 SOCK_UNLOCK(so); 3718 return (0); 3719 } 3720 3721 static void 3722 filt_sordetach(struct knote *kn) 3723 { 3724 struct socket *so = kn->kn_fp->f_data; 3725 3726 so_rdknl_lock(so); 3727 knlist_remove(&so->so_rdsel.si_note, kn, 1); 3728 if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note)) 3729 so->so_rcv.sb_flags &= ~SB_KNOTE; 3730 so_rdknl_unlock(so); 3731 } 3732 3733 /*ARGSUSED*/ 3734 static int 3735 filt_soread(struct knote *kn, long hint) 3736 { 3737 struct socket *so; 3738 3739 so = kn->kn_fp->f_data; 3740 3741 if (SOLISTENING(so)) { 3742 SOCK_LOCK_ASSERT(so); 3743 kn->kn_data = so->sol_qlen; 3744 if (so->so_error) { 3745 kn->kn_flags |= EV_EOF; 3746 kn->kn_fflags = so->so_error; 3747 return (1); 3748 } 3749 return (!TAILQ_EMPTY(&so->sol_comp)); 3750 } 3751 3752 SOCK_RECVBUF_LOCK_ASSERT(so); 3753 3754 kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl; 3755 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3756 kn->kn_flags |= EV_EOF; 3757 kn->kn_fflags = so->so_error; 3758 return (1); 3759 } else if (so->so_error || so->so_rerror) 3760 return (1); 3761 3762 if (kn->kn_sfflags & NOTE_LOWAT) { 3763 if (kn->kn_data >= kn->kn_sdata) 3764 return (1); 3765 } else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat) 3766 return (1); 3767 3768 /* This hook returning non-zero indicates an event, not error */ 3769 return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD)); 3770 } 3771 3772 static void 3773 filt_sowdetach(struct knote *kn) 3774 { 3775 struct socket *so = kn->kn_fp->f_data; 3776 3777 so_wrknl_lock(so); 3778 knlist_remove(&so->so_wrsel.si_note, kn, 1); 3779 if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note)) 3780 so->so_snd.sb_flags &= ~SB_KNOTE; 3781 so_wrknl_unlock(so); 3782 } 3783 3784 /*ARGSUSED*/ 3785 static int 3786 filt_sowrite(struct knote *kn, long hint) 3787 { 3788 struct socket *so; 3789 3790 so = kn->kn_fp->f_data; 3791 3792 if (SOLISTENING(so)) 3793 return (0); 3794 3795 SOCK_SENDBUF_LOCK_ASSERT(so); 3796 kn->kn_data = sbspace(&so->so_snd); 3797 3798 hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE); 3799 3800 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 3801 kn->kn_flags |= EV_EOF; 3802 kn->kn_fflags = so->so_error; 3803 return (1); 3804 } else if (so->so_error) /* temporary udp error */ 3805 return (1); 3806 else if (((so->so_state & SS_ISCONNECTED) == 0) && 3807 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 3808 return (0); 3809 else if (kn->kn_sfflags & NOTE_LOWAT) 3810 return (kn->kn_data >= kn->kn_sdata); 3811 else 3812 return (kn->kn_data >= so->so_snd.sb_lowat); 3813 } 3814 3815 static int 3816 filt_soempty(struct knote *kn, long hint) 3817 { 3818 struct socket *so; 3819 3820 so = kn->kn_fp->f_data; 3821 3822 if (SOLISTENING(so)) 3823 return (1); 3824 3825 SOCK_SENDBUF_LOCK_ASSERT(so); 3826 kn->kn_data = sbused(&so->so_snd); 3827 3828 if (kn->kn_data == 0) 3829 return (1); 3830 else 3831 return (0); 3832 } 3833 3834 int 3835 socheckuid(struct socket *so, uid_t uid) 3836 { 3837 3838 if (so == NULL) 3839 return (EPERM); 3840 if (so->so_cred->cr_uid != uid) 3841 return (EPERM); 3842 return (0); 3843 } 3844 3845 /* 3846 * These functions are used by protocols to notify the socket layer (and its 3847 * consumers) of state changes in the sockets driven by protocol-side events. 3848 */ 3849 3850 /* 3851 * Procedures to manipulate state flags of socket and do appropriate wakeups. 3852 * 3853 * Normal sequence from the active (originating) side is that 3854 * soisconnecting() is called during processing of connect() call, resulting 3855 * in an eventual call to soisconnected() if/when the connection is 3856 * established. When the connection is torn down soisdisconnecting() is 3857 * called during processing of disconnect() call, and soisdisconnected() is 3858 * called when the connection to the peer is totally severed. The semantics 3859 * of these routines are such that connectionless protocols can call 3860 * soisconnected() and soisdisconnected() only, bypassing the in-progress 3861 * calls when setting up a ``connection'' takes no time. 3862 * 3863 * From the passive side, a socket is created with two queues of sockets: 3864 * so_incomp for connections in progress and so_comp for connections already 3865 * made and awaiting user acceptance. As a protocol is preparing incoming 3866 * connections, it creates a socket structure queued on so_incomp by calling 3867 * sonewconn(). When the connection is established, soisconnected() is 3868 * called, and transfers the socket structure to so_comp, making it available 3869 * to accept(). 3870 * 3871 * If a socket is closed with sockets on either so_incomp or so_comp, these 3872 * sockets are dropped. 3873 * 3874 * If higher-level protocols are implemented in the kernel, the wakeups done 3875 * here will sometimes cause software-interrupt process scheduling. 3876 */ 3877 void 3878 soisconnecting(struct socket *so) 3879 { 3880 3881 SOCK_LOCK(so); 3882 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 3883 so->so_state |= SS_ISCONNECTING; 3884 SOCK_UNLOCK(so); 3885 } 3886 3887 void 3888 soisconnected(struct socket *so) 3889 { 3890 bool last __diagused; 3891 3892 SOCK_LOCK(so); 3893 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING); 3894 so->so_state |= SS_ISCONNECTED; 3895 3896 if (so->so_qstate == SQ_INCOMP) { 3897 struct socket *head = so->so_listen; 3898 int ret; 3899 3900 KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so)); 3901 /* 3902 * Promoting a socket from incomplete queue to complete, we 3903 * need to go through reverse order of locking. We first do 3904 * trylock, and if that doesn't succeed, we go the hard way 3905 * leaving a reference and rechecking consistency after proper 3906 * locking. 3907 */ 3908 if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) { 3909 soref(head); 3910 SOCK_UNLOCK(so); 3911 SOLISTEN_LOCK(head); 3912 SOCK_LOCK(so); 3913 if (__predict_false(head != so->so_listen)) { 3914 /* 3915 * The socket went off the listen queue, 3916 * should be lost race to close(2) of sol. 3917 * The socket is about to soabort(). 3918 */ 3919 SOCK_UNLOCK(so); 3920 sorele_locked(head); 3921 return; 3922 } 3923 last = refcount_release(&head->so_count); 3924 KASSERT(!last, ("%s: released last reference for %p", 3925 __func__, head)); 3926 } 3927 again: 3928 if ((so->so_options & SO_ACCEPTFILTER) == 0) { 3929 TAILQ_REMOVE(&head->sol_incomp, so, so_list); 3930 head->sol_incqlen--; 3931 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 3932 head->sol_qlen++; 3933 so->so_qstate = SQ_COMP; 3934 SOCK_UNLOCK(so); 3935 solisten_wakeup(head); /* unlocks */ 3936 } else { 3937 SOCK_RECVBUF_LOCK(so); 3938 soupcall_set(so, SO_RCV, 3939 head->sol_accept_filter->accf_callback, 3940 head->sol_accept_filter_arg); 3941 so->so_options &= ~SO_ACCEPTFILTER; 3942 ret = head->sol_accept_filter->accf_callback(so, 3943 head->sol_accept_filter_arg, M_NOWAIT); 3944 if (ret == SU_ISCONNECTED) { 3945 soupcall_clear(so, SO_RCV); 3946 SOCK_RECVBUF_UNLOCK(so); 3947 goto again; 3948 } 3949 SOCK_RECVBUF_UNLOCK(so); 3950 SOCK_UNLOCK(so); 3951 SOLISTEN_UNLOCK(head); 3952 } 3953 return; 3954 } 3955 SOCK_UNLOCK(so); 3956 wakeup(&so->so_timeo); 3957 sorwakeup(so); 3958 sowwakeup(so); 3959 } 3960 3961 void 3962 soisdisconnecting(struct socket *so) 3963 { 3964 3965 SOCK_LOCK(so); 3966 so->so_state &= ~SS_ISCONNECTING; 3967 so->so_state |= SS_ISDISCONNECTING; 3968 3969 if (!SOLISTENING(so)) { 3970 SOCK_RECVBUF_LOCK(so); 3971 socantrcvmore_locked(so); 3972 SOCK_SENDBUF_LOCK(so); 3973 socantsendmore_locked(so); 3974 } 3975 SOCK_UNLOCK(so); 3976 wakeup(&so->so_timeo); 3977 } 3978 3979 void 3980 soisdisconnected(struct socket *so) 3981 { 3982 3983 SOCK_LOCK(so); 3984 3985 /* 3986 * There is at least one reader of so_state that does not 3987 * acquire socket lock, namely soreceive_generic(). Ensure 3988 * that it never sees all flags that track connection status 3989 * cleared, by ordering the update with a barrier semantic of 3990 * our release thread fence. 3991 */ 3992 so->so_state |= SS_ISDISCONNECTED; 3993 atomic_thread_fence_rel(); 3994 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 3995 3996 if (!SOLISTENING(so)) { 3997 SOCK_UNLOCK(so); 3998 SOCK_RECVBUF_LOCK(so); 3999 socantrcvmore_locked(so); 4000 SOCK_SENDBUF_LOCK(so); 4001 sbdrop_locked(&so->so_snd, sbused(&so->so_snd)); 4002 socantsendmore_locked(so); 4003 } else 4004 SOCK_UNLOCK(so); 4005 wakeup(&so->so_timeo); 4006 } 4007 4008 int 4009 soiolock(struct socket *so, struct sx *sx, int flags) 4010 { 4011 int error; 4012 4013 KASSERT((flags & SBL_VALID) == flags, 4014 ("soiolock: invalid flags %#x", flags)); 4015 4016 if ((flags & SBL_WAIT) != 0) { 4017 if ((flags & SBL_NOINTR) != 0) { 4018 sx_xlock(sx); 4019 } else { 4020 error = sx_xlock_sig(sx); 4021 if (error != 0) 4022 return (error); 4023 } 4024 } else if (!sx_try_xlock(sx)) { 4025 return (EWOULDBLOCK); 4026 } 4027 4028 if (__predict_false(SOLISTENING(so))) { 4029 sx_xunlock(sx); 4030 return (ENOTCONN); 4031 } 4032 return (0); 4033 } 4034 4035 void 4036 soiounlock(struct sx *sx) 4037 { 4038 sx_xunlock(sx); 4039 } 4040 4041 /* 4042 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 4043 */ 4044 struct sockaddr * 4045 sodupsockaddr(const struct sockaddr *sa, int mflags) 4046 { 4047 struct sockaddr *sa2; 4048 4049 sa2 = malloc(sa->sa_len, M_SONAME, mflags); 4050 if (sa2) 4051 bcopy(sa, sa2, sa->sa_len); 4052 return sa2; 4053 } 4054 4055 /* 4056 * Register per-socket destructor. 4057 */ 4058 void 4059 sodtor_set(struct socket *so, so_dtor_t *func) 4060 { 4061 4062 SOCK_LOCK_ASSERT(so); 4063 so->so_dtor = func; 4064 } 4065 4066 /* 4067 * Register per-socket buffer upcalls. 4068 */ 4069 void 4070 soupcall_set(struct socket *so, sb_which which, so_upcall_t func, void *arg) 4071 { 4072 struct sockbuf *sb; 4073 4074 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 4075 4076 switch (which) { 4077 case SO_RCV: 4078 sb = &so->so_rcv; 4079 break; 4080 case SO_SND: 4081 sb = &so->so_snd; 4082 break; 4083 } 4084 SOCK_BUF_LOCK_ASSERT(so, which); 4085 sb->sb_upcall = func; 4086 sb->sb_upcallarg = arg; 4087 sb->sb_flags |= SB_UPCALL; 4088 } 4089 4090 void 4091 soupcall_clear(struct socket *so, sb_which which) 4092 { 4093 struct sockbuf *sb; 4094 4095 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 4096 4097 switch (which) { 4098 case SO_RCV: 4099 sb = &so->so_rcv; 4100 break; 4101 case SO_SND: 4102 sb = &so->so_snd; 4103 break; 4104 } 4105 SOCK_BUF_LOCK_ASSERT(so, which); 4106 KASSERT(sb->sb_upcall != NULL, 4107 ("%s: so %p no upcall to clear", __func__, so)); 4108 sb->sb_upcall = NULL; 4109 sb->sb_upcallarg = NULL; 4110 sb->sb_flags &= ~SB_UPCALL; 4111 } 4112 4113 void 4114 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg) 4115 { 4116 4117 SOLISTEN_LOCK_ASSERT(so); 4118 so->sol_upcall = func; 4119 so->sol_upcallarg = arg; 4120 } 4121 4122 static void 4123 so_rdknl_lock(void *arg) 4124 { 4125 struct socket *so = arg; 4126 4127 retry: 4128 if (SOLISTENING(so)) { 4129 SOLISTEN_LOCK(so); 4130 } else { 4131 SOCK_RECVBUF_LOCK(so); 4132 if (__predict_false(SOLISTENING(so))) { 4133 SOCK_RECVBUF_UNLOCK(so); 4134 goto retry; 4135 } 4136 } 4137 } 4138 4139 static void 4140 so_rdknl_unlock(void *arg) 4141 { 4142 struct socket *so = arg; 4143 4144 if (SOLISTENING(so)) 4145 SOLISTEN_UNLOCK(so); 4146 else 4147 SOCK_RECVBUF_UNLOCK(so); 4148 } 4149 4150 static void 4151 so_rdknl_assert_lock(void *arg, int what) 4152 { 4153 struct socket *so = arg; 4154 4155 if (what == LA_LOCKED) { 4156 if (SOLISTENING(so)) 4157 SOLISTEN_LOCK_ASSERT(so); 4158 else 4159 SOCK_RECVBUF_LOCK_ASSERT(so); 4160 } else { 4161 if (SOLISTENING(so)) 4162 SOLISTEN_UNLOCK_ASSERT(so); 4163 else 4164 SOCK_RECVBUF_UNLOCK_ASSERT(so); 4165 } 4166 } 4167 4168 static void 4169 so_wrknl_lock(void *arg) 4170 { 4171 struct socket *so = arg; 4172 4173 retry: 4174 if (SOLISTENING(so)) { 4175 SOLISTEN_LOCK(so); 4176 } else { 4177 SOCK_SENDBUF_LOCK(so); 4178 if (__predict_false(SOLISTENING(so))) { 4179 SOCK_SENDBUF_UNLOCK(so); 4180 goto retry; 4181 } 4182 } 4183 } 4184 4185 static void 4186 so_wrknl_unlock(void *arg) 4187 { 4188 struct socket *so = arg; 4189 4190 if (SOLISTENING(so)) 4191 SOLISTEN_UNLOCK(so); 4192 else 4193 SOCK_SENDBUF_UNLOCK(so); 4194 } 4195 4196 static void 4197 so_wrknl_assert_lock(void *arg, int what) 4198 { 4199 struct socket *so = arg; 4200 4201 if (what == LA_LOCKED) { 4202 if (SOLISTENING(so)) 4203 SOLISTEN_LOCK_ASSERT(so); 4204 else 4205 SOCK_SENDBUF_LOCK_ASSERT(so); 4206 } else { 4207 if (SOLISTENING(so)) 4208 SOLISTEN_UNLOCK_ASSERT(so); 4209 else 4210 SOCK_SENDBUF_UNLOCK_ASSERT(so); 4211 } 4212 } 4213 4214 /* 4215 * Create an external-format (``xsocket'') structure using the information in 4216 * the kernel-format socket structure pointed to by so. This is done to 4217 * reduce the spew of irrelevant information over this interface, to isolate 4218 * user code from changes in the kernel structure, and potentially to provide 4219 * information-hiding if we decide that some of this information should be 4220 * hidden from users. 4221 */ 4222 void 4223 sotoxsocket(struct socket *so, struct xsocket *xso) 4224 { 4225 4226 bzero(xso, sizeof(*xso)); 4227 xso->xso_len = sizeof *xso; 4228 xso->xso_so = (uintptr_t)so; 4229 xso->so_type = so->so_type; 4230 xso->so_options = so->so_options; 4231 xso->so_linger = so->so_linger; 4232 xso->so_state = so->so_state; 4233 xso->so_pcb = (uintptr_t)so->so_pcb; 4234 xso->xso_protocol = so->so_proto->pr_protocol; 4235 xso->xso_family = so->so_proto->pr_domain->dom_family; 4236 xso->so_timeo = so->so_timeo; 4237 xso->so_error = so->so_error; 4238 xso->so_uid = so->so_cred->cr_uid; 4239 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 4240 if (SOLISTENING(so)) { 4241 xso->so_qlen = so->sol_qlen; 4242 xso->so_incqlen = so->sol_incqlen; 4243 xso->so_qlimit = so->sol_qlimit; 4244 xso->so_oobmark = 0; 4245 } else { 4246 xso->so_state |= so->so_qstate; 4247 xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0; 4248 xso->so_oobmark = so->so_oobmark; 4249 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 4250 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 4251 } 4252 } 4253 4254 int 4255 so_options_get(const struct socket *so) 4256 { 4257 4258 return (so->so_options); 4259 } 4260 4261 void 4262 so_options_set(struct socket *so, int val) 4263 { 4264 4265 so->so_options = val; 4266 } 4267 4268 int 4269 so_error_get(const struct socket *so) 4270 { 4271 4272 return (so->so_error); 4273 } 4274 4275 void 4276 so_error_set(struct socket *so, int val) 4277 { 4278 4279 so->so_error = val; 4280 } 4281