1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993 3 * The Regents of the University of California. 4 * Copyright (c) 2004 The FreeBSD Foundation 5 * Copyright (c) 2004-2008 Robert N. M. Watson 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 33 */ 34 35 /* 36 * Comments on the socket life cycle: 37 * 38 * soalloc() sets of socket layer state for a socket, called only by 39 * socreate() and sonewconn(). Socket layer private. 40 * 41 * sodealloc() tears down socket layer state for a socket, called only by 42 * sofree() and sonewconn(). Socket layer private. 43 * 44 * pru_attach() associates protocol layer state with an allocated socket; 45 * called only once, may fail, aborting socket allocation. This is called 46 * from socreate() and sonewconn(). Socket layer private. 47 * 48 * pru_detach() disassociates protocol layer state from an attached socket, 49 * and will be called exactly once for sockets in which pru_attach() has 50 * been successfully called. If pru_attach() returned an error, 51 * pru_detach() will not be called. Socket layer private. 52 * 53 * pru_abort() and pru_close() notify the protocol layer that the last 54 * consumer of a socket is starting to tear down the socket, and that the 55 * protocol should terminate the connection. Historically, pru_abort() also 56 * detached protocol state from the socket state, but this is no longer the 57 * case. 58 * 59 * socreate() creates a socket and attaches protocol state. This is a public 60 * interface that may be used by socket layer consumers to create new 61 * sockets. 62 * 63 * sonewconn() creates a socket and attaches protocol state. This is a 64 * public interface that may be used by protocols to create new sockets when 65 * a new connection is received and will be available for accept() on a 66 * listen socket. 67 * 68 * soclose() destroys a socket after possibly waiting for it to disconnect. 69 * This is a public interface that socket consumers should use to close and 70 * release a socket when done with it. 71 * 72 * soabort() destroys a socket without waiting for it to disconnect (used 73 * only for incoming connections that are already partially or fully 74 * connected). This is used internally by the socket layer when clearing 75 * listen socket queues (due to overflow or close on the listen socket), but 76 * is also a public interface protocols may use to abort connections in 77 * their incomplete listen queues should they no longer be required. Sockets 78 * placed in completed connection listen queues should not be aborted for 79 * reasons described in the comment above the soclose() implementation. This 80 * is not a general purpose close routine, and except in the specific 81 * circumstances described here, should not be used. 82 * 83 * sofree() will free a socket and its protocol state if all references on 84 * the socket have been released, and is the public interface to attempt to 85 * free a socket when a reference is removed. This is a socket layer private 86 * interface. 87 * 88 * NOTE: In addition to socreate() and soclose(), which provide a single 89 * socket reference to the consumer to be managed as required, there are two 90 * calls to explicitly manage socket references, soref(), and sorele(). 91 * Currently, these are generally required only when transitioning a socket 92 * from a listen queue to a file descriptor, in order to prevent garbage 93 * collection of the socket at an untimely moment. For a number of reasons, 94 * these interfaces are not preferred, and should be avoided. 95 * 96 * NOTE: With regard to VNETs the general rule is that callers do not set 97 * curvnet. Exceptions to this rule include soabort(), sodisconnect(), 98 * sofree() (and with that sorele(), sotryfree()), as well as sonewconn() 99 * and sorflush(), which are usually called from a pre-set VNET context. 100 * sopoll() currently does not need a VNET context to be set. 101 */ 102 103 #include <sys/cdefs.h> 104 __FBSDID("$FreeBSD$"); 105 106 #include "opt_inet.h" 107 #include "opt_inet6.h" 108 #include "opt_compat.h" 109 110 #include <sys/param.h> 111 #include <sys/systm.h> 112 #include <sys/fcntl.h> 113 #include <sys/limits.h> 114 #include <sys/lock.h> 115 #include <sys/mac.h> 116 #include <sys/malloc.h> 117 #include <sys/mbuf.h> 118 #include <sys/mutex.h> 119 #include <sys/domain.h> 120 #include <sys/file.h> /* for struct knote */ 121 #include <sys/hhook.h> 122 #include <sys/kernel.h> 123 #include <sys/khelp.h> 124 #include <sys/event.h> 125 #include <sys/eventhandler.h> 126 #include <sys/poll.h> 127 #include <sys/proc.h> 128 #include <sys/protosw.h> 129 #include <sys/socket.h> 130 #include <sys/socketvar.h> 131 #include <sys/resourcevar.h> 132 #include <net/route.h> 133 #include <sys/signalvar.h> 134 #include <sys/stat.h> 135 #include <sys/sx.h> 136 #include <sys/sysctl.h> 137 #include <sys/taskqueue.h> 138 #include <sys/uio.h> 139 #include <sys/jail.h> 140 #include <sys/syslog.h> 141 #include <netinet/in.h> 142 143 #include <net/vnet.h> 144 145 #include <security/mac/mac_framework.h> 146 147 #include <vm/uma.h> 148 149 #ifdef COMPAT_FREEBSD32 150 #include <sys/mount.h> 151 #include <sys/sysent.h> 152 #include <compat/freebsd32/freebsd32.h> 153 #endif 154 155 static int soreceive_rcvoob(struct socket *so, struct uio *uio, 156 int flags); 157 158 static void filt_sordetach(struct knote *kn); 159 static int filt_soread(struct knote *kn, long hint); 160 static void filt_sowdetach(struct knote *kn); 161 static int filt_sowrite(struct knote *kn, long hint); 162 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id); 163 static int filt_soempty(struct knote *kn, long hint); 164 fo_kqfilter_t soo_kqfilter; 165 166 static struct filterops soread_filtops = { 167 .f_isfd = 1, 168 .f_detach = filt_sordetach, 169 .f_event = filt_soread, 170 }; 171 static struct filterops sowrite_filtops = { 172 .f_isfd = 1, 173 .f_detach = filt_sowdetach, 174 .f_event = filt_sowrite, 175 }; 176 static struct filterops soempty_filtops = { 177 .f_isfd = 1, 178 .f_detach = filt_sowdetach, 179 .f_event = filt_soempty, 180 }; 181 182 so_gen_t so_gencnt; /* generation count for sockets */ 183 184 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 185 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 186 187 #define VNET_SO_ASSERT(so) \ 188 VNET_ASSERT(curvnet != NULL, \ 189 ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so))); 190 191 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]); 192 #define V_socket_hhh VNET(socket_hhh) 193 194 /* 195 * Limit on the number of connections in the listen queue waiting 196 * for accept(2). 197 * NB: The original sysctl somaxconn is still available but hidden 198 * to prevent confusion about the actual purpose of this number. 199 */ 200 static u_int somaxconn = SOMAXCONN; 201 202 static int 203 sysctl_somaxconn(SYSCTL_HANDLER_ARGS) 204 { 205 int error; 206 int val; 207 208 val = somaxconn; 209 error = sysctl_handle_int(oidp, &val, 0, req); 210 if (error || !req->newptr ) 211 return (error); 212 213 /* 214 * The purpose of the UINT_MAX / 3 limit, is so that the formula 215 * 3 * so_qlimit / 2 216 * below, will not overflow. 217 */ 218 219 if (val < 1 || val > UINT_MAX / 3) 220 return (EINVAL); 221 222 somaxconn = val; 223 return (0); 224 } 225 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue, CTLTYPE_UINT | CTLFLAG_RW, 226 0, sizeof(int), sysctl_somaxconn, "I", 227 "Maximum listen socket pending connection accept queue size"); 228 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, 229 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP, 230 0, sizeof(int), sysctl_somaxconn, "I", 231 "Maximum listen socket pending connection accept queue size (compat)"); 232 233 static int numopensockets; 234 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, 235 &numopensockets, 0, "Number of open sockets"); 236 237 /* 238 * accept_mtx locks down per-socket fields relating to accept queues. See 239 * socketvar.h for an annotation of the protected fields of struct socket. 240 */ 241 struct mtx accept_mtx; 242 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF); 243 244 /* 245 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket 246 * so_gencnt field. 247 */ 248 static struct mtx so_global_mtx; 249 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); 250 251 /* 252 * General IPC sysctl name space, used by sockets and a variety of other IPC 253 * types. 254 */ 255 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC"); 256 257 /* 258 * Initialize the socket subsystem and set up the socket 259 * memory allocator. 260 */ 261 static uma_zone_t socket_zone; 262 int maxsockets; 263 264 static void 265 socket_zone_change(void *tag) 266 { 267 268 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 269 } 270 271 static void 272 socket_hhook_register(int subtype) 273 { 274 275 if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype, 276 &V_socket_hhh[subtype], 277 HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 278 printf("%s: WARNING: unable to register hook\n", __func__); 279 } 280 281 static void 282 socket_hhook_deregister(int subtype) 283 { 284 285 if (hhook_head_deregister(V_socket_hhh[subtype]) != 0) 286 printf("%s: WARNING: unable to deregister hook\n", __func__); 287 } 288 289 static void 290 socket_init(void *tag) 291 { 292 293 socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL, 294 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 295 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 296 uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached"); 297 EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL, 298 EVENTHANDLER_PRI_FIRST); 299 } 300 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL); 301 302 static void 303 socket_vnet_init(const void *unused __unused) 304 { 305 int i; 306 307 /* We expect a contiguous range */ 308 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 309 socket_hhook_register(i); 310 } 311 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 312 socket_vnet_init, NULL); 313 314 static void 315 socket_vnet_uninit(const void *unused __unused) 316 { 317 int i; 318 319 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 320 socket_hhook_deregister(i); 321 } 322 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 323 socket_vnet_uninit, NULL); 324 325 /* 326 * Initialise maxsockets. This SYSINIT must be run after 327 * tunable_mbinit(). 328 */ 329 static void 330 init_maxsockets(void *ignored) 331 { 332 333 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 334 maxsockets = imax(maxsockets, maxfiles); 335 } 336 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 337 338 /* 339 * Sysctl to get and set the maximum global sockets limit. Notify protocols 340 * of the change so that they can update their dependent limits as required. 341 */ 342 static int 343 sysctl_maxsockets(SYSCTL_HANDLER_ARGS) 344 { 345 int error, newmaxsockets; 346 347 newmaxsockets = maxsockets; 348 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req); 349 if (error == 0 && req->newptr) { 350 if (newmaxsockets > maxsockets && 351 newmaxsockets <= maxfiles) { 352 maxsockets = newmaxsockets; 353 EVENTHANDLER_INVOKE(maxsockets_change); 354 } else 355 error = EINVAL; 356 } 357 return (error); 358 } 359 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, CTLTYPE_INT|CTLFLAG_RW, 360 &maxsockets, 0, sysctl_maxsockets, "IU", 361 "Maximum number of sockets available"); 362 363 /* 364 * Socket operation routines. These routines are called by the routines in 365 * sys_socket.c or from a system process, and implement the semantics of 366 * socket operations by switching out to the protocol specific routines. 367 */ 368 369 /* 370 * Get a socket structure from our zone, and initialize it. Note that it 371 * would probably be better to allocate socket and PCB at the same time, but 372 * I'm not convinced that all the protocols can be easily modified to do 373 * this. 374 * 375 * soalloc() returns a socket with a ref count of 0. 376 */ 377 static struct socket * 378 soalloc(struct vnet *vnet) 379 { 380 struct socket *so; 381 382 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO); 383 if (so == NULL) 384 return (NULL); 385 #ifdef MAC 386 if (mac_socket_init(so, M_NOWAIT) != 0) { 387 uma_zfree(socket_zone, so); 388 return (NULL); 389 } 390 #endif 391 if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) { 392 uma_zfree(socket_zone, so); 393 return (NULL); 394 } 395 396 SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd"); 397 SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv"); 398 sx_init(&so->so_snd.sb_sx, "so_snd_sx"); 399 sx_init(&so->so_rcv.sb_sx, "so_rcv_sx"); 400 TAILQ_INIT(&so->so_snd.sb_aiojobq); 401 TAILQ_INIT(&so->so_rcv.sb_aiojobq); 402 TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so); 403 TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so); 404 #ifdef VIMAGE 405 VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p", 406 __func__, __LINE__, so)); 407 so->so_vnet = vnet; 408 #endif 409 /* We shouldn't need the so_global_mtx */ 410 if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) { 411 /* Do we need more comprehensive error returns? */ 412 uma_zfree(socket_zone, so); 413 return (NULL); 414 } 415 mtx_lock(&so_global_mtx); 416 so->so_gencnt = ++so_gencnt; 417 ++numopensockets; 418 #ifdef VIMAGE 419 vnet->vnet_sockcnt++; 420 #endif 421 mtx_unlock(&so_global_mtx); 422 423 return (so); 424 } 425 426 /* 427 * Free the storage associated with a socket at the socket layer, tear down 428 * locks, labels, etc. All protocol state is assumed already to have been 429 * torn down (and possibly never set up) by the caller. 430 */ 431 static void 432 sodealloc(struct socket *so) 433 { 434 435 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); 436 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL")); 437 438 mtx_lock(&so_global_mtx); 439 so->so_gencnt = ++so_gencnt; 440 --numopensockets; /* Could be below, but faster here. */ 441 #ifdef VIMAGE 442 VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p", 443 __func__, __LINE__, so)); 444 so->so_vnet->vnet_sockcnt--; 445 #endif 446 mtx_unlock(&so_global_mtx); 447 if (so->so_rcv.sb_hiwat) 448 (void)chgsbsize(so->so_cred->cr_uidinfo, 449 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 450 if (so->so_snd.sb_hiwat) 451 (void)chgsbsize(so->so_cred->cr_uidinfo, 452 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 453 /* remove accept filter if one is present. */ 454 if (so->so_accf != NULL) 455 do_setopt_accept_filter(so, NULL); 456 #ifdef MAC 457 mac_socket_destroy(so); 458 #endif 459 hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE); 460 461 crfree(so->so_cred); 462 khelp_destroy_osd(&so->osd); 463 sx_destroy(&so->so_snd.sb_sx); 464 sx_destroy(&so->so_rcv.sb_sx); 465 SOCKBUF_LOCK_DESTROY(&so->so_snd); 466 SOCKBUF_LOCK_DESTROY(&so->so_rcv); 467 uma_zfree(socket_zone, so); 468 } 469 470 /* 471 * socreate returns a socket with a ref count of 1. The socket should be 472 * closed with soclose(). 473 */ 474 int 475 socreate(int dom, struct socket **aso, int type, int proto, 476 struct ucred *cred, struct thread *td) 477 { 478 struct protosw *prp; 479 struct socket *so; 480 int error; 481 482 if (proto) 483 prp = pffindproto(dom, proto, type); 484 else 485 prp = pffindtype(dom, type); 486 487 if (prp == NULL) { 488 /* No support for domain. */ 489 if (pffinddomain(dom) == NULL) 490 return (EAFNOSUPPORT); 491 /* No support for socket type. */ 492 if (proto == 0 && type != 0) 493 return (EPROTOTYPE); 494 return (EPROTONOSUPPORT); 495 } 496 if (prp->pr_usrreqs->pru_attach == NULL || 497 prp->pr_usrreqs->pru_attach == pru_attach_notsupp) 498 return (EPROTONOSUPPORT); 499 500 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0) 501 return (EPROTONOSUPPORT); 502 503 if (prp->pr_type != type) 504 return (EPROTOTYPE); 505 so = soalloc(CRED_TO_VNET(cred)); 506 if (so == NULL) 507 return (ENOBUFS); 508 509 TAILQ_INIT(&so->so_incomp); 510 TAILQ_INIT(&so->so_comp); 511 so->so_type = type; 512 so->so_cred = crhold(cred); 513 if ((prp->pr_domain->dom_family == PF_INET) || 514 (prp->pr_domain->dom_family == PF_INET6) || 515 (prp->pr_domain->dom_family == PF_ROUTE)) 516 so->so_fibnum = td->td_proc->p_fibnum; 517 else 518 so->so_fibnum = 0; 519 so->so_proto = prp; 520 #ifdef MAC 521 mac_socket_create(cred, so); 522 #endif 523 knlist_init_mtx(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv)); 524 knlist_init_mtx(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd)); 525 so->so_count = 1; 526 /* 527 * Auto-sizing of socket buffers is managed by the protocols and 528 * the appropriate flags must be set in the pru_attach function. 529 */ 530 CURVNET_SET(so->so_vnet); 531 error = (*prp->pr_usrreqs->pru_attach)(so, proto, td); 532 CURVNET_RESTORE(); 533 if (error) { 534 KASSERT(so->so_count == 1, ("socreate: so_count %d", 535 so->so_count)); 536 so->so_count = 0; 537 sodealloc(so); 538 return (error); 539 } 540 *aso = so; 541 return (0); 542 } 543 544 #ifdef REGRESSION 545 static int regression_sonewconn_earlytest = 1; 546 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW, 547 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test"); 548 #endif 549 550 /* 551 * When an attempt at a new connection is noted on a socket which accepts 552 * connections, sonewconn is called. If the connection is possible (subject 553 * to space constraints, etc.) then we allocate a new structure, properly 554 * linked into the data structure of the original socket, and return this. 555 * Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED. 556 * 557 * Note: the ref count on the socket is 0 on return. 558 */ 559 struct socket * 560 sonewconn(struct socket *head, int connstatus) 561 { 562 static struct timeval lastover; 563 static struct timeval overinterval = { 60, 0 }; 564 static int overcount; 565 566 struct socket *so; 567 int over; 568 569 ACCEPT_LOCK(); 570 over = (head->so_qlen > 3 * head->so_qlimit / 2); 571 ACCEPT_UNLOCK(); 572 #ifdef REGRESSION 573 if (regression_sonewconn_earlytest && over) { 574 #else 575 if (over) { 576 #endif 577 overcount++; 578 579 if (ratecheck(&lastover, &overinterval)) { 580 log(LOG_DEBUG, "%s: pcb %p: Listen queue overflow: " 581 "%i already in queue awaiting acceptance " 582 "(%d occurrences)\n", 583 __func__, head->so_pcb, head->so_qlen, overcount); 584 585 overcount = 0; 586 } 587 588 return (NULL); 589 } 590 VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p", 591 __func__, __LINE__, head)); 592 so = soalloc(head->so_vnet); 593 if (so == NULL) { 594 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 595 "limit reached or out of memory\n", 596 __func__, head->so_pcb); 597 return (NULL); 598 } 599 if ((head->so_options & SO_ACCEPTFILTER) != 0) 600 connstatus = 0; 601 so->so_head = head; 602 so->so_type = head->so_type; 603 so->so_options = head->so_options &~ SO_ACCEPTCONN; 604 so->so_linger = head->so_linger; 605 so->so_state = head->so_state | SS_NOFDREF; 606 so->so_fibnum = head->so_fibnum; 607 so->so_proto = head->so_proto; 608 so->so_cred = crhold(head->so_cred); 609 #ifdef MAC 610 mac_socket_newconn(head, so); 611 #endif 612 knlist_init_mtx(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv)); 613 knlist_init_mtx(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd)); 614 VNET_SO_ASSERT(head); 615 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) { 616 sodealloc(so); 617 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 618 __func__, head->so_pcb); 619 return (NULL); 620 } 621 if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 622 sodealloc(so); 623 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", 624 __func__, head->so_pcb); 625 return (NULL); 626 } 627 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; 628 so->so_snd.sb_lowat = head->so_snd.sb_lowat; 629 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; 630 so->so_snd.sb_timeo = head->so_snd.sb_timeo; 631 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE; 632 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE; 633 so->so_state |= connstatus; 634 ACCEPT_LOCK(); 635 /* 636 * The accept socket may be tearing down but we just 637 * won a race on the ACCEPT_LOCK. 638 * However, if sctp_peeloff() is called on a 1-to-many 639 * style socket, the SO_ACCEPTCONN doesn't need to be set. 640 */ 641 if (!(head->so_options & SO_ACCEPTCONN) && 642 ((head->so_proto->pr_protocol != IPPROTO_SCTP) || 643 (head->so_type != SOCK_SEQPACKET))) { 644 SOCK_LOCK(so); 645 so->so_head = NULL; 646 sofree(so); /* NB: returns ACCEPT_UNLOCK'ed. */ 647 return (NULL); 648 } 649 if (connstatus) { 650 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 651 so->so_qstate |= SQ_COMP; 652 head->so_qlen++; 653 } else { 654 /* 655 * Keep removing sockets from the head until there's room for 656 * us to insert on the tail. In pre-locking revisions, this 657 * was a simple if(), but as we could be racing with other 658 * threads and soabort() requires dropping locks, we must 659 * loop waiting for the condition to be true. 660 */ 661 while (head->so_incqlen > head->so_qlimit) { 662 struct socket *sp; 663 sp = TAILQ_FIRST(&head->so_incomp); 664 TAILQ_REMOVE(&head->so_incomp, sp, so_list); 665 head->so_incqlen--; 666 sp->so_qstate &= ~SQ_INCOMP; 667 sp->so_head = NULL; 668 ACCEPT_UNLOCK(); 669 soabort(sp); 670 ACCEPT_LOCK(); 671 } 672 TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list); 673 so->so_qstate |= SQ_INCOMP; 674 head->so_incqlen++; 675 } 676 ACCEPT_UNLOCK(); 677 if (connstatus) { 678 sorwakeup(head); 679 wakeup_one(&head->so_timeo); 680 } 681 return (so); 682 } 683 684 int 685 sobind(struct socket *so, struct sockaddr *nam, struct thread *td) 686 { 687 int error; 688 689 CURVNET_SET(so->so_vnet); 690 error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td); 691 CURVNET_RESTORE(); 692 return (error); 693 } 694 695 int 696 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 697 { 698 int error; 699 700 CURVNET_SET(so->so_vnet); 701 error = (*so->so_proto->pr_usrreqs->pru_bindat)(fd, so, nam, td); 702 CURVNET_RESTORE(); 703 return (error); 704 } 705 706 /* 707 * solisten() transitions a socket from a non-listening state to a listening 708 * state, but can also be used to update the listen queue depth on an 709 * existing listen socket. The protocol will call back into the sockets 710 * layer using solisten_proto_check() and solisten_proto() to check and set 711 * socket-layer listen state. Call backs are used so that the protocol can 712 * acquire both protocol and socket layer locks in whatever order is required 713 * by the protocol. 714 * 715 * Protocol implementors are advised to hold the socket lock across the 716 * socket-layer test and set to avoid races at the socket layer. 717 */ 718 int 719 solisten(struct socket *so, int backlog, struct thread *td) 720 { 721 int error; 722 723 CURVNET_SET(so->so_vnet); 724 error = (*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td); 725 CURVNET_RESTORE(); 726 return (error); 727 } 728 729 int 730 solisten_proto_check(struct socket *so) 731 { 732 733 SOCK_LOCK_ASSERT(so); 734 735 if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 736 SS_ISDISCONNECTING)) 737 return (EINVAL); 738 return (0); 739 } 740 741 void 742 solisten_proto(struct socket *so, int backlog) 743 { 744 745 SOCK_LOCK_ASSERT(so); 746 747 if (backlog < 0 || backlog > somaxconn) 748 backlog = somaxconn; 749 so->so_qlimit = backlog; 750 so->so_options |= SO_ACCEPTCONN; 751 } 752 753 /* 754 * Evaluate the reference count and named references on a socket; if no 755 * references remain, free it. This should be called whenever a reference is 756 * released, such as in sorele(), but also when named reference flags are 757 * cleared in socket or protocol code. 758 * 759 * sofree() will free the socket if: 760 * 761 * - There are no outstanding file descriptor references or related consumers 762 * (so_count == 0). 763 * 764 * - The socket has been closed by user space, if ever open (SS_NOFDREF). 765 * 766 * - The protocol does not have an outstanding strong reference on the socket 767 * (SS_PROTOREF). 768 * 769 * - The socket is not in a completed connection queue, so a process has been 770 * notified that it is present. If it is removed, the user process may 771 * block in accept() despite select() saying the socket was ready. 772 */ 773 void 774 sofree(struct socket *so) 775 { 776 struct protosw *pr = so->so_proto; 777 struct socket *head; 778 779 ACCEPT_LOCK_ASSERT(); 780 SOCK_LOCK_ASSERT(so); 781 782 if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 || 783 (so->so_state & SS_PROTOREF) || (so->so_qstate & SQ_COMP)) { 784 SOCK_UNLOCK(so); 785 ACCEPT_UNLOCK(); 786 return; 787 } 788 789 head = so->so_head; 790 if (head != NULL) { 791 KASSERT((so->so_qstate & SQ_COMP) != 0 || 792 (so->so_qstate & SQ_INCOMP) != 0, 793 ("sofree: so_head != NULL, but neither SQ_COMP nor " 794 "SQ_INCOMP")); 795 KASSERT((so->so_qstate & SQ_COMP) == 0 || 796 (so->so_qstate & SQ_INCOMP) == 0, 797 ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP")); 798 TAILQ_REMOVE(&head->so_incomp, so, so_list); 799 head->so_incqlen--; 800 so->so_qstate &= ~SQ_INCOMP; 801 so->so_head = NULL; 802 } 803 KASSERT((so->so_qstate & SQ_COMP) == 0 && 804 (so->so_qstate & SQ_INCOMP) == 0, 805 ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)", 806 so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP)); 807 if (so->so_options & SO_ACCEPTCONN) { 808 KASSERT((TAILQ_EMPTY(&so->so_comp)), 809 ("sofree: so_comp populated")); 810 KASSERT((TAILQ_EMPTY(&so->so_incomp)), 811 ("sofree: so_incomp populated")); 812 } 813 SOCK_UNLOCK(so); 814 ACCEPT_UNLOCK(); 815 816 VNET_SO_ASSERT(so); 817 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 818 (*pr->pr_domain->dom_dispose)(so); 819 if (pr->pr_usrreqs->pru_detach != NULL) 820 (*pr->pr_usrreqs->pru_detach)(so); 821 822 /* 823 * From this point on, we assume that no other references to this 824 * socket exist anywhere else in the stack. Therefore, no locks need 825 * to be acquired or held. 826 * 827 * We used to do a lot of socket buffer and socket locking here, as 828 * well as invoke sorflush() and perform wakeups. The direct call to 829 * dom_dispose() and sbrelease_internal() are an inlining of what was 830 * necessary from sorflush(). 831 * 832 * Notice that the socket buffer and kqueue state are torn down 833 * before calling pru_detach. This means that protocols shold not 834 * assume they can perform socket wakeups, etc, in their detach code. 835 */ 836 sbdestroy(&so->so_snd, so); 837 sbdestroy(&so->so_rcv, so); 838 seldrain(&so->so_snd.sb_sel); 839 seldrain(&so->so_rcv.sb_sel); 840 knlist_destroy(&so->so_rcv.sb_sel.si_note); 841 knlist_destroy(&so->so_snd.sb_sel.si_note); 842 sodealloc(so); 843 } 844 845 /* 846 * Close a socket on last file table reference removal. Initiate disconnect 847 * if connected. Free socket when disconnect complete. 848 * 849 * This function will sorele() the socket. Note that soclose() may be called 850 * prior to the ref count reaching zero. The actual socket structure will 851 * not be freed until the ref count reaches zero. 852 */ 853 int 854 soclose(struct socket *so) 855 { 856 int error = 0; 857 858 KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter")); 859 860 CURVNET_SET(so->so_vnet); 861 funsetown(&so->so_sigio); 862 if (so->so_state & SS_ISCONNECTED) { 863 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 864 error = sodisconnect(so); 865 if (error) { 866 if (error == ENOTCONN) 867 error = 0; 868 goto drop; 869 } 870 } 871 if (so->so_options & SO_LINGER) { 872 if ((so->so_state & SS_ISDISCONNECTING) && 873 (so->so_state & SS_NBIO)) 874 goto drop; 875 while (so->so_state & SS_ISCONNECTED) { 876 error = tsleep(&so->so_timeo, 877 PSOCK | PCATCH, "soclos", 878 so->so_linger * hz); 879 if (error) 880 break; 881 } 882 } 883 } 884 885 drop: 886 if (so->so_proto->pr_usrreqs->pru_close != NULL) 887 (*so->so_proto->pr_usrreqs->pru_close)(so); 888 ACCEPT_LOCK(); 889 if (so->so_options & SO_ACCEPTCONN) { 890 struct socket *sp; 891 /* 892 * Prevent new additions to the accept queues due 893 * to ACCEPT_LOCK races while we are draining them. 894 */ 895 so->so_options &= ~SO_ACCEPTCONN; 896 while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) { 897 TAILQ_REMOVE(&so->so_incomp, sp, so_list); 898 so->so_incqlen--; 899 sp->so_qstate &= ~SQ_INCOMP; 900 sp->so_head = NULL; 901 ACCEPT_UNLOCK(); 902 soabort(sp); 903 ACCEPT_LOCK(); 904 } 905 while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) { 906 TAILQ_REMOVE(&so->so_comp, sp, so_list); 907 so->so_qlen--; 908 sp->so_qstate &= ~SQ_COMP; 909 sp->so_head = NULL; 910 ACCEPT_UNLOCK(); 911 soabort(sp); 912 ACCEPT_LOCK(); 913 } 914 KASSERT((TAILQ_EMPTY(&so->so_comp)), 915 ("%s: so_comp populated", __func__)); 916 KASSERT((TAILQ_EMPTY(&so->so_incomp)), 917 ("%s: so_incomp populated", __func__)); 918 } 919 SOCK_LOCK(so); 920 KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF")); 921 so->so_state |= SS_NOFDREF; 922 sorele(so); /* NB: Returns with ACCEPT_UNLOCK(). */ 923 CURVNET_RESTORE(); 924 return (error); 925 } 926 927 /* 928 * soabort() is used to abruptly tear down a connection, such as when a 929 * resource limit is reached (listen queue depth exceeded), or if a listen 930 * socket is closed while there are sockets waiting to be accepted. 931 * 932 * This interface is tricky, because it is called on an unreferenced socket, 933 * and must be called only by a thread that has actually removed the socket 934 * from the listen queue it was on, or races with other threads are risked. 935 * 936 * This interface will call into the protocol code, so must not be called 937 * with any socket locks held. Protocols do call it while holding their own 938 * recursible protocol mutexes, but this is something that should be subject 939 * to review in the future. 940 */ 941 void 942 soabort(struct socket *so) 943 { 944 945 /* 946 * In as much as is possible, assert that no references to this 947 * socket are held. This is not quite the same as asserting that the 948 * current thread is responsible for arranging for no references, but 949 * is as close as we can get for now. 950 */ 951 KASSERT(so->so_count == 0, ("soabort: so_count")); 952 KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF")); 953 KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF")); 954 KASSERT((so->so_state & SQ_COMP) == 0, ("soabort: SQ_COMP")); 955 KASSERT((so->so_state & SQ_INCOMP) == 0, ("soabort: SQ_INCOMP")); 956 VNET_SO_ASSERT(so); 957 958 if (so->so_proto->pr_usrreqs->pru_abort != NULL) 959 (*so->so_proto->pr_usrreqs->pru_abort)(so); 960 ACCEPT_LOCK(); 961 SOCK_LOCK(so); 962 sofree(so); 963 } 964 965 int 966 soaccept(struct socket *so, struct sockaddr **nam) 967 { 968 int error; 969 970 SOCK_LOCK(so); 971 KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF")); 972 so->so_state &= ~SS_NOFDREF; 973 SOCK_UNLOCK(so); 974 975 CURVNET_SET(so->so_vnet); 976 error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam); 977 CURVNET_RESTORE(); 978 return (error); 979 } 980 981 int 982 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td) 983 { 984 985 return (soconnectat(AT_FDCWD, so, nam, td)); 986 } 987 988 int 989 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 990 { 991 int error; 992 993 if (so->so_options & SO_ACCEPTCONN) 994 return (EOPNOTSUPP); 995 996 CURVNET_SET(so->so_vnet); 997 /* 998 * If protocol is connection-based, can only connect once. 999 * Otherwise, if connected, try to disconnect first. This allows 1000 * user to disconnect by connecting to, e.g., a null address. 1001 */ 1002 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 1003 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 1004 (error = sodisconnect(so)))) { 1005 error = EISCONN; 1006 } else { 1007 /* 1008 * Prevent accumulated error from previous connection from 1009 * biting us. 1010 */ 1011 so->so_error = 0; 1012 if (fd == AT_FDCWD) { 1013 error = (*so->so_proto->pr_usrreqs->pru_connect)(so, 1014 nam, td); 1015 } else { 1016 error = (*so->so_proto->pr_usrreqs->pru_connectat)(fd, 1017 so, nam, td); 1018 } 1019 } 1020 CURVNET_RESTORE(); 1021 1022 return (error); 1023 } 1024 1025 int 1026 soconnect2(struct socket *so1, struct socket *so2) 1027 { 1028 int error; 1029 1030 CURVNET_SET(so1->so_vnet); 1031 error = (*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2); 1032 CURVNET_RESTORE(); 1033 return (error); 1034 } 1035 1036 int 1037 sodisconnect(struct socket *so) 1038 { 1039 int error; 1040 1041 if ((so->so_state & SS_ISCONNECTED) == 0) 1042 return (ENOTCONN); 1043 if (so->so_state & SS_ISDISCONNECTING) 1044 return (EALREADY); 1045 VNET_SO_ASSERT(so); 1046 error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so); 1047 return (error); 1048 } 1049 1050 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT) 1051 1052 int 1053 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, 1054 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1055 { 1056 long space; 1057 ssize_t resid; 1058 int clen = 0, error, dontroute; 1059 1060 KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM")); 1061 KASSERT(so->so_proto->pr_flags & PR_ATOMIC, 1062 ("sosend_dgram: !PR_ATOMIC")); 1063 1064 if (uio != NULL) 1065 resid = uio->uio_resid; 1066 else 1067 resid = top->m_pkthdr.len; 1068 /* 1069 * In theory resid should be unsigned. However, space must be 1070 * signed, as it might be less than 0 if we over-committed, and we 1071 * must use a signed comparison of space and resid. On the other 1072 * hand, a negative resid causes us to loop sending 0-length 1073 * segments to the protocol. 1074 */ 1075 if (resid < 0) { 1076 error = EINVAL; 1077 goto out; 1078 } 1079 1080 dontroute = 1081 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0; 1082 if (td != NULL) 1083 td->td_ru.ru_msgsnd++; 1084 if (control != NULL) 1085 clen = control->m_len; 1086 1087 SOCKBUF_LOCK(&so->so_snd); 1088 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1089 SOCKBUF_UNLOCK(&so->so_snd); 1090 error = EPIPE; 1091 goto out; 1092 } 1093 if (so->so_error) { 1094 error = so->so_error; 1095 so->so_error = 0; 1096 SOCKBUF_UNLOCK(&so->so_snd); 1097 goto out; 1098 } 1099 if ((so->so_state & SS_ISCONNECTED) == 0) { 1100 /* 1101 * `sendto' and `sendmsg' is allowed on a connection-based 1102 * socket if it supports implied connect. Return ENOTCONN if 1103 * not connected and no address is supplied. 1104 */ 1105 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1106 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1107 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1108 !(resid == 0 && clen != 0)) { 1109 SOCKBUF_UNLOCK(&so->so_snd); 1110 error = ENOTCONN; 1111 goto out; 1112 } 1113 } else if (addr == NULL) { 1114 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1115 error = ENOTCONN; 1116 else 1117 error = EDESTADDRREQ; 1118 SOCKBUF_UNLOCK(&so->so_snd); 1119 goto out; 1120 } 1121 } 1122 1123 /* 1124 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a 1125 * problem and need fixing. 1126 */ 1127 space = sbspace(&so->so_snd); 1128 if (flags & MSG_OOB) 1129 space += 1024; 1130 space -= clen; 1131 SOCKBUF_UNLOCK(&so->so_snd); 1132 if (resid > space) { 1133 error = EMSGSIZE; 1134 goto out; 1135 } 1136 if (uio == NULL) { 1137 resid = 0; 1138 if (flags & MSG_EOR) 1139 top->m_flags |= M_EOR; 1140 } else { 1141 /* 1142 * Copy the data from userland into a mbuf chain. 1143 * If no data is to be copied in, a single empty mbuf 1144 * is returned. 1145 */ 1146 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr, 1147 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0))); 1148 if (top == NULL) { 1149 error = EFAULT; /* only possible error */ 1150 goto out; 1151 } 1152 space -= resid - uio->uio_resid; 1153 resid = uio->uio_resid; 1154 } 1155 KASSERT(resid == 0, ("sosend_dgram: resid != 0")); 1156 /* 1157 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock 1158 * than with. 1159 */ 1160 if (dontroute) { 1161 SOCK_LOCK(so); 1162 so->so_options |= SO_DONTROUTE; 1163 SOCK_UNLOCK(so); 1164 } 1165 /* 1166 * XXX all the SBS_CANTSENDMORE checks previously done could be out 1167 * of date. We could have received a reset packet in an interrupt or 1168 * maybe we slept while doing page faults in uiomove() etc. We could 1169 * probably recheck again inside the locking protection here, but 1170 * there are probably other places that this also happens. We must 1171 * rethink this. 1172 */ 1173 VNET_SO_ASSERT(so); 1174 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1175 (flags & MSG_OOB) ? PRUS_OOB : 1176 /* 1177 * If the user set MSG_EOF, the protocol understands this flag and 1178 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND. 1179 */ 1180 ((flags & MSG_EOF) && 1181 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1182 (resid <= 0)) ? 1183 PRUS_EOF : 1184 /* If there is more to send set PRUS_MORETOCOME */ 1185 (flags & MSG_MORETOCOME) || 1186 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1187 top, addr, control, td); 1188 if (dontroute) { 1189 SOCK_LOCK(so); 1190 so->so_options &= ~SO_DONTROUTE; 1191 SOCK_UNLOCK(so); 1192 } 1193 clen = 0; 1194 control = NULL; 1195 top = NULL; 1196 out: 1197 if (top != NULL) 1198 m_freem(top); 1199 if (control != NULL) 1200 m_freem(control); 1201 return (error); 1202 } 1203 1204 /* 1205 * Send on a socket. If send must go all at once and message is larger than 1206 * send buffering, then hard error. Lock against other senders. If must go 1207 * all at once and not enough room now, then inform user that this would 1208 * block and do nothing. Otherwise, if nonblocking, send as much as 1209 * possible. The data to be sent is described by "uio" if nonzero, otherwise 1210 * by the mbuf chain "top" (which must be null if uio is not). Data provided 1211 * in mbuf chain must be small enough to send all at once. 1212 * 1213 * Returns nonzero on error, timeout or signal; callers must check for short 1214 * counts if EINTR/ERESTART are returned. Data and control buffers are freed 1215 * on return. 1216 */ 1217 int 1218 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio, 1219 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1220 { 1221 long space; 1222 ssize_t resid; 1223 int clen = 0, error, dontroute; 1224 int atomic = sosendallatonce(so) || top; 1225 1226 if (uio != NULL) 1227 resid = uio->uio_resid; 1228 else 1229 resid = top->m_pkthdr.len; 1230 /* 1231 * In theory resid should be unsigned. However, space must be 1232 * signed, as it might be less than 0 if we over-committed, and we 1233 * must use a signed comparison of space and resid. On the other 1234 * hand, a negative resid causes us to loop sending 0-length 1235 * segments to the protocol. 1236 * 1237 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 1238 * type sockets since that's an error. 1239 */ 1240 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 1241 error = EINVAL; 1242 goto out; 1243 } 1244 1245 dontroute = 1246 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 1247 (so->so_proto->pr_flags & PR_ATOMIC); 1248 if (td != NULL) 1249 td->td_ru.ru_msgsnd++; 1250 if (control != NULL) 1251 clen = control->m_len; 1252 1253 error = sblock(&so->so_snd, SBLOCKWAIT(flags)); 1254 if (error) 1255 goto out; 1256 1257 restart: 1258 do { 1259 SOCKBUF_LOCK(&so->so_snd); 1260 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1261 SOCKBUF_UNLOCK(&so->so_snd); 1262 error = EPIPE; 1263 goto release; 1264 } 1265 if (so->so_error) { 1266 error = so->so_error; 1267 so->so_error = 0; 1268 SOCKBUF_UNLOCK(&so->so_snd); 1269 goto release; 1270 } 1271 if ((so->so_state & SS_ISCONNECTED) == 0) { 1272 /* 1273 * `sendto' and `sendmsg' is allowed on a connection- 1274 * based socket if it supports implied connect. 1275 * Return ENOTCONN if not connected and no address is 1276 * supplied. 1277 */ 1278 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1279 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1280 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1281 !(resid == 0 && clen != 0)) { 1282 SOCKBUF_UNLOCK(&so->so_snd); 1283 error = ENOTCONN; 1284 goto release; 1285 } 1286 } else if (addr == NULL) { 1287 SOCKBUF_UNLOCK(&so->so_snd); 1288 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1289 error = ENOTCONN; 1290 else 1291 error = EDESTADDRREQ; 1292 goto release; 1293 } 1294 } 1295 space = sbspace(&so->so_snd); 1296 if (flags & MSG_OOB) 1297 space += 1024; 1298 if ((atomic && resid > so->so_snd.sb_hiwat) || 1299 clen > so->so_snd.sb_hiwat) { 1300 SOCKBUF_UNLOCK(&so->so_snd); 1301 error = EMSGSIZE; 1302 goto release; 1303 } 1304 if (space < resid + clen && 1305 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 1306 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) { 1307 SOCKBUF_UNLOCK(&so->so_snd); 1308 error = EWOULDBLOCK; 1309 goto release; 1310 } 1311 error = sbwait(&so->so_snd); 1312 SOCKBUF_UNLOCK(&so->so_snd); 1313 if (error) 1314 goto release; 1315 goto restart; 1316 } 1317 SOCKBUF_UNLOCK(&so->so_snd); 1318 space -= clen; 1319 do { 1320 if (uio == NULL) { 1321 resid = 0; 1322 if (flags & MSG_EOR) 1323 top->m_flags |= M_EOR; 1324 } else { 1325 /* 1326 * Copy the data from userland into a mbuf 1327 * chain. If resid is 0, which can happen 1328 * only if we have control to send, then 1329 * a single empty mbuf is returned. This 1330 * is a workaround to prevent protocol send 1331 * methods to panic. 1332 */ 1333 top = m_uiotombuf(uio, M_WAITOK, space, 1334 (atomic ? max_hdr : 0), 1335 (atomic ? M_PKTHDR : 0) | 1336 ((flags & MSG_EOR) ? M_EOR : 0)); 1337 if (top == NULL) { 1338 error = EFAULT; /* only possible error */ 1339 goto release; 1340 } 1341 space -= resid - uio->uio_resid; 1342 resid = uio->uio_resid; 1343 } 1344 if (dontroute) { 1345 SOCK_LOCK(so); 1346 so->so_options |= SO_DONTROUTE; 1347 SOCK_UNLOCK(so); 1348 } 1349 /* 1350 * XXX all the SBS_CANTSENDMORE checks previously 1351 * done could be out of date. We could have received 1352 * a reset packet in an interrupt or maybe we slept 1353 * while doing page faults in uiomove() etc. We 1354 * could probably recheck again inside the locking 1355 * protection here, but there are probably other 1356 * places that this also happens. We must rethink 1357 * this. 1358 */ 1359 VNET_SO_ASSERT(so); 1360 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1361 (flags & MSG_OOB) ? PRUS_OOB : 1362 /* 1363 * If the user set MSG_EOF, the protocol understands 1364 * this flag and nothing left to send then use 1365 * PRU_SEND_EOF instead of PRU_SEND. 1366 */ 1367 ((flags & MSG_EOF) && 1368 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1369 (resid <= 0)) ? 1370 PRUS_EOF : 1371 /* If there is more to send set PRUS_MORETOCOME. */ 1372 (flags & MSG_MORETOCOME) || 1373 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1374 top, addr, control, td); 1375 if (dontroute) { 1376 SOCK_LOCK(so); 1377 so->so_options &= ~SO_DONTROUTE; 1378 SOCK_UNLOCK(so); 1379 } 1380 clen = 0; 1381 control = NULL; 1382 top = NULL; 1383 if (error) 1384 goto release; 1385 } while (resid && space > 0); 1386 } while (resid); 1387 1388 release: 1389 sbunlock(&so->so_snd); 1390 out: 1391 if (top != NULL) 1392 m_freem(top); 1393 if (control != NULL) 1394 m_freem(control); 1395 return (error); 1396 } 1397 1398 int 1399 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, 1400 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1401 { 1402 int error; 1403 1404 CURVNET_SET(so->so_vnet); 1405 error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, top, 1406 control, flags, td); 1407 CURVNET_RESTORE(); 1408 return (error); 1409 } 1410 1411 /* 1412 * The part of soreceive() that implements reading non-inline out-of-band 1413 * data from a socket. For more complete comments, see soreceive(), from 1414 * which this code originated. 1415 * 1416 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is 1417 * unable to return an mbuf chain to the caller. 1418 */ 1419 static int 1420 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags) 1421 { 1422 struct protosw *pr = so->so_proto; 1423 struct mbuf *m; 1424 int error; 1425 1426 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); 1427 VNET_SO_ASSERT(so); 1428 1429 m = m_get(M_WAITOK, MT_DATA); 1430 error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK); 1431 if (error) 1432 goto bad; 1433 do { 1434 error = uiomove(mtod(m, void *), 1435 (int) min(uio->uio_resid, m->m_len), uio); 1436 m = m_free(m); 1437 } while (uio->uio_resid && error == 0 && m); 1438 bad: 1439 if (m != NULL) 1440 m_freem(m); 1441 return (error); 1442 } 1443 1444 /* 1445 * Following replacement or removal of the first mbuf on the first mbuf chain 1446 * of a socket buffer, push necessary state changes back into the socket 1447 * buffer so that other consumers see the values consistently. 'nextrecord' 1448 * is the callers locally stored value of the original value of 1449 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. 1450 * NOTE: 'nextrecord' may be NULL. 1451 */ 1452 static __inline void 1453 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) 1454 { 1455 1456 SOCKBUF_LOCK_ASSERT(sb); 1457 /* 1458 * First, update for the new value of nextrecord. If necessary, make 1459 * it the first record. 1460 */ 1461 if (sb->sb_mb != NULL) 1462 sb->sb_mb->m_nextpkt = nextrecord; 1463 else 1464 sb->sb_mb = nextrecord; 1465 1466 /* 1467 * Now update any dependent socket buffer fields to reflect the new 1468 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the 1469 * addition of a second clause that takes care of the case where 1470 * sb_mb has been updated, but remains the last record. 1471 */ 1472 if (sb->sb_mb == NULL) { 1473 sb->sb_mbtail = NULL; 1474 sb->sb_lastrecord = NULL; 1475 } else if (sb->sb_mb->m_nextpkt == NULL) 1476 sb->sb_lastrecord = sb->sb_mb; 1477 } 1478 1479 /* 1480 * Implement receive operations on a socket. We depend on the way that 1481 * records are added to the sockbuf by sbappend. In particular, each record 1482 * (mbufs linked through m_next) must begin with an address if the protocol 1483 * so specifies, followed by an optional mbuf or mbufs containing ancillary 1484 * data, and then zero or more mbufs of data. In order to allow parallelism 1485 * between network receive and copying to user space, as well as avoid 1486 * sleeping with a mutex held, we release the socket buffer mutex during the 1487 * user space copy. Although the sockbuf is locked, new data may still be 1488 * appended, and thus we must maintain consistency of the sockbuf during that 1489 * time. 1490 * 1491 * The caller may receive the data as a single mbuf chain by supplying an 1492 * mbuf **mp0 for use in returning the chain. The uio is then used only for 1493 * the count in uio_resid. 1494 */ 1495 int 1496 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio, 1497 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1498 { 1499 struct mbuf *m, **mp; 1500 int flags, error, offset; 1501 ssize_t len; 1502 struct protosw *pr = so->so_proto; 1503 struct mbuf *nextrecord; 1504 int moff, type = 0; 1505 ssize_t orig_resid = uio->uio_resid; 1506 1507 mp = mp0; 1508 if (psa != NULL) 1509 *psa = NULL; 1510 if (controlp != NULL) 1511 *controlp = NULL; 1512 if (flagsp != NULL) 1513 flags = *flagsp &~ MSG_EOR; 1514 else 1515 flags = 0; 1516 if (flags & MSG_OOB) 1517 return (soreceive_rcvoob(so, uio, flags)); 1518 if (mp != NULL) 1519 *mp = NULL; 1520 if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING) 1521 && uio->uio_resid) { 1522 VNET_SO_ASSERT(so); 1523 (*pr->pr_usrreqs->pru_rcvd)(so, 0); 1524 } 1525 1526 error = sblock(&so->so_rcv, SBLOCKWAIT(flags)); 1527 if (error) 1528 return (error); 1529 1530 restart: 1531 SOCKBUF_LOCK(&so->so_rcv); 1532 m = so->so_rcv.sb_mb; 1533 /* 1534 * If we have less data than requested, block awaiting more (subject 1535 * to any timeout) if: 1536 * 1. the current count is less than the low water mark, or 1537 * 2. MSG_DONTWAIT is not set 1538 */ 1539 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 1540 sbavail(&so->so_rcv) < uio->uio_resid) && 1541 sbavail(&so->so_rcv) < so->so_rcv.sb_lowat && 1542 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 1543 KASSERT(m != NULL || !sbavail(&so->so_rcv), 1544 ("receive: m == %p sbavail == %u", 1545 m, sbavail(&so->so_rcv))); 1546 if (so->so_error) { 1547 if (m != NULL) 1548 goto dontblock; 1549 error = so->so_error; 1550 if ((flags & MSG_PEEK) == 0) 1551 so->so_error = 0; 1552 SOCKBUF_UNLOCK(&so->so_rcv); 1553 goto release; 1554 } 1555 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1556 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 1557 if (m == NULL) { 1558 SOCKBUF_UNLOCK(&so->so_rcv); 1559 goto release; 1560 } else 1561 goto dontblock; 1562 } 1563 for (; m != NULL; m = m->m_next) 1564 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 1565 m = so->so_rcv.sb_mb; 1566 goto dontblock; 1567 } 1568 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 1569 (so->so_proto->pr_flags & PR_CONNREQUIRED)) { 1570 SOCKBUF_UNLOCK(&so->so_rcv); 1571 error = ENOTCONN; 1572 goto release; 1573 } 1574 if (uio->uio_resid == 0) { 1575 SOCKBUF_UNLOCK(&so->so_rcv); 1576 goto release; 1577 } 1578 if ((so->so_state & SS_NBIO) || 1579 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 1580 SOCKBUF_UNLOCK(&so->so_rcv); 1581 error = EWOULDBLOCK; 1582 goto release; 1583 } 1584 SBLASTRECORDCHK(&so->so_rcv); 1585 SBLASTMBUFCHK(&so->so_rcv); 1586 error = sbwait(&so->so_rcv); 1587 SOCKBUF_UNLOCK(&so->so_rcv); 1588 if (error) 1589 goto release; 1590 goto restart; 1591 } 1592 dontblock: 1593 /* 1594 * From this point onward, we maintain 'nextrecord' as a cache of the 1595 * pointer to the next record in the socket buffer. We must keep the 1596 * various socket buffer pointers and local stack versions of the 1597 * pointers in sync, pushing out modifications before dropping the 1598 * socket buffer mutex, and re-reading them when picking it up. 1599 * 1600 * Otherwise, we will race with the network stack appending new data 1601 * or records onto the socket buffer by using inconsistent/stale 1602 * versions of the field, possibly resulting in socket buffer 1603 * corruption. 1604 * 1605 * By holding the high-level sblock(), we prevent simultaneous 1606 * readers from pulling off the front of the socket buffer. 1607 */ 1608 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1609 if (uio->uio_td) 1610 uio->uio_td->td_ru.ru_msgrcv++; 1611 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); 1612 SBLASTRECORDCHK(&so->so_rcv); 1613 SBLASTMBUFCHK(&so->so_rcv); 1614 nextrecord = m->m_nextpkt; 1615 if (pr->pr_flags & PR_ADDR) { 1616 KASSERT(m->m_type == MT_SONAME, 1617 ("m->m_type == %d", m->m_type)); 1618 orig_resid = 0; 1619 if (psa != NULL) 1620 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 1621 M_NOWAIT); 1622 if (flags & MSG_PEEK) { 1623 m = m->m_next; 1624 } else { 1625 sbfree(&so->so_rcv, m); 1626 so->so_rcv.sb_mb = m_free(m); 1627 m = so->so_rcv.sb_mb; 1628 sockbuf_pushsync(&so->so_rcv, nextrecord); 1629 } 1630 } 1631 1632 /* 1633 * Process one or more MT_CONTROL mbufs present before any data mbufs 1634 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 1635 * just copy the data; if !MSG_PEEK, we call into the protocol to 1636 * perform externalization (or freeing if controlp == NULL). 1637 */ 1638 if (m != NULL && m->m_type == MT_CONTROL) { 1639 struct mbuf *cm = NULL, *cmn; 1640 struct mbuf **cme = &cm; 1641 1642 do { 1643 if (flags & MSG_PEEK) { 1644 if (controlp != NULL) { 1645 *controlp = m_copym(m, 0, m->m_len, 1646 M_NOWAIT); 1647 controlp = &(*controlp)->m_next; 1648 } 1649 m = m->m_next; 1650 } else { 1651 sbfree(&so->so_rcv, m); 1652 so->so_rcv.sb_mb = m->m_next; 1653 m->m_next = NULL; 1654 *cme = m; 1655 cme = &(*cme)->m_next; 1656 m = so->so_rcv.sb_mb; 1657 } 1658 } while (m != NULL && m->m_type == MT_CONTROL); 1659 if ((flags & MSG_PEEK) == 0) 1660 sockbuf_pushsync(&so->so_rcv, nextrecord); 1661 while (cm != NULL) { 1662 cmn = cm->m_next; 1663 cm->m_next = NULL; 1664 if (pr->pr_domain->dom_externalize != NULL) { 1665 SOCKBUF_UNLOCK(&so->so_rcv); 1666 VNET_SO_ASSERT(so); 1667 error = (*pr->pr_domain->dom_externalize) 1668 (cm, controlp, flags); 1669 SOCKBUF_LOCK(&so->so_rcv); 1670 } else if (controlp != NULL) 1671 *controlp = cm; 1672 else 1673 m_freem(cm); 1674 if (controlp != NULL) { 1675 orig_resid = 0; 1676 while (*controlp != NULL) 1677 controlp = &(*controlp)->m_next; 1678 } 1679 cm = cmn; 1680 } 1681 if (m != NULL) 1682 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 1683 else 1684 nextrecord = so->so_rcv.sb_mb; 1685 orig_resid = 0; 1686 } 1687 if (m != NULL) { 1688 if ((flags & MSG_PEEK) == 0) { 1689 KASSERT(m->m_nextpkt == nextrecord, 1690 ("soreceive: post-control, nextrecord !sync")); 1691 if (nextrecord == NULL) { 1692 KASSERT(so->so_rcv.sb_mb == m, 1693 ("soreceive: post-control, sb_mb!=m")); 1694 KASSERT(so->so_rcv.sb_lastrecord == m, 1695 ("soreceive: post-control, lastrecord!=m")); 1696 } 1697 } 1698 type = m->m_type; 1699 if (type == MT_OOBDATA) 1700 flags |= MSG_OOB; 1701 } else { 1702 if ((flags & MSG_PEEK) == 0) { 1703 KASSERT(so->so_rcv.sb_mb == nextrecord, 1704 ("soreceive: sb_mb != nextrecord")); 1705 if (so->so_rcv.sb_mb == NULL) { 1706 KASSERT(so->so_rcv.sb_lastrecord == NULL, 1707 ("soreceive: sb_lastercord != NULL")); 1708 } 1709 } 1710 } 1711 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1712 SBLASTRECORDCHK(&so->so_rcv); 1713 SBLASTMBUFCHK(&so->so_rcv); 1714 1715 /* 1716 * Now continue to read any data mbufs off of the head of the socket 1717 * buffer until the read request is satisfied. Note that 'type' is 1718 * used to store the type of any mbuf reads that have happened so far 1719 * such that soreceive() can stop reading if the type changes, which 1720 * causes soreceive() to return only one of regular data and inline 1721 * out-of-band data in a single socket receive operation. 1722 */ 1723 moff = 0; 1724 offset = 0; 1725 while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0 1726 && error == 0) { 1727 /* 1728 * If the type of mbuf has changed since the last mbuf 1729 * examined ('type'), end the receive operation. 1730 */ 1731 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1732 if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) { 1733 if (type != m->m_type) 1734 break; 1735 } else if (type == MT_OOBDATA) 1736 break; 1737 else 1738 KASSERT(m->m_type == MT_DATA, 1739 ("m->m_type == %d", m->m_type)); 1740 so->so_rcv.sb_state &= ~SBS_RCVATMARK; 1741 len = uio->uio_resid; 1742 if (so->so_oobmark && len > so->so_oobmark - offset) 1743 len = so->so_oobmark - offset; 1744 if (len > m->m_len - moff) 1745 len = m->m_len - moff; 1746 /* 1747 * If mp is set, just pass back the mbufs. Otherwise copy 1748 * them out via the uio, then free. Sockbuf must be 1749 * consistent here (points to current mbuf, it points to next 1750 * record) when we drop priority; we must note any additions 1751 * to the sockbuf when we block interrupts again. 1752 */ 1753 if (mp == NULL) { 1754 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1755 SBLASTRECORDCHK(&so->so_rcv); 1756 SBLASTMBUFCHK(&so->so_rcv); 1757 SOCKBUF_UNLOCK(&so->so_rcv); 1758 error = uiomove(mtod(m, char *) + moff, (int)len, uio); 1759 SOCKBUF_LOCK(&so->so_rcv); 1760 if (error) { 1761 /* 1762 * The MT_SONAME mbuf has already been removed 1763 * from the record, so it is necessary to 1764 * remove the data mbufs, if any, to preserve 1765 * the invariant in the case of PR_ADDR that 1766 * requires MT_SONAME mbufs at the head of 1767 * each record. 1768 */ 1769 if (m && pr->pr_flags & PR_ATOMIC && 1770 ((flags & MSG_PEEK) == 0)) 1771 (void)sbdroprecord_locked(&so->so_rcv); 1772 SOCKBUF_UNLOCK(&so->so_rcv); 1773 goto release; 1774 } 1775 } else 1776 uio->uio_resid -= len; 1777 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1778 if (len == m->m_len - moff) { 1779 if (m->m_flags & M_EOR) 1780 flags |= MSG_EOR; 1781 if (flags & MSG_PEEK) { 1782 m = m->m_next; 1783 moff = 0; 1784 } else { 1785 nextrecord = m->m_nextpkt; 1786 sbfree(&so->so_rcv, m); 1787 if (mp != NULL) { 1788 m->m_nextpkt = NULL; 1789 *mp = m; 1790 mp = &m->m_next; 1791 so->so_rcv.sb_mb = m = m->m_next; 1792 *mp = NULL; 1793 } else { 1794 so->so_rcv.sb_mb = m_free(m); 1795 m = so->so_rcv.sb_mb; 1796 } 1797 sockbuf_pushsync(&so->so_rcv, nextrecord); 1798 SBLASTRECORDCHK(&so->so_rcv); 1799 SBLASTMBUFCHK(&so->so_rcv); 1800 } 1801 } else { 1802 if (flags & MSG_PEEK) 1803 moff += len; 1804 else { 1805 if (mp != NULL) { 1806 if (flags & MSG_DONTWAIT) { 1807 *mp = m_copym(m, 0, len, 1808 M_NOWAIT); 1809 if (*mp == NULL) { 1810 /* 1811 * m_copym() couldn't 1812 * allocate an mbuf. 1813 * Adjust uio_resid back 1814 * (it was adjusted 1815 * down by len bytes, 1816 * which we didn't end 1817 * up "copying" over). 1818 */ 1819 uio->uio_resid += len; 1820 break; 1821 } 1822 } else { 1823 SOCKBUF_UNLOCK(&so->so_rcv); 1824 *mp = m_copym(m, 0, len, 1825 M_WAITOK); 1826 SOCKBUF_LOCK(&so->so_rcv); 1827 } 1828 } 1829 sbcut_locked(&so->so_rcv, len); 1830 } 1831 } 1832 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1833 if (so->so_oobmark) { 1834 if ((flags & MSG_PEEK) == 0) { 1835 so->so_oobmark -= len; 1836 if (so->so_oobmark == 0) { 1837 so->so_rcv.sb_state |= SBS_RCVATMARK; 1838 break; 1839 } 1840 } else { 1841 offset += len; 1842 if (offset == so->so_oobmark) 1843 break; 1844 } 1845 } 1846 if (flags & MSG_EOR) 1847 break; 1848 /* 1849 * If the MSG_WAITALL flag is set (for non-atomic socket), we 1850 * must not quit until "uio->uio_resid == 0" or an error 1851 * termination. If a signal/timeout occurs, return with a 1852 * short count but without error. Keep sockbuf locked 1853 * against other readers. 1854 */ 1855 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 1856 !sosendallatonce(so) && nextrecord == NULL) { 1857 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1858 if (so->so_error || 1859 so->so_rcv.sb_state & SBS_CANTRCVMORE) 1860 break; 1861 /* 1862 * Notify the protocol that some data has been 1863 * drained before blocking. 1864 */ 1865 if (pr->pr_flags & PR_WANTRCVD) { 1866 SOCKBUF_UNLOCK(&so->so_rcv); 1867 VNET_SO_ASSERT(so); 1868 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 1869 SOCKBUF_LOCK(&so->so_rcv); 1870 } 1871 SBLASTRECORDCHK(&so->so_rcv); 1872 SBLASTMBUFCHK(&so->so_rcv); 1873 /* 1874 * We could receive some data while was notifying 1875 * the protocol. Skip blocking in this case. 1876 */ 1877 if (so->so_rcv.sb_mb == NULL) { 1878 error = sbwait(&so->so_rcv); 1879 if (error) { 1880 SOCKBUF_UNLOCK(&so->so_rcv); 1881 goto release; 1882 } 1883 } 1884 m = so->so_rcv.sb_mb; 1885 if (m != NULL) 1886 nextrecord = m->m_nextpkt; 1887 } 1888 } 1889 1890 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1891 if (m != NULL && pr->pr_flags & PR_ATOMIC) { 1892 flags |= MSG_TRUNC; 1893 if ((flags & MSG_PEEK) == 0) 1894 (void) sbdroprecord_locked(&so->so_rcv); 1895 } 1896 if ((flags & MSG_PEEK) == 0) { 1897 if (m == NULL) { 1898 /* 1899 * First part is an inline SB_EMPTY_FIXUP(). Second 1900 * part makes sure sb_lastrecord is up-to-date if 1901 * there is still data in the socket buffer. 1902 */ 1903 so->so_rcv.sb_mb = nextrecord; 1904 if (so->so_rcv.sb_mb == NULL) { 1905 so->so_rcv.sb_mbtail = NULL; 1906 so->so_rcv.sb_lastrecord = NULL; 1907 } else if (nextrecord->m_nextpkt == NULL) 1908 so->so_rcv.sb_lastrecord = nextrecord; 1909 } 1910 SBLASTRECORDCHK(&so->so_rcv); 1911 SBLASTMBUFCHK(&so->so_rcv); 1912 /* 1913 * If soreceive() is being done from the socket callback, 1914 * then don't need to generate ACK to peer to update window, 1915 * since ACK will be generated on return to TCP. 1916 */ 1917 if (!(flags & MSG_SOCALLBCK) && 1918 (pr->pr_flags & PR_WANTRCVD)) { 1919 SOCKBUF_UNLOCK(&so->so_rcv); 1920 VNET_SO_ASSERT(so); 1921 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 1922 SOCKBUF_LOCK(&so->so_rcv); 1923 } 1924 } 1925 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1926 if (orig_resid == uio->uio_resid && orig_resid && 1927 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { 1928 SOCKBUF_UNLOCK(&so->so_rcv); 1929 goto restart; 1930 } 1931 SOCKBUF_UNLOCK(&so->so_rcv); 1932 1933 if (flagsp != NULL) 1934 *flagsp |= flags; 1935 release: 1936 sbunlock(&so->so_rcv); 1937 return (error); 1938 } 1939 1940 /* 1941 * Optimized version of soreceive() for stream (TCP) sockets. 1942 * XXXAO: (MSG_WAITALL | MSG_PEEK) isn't properly handled. 1943 */ 1944 int 1945 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio, 1946 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1947 { 1948 int len = 0, error = 0, flags, oresid; 1949 struct sockbuf *sb; 1950 struct mbuf *m, *n = NULL; 1951 1952 /* We only do stream sockets. */ 1953 if (so->so_type != SOCK_STREAM) 1954 return (EINVAL); 1955 if (psa != NULL) 1956 *psa = NULL; 1957 if (controlp != NULL) 1958 return (EINVAL); 1959 if (flagsp != NULL) 1960 flags = *flagsp &~ MSG_EOR; 1961 else 1962 flags = 0; 1963 if (flags & MSG_OOB) 1964 return (soreceive_rcvoob(so, uio, flags)); 1965 if (mp0 != NULL) 1966 *mp0 = NULL; 1967 1968 sb = &so->so_rcv; 1969 1970 /* Prevent other readers from entering the socket. */ 1971 error = sblock(sb, SBLOCKWAIT(flags)); 1972 if (error) 1973 goto out; 1974 SOCKBUF_LOCK(sb); 1975 1976 /* Easy one, no space to copyout anything. */ 1977 if (uio->uio_resid == 0) { 1978 error = EINVAL; 1979 goto out; 1980 } 1981 oresid = uio->uio_resid; 1982 1983 /* We will never ever get anything unless we are or were connected. */ 1984 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 1985 error = ENOTCONN; 1986 goto out; 1987 } 1988 1989 restart: 1990 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1991 1992 /* Abort if socket has reported problems. */ 1993 if (so->so_error) { 1994 if (sbavail(sb) > 0) 1995 goto deliver; 1996 if (oresid > uio->uio_resid) 1997 goto out; 1998 error = so->so_error; 1999 if (!(flags & MSG_PEEK)) 2000 so->so_error = 0; 2001 goto out; 2002 } 2003 2004 /* Door is closed. Deliver what is left, if any. */ 2005 if (sb->sb_state & SBS_CANTRCVMORE) { 2006 if (sbavail(sb) > 0) 2007 goto deliver; 2008 else 2009 goto out; 2010 } 2011 2012 /* Socket buffer is empty and we shall not block. */ 2013 if (sbavail(sb) == 0 && 2014 ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) { 2015 error = EAGAIN; 2016 goto out; 2017 } 2018 2019 /* Socket buffer got some data that we shall deliver now. */ 2020 if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) && 2021 ((so->so_state & SS_NBIO) || 2022 (flags & (MSG_DONTWAIT|MSG_NBIO)) || 2023 sbavail(sb) >= sb->sb_lowat || 2024 sbavail(sb) >= uio->uio_resid || 2025 sbavail(sb) >= sb->sb_hiwat) ) { 2026 goto deliver; 2027 } 2028 2029 /* On MSG_WAITALL we must wait until all data or error arrives. */ 2030 if ((flags & MSG_WAITALL) && 2031 (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat)) 2032 goto deliver; 2033 2034 /* 2035 * Wait and block until (more) data comes in. 2036 * NB: Drops the sockbuf lock during wait. 2037 */ 2038 error = sbwait(sb); 2039 if (error) 2040 goto out; 2041 goto restart; 2042 2043 deliver: 2044 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2045 KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__)); 2046 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__)); 2047 2048 /* Statistics. */ 2049 if (uio->uio_td) 2050 uio->uio_td->td_ru.ru_msgrcv++; 2051 2052 /* Fill uio until full or current end of socket buffer is reached. */ 2053 len = min(uio->uio_resid, sbavail(sb)); 2054 if (mp0 != NULL) { 2055 /* Dequeue as many mbufs as possible. */ 2056 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) { 2057 if (*mp0 == NULL) 2058 *mp0 = sb->sb_mb; 2059 else 2060 m_cat(*mp0, sb->sb_mb); 2061 for (m = sb->sb_mb; 2062 m != NULL && m->m_len <= len; 2063 m = m->m_next) { 2064 KASSERT(!(m->m_flags & M_NOTAVAIL), 2065 ("%s: m %p not available", __func__, m)); 2066 len -= m->m_len; 2067 uio->uio_resid -= m->m_len; 2068 sbfree(sb, m); 2069 n = m; 2070 } 2071 n->m_next = NULL; 2072 sb->sb_mb = m; 2073 sb->sb_lastrecord = sb->sb_mb; 2074 if (sb->sb_mb == NULL) 2075 SB_EMPTY_FIXUP(sb); 2076 } 2077 /* Copy the remainder. */ 2078 if (len > 0) { 2079 KASSERT(sb->sb_mb != NULL, 2080 ("%s: len > 0 && sb->sb_mb empty", __func__)); 2081 2082 m = m_copym(sb->sb_mb, 0, len, M_NOWAIT); 2083 if (m == NULL) 2084 len = 0; /* Don't flush data from sockbuf. */ 2085 else 2086 uio->uio_resid -= len; 2087 if (*mp0 != NULL) 2088 m_cat(*mp0, m); 2089 else 2090 *mp0 = m; 2091 if (*mp0 == NULL) { 2092 error = ENOBUFS; 2093 goto out; 2094 } 2095 } 2096 } else { 2097 /* NB: Must unlock socket buffer as uiomove may sleep. */ 2098 SOCKBUF_UNLOCK(sb); 2099 error = m_mbuftouio(uio, sb->sb_mb, len); 2100 SOCKBUF_LOCK(sb); 2101 if (error) 2102 goto out; 2103 } 2104 SBLASTRECORDCHK(sb); 2105 SBLASTMBUFCHK(sb); 2106 2107 /* 2108 * Remove the delivered data from the socket buffer unless we 2109 * were only peeking. 2110 */ 2111 if (!(flags & MSG_PEEK)) { 2112 if (len > 0) 2113 sbdrop_locked(sb, len); 2114 2115 /* Notify protocol that we drained some data. */ 2116 if ((so->so_proto->pr_flags & PR_WANTRCVD) && 2117 (((flags & MSG_WAITALL) && uio->uio_resid > 0) || 2118 !(flags & MSG_SOCALLBCK))) { 2119 SOCKBUF_UNLOCK(sb); 2120 VNET_SO_ASSERT(so); 2121 (*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags); 2122 SOCKBUF_LOCK(sb); 2123 } 2124 } 2125 2126 /* 2127 * For MSG_WAITALL we may have to loop again and wait for 2128 * more data to come in. 2129 */ 2130 if ((flags & MSG_WAITALL) && uio->uio_resid > 0) 2131 goto restart; 2132 out: 2133 SOCKBUF_LOCK_ASSERT(sb); 2134 SBLASTRECORDCHK(sb); 2135 SBLASTMBUFCHK(sb); 2136 SOCKBUF_UNLOCK(sb); 2137 sbunlock(sb); 2138 return (error); 2139 } 2140 2141 /* 2142 * Optimized version of soreceive() for simple datagram cases from userspace. 2143 * Unlike in the stream case, we're able to drop a datagram if copyout() 2144 * fails, and because we handle datagrams atomically, we don't need to use a 2145 * sleep lock to prevent I/O interlacing. 2146 */ 2147 int 2148 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio, 2149 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2150 { 2151 struct mbuf *m, *m2; 2152 int flags, error; 2153 ssize_t len; 2154 struct protosw *pr = so->so_proto; 2155 struct mbuf *nextrecord; 2156 2157 if (psa != NULL) 2158 *psa = NULL; 2159 if (controlp != NULL) 2160 *controlp = NULL; 2161 if (flagsp != NULL) 2162 flags = *flagsp &~ MSG_EOR; 2163 else 2164 flags = 0; 2165 2166 /* 2167 * For any complicated cases, fall back to the full 2168 * soreceive_generic(). 2169 */ 2170 if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB)) 2171 return (soreceive_generic(so, psa, uio, mp0, controlp, 2172 flagsp)); 2173 2174 /* 2175 * Enforce restrictions on use. 2176 */ 2177 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0, 2178 ("soreceive_dgram: wantrcvd")); 2179 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic")); 2180 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0, 2181 ("soreceive_dgram: SBS_RCVATMARK")); 2182 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0, 2183 ("soreceive_dgram: P_CONNREQUIRED")); 2184 2185 /* 2186 * Loop blocking while waiting for a datagram. 2187 */ 2188 SOCKBUF_LOCK(&so->so_rcv); 2189 while ((m = so->so_rcv.sb_mb) == NULL) { 2190 KASSERT(sbavail(&so->so_rcv) == 0, 2191 ("soreceive_dgram: sb_mb NULL but sbavail %u", 2192 sbavail(&so->so_rcv))); 2193 if (so->so_error) { 2194 error = so->so_error; 2195 so->so_error = 0; 2196 SOCKBUF_UNLOCK(&so->so_rcv); 2197 return (error); 2198 } 2199 if (so->so_rcv.sb_state & SBS_CANTRCVMORE || 2200 uio->uio_resid == 0) { 2201 SOCKBUF_UNLOCK(&so->so_rcv); 2202 return (0); 2203 } 2204 if ((so->so_state & SS_NBIO) || 2205 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2206 SOCKBUF_UNLOCK(&so->so_rcv); 2207 return (EWOULDBLOCK); 2208 } 2209 SBLASTRECORDCHK(&so->so_rcv); 2210 SBLASTMBUFCHK(&so->so_rcv); 2211 error = sbwait(&so->so_rcv); 2212 if (error) { 2213 SOCKBUF_UNLOCK(&so->so_rcv); 2214 return (error); 2215 } 2216 } 2217 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2218 2219 if (uio->uio_td) 2220 uio->uio_td->td_ru.ru_msgrcv++; 2221 SBLASTRECORDCHK(&so->so_rcv); 2222 SBLASTMBUFCHK(&so->so_rcv); 2223 nextrecord = m->m_nextpkt; 2224 if (nextrecord == NULL) { 2225 KASSERT(so->so_rcv.sb_lastrecord == m, 2226 ("soreceive_dgram: lastrecord != m")); 2227 } 2228 2229 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord, 2230 ("soreceive_dgram: m_nextpkt != nextrecord")); 2231 2232 /* 2233 * Pull 'm' and its chain off the front of the packet queue. 2234 */ 2235 so->so_rcv.sb_mb = NULL; 2236 sockbuf_pushsync(&so->so_rcv, nextrecord); 2237 2238 /* 2239 * Walk 'm's chain and free that many bytes from the socket buffer. 2240 */ 2241 for (m2 = m; m2 != NULL; m2 = m2->m_next) 2242 sbfree(&so->so_rcv, m2); 2243 2244 /* 2245 * Do a few last checks before we let go of the lock. 2246 */ 2247 SBLASTRECORDCHK(&so->so_rcv); 2248 SBLASTMBUFCHK(&so->so_rcv); 2249 SOCKBUF_UNLOCK(&so->so_rcv); 2250 2251 if (pr->pr_flags & PR_ADDR) { 2252 KASSERT(m->m_type == MT_SONAME, 2253 ("m->m_type == %d", m->m_type)); 2254 if (psa != NULL) 2255 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2256 M_NOWAIT); 2257 m = m_free(m); 2258 } 2259 if (m == NULL) { 2260 /* XXXRW: Can this happen? */ 2261 return (0); 2262 } 2263 2264 /* 2265 * Packet to copyout() is now in 'm' and it is disconnected from the 2266 * queue. 2267 * 2268 * Process one or more MT_CONTROL mbufs present before any data mbufs 2269 * in the first mbuf chain on the socket buffer. We call into the 2270 * protocol to perform externalization (or freeing if controlp == 2271 * NULL). In some cases there can be only MT_CONTROL mbufs without 2272 * MT_DATA mbufs. 2273 */ 2274 if (m->m_type == MT_CONTROL) { 2275 struct mbuf *cm = NULL, *cmn; 2276 struct mbuf **cme = &cm; 2277 2278 do { 2279 m2 = m->m_next; 2280 m->m_next = NULL; 2281 *cme = m; 2282 cme = &(*cme)->m_next; 2283 m = m2; 2284 } while (m != NULL && m->m_type == MT_CONTROL); 2285 while (cm != NULL) { 2286 cmn = cm->m_next; 2287 cm->m_next = NULL; 2288 if (pr->pr_domain->dom_externalize != NULL) { 2289 error = (*pr->pr_domain->dom_externalize) 2290 (cm, controlp, flags); 2291 } else if (controlp != NULL) 2292 *controlp = cm; 2293 else 2294 m_freem(cm); 2295 if (controlp != NULL) { 2296 while (*controlp != NULL) 2297 controlp = &(*controlp)->m_next; 2298 } 2299 cm = cmn; 2300 } 2301 } 2302 KASSERT(m == NULL || m->m_type == MT_DATA, 2303 ("soreceive_dgram: !data")); 2304 while (m != NULL && uio->uio_resid > 0) { 2305 len = uio->uio_resid; 2306 if (len > m->m_len) 2307 len = m->m_len; 2308 error = uiomove(mtod(m, char *), (int)len, uio); 2309 if (error) { 2310 m_freem(m); 2311 return (error); 2312 } 2313 if (len == m->m_len) 2314 m = m_free(m); 2315 else { 2316 m->m_data += len; 2317 m->m_len -= len; 2318 } 2319 } 2320 if (m != NULL) { 2321 flags |= MSG_TRUNC; 2322 m_freem(m); 2323 } 2324 if (flagsp != NULL) 2325 *flagsp |= flags; 2326 return (0); 2327 } 2328 2329 int 2330 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, 2331 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2332 { 2333 int error; 2334 2335 CURVNET_SET(so->so_vnet); 2336 error = (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, mp0, 2337 controlp, flagsp)); 2338 CURVNET_RESTORE(); 2339 return (error); 2340 } 2341 2342 int 2343 soshutdown(struct socket *so, int how) 2344 { 2345 struct protosw *pr = so->so_proto; 2346 int error; 2347 2348 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 2349 return (EINVAL); 2350 if ((so->so_state & 2351 (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) 2352 return (ENOTCONN); 2353 2354 CURVNET_SET(so->so_vnet); 2355 if (pr->pr_usrreqs->pru_flush != NULL) 2356 (*pr->pr_usrreqs->pru_flush)(so, how); 2357 if (how != SHUT_WR) 2358 sorflush(so); 2359 if (how != SHUT_RD) { 2360 error = (*pr->pr_usrreqs->pru_shutdown)(so); 2361 wakeup(&so->so_timeo); 2362 CURVNET_RESTORE(); 2363 return (error); 2364 } 2365 wakeup(&so->so_timeo); 2366 CURVNET_RESTORE(); 2367 return (0); 2368 } 2369 2370 void 2371 sorflush(struct socket *so) 2372 { 2373 struct sockbuf *sb = &so->so_rcv; 2374 struct protosw *pr = so->so_proto; 2375 struct socket aso; 2376 2377 VNET_SO_ASSERT(so); 2378 2379 /* 2380 * In order to avoid calling dom_dispose with the socket buffer mutex 2381 * held, and in order to generally avoid holding the lock for a long 2382 * time, we make a copy of the socket buffer and clear the original 2383 * (except locks, state). The new socket buffer copy won't have 2384 * initialized locks so we can only call routines that won't use or 2385 * assert those locks. 2386 * 2387 * Dislodge threads currently blocked in receive and wait to acquire 2388 * a lock against other simultaneous readers before clearing the 2389 * socket buffer. Don't let our acquire be interrupted by a signal 2390 * despite any existing socket disposition on interruptable waiting. 2391 */ 2392 socantrcvmore(so); 2393 (void) sblock(sb, SBL_WAIT | SBL_NOINTR); 2394 2395 /* 2396 * Invalidate/clear most of the sockbuf structure, but leave selinfo 2397 * and mutex data unchanged. 2398 */ 2399 SOCKBUF_LOCK(sb); 2400 bzero(&aso, sizeof(aso)); 2401 aso.so_pcb = so->so_pcb; 2402 bcopy(&sb->sb_startzero, &aso.so_rcv.sb_startzero, 2403 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 2404 bzero(&sb->sb_startzero, 2405 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 2406 SOCKBUF_UNLOCK(sb); 2407 sbunlock(sb); 2408 2409 /* 2410 * Dispose of special rights and flush the copied socket. Don't call 2411 * any unsafe routines (that rely on locks being initialized) on aso. 2412 */ 2413 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 2414 (*pr->pr_domain->dom_dispose)(&aso); 2415 sbrelease_internal(&aso.so_rcv, so); 2416 } 2417 2418 /* 2419 * Wrapper for Socket established helper hook. 2420 * Parameters: socket, context of the hook point, hook id. 2421 */ 2422 static int inline 2423 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id) 2424 { 2425 struct socket_hhook_data hhook_data = { 2426 .so = so, 2427 .hctx = hctx, 2428 .m = NULL, 2429 .status = 0 2430 }; 2431 2432 CURVNET_SET(so->so_vnet); 2433 HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd); 2434 CURVNET_RESTORE(); 2435 2436 /* Ugly but needed, since hhooks return void for now */ 2437 return (hhook_data.status); 2438 } 2439 2440 /* 2441 * Perhaps this routine, and sooptcopyout(), below, ought to come in an 2442 * additional variant to handle the case where the option value needs to be 2443 * some kind of integer, but not a specific size. In addition to their use 2444 * here, these functions are also called by the protocol-level pr_ctloutput() 2445 * routines. 2446 */ 2447 int 2448 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen) 2449 { 2450 size_t valsize; 2451 2452 /* 2453 * If the user gives us more than we wanted, we ignore it, but if we 2454 * don't get the minimum length the caller wants, we return EINVAL. 2455 * On success, sopt->sopt_valsize is set to however much we actually 2456 * retrieved. 2457 */ 2458 if ((valsize = sopt->sopt_valsize) < minlen) 2459 return EINVAL; 2460 if (valsize > len) 2461 sopt->sopt_valsize = valsize = len; 2462 2463 if (sopt->sopt_td != NULL) 2464 return (copyin(sopt->sopt_val, buf, valsize)); 2465 2466 bcopy(sopt->sopt_val, buf, valsize); 2467 return (0); 2468 } 2469 2470 /* 2471 * Kernel version of setsockopt(2). 2472 * 2473 * XXX: optlen is size_t, not socklen_t 2474 */ 2475 int 2476 so_setsockopt(struct socket *so, int level, int optname, void *optval, 2477 size_t optlen) 2478 { 2479 struct sockopt sopt; 2480 2481 sopt.sopt_level = level; 2482 sopt.sopt_name = optname; 2483 sopt.sopt_dir = SOPT_SET; 2484 sopt.sopt_val = optval; 2485 sopt.sopt_valsize = optlen; 2486 sopt.sopt_td = NULL; 2487 return (sosetopt(so, &sopt)); 2488 } 2489 2490 int 2491 sosetopt(struct socket *so, struct sockopt *sopt) 2492 { 2493 int error, optval; 2494 struct linger l; 2495 struct timeval tv; 2496 sbintime_t val; 2497 uint32_t val32; 2498 #ifdef MAC 2499 struct mac extmac; 2500 #endif 2501 2502 CURVNET_SET(so->so_vnet); 2503 error = 0; 2504 if (sopt->sopt_level != SOL_SOCKET) { 2505 if (so->so_proto->pr_ctloutput != NULL) { 2506 error = (*so->so_proto->pr_ctloutput)(so, sopt); 2507 CURVNET_RESTORE(); 2508 return (error); 2509 } 2510 error = ENOPROTOOPT; 2511 } else { 2512 switch (sopt->sopt_name) { 2513 case SO_ACCEPTFILTER: 2514 error = do_setopt_accept_filter(so, sopt); 2515 if (error) 2516 goto bad; 2517 break; 2518 2519 case SO_LINGER: 2520 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 2521 if (error) 2522 goto bad; 2523 2524 SOCK_LOCK(so); 2525 so->so_linger = l.l_linger; 2526 if (l.l_onoff) 2527 so->so_options |= SO_LINGER; 2528 else 2529 so->so_options &= ~SO_LINGER; 2530 SOCK_UNLOCK(so); 2531 break; 2532 2533 case SO_DEBUG: 2534 case SO_KEEPALIVE: 2535 case SO_DONTROUTE: 2536 case SO_USELOOPBACK: 2537 case SO_BROADCAST: 2538 case SO_REUSEADDR: 2539 case SO_REUSEPORT: 2540 case SO_OOBINLINE: 2541 case SO_TIMESTAMP: 2542 case SO_BINTIME: 2543 case SO_NOSIGPIPE: 2544 case SO_NO_DDP: 2545 case SO_NO_OFFLOAD: 2546 error = sooptcopyin(sopt, &optval, sizeof optval, 2547 sizeof optval); 2548 if (error) 2549 goto bad; 2550 SOCK_LOCK(so); 2551 if (optval) 2552 so->so_options |= sopt->sopt_name; 2553 else 2554 so->so_options &= ~sopt->sopt_name; 2555 SOCK_UNLOCK(so); 2556 break; 2557 2558 case SO_SETFIB: 2559 error = sooptcopyin(sopt, &optval, sizeof optval, 2560 sizeof optval); 2561 if (error) 2562 goto bad; 2563 2564 if (optval < 0 || optval >= rt_numfibs) { 2565 error = EINVAL; 2566 goto bad; 2567 } 2568 if (((so->so_proto->pr_domain->dom_family == PF_INET) || 2569 (so->so_proto->pr_domain->dom_family == PF_INET6) || 2570 (so->so_proto->pr_domain->dom_family == PF_ROUTE))) 2571 so->so_fibnum = optval; 2572 else 2573 so->so_fibnum = 0; 2574 break; 2575 2576 case SO_USER_COOKIE: 2577 error = sooptcopyin(sopt, &val32, sizeof val32, 2578 sizeof val32); 2579 if (error) 2580 goto bad; 2581 so->so_user_cookie = val32; 2582 break; 2583 2584 case SO_SNDBUF: 2585 case SO_RCVBUF: 2586 case SO_SNDLOWAT: 2587 case SO_RCVLOWAT: 2588 error = sooptcopyin(sopt, &optval, sizeof optval, 2589 sizeof optval); 2590 if (error) 2591 goto bad; 2592 2593 /* 2594 * Values < 1 make no sense for any of these options, 2595 * so disallow them. 2596 */ 2597 if (optval < 1) { 2598 error = EINVAL; 2599 goto bad; 2600 } 2601 2602 switch (sopt->sopt_name) { 2603 case SO_SNDBUF: 2604 case SO_RCVBUF: 2605 if (sbreserve(sopt->sopt_name == SO_SNDBUF ? 2606 &so->so_snd : &so->so_rcv, (u_long)optval, 2607 so, curthread) == 0) { 2608 error = ENOBUFS; 2609 goto bad; 2610 } 2611 (sopt->sopt_name == SO_SNDBUF ? &so->so_snd : 2612 &so->so_rcv)->sb_flags &= ~SB_AUTOSIZE; 2613 break; 2614 2615 /* 2616 * Make sure the low-water is never greater than the 2617 * high-water. 2618 */ 2619 case SO_SNDLOWAT: 2620 SOCKBUF_LOCK(&so->so_snd); 2621 so->so_snd.sb_lowat = 2622 (optval > so->so_snd.sb_hiwat) ? 2623 so->so_snd.sb_hiwat : optval; 2624 SOCKBUF_UNLOCK(&so->so_snd); 2625 break; 2626 case SO_RCVLOWAT: 2627 SOCKBUF_LOCK(&so->so_rcv); 2628 so->so_rcv.sb_lowat = 2629 (optval > so->so_rcv.sb_hiwat) ? 2630 so->so_rcv.sb_hiwat : optval; 2631 SOCKBUF_UNLOCK(&so->so_rcv); 2632 break; 2633 } 2634 break; 2635 2636 case SO_SNDTIMEO: 2637 case SO_RCVTIMEO: 2638 #ifdef COMPAT_FREEBSD32 2639 if (SV_CURPROC_FLAG(SV_ILP32)) { 2640 struct timeval32 tv32; 2641 2642 error = sooptcopyin(sopt, &tv32, sizeof tv32, 2643 sizeof tv32); 2644 CP(tv32, tv, tv_sec); 2645 CP(tv32, tv, tv_usec); 2646 } else 2647 #endif 2648 error = sooptcopyin(sopt, &tv, sizeof tv, 2649 sizeof tv); 2650 if (error) 2651 goto bad; 2652 if (tv.tv_sec < 0 || tv.tv_usec < 0 || 2653 tv.tv_usec >= 1000000) { 2654 error = EDOM; 2655 goto bad; 2656 } 2657 if (tv.tv_sec > INT32_MAX) 2658 val = SBT_MAX; 2659 else 2660 val = tvtosbt(tv); 2661 switch (sopt->sopt_name) { 2662 case SO_SNDTIMEO: 2663 so->so_snd.sb_timeo = val; 2664 break; 2665 case SO_RCVTIMEO: 2666 so->so_rcv.sb_timeo = val; 2667 break; 2668 } 2669 break; 2670 2671 case SO_LABEL: 2672 #ifdef MAC 2673 error = sooptcopyin(sopt, &extmac, sizeof extmac, 2674 sizeof extmac); 2675 if (error) 2676 goto bad; 2677 error = mac_setsockopt_label(sopt->sopt_td->td_ucred, 2678 so, &extmac); 2679 #else 2680 error = EOPNOTSUPP; 2681 #endif 2682 break; 2683 2684 case SO_TS_CLOCK: 2685 error = sooptcopyin(sopt, &optval, sizeof optval, 2686 sizeof optval); 2687 if (error) 2688 goto bad; 2689 if (optval < 0 || optval > SO_TS_CLOCK_MAX) { 2690 error = EINVAL; 2691 goto bad; 2692 } 2693 so->so_ts_clock = optval; 2694 break; 2695 2696 case SO_MAX_PACING_RATE: 2697 error = sooptcopyin(sopt, &val32, sizeof(val32), 2698 sizeof(val32)); 2699 if (error) 2700 goto bad; 2701 so->so_max_pacing_rate = val32; 2702 break; 2703 2704 default: 2705 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 2706 error = hhook_run_socket(so, sopt, 2707 HHOOK_SOCKET_OPT); 2708 else 2709 error = ENOPROTOOPT; 2710 break; 2711 } 2712 if (error == 0 && so->so_proto->pr_ctloutput != NULL) 2713 (void)(*so->so_proto->pr_ctloutput)(so, sopt); 2714 } 2715 bad: 2716 CURVNET_RESTORE(); 2717 return (error); 2718 } 2719 2720 /* 2721 * Helper routine for getsockopt. 2722 */ 2723 int 2724 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 2725 { 2726 int error; 2727 size_t valsize; 2728 2729 error = 0; 2730 2731 /* 2732 * Documented get behavior is that we always return a value, possibly 2733 * truncated to fit in the user's buffer. Traditional behavior is 2734 * that we always tell the user precisely how much we copied, rather 2735 * than something useful like the total amount we had available for 2736 * her. Note that this interface is not idempotent; the entire 2737 * answer must be generated ahead of time. 2738 */ 2739 valsize = min(len, sopt->sopt_valsize); 2740 sopt->sopt_valsize = valsize; 2741 if (sopt->sopt_val != NULL) { 2742 if (sopt->sopt_td != NULL) 2743 error = copyout(buf, sopt->sopt_val, valsize); 2744 else 2745 bcopy(buf, sopt->sopt_val, valsize); 2746 } 2747 return (error); 2748 } 2749 2750 int 2751 sogetopt(struct socket *so, struct sockopt *sopt) 2752 { 2753 int error, optval; 2754 struct linger l; 2755 struct timeval tv; 2756 #ifdef MAC 2757 struct mac extmac; 2758 #endif 2759 2760 CURVNET_SET(so->so_vnet); 2761 error = 0; 2762 if (sopt->sopt_level != SOL_SOCKET) { 2763 if (so->so_proto->pr_ctloutput != NULL) 2764 error = (*so->so_proto->pr_ctloutput)(so, sopt); 2765 else 2766 error = ENOPROTOOPT; 2767 CURVNET_RESTORE(); 2768 return (error); 2769 } else { 2770 switch (sopt->sopt_name) { 2771 case SO_ACCEPTFILTER: 2772 error = do_getopt_accept_filter(so, sopt); 2773 break; 2774 2775 case SO_LINGER: 2776 SOCK_LOCK(so); 2777 l.l_onoff = so->so_options & SO_LINGER; 2778 l.l_linger = so->so_linger; 2779 SOCK_UNLOCK(so); 2780 error = sooptcopyout(sopt, &l, sizeof l); 2781 break; 2782 2783 case SO_USELOOPBACK: 2784 case SO_DONTROUTE: 2785 case SO_DEBUG: 2786 case SO_KEEPALIVE: 2787 case SO_REUSEADDR: 2788 case SO_REUSEPORT: 2789 case SO_BROADCAST: 2790 case SO_OOBINLINE: 2791 case SO_ACCEPTCONN: 2792 case SO_TIMESTAMP: 2793 case SO_BINTIME: 2794 case SO_NOSIGPIPE: 2795 optval = so->so_options & sopt->sopt_name; 2796 integer: 2797 error = sooptcopyout(sopt, &optval, sizeof optval); 2798 break; 2799 2800 case SO_TYPE: 2801 optval = so->so_type; 2802 goto integer; 2803 2804 case SO_PROTOCOL: 2805 optval = so->so_proto->pr_protocol; 2806 goto integer; 2807 2808 case SO_ERROR: 2809 SOCK_LOCK(so); 2810 optval = so->so_error; 2811 so->so_error = 0; 2812 SOCK_UNLOCK(so); 2813 goto integer; 2814 2815 case SO_SNDBUF: 2816 optval = so->so_snd.sb_hiwat; 2817 goto integer; 2818 2819 case SO_RCVBUF: 2820 optval = so->so_rcv.sb_hiwat; 2821 goto integer; 2822 2823 case SO_SNDLOWAT: 2824 optval = so->so_snd.sb_lowat; 2825 goto integer; 2826 2827 case SO_RCVLOWAT: 2828 optval = so->so_rcv.sb_lowat; 2829 goto integer; 2830 2831 case SO_SNDTIMEO: 2832 case SO_RCVTIMEO: 2833 tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ? 2834 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 2835 #ifdef COMPAT_FREEBSD32 2836 if (SV_CURPROC_FLAG(SV_ILP32)) { 2837 struct timeval32 tv32; 2838 2839 CP(tv, tv32, tv_sec); 2840 CP(tv, tv32, tv_usec); 2841 error = sooptcopyout(sopt, &tv32, sizeof tv32); 2842 } else 2843 #endif 2844 error = sooptcopyout(sopt, &tv, sizeof tv); 2845 break; 2846 2847 case SO_LABEL: 2848 #ifdef MAC 2849 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 2850 sizeof(extmac)); 2851 if (error) 2852 goto bad; 2853 error = mac_getsockopt_label(sopt->sopt_td->td_ucred, 2854 so, &extmac); 2855 if (error) 2856 goto bad; 2857 error = sooptcopyout(sopt, &extmac, sizeof extmac); 2858 #else 2859 error = EOPNOTSUPP; 2860 #endif 2861 break; 2862 2863 case SO_PEERLABEL: 2864 #ifdef MAC 2865 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 2866 sizeof(extmac)); 2867 if (error) 2868 goto bad; 2869 error = mac_getsockopt_peerlabel( 2870 sopt->sopt_td->td_ucred, so, &extmac); 2871 if (error) 2872 goto bad; 2873 error = sooptcopyout(sopt, &extmac, sizeof extmac); 2874 #else 2875 error = EOPNOTSUPP; 2876 #endif 2877 break; 2878 2879 case SO_LISTENQLIMIT: 2880 optval = so->so_qlimit; 2881 goto integer; 2882 2883 case SO_LISTENQLEN: 2884 optval = so->so_qlen; 2885 goto integer; 2886 2887 case SO_LISTENINCQLEN: 2888 optval = so->so_incqlen; 2889 goto integer; 2890 2891 case SO_TS_CLOCK: 2892 optval = so->so_ts_clock; 2893 goto integer; 2894 2895 case SO_MAX_PACING_RATE: 2896 optval = so->so_max_pacing_rate; 2897 goto integer; 2898 2899 default: 2900 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 2901 error = hhook_run_socket(so, sopt, 2902 HHOOK_SOCKET_OPT); 2903 else 2904 error = ENOPROTOOPT; 2905 break; 2906 } 2907 } 2908 #ifdef MAC 2909 bad: 2910 #endif 2911 CURVNET_RESTORE(); 2912 return (error); 2913 } 2914 2915 int 2916 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 2917 { 2918 struct mbuf *m, *m_prev; 2919 int sopt_size = sopt->sopt_valsize; 2920 2921 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 2922 if (m == NULL) 2923 return ENOBUFS; 2924 if (sopt_size > MLEN) { 2925 MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT); 2926 if ((m->m_flags & M_EXT) == 0) { 2927 m_free(m); 2928 return ENOBUFS; 2929 } 2930 m->m_len = min(MCLBYTES, sopt_size); 2931 } else { 2932 m->m_len = min(MLEN, sopt_size); 2933 } 2934 sopt_size -= m->m_len; 2935 *mp = m; 2936 m_prev = m; 2937 2938 while (sopt_size) { 2939 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 2940 if (m == NULL) { 2941 m_freem(*mp); 2942 return ENOBUFS; 2943 } 2944 if (sopt_size > MLEN) { 2945 MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK : 2946 M_NOWAIT); 2947 if ((m->m_flags & M_EXT) == 0) { 2948 m_freem(m); 2949 m_freem(*mp); 2950 return ENOBUFS; 2951 } 2952 m->m_len = min(MCLBYTES, sopt_size); 2953 } else { 2954 m->m_len = min(MLEN, sopt_size); 2955 } 2956 sopt_size -= m->m_len; 2957 m_prev->m_next = m; 2958 m_prev = m; 2959 } 2960 return (0); 2961 } 2962 2963 int 2964 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 2965 { 2966 struct mbuf *m0 = m; 2967 2968 if (sopt->sopt_val == NULL) 2969 return (0); 2970 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 2971 if (sopt->sopt_td != NULL) { 2972 int error; 2973 2974 error = copyin(sopt->sopt_val, mtod(m, char *), 2975 m->m_len); 2976 if (error != 0) { 2977 m_freem(m0); 2978 return(error); 2979 } 2980 } else 2981 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 2982 sopt->sopt_valsize -= m->m_len; 2983 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 2984 m = m->m_next; 2985 } 2986 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 2987 panic("ip6_sooptmcopyin"); 2988 return (0); 2989 } 2990 2991 int 2992 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 2993 { 2994 struct mbuf *m0 = m; 2995 size_t valsize = 0; 2996 2997 if (sopt->sopt_val == NULL) 2998 return (0); 2999 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 3000 if (sopt->sopt_td != NULL) { 3001 int error; 3002 3003 error = copyout(mtod(m, char *), sopt->sopt_val, 3004 m->m_len); 3005 if (error != 0) { 3006 m_freem(m0); 3007 return(error); 3008 } 3009 } else 3010 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 3011 sopt->sopt_valsize -= m->m_len; 3012 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 3013 valsize += m->m_len; 3014 m = m->m_next; 3015 } 3016 if (m != NULL) { 3017 /* enough soopt buffer should be given from user-land */ 3018 m_freem(m0); 3019 return(EINVAL); 3020 } 3021 sopt->sopt_valsize = valsize; 3022 return (0); 3023 } 3024 3025 /* 3026 * sohasoutofband(): protocol notifies socket layer of the arrival of new 3027 * out-of-band data, which will then notify socket consumers. 3028 */ 3029 void 3030 sohasoutofband(struct socket *so) 3031 { 3032 3033 if (so->so_sigio != NULL) 3034 pgsigio(&so->so_sigio, SIGURG, 0); 3035 selwakeuppri(&so->so_rcv.sb_sel, PSOCK); 3036 } 3037 3038 int 3039 sopoll(struct socket *so, int events, struct ucred *active_cred, 3040 struct thread *td) 3041 { 3042 3043 /* 3044 * We do not need to set or assert curvnet as long as everyone uses 3045 * sopoll_generic(). 3046 */ 3047 return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred, 3048 td)); 3049 } 3050 3051 int 3052 sopoll_generic(struct socket *so, int events, struct ucred *active_cred, 3053 struct thread *td) 3054 { 3055 int revents = 0; 3056 3057 SOCKBUF_LOCK(&so->so_snd); 3058 SOCKBUF_LOCK(&so->so_rcv); 3059 if (events & (POLLIN | POLLRDNORM)) 3060 if (soreadabledata(so)) 3061 revents |= events & (POLLIN | POLLRDNORM); 3062 3063 if (events & (POLLOUT | POLLWRNORM)) 3064 if (sowriteable(so)) 3065 revents |= events & (POLLOUT | POLLWRNORM); 3066 3067 if (events & (POLLPRI | POLLRDBAND)) 3068 if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK)) 3069 revents |= events & (POLLPRI | POLLRDBAND); 3070 3071 if ((events & POLLINIGNEOF) == 0) { 3072 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3073 revents |= events & (POLLIN | POLLRDNORM); 3074 if (so->so_snd.sb_state & SBS_CANTSENDMORE) 3075 revents |= POLLHUP; 3076 } 3077 } 3078 3079 if (revents == 0) { 3080 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) { 3081 selrecord(td, &so->so_rcv.sb_sel); 3082 so->so_rcv.sb_flags |= SB_SEL; 3083 } 3084 3085 if (events & (POLLOUT | POLLWRNORM)) { 3086 selrecord(td, &so->so_snd.sb_sel); 3087 so->so_snd.sb_flags |= SB_SEL; 3088 } 3089 } 3090 3091 SOCKBUF_UNLOCK(&so->so_rcv); 3092 SOCKBUF_UNLOCK(&so->so_snd); 3093 return (revents); 3094 } 3095 3096 int 3097 soo_kqfilter(struct file *fp, struct knote *kn) 3098 { 3099 struct socket *so = kn->kn_fp->f_data; 3100 struct sockbuf *sb; 3101 3102 switch (kn->kn_filter) { 3103 case EVFILT_READ: 3104 kn->kn_fop = &soread_filtops; 3105 sb = &so->so_rcv; 3106 break; 3107 case EVFILT_WRITE: 3108 kn->kn_fop = &sowrite_filtops; 3109 sb = &so->so_snd; 3110 break; 3111 case EVFILT_EMPTY: 3112 kn->kn_fop = &soempty_filtops; 3113 sb = &so->so_snd; 3114 break; 3115 default: 3116 return (EINVAL); 3117 } 3118 3119 SOCKBUF_LOCK(sb); 3120 knlist_add(&sb->sb_sel.si_note, kn, 1); 3121 sb->sb_flags |= SB_KNOTE; 3122 SOCKBUF_UNLOCK(sb); 3123 return (0); 3124 } 3125 3126 /* 3127 * Some routines that return EOPNOTSUPP for entry points that are not 3128 * supported by a protocol. Fill in as needed. 3129 */ 3130 int 3131 pru_accept_notsupp(struct socket *so, struct sockaddr **nam) 3132 { 3133 3134 return EOPNOTSUPP; 3135 } 3136 3137 int 3138 pru_aio_queue_notsupp(struct socket *so, struct kaiocb *job) 3139 { 3140 3141 return EOPNOTSUPP; 3142 } 3143 3144 int 3145 pru_attach_notsupp(struct socket *so, int proto, struct thread *td) 3146 { 3147 3148 return EOPNOTSUPP; 3149 } 3150 3151 int 3152 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 3153 { 3154 3155 return EOPNOTSUPP; 3156 } 3157 3158 int 3159 pru_bindat_notsupp(int fd, struct socket *so, struct sockaddr *nam, 3160 struct thread *td) 3161 { 3162 3163 return EOPNOTSUPP; 3164 } 3165 3166 int 3167 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 3168 { 3169 3170 return EOPNOTSUPP; 3171 } 3172 3173 int 3174 pru_connectat_notsupp(int fd, struct socket *so, struct sockaddr *nam, 3175 struct thread *td) 3176 { 3177 3178 return EOPNOTSUPP; 3179 } 3180 3181 int 3182 pru_connect2_notsupp(struct socket *so1, struct socket *so2) 3183 { 3184 3185 return EOPNOTSUPP; 3186 } 3187 3188 int 3189 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, 3190 struct ifnet *ifp, struct thread *td) 3191 { 3192 3193 return EOPNOTSUPP; 3194 } 3195 3196 int 3197 pru_disconnect_notsupp(struct socket *so) 3198 { 3199 3200 return EOPNOTSUPP; 3201 } 3202 3203 int 3204 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td) 3205 { 3206 3207 return EOPNOTSUPP; 3208 } 3209 3210 int 3211 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam) 3212 { 3213 3214 return EOPNOTSUPP; 3215 } 3216 3217 int 3218 pru_rcvd_notsupp(struct socket *so, int flags) 3219 { 3220 3221 return EOPNOTSUPP; 3222 } 3223 3224 int 3225 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) 3226 { 3227 3228 return EOPNOTSUPP; 3229 } 3230 3231 int 3232 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m, 3233 struct sockaddr *addr, struct mbuf *control, struct thread *td) 3234 { 3235 3236 return EOPNOTSUPP; 3237 } 3238 3239 int 3240 pru_ready_notsupp(struct socket *so, struct mbuf *m, int count) 3241 { 3242 3243 return (EOPNOTSUPP); 3244 } 3245 3246 /* 3247 * This isn't really a ``null'' operation, but it's the default one and 3248 * doesn't do anything destructive. 3249 */ 3250 int 3251 pru_sense_null(struct socket *so, struct stat *sb) 3252 { 3253 3254 sb->st_blksize = so->so_snd.sb_hiwat; 3255 return 0; 3256 } 3257 3258 int 3259 pru_shutdown_notsupp(struct socket *so) 3260 { 3261 3262 return EOPNOTSUPP; 3263 } 3264 3265 int 3266 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam) 3267 { 3268 3269 return EOPNOTSUPP; 3270 } 3271 3272 int 3273 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio, 3274 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 3275 { 3276 3277 return EOPNOTSUPP; 3278 } 3279 3280 int 3281 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr, 3282 struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 3283 { 3284 3285 return EOPNOTSUPP; 3286 } 3287 3288 int 3289 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred, 3290 struct thread *td) 3291 { 3292 3293 return EOPNOTSUPP; 3294 } 3295 3296 static void 3297 filt_sordetach(struct knote *kn) 3298 { 3299 struct socket *so = kn->kn_fp->f_data; 3300 3301 SOCKBUF_LOCK(&so->so_rcv); 3302 knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1); 3303 if (knlist_empty(&so->so_rcv.sb_sel.si_note)) 3304 so->so_rcv.sb_flags &= ~SB_KNOTE; 3305 SOCKBUF_UNLOCK(&so->so_rcv); 3306 } 3307 3308 /*ARGSUSED*/ 3309 static int 3310 filt_soread(struct knote *kn, long hint) 3311 { 3312 struct socket *so; 3313 3314 so = kn->kn_fp->f_data; 3315 if (so->so_options & SO_ACCEPTCONN) { 3316 kn->kn_data = so->so_qlen; 3317 return (!TAILQ_EMPTY(&so->so_comp)); 3318 3319 } 3320 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 3321 3322 kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl; 3323 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3324 kn->kn_flags |= EV_EOF; 3325 kn->kn_fflags = so->so_error; 3326 return (1); 3327 } else if (so->so_error) /* temporary udp error */ 3328 return (1); 3329 3330 if (kn->kn_sfflags & NOTE_LOWAT) { 3331 if (kn->kn_data >= kn->kn_sdata) 3332 return (1); 3333 } else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat) 3334 return (1); 3335 3336 /* This hook returning non-zero indicates an event, not error */ 3337 return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD)); 3338 } 3339 3340 static void 3341 filt_sowdetach(struct knote *kn) 3342 { 3343 struct socket *so = kn->kn_fp->f_data; 3344 3345 SOCKBUF_LOCK(&so->so_snd); 3346 knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1); 3347 if (knlist_empty(&so->so_snd.sb_sel.si_note)) 3348 so->so_snd.sb_flags &= ~SB_KNOTE; 3349 SOCKBUF_UNLOCK(&so->so_snd); 3350 } 3351 3352 /*ARGSUSED*/ 3353 static int 3354 filt_sowrite(struct knote *kn, long hint) 3355 { 3356 struct socket *so; 3357 3358 so = kn->kn_fp->f_data; 3359 SOCKBUF_LOCK_ASSERT(&so->so_snd); 3360 kn->kn_data = sbspace(&so->so_snd); 3361 3362 hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE); 3363 3364 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 3365 kn->kn_flags |= EV_EOF; 3366 kn->kn_fflags = so->so_error; 3367 return (1); 3368 } else if (so->so_error) /* temporary udp error */ 3369 return (1); 3370 else if (((so->so_state & SS_ISCONNECTED) == 0) && 3371 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 3372 return (0); 3373 else if (kn->kn_sfflags & NOTE_LOWAT) 3374 return (kn->kn_data >= kn->kn_sdata); 3375 else 3376 return (kn->kn_data >= so->so_snd.sb_lowat); 3377 } 3378 3379 static int 3380 filt_soempty(struct knote *kn, long hint) 3381 { 3382 struct socket *so; 3383 3384 so = kn->kn_fp->f_data; 3385 SOCKBUF_LOCK_ASSERT(&so->so_snd); 3386 kn->kn_data = sbused(&so->so_snd); 3387 3388 if (kn->kn_data == 0) 3389 return (1); 3390 else 3391 return (0); 3392 } 3393 3394 int 3395 socheckuid(struct socket *so, uid_t uid) 3396 { 3397 3398 if (so == NULL) 3399 return (EPERM); 3400 if (so->so_cred->cr_uid != uid) 3401 return (EPERM); 3402 return (0); 3403 } 3404 3405 /* 3406 * These functions are used by protocols to notify the socket layer (and its 3407 * consumers) of state changes in the sockets driven by protocol-side events. 3408 */ 3409 3410 /* 3411 * Procedures to manipulate state flags of socket and do appropriate wakeups. 3412 * 3413 * Normal sequence from the active (originating) side is that 3414 * soisconnecting() is called during processing of connect() call, resulting 3415 * in an eventual call to soisconnected() if/when the connection is 3416 * established. When the connection is torn down soisdisconnecting() is 3417 * called during processing of disconnect() call, and soisdisconnected() is 3418 * called when the connection to the peer is totally severed. The semantics 3419 * of these routines are such that connectionless protocols can call 3420 * soisconnected() and soisdisconnected() only, bypassing the in-progress 3421 * calls when setting up a ``connection'' takes no time. 3422 * 3423 * From the passive side, a socket is created with two queues of sockets: 3424 * so_incomp for connections in progress and so_comp for connections already 3425 * made and awaiting user acceptance. As a protocol is preparing incoming 3426 * connections, it creates a socket structure queued on so_incomp by calling 3427 * sonewconn(). When the connection is established, soisconnected() is 3428 * called, and transfers the socket structure to so_comp, making it available 3429 * to accept(). 3430 * 3431 * If a socket is closed with sockets on either so_incomp or so_comp, these 3432 * sockets are dropped. 3433 * 3434 * If higher-level protocols are implemented in the kernel, the wakeups done 3435 * here will sometimes cause software-interrupt process scheduling. 3436 */ 3437 void 3438 soisconnecting(struct socket *so) 3439 { 3440 3441 SOCK_LOCK(so); 3442 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 3443 so->so_state |= SS_ISCONNECTING; 3444 SOCK_UNLOCK(so); 3445 } 3446 3447 void 3448 soisconnected(struct socket *so) 3449 { 3450 struct socket *head; 3451 int ret; 3452 3453 restart: 3454 ACCEPT_LOCK(); 3455 SOCK_LOCK(so); 3456 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 3457 so->so_state |= SS_ISCONNECTED; 3458 head = so->so_head; 3459 if (head != NULL && (so->so_qstate & SQ_INCOMP)) { 3460 if ((so->so_options & SO_ACCEPTFILTER) == 0) { 3461 SOCK_UNLOCK(so); 3462 TAILQ_REMOVE(&head->so_incomp, so, so_list); 3463 head->so_incqlen--; 3464 so->so_qstate &= ~SQ_INCOMP; 3465 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 3466 head->so_qlen++; 3467 so->so_qstate |= SQ_COMP; 3468 ACCEPT_UNLOCK(); 3469 sorwakeup(head); 3470 wakeup_one(&head->so_timeo); 3471 } else { 3472 ACCEPT_UNLOCK(); 3473 soupcall_set(so, SO_RCV, 3474 head->so_accf->so_accept_filter->accf_callback, 3475 head->so_accf->so_accept_filter_arg); 3476 so->so_options &= ~SO_ACCEPTFILTER; 3477 ret = head->so_accf->so_accept_filter->accf_callback(so, 3478 head->so_accf->so_accept_filter_arg, M_NOWAIT); 3479 if (ret == SU_ISCONNECTED) 3480 soupcall_clear(so, SO_RCV); 3481 SOCK_UNLOCK(so); 3482 if (ret == SU_ISCONNECTED) 3483 goto restart; 3484 } 3485 return; 3486 } 3487 SOCK_UNLOCK(so); 3488 ACCEPT_UNLOCK(); 3489 wakeup(&so->so_timeo); 3490 sorwakeup(so); 3491 sowwakeup(so); 3492 } 3493 3494 void 3495 soisdisconnecting(struct socket *so) 3496 { 3497 3498 /* 3499 * Note: This code assumes that SOCK_LOCK(so) and 3500 * SOCKBUF_LOCK(&so->so_rcv) are the same. 3501 */ 3502 SOCKBUF_LOCK(&so->so_rcv); 3503 so->so_state &= ~SS_ISCONNECTING; 3504 so->so_state |= SS_ISDISCONNECTING; 3505 socantrcvmore_locked(so); 3506 SOCKBUF_LOCK(&so->so_snd); 3507 socantsendmore_locked(so); 3508 wakeup(&so->so_timeo); 3509 } 3510 3511 void 3512 soisdisconnected(struct socket *so) 3513 { 3514 3515 /* 3516 * Note: This code assumes that SOCK_LOCK(so) and 3517 * SOCKBUF_LOCK(&so->so_rcv) are the same. 3518 */ 3519 SOCKBUF_LOCK(&so->so_rcv); 3520 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 3521 so->so_state |= SS_ISDISCONNECTED; 3522 socantrcvmore_locked(so); 3523 SOCKBUF_LOCK(&so->so_snd); 3524 sbdrop_locked(&so->so_snd, sbused(&so->so_snd)); 3525 socantsendmore_locked(so); 3526 wakeup(&so->so_timeo); 3527 } 3528 3529 /* 3530 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 3531 */ 3532 struct sockaddr * 3533 sodupsockaddr(const struct sockaddr *sa, int mflags) 3534 { 3535 struct sockaddr *sa2; 3536 3537 sa2 = malloc(sa->sa_len, M_SONAME, mflags); 3538 if (sa2) 3539 bcopy(sa, sa2, sa->sa_len); 3540 return sa2; 3541 } 3542 3543 /* 3544 * Register per-socket buffer upcalls. 3545 */ 3546 void 3547 soupcall_set(struct socket *so, int which, 3548 int (*func)(struct socket *, void *, int), void *arg) 3549 { 3550 struct sockbuf *sb; 3551 3552 switch (which) { 3553 case SO_RCV: 3554 sb = &so->so_rcv; 3555 break; 3556 case SO_SND: 3557 sb = &so->so_snd; 3558 break; 3559 default: 3560 panic("soupcall_set: bad which"); 3561 } 3562 SOCKBUF_LOCK_ASSERT(sb); 3563 #if 0 3564 /* XXX: accf_http actually wants to do this on purpose. */ 3565 KASSERT(sb->sb_upcall == NULL, ("soupcall_set: overwriting upcall")); 3566 #endif 3567 sb->sb_upcall = func; 3568 sb->sb_upcallarg = arg; 3569 sb->sb_flags |= SB_UPCALL; 3570 } 3571 3572 void 3573 soupcall_clear(struct socket *so, int which) 3574 { 3575 struct sockbuf *sb; 3576 3577 switch (which) { 3578 case SO_RCV: 3579 sb = &so->so_rcv; 3580 break; 3581 case SO_SND: 3582 sb = &so->so_snd; 3583 break; 3584 default: 3585 panic("soupcall_clear: bad which"); 3586 } 3587 SOCKBUF_LOCK_ASSERT(sb); 3588 KASSERT(sb->sb_upcall != NULL, ("soupcall_clear: no upcall to clear")); 3589 sb->sb_upcall = NULL; 3590 sb->sb_upcallarg = NULL; 3591 sb->sb_flags &= ~SB_UPCALL; 3592 } 3593 3594 /* 3595 * Create an external-format (``xsocket'') structure using the information in 3596 * the kernel-format socket structure pointed to by so. This is done to 3597 * reduce the spew of irrelevant information over this interface, to isolate 3598 * user code from changes in the kernel structure, and potentially to provide 3599 * information-hiding if we decide that some of this information should be 3600 * hidden from users. 3601 */ 3602 void 3603 sotoxsocket(struct socket *so, struct xsocket *xso) 3604 { 3605 3606 xso->xso_len = sizeof *xso; 3607 xso->xso_so = so; 3608 xso->so_type = so->so_type; 3609 xso->so_options = so->so_options; 3610 xso->so_linger = so->so_linger; 3611 xso->so_state = so->so_state; 3612 xso->so_pcb = so->so_pcb; 3613 xso->xso_protocol = so->so_proto->pr_protocol; 3614 xso->xso_family = so->so_proto->pr_domain->dom_family; 3615 xso->so_qlen = so->so_qlen; 3616 xso->so_incqlen = so->so_incqlen; 3617 xso->so_qlimit = so->so_qlimit; 3618 xso->so_timeo = so->so_timeo; 3619 xso->so_error = so->so_error; 3620 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 3621 xso->so_oobmark = so->so_oobmark; 3622 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 3623 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 3624 xso->so_uid = so->so_cred->cr_uid; 3625 } 3626 3627 3628 /* 3629 * Socket accessor functions to provide external consumers with 3630 * a safe interface to socket state 3631 * 3632 */ 3633 3634 void 3635 so_listeners_apply_all(struct socket *so, void (*func)(struct socket *, void *), 3636 void *arg) 3637 { 3638 3639 TAILQ_FOREACH(so, &so->so_comp, so_list) 3640 func(so, arg); 3641 } 3642 3643 struct sockbuf * 3644 so_sockbuf_rcv(struct socket *so) 3645 { 3646 3647 return (&so->so_rcv); 3648 } 3649 3650 struct sockbuf * 3651 so_sockbuf_snd(struct socket *so) 3652 { 3653 3654 return (&so->so_snd); 3655 } 3656 3657 int 3658 so_state_get(const struct socket *so) 3659 { 3660 3661 return (so->so_state); 3662 } 3663 3664 void 3665 so_state_set(struct socket *so, int val) 3666 { 3667 3668 so->so_state = val; 3669 } 3670 3671 int 3672 so_options_get(const struct socket *so) 3673 { 3674 3675 return (so->so_options); 3676 } 3677 3678 void 3679 so_options_set(struct socket *so, int val) 3680 { 3681 3682 so->so_options = val; 3683 } 3684 3685 int 3686 so_error_get(const struct socket *so) 3687 { 3688 3689 return (so->so_error); 3690 } 3691 3692 void 3693 so_error_set(struct socket *so, int val) 3694 { 3695 3696 so->so_error = val; 3697 } 3698 3699 int 3700 so_linger_get(const struct socket *so) 3701 { 3702 3703 return (so->so_linger); 3704 } 3705 3706 void 3707 so_linger_set(struct socket *so, int val) 3708 { 3709 3710 so->so_linger = val; 3711 } 3712 3713 struct protosw * 3714 so_protosw_get(const struct socket *so) 3715 { 3716 3717 return (so->so_proto); 3718 } 3719 3720 void 3721 so_protosw_set(struct socket *so, struct protosw *val) 3722 { 3723 3724 so->so_proto = val; 3725 } 3726 3727 void 3728 so_sorwakeup(struct socket *so) 3729 { 3730 3731 sorwakeup(so); 3732 } 3733 3734 void 3735 so_sowwakeup(struct socket *so) 3736 { 3737 3738 sowwakeup(so); 3739 } 3740 3741 void 3742 so_sorwakeup_locked(struct socket *so) 3743 { 3744 3745 sorwakeup_locked(so); 3746 } 3747 3748 void 3749 so_sowwakeup_locked(struct socket *so) 3750 { 3751 3752 sowwakeup_locked(so); 3753 } 3754 3755 void 3756 so_lock(struct socket *so) 3757 { 3758 3759 SOCK_LOCK(so); 3760 } 3761 3762 void 3763 so_unlock(struct socket *so) 3764 { 3765 3766 SOCK_UNLOCK(so); 3767 } 3768