1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993 3 * The Regents of the University of California. 4 * Copyright (c) 2004 The FreeBSD Foundation 5 * Copyright (c) 2004-2008 Robert N. M. Watson 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 33 */ 34 35 /* 36 * Comments on the socket life cycle: 37 * 38 * soalloc() sets of socket layer state for a socket, called only by 39 * socreate() and sonewconn(). Socket layer private. 40 * 41 * sodealloc() tears down socket layer state for a socket, called only by 42 * sofree() and sonewconn(). Socket layer private. 43 * 44 * pru_attach() associates protocol layer state with an allocated socket; 45 * called only once, may fail, aborting socket allocation. This is called 46 * from socreate() and sonewconn(). Socket layer private. 47 * 48 * pru_detach() disassociates protocol layer state from an attached socket, 49 * and will be called exactly once for sockets in which pru_attach() has 50 * been successfully called. If pru_attach() returned an error, 51 * pru_detach() will not be called. Socket layer private. 52 * 53 * pru_abort() and pru_close() notify the protocol layer that the last 54 * consumer of a socket is starting to tear down the socket, and that the 55 * protocol should terminate the connection. Historically, pru_abort() also 56 * detached protocol state from the socket state, but this is no longer the 57 * case. 58 * 59 * socreate() creates a socket and attaches protocol state. This is a public 60 * interface that may be used by socket layer consumers to create new 61 * sockets. 62 * 63 * sonewconn() creates a socket and attaches protocol state. This is a 64 * public interface that may be used by protocols to create new sockets when 65 * a new connection is received and will be available for accept() on a 66 * listen socket. 67 * 68 * soclose() destroys a socket after possibly waiting for it to disconnect. 69 * This is a public interface that socket consumers should use to close and 70 * release a socket when done with it. 71 * 72 * soabort() destroys a socket without waiting for it to disconnect (used 73 * only for incoming connections that are already partially or fully 74 * connected). This is used internally by the socket layer when clearing 75 * listen socket queues (due to overflow or close on the listen socket), but 76 * is also a public interface protocols may use to abort connections in 77 * their incomplete listen queues should they no longer be required. Sockets 78 * placed in completed connection listen queues should not be aborted for 79 * reasons described in the comment above the soclose() implementation. This 80 * is not a general purpose close routine, and except in the specific 81 * circumstances described here, should not be used. 82 * 83 * sofree() will free a socket and its protocol state if all references on 84 * the socket have been released, and is the public interface to attempt to 85 * free a socket when a reference is removed. This is a socket layer private 86 * interface. 87 * 88 * NOTE: In addition to socreate() and soclose(), which provide a single 89 * socket reference to the consumer to be managed as required, there are two 90 * calls to explicitly manage socket references, soref(), and sorele(). 91 * Currently, these are generally required only when transitioning a socket 92 * from a listen queue to a file descriptor, in order to prevent garbage 93 * collection of the socket at an untimely moment. For a number of reasons, 94 * these interfaces are not preferred, and should be avoided. 95 * 96 * NOTE: With regard to VNETs the general rule is that callers do not set 97 * curvnet. Exceptions to this rule include soabort(), sodisconnect(), 98 * sofree() (and with that sorele(), sotryfree()), as well as sonewconn() 99 * and sorflush(), which are usually called from a pre-set VNET context. 100 * sopoll() currently does not need a VNET context to be set. 101 */ 102 103 #include <sys/cdefs.h> 104 __FBSDID("$FreeBSD$"); 105 106 #include "opt_inet.h" 107 #include "opt_inet6.h" 108 #include "opt_compat.h" 109 110 #include <sys/param.h> 111 #include <sys/systm.h> 112 #include <sys/fcntl.h> 113 #include <sys/limits.h> 114 #include <sys/lock.h> 115 #include <sys/mac.h> 116 #include <sys/malloc.h> 117 #include <sys/mbuf.h> 118 #include <sys/mutex.h> 119 #include <sys/domain.h> 120 #include <sys/file.h> /* for struct knote */ 121 #include <sys/hhook.h> 122 #include <sys/kernel.h> 123 #include <sys/khelp.h> 124 #include <sys/event.h> 125 #include <sys/eventhandler.h> 126 #include <sys/poll.h> 127 #include <sys/proc.h> 128 #include <sys/protosw.h> 129 #include <sys/socket.h> 130 #include <sys/socketvar.h> 131 #include <sys/resourcevar.h> 132 #include <net/route.h> 133 #include <sys/signalvar.h> 134 #include <sys/stat.h> 135 #include <sys/sx.h> 136 #include <sys/sysctl.h> 137 #include <sys/uio.h> 138 #include <sys/jail.h> 139 #include <sys/syslog.h> 140 #include <netinet/in.h> 141 142 #include <net/vnet.h> 143 144 #include <security/mac/mac_framework.h> 145 146 #include <vm/uma.h> 147 148 #ifdef COMPAT_FREEBSD32 149 #include <sys/mount.h> 150 #include <sys/sysent.h> 151 #include <compat/freebsd32/freebsd32.h> 152 #endif 153 154 static int soreceive_rcvoob(struct socket *so, struct uio *uio, 155 int flags); 156 157 static void filt_sordetach(struct knote *kn); 158 static int filt_soread(struct knote *kn, long hint); 159 static void filt_sowdetach(struct knote *kn); 160 static int filt_sowrite(struct knote *kn, long hint); 161 static int filt_solisten(struct knote *kn, long hint); 162 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id); 163 164 static struct filterops solisten_filtops = { 165 .f_isfd = 1, 166 .f_detach = filt_sordetach, 167 .f_event = filt_solisten, 168 }; 169 static struct filterops soread_filtops = { 170 .f_isfd = 1, 171 .f_detach = filt_sordetach, 172 .f_event = filt_soread, 173 }; 174 static struct filterops sowrite_filtops = { 175 .f_isfd = 1, 176 .f_detach = filt_sowdetach, 177 .f_event = filt_sowrite, 178 }; 179 180 so_gen_t so_gencnt; /* generation count for sockets */ 181 182 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 183 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 184 185 #define VNET_SO_ASSERT(so) \ 186 VNET_ASSERT(curvnet != NULL, \ 187 ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so))); 188 189 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]); 190 #define V_socket_hhh VNET(socket_hhh) 191 192 /* 193 * Limit on the number of connections in the listen queue waiting 194 * for accept(2). 195 * NB: The orginal sysctl somaxconn is still available but hidden 196 * to prevent confusion about the actual purpose of this number. 197 */ 198 static int somaxconn = SOMAXCONN; 199 200 static int 201 sysctl_somaxconn(SYSCTL_HANDLER_ARGS) 202 { 203 int error; 204 int val; 205 206 val = somaxconn; 207 error = sysctl_handle_int(oidp, &val, 0, req); 208 if (error || !req->newptr ) 209 return (error); 210 211 if (val < 1 || val > USHRT_MAX) 212 return (EINVAL); 213 214 somaxconn = val; 215 return (0); 216 } 217 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue, CTLTYPE_UINT | CTLFLAG_RW, 218 0, sizeof(int), sysctl_somaxconn, "I", 219 "Maximum listen socket pending connection accept queue size"); 220 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, 221 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP, 222 0, sizeof(int), sysctl_somaxconn, "I", 223 "Maximum listen socket pending connection accept queue size (compat)"); 224 225 static int numopensockets; 226 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, 227 &numopensockets, 0, "Number of open sockets"); 228 229 /* 230 * accept_mtx locks down per-socket fields relating to accept queues. See 231 * socketvar.h for an annotation of the protected fields of struct socket. 232 */ 233 struct mtx accept_mtx; 234 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF); 235 236 /* 237 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket 238 * so_gencnt field. 239 */ 240 static struct mtx so_global_mtx; 241 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); 242 243 /* 244 * General IPC sysctl name space, used by sockets and a variety of other IPC 245 * types. 246 */ 247 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC"); 248 249 /* 250 * Initialize the socket subsystem and set up the socket 251 * memory allocator. 252 */ 253 static uma_zone_t socket_zone; 254 int maxsockets; 255 256 static void 257 socket_zone_change(void *tag) 258 { 259 260 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 261 } 262 263 static void 264 socket_hhook_register(int subtype) 265 { 266 267 if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype, 268 &V_socket_hhh[subtype], 269 HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 270 printf("%s: WARNING: unable to register hook\n", __func__); 271 } 272 273 static void 274 socket_init(void *tag) 275 { 276 int i; 277 278 socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL, 279 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 280 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 281 uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached"); 282 EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL, 283 EVENTHANDLER_PRI_FIRST); 284 285 /* We expect a contiguous range */ 286 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) { 287 socket_hhook_register(i); 288 } 289 } 290 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL); 291 292 /* 293 * Initialise maxsockets. This SYSINIT must be run after 294 * tunable_mbinit(). 295 */ 296 static void 297 init_maxsockets(void *ignored) 298 { 299 300 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 301 maxsockets = imax(maxsockets, maxfiles); 302 } 303 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 304 305 /* 306 * Sysctl to get and set the maximum global sockets limit. Notify protocols 307 * of the change so that they can update their dependent limits as required. 308 */ 309 static int 310 sysctl_maxsockets(SYSCTL_HANDLER_ARGS) 311 { 312 int error, newmaxsockets; 313 314 newmaxsockets = maxsockets; 315 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req); 316 if (error == 0 && req->newptr) { 317 if (newmaxsockets > maxsockets && 318 newmaxsockets <= maxfiles) { 319 maxsockets = newmaxsockets; 320 EVENTHANDLER_INVOKE(maxsockets_change); 321 } else 322 error = EINVAL; 323 } 324 return (error); 325 } 326 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, CTLTYPE_INT|CTLFLAG_RW, 327 &maxsockets, 0, sysctl_maxsockets, "IU", 328 "Maximum number of sockets avaliable"); 329 330 /* 331 * Socket operation routines. These routines are called by the routines in 332 * sys_socket.c or from a system process, and implement the semantics of 333 * socket operations by switching out to the protocol specific routines. 334 */ 335 336 /* 337 * Get a socket structure from our zone, and initialize it. Note that it 338 * would probably be better to allocate socket and PCB at the same time, but 339 * I'm not convinced that all the protocols can be easily modified to do 340 * this. 341 * 342 * soalloc() returns a socket with a ref count of 0. 343 */ 344 static struct socket * 345 soalloc(struct vnet *vnet) 346 { 347 struct socket *so; 348 349 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO); 350 if (so == NULL) 351 return (NULL); 352 #ifdef MAC 353 if (mac_socket_init(so, M_NOWAIT) != 0) { 354 uma_zfree(socket_zone, so); 355 return (NULL); 356 } 357 #endif 358 if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) { 359 uma_zfree(socket_zone, so); 360 return (NULL); 361 } 362 363 SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd"); 364 SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv"); 365 sx_init(&so->so_snd.sb_sx, "so_snd_sx"); 366 sx_init(&so->so_rcv.sb_sx, "so_rcv_sx"); 367 TAILQ_INIT(&so->so_aiojobq); 368 mtx_lock(&so_global_mtx); 369 so->so_gencnt = ++so_gencnt; 370 ++numopensockets; 371 #ifdef VIMAGE 372 VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p", 373 __func__, __LINE__, so)); 374 vnet->vnet_sockcnt++; 375 so->so_vnet = vnet; 376 #endif 377 mtx_unlock(&so_global_mtx); 378 379 /* We shouldn't need the so_global_mtx */ 380 if (V_socket_hhh[HHOOK_SOCKET_CREATE]->hhh_nhooks > 0) { 381 if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) 382 /* Do we need more comprehensive error returns? */ 383 return (NULL); 384 } 385 return (so); 386 } 387 388 /* 389 * Free the storage associated with a socket at the socket layer, tear down 390 * locks, labels, etc. All protocol state is assumed already to have been 391 * torn down (and possibly never set up) by the caller. 392 */ 393 static void 394 sodealloc(struct socket *so) 395 { 396 397 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); 398 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL")); 399 400 mtx_lock(&so_global_mtx); 401 so->so_gencnt = ++so_gencnt; 402 --numopensockets; /* Could be below, but faster here. */ 403 #ifdef VIMAGE 404 VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p", 405 __func__, __LINE__, so)); 406 so->so_vnet->vnet_sockcnt--; 407 #endif 408 mtx_unlock(&so_global_mtx); 409 if (so->so_rcv.sb_hiwat) 410 (void)chgsbsize(so->so_cred->cr_uidinfo, 411 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 412 if (so->so_snd.sb_hiwat) 413 (void)chgsbsize(so->so_cred->cr_uidinfo, 414 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 415 /* remove acccept filter if one is present. */ 416 if (so->so_accf != NULL) 417 do_setopt_accept_filter(so, NULL); 418 #ifdef MAC 419 mac_socket_destroy(so); 420 #endif 421 if (V_socket_hhh[HHOOK_SOCKET_CLOSE]->hhh_nhooks > 0) 422 hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE); 423 424 crfree(so->so_cred); 425 khelp_destroy_osd(&so->osd); 426 sx_destroy(&so->so_snd.sb_sx); 427 sx_destroy(&so->so_rcv.sb_sx); 428 SOCKBUF_LOCK_DESTROY(&so->so_snd); 429 SOCKBUF_LOCK_DESTROY(&so->so_rcv); 430 uma_zfree(socket_zone, so); 431 } 432 433 /* 434 * socreate returns a socket with a ref count of 1. The socket should be 435 * closed with soclose(). 436 */ 437 int 438 socreate(int dom, struct socket **aso, int type, int proto, 439 struct ucred *cred, struct thread *td) 440 { 441 struct protosw *prp; 442 struct socket *so; 443 int error; 444 445 if (proto) 446 prp = pffindproto(dom, proto, type); 447 else 448 prp = pffindtype(dom, type); 449 450 if (prp == NULL) { 451 /* No support for domain. */ 452 if (pffinddomain(dom) == NULL) 453 return (EAFNOSUPPORT); 454 /* No support for socket type. */ 455 if (proto == 0 && type != 0) 456 return (EPROTOTYPE); 457 return (EPROTONOSUPPORT); 458 } 459 if (prp->pr_usrreqs->pru_attach == NULL || 460 prp->pr_usrreqs->pru_attach == pru_attach_notsupp) 461 return (EPROTONOSUPPORT); 462 463 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0) 464 return (EPROTONOSUPPORT); 465 466 if (prp->pr_type != type) 467 return (EPROTOTYPE); 468 so = soalloc(CRED_TO_VNET(cred)); 469 if (so == NULL) 470 return (ENOBUFS); 471 472 TAILQ_INIT(&so->so_incomp); 473 TAILQ_INIT(&so->so_comp); 474 so->so_type = type; 475 so->so_cred = crhold(cred); 476 if ((prp->pr_domain->dom_family == PF_INET) || 477 (prp->pr_domain->dom_family == PF_INET6) || 478 (prp->pr_domain->dom_family == PF_ROUTE)) 479 so->so_fibnum = td->td_proc->p_fibnum; 480 else 481 so->so_fibnum = 0; 482 so->so_proto = prp; 483 #ifdef MAC 484 mac_socket_create(cred, so); 485 #endif 486 knlist_init_mtx(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv)); 487 knlist_init_mtx(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd)); 488 so->so_count = 1; 489 /* 490 * Auto-sizing of socket buffers is managed by the protocols and 491 * the appropriate flags must be set in the pru_attach function. 492 */ 493 CURVNET_SET(so->so_vnet); 494 error = (*prp->pr_usrreqs->pru_attach)(so, proto, td); 495 CURVNET_RESTORE(); 496 if (error) { 497 KASSERT(so->so_count == 1, ("socreate: so_count %d", 498 so->so_count)); 499 so->so_count = 0; 500 sodealloc(so); 501 return (error); 502 } 503 *aso = so; 504 return (0); 505 } 506 507 #ifdef REGRESSION 508 static int regression_sonewconn_earlytest = 1; 509 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW, 510 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test"); 511 #endif 512 513 /* 514 * When an attempt at a new connection is noted on a socket which accepts 515 * connections, sonewconn is called. If the connection is possible (subject 516 * to space constraints, etc.) then we allocate a new structure, propoerly 517 * linked into the data structure of the original socket, and return this. 518 * Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED. 519 * 520 * Note: the ref count on the socket is 0 on return. 521 */ 522 struct socket * 523 sonewconn(struct socket *head, int connstatus) 524 { 525 static struct timeval lastover; 526 static struct timeval overinterval = { 60, 0 }; 527 static int overcount; 528 529 struct socket *so; 530 int over; 531 532 ACCEPT_LOCK(); 533 over = (head->so_qlen > 3 * head->so_qlimit / 2); 534 ACCEPT_UNLOCK(); 535 #ifdef REGRESSION 536 if (regression_sonewconn_earlytest && over) { 537 #else 538 if (over) { 539 #endif 540 overcount++; 541 542 if (ratecheck(&lastover, &overinterval)) { 543 log(LOG_DEBUG, "%s: pcb %p: Listen queue overflow: " 544 "%i already in queue awaiting acceptance " 545 "(%d occurrences)\n", 546 __func__, head->so_pcb, head->so_qlen, overcount); 547 548 overcount = 0; 549 } 550 551 return (NULL); 552 } 553 VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p", 554 __func__, __LINE__, head)); 555 so = soalloc(head->so_vnet); 556 if (so == NULL) { 557 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 558 "limit reached or out of memory\n", 559 __func__, head->so_pcb); 560 return (NULL); 561 } 562 if ((head->so_options & SO_ACCEPTFILTER) != 0) 563 connstatus = 0; 564 so->so_head = head; 565 so->so_type = head->so_type; 566 so->so_options = head->so_options &~ SO_ACCEPTCONN; 567 so->so_linger = head->so_linger; 568 so->so_state = head->so_state | SS_NOFDREF; 569 so->so_fibnum = head->so_fibnum; 570 so->so_proto = head->so_proto; 571 so->so_cred = crhold(head->so_cred); 572 #ifdef MAC 573 mac_socket_newconn(head, so); 574 #endif 575 knlist_init_mtx(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv)); 576 knlist_init_mtx(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd)); 577 VNET_SO_ASSERT(head); 578 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) { 579 sodealloc(so); 580 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 581 __func__, head->so_pcb); 582 return (NULL); 583 } 584 if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 585 sodealloc(so); 586 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", 587 __func__, head->so_pcb); 588 return (NULL); 589 } 590 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; 591 so->so_snd.sb_lowat = head->so_snd.sb_lowat; 592 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; 593 so->so_snd.sb_timeo = head->so_snd.sb_timeo; 594 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE; 595 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE; 596 so->so_state |= connstatus; 597 ACCEPT_LOCK(); 598 /* 599 * The accept socket may be tearing down but we just 600 * won a race on the ACCEPT_LOCK. 601 * However, if sctp_peeloff() is called on a 1-to-many 602 * style socket, the SO_ACCEPTCONN doesn't need to be set. 603 */ 604 if (!(head->so_options & SO_ACCEPTCONN) && 605 ((head->so_proto->pr_protocol != IPPROTO_SCTP) || 606 (head->so_type != SOCK_SEQPACKET))) { 607 SOCK_LOCK(so); 608 so->so_head = NULL; 609 sofree(so); /* NB: returns ACCEPT_UNLOCK'ed. */ 610 return (NULL); 611 } 612 if (connstatus) { 613 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 614 so->so_qstate |= SQ_COMP; 615 head->so_qlen++; 616 } else { 617 /* 618 * Keep removing sockets from the head until there's room for 619 * us to insert on the tail. In pre-locking revisions, this 620 * was a simple if(), but as we could be racing with other 621 * threads and soabort() requires dropping locks, we must 622 * loop waiting for the condition to be true. 623 */ 624 while (head->so_incqlen > head->so_qlimit) { 625 struct socket *sp; 626 sp = TAILQ_FIRST(&head->so_incomp); 627 TAILQ_REMOVE(&head->so_incomp, sp, so_list); 628 head->so_incqlen--; 629 sp->so_qstate &= ~SQ_INCOMP; 630 sp->so_head = NULL; 631 ACCEPT_UNLOCK(); 632 soabort(sp); 633 ACCEPT_LOCK(); 634 } 635 TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list); 636 so->so_qstate |= SQ_INCOMP; 637 head->so_incqlen++; 638 } 639 ACCEPT_UNLOCK(); 640 if (connstatus) { 641 sorwakeup(head); 642 wakeup_one(&head->so_timeo); 643 } 644 return (so); 645 } 646 647 int 648 sobind(struct socket *so, struct sockaddr *nam, struct thread *td) 649 { 650 int error; 651 652 CURVNET_SET(so->so_vnet); 653 error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td); 654 CURVNET_RESTORE(); 655 return (error); 656 } 657 658 int 659 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 660 { 661 int error; 662 663 CURVNET_SET(so->so_vnet); 664 error = (*so->so_proto->pr_usrreqs->pru_bindat)(fd, so, nam, td); 665 CURVNET_RESTORE(); 666 return (error); 667 } 668 669 /* 670 * solisten() transitions a socket from a non-listening state to a listening 671 * state, but can also be used to update the listen queue depth on an 672 * existing listen socket. The protocol will call back into the sockets 673 * layer using solisten_proto_check() and solisten_proto() to check and set 674 * socket-layer listen state. Call backs are used so that the protocol can 675 * acquire both protocol and socket layer locks in whatever order is required 676 * by the protocol. 677 * 678 * Protocol implementors are advised to hold the socket lock across the 679 * socket-layer test and set to avoid races at the socket layer. 680 */ 681 int 682 solisten(struct socket *so, int backlog, struct thread *td) 683 { 684 int error; 685 686 CURVNET_SET(so->so_vnet); 687 error = (*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td); 688 CURVNET_RESTORE(); 689 return (error); 690 } 691 692 int 693 solisten_proto_check(struct socket *so) 694 { 695 696 SOCK_LOCK_ASSERT(so); 697 698 if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 699 SS_ISDISCONNECTING)) 700 return (EINVAL); 701 return (0); 702 } 703 704 void 705 solisten_proto(struct socket *so, int backlog) 706 { 707 708 SOCK_LOCK_ASSERT(so); 709 710 if (backlog < 0 || backlog > somaxconn) 711 backlog = somaxconn; 712 so->so_qlimit = backlog; 713 so->so_options |= SO_ACCEPTCONN; 714 } 715 716 /* 717 * Evaluate the reference count and named references on a socket; if no 718 * references remain, free it. This should be called whenever a reference is 719 * released, such as in sorele(), but also when named reference flags are 720 * cleared in socket or protocol code. 721 * 722 * sofree() will free the socket if: 723 * 724 * - There are no outstanding file descriptor references or related consumers 725 * (so_count == 0). 726 * 727 * - The socket has been closed by user space, if ever open (SS_NOFDREF). 728 * 729 * - The protocol does not have an outstanding strong reference on the socket 730 * (SS_PROTOREF). 731 * 732 * - The socket is not in a completed connection queue, so a process has been 733 * notified that it is present. If it is removed, the user process may 734 * block in accept() despite select() saying the socket was ready. 735 */ 736 void 737 sofree(struct socket *so) 738 { 739 struct protosw *pr = so->so_proto; 740 struct socket *head; 741 742 ACCEPT_LOCK_ASSERT(); 743 SOCK_LOCK_ASSERT(so); 744 745 if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 || 746 (so->so_state & SS_PROTOREF) || (so->so_qstate & SQ_COMP)) { 747 SOCK_UNLOCK(so); 748 ACCEPT_UNLOCK(); 749 return; 750 } 751 752 head = so->so_head; 753 if (head != NULL) { 754 KASSERT((so->so_qstate & SQ_COMP) != 0 || 755 (so->so_qstate & SQ_INCOMP) != 0, 756 ("sofree: so_head != NULL, but neither SQ_COMP nor " 757 "SQ_INCOMP")); 758 KASSERT((so->so_qstate & SQ_COMP) == 0 || 759 (so->so_qstate & SQ_INCOMP) == 0, 760 ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP")); 761 TAILQ_REMOVE(&head->so_incomp, so, so_list); 762 head->so_incqlen--; 763 so->so_qstate &= ~SQ_INCOMP; 764 so->so_head = NULL; 765 } 766 KASSERT((so->so_qstate & SQ_COMP) == 0 && 767 (so->so_qstate & SQ_INCOMP) == 0, 768 ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)", 769 so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP)); 770 if (so->so_options & SO_ACCEPTCONN) { 771 KASSERT((TAILQ_EMPTY(&so->so_comp)), 772 ("sofree: so_comp populated")); 773 KASSERT((TAILQ_EMPTY(&so->so_incomp)), 774 ("sofree: so_incomp populated")); 775 } 776 SOCK_UNLOCK(so); 777 ACCEPT_UNLOCK(); 778 779 VNET_SO_ASSERT(so); 780 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 781 (*pr->pr_domain->dom_dispose)(so->so_rcv.sb_mb); 782 if (pr->pr_usrreqs->pru_detach != NULL) 783 (*pr->pr_usrreqs->pru_detach)(so); 784 785 /* 786 * From this point on, we assume that no other references to this 787 * socket exist anywhere else in the stack. Therefore, no locks need 788 * to be acquired or held. 789 * 790 * We used to do a lot of socket buffer and socket locking here, as 791 * well as invoke sorflush() and perform wakeups. The direct call to 792 * dom_dispose() and sbrelease_internal() are an inlining of what was 793 * necessary from sorflush(). 794 * 795 * Notice that the socket buffer and kqueue state are torn down 796 * before calling pru_detach. This means that protocols shold not 797 * assume they can perform socket wakeups, etc, in their detach code. 798 */ 799 sbdestroy(&so->so_snd, so); 800 sbdestroy(&so->so_rcv, so); 801 seldrain(&so->so_snd.sb_sel); 802 seldrain(&so->so_rcv.sb_sel); 803 knlist_destroy(&so->so_rcv.sb_sel.si_note); 804 knlist_destroy(&so->so_snd.sb_sel.si_note); 805 sodealloc(so); 806 } 807 808 /* 809 * Close a socket on last file table reference removal. Initiate disconnect 810 * if connected. Free socket when disconnect complete. 811 * 812 * This function will sorele() the socket. Note that soclose() may be called 813 * prior to the ref count reaching zero. The actual socket structure will 814 * not be freed until the ref count reaches zero. 815 */ 816 int 817 soclose(struct socket *so) 818 { 819 int error = 0; 820 821 KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter")); 822 823 CURVNET_SET(so->so_vnet); 824 funsetown(&so->so_sigio); 825 if (so->so_state & SS_ISCONNECTED) { 826 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 827 error = sodisconnect(so); 828 if (error) { 829 if (error == ENOTCONN) 830 error = 0; 831 goto drop; 832 } 833 } 834 if (so->so_options & SO_LINGER) { 835 if ((so->so_state & SS_ISDISCONNECTING) && 836 (so->so_state & SS_NBIO)) 837 goto drop; 838 while (so->so_state & SS_ISCONNECTED) { 839 error = tsleep(&so->so_timeo, 840 PSOCK | PCATCH, "soclos", 841 so->so_linger * hz); 842 if (error) 843 break; 844 } 845 } 846 } 847 848 drop: 849 if (so->so_proto->pr_usrreqs->pru_close != NULL) 850 (*so->so_proto->pr_usrreqs->pru_close)(so); 851 ACCEPT_LOCK(); 852 if (so->so_options & SO_ACCEPTCONN) { 853 struct socket *sp; 854 /* 855 * Prevent new additions to the accept queues due 856 * to ACCEPT_LOCK races while we are draining them. 857 */ 858 so->so_options &= ~SO_ACCEPTCONN; 859 while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) { 860 TAILQ_REMOVE(&so->so_incomp, sp, so_list); 861 so->so_incqlen--; 862 sp->so_qstate &= ~SQ_INCOMP; 863 sp->so_head = NULL; 864 ACCEPT_UNLOCK(); 865 soabort(sp); 866 ACCEPT_LOCK(); 867 } 868 while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) { 869 TAILQ_REMOVE(&so->so_comp, sp, so_list); 870 so->so_qlen--; 871 sp->so_qstate &= ~SQ_COMP; 872 sp->so_head = NULL; 873 ACCEPT_UNLOCK(); 874 soabort(sp); 875 ACCEPT_LOCK(); 876 } 877 KASSERT((TAILQ_EMPTY(&so->so_comp)), 878 ("%s: so_comp populated", __func__)); 879 KASSERT((TAILQ_EMPTY(&so->so_incomp)), 880 ("%s: so_incomp populated", __func__)); 881 } 882 SOCK_LOCK(so); 883 KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF")); 884 so->so_state |= SS_NOFDREF; 885 sorele(so); /* NB: Returns with ACCEPT_UNLOCK(). */ 886 CURVNET_RESTORE(); 887 return (error); 888 } 889 890 /* 891 * soabort() is used to abruptly tear down a connection, such as when a 892 * resource limit is reached (listen queue depth exceeded), or if a listen 893 * socket is closed while there are sockets waiting to be accepted. 894 * 895 * This interface is tricky, because it is called on an unreferenced socket, 896 * and must be called only by a thread that has actually removed the socket 897 * from the listen queue it was on, or races with other threads are risked. 898 * 899 * This interface will call into the protocol code, so must not be called 900 * with any socket locks held. Protocols do call it while holding their own 901 * recursible protocol mutexes, but this is something that should be subject 902 * to review in the future. 903 */ 904 void 905 soabort(struct socket *so) 906 { 907 908 /* 909 * In as much as is possible, assert that no references to this 910 * socket are held. This is not quite the same as asserting that the 911 * current thread is responsible for arranging for no references, but 912 * is as close as we can get for now. 913 */ 914 KASSERT(so->so_count == 0, ("soabort: so_count")); 915 KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF")); 916 KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF")); 917 KASSERT((so->so_state & SQ_COMP) == 0, ("soabort: SQ_COMP")); 918 KASSERT((so->so_state & SQ_INCOMP) == 0, ("soabort: SQ_INCOMP")); 919 VNET_SO_ASSERT(so); 920 921 if (so->so_proto->pr_usrreqs->pru_abort != NULL) 922 (*so->so_proto->pr_usrreqs->pru_abort)(so); 923 ACCEPT_LOCK(); 924 SOCK_LOCK(so); 925 sofree(so); 926 } 927 928 int 929 soaccept(struct socket *so, struct sockaddr **nam) 930 { 931 int error; 932 933 SOCK_LOCK(so); 934 KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF")); 935 so->so_state &= ~SS_NOFDREF; 936 SOCK_UNLOCK(so); 937 938 CURVNET_SET(so->so_vnet); 939 error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam); 940 CURVNET_RESTORE(); 941 return (error); 942 } 943 944 int 945 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td) 946 { 947 948 return (soconnectat(AT_FDCWD, so, nam, td)); 949 } 950 951 int 952 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 953 { 954 int error; 955 956 if (so->so_options & SO_ACCEPTCONN) 957 return (EOPNOTSUPP); 958 959 CURVNET_SET(so->so_vnet); 960 /* 961 * If protocol is connection-based, can only connect once. 962 * Otherwise, if connected, try to disconnect first. This allows 963 * user to disconnect by connecting to, e.g., a null address. 964 */ 965 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 966 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 967 (error = sodisconnect(so)))) { 968 error = EISCONN; 969 } else { 970 /* 971 * Prevent accumulated error from previous connection from 972 * biting us. 973 */ 974 so->so_error = 0; 975 if (fd == AT_FDCWD) { 976 error = (*so->so_proto->pr_usrreqs->pru_connect)(so, 977 nam, td); 978 } else { 979 error = (*so->so_proto->pr_usrreqs->pru_connectat)(fd, 980 so, nam, td); 981 } 982 } 983 CURVNET_RESTORE(); 984 985 return (error); 986 } 987 988 int 989 soconnect2(struct socket *so1, struct socket *so2) 990 { 991 int error; 992 993 CURVNET_SET(so1->so_vnet); 994 error = (*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2); 995 CURVNET_RESTORE(); 996 return (error); 997 } 998 999 int 1000 sodisconnect(struct socket *so) 1001 { 1002 int error; 1003 1004 if ((so->so_state & SS_ISCONNECTED) == 0) 1005 return (ENOTCONN); 1006 if (so->so_state & SS_ISDISCONNECTING) 1007 return (EALREADY); 1008 VNET_SO_ASSERT(so); 1009 error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so); 1010 return (error); 1011 } 1012 1013 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT) 1014 1015 int 1016 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, 1017 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1018 { 1019 long space; 1020 ssize_t resid; 1021 int clen = 0, error, dontroute; 1022 1023 KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM")); 1024 KASSERT(so->so_proto->pr_flags & PR_ATOMIC, 1025 ("sosend_dgram: !PR_ATOMIC")); 1026 1027 if (uio != NULL) 1028 resid = uio->uio_resid; 1029 else 1030 resid = top->m_pkthdr.len; 1031 /* 1032 * In theory resid should be unsigned. However, space must be 1033 * signed, as it might be less than 0 if we over-committed, and we 1034 * must use a signed comparison of space and resid. On the other 1035 * hand, a negative resid causes us to loop sending 0-length 1036 * segments to the protocol. 1037 */ 1038 if (resid < 0) { 1039 error = EINVAL; 1040 goto out; 1041 } 1042 1043 dontroute = 1044 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0; 1045 if (td != NULL) 1046 td->td_ru.ru_msgsnd++; 1047 if (control != NULL) 1048 clen = control->m_len; 1049 1050 SOCKBUF_LOCK(&so->so_snd); 1051 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1052 SOCKBUF_UNLOCK(&so->so_snd); 1053 error = EPIPE; 1054 goto out; 1055 } 1056 if (so->so_error) { 1057 error = so->so_error; 1058 so->so_error = 0; 1059 SOCKBUF_UNLOCK(&so->so_snd); 1060 goto out; 1061 } 1062 if ((so->so_state & SS_ISCONNECTED) == 0) { 1063 /* 1064 * `sendto' and `sendmsg' is allowed on a connection-based 1065 * socket if it supports implied connect. Return ENOTCONN if 1066 * not connected and no address is supplied. 1067 */ 1068 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1069 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1070 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1071 !(resid == 0 && clen != 0)) { 1072 SOCKBUF_UNLOCK(&so->so_snd); 1073 error = ENOTCONN; 1074 goto out; 1075 } 1076 } else if (addr == NULL) { 1077 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1078 error = ENOTCONN; 1079 else 1080 error = EDESTADDRREQ; 1081 SOCKBUF_UNLOCK(&so->so_snd); 1082 goto out; 1083 } 1084 } 1085 1086 /* 1087 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a 1088 * problem and need fixing. 1089 */ 1090 space = sbspace(&so->so_snd); 1091 if (flags & MSG_OOB) 1092 space += 1024; 1093 space -= clen; 1094 SOCKBUF_UNLOCK(&so->so_snd); 1095 if (resid > space) { 1096 error = EMSGSIZE; 1097 goto out; 1098 } 1099 if (uio == NULL) { 1100 resid = 0; 1101 if (flags & MSG_EOR) 1102 top->m_flags |= M_EOR; 1103 } else { 1104 /* 1105 * Copy the data from userland into a mbuf chain. 1106 * If no data is to be copied in, a single empty mbuf 1107 * is returned. 1108 */ 1109 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr, 1110 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0))); 1111 if (top == NULL) { 1112 error = EFAULT; /* only possible error */ 1113 goto out; 1114 } 1115 space -= resid - uio->uio_resid; 1116 resid = uio->uio_resid; 1117 } 1118 KASSERT(resid == 0, ("sosend_dgram: resid != 0")); 1119 /* 1120 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock 1121 * than with. 1122 */ 1123 if (dontroute) { 1124 SOCK_LOCK(so); 1125 so->so_options |= SO_DONTROUTE; 1126 SOCK_UNLOCK(so); 1127 } 1128 /* 1129 * XXX all the SBS_CANTSENDMORE checks previously done could be out 1130 * of date. We could have recieved a reset packet in an interrupt or 1131 * maybe we slept while doing page faults in uiomove() etc. We could 1132 * probably recheck again inside the locking protection here, but 1133 * there are probably other places that this also happens. We must 1134 * rethink this. 1135 */ 1136 VNET_SO_ASSERT(so); 1137 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1138 (flags & MSG_OOB) ? PRUS_OOB : 1139 /* 1140 * If the user set MSG_EOF, the protocol understands this flag and 1141 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND. 1142 */ 1143 ((flags & MSG_EOF) && 1144 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1145 (resid <= 0)) ? 1146 PRUS_EOF : 1147 /* If there is more to send set PRUS_MORETOCOME */ 1148 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1149 top, addr, control, td); 1150 if (dontroute) { 1151 SOCK_LOCK(so); 1152 so->so_options &= ~SO_DONTROUTE; 1153 SOCK_UNLOCK(so); 1154 } 1155 clen = 0; 1156 control = NULL; 1157 top = NULL; 1158 out: 1159 if (top != NULL) 1160 m_freem(top); 1161 if (control != NULL) 1162 m_freem(control); 1163 return (error); 1164 } 1165 1166 /* 1167 * Send on a socket. If send must go all at once and message is larger than 1168 * send buffering, then hard error. Lock against other senders. If must go 1169 * all at once and not enough room now, then inform user that this would 1170 * block and do nothing. Otherwise, if nonblocking, send as much as 1171 * possible. The data to be sent is described by "uio" if nonzero, otherwise 1172 * by the mbuf chain "top" (which must be null if uio is not). Data provided 1173 * in mbuf chain must be small enough to send all at once. 1174 * 1175 * Returns nonzero on error, timeout or signal; callers must check for short 1176 * counts if EINTR/ERESTART are returned. Data and control buffers are freed 1177 * on return. 1178 */ 1179 int 1180 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio, 1181 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1182 { 1183 long space; 1184 ssize_t resid; 1185 int clen = 0, error, dontroute; 1186 int atomic = sosendallatonce(so) || top; 1187 1188 if (uio != NULL) 1189 resid = uio->uio_resid; 1190 else 1191 resid = top->m_pkthdr.len; 1192 /* 1193 * In theory resid should be unsigned. However, space must be 1194 * signed, as it might be less than 0 if we over-committed, and we 1195 * must use a signed comparison of space and resid. On the other 1196 * hand, a negative resid causes us to loop sending 0-length 1197 * segments to the protocol. 1198 * 1199 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 1200 * type sockets since that's an error. 1201 */ 1202 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 1203 error = EINVAL; 1204 goto out; 1205 } 1206 1207 dontroute = 1208 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 1209 (so->so_proto->pr_flags & PR_ATOMIC); 1210 if (td != NULL) 1211 td->td_ru.ru_msgsnd++; 1212 if (control != NULL) 1213 clen = control->m_len; 1214 1215 error = sblock(&so->so_snd, SBLOCKWAIT(flags)); 1216 if (error) 1217 goto out; 1218 1219 restart: 1220 do { 1221 SOCKBUF_LOCK(&so->so_snd); 1222 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1223 SOCKBUF_UNLOCK(&so->so_snd); 1224 error = EPIPE; 1225 goto release; 1226 } 1227 if (so->so_error) { 1228 error = so->so_error; 1229 so->so_error = 0; 1230 SOCKBUF_UNLOCK(&so->so_snd); 1231 goto release; 1232 } 1233 if ((so->so_state & SS_ISCONNECTED) == 0) { 1234 /* 1235 * `sendto' and `sendmsg' is allowed on a connection- 1236 * based socket if it supports implied connect. 1237 * Return ENOTCONN if not connected and no address is 1238 * supplied. 1239 */ 1240 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1241 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1242 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1243 !(resid == 0 && clen != 0)) { 1244 SOCKBUF_UNLOCK(&so->so_snd); 1245 error = ENOTCONN; 1246 goto release; 1247 } 1248 } else if (addr == NULL) { 1249 SOCKBUF_UNLOCK(&so->so_snd); 1250 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1251 error = ENOTCONN; 1252 else 1253 error = EDESTADDRREQ; 1254 goto release; 1255 } 1256 } 1257 space = sbspace(&so->so_snd); 1258 if (flags & MSG_OOB) 1259 space += 1024; 1260 if ((atomic && resid > so->so_snd.sb_hiwat) || 1261 clen > so->so_snd.sb_hiwat) { 1262 SOCKBUF_UNLOCK(&so->so_snd); 1263 error = EMSGSIZE; 1264 goto release; 1265 } 1266 if (space < resid + clen && 1267 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 1268 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) { 1269 SOCKBUF_UNLOCK(&so->so_snd); 1270 error = EWOULDBLOCK; 1271 goto release; 1272 } 1273 error = sbwait(&so->so_snd); 1274 SOCKBUF_UNLOCK(&so->so_snd); 1275 if (error) 1276 goto release; 1277 goto restart; 1278 } 1279 SOCKBUF_UNLOCK(&so->so_snd); 1280 space -= clen; 1281 do { 1282 if (uio == NULL) { 1283 resid = 0; 1284 if (flags & MSG_EOR) 1285 top->m_flags |= M_EOR; 1286 } else { 1287 /* 1288 * Copy the data from userland into a mbuf 1289 * chain. If no data is to be copied in, 1290 * a single empty mbuf is returned. 1291 */ 1292 top = m_uiotombuf(uio, M_WAITOK, space, 1293 (atomic ? max_hdr : 0), 1294 (atomic ? M_PKTHDR : 0) | 1295 ((flags & MSG_EOR) ? M_EOR : 0)); 1296 if (top == NULL) { 1297 error = EFAULT; /* only possible error */ 1298 goto release; 1299 } 1300 space -= resid - uio->uio_resid; 1301 resid = uio->uio_resid; 1302 } 1303 if (dontroute) { 1304 SOCK_LOCK(so); 1305 so->so_options |= SO_DONTROUTE; 1306 SOCK_UNLOCK(so); 1307 } 1308 /* 1309 * XXX all the SBS_CANTSENDMORE checks previously 1310 * done could be out of date. We could have recieved 1311 * a reset packet in an interrupt or maybe we slept 1312 * while doing page faults in uiomove() etc. We 1313 * could probably recheck again inside the locking 1314 * protection here, but there are probably other 1315 * places that this also happens. We must rethink 1316 * this. 1317 */ 1318 VNET_SO_ASSERT(so); 1319 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1320 (flags & MSG_OOB) ? PRUS_OOB : 1321 /* 1322 * If the user set MSG_EOF, the protocol understands 1323 * this flag and nothing left to send then use 1324 * PRU_SEND_EOF instead of PRU_SEND. 1325 */ 1326 ((flags & MSG_EOF) && 1327 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1328 (resid <= 0)) ? 1329 PRUS_EOF : 1330 /* If there is more to send set PRUS_MORETOCOME. */ 1331 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1332 top, addr, control, td); 1333 if (dontroute) { 1334 SOCK_LOCK(so); 1335 so->so_options &= ~SO_DONTROUTE; 1336 SOCK_UNLOCK(so); 1337 } 1338 clen = 0; 1339 control = NULL; 1340 top = NULL; 1341 if (error) 1342 goto release; 1343 } while (resid && space > 0); 1344 } while (resid); 1345 1346 release: 1347 sbunlock(&so->so_snd); 1348 out: 1349 if (top != NULL) 1350 m_freem(top); 1351 if (control != NULL) 1352 m_freem(control); 1353 return (error); 1354 } 1355 1356 int 1357 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, 1358 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1359 { 1360 int error; 1361 1362 CURVNET_SET(so->so_vnet); 1363 error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, top, 1364 control, flags, td); 1365 CURVNET_RESTORE(); 1366 return (error); 1367 } 1368 1369 /* 1370 * The part of soreceive() that implements reading non-inline out-of-band 1371 * data from a socket. For more complete comments, see soreceive(), from 1372 * which this code originated. 1373 * 1374 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is 1375 * unable to return an mbuf chain to the caller. 1376 */ 1377 static int 1378 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags) 1379 { 1380 struct protosw *pr = so->so_proto; 1381 struct mbuf *m; 1382 int error; 1383 1384 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); 1385 VNET_SO_ASSERT(so); 1386 1387 m = m_get(M_WAITOK, MT_DATA); 1388 error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK); 1389 if (error) 1390 goto bad; 1391 do { 1392 error = uiomove(mtod(m, void *), 1393 (int) min(uio->uio_resid, m->m_len), uio); 1394 m = m_free(m); 1395 } while (uio->uio_resid && error == 0 && m); 1396 bad: 1397 if (m != NULL) 1398 m_freem(m); 1399 return (error); 1400 } 1401 1402 /* 1403 * Following replacement or removal of the first mbuf on the first mbuf chain 1404 * of a socket buffer, push necessary state changes back into the socket 1405 * buffer so that other consumers see the values consistently. 'nextrecord' 1406 * is the callers locally stored value of the original value of 1407 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. 1408 * NOTE: 'nextrecord' may be NULL. 1409 */ 1410 static __inline void 1411 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) 1412 { 1413 1414 SOCKBUF_LOCK_ASSERT(sb); 1415 /* 1416 * First, update for the new value of nextrecord. If necessary, make 1417 * it the first record. 1418 */ 1419 if (sb->sb_mb != NULL) 1420 sb->sb_mb->m_nextpkt = nextrecord; 1421 else 1422 sb->sb_mb = nextrecord; 1423 1424 /* 1425 * Now update any dependent socket buffer fields to reflect the new 1426 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the 1427 * addition of a second clause that takes care of the case where 1428 * sb_mb has been updated, but remains the last record. 1429 */ 1430 if (sb->sb_mb == NULL) { 1431 sb->sb_mbtail = NULL; 1432 sb->sb_lastrecord = NULL; 1433 } else if (sb->sb_mb->m_nextpkt == NULL) 1434 sb->sb_lastrecord = sb->sb_mb; 1435 } 1436 1437 /* 1438 * Implement receive operations on a socket. We depend on the way that 1439 * records are added to the sockbuf by sbappend. In particular, each record 1440 * (mbufs linked through m_next) must begin with an address if the protocol 1441 * so specifies, followed by an optional mbuf or mbufs containing ancillary 1442 * data, and then zero or more mbufs of data. In order to allow parallelism 1443 * between network receive and copying to user space, as well as avoid 1444 * sleeping with a mutex held, we release the socket buffer mutex during the 1445 * user space copy. Although the sockbuf is locked, new data may still be 1446 * appended, and thus we must maintain consistency of the sockbuf during that 1447 * time. 1448 * 1449 * The caller may receive the data as a single mbuf chain by supplying an 1450 * mbuf **mp0 for use in returning the chain. The uio is then used only for 1451 * the count in uio_resid. 1452 */ 1453 int 1454 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio, 1455 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1456 { 1457 struct mbuf *m, **mp; 1458 int flags, error, offset; 1459 ssize_t len; 1460 struct protosw *pr = so->so_proto; 1461 struct mbuf *nextrecord; 1462 int moff, type = 0; 1463 ssize_t orig_resid = uio->uio_resid; 1464 1465 mp = mp0; 1466 if (psa != NULL) 1467 *psa = NULL; 1468 if (controlp != NULL) 1469 *controlp = NULL; 1470 if (flagsp != NULL) 1471 flags = *flagsp &~ MSG_EOR; 1472 else 1473 flags = 0; 1474 if (flags & MSG_OOB) 1475 return (soreceive_rcvoob(so, uio, flags)); 1476 if (mp != NULL) 1477 *mp = NULL; 1478 if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING) 1479 && uio->uio_resid) { 1480 VNET_SO_ASSERT(so); 1481 (*pr->pr_usrreqs->pru_rcvd)(so, 0); 1482 } 1483 1484 error = sblock(&so->so_rcv, SBLOCKWAIT(flags)); 1485 if (error) 1486 return (error); 1487 1488 restart: 1489 SOCKBUF_LOCK(&so->so_rcv); 1490 m = so->so_rcv.sb_mb; 1491 /* 1492 * If we have less data than requested, block awaiting more (subject 1493 * to any timeout) if: 1494 * 1. the current count is less than the low water mark, or 1495 * 2. MSG_DONTWAIT is not set 1496 */ 1497 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 1498 so->so_rcv.sb_cc < uio->uio_resid) && 1499 so->so_rcv.sb_cc < so->so_rcv.sb_lowat && 1500 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 1501 KASSERT(m != NULL || !so->so_rcv.sb_cc, 1502 ("receive: m == %p so->so_rcv.sb_cc == %u", 1503 m, so->so_rcv.sb_cc)); 1504 if (so->so_error) { 1505 if (m != NULL) 1506 goto dontblock; 1507 error = so->so_error; 1508 if ((flags & MSG_PEEK) == 0) 1509 so->so_error = 0; 1510 SOCKBUF_UNLOCK(&so->so_rcv); 1511 goto release; 1512 } 1513 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1514 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 1515 if (m == NULL) { 1516 SOCKBUF_UNLOCK(&so->so_rcv); 1517 goto release; 1518 } else 1519 goto dontblock; 1520 } 1521 for (; m != NULL; m = m->m_next) 1522 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 1523 m = so->so_rcv.sb_mb; 1524 goto dontblock; 1525 } 1526 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 1527 (so->so_proto->pr_flags & PR_CONNREQUIRED)) { 1528 SOCKBUF_UNLOCK(&so->so_rcv); 1529 error = ENOTCONN; 1530 goto release; 1531 } 1532 if (uio->uio_resid == 0) { 1533 SOCKBUF_UNLOCK(&so->so_rcv); 1534 goto release; 1535 } 1536 if ((so->so_state & SS_NBIO) || 1537 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 1538 SOCKBUF_UNLOCK(&so->so_rcv); 1539 error = EWOULDBLOCK; 1540 goto release; 1541 } 1542 SBLASTRECORDCHK(&so->so_rcv); 1543 SBLASTMBUFCHK(&so->so_rcv); 1544 error = sbwait(&so->so_rcv); 1545 SOCKBUF_UNLOCK(&so->so_rcv); 1546 if (error) 1547 goto release; 1548 goto restart; 1549 } 1550 dontblock: 1551 /* 1552 * From this point onward, we maintain 'nextrecord' as a cache of the 1553 * pointer to the next record in the socket buffer. We must keep the 1554 * various socket buffer pointers and local stack versions of the 1555 * pointers in sync, pushing out modifications before dropping the 1556 * socket buffer mutex, and re-reading them when picking it up. 1557 * 1558 * Otherwise, we will race with the network stack appending new data 1559 * or records onto the socket buffer by using inconsistent/stale 1560 * versions of the field, possibly resulting in socket buffer 1561 * corruption. 1562 * 1563 * By holding the high-level sblock(), we prevent simultaneous 1564 * readers from pulling off the front of the socket buffer. 1565 */ 1566 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1567 if (uio->uio_td) 1568 uio->uio_td->td_ru.ru_msgrcv++; 1569 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); 1570 SBLASTRECORDCHK(&so->so_rcv); 1571 SBLASTMBUFCHK(&so->so_rcv); 1572 nextrecord = m->m_nextpkt; 1573 if (pr->pr_flags & PR_ADDR) { 1574 KASSERT(m->m_type == MT_SONAME, 1575 ("m->m_type == %d", m->m_type)); 1576 orig_resid = 0; 1577 if (psa != NULL) 1578 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 1579 M_NOWAIT); 1580 if (flags & MSG_PEEK) { 1581 m = m->m_next; 1582 } else { 1583 sbfree(&so->so_rcv, m); 1584 so->so_rcv.sb_mb = m_free(m); 1585 m = so->so_rcv.sb_mb; 1586 sockbuf_pushsync(&so->so_rcv, nextrecord); 1587 } 1588 } 1589 1590 /* 1591 * Process one or more MT_CONTROL mbufs present before any data mbufs 1592 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 1593 * just copy the data; if !MSG_PEEK, we call into the protocol to 1594 * perform externalization (or freeing if controlp == NULL). 1595 */ 1596 if (m != NULL && m->m_type == MT_CONTROL) { 1597 struct mbuf *cm = NULL, *cmn; 1598 struct mbuf **cme = &cm; 1599 1600 do { 1601 if (flags & MSG_PEEK) { 1602 if (controlp != NULL) { 1603 *controlp = m_copy(m, 0, m->m_len); 1604 controlp = &(*controlp)->m_next; 1605 } 1606 m = m->m_next; 1607 } else { 1608 sbfree(&so->so_rcv, m); 1609 so->so_rcv.sb_mb = m->m_next; 1610 m->m_next = NULL; 1611 *cme = m; 1612 cme = &(*cme)->m_next; 1613 m = so->so_rcv.sb_mb; 1614 } 1615 } while (m != NULL && m->m_type == MT_CONTROL); 1616 if ((flags & MSG_PEEK) == 0) 1617 sockbuf_pushsync(&so->so_rcv, nextrecord); 1618 while (cm != NULL) { 1619 cmn = cm->m_next; 1620 cm->m_next = NULL; 1621 if (pr->pr_domain->dom_externalize != NULL) { 1622 SOCKBUF_UNLOCK(&so->so_rcv); 1623 VNET_SO_ASSERT(so); 1624 error = (*pr->pr_domain->dom_externalize) 1625 (cm, controlp, flags); 1626 SOCKBUF_LOCK(&so->so_rcv); 1627 } else if (controlp != NULL) 1628 *controlp = cm; 1629 else 1630 m_freem(cm); 1631 if (controlp != NULL) { 1632 orig_resid = 0; 1633 while (*controlp != NULL) 1634 controlp = &(*controlp)->m_next; 1635 } 1636 cm = cmn; 1637 } 1638 if (m != NULL) 1639 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 1640 else 1641 nextrecord = so->so_rcv.sb_mb; 1642 orig_resid = 0; 1643 } 1644 if (m != NULL) { 1645 if ((flags & MSG_PEEK) == 0) { 1646 KASSERT(m->m_nextpkt == nextrecord, 1647 ("soreceive: post-control, nextrecord !sync")); 1648 if (nextrecord == NULL) { 1649 KASSERT(so->so_rcv.sb_mb == m, 1650 ("soreceive: post-control, sb_mb!=m")); 1651 KASSERT(so->so_rcv.sb_lastrecord == m, 1652 ("soreceive: post-control, lastrecord!=m")); 1653 } 1654 } 1655 type = m->m_type; 1656 if (type == MT_OOBDATA) 1657 flags |= MSG_OOB; 1658 } else { 1659 if ((flags & MSG_PEEK) == 0) { 1660 KASSERT(so->so_rcv.sb_mb == nextrecord, 1661 ("soreceive: sb_mb != nextrecord")); 1662 if (so->so_rcv.sb_mb == NULL) { 1663 KASSERT(so->so_rcv.sb_lastrecord == NULL, 1664 ("soreceive: sb_lastercord != NULL")); 1665 } 1666 } 1667 } 1668 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1669 SBLASTRECORDCHK(&so->so_rcv); 1670 SBLASTMBUFCHK(&so->so_rcv); 1671 1672 /* 1673 * Now continue to read any data mbufs off of the head of the socket 1674 * buffer until the read request is satisfied. Note that 'type' is 1675 * used to store the type of any mbuf reads that have happened so far 1676 * such that soreceive() can stop reading if the type changes, which 1677 * causes soreceive() to return only one of regular data and inline 1678 * out-of-band data in a single socket receive operation. 1679 */ 1680 moff = 0; 1681 offset = 0; 1682 while (m != NULL && uio->uio_resid > 0 && error == 0) { 1683 /* 1684 * If the type of mbuf has changed since the last mbuf 1685 * examined ('type'), end the receive operation. 1686 */ 1687 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1688 if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) { 1689 if (type != m->m_type) 1690 break; 1691 } else if (type == MT_OOBDATA) 1692 break; 1693 else 1694 KASSERT(m->m_type == MT_DATA, 1695 ("m->m_type == %d", m->m_type)); 1696 so->so_rcv.sb_state &= ~SBS_RCVATMARK; 1697 len = uio->uio_resid; 1698 if (so->so_oobmark && len > so->so_oobmark - offset) 1699 len = so->so_oobmark - offset; 1700 if (len > m->m_len - moff) 1701 len = m->m_len - moff; 1702 /* 1703 * If mp is set, just pass back the mbufs. Otherwise copy 1704 * them out via the uio, then free. Sockbuf must be 1705 * consistent here (points to current mbuf, it points to next 1706 * record) when we drop priority; we must note any additions 1707 * to the sockbuf when we block interrupts again. 1708 */ 1709 if (mp == NULL) { 1710 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1711 SBLASTRECORDCHK(&so->so_rcv); 1712 SBLASTMBUFCHK(&so->so_rcv); 1713 SOCKBUF_UNLOCK(&so->so_rcv); 1714 error = uiomove(mtod(m, char *) + moff, (int)len, uio); 1715 SOCKBUF_LOCK(&so->so_rcv); 1716 if (error) { 1717 /* 1718 * The MT_SONAME mbuf has already been removed 1719 * from the record, so it is necessary to 1720 * remove the data mbufs, if any, to preserve 1721 * the invariant in the case of PR_ADDR that 1722 * requires MT_SONAME mbufs at the head of 1723 * each record. 1724 */ 1725 if (m && pr->pr_flags & PR_ATOMIC && 1726 ((flags & MSG_PEEK) == 0)) 1727 (void)sbdroprecord_locked(&so->so_rcv); 1728 SOCKBUF_UNLOCK(&so->so_rcv); 1729 goto release; 1730 } 1731 } else 1732 uio->uio_resid -= len; 1733 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1734 if (len == m->m_len - moff) { 1735 if (m->m_flags & M_EOR) 1736 flags |= MSG_EOR; 1737 if (flags & MSG_PEEK) { 1738 m = m->m_next; 1739 moff = 0; 1740 } else { 1741 nextrecord = m->m_nextpkt; 1742 sbfree(&so->so_rcv, m); 1743 if (mp != NULL) { 1744 m->m_nextpkt = NULL; 1745 *mp = m; 1746 mp = &m->m_next; 1747 so->so_rcv.sb_mb = m = m->m_next; 1748 *mp = NULL; 1749 } else { 1750 so->so_rcv.sb_mb = m_free(m); 1751 m = so->so_rcv.sb_mb; 1752 } 1753 sockbuf_pushsync(&so->so_rcv, nextrecord); 1754 SBLASTRECORDCHK(&so->so_rcv); 1755 SBLASTMBUFCHK(&so->so_rcv); 1756 } 1757 } else { 1758 if (flags & MSG_PEEK) 1759 moff += len; 1760 else { 1761 if (mp != NULL) { 1762 if (flags & MSG_DONTWAIT) { 1763 *mp = m_copym(m, 0, len, 1764 M_NOWAIT); 1765 if (*mp == NULL) { 1766 /* 1767 * m_copym() couldn't 1768 * allocate an mbuf. 1769 * Adjust uio_resid back 1770 * (it was adjusted 1771 * down by len bytes, 1772 * which we didn't end 1773 * up "copying" over). 1774 */ 1775 uio->uio_resid += len; 1776 break; 1777 } 1778 } else { 1779 SOCKBUF_UNLOCK(&so->so_rcv); 1780 *mp = m_copym(m, 0, len, 1781 M_WAITOK); 1782 SOCKBUF_LOCK(&so->so_rcv); 1783 } 1784 } 1785 m->m_data += len; 1786 m->m_len -= len; 1787 so->so_rcv.sb_cc -= len; 1788 } 1789 } 1790 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1791 if (so->so_oobmark) { 1792 if ((flags & MSG_PEEK) == 0) { 1793 so->so_oobmark -= len; 1794 if (so->so_oobmark == 0) { 1795 so->so_rcv.sb_state |= SBS_RCVATMARK; 1796 break; 1797 } 1798 } else { 1799 offset += len; 1800 if (offset == so->so_oobmark) 1801 break; 1802 } 1803 } 1804 if (flags & MSG_EOR) 1805 break; 1806 /* 1807 * If the MSG_WAITALL flag is set (for non-atomic socket), we 1808 * must not quit until "uio->uio_resid == 0" or an error 1809 * termination. If a signal/timeout occurs, return with a 1810 * short count but without error. Keep sockbuf locked 1811 * against other readers. 1812 */ 1813 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 1814 !sosendallatonce(so) && nextrecord == NULL) { 1815 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1816 if (so->so_error || 1817 so->so_rcv.sb_state & SBS_CANTRCVMORE) 1818 break; 1819 /* 1820 * Notify the protocol that some data has been 1821 * drained before blocking. 1822 */ 1823 if (pr->pr_flags & PR_WANTRCVD) { 1824 SOCKBUF_UNLOCK(&so->so_rcv); 1825 VNET_SO_ASSERT(so); 1826 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 1827 SOCKBUF_LOCK(&so->so_rcv); 1828 } 1829 SBLASTRECORDCHK(&so->so_rcv); 1830 SBLASTMBUFCHK(&so->so_rcv); 1831 /* 1832 * We could receive some data while was notifying 1833 * the protocol. Skip blocking in this case. 1834 */ 1835 if (so->so_rcv.sb_mb == NULL) { 1836 error = sbwait(&so->so_rcv); 1837 if (error) { 1838 SOCKBUF_UNLOCK(&so->so_rcv); 1839 goto release; 1840 } 1841 } 1842 m = so->so_rcv.sb_mb; 1843 if (m != NULL) 1844 nextrecord = m->m_nextpkt; 1845 } 1846 } 1847 1848 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1849 if (m != NULL && pr->pr_flags & PR_ATOMIC) { 1850 flags |= MSG_TRUNC; 1851 if ((flags & MSG_PEEK) == 0) 1852 (void) sbdroprecord_locked(&so->so_rcv); 1853 } 1854 if ((flags & MSG_PEEK) == 0) { 1855 if (m == NULL) { 1856 /* 1857 * First part is an inline SB_EMPTY_FIXUP(). Second 1858 * part makes sure sb_lastrecord is up-to-date if 1859 * there is still data in the socket buffer. 1860 */ 1861 so->so_rcv.sb_mb = nextrecord; 1862 if (so->so_rcv.sb_mb == NULL) { 1863 so->so_rcv.sb_mbtail = NULL; 1864 so->so_rcv.sb_lastrecord = NULL; 1865 } else if (nextrecord->m_nextpkt == NULL) 1866 so->so_rcv.sb_lastrecord = nextrecord; 1867 } 1868 SBLASTRECORDCHK(&so->so_rcv); 1869 SBLASTMBUFCHK(&so->so_rcv); 1870 /* 1871 * If soreceive() is being done from the socket callback, 1872 * then don't need to generate ACK to peer to update window, 1873 * since ACK will be generated on return to TCP. 1874 */ 1875 if (!(flags & MSG_SOCALLBCK) && 1876 (pr->pr_flags & PR_WANTRCVD)) { 1877 SOCKBUF_UNLOCK(&so->so_rcv); 1878 VNET_SO_ASSERT(so); 1879 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 1880 SOCKBUF_LOCK(&so->so_rcv); 1881 } 1882 } 1883 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1884 if (orig_resid == uio->uio_resid && orig_resid && 1885 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { 1886 SOCKBUF_UNLOCK(&so->so_rcv); 1887 goto restart; 1888 } 1889 SOCKBUF_UNLOCK(&so->so_rcv); 1890 1891 if (flagsp != NULL) 1892 *flagsp |= flags; 1893 release: 1894 sbunlock(&so->so_rcv); 1895 return (error); 1896 } 1897 1898 /* 1899 * Optimized version of soreceive() for stream (TCP) sockets. 1900 * XXXAO: (MSG_WAITALL | MSG_PEEK) isn't properly handled. 1901 */ 1902 int 1903 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio, 1904 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1905 { 1906 int len = 0, error = 0, flags, oresid; 1907 struct sockbuf *sb; 1908 struct mbuf *m, *n = NULL; 1909 1910 /* We only do stream sockets. */ 1911 if (so->so_type != SOCK_STREAM) 1912 return (EINVAL); 1913 if (psa != NULL) 1914 *psa = NULL; 1915 if (controlp != NULL) 1916 return (EINVAL); 1917 if (flagsp != NULL) 1918 flags = *flagsp &~ MSG_EOR; 1919 else 1920 flags = 0; 1921 if (flags & MSG_OOB) 1922 return (soreceive_rcvoob(so, uio, flags)); 1923 if (mp0 != NULL) 1924 *mp0 = NULL; 1925 1926 sb = &so->so_rcv; 1927 1928 /* Prevent other readers from entering the socket. */ 1929 error = sblock(sb, SBLOCKWAIT(flags)); 1930 if (error) 1931 goto out; 1932 SOCKBUF_LOCK(sb); 1933 1934 /* Easy one, no space to copyout anything. */ 1935 if (uio->uio_resid == 0) { 1936 error = EINVAL; 1937 goto out; 1938 } 1939 oresid = uio->uio_resid; 1940 1941 /* We will never ever get anything unless we are or were connected. */ 1942 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 1943 error = ENOTCONN; 1944 goto out; 1945 } 1946 1947 restart: 1948 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1949 1950 /* Abort if socket has reported problems. */ 1951 if (so->so_error) { 1952 if (sb->sb_cc > 0) 1953 goto deliver; 1954 if (oresid > uio->uio_resid) 1955 goto out; 1956 error = so->so_error; 1957 if (!(flags & MSG_PEEK)) 1958 so->so_error = 0; 1959 goto out; 1960 } 1961 1962 /* Door is closed. Deliver what is left, if any. */ 1963 if (sb->sb_state & SBS_CANTRCVMORE) { 1964 if (sb->sb_cc > 0) 1965 goto deliver; 1966 else 1967 goto out; 1968 } 1969 1970 /* Socket buffer is empty and we shall not block. */ 1971 if (sb->sb_cc == 0 && 1972 ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) { 1973 error = EAGAIN; 1974 goto out; 1975 } 1976 1977 /* Socket buffer got some data that we shall deliver now. */ 1978 if (sb->sb_cc > 0 && !(flags & MSG_WAITALL) && 1979 ((sb->sb_flags & SS_NBIO) || 1980 (flags & (MSG_DONTWAIT|MSG_NBIO)) || 1981 sb->sb_cc >= sb->sb_lowat || 1982 sb->sb_cc >= uio->uio_resid || 1983 sb->sb_cc >= sb->sb_hiwat) ) { 1984 goto deliver; 1985 } 1986 1987 /* On MSG_WAITALL we must wait until all data or error arrives. */ 1988 if ((flags & MSG_WAITALL) && 1989 (sb->sb_cc >= uio->uio_resid || sb->sb_cc >= sb->sb_hiwat)) 1990 goto deliver; 1991 1992 /* 1993 * Wait and block until (more) data comes in. 1994 * NB: Drops the sockbuf lock during wait. 1995 */ 1996 error = sbwait(sb); 1997 if (error) 1998 goto out; 1999 goto restart; 2000 2001 deliver: 2002 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2003 KASSERT(sb->sb_cc > 0, ("%s: sockbuf empty", __func__)); 2004 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__)); 2005 2006 /* Statistics. */ 2007 if (uio->uio_td) 2008 uio->uio_td->td_ru.ru_msgrcv++; 2009 2010 /* Fill uio until full or current end of socket buffer is reached. */ 2011 len = min(uio->uio_resid, sb->sb_cc); 2012 if (mp0 != NULL) { 2013 /* Dequeue as many mbufs as possible. */ 2014 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) { 2015 if (*mp0 == NULL) 2016 *mp0 = sb->sb_mb; 2017 else 2018 m_cat(*mp0, sb->sb_mb); 2019 for (m = sb->sb_mb; 2020 m != NULL && m->m_len <= len; 2021 m = m->m_next) { 2022 len -= m->m_len; 2023 uio->uio_resid -= m->m_len; 2024 sbfree(sb, m); 2025 n = m; 2026 } 2027 n->m_next = NULL; 2028 sb->sb_mb = m; 2029 sb->sb_lastrecord = sb->sb_mb; 2030 if (sb->sb_mb == NULL) 2031 SB_EMPTY_FIXUP(sb); 2032 } 2033 /* Copy the remainder. */ 2034 if (len > 0) { 2035 KASSERT(sb->sb_mb != NULL, 2036 ("%s: len > 0 && sb->sb_mb empty", __func__)); 2037 2038 m = m_copym(sb->sb_mb, 0, len, M_NOWAIT); 2039 if (m == NULL) 2040 len = 0; /* Don't flush data from sockbuf. */ 2041 else 2042 uio->uio_resid -= len; 2043 if (*mp0 != NULL) 2044 m_cat(*mp0, m); 2045 else 2046 *mp0 = m; 2047 if (*mp0 == NULL) { 2048 error = ENOBUFS; 2049 goto out; 2050 } 2051 } 2052 } else { 2053 /* NB: Must unlock socket buffer as uiomove may sleep. */ 2054 SOCKBUF_UNLOCK(sb); 2055 error = m_mbuftouio(uio, sb->sb_mb, len); 2056 SOCKBUF_LOCK(sb); 2057 if (error) 2058 goto out; 2059 } 2060 SBLASTRECORDCHK(sb); 2061 SBLASTMBUFCHK(sb); 2062 2063 /* 2064 * Remove the delivered data from the socket buffer unless we 2065 * were only peeking. 2066 */ 2067 if (!(flags & MSG_PEEK)) { 2068 if (len > 0) 2069 sbdrop_locked(sb, len); 2070 2071 /* Notify protocol that we drained some data. */ 2072 if ((so->so_proto->pr_flags & PR_WANTRCVD) && 2073 (((flags & MSG_WAITALL) && uio->uio_resid > 0) || 2074 !(flags & MSG_SOCALLBCK))) { 2075 SOCKBUF_UNLOCK(sb); 2076 VNET_SO_ASSERT(so); 2077 (*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags); 2078 SOCKBUF_LOCK(sb); 2079 } 2080 } 2081 2082 /* 2083 * For MSG_WAITALL we may have to loop again and wait for 2084 * more data to come in. 2085 */ 2086 if ((flags & MSG_WAITALL) && uio->uio_resid > 0) 2087 goto restart; 2088 out: 2089 SOCKBUF_LOCK_ASSERT(sb); 2090 SBLASTRECORDCHK(sb); 2091 SBLASTMBUFCHK(sb); 2092 SOCKBUF_UNLOCK(sb); 2093 sbunlock(sb); 2094 return (error); 2095 } 2096 2097 /* 2098 * Optimized version of soreceive() for simple datagram cases from userspace. 2099 * Unlike in the stream case, we're able to drop a datagram if copyout() 2100 * fails, and because we handle datagrams atomically, we don't need to use a 2101 * sleep lock to prevent I/O interlacing. 2102 */ 2103 int 2104 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio, 2105 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2106 { 2107 struct mbuf *m, *m2; 2108 int flags, error; 2109 ssize_t len; 2110 struct protosw *pr = so->so_proto; 2111 struct mbuf *nextrecord; 2112 2113 if (psa != NULL) 2114 *psa = NULL; 2115 if (controlp != NULL) 2116 *controlp = NULL; 2117 if (flagsp != NULL) 2118 flags = *flagsp &~ MSG_EOR; 2119 else 2120 flags = 0; 2121 2122 /* 2123 * For any complicated cases, fall back to the full 2124 * soreceive_generic(). 2125 */ 2126 if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB)) 2127 return (soreceive_generic(so, psa, uio, mp0, controlp, 2128 flagsp)); 2129 2130 /* 2131 * Enforce restrictions on use. 2132 */ 2133 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0, 2134 ("soreceive_dgram: wantrcvd")); 2135 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic")); 2136 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0, 2137 ("soreceive_dgram: SBS_RCVATMARK")); 2138 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0, 2139 ("soreceive_dgram: P_CONNREQUIRED")); 2140 2141 /* 2142 * Loop blocking while waiting for a datagram. 2143 */ 2144 SOCKBUF_LOCK(&so->so_rcv); 2145 while ((m = so->so_rcv.sb_mb) == NULL) { 2146 KASSERT(so->so_rcv.sb_cc == 0, 2147 ("soreceive_dgram: sb_mb NULL but sb_cc %u", 2148 so->so_rcv.sb_cc)); 2149 if (so->so_error) { 2150 error = so->so_error; 2151 so->so_error = 0; 2152 SOCKBUF_UNLOCK(&so->so_rcv); 2153 return (error); 2154 } 2155 if (so->so_rcv.sb_state & SBS_CANTRCVMORE || 2156 uio->uio_resid == 0) { 2157 SOCKBUF_UNLOCK(&so->so_rcv); 2158 return (0); 2159 } 2160 if ((so->so_state & SS_NBIO) || 2161 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2162 SOCKBUF_UNLOCK(&so->so_rcv); 2163 return (EWOULDBLOCK); 2164 } 2165 SBLASTRECORDCHK(&so->so_rcv); 2166 SBLASTMBUFCHK(&so->so_rcv); 2167 error = sbwait(&so->so_rcv); 2168 if (error) { 2169 SOCKBUF_UNLOCK(&so->so_rcv); 2170 return (error); 2171 } 2172 } 2173 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2174 2175 if (uio->uio_td) 2176 uio->uio_td->td_ru.ru_msgrcv++; 2177 SBLASTRECORDCHK(&so->so_rcv); 2178 SBLASTMBUFCHK(&so->so_rcv); 2179 nextrecord = m->m_nextpkt; 2180 if (nextrecord == NULL) { 2181 KASSERT(so->so_rcv.sb_lastrecord == m, 2182 ("soreceive_dgram: lastrecord != m")); 2183 } 2184 2185 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord, 2186 ("soreceive_dgram: m_nextpkt != nextrecord")); 2187 2188 /* 2189 * Pull 'm' and its chain off the front of the packet queue. 2190 */ 2191 so->so_rcv.sb_mb = NULL; 2192 sockbuf_pushsync(&so->so_rcv, nextrecord); 2193 2194 /* 2195 * Walk 'm's chain and free that many bytes from the socket buffer. 2196 */ 2197 for (m2 = m; m2 != NULL; m2 = m2->m_next) 2198 sbfree(&so->so_rcv, m2); 2199 2200 /* 2201 * Do a few last checks before we let go of the lock. 2202 */ 2203 SBLASTRECORDCHK(&so->so_rcv); 2204 SBLASTMBUFCHK(&so->so_rcv); 2205 SOCKBUF_UNLOCK(&so->so_rcv); 2206 2207 if (pr->pr_flags & PR_ADDR) { 2208 KASSERT(m->m_type == MT_SONAME, 2209 ("m->m_type == %d", m->m_type)); 2210 if (psa != NULL) 2211 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2212 M_NOWAIT); 2213 m = m_free(m); 2214 } 2215 if (m == NULL) { 2216 /* XXXRW: Can this happen? */ 2217 return (0); 2218 } 2219 2220 /* 2221 * Packet to copyout() is now in 'm' and it is disconnected from the 2222 * queue. 2223 * 2224 * Process one or more MT_CONTROL mbufs present before any data mbufs 2225 * in the first mbuf chain on the socket buffer. We call into the 2226 * protocol to perform externalization (or freeing if controlp == 2227 * NULL). 2228 */ 2229 if (m->m_type == MT_CONTROL) { 2230 struct mbuf *cm = NULL, *cmn; 2231 struct mbuf **cme = &cm; 2232 2233 do { 2234 m2 = m->m_next; 2235 m->m_next = NULL; 2236 *cme = m; 2237 cme = &(*cme)->m_next; 2238 m = m2; 2239 } while (m != NULL && m->m_type == MT_CONTROL); 2240 while (cm != NULL) { 2241 cmn = cm->m_next; 2242 cm->m_next = NULL; 2243 if (pr->pr_domain->dom_externalize != NULL) { 2244 error = (*pr->pr_domain->dom_externalize) 2245 (cm, controlp, flags); 2246 } else if (controlp != NULL) 2247 *controlp = cm; 2248 else 2249 m_freem(cm); 2250 if (controlp != NULL) { 2251 while (*controlp != NULL) 2252 controlp = &(*controlp)->m_next; 2253 } 2254 cm = cmn; 2255 } 2256 } 2257 KASSERT(m->m_type == MT_DATA, ("soreceive_dgram: !data")); 2258 2259 while (m != NULL && uio->uio_resid > 0) { 2260 len = uio->uio_resid; 2261 if (len > m->m_len) 2262 len = m->m_len; 2263 error = uiomove(mtod(m, char *), (int)len, uio); 2264 if (error) { 2265 m_freem(m); 2266 return (error); 2267 } 2268 if (len == m->m_len) 2269 m = m_free(m); 2270 else { 2271 m->m_data += len; 2272 m->m_len -= len; 2273 } 2274 } 2275 if (m != NULL) 2276 flags |= MSG_TRUNC; 2277 m_freem(m); 2278 if (flagsp != NULL) 2279 *flagsp |= flags; 2280 return (0); 2281 } 2282 2283 int 2284 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, 2285 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2286 { 2287 int error; 2288 2289 CURVNET_SET(so->so_vnet); 2290 error = (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, mp0, 2291 controlp, flagsp)); 2292 CURVNET_RESTORE(); 2293 return (error); 2294 } 2295 2296 int 2297 soshutdown(struct socket *so, int how) 2298 { 2299 struct protosw *pr = so->so_proto; 2300 int error; 2301 2302 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 2303 return (EINVAL); 2304 2305 CURVNET_SET(so->so_vnet); 2306 if (pr->pr_usrreqs->pru_flush != NULL) 2307 (*pr->pr_usrreqs->pru_flush)(so, how); 2308 if (how != SHUT_WR) 2309 sorflush(so); 2310 if (how != SHUT_RD) { 2311 error = (*pr->pr_usrreqs->pru_shutdown)(so); 2312 wakeup(&so->so_timeo); 2313 CURVNET_RESTORE(); 2314 return (error); 2315 } 2316 wakeup(&so->so_timeo); 2317 CURVNET_RESTORE(); 2318 return (0); 2319 } 2320 2321 void 2322 sorflush(struct socket *so) 2323 { 2324 struct sockbuf *sb = &so->so_rcv; 2325 struct protosw *pr = so->so_proto; 2326 struct sockbuf asb; 2327 2328 VNET_SO_ASSERT(so); 2329 2330 /* 2331 * In order to avoid calling dom_dispose with the socket buffer mutex 2332 * held, and in order to generally avoid holding the lock for a long 2333 * time, we make a copy of the socket buffer and clear the original 2334 * (except locks, state). The new socket buffer copy won't have 2335 * initialized locks so we can only call routines that won't use or 2336 * assert those locks. 2337 * 2338 * Dislodge threads currently blocked in receive and wait to acquire 2339 * a lock against other simultaneous readers before clearing the 2340 * socket buffer. Don't let our acquire be interrupted by a signal 2341 * despite any existing socket disposition on interruptable waiting. 2342 */ 2343 socantrcvmore(so); 2344 (void) sblock(sb, SBL_WAIT | SBL_NOINTR); 2345 2346 /* 2347 * Invalidate/clear most of the sockbuf structure, but leave selinfo 2348 * and mutex data unchanged. 2349 */ 2350 SOCKBUF_LOCK(sb); 2351 bzero(&asb, offsetof(struct sockbuf, sb_startzero)); 2352 bcopy(&sb->sb_startzero, &asb.sb_startzero, 2353 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 2354 bzero(&sb->sb_startzero, 2355 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 2356 SOCKBUF_UNLOCK(sb); 2357 sbunlock(sb); 2358 2359 /* 2360 * Dispose of special rights and flush the socket buffer. Don't call 2361 * any unsafe routines (that rely on locks being initialized) on asb. 2362 */ 2363 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 2364 (*pr->pr_domain->dom_dispose)(asb.sb_mb); 2365 sbrelease_internal(&asb, so); 2366 } 2367 2368 /* 2369 * Wrapper for Socket established helper hook. 2370 * Parameters: socket, context of the hook point, hook id. 2371 */ 2372 static int inline 2373 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id) 2374 { 2375 struct socket_hhook_data hhook_data = { 2376 .so = so, 2377 .hctx = hctx, 2378 .m = NULL 2379 }; 2380 2381 hhook_run_hooks(V_socket_hhh[h_id], &hhook_data, &so->osd); 2382 2383 /* Ugly but needed, since hhooks return void for now */ 2384 return (hhook_data.status); 2385 } 2386 2387 /* 2388 * Perhaps this routine, and sooptcopyout(), below, ought to come in an 2389 * additional variant to handle the case where the option value needs to be 2390 * some kind of integer, but not a specific size. In addition to their use 2391 * here, these functions are also called by the protocol-level pr_ctloutput() 2392 * routines. 2393 */ 2394 int 2395 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen) 2396 { 2397 size_t valsize; 2398 2399 /* 2400 * If the user gives us more than we wanted, we ignore it, but if we 2401 * don't get the minimum length the caller wants, we return EINVAL. 2402 * On success, sopt->sopt_valsize is set to however much we actually 2403 * retrieved. 2404 */ 2405 if ((valsize = sopt->sopt_valsize) < minlen) 2406 return EINVAL; 2407 if (valsize > len) 2408 sopt->sopt_valsize = valsize = len; 2409 2410 if (sopt->sopt_td != NULL) 2411 return (copyin(sopt->sopt_val, buf, valsize)); 2412 2413 bcopy(sopt->sopt_val, buf, valsize); 2414 return (0); 2415 } 2416 2417 /* 2418 * Kernel version of setsockopt(2). 2419 * 2420 * XXX: optlen is size_t, not socklen_t 2421 */ 2422 int 2423 so_setsockopt(struct socket *so, int level, int optname, void *optval, 2424 size_t optlen) 2425 { 2426 struct sockopt sopt; 2427 2428 sopt.sopt_level = level; 2429 sopt.sopt_name = optname; 2430 sopt.sopt_dir = SOPT_SET; 2431 sopt.sopt_val = optval; 2432 sopt.sopt_valsize = optlen; 2433 sopt.sopt_td = NULL; 2434 return (sosetopt(so, &sopt)); 2435 } 2436 2437 int 2438 sosetopt(struct socket *so, struct sockopt *sopt) 2439 { 2440 int error, optval; 2441 struct linger l; 2442 struct timeval tv; 2443 sbintime_t val; 2444 uint32_t val32; 2445 #ifdef MAC 2446 struct mac extmac; 2447 #endif 2448 2449 CURVNET_SET(so->so_vnet); 2450 error = 0; 2451 if (sopt->sopt_level != SOL_SOCKET) { 2452 if (so->so_proto->pr_ctloutput != NULL) { 2453 error = (*so->so_proto->pr_ctloutput)(so, sopt); 2454 CURVNET_RESTORE(); 2455 return (error); 2456 } 2457 error = ENOPROTOOPT; 2458 } else { 2459 switch (sopt->sopt_name) { 2460 case SO_ACCEPTFILTER: 2461 error = do_setopt_accept_filter(so, sopt); 2462 if (error) 2463 goto bad; 2464 break; 2465 2466 case SO_LINGER: 2467 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 2468 if (error) 2469 goto bad; 2470 2471 SOCK_LOCK(so); 2472 so->so_linger = l.l_linger; 2473 if (l.l_onoff) 2474 so->so_options |= SO_LINGER; 2475 else 2476 so->so_options &= ~SO_LINGER; 2477 SOCK_UNLOCK(so); 2478 break; 2479 2480 case SO_DEBUG: 2481 case SO_KEEPALIVE: 2482 case SO_DONTROUTE: 2483 case SO_USELOOPBACK: 2484 case SO_BROADCAST: 2485 case SO_REUSEADDR: 2486 case SO_REUSEPORT: 2487 case SO_OOBINLINE: 2488 case SO_TIMESTAMP: 2489 case SO_BINTIME: 2490 case SO_NOSIGPIPE: 2491 case SO_NO_DDP: 2492 case SO_NO_OFFLOAD: 2493 error = sooptcopyin(sopt, &optval, sizeof optval, 2494 sizeof optval); 2495 if (error) 2496 goto bad; 2497 SOCK_LOCK(so); 2498 if (optval) 2499 so->so_options |= sopt->sopt_name; 2500 else 2501 so->so_options &= ~sopt->sopt_name; 2502 SOCK_UNLOCK(so); 2503 break; 2504 2505 case SO_SETFIB: 2506 error = sooptcopyin(sopt, &optval, sizeof optval, 2507 sizeof optval); 2508 if (error) 2509 goto bad; 2510 2511 if (optval < 0 || optval >= rt_numfibs) { 2512 error = EINVAL; 2513 goto bad; 2514 } 2515 if (((so->so_proto->pr_domain->dom_family == PF_INET) || 2516 (so->so_proto->pr_domain->dom_family == PF_INET6) || 2517 (so->so_proto->pr_domain->dom_family == PF_ROUTE))) 2518 so->so_fibnum = optval; 2519 else 2520 so->so_fibnum = 0; 2521 break; 2522 2523 case SO_USER_COOKIE: 2524 error = sooptcopyin(sopt, &val32, sizeof val32, 2525 sizeof val32); 2526 if (error) 2527 goto bad; 2528 so->so_user_cookie = val32; 2529 break; 2530 2531 case SO_SNDBUF: 2532 case SO_RCVBUF: 2533 case SO_SNDLOWAT: 2534 case SO_RCVLOWAT: 2535 error = sooptcopyin(sopt, &optval, sizeof optval, 2536 sizeof optval); 2537 if (error) 2538 goto bad; 2539 2540 /* 2541 * Values < 1 make no sense for any of these options, 2542 * so disallow them. 2543 */ 2544 if (optval < 1) { 2545 error = EINVAL; 2546 goto bad; 2547 } 2548 2549 switch (sopt->sopt_name) { 2550 case SO_SNDBUF: 2551 case SO_RCVBUF: 2552 if (sbreserve(sopt->sopt_name == SO_SNDBUF ? 2553 &so->so_snd : &so->so_rcv, (u_long)optval, 2554 so, curthread) == 0) { 2555 error = ENOBUFS; 2556 goto bad; 2557 } 2558 (sopt->sopt_name == SO_SNDBUF ? &so->so_snd : 2559 &so->so_rcv)->sb_flags &= ~SB_AUTOSIZE; 2560 break; 2561 2562 /* 2563 * Make sure the low-water is never greater than the 2564 * high-water. 2565 */ 2566 case SO_SNDLOWAT: 2567 SOCKBUF_LOCK(&so->so_snd); 2568 so->so_snd.sb_lowat = 2569 (optval > so->so_snd.sb_hiwat) ? 2570 so->so_snd.sb_hiwat : optval; 2571 SOCKBUF_UNLOCK(&so->so_snd); 2572 break; 2573 case SO_RCVLOWAT: 2574 SOCKBUF_LOCK(&so->so_rcv); 2575 so->so_rcv.sb_lowat = 2576 (optval > so->so_rcv.sb_hiwat) ? 2577 so->so_rcv.sb_hiwat : optval; 2578 SOCKBUF_UNLOCK(&so->so_rcv); 2579 break; 2580 } 2581 break; 2582 2583 case SO_SNDTIMEO: 2584 case SO_RCVTIMEO: 2585 #ifdef COMPAT_FREEBSD32 2586 if (SV_CURPROC_FLAG(SV_ILP32)) { 2587 struct timeval32 tv32; 2588 2589 error = sooptcopyin(sopt, &tv32, sizeof tv32, 2590 sizeof tv32); 2591 CP(tv32, tv, tv_sec); 2592 CP(tv32, tv, tv_usec); 2593 } else 2594 #endif 2595 error = sooptcopyin(sopt, &tv, sizeof tv, 2596 sizeof tv); 2597 if (error) 2598 goto bad; 2599 if (tv.tv_sec < 0 || tv.tv_usec < 0 || 2600 tv.tv_usec >= 1000000) { 2601 error = EDOM; 2602 goto bad; 2603 } 2604 if (tv.tv_sec > INT32_MAX) 2605 val = SBT_MAX; 2606 else 2607 val = tvtosbt(tv); 2608 switch (sopt->sopt_name) { 2609 case SO_SNDTIMEO: 2610 so->so_snd.sb_timeo = val; 2611 break; 2612 case SO_RCVTIMEO: 2613 so->so_rcv.sb_timeo = val; 2614 break; 2615 } 2616 break; 2617 2618 case SO_LABEL: 2619 #ifdef MAC 2620 error = sooptcopyin(sopt, &extmac, sizeof extmac, 2621 sizeof extmac); 2622 if (error) 2623 goto bad; 2624 error = mac_setsockopt_label(sopt->sopt_td->td_ucred, 2625 so, &extmac); 2626 #else 2627 error = EOPNOTSUPP; 2628 #endif 2629 break; 2630 2631 default: 2632 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 2633 error = hhook_run_socket(so, sopt, 2634 HHOOK_SOCKET_OPT); 2635 else 2636 error = ENOPROTOOPT; 2637 break; 2638 } 2639 if (error == 0 && so->so_proto->pr_ctloutput != NULL) 2640 (void)(*so->so_proto->pr_ctloutput)(so, sopt); 2641 } 2642 bad: 2643 CURVNET_RESTORE(); 2644 return (error); 2645 } 2646 2647 /* 2648 * Helper routine for getsockopt. 2649 */ 2650 int 2651 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 2652 { 2653 int error; 2654 size_t valsize; 2655 2656 error = 0; 2657 2658 /* 2659 * Documented get behavior is that we always return a value, possibly 2660 * truncated to fit in the user's buffer. Traditional behavior is 2661 * that we always tell the user precisely how much we copied, rather 2662 * than something useful like the total amount we had available for 2663 * her. Note that this interface is not idempotent; the entire 2664 * answer must generated ahead of time. 2665 */ 2666 valsize = min(len, sopt->sopt_valsize); 2667 sopt->sopt_valsize = valsize; 2668 if (sopt->sopt_val != NULL) { 2669 if (sopt->sopt_td != NULL) 2670 error = copyout(buf, sopt->sopt_val, valsize); 2671 else 2672 bcopy(buf, sopt->sopt_val, valsize); 2673 } 2674 return (error); 2675 } 2676 2677 int 2678 sogetopt(struct socket *so, struct sockopt *sopt) 2679 { 2680 int error, optval; 2681 struct linger l; 2682 struct timeval tv; 2683 #ifdef MAC 2684 struct mac extmac; 2685 #endif 2686 2687 CURVNET_SET(so->so_vnet); 2688 error = 0; 2689 if (sopt->sopt_level != SOL_SOCKET) { 2690 if (so->so_proto->pr_ctloutput != NULL) 2691 error = (*so->so_proto->pr_ctloutput)(so, sopt); 2692 else 2693 error = ENOPROTOOPT; 2694 CURVNET_RESTORE(); 2695 return (error); 2696 } else { 2697 switch (sopt->sopt_name) { 2698 case SO_ACCEPTFILTER: 2699 error = do_getopt_accept_filter(so, sopt); 2700 break; 2701 2702 case SO_LINGER: 2703 SOCK_LOCK(so); 2704 l.l_onoff = so->so_options & SO_LINGER; 2705 l.l_linger = so->so_linger; 2706 SOCK_UNLOCK(so); 2707 error = sooptcopyout(sopt, &l, sizeof l); 2708 break; 2709 2710 case SO_USELOOPBACK: 2711 case SO_DONTROUTE: 2712 case SO_DEBUG: 2713 case SO_KEEPALIVE: 2714 case SO_REUSEADDR: 2715 case SO_REUSEPORT: 2716 case SO_BROADCAST: 2717 case SO_OOBINLINE: 2718 case SO_ACCEPTCONN: 2719 case SO_TIMESTAMP: 2720 case SO_BINTIME: 2721 case SO_NOSIGPIPE: 2722 optval = so->so_options & sopt->sopt_name; 2723 integer: 2724 error = sooptcopyout(sopt, &optval, sizeof optval); 2725 break; 2726 2727 case SO_TYPE: 2728 optval = so->so_type; 2729 goto integer; 2730 2731 case SO_PROTOCOL: 2732 optval = so->so_proto->pr_protocol; 2733 goto integer; 2734 2735 case SO_ERROR: 2736 SOCK_LOCK(so); 2737 optval = so->so_error; 2738 so->so_error = 0; 2739 SOCK_UNLOCK(so); 2740 goto integer; 2741 2742 case SO_SNDBUF: 2743 optval = so->so_snd.sb_hiwat; 2744 goto integer; 2745 2746 case SO_RCVBUF: 2747 optval = so->so_rcv.sb_hiwat; 2748 goto integer; 2749 2750 case SO_SNDLOWAT: 2751 optval = so->so_snd.sb_lowat; 2752 goto integer; 2753 2754 case SO_RCVLOWAT: 2755 optval = so->so_rcv.sb_lowat; 2756 goto integer; 2757 2758 case SO_SNDTIMEO: 2759 case SO_RCVTIMEO: 2760 tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ? 2761 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 2762 #ifdef COMPAT_FREEBSD32 2763 if (SV_CURPROC_FLAG(SV_ILP32)) { 2764 struct timeval32 tv32; 2765 2766 CP(tv, tv32, tv_sec); 2767 CP(tv, tv32, tv_usec); 2768 error = sooptcopyout(sopt, &tv32, sizeof tv32); 2769 } else 2770 #endif 2771 error = sooptcopyout(sopt, &tv, sizeof tv); 2772 break; 2773 2774 case SO_LABEL: 2775 #ifdef MAC 2776 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 2777 sizeof(extmac)); 2778 if (error) 2779 goto bad; 2780 error = mac_getsockopt_label(sopt->sopt_td->td_ucred, 2781 so, &extmac); 2782 if (error) 2783 goto bad; 2784 error = sooptcopyout(sopt, &extmac, sizeof extmac); 2785 #else 2786 error = EOPNOTSUPP; 2787 #endif 2788 break; 2789 2790 case SO_PEERLABEL: 2791 #ifdef MAC 2792 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 2793 sizeof(extmac)); 2794 if (error) 2795 goto bad; 2796 error = mac_getsockopt_peerlabel( 2797 sopt->sopt_td->td_ucred, so, &extmac); 2798 if (error) 2799 goto bad; 2800 error = sooptcopyout(sopt, &extmac, sizeof extmac); 2801 #else 2802 error = EOPNOTSUPP; 2803 #endif 2804 break; 2805 2806 case SO_LISTENQLIMIT: 2807 optval = so->so_qlimit; 2808 goto integer; 2809 2810 case SO_LISTENQLEN: 2811 optval = so->so_qlen; 2812 goto integer; 2813 2814 case SO_LISTENINCQLEN: 2815 optval = so->so_incqlen; 2816 goto integer; 2817 2818 default: 2819 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 2820 error = hhook_run_socket(so, sopt, 2821 HHOOK_SOCKET_OPT); 2822 else 2823 error = ENOPROTOOPT; 2824 break; 2825 } 2826 } 2827 #ifdef MAC 2828 bad: 2829 #endif 2830 CURVNET_RESTORE(); 2831 return (error); 2832 } 2833 2834 int 2835 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 2836 { 2837 struct mbuf *m, *m_prev; 2838 int sopt_size = sopt->sopt_valsize; 2839 2840 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 2841 if (m == NULL) 2842 return ENOBUFS; 2843 if (sopt_size > MLEN) { 2844 MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT); 2845 if ((m->m_flags & M_EXT) == 0) { 2846 m_free(m); 2847 return ENOBUFS; 2848 } 2849 m->m_len = min(MCLBYTES, sopt_size); 2850 } else { 2851 m->m_len = min(MLEN, sopt_size); 2852 } 2853 sopt_size -= m->m_len; 2854 *mp = m; 2855 m_prev = m; 2856 2857 while (sopt_size) { 2858 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 2859 if (m == NULL) { 2860 m_freem(*mp); 2861 return ENOBUFS; 2862 } 2863 if (sopt_size > MLEN) { 2864 MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK : 2865 M_NOWAIT); 2866 if ((m->m_flags & M_EXT) == 0) { 2867 m_freem(m); 2868 m_freem(*mp); 2869 return ENOBUFS; 2870 } 2871 m->m_len = min(MCLBYTES, sopt_size); 2872 } else { 2873 m->m_len = min(MLEN, sopt_size); 2874 } 2875 sopt_size -= m->m_len; 2876 m_prev->m_next = m; 2877 m_prev = m; 2878 } 2879 return (0); 2880 } 2881 2882 int 2883 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 2884 { 2885 struct mbuf *m0 = m; 2886 2887 if (sopt->sopt_val == NULL) 2888 return (0); 2889 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 2890 if (sopt->sopt_td != NULL) { 2891 int error; 2892 2893 error = copyin(sopt->sopt_val, mtod(m, char *), 2894 m->m_len); 2895 if (error != 0) { 2896 m_freem(m0); 2897 return(error); 2898 } 2899 } else 2900 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 2901 sopt->sopt_valsize -= m->m_len; 2902 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 2903 m = m->m_next; 2904 } 2905 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 2906 panic("ip6_sooptmcopyin"); 2907 return (0); 2908 } 2909 2910 int 2911 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 2912 { 2913 struct mbuf *m0 = m; 2914 size_t valsize = 0; 2915 2916 if (sopt->sopt_val == NULL) 2917 return (0); 2918 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 2919 if (sopt->sopt_td != NULL) { 2920 int error; 2921 2922 error = copyout(mtod(m, char *), sopt->sopt_val, 2923 m->m_len); 2924 if (error != 0) { 2925 m_freem(m0); 2926 return(error); 2927 } 2928 } else 2929 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 2930 sopt->sopt_valsize -= m->m_len; 2931 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 2932 valsize += m->m_len; 2933 m = m->m_next; 2934 } 2935 if (m != NULL) { 2936 /* enough soopt buffer should be given from user-land */ 2937 m_freem(m0); 2938 return(EINVAL); 2939 } 2940 sopt->sopt_valsize = valsize; 2941 return (0); 2942 } 2943 2944 /* 2945 * sohasoutofband(): protocol notifies socket layer of the arrival of new 2946 * out-of-band data, which will then notify socket consumers. 2947 */ 2948 void 2949 sohasoutofband(struct socket *so) 2950 { 2951 2952 if (so->so_sigio != NULL) 2953 pgsigio(&so->so_sigio, SIGURG, 0); 2954 selwakeuppri(&so->so_rcv.sb_sel, PSOCK); 2955 } 2956 2957 int 2958 sopoll(struct socket *so, int events, struct ucred *active_cred, 2959 struct thread *td) 2960 { 2961 2962 /* 2963 * We do not need to set or assert curvnet as long as everyone uses 2964 * sopoll_generic(). 2965 */ 2966 return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred, 2967 td)); 2968 } 2969 2970 int 2971 sopoll_generic(struct socket *so, int events, struct ucred *active_cred, 2972 struct thread *td) 2973 { 2974 int revents = 0; 2975 2976 SOCKBUF_LOCK(&so->so_snd); 2977 SOCKBUF_LOCK(&so->so_rcv); 2978 if (events & (POLLIN | POLLRDNORM)) 2979 if (soreadabledata(so)) 2980 revents |= events & (POLLIN | POLLRDNORM); 2981 2982 if (events & (POLLOUT | POLLWRNORM)) 2983 if (sowriteable(so)) 2984 revents |= events & (POLLOUT | POLLWRNORM); 2985 2986 if (events & (POLLPRI | POLLRDBAND)) 2987 if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK)) 2988 revents |= events & (POLLPRI | POLLRDBAND); 2989 2990 if ((events & POLLINIGNEOF) == 0) { 2991 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 2992 revents |= events & (POLLIN | POLLRDNORM); 2993 if (so->so_snd.sb_state & SBS_CANTSENDMORE) 2994 revents |= POLLHUP; 2995 } 2996 } 2997 2998 if (revents == 0) { 2999 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) { 3000 selrecord(td, &so->so_rcv.sb_sel); 3001 so->so_rcv.sb_flags |= SB_SEL; 3002 } 3003 3004 if (events & (POLLOUT | POLLWRNORM)) { 3005 selrecord(td, &so->so_snd.sb_sel); 3006 so->so_snd.sb_flags |= SB_SEL; 3007 } 3008 } 3009 3010 SOCKBUF_UNLOCK(&so->so_rcv); 3011 SOCKBUF_UNLOCK(&so->so_snd); 3012 return (revents); 3013 } 3014 3015 int 3016 soo_kqfilter(struct file *fp, struct knote *kn) 3017 { 3018 struct socket *so = kn->kn_fp->f_data; 3019 struct sockbuf *sb; 3020 3021 switch (kn->kn_filter) { 3022 case EVFILT_READ: 3023 if (so->so_options & SO_ACCEPTCONN) 3024 kn->kn_fop = &solisten_filtops; 3025 else 3026 kn->kn_fop = &soread_filtops; 3027 sb = &so->so_rcv; 3028 break; 3029 case EVFILT_WRITE: 3030 kn->kn_fop = &sowrite_filtops; 3031 sb = &so->so_snd; 3032 break; 3033 default: 3034 return (EINVAL); 3035 } 3036 3037 SOCKBUF_LOCK(sb); 3038 knlist_add(&sb->sb_sel.si_note, kn, 1); 3039 sb->sb_flags |= SB_KNOTE; 3040 SOCKBUF_UNLOCK(sb); 3041 return (0); 3042 } 3043 3044 /* 3045 * Some routines that return EOPNOTSUPP for entry points that are not 3046 * supported by a protocol. Fill in as needed. 3047 */ 3048 int 3049 pru_accept_notsupp(struct socket *so, struct sockaddr **nam) 3050 { 3051 3052 return EOPNOTSUPP; 3053 } 3054 3055 int 3056 pru_attach_notsupp(struct socket *so, int proto, struct thread *td) 3057 { 3058 3059 return EOPNOTSUPP; 3060 } 3061 3062 int 3063 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 3064 { 3065 3066 return EOPNOTSUPP; 3067 } 3068 3069 int 3070 pru_bindat_notsupp(int fd, struct socket *so, struct sockaddr *nam, 3071 struct thread *td) 3072 { 3073 3074 return EOPNOTSUPP; 3075 } 3076 3077 int 3078 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 3079 { 3080 3081 return EOPNOTSUPP; 3082 } 3083 3084 int 3085 pru_connectat_notsupp(int fd, struct socket *so, struct sockaddr *nam, 3086 struct thread *td) 3087 { 3088 3089 return EOPNOTSUPP; 3090 } 3091 3092 int 3093 pru_connect2_notsupp(struct socket *so1, struct socket *so2) 3094 { 3095 3096 return EOPNOTSUPP; 3097 } 3098 3099 int 3100 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, 3101 struct ifnet *ifp, struct thread *td) 3102 { 3103 3104 return EOPNOTSUPP; 3105 } 3106 3107 int 3108 pru_disconnect_notsupp(struct socket *so) 3109 { 3110 3111 return EOPNOTSUPP; 3112 } 3113 3114 int 3115 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td) 3116 { 3117 3118 return EOPNOTSUPP; 3119 } 3120 3121 int 3122 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam) 3123 { 3124 3125 return EOPNOTSUPP; 3126 } 3127 3128 int 3129 pru_rcvd_notsupp(struct socket *so, int flags) 3130 { 3131 3132 return EOPNOTSUPP; 3133 } 3134 3135 int 3136 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) 3137 { 3138 3139 return EOPNOTSUPP; 3140 } 3141 3142 int 3143 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m, 3144 struct sockaddr *addr, struct mbuf *control, struct thread *td) 3145 { 3146 3147 return EOPNOTSUPP; 3148 } 3149 3150 /* 3151 * This isn't really a ``null'' operation, but it's the default one and 3152 * doesn't do anything destructive. 3153 */ 3154 int 3155 pru_sense_null(struct socket *so, struct stat *sb) 3156 { 3157 3158 sb->st_blksize = so->so_snd.sb_hiwat; 3159 return 0; 3160 } 3161 3162 int 3163 pru_shutdown_notsupp(struct socket *so) 3164 { 3165 3166 return EOPNOTSUPP; 3167 } 3168 3169 int 3170 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam) 3171 { 3172 3173 return EOPNOTSUPP; 3174 } 3175 3176 int 3177 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio, 3178 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 3179 { 3180 3181 return EOPNOTSUPP; 3182 } 3183 3184 int 3185 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr, 3186 struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 3187 { 3188 3189 return EOPNOTSUPP; 3190 } 3191 3192 int 3193 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred, 3194 struct thread *td) 3195 { 3196 3197 return EOPNOTSUPP; 3198 } 3199 3200 static void 3201 filt_sordetach(struct knote *kn) 3202 { 3203 struct socket *so = kn->kn_fp->f_data; 3204 3205 SOCKBUF_LOCK(&so->so_rcv); 3206 knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1); 3207 if (knlist_empty(&so->so_rcv.sb_sel.si_note)) 3208 so->so_rcv.sb_flags &= ~SB_KNOTE; 3209 SOCKBUF_UNLOCK(&so->so_rcv); 3210 } 3211 3212 /*ARGSUSED*/ 3213 static int 3214 filt_soread(struct knote *kn, long hint) 3215 { 3216 struct socket *so; 3217 3218 so = kn->kn_fp->f_data; 3219 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 3220 3221 kn->kn_data = so->so_rcv.sb_cc - so->so_rcv.sb_ctl; 3222 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3223 kn->kn_flags |= EV_EOF; 3224 kn->kn_fflags = so->so_error; 3225 return (1); 3226 } else if (so->so_error) /* temporary udp error */ 3227 return (1); 3228 3229 if (kn->kn_sfflags & NOTE_LOWAT) { 3230 if (kn->kn_data >= kn->kn_sdata) 3231 return 1; 3232 } else { 3233 if (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat) 3234 return 1; 3235 } 3236 3237 if (V_socket_hhh[HHOOK_FILT_SOREAD]->hhh_nhooks > 0) 3238 /* This hook returning non-zero indicates an event, not error */ 3239 return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD)); 3240 3241 return (0); 3242 } 3243 3244 static void 3245 filt_sowdetach(struct knote *kn) 3246 { 3247 struct socket *so = kn->kn_fp->f_data; 3248 3249 SOCKBUF_LOCK(&so->so_snd); 3250 knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1); 3251 if (knlist_empty(&so->so_snd.sb_sel.si_note)) 3252 so->so_snd.sb_flags &= ~SB_KNOTE; 3253 SOCKBUF_UNLOCK(&so->so_snd); 3254 } 3255 3256 /*ARGSUSED*/ 3257 static int 3258 filt_sowrite(struct knote *kn, long hint) 3259 { 3260 struct socket *so; 3261 3262 so = kn->kn_fp->f_data; 3263 SOCKBUF_LOCK_ASSERT(&so->so_snd); 3264 kn->kn_data = sbspace(&so->so_snd); 3265 3266 if (V_socket_hhh[HHOOK_FILT_SOWRITE]->hhh_nhooks > 0) 3267 hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE); 3268 3269 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 3270 kn->kn_flags |= EV_EOF; 3271 kn->kn_fflags = so->so_error; 3272 return (1); 3273 } else if (so->so_error) /* temporary udp error */ 3274 return (1); 3275 else if (((so->so_state & SS_ISCONNECTED) == 0) && 3276 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 3277 return (0); 3278 else if (kn->kn_sfflags & NOTE_LOWAT) 3279 return (kn->kn_data >= kn->kn_sdata); 3280 else 3281 return (kn->kn_data >= so->so_snd.sb_lowat); 3282 } 3283 3284 /*ARGSUSED*/ 3285 static int 3286 filt_solisten(struct knote *kn, long hint) 3287 { 3288 struct socket *so = kn->kn_fp->f_data; 3289 3290 kn->kn_data = so->so_qlen; 3291 return (!TAILQ_EMPTY(&so->so_comp)); 3292 } 3293 3294 int 3295 socheckuid(struct socket *so, uid_t uid) 3296 { 3297 3298 if (so == NULL) 3299 return (EPERM); 3300 if (so->so_cred->cr_uid != uid) 3301 return (EPERM); 3302 return (0); 3303 } 3304 3305 /* 3306 * These functions are used by protocols to notify the socket layer (and its 3307 * consumers) of state changes in the sockets driven by protocol-side events. 3308 */ 3309 3310 /* 3311 * Procedures to manipulate state flags of socket and do appropriate wakeups. 3312 * 3313 * Normal sequence from the active (originating) side is that 3314 * soisconnecting() is called during processing of connect() call, resulting 3315 * in an eventual call to soisconnected() if/when the connection is 3316 * established. When the connection is torn down soisdisconnecting() is 3317 * called during processing of disconnect() call, and soisdisconnected() is 3318 * called when the connection to the peer is totally severed. The semantics 3319 * of these routines are such that connectionless protocols can call 3320 * soisconnected() and soisdisconnected() only, bypassing the in-progress 3321 * calls when setting up a ``connection'' takes no time. 3322 * 3323 * From the passive side, a socket is created with two queues of sockets: 3324 * so_incomp for connections in progress and so_comp for connections already 3325 * made and awaiting user acceptance. As a protocol is preparing incoming 3326 * connections, it creates a socket structure queued on so_incomp by calling 3327 * sonewconn(). When the connection is established, soisconnected() is 3328 * called, and transfers the socket structure to so_comp, making it available 3329 * to accept(). 3330 * 3331 * If a socket is closed with sockets on either so_incomp or so_comp, these 3332 * sockets are dropped. 3333 * 3334 * If higher-level protocols are implemented in the kernel, the wakeups done 3335 * here will sometimes cause software-interrupt process scheduling. 3336 */ 3337 void 3338 soisconnecting(struct socket *so) 3339 { 3340 3341 SOCK_LOCK(so); 3342 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 3343 so->so_state |= SS_ISCONNECTING; 3344 SOCK_UNLOCK(so); 3345 } 3346 3347 void 3348 soisconnected(struct socket *so) 3349 { 3350 struct socket *head; 3351 int ret; 3352 3353 restart: 3354 ACCEPT_LOCK(); 3355 SOCK_LOCK(so); 3356 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 3357 so->so_state |= SS_ISCONNECTED; 3358 head = so->so_head; 3359 if (head != NULL && (so->so_qstate & SQ_INCOMP)) { 3360 if ((so->so_options & SO_ACCEPTFILTER) == 0) { 3361 SOCK_UNLOCK(so); 3362 TAILQ_REMOVE(&head->so_incomp, so, so_list); 3363 head->so_incqlen--; 3364 so->so_qstate &= ~SQ_INCOMP; 3365 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 3366 head->so_qlen++; 3367 so->so_qstate |= SQ_COMP; 3368 ACCEPT_UNLOCK(); 3369 sorwakeup(head); 3370 wakeup_one(&head->so_timeo); 3371 } else { 3372 ACCEPT_UNLOCK(); 3373 soupcall_set(so, SO_RCV, 3374 head->so_accf->so_accept_filter->accf_callback, 3375 head->so_accf->so_accept_filter_arg); 3376 so->so_options &= ~SO_ACCEPTFILTER; 3377 ret = head->so_accf->so_accept_filter->accf_callback(so, 3378 head->so_accf->so_accept_filter_arg, M_NOWAIT); 3379 if (ret == SU_ISCONNECTED) 3380 soupcall_clear(so, SO_RCV); 3381 SOCK_UNLOCK(so); 3382 if (ret == SU_ISCONNECTED) 3383 goto restart; 3384 } 3385 return; 3386 } 3387 SOCK_UNLOCK(so); 3388 ACCEPT_UNLOCK(); 3389 wakeup(&so->so_timeo); 3390 sorwakeup(so); 3391 sowwakeup(so); 3392 } 3393 3394 void 3395 soisdisconnecting(struct socket *so) 3396 { 3397 3398 /* 3399 * Note: This code assumes that SOCK_LOCK(so) and 3400 * SOCKBUF_LOCK(&so->so_rcv) are the same. 3401 */ 3402 SOCKBUF_LOCK(&so->so_rcv); 3403 so->so_state &= ~SS_ISCONNECTING; 3404 so->so_state |= SS_ISDISCONNECTING; 3405 so->so_rcv.sb_state |= SBS_CANTRCVMORE; 3406 sorwakeup_locked(so); 3407 SOCKBUF_LOCK(&so->so_snd); 3408 so->so_snd.sb_state |= SBS_CANTSENDMORE; 3409 sowwakeup_locked(so); 3410 wakeup(&so->so_timeo); 3411 } 3412 3413 void 3414 soisdisconnected(struct socket *so) 3415 { 3416 3417 /* 3418 * Note: This code assumes that SOCK_LOCK(so) and 3419 * SOCKBUF_LOCK(&so->so_rcv) are the same. 3420 */ 3421 SOCKBUF_LOCK(&so->so_rcv); 3422 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 3423 so->so_state |= SS_ISDISCONNECTED; 3424 so->so_rcv.sb_state |= SBS_CANTRCVMORE; 3425 sorwakeup_locked(so); 3426 SOCKBUF_LOCK(&so->so_snd); 3427 so->so_snd.sb_state |= SBS_CANTSENDMORE; 3428 sbdrop_locked(&so->so_snd, so->so_snd.sb_cc); 3429 sowwakeup_locked(so); 3430 wakeup(&so->so_timeo); 3431 } 3432 3433 /* 3434 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 3435 */ 3436 struct sockaddr * 3437 sodupsockaddr(const struct sockaddr *sa, int mflags) 3438 { 3439 struct sockaddr *sa2; 3440 3441 sa2 = malloc(sa->sa_len, M_SONAME, mflags); 3442 if (sa2) 3443 bcopy(sa, sa2, sa->sa_len); 3444 return sa2; 3445 } 3446 3447 /* 3448 * Register per-socket buffer upcalls. 3449 */ 3450 void 3451 soupcall_set(struct socket *so, int which, 3452 int (*func)(struct socket *, void *, int), void *arg) 3453 { 3454 struct sockbuf *sb; 3455 3456 switch (which) { 3457 case SO_RCV: 3458 sb = &so->so_rcv; 3459 break; 3460 case SO_SND: 3461 sb = &so->so_snd; 3462 break; 3463 default: 3464 panic("soupcall_set: bad which"); 3465 } 3466 SOCKBUF_LOCK_ASSERT(sb); 3467 #if 0 3468 /* XXX: accf_http actually wants to do this on purpose. */ 3469 KASSERT(sb->sb_upcall == NULL, ("soupcall_set: overwriting upcall")); 3470 #endif 3471 sb->sb_upcall = func; 3472 sb->sb_upcallarg = arg; 3473 sb->sb_flags |= SB_UPCALL; 3474 } 3475 3476 void 3477 soupcall_clear(struct socket *so, int which) 3478 { 3479 struct sockbuf *sb; 3480 3481 switch (which) { 3482 case SO_RCV: 3483 sb = &so->so_rcv; 3484 break; 3485 case SO_SND: 3486 sb = &so->so_snd; 3487 break; 3488 default: 3489 panic("soupcall_clear: bad which"); 3490 } 3491 SOCKBUF_LOCK_ASSERT(sb); 3492 KASSERT(sb->sb_upcall != NULL, ("soupcall_clear: no upcall to clear")); 3493 sb->sb_upcall = NULL; 3494 sb->sb_upcallarg = NULL; 3495 sb->sb_flags &= ~SB_UPCALL; 3496 } 3497 3498 /* 3499 * Create an external-format (``xsocket'') structure using the information in 3500 * the kernel-format socket structure pointed to by so. This is done to 3501 * reduce the spew of irrelevant information over this interface, to isolate 3502 * user code from changes in the kernel structure, and potentially to provide 3503 * information-hiding if we decide that some of this information should be 3504 * hidden from users. 3505 */ 3506 void 3507 sotoxsocket(struct socket *so, struct xsocket *xso) 3508 { 3509 3510 xso->xso_len = sizeof *xso; 3511 xso->xso_so = so; 3512 xso->so_type = so->so_type; 3513 xso->so_options = so->so_options; 3514 xso->so_linger = so->so_linger; 3515 xso->so_state = so->so_state; 3516 xso->so_pcb = so->so_pcb; 3517 xso->xso_protocol = so->so_proto->pr_protocol; 3518 xso->xso_family = so->so_proto->pr_domain->dom_family; 3519 xso->so_qlen = so->so_qlen; 3520 xso->so_incqlen = so->so_incqlen; 3521 xso->so_qlimit = so->so_qlimit; 3522 xso->so_timeo = so->so_timeo; 3523 xso->so_error = so->so_error; 3524 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 3525 xso->so_oobmark = so->so_oobmark; 3526 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 3527 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 3528 xso->so_uid = so->so_cred->cr_uid; 3529 } 3530 3531 3532 /* 3533 * Socket accessor functions to provide external consumers with 3534 * a safe interface to socket state 3535 * 3536 */ 3537 3538 void 3539 so_listeners_apply_all(struct socket *so, void (*func)(struct socket *, void *), 3540 void *arg) 3541 { 3542 3543 TAILQ_FOREACH(so, &so->so_comp, so_list) 3544 func(so, arg); 3545 } 3546 3547 struct sockbuf * 3548 so_sockbuf_rcv(struct socket *so) 3549 { 3550 3551 return (&so->so_rcv); 3552 } 3553 3554 struct sockbuf * 3555 so_sockbuf_snd(struct socket *so) 3556 { 3557 3558 return (&so->so_snd); 3559 } 3560 3561 int 3562 so_state_get(const struct socket *so) 3563 { 3564 3565 return (so->so_state); 3566 } 3567 3568 void 3569 so_state_set(struct socket *so, int val) 3570 { 3571 3572 so->so_state = val; 3573 } 3574 3575 int 3576 so_options_get(const struct socket *so) 3577 { 3578 3579 return (so->so_options); 3580 } 3581 3582 void 3583 so_options_set(struct socket *so, int val) 3584 { 3585 3586 so->so_options = val; 3587 } 3588 3589 int 3590 so_error_get(const struct socket *so) 3591 { 3592 3593 return (so->so_error); 3594 } 3595 3596 void 3597 so_error_set(struct socket *so, int val) 3598 { 3599 3600 so->so_error = val; 3601 } 3602 3603 int 3604 so_linger_get(const struct socket *so) 3605 { 3606 3607 return (so->so_linger); 3608 } 3609 3610 void 3611 so_linger_set(struct socket *so, int val) 3612 { 3613 3614 so->so_linger = val; 3615 } 3616 3617 struct protosw * 3618 so_protosw_get(const struct socket *so) 3619 { 3620 3621 return (so->so_proto); 3622 } 3623 3624 void 3625 so_protosw_set(struct socket *so, struct protosw *val) 3626 { 3627 3628 so->so_proto = val; 3629 } 3630 3631 void 3632 so_sorwakeup(struct socket *so) 3633 { 3634 3635 sorwakeup(so); 3636 } 3637 3638 void 3639 so_sowwakeup(struct socket *so) 3640 { 3641 3642 sowwakeup(so); 3643 } 3644 3645 void 3646 so_sorwakeup_locked(struct socket *so) 3647 { 3648 3649 sorwakeup_locked(so); 3650 } 3651 3652 void 3653 so_sowwakeup_locked(struct socket *so) 3654 { 3655 3656 sowwakeup_locked(so); 3657 } 3658 3659 void 3660 so_lock(struct socket *so) 3661 { 3662 3663 SOCK_LOCK(so); 3664 } 3665 3666 void 3667 so_unlock(struct socket *so) 3668 { 3669 3670 SOCK_UNLOCK(so); 3671 } 3672