xref: /freebsd/sys/kern/uipc_socket.c (revision 52267f7411adcc76ede961420e08c0e42f42d415)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.
4  * Copyright (c) 2004 The FreeBSD Foundation
5  * Copyright (c) 2004-2008 Robert N. M. Watson
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)uipc_socket.c	8.3 (Berkeley) 4/15/94
33  */
34 
35 /*
36  * Comments on the socket life cycle:
37  *
38  * soalloc() sets of socket layer state for a socket, called only by
39  * socreate() and sonewconn().  Socket layer private.
40  *
41  * sodealloc() tears down socket layer state for a socket, called only by
42  * sofree() and sonewconn().  Socket layer private.
43  *
44  * pru_attach() associates protocol layer state with an allocated socket;
45  * called only once, may fail, aborting socket allocation.  This is called
46  * from socreate() and sonewconn().  Socket layer private.
47  *
48  * pru_detach() disassociates protocol layer state from an attached socket,
49  * and will be called exactly once for sockets in which pru_attach() has
50  * been successfully called.  If pru_attach() returned an error,
51  * pru_detach() will not be called.  Socket layer private.
52  *
53  * pru_abort() and pru_close() notify the protocol layer that the last
54  * consumer of a socket is starting to tear down the socket, and that the
55  * protocol should terminate the connection.  Historically, pru_abort() also
56  * detached protocol state from the socket state, but this is no longer the
57  * case.
58  *
59  * socreate() creates a socket and attaches protocol state.  This is a public
60  * interface that may be used by socket layer consumers to create new
61  * sockets.
62  *
63  * sonewconn() creates a socket and attaches protocol state.  This is a
64  * public interface  that may be used by protocols to create new sockets when
65  * a new connection is received and will be available for accept() on a
66  * listen socket.
67  *
68  * soclose() destroys a socket after possibly waiting for it to disconnect.
69  * This is a public interface that socket consumers should use to close and
70  * release a socket when done with it.
71  *
72  * soabort() destroys a socket without waiting for it to disconnect (used
73  * only for incoming connections that are already partially or fully
74  * connected).  This is used internally by the socket layer when clearing
75  * listen socket queues (due to overflow or close on the listen socket), but
76  * is also a public interface protocols may use to abort connections in
77  * their incomplete listen queues should they no longer be required.  Sockets
78  * placed in completed connection listen queues should not be aborted for
79  * reasons described in the comment above the soclose() implementation.  This
80  * is not a general purpose close routine, and except in the specific
81  * circumstances described here, should not be used.
82  *
83  * sofree() will free a socket and its protocol state if all references on
84  * the socket have been released, and is the public interface to attempt to
85  * free a socket when a reference is removed.  This is a socket layer private
86  * interface.
87  *
88  * NOTE: In addition to socreate() and soclose(), which provide a single
89  * socket reference to the consumer to be managed as required, there are two
90  * calls to explicitly manage socket references, soref(), and sorele().
91  * Currently, these are generally required only when transitioning a socket
92  * from a listen queue to a file descriptor, in order to prevent garbage
93  * collection of the socket at an untimely moment.  For a number of reasons,
94  * these interfaces are not preferred, and should be avoided.
95  */
96 
97 #include <sys/cdefs.h>
98 __FBSDID("$FreeBSD$");
99 
100 #include "opt_inet.h"
101 #include "opt_inet6.h"
102 #include "opt_mac.h"
103 #include "opt_zero.h"
104 #include "opt_compat.h"
105 
106 #include <sys/param.h>
107 #include <sys/systm.h>
108 #include <sys/fcntl.h>
109 #include <sys/limits.h>
110 #include <sys/lock.h>
111 #include <sys/mac.h>
112 #include <sys/malloc.h>
113 #include <sys/mbuf.h>
114 #include <sys/mutex.h>
115 #include <sys/domain.h>
116 #include <sys/file.h>			/* for struct knote */
117 #include <sys/kernel.h>
118 #include <sys/event.h>
119 #include <sys/eventhandler.h>
120 #include <sys/poll.h>
121 #include <sys/proc.h>
122 #include <sys/protosw.h>
123 #include <sys/socket.h>
124 #include <sys/socketvar.h>
125 #include <sys/resourcevar.h>
126 #include <net/route.h>
127 #include <sys/signalvar.h>
128 #include <sys/stat.h>
129 #include <sys/sx.h>
130 #include <sys/sysctl.h>
131 #include <sys/uio.h>
132 #include <sys/jail.h>
133 
134 #include <security/mac/mac_framework.h>
135 
136 #include <vm/uma.h>
137 
138 #ifdef COMPAT_IA32
139 #include <sys/mount.h>
140 #include <sys/sysent.h>
141 #include <compat/freebsd32/freebsd32.h>
142 #endif
143 
144 static int	soreceive_rcvoob(struct socket *so, struct uio *uio,
145 		    int flags);
146 
147 static void	filt_sordetach(struct knote *kn);
148 static int	filt_soread(struct knote *kn, long hint);
149 static void	filt_sowdetach(struct knote *kn);
150 static int	filt_sowrite(struct knote *kn, long hint);
151 static int	filt_solisten(struct knote *kn, long hint);
152 
153 static struct filterops solisten_filtops =
154 	{ 1, NULL, filt_sordetach, filt_solisten };
155 static struct filterops soread_filtops =
156 	{ 1, NULL, filt_sordetach, filt_soread };
157 static struct filterops sowrite_filtops =
158 	{ 1, NULL, filt_sowdetach, filt_sowrite };
159 
160 uma_zone_t socket_zone;
161 so_gen_t	so_gencnt;	/* generation count for sockets */
162 
163 int	maxsockets;
164 
165 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
166 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
167 
168 static int somaxconn = SOMAXCONN;
169 static int sysctl_somaxconn(SYSCTL_HANDLER_ARGS);
170 /* XXX: we dont have SYSCTL_USHORT */
171 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLTYPE_UINT | CTLFLAG_RW,
172     0, sizeof(int), sysctl_somaxconn, "I", "Maximum pending socket connection "
173     "queue size");
174 static int numopensockets;
175 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,
176     &numopensockets, 0, "Number of open sockets");
177 #ifdef ZERO_COPY_SOCKETS
178 /* These aren't static because they're used in other files. */
179 int so_zero_copy_send = 1;
180 int so_zero_copy_receive = 1;
181 SYSCTL_NODE(_kern_ipc, OID_AUTO, zero_copy, CTLFLAG_RD, 0,
182     "Zero copy controls");
183 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, receive, CTLFLAG_RW,
184     &so_zero_copy_receive, 0, "Enable zero copy receive");
185 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, send, CTLFLAG_RW,
186     &so_zero_copy_send, 0, "Enable zero copy send");
187 #endif /* ZERO_COPY_SOCKETS */
188 
189 /*
190  * accept_mtx locks down per-socket fields relating to accept queues.  See
191  * socketvar.h for an annotation of the protected fields of struct socket.
192  */
193 struct mtx accept_mtx;
194 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF);
195 
196 /*
197  * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
198  * so_gencnt field.
199  */
200 static struct mtx so_global_mtx;
201 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
202 
203 /*
204  * General IPC sysctl name space, used by sockets and a variety of other IPC
205  * types.
206  */
207 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
208 
209 /*
210  * Sysctl to get and set the maximum global sockets limit.  Notify protocols
211  * of the change so that they can update their dependent limits as required.
212  */
213 static int
214 sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
215 {
216 	int error, newmaxsockets;
217 
218 	newmaxsockets = maxsockets;
219 	error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
220 	if (error == 0 && req->newptr) {
221 		if (newmaxsockets > maxsockets) {
222 			maxsockets = newmaxsockets;
223 			if (maxsockets > ((maxfiles / 4) * 3)) {
224 				maxfiles = (maxsockets * 5) / 4;
225 				maxfilesperproc = (maxfiles * 9) / 10;
226 			}
227 			EVENTHANDLER_INVOKE(maxsockets_change);
228 		} else
229 			error = EINVAL;
230 	}
231 	return (error);
232 }
233 
234 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, CTLTYPE_INT|CTLFLAG_RW,
235     &maxsockets, 0, sysctl_maxsockets, "IU",
236     "Maximum number of sockets avaliable");
237 
238 /*
239  * Initialise maxsockets.
240  */
241 static void init_maxsockets(void *ignored)
242 {
243 	TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
244 	maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters));
245 }
246 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
247 
248 /*
249  * Socket operation routines.  These routines are called by the routines in
250  * sys_socket.c or from a system process, and implement the semantics of
251  * socket operations by switching out to the protocol specific routines.
252  */
253 
254 /*
255  * Get a socket structure from our zone, and initialize it.  Note that it
256  * would probably be better to allocate socket and PCB at the same time, but
257  * I'm not convinced that all the protocols can be easily modified to do
258  * this.
259  *
260  * soalloc() returns a socket with a ref count of 0.
261  */
262 static struct socket *
263 soalloc(void)
264 {
265 	struct socket *so;
266 
267 	so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
268 	if (so == NULL)
269 		return (NULL);
270 #ifdef MAC
271 	if (mac_socket_init(so, M_NOWAIT) != 0) {
272 		uma_zfree(socket_zone, so);
273 		return (NULL);
274 	}
275 #endif
276 	SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd");
277 	SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv");
278 	sx_init(&so->so_snd.sb_sx, "so_snd_sx");
279 	sx_init(&so->so_rcv.sb_sx, "so_rcv_sx");
280 	TAILQ_INIT(&so->so_aiojobq);
281 	mtx_lock(&so_global_mtx);
282 	so->so_gencnt = ++so_gencnt;
283 	++numopensockets;
284 	mtx_unlock(&so_global_mtx);
285 	return (so);
286 }
287 
288 /*
289  * Free the storage associated with a socket at the socket layer, tear down
290  * locks, labels, etc.  All protocol state is assumed already to have been
291  * torn down (and possibly never set up) by the caller.
292  */
293 static void
294 sodealloc(struct socket *so)
295 {
296 
297 	KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
298 	KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
299 
300 	mtx_lock(&so_global_mtx);
301 	so->so_gencnt = ++so_gencnt;
302 	--numopensockets;	/* Could be below, but faster here. */
303 	mtx_unlock(&so_global_mtx);
304 	if (so->so_rcv.sb_hiwat)
305 		(void)chgsbsize(so->so_cred->cr_uidinfo,
306 		    &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
307 	if (so->so_snd.sb_hiwat)
308 		(void)chgsbsize(so->so_cred->cr_uidinfo,
309 		    &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
310 #ifdef INET
311 	/* remove acccept filter if one is present. */
312 	if (so->so_accf != NULL)
313 		do_setopt_accept_filter(so, NULL);
314 #endif
315 #ifdef MAC
316 	mac_socket_destroy(so);
317 #endif
318 	crfree(so->so_cred);
319 	sx_destroy(&so->so_snd.sb_sx);
320 	sx_destroy(&so->so_rcv.sb_sx);
321 	SOCKBUF_LOCK_DESTROY(&so->so_snd);
322 	SOCKBUF_LOCK_DESTROY(&so->so_rcv);
323 	uma_zfree(socket_zone, so);
324 }
325 
326 /*
327  * socreate returns a socket with a ref count of 1.  The socket should be
328  * closed with soclose().
329  */
330 int
331 socreate(int dom, struct socket **aso, int type, int proto,
332     struct ucred *cred, struct thread *td)
333 {
334 	struct protosw *prp;
335 	struct socket *so;
336 	int error;
337 
338 	if (proto)
339 		prp = pffindproto(dom, proto, type);
340 	else
341 		prp = pffindtype(dom, type);
342 
343 	if (prp == NULL || prp->pr_usrreqs->pru_attach == NULL ||
344 	    prp->pr_usrreqs->pru_attach == pru_attach_notsupp)
345 		return (EPROTONOSUPPORT);
346 
347 	if (jailed(cred) && jail_socket_unixiproute_only &&
348 	    prp->pr_domain->dom_family != PF_LOCAL &&
349 	    prp->pr_domain->dom_family != PF_INET &&
350 #ifdef INET6
351 	    prp->pr_domain->dom_family != PF_INET6 &&
352 #endif
353 	    prp->pr_domain->dom_family != PF_ROUTE) {
354 		return (EPROTONOSUPPORT);
355 	}
356 
357 	if (prp->pr_type != type)
358 		return (EPROTOTYPE);
359 	so = soalloc();
360 	if (so == NULL)
361 		return (ENOBUFS);
362 
363 	TAILQ_INIT(&so->so_incomp);
364 	TAILQ_INIT(&so->so_comp);
365 	so->so_type = type;
366 	so->so_cred = crhold(cred);
367 	if ((prp->pr_domain->dom_family == PF_INET) ||
368 	    (prp->pr_domain->dom_family == PF_ROUTE))
369 		so->so_fibnum = td->td_proc->p_fibnum;
370 	else
371 		so->so_fibnum = 0;
372 	so->so_proto = prp;
373 #ifdef MAC
374 	mac_socket_create(cred, so);
375 #endif
376 	knlist_init(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv),
377 	    NULL, NULL, NULL);
378 	knlist_init(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd),
379 	    NULL, NULL, NULL);
380 	so->so_count = 1;
381 	/*
382 	 * Auto-sizing of socket buffers is managed by the protocols and
383 	 * the appropriate flags must be set in the pru_attach function.
384 	 */
385 	error = (*prp->pr_usrreqs->pru_attach)(so, proto, td);
386 	if (error) {
387 		KASSERT(so->so_count == 1, ("socreate: so_count %d",
388 		    so->so_count));
389 		so->so_count = 0;
390 		sodealloc(so);
391 		return (error);
392 	}
393 	*aso = so;
394 	return (0);
395 }
396 
397 #ifdef REGRESSION
398 static int regression_sonewconn_earlytest = 1;
399 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
400     &regression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
401 #endif
402 
403 /*
404  * When an attempt at a new connection is noted on a socket which accepts
405  * connections, sonewconn is called.  If the connection is possible (subject
406  * to space constraints, etc.) then we allocate a new structure, propoerly
407  * linked into the data structure of the original socket, and return this.
408  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
409  *
410  * Note: the ref count on the socket is 0 on return.
411  */
412 struct socket *
413 sonewconn(struct socket *head, int connstatus)
414 {
415 	struct socket *so;
416 	int over;
417 
418 	ACCEPT_LOCK();
419 	over = (head->so_qlen > 3 * head->so_qlimit / 2);
420 	ACCEPT_UNLOCK();
421 #ifdef REGRESSION
422 	if (regression_sonewconn_earlytest && over)
423 #else
424 	if (over)
425 #endif
426 		return (NULL);
427 	so = soalloc();
428 	if (so == NULL)
429 		return (NULL);
430 	if ((head->so_options & SO_ACCEPTFILTER) != 0)
431 		connstatus = 0;
432 	so->so_head = head;
433 	so->so_type = head->so_type;
434 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
435 	so->so_linger = head->so_linger;
436 	so->so_state = head->so_state | SS_NOFDREF;
437 	so->so_proto = head->so_proto;
438 	so->so_cred = crhold(head->so_cred);
439 #ifdef MAC
440 	SOCK_LOCK(head);
441 	mac_socket_newconn(head, so);
442 	SOCK_UNLOCK(head);
443 #endif
444 	knlist_init(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv),
445 	    NULL, NULL, NULL);
446 	knlist_init(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd),
447 	    NULL, NULL, NULL);
448 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) ||
449 	    (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
450 		sodealloc(so);
451 		return (NULL);
452 	}
453 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
454 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
455 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
456 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
457 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
458 	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
459 	so->so_state |= connstatus;
460 	ACCEPT_LOCK();
461 	if (connstatus) {
462 		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
463 		so->so_qstate |= SQ_COMP;
464 		head->so_qlen++;
465 	} else {
466 		/*
467 		 * Keep removing sockets from the head until there's room for
468 		 * us to insert on the tail.  In pre-locking revisions, this
469 		 * was a simple if(), but as we could be racing with other
470 		 * threads and soabort() requires dropping locks, we must
471 		 * loop waiting for the condition to be true.
472 		 */
473 		while (head->so_incqlen > head->so_qlimit) {
474 			struct socket *sp;
475 			sp = TAILQ_FIRST(&head->so_incomp);
476 			TAILQ_REMOVE(&head->so_incomp, sp, so_list);
477 			head->so_incqlen--;
478 			sp->so_qstate &= ~SQ_INCOMP;
479 			sp->so_head = NULL;
480 			ACCEPT_UNLOCK();
481 			soabort(sp);
482 			ACCEPT_LOCK();
483 		}
484 		TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
485 		so->so_qstate |= SQ_INCOMP;
486 		head->so_incqlen++;
487 	}
488 	ACCEPT_UNLOCK();
489 	if (connstatus) {
490 		sorwakeup(head);
491 		wakeup_one(&head->so_timeo);
492 	}
493 	return (so);
494 }
495 
496 int
497 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
498 {
499 
500 	return ((*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td));
501 }
502 
503 /*
504  * solisten() transitions a socket from a non-listening state to a listening
505  * state, but can also be used to update the listen queue depth on an
506  * existing listen socket.  The protocol will call back into the sockets
507  * layer using solisten_proto_check() and solisten_proto() to check and set
508  * socket-layer listen state.  Call backs are used so that the protocol can
509  * acquire both protocol and socket layer locks in whatever order is required
510  * by the protocol.
511  *
512  * Protocol implementors are advised to hold the socket lock across the
513  * socket-layer test and set to avoid races at the socket layer.
514  */
515 int
516 solisten(struct socket *so, int backlog, struct thread *td)
517 {
518 
519 	return ((*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td));
520 }
521 
522 int
523 solisten_proto_check(struct socket *so)
524 {
525 
526 	SOCK_LOCK_ASSERT(so);
527 
528 	if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
529 	    SS_ISDISCONNECTING))
530 		return (EINVAL);
531 	return (0);
532 }
533 
534 void
535 solisten_proto(struct socket *so, int backlog)
536 {
537 
538 	SOCK_LOCK_ASSERT(so);
539 
540 	if (backlog < 0 || backlog > somaxconn)
541 		backlog = somaxconn;
542 	so->so_qlimit = backlog;
543 	so->so_options |= SO_ACCEPTCONN;
544 }
545 
546 /*
547  * Attempt to free a socket.  This should really be sotryfree().
548  *
549  * sofree() will succeed if:
550  *
551  * - There are no outstanding file descriptor references or related consumers
552  *   (so_count == 0).
553  *
554  * - The socket has been closed by user space, if ever open (SS_NOFDREF).
555  *
556  * - The protocol does not have an outstanding strong reference on the socket
557  *   (SS_PROTOREF).
558  *
559  * - The socket is not in a completed connection queue, so a process has been
560  *   notified that it is present.  If it is removed, the user process may
561  *   block in accept() despite select() saying the socket was ready.
562  *
563  * Otherwise, it will quietly abort so that a future call to sofree(), when
564  * conditions are right, can succeed.
565  */
566 void
567 sofree(struct socket *so)
568 {
569 	struct protosw *pr = so->so_proto;
570 	struct socket *head;
571 
572 	ACCEPT_LOCK_ASSERT();
573 	SOCK_LOCK_ASSERT(so);
574 
575 	if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 ||
576 	    (so->so_state & SS_PROTOREF) || (so->so_qstate & SQ_COMP)) {
577 		SOCK_UNLOCK(so);
578 		ACCEPT_UNLOCK();
579 		return;
580 	}
581 
582 	head = so->so_head;
583 	if (head != NULL) {
584 		KASSERT((so->so_qstate & SQ_COMP) != 0 ||
585 		    (so->so_qstate & SQ_INCOMP) != 0,
586 		    ("sofree: so_head != NULL, but neither SQ_COMP nor "
587 		    "SQ_INCOMP"));
588 		KASSERT((so->so_qstate & SQ_COMP) == 0 ||
589 		    (so->so_qstate & SQ_INCOMP) == 0,
590 		    ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP"));
591 		TAILQ_REMOVE(&head->so_incomp, so, so_list);
592 		head->so_incqlen--;
593 		so->so_qstate &= ~SQ_INCOMP;
594 		so->so_head = NULL;
595 	}
596 	KASSERT((so->so_qstate & SQ_COMP) == 0 &&
597 	    (so->so_qstate & SQ_INCOMP) == 0,
598 	    ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)",
599 	    so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP));
600 	if (so->so_options & SO_ACCEPTCONN) {
601 		KASSERT((TAILQ_EMPTY(&so->so_comp)), ("sofree: so_comp populated"));
602 		KASSERT((TAILQ_EMPTY(&so->so_incomp)), ("sofree: so_comp populated"));
603 	}
604 	SOCK_UNLOCK(so);
605 	ACCEPT_UNLOCK();
606 
607 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
608 		(*pr->pr_domain->dom_dispose)(so->so_rcv.sb_mb);
609 	if (pr->pr_usrreqs->pru_detach != NULL)
610 		(*pr->pr_usrreqs->pru_detach)(so);
611 
612 	/*
613 	 * From this point on, we assume that no other references to this
614 	 * socket exist anywhere else in the stack.  Therefore, no locks need
615 	 * to be acquired or held.
616 	 *
617 	 * We used to do a lot of socket buffer and socket locking here, as
618 	 * well as invoke sorflush() and perform wakeups.  The direct call to
619 	 * dom_dispose() and sbrelease_internal() are an inlining of what was
620 	 * necessary from sorflush().
621 	 *
622 	 * Notice that the socket buffer and kqueue state are torn down
623 	 * before calling pru_detach.  This means that protocols shold not
624 	 * assume they can perform socket wakeups, etc, in their detach code.
625 	 */
626 	sbdestroy(&so->so_snd, so);
627 	sbdestroy(&so->so_rcv, so);
628 	knlist_destroy(&so->so_rcv.sb_sel.si_note);
629 	knlist_destroy(&so->so_snd.sb_sel.si_note);
630 	sodealloc(so);
631 }
632 
633 /*
634  * Close a socket on last file table reference removal.  Initiate disconnect
635  * if connected.  Free socket when disconnect complete.
636  *
637  * This function will sorele() the socket.  Note that soclose() may be called
638  * prior to the ref count reaching zero.  The actual socket structure will
639  * not be freed until the ref count reaches zero.
640  */
641 int
642 soclose(struct socket *so)
643 {
644 	int error = 0;
645 
646 	KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter"));
647 
648 	funsetown(&so->so_sigio);
649 	if (so->so_state & SS_ISCONNECTED) {
650 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
651 			error = sodisconnect(so);
652 			if (error)
653 				goto drop;
654 		}
655 		if (so->so_options & SO_LINGER) {
656 			if ((so->so_state & SS_ISDISCONNECTING) &&
657 			    (so->so_state & SS_NBIO))
658 				goto drop;
659 			while (so->so_state & SS_ISCONNECTED) {
660 				error = tsleep(&so->so_timeo,
661 				    PSOCK | PCATCH, "soclos", so->so_linger * hz);
662 				if (error)
663 					break;
664 			}
665 		}
666 	}
667 
668 drop:
669 	if (so->so_proto->pr_usrreqs->pru_close != NULL)
670 		(*so->so_proto->pr_usrreqs->pru_close)(so);
671 	if (so->so_options & SO_ACCEPTCONN) {
672 		struct socket *sp;
673 		ACCEPT_LOCK();
674 		while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) {
675 			TAILQ_REMOVE(&so->so_incomp, sp, so_list);
676 			so->so_incqlen--;
677 			sp->so_qstate &= ~SQ_INCOMP;
678 			sp->so_head = NULL;
679 			ACCEPT_UNLOCK();
680 			soabort(sp);
681 			ACCEPT_LOCK();
682 		}
683 		while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) {
684 			TAILQ_REMOVE(&so->so_comp, sp, so_list);
685 			so->so_qlen--;
686 			sp->so_qstate &= ~SQ_COMP;
687 			sp->so_head = NULL;
688 			ACCEPT_UNLOCK();
689 			soabort(sp);
690 			ACCEPT_LOCK();
691 		}
692 		ACCEPT_UNLOCK();
693 	}
694 	ACCEPT_LOCK();
695 	SOCK_LOCK(so);
696 	KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF"));
697 	so->so_state |= SS_NOFDREF;
698 	sorele(so);
699 	return (error);
700 }
701 
702 /*
703  * soabort() is used to abruptly tear down a connection, such as when a
704  * resource limit is reached (listen queue depth exceeded), or if a listen
705  * socket is closed while there are sockets waiting to be accepted.
706  *
707  * This interface is tricky, because it is called on an unreferenced socket,
708  * and must be called only by a thread that has actually removed the socket
709  * from the listen queue it was on, or races with other threads are risked.
710  *
711  * This interface will call into the protocol code, so must not be called
712  * with any socket locks held.  Protocols do call it while holding their own
713  * recursible protocol mutexes, but this is something that should be subject
714  * to review in the future.
715  */
716 void
717 soabort(struct socket *so)
718 {
719 
720 	/*
721 	 * In as much as is possible, assert that no references to this
722 	 * socket are held.  This is not quite the same as asserting that the
723 	 * current thread is responsible for arranging for no references, but
724 	 * is as close as we can get for now.
725 	 */
726 	KASSERT(so->so_count == 0, ("soabort: so_count"));
727 	KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF"));
728 	KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF"));
729 	KASSERT((so->so_state & SQ_COMP) == 0, ("soabort: SQ_COMP"));
730 	KASSERT((so->so_state & SQ_INCOMP) == 0, ("soabort: SQ_INCOMP"));
731 
732 	if (so->so_proto->pr_usrreqs->pru_abort != NULL)
733 		(*so->so_proto->pr_usrreqs->pru_abort)(so);
734 	ACCEPT_LOCK();
735 	SOCK_LOCK(so);
736 	sofree(so);
737 }
738 
739 int
740 soaccept(struct socket *so, struct sockaddr **nam)
741 {
742 	int error;
743 
744 	SOCK_LOCK(so);
745 	KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF"));
746 	so->so_state &= ~SS_NOFDREF;
747 	SOCK_UNLOCK(so);
748 	error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam);
749 	return (error);
750 }
751 
752 int
753 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
754 {
755 	int error;
756 
757 	if (so->so_options & SO_ACCEPTCONN)
758 		return (EOPNOTSUPP);
759 	/*
760 	 * If protocol is connection-based, can only connect once.
761 	 * Otherwise, if connected, try to disconnect first.  This allows
762 	 * user to disconnect by connecting to, e.g., a null address.
763 	 */
764 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
765 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
766 	    (error = sodisconnect(so)))) {
767 		error = EISCONN;
768 	} else {
769 		/*
770 		 * Prevent accumulated error from previous connection from
771 		 * biting us.
772 		 */
773 		so->so_error = 0;
774 		error = (*so->so_proto->pr_usrreqs->pru_connect)(so, nam, td);
775 	}
776 
777 	return (error);
778 }
779 
780 int
781 soconnect2(struct socket *so1, struct socket *so2)
782 {
783 
784 	return ((*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2));
785 }
786 
787 int
788 sodisconnect(struct socket *so)
789 {
790 	int error;
791 
792 	if ((so->so_state & SS_ISCONNECTED) == 0)
793 		return (ENOTCONN);
794 	if (so->so_state & SS_ISDISCONNECTING)
795 		return (EALREADY);
796 	error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so);
797 	return (error);
798 }
799 
800 #ifdef ZERO_COPY_SOCKETS
801 struct so_zerocopy_stats{
802 	int size_ok;
803 	int align_ok;
804 	int found_ifp;
805 };
806 struct so_zerocopy_stats so_zerocp_stats = {0,0,0};
807 #include <netinet/in.h>
808 #include <net/route.h>
809 #include <netinet/in_pcb.h>
810 #include <vm/vm.h>
811 #include <vm/vm_page.h>
812 #include <vm/vm_object.h>
813 
814 /*
815  * sosend_copyin() is only used if zero copy sockets are enabled.  Otherwise
816  * sosend_dgram() and sosend_generic() use m_uiotombuf().
817  *
818  * sosend_copyin() accepts a uio and prepares an mbuf chain holding part or
819  * all of the data referenced by the uio.  If desired, it uses zero-copy.
820  * *space will be updated to reflect data copied in.
821  *
822  * NB: If atomic I/O is requested, the caller must already have checked that
823  * space can hold resid bytes.
824  *
825  * NB: In the event of an error, the caller may need to free the partial
826  * chain pointed to by *mpp.  The contents of both *uio and *space may be
827  * modified even in the case of an error.
828  */
829 static int
830 sosend_copyin(struct uio *uio, struct mbuf **retmp, int atomic, long *space,
831     int flags)
832 {
833 	struct mbuf *m, **mp, *top;
834 	long len, resid;
835 	int error;
836 #ifdef ZERO_COPY_SOCKETS
837 	int cow_send;
838 #endif
839 
840 	*retmp = top = NULL;
841 	mp = &top;
842 	len = 0;
843 	resid = uio->uio_resid;
844 	error = 0;
845 	do {
846 #ifdef ZERO_COPY_SOCKETS
847 		cow_send = 0;
848 #endif /* ZERO_COPY_SOCKETS */
849 		if (resid >= MINCLSIZE) {
850 #ifdef ZERO_COPY_SOCKETS
851 			if (top == NULL) {
852 				m = m_gethdr(M_WAITOK, MT_DATA);
853 				m->m_pkthdr.len = 0;
854 				m->m_pkthdr.rcvif = NULL;
855 			} else
856 				m = m_get(M_WAITOK, MT_DATA);
857 			if (so_zero_copy_send &&
858 			    resid>=PAGE_SIZE &&
859 			    *space>=PAGE_SIZE &&
860 			    uio->uio_iov->iov_len>=PAGE_SIZE) {
861 				so_zerocp_stats.size_ok++;
862 				so_zerocp_stats.align_ok++;
863 				cow_send = socow_setup(m, uio);
864 				len = cow_send;
865 			}
866 			if (!cow_send) {
867 				m_clget(m, M_WAITOK);
868 				len = min(min(MCLBYTES, resid), *space);
869 			}
870 #else /* ZERO_COPY_SOCKETS */
871 			if (top == NULL) {
872 				m = m_getcl(M_WAIT, MT_DATA, M_PKTHDR);
873 				m->m_pkthdr.len = 0;
874 				m->m_pkthdr.rcvif = NULL;
875 			} else
876 				m = m_getcl(M_WAIT, MT_DATA, 0);
877 			len = min(min(MCLBYTES, resid), *space);
878 #endif /* ZERO_COPY_SOCKETS */
879 		} else {
880 			if (top == NULL) {
881 				m = m_gethdr(M_WAIT, MT_DATA);
882 				m->m_pkthdr.len = 0;
883 				m->m_pkthdr.rcvif = NULL;
884 
885 				len = min(min(MHLEN, resid), *space);
886 				/*
887 				 * For datagram protocols, leave room
888 				 * for protocol headers in first mbuf.
889 				 */
890 				if (atomic && m && len < MHLEN)
891 					MH_ALIGN(m, len);
892 			} else {
893 				m = m_get(M_WAIT, MT_DATA);
894 				len = min(min(MLEN, resid), *space);
895 			}
896 		}
897 		if (m == NULL) {
898 			error = ENOBUFS;
899 			goto out;
900 		}
901 
902 		*space -= len;
903 #ifdef ZERO_COPY_SOCKETS
904 		if (cow_send)
905 			error = 0;
906 		else
907 #endif /* ZERO_COPY_SOCKETS */
908 		error = uiomove(mtod(m, void *), (int)len, uio);
909 		resid = uio->uio_resid;
910 		m->m_len = len;
911 		*mp = m;
912 		top->m_pkthdr.len += len;
913 		if (error)
914 			goto out;
915 		mp = &m->m_next;
916 		if (resid <= 0) {
917 			if (flags & MSG_EOR)
918 				top->m_flags |= M_EOR;
919 			break;
920 		}
921 	} while (*space > 0 && atomic);
922 out:
923 	*retmp = top;
924 	return (error);
925 }
926 #endif /*ZERO_COPY_SOCKETS*/
927 
928 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT)
929 
930 int
931 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
932     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
933 {
934 	long space, resid;
935 	int clen = 0, error, dontroute;
936 #ifdef ZERO_COPY_SOCKETS
937 	int atomic = sosendallatonce(so) || top;
938 #endif
939 
940 	KASSERT(so->so_type == SOCK_DGRAM, ("sodgram_send: !SOCK_DGRAM"));
941 	KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
942 	    ("sodgram_send: !PR_ATOMIC"));
943 
944 	if (uio != NULL)
945 		resid = uio->uio_resid;
946 	else
947 		resid = top->m_pkthdr.len;
948 	/*
949 	 * In theory resid should be unsigned.  However, space must be
950 	 * signed, as it might be less than 0 if we over-committed, and we
951 	 * must use a signed comparison of space and resid.  On the other
952 	 * hand, a negative resid causes us to loop sending 0-length
953 	 * segments to the protocol.
954 	 *
955 	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
956 	 * type sockets since that's an error.
957 	 */
958 	if (resid < 0) {
959 		error = EINVAL;
960 		goto out;
961 	}
962 
963 	dontroute =
964 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
965 	if (td != NULL)
966 		td->td_ru.ru_msgsnd++;
967 	if (control != NULL)
968 		clen = control->m_len;
969 
970 	SOCKBUF_LOCK(&so->so_snd);
971 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
972 		SOCKBUF_UNLOCK(&so->so_snd);
973 		error = EPIPE;
974 		goto out;
975 	}
976 	if (so->so_error) {
977 		error = so->so_error;
978 		so->so_error = 0;
979 		SOCKBUF_UNLOCK(&so->so_snd);
980 		goto out;
981 	}
982 	if ((so->so_state & SS_ISCONNECTED) == 0) {
983 		/*
984 		 * `sendto' and `sendmsg' is allowed on a connection-based
985 		 * socket if it supports implied connect.  Return ENOTCONN if
986 		 * not connected and no address is supplied.
987 		 */
988 		if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
989 		    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
990 			if ((so->so_state & SS_ISCONFIRMING) == 0 &&
991 			    !(resid == 0 && clen != 0)) {
992 				SOCKBUF_UNLOCK(&so->so_snd);
993 				error = ENOTCONN;
994 				goto out;
995 			}
996 		} else if (addr == NULL) {
997 			if (so->so_proto->pr_flags & PR_CONNREQUIRED)
998 				error = ENOTCONN;
999 			else
1000 				error = EDESTADDRREQ;
1001 			SOCKBUF_UNLOCK(&so->so_snd);
1002 			goto out;
1003 		}
1004 	}
1005 
1006 	/*
1007 	 * Do we need MSG_OOB support in SOCK_DGRAM?  Signs here may be a
1008 	 * problem and need fixing.
1009 	 */
1010 	space = sbspace(&so->so_snd);
1011 	if (flags & MSG_OOB)
1012 		space += 1024;
1013 	space -= clen;
1014 	SOCKBUF_UNLOCK(&so->so_snd);
1015 	if (resid > space) {
1016 		error = EMSGSIZE;
1017 		goto out;
1018 	}
1019 	if (uio == NULL) {
1020 		resid = 0;
1021 		if (flags & MSG_EOR)
1022 			top->m_flags |= M_EOR;
1023 	} else {
1024 #ifdef ZERO_COPY_SOCKETS
1025 		error = sosend_copyin(uio, &top, atomic, &space, flags);
1026 		if (error)
1027 			goto out;
1028 #else
1029 		/*
1030 		 * Copy the data from userland into a mbuf chain.
1031 		 * If no data is to be copied in, a single empty mbuf
1032 		 * is returned.
1033 		 */
1034 		top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
1035 		    (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
1036 		if (top == NULL) {
1037 			error = EFAULT;	/* only possible error */
1038 			goto out;
1039 		}
1040 		space -= resid - uio->uio_resid;
1041 #endif
1042 		resid = uio->uio_resid;
1043 	}
1044 	KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
1045 	/*
1046 	 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
1047 	 * than with.
1048 	 */
1049 	if (dontroute) {
1050 		SOCK_LOCK(so);
1051 		so->so_options |= SO_DONTROUTE;
1052 		SOCK_UNLOCK(so);
1053 	}
1054 	/*
1055 	 * XXX all the SBS_CANTSENDMORE checks previously done could be out
1056 	 * of date.  We could have recieved a reset packet in an interrupt or
1057 	 * maybe we slept while doing page faults in uiomove() etc.  We could
1058 	 * probably recheck again inside the locking protection here, but
1059 	 * there are probably other places that this also happens.  We must
1060 	 * rethink this.
1061 	 */
1062 	error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1063 	    (flags & MSG_OOB) ? PRUS_OOB :
1064 	/*
1065 	 * If the user set MSG_EOF, the protocol understands this flag and
1066 	 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
1067 	 */
1068 	    ((flags & MSG_EOF) &&
1069 	     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1070 	     (resid <= 0)) ?
1071 		PRUS_EOF :
1072 		/* If there is more to send set PRUS_MORETOCOME */
1073 		(resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1074 		top, addr, control, td);
1075 	if (dontroute) {
1076 		SOCK_LOCK(so);
1077 		so->so_options &= ~SO_DONTROUTE;
1078 		SOCK_UNLOCK(so);
1079 	}
1080 	clen = 0;
1081 	control = NULL;
1082 	top = NULL;
1083 out:
1084 	if (top != NULL)
1085 		m_freem(top);
1086 	if (control != NULL)
1087 		m_freem(control);
1088 	return (error);
1089 }
1090 
1091 /*
1092  * Send on a socket.  If send must go all at once and message is larger than
1093  * send buffering, then hard error.  Lock against other senders.  If must go
1094  * all at once and not enough room now, then inform user that this would
1095  * block and do nothing.  Otherwise, if nonblocking, send as much as
1096  * possible.  The data to be sent is described by "uio" if nonzero, otherwise
1097  * by the mbuf chain "top" (which must be null if uio is not).  Data provided
1098  * in mbuf chain must be small enough to send all at once.
1099  *
1100  * Returns nonzero on error, timeout or signal; callers must check for short
1101  * counts if EINTR/ERESTART are returned.  Data and control buffers are freed
1102  * on return.
1103  */
1104 int
1105 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
1106     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1107 {
1108 	long space, resid;
1109 	int clen = 0, error, dontroute;
1110 	int atomic = sosendallatonce(so) || top;
1111 
1112 	if (uio != NULL)
1113 		resid = uio->uio_resid;
1114 	else
1115 		resid = top->m_pkthdr.len;
1116 	/*
1117 	 * In theory resid should be unsigned.  However, space must be
1118 	 * signed, as it might be less than 0 if we over-committed, and we
1119 	 * must use a signed comparison of space and resid.  On the other
1120 	 * hand, a negative resid causes us to loop sending 0-length
1121 	 * segments to the protocol.
1122 	 *
1123 	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
1124 	 * type sockets since that's an error.
1125 	 */
1126 	if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
1127 		error = EINVAL;
1128 		goto out;
1129 	}
1130 
1131 	dontroute =
1132 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
1133 	    (so->so_proto->pr_flags & PR_ATOMIC);
1134 	if (td != NULL)
1135 		td->td_ru.ru_msgsnd++;
1136 	if (control != NULL)
1137 		clen = control->m_len;
1138 
1139 	error = sblock(&so->so_snd, SBLOCKWAIT(flags));
1140 	if (error)
1141 		goto out;
1142 
1143 restart:
1144 	do {
1145 		SOCKBUF_LOCK(&so->so_snd);
1146 		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1147 			SOCKBUF_UNLOCK(&so->so_snd);
1148 			error = EPIPE;
1149 			goto release;
1150 		}
1151 		if (so->so_error) {
1152 			error = so->so_error;
1153 			so->so_error = 0;
1154 			SOCKBUF_UNLOCK(&so->so_snd);
1155 			goto release;
1156 		}
1157 		if ((so->so_state & SS_ISCONNECTED) == 0) {
1158 			/*
1159 			 * `sendto' and `sendmsg' is allowed on a connection-
1160 			 * based socket if it supports implied connect.
1161 			 * Return ENOTCONN if not connected and no address is
1162 			 * supplied.
1163 			 */
1164 			if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1165 			    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1166 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1167 				    !(resid == 0 && clen != 0)) {
1168 					SOCKBUF_UNLOCK(&so->so_snd);
1169 					error = ENOTCONN;
1170 					goto release;
1171 				}
1172 			} else if (addr == NULL) {
1173 				SOCKBUF_UNLOCK(&so->so_snd);
1174 				if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1175 					error = ENOTCONN;
1176 				else
1177 					error = EDESTADDRREQ;
1178 				goto release;
1179 			}
1180 		}
1181 		space = sbspace(&so->so_snd);
1182 		if (flags & MSG_OOB)
1183 			space += 1024;
1184 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
1185 		    clen > so->so_snd.sb_hiwat) {
1186 			SOCKBUF_UNLOCK(&so->so_snd);
1187 			error = EMSGSIZE;
1188 			goto release;
1189 		}
1190 		if (space < resid + clen &&
1191 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
1192 			if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
1193 				SOCKBUF_UNLOCK(&so->so_snd);
1194 				error = EWOULDBLOCK;
1195 				goto release;
1196 			}
1197 			error = sbwait(&so->so_snd);
1198 			SOCKBUF_UNLOCK(&so->so_snd);
1199 			if (error)
1200 				goto release;
1201 			goto restart;
1202 		}
1203 		SOCKBUF_UNLOCK(&so->so_snd);
1204 		space -= clen;
1205 		do {
1206 			if (uio == NULL) {
1207 				resid = 0;
1208 				if (flags & MSG_EOR)
1209 					top->m_flags |= M_EOR;
1210 			} else {
1211 #ifdef ZERO_COPY_SOCKETS
1212 				error = sosend_copyin(uio, &top, atomic,
1213 				    &space, flags);
1214 				if (error != 0)
1215 					goto release;
1216 #else
1217 				/*
1218 				 * Copy the data from userland into a mbuf
1219 				 * chain.  If no data is to be copied in,
1220 				 * a single empty mbuf is returned.
1221 				 */
1222 				top = m_uiotombuf(uio, M_WAITOK, space,
1223 				    (atomic ? max_hdr : 0),
1224 				    (atomic ? M_PKTHDR : 0) |
1225 				    ((flags & MSG_EOR) ? M_EOR : 0));
1226 				if (top == NULL) {
1227 					error = EFAULT; /* only possible error */
1228 					goto release;
1229 				}
1230 				space -= resid - uio->uio_resid;
1231 #endif
1232 				resid = uio->uio_resid;
1233 			}
1234 			if (dontroute) {
1235 				SOCK_LOCK(so);
1236 				so->so_options |= SO_DONTROUTE;
1237 				SOCK_UNLOCK(so);
1238 			}
1239 			/*
1240 			 * XXX all the SBS_CANTSENDMORE checks previously
1241 			 * done could be out of date.  We could have recieved
1242 			 * a reset packet in an interrupt or maybe we slept
1243 			 * while doing page faults in uiomove() etc.  We
1244 			 * could probably recheck again inside the locking
1245 			 * protection here, but there are probably other
1246 			 * places that this also happens.  We must rethink
1247 			 * this.
1248 			 */
1249 			error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1250 			    (flags & MSG_OOB) ? PRUS_OOB :
1251 			/*
1252 			 * If the user set MSG_EOF, the protocol understands
1253 			 * this flag and nothing left to send then use
1254 			 * PRU_SEND_EOF instead of PRU_SEND.
1255 			 */
1256 			    ((flags & MSG_EOF) &&
1257 			     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1258 			     (resid <= 0)) ?
1259 				PRUS_EOF :
1260 			/* If there is more to send set PRUS_MORETOCOME. */
1261 			    (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1262 			    top, addr, control, td);
1263 			if (dontroute) {
1264 				SOCK_LOCK(so);
1265 				so->so_options &= ~SO_DONTROUTE;
1266 				SOCK_UNLOCK(so);
1267 			}
1268 			clen = 0;
1269 			control = NULL;
1270 			top = NULL;
1271 			if (error)
1272 				goto release;
1273 		} while (resid && space > 0);
1274 	} while (resid);
1275 
1276 release:
1277 	sbunlock(&so->so_snd);
1278 out:
1279 	if (top != NULL)
1280 		m_freem(top);
1281 	if (control != NULL)
1282 		m_freem(control);
1283 	return (error);
1284 }
1285 
1286 int
1287 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
1288     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1289 {
1290 
1291 	return (so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, top,
1292 	    control, flags, td));
1293 }
1294 
1295 /*
1296  * The part of soreceive() that implements reading non-inline out-of-band
1297  * data from a socket.  For more complete comments, see soreceive(), from
1298  * which this code originated.
1299  *
1300  * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
1301  * unable to return an mbuf chain to the caller.
1302  */
1303 static int
1304 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
1305 {
1306 	struct protosw *pr = so->so_proto;
1307 	struct mbuf *m;
1308 	int error;
1309 
1310 	KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
1311 
1312 	m = m_get(M_WAIT, MT_DATA);
1313 	error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK);
1314 	if (error)
1315 		goto bad;
1316 	do {
1317 #ifdef ZERO_COPY_SOCKETS
1318 		if (so_zero_copy_receive) {
1319 			int disposable;
1320 
1321 			if ((m->m_flags & M_EXT)
1322 			 && (m->m_ext.ext_type == EXT_DISPOSABLE))
1323 				disposable = 1;
1324 			else
1325 				disposable = 0;
1326 
1327 			error = uiomoveco(mtod(m, void *),
1328 					  min(uio->uio_resid, m->m_len),
1329 					  uio, disposable);
1330 		} else
1331 #endif /* ZERO_COPY_SOCKETS */
1332 		error = uiomove(mtod(m, void *),
1333 		    (int) min(uio->uio_resid, m->m_len), uio);
1334 		m = m_free(m);
1335 	} while (uio->uio_resid && error == 0 && m);
1336 bad:
1337 	if (m != NULL)
1338 		m_freem(m);
1339 	return (error);
1340 }
1341 
1342 /*
1343  * Following replacement or removal of the first mbuf on the first mbuf chain
1344  * of a socket buffer, push necessary state changes back into the socket
1345  * buffer so that other consumers see the values consistently.  'nextrecord'
1346  * is the callers locally stored value of the original value of
1347  * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
1348  * NOTE: 'nextrecord' may be NULL.
1349  */
1350 static __inline void
1351 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
1352 {
1353 
1354 	SOCKBUF_LOCK_ASSERT(sb);
1355 	/*
1356 	 * First, update for the new value of nextrecord.  If necessary, make
1357 	 * it the first record.
1358 	 */
1359 	if (sb->sb_mb != NULL)
1360 		sb->sb_mb->m_nextpkt = nextrecord;
1361 	else
1362 		sb->sb_mb = nextrecord;
1363 
1364         /*
1365          * Now update any dependent socket buffer fields to reflect the new
1366          * state.  This is an expanded inline of SB_EMPTY_FIXUP(), with the
1367 	 * addition of a second clause that takes care of the case where
1368 	 * sb_mb has been updated, but remains the last record.
1369          */
1370         if (sb->sb_mb == NULL) {
1371                 sb->sb_mbtail = NULL;
1372                 sb->sb_lastrecord = NULL;
1373         } else if (sb->sb_mb->m_nextpkt == NULL)
1374                 sb->sb_lastrecord = sb->sb_mb;
1375 }
1376 
1377 
1378 /*
1379  * Implement receive operations on a socket.  We depend on the way that
1380  * records are added to the sockbuf by sbappend.  In particular, each record
1381  * (mbufs linked through m_next) must begin with an address if the protocol
1382  * so specifies, followed by an optional mbuf or mbufs containing ancillary
1383  * data, and then zero or more mbufs of data.  In order to allow parallelism
1384  * between network receive and copying to user space, as well as avoid
1385  * sleeping with a mutex held, we release the socket buffer mutex during the
1386  * user space copy.  Although the sockbuf is locked, new data may still be
1387  * appended, and thus we must maintain consistency of the sockbuf during that
1388  * time.
1389  *
1390  * The caller may receive the data as a single mbuf chain by supplying an
1391  * mbuf **mp0 for use in returning the chain.  The uio is then used only for
1392  * the count in uio_resid.
1393  */
1394 int
1395 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
1396     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1397 {
1398 	struct mbuf *m, **mp;
1399 	int flags, len, error, offset;
1400 	struct protosw *pr = so->so_proto;
1401 	struct mbuf *nextrecord;
1402 	int moff, type = 0;
1403 	int orig_resid = uio->uio_resid;
1404 
1405 	mp = mp0;
1406 	if (psa != NULL)
1407 		*psa = NULL;
1408 	if (controlp != NULL)
1409 		*controlp = NULL;
1410 	if (flagsp != NULL)
1411 		flags = *flagsp &~ MSG_EOR;
1412 	else
1413 		flags = 0;
1414 	if (flags & MSG_OOB)
1415 		return (soreceive_rcvoob(so, uio, flags));
1416 	if (mp != NULL)
1417 		*mp = NULL;
1418 	if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING)
1419 	    && uio->uio_resid)
1420 		(*pr->pr_usrreqs->pru_rcvd)(so, 0);
1421 
1422 	error = sblock(&so->so_rcv, SBLOCKWAIT(flags));
1423 	if (error)
1424 		return (error);
1425 
1426 restart:
1427 	SOCKBUF_LOCK(&so->so_rcv);
1428 	m = so->so_rcv.sb_mb;
1429 	/*
1430 	 * If we have less data than requested, block awaiting more (subject
1431 	 * to any timeout) if:
1432 	 *   1. the current count is less than the low water mark, or
1433 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
1434 	 *	receive operation at once if we block (resid <= hiwat).
1435 	 *   3. MSG_DONTWAIT is not set
1436 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1437 	 * we have to do the receive in sections, and thus risk returning a
1438 	 * short count if a timeout or signal occurs after we start.
1439 	 */
1440 	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
1441 	    so->so_rcv.sb_cc < uio->uio_resid) &&
1442 	    (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1443 	    ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1444 	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
1445 		KASSERT(m != NULL || !so->so_rcv.sb_cc,
1446 		    ("receive: m == %p so->so_rcv.sb_cc == %u",
1447 		    m, so->so_rcv.sb_cc));
1448 		if (so->so_error) {
1449 			if (m != NULL)
1450 				goto dontblock;
1451 			error = so->so_error;
1452 			if ((flags & MSG_PEEK) == 0)
1453 				so->so_error = 0;
1454 			SOCKBUF_UNLOCK(&so->so_rcv);
1455 			goto release;
1456 		}
1457 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1458 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1459 			if (m == NULL) {
1460 				SOCKBUF_UNLOCK(&so->so_rcv);
1461 				goto release;
1462 			} else
1463 				goto dontblock;
1464 		}
1465 		for (; m != NULL; m = m->m_next)
1466 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
1467 				m = so->so_rcv.sb_mb;
1468 				goto dontblock;
1469 			}
1470 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1471 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1472 			SOCKBUF_UNLOCK(&so->so_rcv);
1473 			error = ENOTCONN;
1474 			goto release;
1475 		}
1476 		if (uio->uio_resid == 0) {
1477 			SOCKBUF_UNLOCK(&so->so_rcv);
1478 			goto release;
1479 		}
1480 		if ((so->so_state & SS_NBIO) ||
1481 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1482 			SOCKBUF_UNLOCK(&so->so_rcv);
1483 			error = EWOULDBLOCK;
1484 			goto release;
1485 		}
1486 		SBLASTRECORDCHK(&so->so_rcv);
1487 		SBLASTMBUFCHK(&so->so_rcv);
1488 		error = sbwait(&so->so_rcv);
1489 		SOCKBUF_UNLOCK(&so->so_rcv);
1490 		if (error)
1491 			goto release;
1492 		goto restart;
1493 	}
1494 dontblock:
1495 	/*
1496 	 * From this point onward, we maintain 'nextrecord' as a cache of the
1497 	 * pointer to the next record in the socket buffer.  We must keep the
1498 	 * various socket buffer pointers and local stack versions of the
1499 	 * pointers in sync, pushing out modifications before dropping the
1500 	 * socket buffer mutex, and re-reading them when picking it up.
1501 	 *
1502 	 * Otherwise, we will race with the network stack appending new data
1503 	 * or records onto the socket buffer by using inconsistent/stale
1504 	 * versions of the field, possibly resulting in socket buffer
1505 	 * corruption.
1506 	 *
1507 	 * By holding the high-level sblock(), we prevent simultaneous
1508 	 * readers from pulling off the front of the socket buffer.
1509 	 */
1510 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1511 	if (uio->uio_td)
1512 		uio->uio_td->td_ru.ru_msgrcv++;
1513 	KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
1514 	SBLASTRECORDCHK(&so->so_rcv);
1515 	SBLASTMBUFCHK(&so->so_rcv);
1516 	nextrecord = m->m_nextpkt;
1517 	if (pr->pr_flags & PR_ADDR) {
1518 		KASSERT(m->m_type == MT_SONAME,
1519 		    ("m->m_type == %d", m->m_type));
1520 		orig_resid = 0;
1521 		if (psa != NULL)
1522 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
1523 			    M_NOWAIT);
1524 		if (flags & MSG_PEEK) {
1525 			m = m->m_next;
1526 		} else {
1527 			sbfree(&so->so_rcv, m);
1528 			so->so_rcv.sb_mb = m_free(m);
1529 			m = so->so_rcv.sb_mb;
1530 			sockbuf_pushsync(&so->so_rcv, nextrecord);
1531 		}
1532 	}
1533 
1534 	/*
1535 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
1536 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
1537 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
1538 	 * perform externalization (or freeing if controlp == NULL).
1539 	 */
1540 	if (m != NULL && m->m_type == MT_CONTROL) {
1541 		struct mbuf *cm = NULL, *cmn;
1542 		struct mbuf **cme = &cm;
1543 
1544 		do {
1545 			if (flags & MSG_PEEK) {
1546 				if (controlp != NULL) {
1547 					*controlp = m_copy(m, 0, m->m_len);
1548 					controlp = &(*controlp)->m_next;
1549 				}
1550 				m = m->m_next;
1551 			} else {
1552 				sbfree(&so->so_rcv, m);
1553 				so->so_rcv.sb_mb = m->m_next;
1554 				m->m_next = NULL;
1555 				*cme = m;
1556 				cme = &(*cme)->m_next;
1557 				m = so->so_rcv.sb_mb;
1558 			}
1559 		} while (m != NULL && m->m_type == MT_CONTROL);
1560 		if ((flags & MSG_PEEK) == 0)
1561 			sockbuf_pushsync(&so->so_rcv, nextrecord);
1562 		while (cm != NULL) {
1563 			cmn = cm->m_next;
1564 			cm->m_next = NULL;
1565 			if (pr->pr_domain->dom_externalize != NULL) {
1566 				SOCKBUF_UNLOCK(&so->so_rcv);
1567 				error = (*pr->pr_domain->dom_externalize)
1568 				    (cm, controlp);
1569 				SOCKBUF_LOCK(&so->so_rcv);
1570 			} else if (controlp != NULL)
1571 				*controlp = cm;
1572 			else
1573 				m_freem(cm);
1574 			if (controlp != NULL) {
1575 				orig_resid = 0;
1576 				while (*controlp != NULL)
1577 					controlp = &(*controlp)->m_next;
1578 			}
1579 			cm = cmn;
1580 		}
1581 		if (m != NULL)
1582 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1583 		else
1584 			nextrecord = so->so_rcv.sb_mb;
1585 		orig_resid = 0;
1586 	}
1587 	if (m != NULL) {
1588 		if ((flags & MSG_PEEK) == 0) {
1589 			KASSERT(m->m_nextpkt == nextrecord,
1590 			    ("soreceive: post-control, nextrecord !sync"));
1591 			if (nextrecord == NULL) {
1592 				KASSERT(so->so_rcv.sb_mb == m,
1593 				    ("soreceive: post-control, sb_mb!=m"));
1594 				KASSERT(so->so_rcv.sb_lastrecord == m,
1595 				    ("soreceive: post-control, lastrecord!=m"));
1596 			}
1597 		}
1598 		type = m->m_type;
1599 		if (type == MT_OOBDATA)
1600 			flags |= MSG_OOB;
1601 	} else {
1602 		if ((flags & MSG_PEEK) == 0) {
1603 			KASSERT(so->so_rcv.sb_mb == nextrecord,
1604 			    ("soreceive: sb_mb != nextrecord"));
1605 			if (so->so_rcv.sb_mb == NULL) {
1606 				KASSERT(so->so_rcv.sb_lastrecord == NULL,
1607 				    ("soreceive: sb_lastercord != NULL"));
1608 			}
1609 		}
1610 	}
1611 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1612 	SBLASTRECORDCHK(&so->so_rcv);
1613 	SBLASTMBUFCHK(&so->so_rcv);
1614 
1615 	/*
1616 	 * Now continue to read any data mbufs off of the head of the socket
1617 	 * buffer until the read request is satisfied.  Note that 'type' is
1618 	 * used to store the type of any mbuf reads that have happened so far
1619 	 * such that soreceive() can stop reading if the type changes, which
1620 	 * causes soreceive() to return only one of regular data and inline
1621 	 * out-of-band data in a single socket receive operation.
1622 	 */
1623 	moff = 0;
1624 	offset = 0;
1625 	while (m != NULL && uio->uio_resid > 0 && error == 0) {
1626 		/*
1627 		 * If the type of mbuf has changed since the last mbuf
1628 		 * examined ('type'), end the receive operation.
1629 	 	 */
1630 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1631 		if (m->m_type == MT_OOBDATA) {
1632 			if (type != MT_OOBDATA)
1633 				break;
1634 		} else if (type == MT_OOBDATA)
1635 			break;
1636 		else
1637 		    KASSERT(m->m_type == MT_DATA,
1638 			("m->m_type == %d", m->m_type));
1639 		so->so_rcv.sb_state &= ~SBS_RCVATMARK;
1640 		len = uio->uio_resid;
1641 		if (so->so_oobmark && len > so->so_oobmark - offset)
1642 			len = so->so_oobmark - offset;
1643 		if (len > m->m_len - moff)
1644 			len = m->m_len - moff;
1645 		/*
1646 		 * If mp is set, just pass back the mbufs.  Otherwise copy
1647 		 * them out via the uio, then free.  Sockbuf must be
1648 		 * consistent here (points to current mbuf, it points to next
1649 		 * record) when we drop priority; we must note any additions
1650 		 * to the sockbuf when we block interrupts again.
1651 		 */
1652 		if (mp == NULL) {
1653 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1654 			SBLASTRECORDCHK(&so->so_rcv);
1655 			SBLASTMBUFCHK(&so->so_rcv);
1656 			SOCKBUF_UNLOCK(&so->so_rcv);
1657 #ifdef ZERO_COPY_SOCKETS
1658 			if (so_zero_copy_receive) {
1659 				int disposable;
1660 
1661 				if ((m->m_flags & M_EXT)
1662 				 && (m->m_ext.ext_type == EXT_DISPOSABLE))
1663 					disposable = 1;
1664 				else
1665 					disposable = 0;
1666 
1667 				error = uiomoveco(mtod(m, char *) + moff,
1668 						  (int)len, uio,
1669 						  disposable);
1670 			} else
1671 #endif /* ZERO_COPY_SOCKETS */
1672 			error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1673 			SOCKBUF_LOCK(&so->so_rcv);
1674 			if (error) {
1675 				/*
1676 				 * The MT_SONAME mbuf has already been removed
1677 				 * from the record, so it is necessary to
1678 				 * remove the data mbufs, if any, to preserve
1679 				 * the invariant in the case of PR_ADDR that
1680 				 * requires MT_SONAME mbufs at the head of
1681 				 * each record.
1682 				 */
1683 				if (m && pr->pr_flags & PR_ATOMIC &&
1684 				    ((flags & MSG_PEEK) == 0))
1685 					(void)sbdroprecord_locked(&so->so_rcv);
1686 				SOCKBUF_UNLOCK(&so->so_rcv);
1687 				goto release;
1688 			}
1689 		} else
1690 			uio->uio_resid -= len;
1691 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1692 		if (len == m->m_len - moff) {
1693 			if (m->m_flags & M_EOR)
1694 				flags |= MSG_EOR;
1695 			if (flags & MSG_PEEK) {
1696 				m = m->m_next;
1697 				moff = 0;
1698 			} else {
1699 				nextrecord = m->m_nextpkt;
1700 				sbfree(&so->so_rcv, m);
1701 				if (mp != NULL) {
1702 					*mp = m;
1703 					mp = &m->m_next;
1704 					so->so_rcv.sb_mb = m = m->m_next;
1705 					*mp = NULL;
1706 				} else {
1707 					so->so_rcv.sb_mb = m_free(m);
1708 					m = so->so_rcv.sb_mb;
1709 				}
1710 				sockbuf_pushsync(&so->so_rcv, nextrecord);
1711 				SBLASTRECORDCHK(&so->so_rcv);
1712 				SBLASTMBUFCHK(&so->so_rcv);
1713 			}
1714 		} else {
1715 			if (flags & MSG_PEEK)
1716 				moff += len;
1717 			else {
1718 				if (mp != NULL) {
1719 					int copy_flag;
1720 
1721 					if (flags & MSG_DONTWAIT)
1722 						copy_flag = M_DONTWAIT;
1723 					else
1724 						copy_flag = M_WAIT;
1725 					if (copy_flag == M_WAIT)
1726 						SOCKBUF_UNLOCK(&so->so_rcv);
1727 					*mp = m_copym(m, 0, len, copy_flag);
1728 					if (copy_flag == M_WAIT)
1729 						SOCKBUF_LOCK(&so->so_rcv);
1730  					if (*mp == NULL) {
1731  						/*
1732  						 * m_copym() couldn't
1733 						 * allocate an mbuf.  Adjust
1734 						 * uio_resid back (it was
1735 						 * adjusted down by len
1736 						 * bytes, which we didn't end
1737 						 * up "copying" over).
1738  						 */
1739  						uio->uio_resid += len;
1740  						break;
1741  					}
1742 				}
1743 				m->m_data += len;
1744 				m->m_len -= len;
1745 				so->so_rcv.sb_cc -= len;
1746 			}
1747 		}
1748 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1749 		if (so->so_oobmark) {
1750 			if ((flags & MSG_PEEK) == 0) {
1751 				so->so_oobmark -= len;
1752 				if (so->so_oobmark == 0) {
1753 					so->so_rcv.sb_state |= SBS_RCVATMARK;
1754 					break;
1755 				}
1756 			} else {
1757 				offset += len;
1758 				if (offset == so->so_oobmark)
1759 					break;
1760 			}
1761 		}
1762 		if (flags & MSG_EOR)
1763 			break;
1764 		/*
1765 		 * If the MSG_WAITALL flag is set (for non-atomic socket), we
1766 		 * must not quit until "uio->uio_resid == 0" or an error
1767 		 * termination.  If a signal/timeout occurs, return with a
1768 		 * short count but without error.  Keep sockbuf locked
1769 		 * against other readers.
1770 		 */
1771 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1772 		    !sosendallatonce(so) && nextrecord == NULL) {
1773 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1774 			if (so->so_error || so->so_rcv.sb_state & SBS_CANTRCVMORE)
1775 				break;
1776 			/*
1777 			 * Notify the protocol that some data has been
1778 			 * drained before blocking.
1779 			 */
1780 			if (pr->pr_flags & PR_WANTRCVD) {
1781 				SOCKBUF_UNLOCK(&so->so_rcv);
1782 				(*pr->pr_usrreqs->pru_rcvd)(so, flags);
1783 				SOCKBUF_LOCK(&so->so_rcv);
1784 			}
1785 			SBLASTRECORDCHK(&so->so_rcv);
1786 			SBLASTMBUFCHK(&so->so_rcv);
1787 			error = sbwait(&so->so_rcv);
1788 			if (error) {
1789 				SOCKBUF_UNLOCK(&so->so_rcv);
1790 				goto release;
1791 			}
1792 			m = so->so_rcv.sb_mb;
1793 			if (m != NULL)
1794 				nextrecord = m->m_nextpkt;
1795 		}
1796 	}
1797 
1798 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1799 	if (m != NULL && pr->pr_flags & PR_ATOMIC) {
1800 		flags |= MSG_TRUNC;
1801 		if ((flags & MSG_PEEK) == 0)
1802 			(void) sbdroprecord_locked(&so->so_rcv);
1803 	}
1804 	if ((flags & MSG_PEEK) == 0) {
1805 		if (m == NULL) {
1806 			/*
1807 			 * First part is an inline SB_EMPTY_FIXUP().  Second
1808 			 * part makes sure sb_lastrecord is up-to-date if
1809 			 * there is still data in the socket buffer.
1810 			 */
1811 			so->so_rcv.sb_mb = nextrecord;
1812 			if (so->so_rcv.sb_mb == NULL) {
1813 				so->so_rcv.sb_mbtail = NULL;
1814 				so->so_rcv.sb_lastrecord = NULL;
1815 			} else if (nextrecord->m_nextpkt == NULL)
1816 				so->so_rcv.sb_lastrecord = nextrecord;
1817 		}
1818 		SBLASTRECORDCHK(&so->so_rcv);
1819 		SBLASTMBUFCHK(&so->so_rcv);
1820 		/*
1821 		 * If soreceive() is being done from the socket callback,
1822 		 * then don't need to generate ACK to peer to update window,
1823 		 * since ACK will be generated on return to TCP.
1824 		 */
1825 		if (!(flags & MSG_SOCALLBCK) &&
1826 		    (pr->pr_flags & PR_WANTRCVD)) {
1827 			SOCKBUF_UNLOCK(&so->so_rcv);
1828 			(*pr->pr_usrreqs->pru_rcvd)(so, flags);
1829 			SOCKBUF_LOCK(&so->so_rcv);
1830 		}
1831 	}
1832 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1833 	if (orig_resid == uio->uio_resid && orig_resid &&
1834 	    (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
1835 		SOCKBUF_UNLOCK(&so->so_rcv);
1836 		goto restart;
1837 	}
1838 	SOCKBUF_UNLOCK(&so->so_rcv);
1839 
1840 	if (flagsp != NULL)
1841 		*flagsp |= flags;
1842 release:
1843 	sbunlock(&so->so_rcv);
1844 	return (error);
1845 }
1846 
1847 /*
1848  * Optimized version of soreceive() for simple datagram cases from userspace.
1849  * Unlike in the stream case, we're able to drop a datagram if copyout()
1850  * fails, and because we handle datagrams atomically, we don't need to use a
1851  * sleep lock to prevent I/O interlacing.
1852  */
1853 int
1854 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
1855     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1856 {
1857 	struct mbuf *m, *m2;
1858 	int flags, len, error, offset;
1859 	struct protosw *pr = so->so_proto;
1860 	struct mbuf *nextrecord;
1861 
1862 	if (psa != NULL)
1863 		*psa = NULL;
1864 	if (controlp != NULL)
1865 		*controlp = NULL;
1866 	if (flagsp != NULL)
1867 		flags = *flagsp &~ MSG_EOR;
1868 	else
1869 		flags = 0;
1870 
1871 	/*
1872 	 * For any complicated cases, fall back to the full
1873 	 * soreceive_generic().
1874 	 */
1875 	if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB))
1876 		return (soreceive_generic(so, psa, uio, mp0, controlp,
1877 		    flagsp));
1878 
1879 	/*
1880 	 * Enforce restrictions on use.
1881 	 */
1882 	KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
1883 	    ("soreceive_dgram: wantrcvd"));
1884 	KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
1885 	KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
1886 	    ("soreceive_dgram: SBS_RCVATMARK"));
1887 	KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
1888 	    ("soreceive_dgram: P_CONNREQUIRED"));
1889 
1890 	/*
1891 	 * Loop blocking while waiting for a datagram.
1892 	 */
1893 	SOCKBUF_LOCK(&so->so_rcv);
1894 	while ((m = so->so_rcv.sb_mb) == NULL) {
1895 		KASSERT(so->so_rcv.sb_cc == 0,
1896 		    ("soreceive_dgram: sb_mb NULL but sb_cc %u",
1897 		    so->so_rcv.sb_cc));
1898 		if (so->so_error) {
1899 			error = so->so_error;
1900 			so->so_error = 0;
1901 			SOCKBUF_UNLOCK(&so->so_rcv);
1902 			return (error);
1903 		}
1904 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
1905 		    uio->uio_resid == 0) {
1906 			SOCKBUF_UNLOCK(&so->so_rcv);
1907 			return (0);
1908 		}
1909 		if ((so->so_state & SS_NBIO) ||
1910 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1911 			SOCKBUF_UNLOCK(&so->so_rcv);
1912 			return (EWOULDBLOCK);
1913 		}
1914 		SBLASTRECORDCHK(&so->so_rcv);
1915 		SBLASTMBUFCHK(&so->so_rcv);
1916 		error = sbwait(&so->so_rcv);
1917 		if (error) {
1918 			SOCKBUF_UNLOCK(&so->so_rcv);
1919 			return (error);
1920 		}
1921 	}
1922 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1923 
1924 	if (uio->uio_td)
1925 		uio->uio_td->td_ru.ru_msgrcv++;
1926 	SBLASTRECORDCHK(&so->so_rcv);
1927 	SBLASTMBUFCHK(&so->so_rcv);
1928 	nextrecord = m->m_nextpkt;
1929 	if (nextrecord == NULL) {
1930 		KASSERT(so->so_rcv.sb_lastrecord == m,
1931 		    ("soreceive_dgram: lastrecord != m"));
1932 	}
1933 
1934 	KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
1935 	    ("soreceive_dgram: m_nextpkt != nextrecord"));
1936 
1937 	/*
1938 	 * Pull 'm' and its chain off the front of the packet queue.
1939 	 */
1940 	so->so_rcv.sb_mb = NULL;
1941 	sockbuf_pushsync(&so->so_rcv, nextrecord);
1942 
1943 	/*
1944 	 * Walk 'm's chain and free that many bytes from the socket buffer.
1945 	 */
1946 	for (m2 = m; m2 != NULL; m2 = m2->m_next)
1947 		sbfree(&so->so_rcv, m2);
1948 
1949 	/*
1950 	 * Do a few last checks before we let go of the lock.
1951 	 */
1952 	SBLASTRECORDCHK(&so->so_rcv);
1953 	SBLASTMBUFCHK(&so->so_rcv);
1954 	SOCKBUF_UNLOCK(&so->so_rcv);
1955 
1956 	if (pr->pr_flags & PR_ADDR) {
1957 		KASSERT(m->m_type == MT_SONAME,
1958 		    ("m->m_type == %d", m->m_type));
1959 		if (psa != NULL)
1960 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
1961 			    M_NOWAIT);
1962 		m = m_free(m);
1963 	}
1964 	if (m == NULL) {
1965 		/* XXXRW: Can this happen? */
1966 		return (0);
1967 	}
1968 
1969 	/*
1970 	 * Packet to copyout() is now in 'm' and it is disconnected from the
1971 	 * queue.
1972 	 *
1973 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
1974 	 * in the first mbuf chain on the socket buffer.  We call into the
1975 	 * protocol to perform externalization (or freeing if controlp ==
1976 	 * NULL).
1977 	 */
1978 	if (m->m_type == MT_CONTROL) {
1979 		struct mbuf *cm = NULL, *cmn;
1980 		struct mbuf **cme = &cm;
1981 
1982 		do {
1983 			m2 = m->m_next;
1984 			m->m_next = NULL;
1985 			*cme = m;
1986 			cme = &(*cme)->m_next;
1987 			m = m2;
1988 		} while (m != NULL && m->m_type == MT_CONTROL);
1989 		while (cm != NULL) {
1990 			cmn = cm->m_next;
1991 			cm->m_next = NULL;
1992 			if (pr->pr_domain->dom_externalize != NULL) {
1993 				error = (*pr->pr_domain->dom_externalize)
1994 				    (cm, controlp);
1995 			} else if (controlp != NULL)
1996 				*controlp = cm;
1997 			else
1998 				m_freem(cm);
1999 			if (controlp != NULL) {
2000 				while (*controlp != NULL)
2001 					controlp = &(*controlp)->m_next;
2002 			}
2003 			cm = cmn;
2004 		}
2005 	}
2006 	KASSERT(m->m_type == MT_DATA, ("soreceive_dgram: !data"));
2007 
2008 	offset = 0;
2009 	while (m != NULL && uio->uio_resid > 0) {
2010 		len = uio->uio_resid;
2011 		if (len > m->m_len)
2012 			len = m->m_len;
2013 		error = uiomove(mtod(m, char *), (int)len, uio);
2014 		if (error) {
2015 			m_freem(m);
2016 			return (error);
2017 		}
2018 		m = m_free(m);
2019 	}
2020 	if (m != NULL)
2021 		flags |= MSG_TRUNC;
2022 	m_freem(m);
2023 	if (flagsp != NULL)
2024 		*flagsp |= flags;
2025 	return (0);
2026 }
2027 
2028 int
2029 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
2030     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2031 {
2032 
2033 	return (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, mp0,
2034 	    controlp, flagsp));
2035 }
2036 
2037 int
2038 soshutdown(struct socket *so, int how)
2039 {
2040 	struct protosw *pr = so->so_proto;
2041 
2042 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
2043 		return (EINVAL);
2044 	if (pr->pr_usrreqs->pru_flush != NULL) {
2045 	        (*pr->pr_usrreqs->pru_flush)(so, how);
2046 	}
2047 	if (how != SHUT_WR)
2048 		sorflush(so);
2049 	if (how != SHUT_RD)
2050 		return ((*pr->pr_usrreqs->pru_shutdown)(so));
2051 	return (0);
2052 }
2053 
2054 void
2055 sorflush(struct socket *so)
2056 {
2057 	struct sockbuf *sb = &so->so_rcv;
2058 	struct protosw *pr = so->so_proto;
2059 	struct sockbuf asb;
2060 
2061 	/*
2062 	 * In order to avoid calling dom_dispose with the socket buffer mutex
2063 	 * held, and in order to generally avoid holding the lock for a long
2064 	 * time, we make a copy of the socket buffer and clear the original
2065 	 * (except locks, state).  The new socket buffer copy won't have
2066 	 * initialized locks so we can only call routines that won't use or
2067 	 * assert those locks.
2068 	 *
2069 	 * Dislodge threads currently blocked in receive and wait to acquire
2070 	 * a lock against other simultaneous readers before clearing the
2071 	 * socket buffer.  Don't let our acquire be interrupted by a signal
2072 	 * despite any existing socket disposition on interruptable waiting.
2073 	 */
2074 	socantrcvmore(so);
2075 	(void) sblock(sb, SBL_WAIT | SBL_NOINTR);
2076 
2077 	/*
2078 	 * Invalidate/clear most of the sockbuf structure, but leave selinfo
2079 	 * and mutex data unchanged.
2080 	 */
2081 	SOCKBUF_LOCK(sb);
2082 	bzero(&asb, offsetof(struct sockbuf, sb_startzero));
2083 	bcopy(&sb->sb_startzero, &asb.sb_startzero,
2084 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
2085 	bzero(&sb->sb_startzero,
2086 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
2087 	SOCKBUF_UNLOCK(sb);
2088 	sbunlock(sb);
2089 
2090 	/*
2091 	 * Dispose of special rights and flush the socket buffer.  Don't call
2092 	 * any unsafe routines (that rely on locks being initialized) on asb.
2093 	 */
2094 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
2095 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
2096 	sbrelease_internal(&asb, so);
2097 }
2098 
2099 /*
2100  * Perhaps this routine, and sooptcopyout(), below, ought to come in an
2101  * additional variant to handle the case where the option value needs to be
2102  * some kind of integer, but not a specific size.  In addition to their use
2103  * here, these functions are also called by the protocol-level pr_ctloutput()
2104  * routines.
2105  */
2106 int
2107 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
2108 {
2109 	size_t	valsize;
2110 
2111 	/*
2112 	 * If the user gives us more than we wanted, we ignore it, but if we
2113 	 * don't get the minimum length the caller wants, we return EINVAL.
2114 	 * On success, sopt->sopt_valsize is set to however much we actually
2115 	 * retrieved.
2116 	 */
2117 	if ((valsize = sopt->sopt_valsize) < minlen)
2118 		return EINVAL;
2119 	if (valsize > len)
2120 		sopt->sopt_valsize = valsize = len;
2121 
2122 	if (sopt->sopt_td != NULL)
2123 		return (copyin(sopt->sopt_val, buf, valsize));
2124 
2125 	bcopy(sopt->sopt_val, buf, valsize);
2126 	return (0);
2127 }
2128 
2129 /*
2130  * Kernel version of setsockopt(2).
2131  *
2132  * XXX: optlen is size_t, not socklen_t
2133  */
2134 int
2135 so_setsockopt(struct socket *so, int level, int optname, void *optval,
2136     size_t optlen)
2137 {
2138 	struct sockopt sopt;
2139 
2140 	sopt.sopt_level = level;
2141 	sopt.sopt_name = optname;
2142 	sopt.sopt_dir = SOPT_SET;
2143 	sopt.sopt_val = optval;
2144 	sopt.sopt_valsize = optlen;
2145 	sopt.sopt_td = NULL;
2146 	return (sosetopt(so, &sopt));
2147 }
2148 
2149 int
2150 sosetopt(struct socket *so, struct sockopt *sopt)
2151 {
2152 	int	error, optval;
2153 	struct	linger l;
2154 	struct	timeval tv;
2155 	u_long  val;
2156 #ifdef MAC
2157 	struct mac extmac;
2158 #endif
2159 
2160 	error = 0;
2161 	if (sopt->sopt_level != SOL_SOCKET) {
2162 		if (so->so_proto && so->so_proto->pr_ctloutput)
2163 			return ((*so->so_proto->pr_ctloutput)
2164 				  (so, sopt));
2165 		error = ENOPROTOOPT;
2166 	} else {
2167 		switch (sopt->sopt_name) {
2168 #ifdef INET
2169 		case SO_ACCEPTFILTER:
2170 			error = do_setopt_accept_filter(so, sopt);
2171 			if (error)
2172 				goto bad;
2173 			break;
2174 #endif
2175 		case SO_LINGER:
2176 			error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
2177 			if (error)
2178 				goto bad;
2179 
2180 			SOCK_LOCK(so);
2181 			so->so_linger = l.l_linger;
2182 			if (l.l_onoff)
2183 				so->so_options |= SO_LINGER;
2184 			else
2185 				so->so_options &= ~SO_LINGER;
2186 			SOCK_UNLOCK(so);
2187 			break;
2188 
2189 		case SO_DEBUG:
2190 		case SO_KEEPALIVE:
2191 		case SO_DONTROUTE:
2192 		case SO_USELOOPBACK:
2193 		case SO_BROADCAST:
2194 		case SO_REUSEADDR:
2195 		case SO_REUSEPORT:
2196 		case SO_OOBINLINE:
2197 		case SO_TIMESTAMP:
2198 		case SO_BINTIME:
2199 		case SO_NOSIGPIPE:
2200 		case SO_NO_DDP:
2201 		case SO_NO_OFFLOAD:
2202 			error = sooptcopyin(sopt, &optval, sizeof optval,
2203 					    sizeof optval);
2204 			if (error)
2205 				goto bad;
2206 			SOCK_LOCK(so);
2207 			if (optval)
2208 				so->so_options |= sopt->sopt_name;
2209 			else
2210 				so->so_options &= ~sopt->sopt_name;
2211 			SOCK_UNLOCK(so);
2212 			break;
2213 
2214 		case SO_SETFIB:
2215 			error = sooptcopyin(sopt, &optval, sizeof optval,
2216 					    sizeof optval);
2217 			if (optval < 1 || optval > rt_numfibs) {
2218 				error = EINVAL;
2219 				goto bad;
2220 			}
2221 			if ((so->so_proto->pr_domain->dom_family == PF_INET) ||
2222 			    (so->so_proto->pr_domain->dom_family == PF_ROUTE)) {
2223 				so->so_fibnum = optval;
2224 				/* Note: ignore error */
2225 				if (so->so_proto && so->so_proto->pr_ctloutput)
2226 					(*so->so_proto->pr_ctloutput)(so, sopt);
2227 			} else {
2228 				so->so_fibnum = 0;
2229 			}
2230 			break;
2231 		case SO_SNDBUF:
2232 		case SO_RCVBUF:
2233 		case SO_SNDLOWAT:
2234 		case SO_RCVLOWAT:
2235 			error = sooptcopyin(sopt, &optval, sizeof optval,
2236 					    sizeof optval);
2237 			if (error)
2238 				goto bad;
2239 
2240 			/*
2241 			 * Values < 1 make no sense for any of these options,
2242 			 * so disallow them.
2243 			 */
2244 			if (optval < 1) {
2245 				error = EINVAL;
2246 				goto bad;
2247 			}
2248 
2249 			switch (sopt->sopt_name) {
2250 			case SO_SNDBUF:
2251 			case SO_RCVBUF:
2252 				if (sbreserve(sopt->sopt_name == SO_SNDBUF ?
2253 				    &so->so_snd : &so->so_rcv, (u_long)optval,
2254 				    so, curthread) == 0) {
2255 					error = ENOBUFS;
2256 					goto bad;
2257 				}
2258 				(sopt->sopt_name == SO_SNDBUF ? &so->so_snd :
2259 				    &so->so_rcv)->sb_flags &= ~SB_AUTOSIZE;
2260 				break;
2261 
2262 			/*
2263 			 * Make sure the low-water is never greater than the
2264 			 * high-water.
2265 			 */
2266 			case SO_SNDLOWAT:
2267 				SOCKBUF_LOCK(&so->so_snd);
2268 				so->so_snd.sb_lowat =
2269 				    (optval > so->so_snd.sb_hiwat) ?
2270 				    so->so_snd.sb_hiwat : optval;
2271 				SOCKBUF_UNLOCK(&so->so_snd);
2272 				break;
2273 			case SO_RCVLOWAT:
2274 				SOCKBUF_LOCK(&so->so_rcv);
2275 				so->so_rcv.sb_lowat =
2276 				    (optval > so->so_rcv.sb_hiwat) ?
2277 				    so->so_rcv.sb_hiwat : optval;
2278 				SOCKBUF_UNLOCK(&so->so_rcv);
2279 				break;
2280 			}
2281 			break;
2282 
2283 		case SO_SNDTIMEO:
2284 		case SO_RCVTIMEO:
2285 #ifdef COMPAT_IA32
2286 			if (SV_CURPROC_FLAG(SV_ILP32)) {
2287 				struct timeval32 tv32;
2288 
2289 				error = sooptcopyin(sopt, &tv32, sizeof tv32,
2290 				    sizeof tv32);
2291 				CP(tv32, tv, tv_sec);
2292 				CP(tv32, tv, tv_usec);
2293 			} else
2294 #endif
2295 				error = sooptcopyin(sopt, &tv, sizeof tv,
2296 				    sizeof tv);
2297 			if (error)
2298 				goto bad;
2299 
2300 			/* assert(hz > 0); */
2301 			if (tv.tv_sec < 0 || tv.tv_sec > INT_MAX / hz ||
2302 			    tv.tv_usec < 0 || tv.tv_usec >= 1000000) {
2303 				error = EDOM;
2304 				goto bad;
2305 			}
2306 			/* assert(tick > 0); */
2307 			/* assert(ULONG_MAX - INT_MAX >= 1000000); */
2308 			val = (u_long)(tv.tv_sec * hz) + tv.tv_usec / tick;
2309 			if (val > INT_MAX) {
2310 				error = EDOM;
2311 				goto bad;
2312 			}
2313 			if (val == 0 && tv.tv_usec != 0)
2314 				val = 1;
2315 
2316 			switch (sopt->sopt_name) {
2317 			case SO_SNDTIMEO:
2318 				so->so_snd.sb_timeo = val;
2319 				break;
2320 			case SO_RCVTIMEO:
2321 				so->so_rcv.sb_timeo = val;
2322 				break;
2323 			}
2324 			break;
2325 
2326 		case SO_LABEL:
2327 #ifdef MAC
2328 			error = sooptcopyin(sopt, &extmac, sizeof extmac,
2329 			    sizeof extmac);
2330 			if (error)
2331 				goto bad;
2332 			error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
2333 			    so, &extmac);
2334 #else
2335 			error = EOPNOTSUPP;
2336 #endif
2337 			break;
2338 
2339 		default:
2340 			error = ENOPROTOOPT;
2341 			break;
2342 		}
2343 		if (error == 0 && so->so_proto != NULL &&
2344 		    so->so_proto->pr_ctloutput != NULL) {
2345 			(void) ((*so->so_proto->pr_ctloutput)
2346 				  (so, sopt));
2347 		}
2348 	}
2349 bad:
2350 	return (error);
2351 }
2352 
2353 /*
2354  * Helper routine for getsockopt.
2355  */
2356 int
2357 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
2358 {
2359 	int	error;
2360 	size_t	valsize;
2361 
2362 	error = 0;
2363 
2364 	/*
2365 	 * Documented get behavior is that we always return a value, possibly
2366 	 * truncated to fit in the user's buffer.  Traditional behavior is
2367 	 * that we always tell the user precisely how much we copied, rather
2368 	 * than something useful like the total amount we had available for
2369 	 * her.  Note that this interface is not idempotent; the entire
2370 	 * answer must generated ahead of time.
2371 	 */
2372 	valsize = min(len, sopt->sopt_valsize);
2373 	sopt->sopt_valsize = valsize;
2374 	if (sopt->sopt_val != NULL) {
2375 		if (sopt->sopt_td != NULL)
2376 			error = copyout(buf, sopt->sopt_val, valsize);
2377 		else
2378 			bcopy(buf, sopt->sopt_val, valsize);
2379 	}
2380 	return (error);
2381 }
2382 
2383 int
2384 sogetopt(struct socket *so, struct sockopt *sopt)
2385 {
2386 	int	error, optval;
2387 	struct	linger l;
2388 	struct	timeval tv;
2389 #ifdef MAC
2390 	struct mac extmac;
2391 #endif
2392 
2393 	error = 0;
2394 	if (sopt->sopt_level != SOL_SOCKET) {
2395 		if (so->so_proto && so->so_proto->pr_ctloutput) {
2396 			return ((*so->so_proto->pr_ctloutput)
2397 				  (so, sopt));
2398 		} else
2399 			return (ENOPROTOOPT);
2400 	} else {
2401 		switch (sopt->sopt_name) {
2402 #ifdef INET
2403 		case SO_ACCEPTFILTER:
2404 			error = do_getopt_accept_filter(so, sopt);
2405 			break;
2406 #endif
2407 		case SO_LINGER:
2408 			SOCK_LOCK(so);
2409 			l.l_onoff = so->so_options & SO_LINGER;
2410 			l.l_linger = so->so_linger;
2411 			SOCK_UNLOCK(so);
2412 			error = sooptcopyout(sopt, &l, sizeof l);
2413 			break;
2414 
2415 		case SO_USELOOPBACK:
2416 		case SO_DONTROUTE:
2417 		case SO_DEBUG:
2418 		case SO_KEEPALIVE:
2419 		case SO_REUSEADDR:
2420 		case SO_REUSEPORT:
2421 		case SO_BROADCAST:
2422 		case SO_OOBINLINE:
2423 		case SO_ACCEPTCONN:
2424 		case SO_TIMESTAMP:
2425 		case SO_BINTIME:
2426 		case SO_NOSIGPIPE:
2427 			optval = so->so_options & sopt->sopt_name;
2428 integer:
2429 			error = sooptcopyout(sopt, &optval, sizeof optval);
2430 			break;
2431 
2432 		case SO_TYPE:
2433 			optval = so->so_type;
2434 			goto integer;
2435 
2436 		case SO_ERROR:
2437 			SOCK_LOCK(so);
2438 			optval = so->so_error;
2439 			so->so_error = 0;
2440 			SOCK_UNLOCK(so);
2441 			goto integer;
2442 
2443 		case SO_SNDBUF:
2444 			optval = so->so_snd.sb_hiwat;
2445 			goto integer;
2446 
2447 		case SO_RCVBUF:
2448 			optval = so->so_rcv.sb_hiwat;
2449 			goto integer;
2450 
2451 		case SO_SNDLOWAT:
2452 			optval = so->so_snd.sb_lowat;
2453 			goto integer;
2454 
2455 		case SO_RCVLOWAT:
2456 			optval = so->so_rcv.sb_lowat;
2457 			goto integer;
2458 
2459 		case SO_SNDTIMEO:
2460 		case SO_RCVTIMEO:
2461 			optval = (sopt->sopt_name == SO_SNDTIMEO ?
2462 				  so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
2463 
2464 			tv.tv_sec = optval / hz;
2465 			tv.tv_usec = (optval % hz) * tick;
2466 #ifdef COMPAT_IA32
2467 			if (SV_CURPROC_FLAG(SV_ILP32)) {
2468 				struct timeval32 tv32;
2469 
2470 				CP(tv, tv32, tv_sec);
2471 				CP(tv, tv32, tv_usec);
2472 				error = sooptcopyout(sopt, &tv32, sizeof tv32);
2473 			} else
2474 #endif
2475 				error = sooptcopyout(sopt, &tv, sizeof tv);
2476 			break;
2477 
2478 		case SO_LABEL:
2479 #ifdef MAC
2480 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
2481 			    sizeof(extmac));
2482 			if (error)
2483 				return (error);
2484 			error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
2485 			    so, &extmac);
2486 			if (error)
2487 				return (error);
2488 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
2489 #else
2490 			error = EOPNOTSUPP;
2491 #endif
2492 			break;
2493 
2494 		case SO_PEERLABEL:
2495 #ifdef MAC
2496 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
2497 			    sizeof(extmac));
2498 			if (error)
2499 				return (error);
2500 			error = mac_getsockopt_peerlabel(
2501 			    sopt->sopt_td->td_ucred, so, &extmac);
2502 			if (error)
2503 				return (error);
2504 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
2505 #else
2506 			error = EOPNOTSUPP;
2507 #endif
2508 			break;
2509 
2510 		case SO_LISTENQLIMIT:
2511 			optval = so->so_qlimit;
2512 			goto integer;
2513 
2514 		case SO_LISTENQLEN:
2515 			optval = so->so_qlen;
2516 			goto integer;
2517 
2518 		case SO_LISTENINCQLEN:
2519 			optval = so->so_incqlen;
2520 			goto integer;
2521 
2522 		default:
2523 			error = ENOPROTOOPT;
2524 			break;
2525 		}
2526 		return (error);
2527 	}
2528 }
2529 
2530 /* XXX; prepare mbuf for (__FreeBSD__ < 3) routines. */
2531 int
2532 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
2533 {
2534 	struct mbuf *m, *m_prev;
2535 	int sopt_size = sopt->sopt_valsize;
2536 
2537 	MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA);
2538 	if (m == NULL)
2539 		return ENOBUFS;
2540 	if (sopt_size > MLEN) {
2541 		MCLGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT);
2542 		if ((m->m_flags & M_EXT) == 0) {
2543 			m_free(m);
2544 			return ENOBUFS;
2545 		}
2546 		m->m_len = min(MCLBYTES, sopt_size);
2547 	} else {
2548 		m->m_len = min(MLEN, sopt_size);
2549 	}
2550 	sopt_size -= m->m_len;
2551 	*mp = m;
2552 	m_prev = m;
2553 
2554 	while (sopt_size) {
2555 		MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA);
2556 		if (m == NULL) {
2557 			m_freem(*mp);
2558 			return ENOBUFS;
2559 		}
2560 		if (sopt_size > MLEN) {
2561 			MCLGET(m, sopt->sopt_td != NULL ? M_WAIT :
2562 			    M_DONTWAIT);
2563 			if ((m->m_flags & M_EXT) == 0) {
2564 				m_freem(m);
2565 				m_freem(*mp);
2566 				return ENOBUFS;
2567 			}
2568 			m->m_len = min(MCLBYTES, sopt_size);
2569 		} else {
2570 			m->m_len = min(MLEN, sopt_size);
2571 		}
2572 		sopt_size -= m->m_len;
2573 		m_prev->m_next = m;
2574 		m_prev = m;
2575 	}
2576 	return (0);
2577 }
2578 
2579 /* XXX; copyin sopt data into mbuf chain for (__FreeBSD__ < 3) routines. */
2580 int
2581 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
2582 {
2583 	struct mbuf *m0 = m;
2584 
2585 	if (sopt->sopt_val == NULL)
2586 		return (0);
2587 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
2588 		if (sopt->sopt_td != NULL) {
2589 			int error;
2590 
2591 			error = copyin(sopt->sopt_val, mtod(m, char *),
2592 				       m->m_len);
2593 			if (error != 0) {
2594 				m_freem(m0);
2595 				return(error);
2596 			}
2597 		} else
2598 			bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
2599 		sopt->sopt_valsize -= m->m_len;
2600 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
2601 		m = m->m_next;
2602 	}
2603 	if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
2604 		panic("ip6_sooptmcopyin");
2605 	return (0);
2606 }
2607 
2608 /* XXX; copyout mbuf chain data into soopt for (__FreeBSD__ < 3) routines. */
2609 int
2610 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
2611 {
2612 	struct mbuf *m0 = m;
2613 	size_t valsize = 0;
2614 
2615 	if (sopt->sopt_val == NULL)
2616 		return (0);
2617 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
2618 		if (sopt->sopt_td != NULL) {
2619 			int error;
2620 
2621 			error = copyout(mtod(m, char *), sopt->sopt_val,
2622 				       m->m_len);
2623 			if (error != 0) {
2624 				m_freem(m0);
2625 				return(error);
2626 			}
2627 		} else
2628 			bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
2629 	       sopt->sopt_valsize -= m->m_len;
2630 	       sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
2631 	       valsize += m->m_len;
2632 	       m = m->m_next;
2633 	}
2634 	if (m != NULL) {
2635 		/* enough soopt buffer should be given from user-land */
2636 		m_freem(m0);
2637 		return(EINVAL);
2638 	}
2639 	sopt->sopt_valsize = valsize;
2640 	return (0);
2641 }
2642 
2643 /*
2644  * sohasoutofband(): protocol notifies socket layer of the arrival of new
2645  * out-of-band data, which will then notify socket consumers.
2646  */
2647 void
2648 sohasoutofband(struct socket *so)
2649 {
2650 
2651 	if (so->so_sigio != NULL)
2652 		pgsigio(&so->so_sigio, SIGURG, 0);
2653 	selwakeuppri(&so->so_rcv.sb_sel, PSOCK);
2654 }
2655 
2656 int
2657 sopoll(struct socket *so, int events, struct ucred *active_cred,
2658     struct thread *td)
2659 {
2660 
2661 	return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred,
2662 	    td));
2663 }
2664 
2665 int
2666 sopoll_generic(struct socket *so, int events, struct ucred *active_cred,
2667     struct thread *td)
2668 {
2669 	int revents = 0;
2670 
2671 	SOCKBUF_LOCK(&so->so_snd);
2672 	SOCKBUF_LOCK(&so->so_rcv);
2673 	if (events & (POLLIN | POLLRDNORM))
2674 		if (soreadable(so))
2675 			revents |= events & (POLLIN | POLLRDNORM);
2676 
2677 	if (events & POLLINIGNEOF)
2678 		if (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat ||
2679 		    !TAILQ_EMPTY(&so->so_comp) || so->so_error)
2680 			revents |= POLLINIGNEOF;
2681 
2682 	if (events & (POLLOUT | POLLWRNORM))
2683 		if (sowriteable(so))
2684 			revents |= events & (POLLOUT | POLLWRNORM);
2685 
2686 	if (events & (POLLPRI | POLLRDBAND))
2687 		if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK))
2688 			revents |= events & (POLLPRI | POLLRDBAND);
2689 
2690 	if (revents == 0) {
2691 		if (events &
2692 		    (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM |
2693 		     POLLRDBAND)) {
2694 			selrecord(td, &so->so_rcv.sb_sel);
2695 			so->so_rcv.sb_flags |= SB_SEL;
2696 		}
2697 
2698 		if (events & (POLLOUT | POLLWRNORM)) {
2699 			selrecord(td, &so->so_snd.sb_sel);
2700 			so->so_snd.sb_flags |= SB_SEL;
2701 		}
2702 	}
2703 
2704 	SOCKBUF_UNLOCK(&so->so_rcv);
2705 	SOCKBUF_UNLOCK(&so->so_snd);
2706 	return (revents);
2707 }
2708 
2709 int
2710 soo_kqfilter(struct file *fp, struct knote *kn)
2711 {
2712 	struct socket *so = kn->kn_fp->f_data;
2713 	struct sockbuf *sb;
2714 
2715 	switch (kn->kn_filter) {
2716 	case EVFILT_READ:
2717 		if (so->so_options & SO_ACCEPTCONN)
2718 			kn->kn_fop = &solisten_filtops;
2719 		else
2720 			kn->kn_fop = &soread_filtops;
2721 		sb = &so->so_rcv;
2722 		break;
2723 	case EVFILT_WRITE:
2724 		kn->kn_fop = &sowrite_filtops;
2725 		sb = &so->so_snd;
2726 		break;
2727 	default:
2728 		return (EINVAL);
2729 	}
2730 
2731 	SOCKBUF_LOCK(sb);
2732 	knlist_add(&sb->sb_sel.si_note, kn, 1);
2733 	sb->sb_flags |= SB_KNOTE;
2734 	SOCKBUF_UNLOCK(sb);
2735 	return (0);
2736 }
2737 
2738 /*
2739  * Some routines that return EOPNOTSUPP for entry points that are not
2740  * supported by a protocol.  Fill in as needed.
2741  */
2742 int
2743 pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
2744 {
2745 
2746 	return EOPNOTSUPP;
2747 }
2748 
2749 int
2750 pru_attach_notsupp(struct socket *so, int proto, struct thread *td)
2751 {
2752 
2753 	return EOPNOTSUPP;
2754 }
2755 
2756 int
2757 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
2758 {
2759 
2760 	return EOPNOTSUPP;
2761 }
2762 
2763 int
2764 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
2765 {
2766 
2767 	return EOPNOTSUPP;
2768 }
2769 
2770 int
2771 pru_connect2_notsupp(struct socket *so1, struct socket *so2)
2772 {
2773 
2774 	return EOPNOTSUPP;
2775 }
2776 
2777 int
2778 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
2779     struct ifnet *ifp, struct thread *td)
2780 {
2781 
2782 	return EOPNOTSUPP;
2783 }
2784 
2785 int
2786 pru_disconnect_notsupp(struct socket *so)
2787 {
2788 
2789 	return EOPNOTSUPP;
2790 }
2791 
2792 int
2793 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td)
2794 {
2795 
2796 	return EOPNOTSUPP;
2797 }
2798 
2799 int
2800 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam)
2801 {
2802 
2803 	return EOPNOTSUPP;
2804 }
2805 
2806 int
2807 pru_rcvd_notsupp(struct socket *so, int flags)
2808 {
2809 
2810 	return EOPNOTSUPP;
2811 }
2812 
2813 int
2814 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
2815 {
2816 
2817 	return EOPNOTSUPP;
2818 }
2819 
2820 int
2821 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m,
2822     struct sockaddr *addr, struct mbuf *control, struct thread *td)
2823 {
2824 
2825 	return EOPNOTSUPP;
2826 }
2827 
2828 /*
2829  * This isn't really a ``null'' operation, but it's the default one and
2830  * doesn't do anything destructive.
2831  */
2832 int
2833 pru_sense_null(struct socket *so, struct stat *sb)
2834 {
2835 
2836 	sb->st_blksize = so->so_snd.sb_hiwat;
2837 	return 0;
2838 }
2839 
2840 int
2841 pru_shutdown_notsupp(struct socket *so)
2842 {
2843 
2844 	return EOPNOTSUPP;
2845 }
2846 
2847 int
2848 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam)
2849 {
2850 
2851 	return EOPNOTSUPP;
2852 }
2853 
2854 int
2855 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio,
2856     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2857 {
2858 
2859 	return EOPNOTSUPP;
2860 }
2861 
2862 int
2863 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr,
2864     struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2865 {
2866 
2867 	return EOPNOTSUPP;
2868 }
2869 
2870 int
2871 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred,
2872     struct thread *td)
2873 {
2874 
2875 	return EOPNOTSUPP;
2876 }
2877 
2878 static void
2879 filt_sordetach(struct knote *kn)
2880 {
2881 	struct socket *so = kn->kn_fp->f_data;
2882 
2883 	SOCKBUF_LOCK(&so->so_rcv);
2884 	knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1);
2885 	if (knlist_empty(&so->so_rcv.sb_sel.si_note))
2886 		so->so_rcv.sb_flags &= ~SB_KNOTE;
2887 	SOCKBUF_UNLOCK(&so->so_rcv);
2888 }
2889 
2890 /*ARGSUSED*/
2891 static int
2892 filt_soread(struct knote *kn, long hint)
2893 {
2894 	struct socket *so;
2895 
2896 	so = kn->kn_fp->f_data;
2897 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2898 
2899 	kn->kn_data = so->so_rcv.sb_cc - so->so_rcv.sb_ctl;
2900 	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2901 		kn->kn_flags |= EV_EOF;
2902 		kn->kn_fflags = so->so_error;
2903 		return (1);
2904 	} else if (so->so_error)	/* temporary udp error */
2905 		return (1);
2906 	else if (kn->kn_sfflags & NOTE_LOWAT)
2907 		return (kn->kn_data >= kn->kn_sdata);
2908 	else
2909 		return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat);
2910 }
2911 
2912 static void
2913 filt_sowdetach(struct knote *kn)
2914 {
2915 	struct socket *so = kn->kn_fp->f_data;
2916 
2917 	SOCKBUF_LOCK(&so->so_snd);
2918 	knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1);
2919 	if (knlist_empty(&so->so_snd.sb_sel.si_note))
2920 		so->so_snd.sb_flags &= ~SB_KNOTE;
2921 	SOCKBUF_UNLOCK(&so->so_snd);
2922 }
2923 
2924 /*ARGSUSED*/
2925 static int
2926 filt_sowrite(struct knote *kn, long hint)
2927 {
2928 	struct socket *so;
2929 
2930 	so = kn->kn_fp->f_data;
2931 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
2932 	kn->kn_data = sbspace(&so->so_snd);
2933 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2934 		kn->kn_flags |= EV_EOF;
2935 		kn->kn_fflags = so->so_error;
2936 		return (1);
2937 	} else if (so->so_error)	/* temporary udp error */
2938 		return (1);
2939 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2940 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
2941 		return (0);
2942 	else if (kn->kn_sfflags & NOTE_LOWAT)
2943 		return (kn->kn_data >= kn->kn_sdata);
2944 	else
2945 		return (kn->kn_data >= so->so_snd.sb_lowat);
2946 }
2947 
2948 /*ARGSUSED*/
2949 static int
2950 filt_solisten(struct knote *kn, long hint)
2951 {
2952 	struct socket *so = kn->kn_fp->f_data;
2953 
2954 	kn->kn_data = so->so_qlen;
2955 	return (! TAILQ_EMPTY(&so->so_comp));
2956 }
2957 
2958 int
2959 socheckuid(struct socket *so, uid_t uid)
2960 {
2961 
2962 	if (so == NULL)
2963 		return (EPERM);
2964 	if (so->so_cred->cr_uid != uid)
2965 		return (EPERM);
2966 	return (0);
2967 }
2968 
2969 static int
2970 sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
2971 {
2972 	int error;
2973 	int val;
2974 
2975 	val = somaxconn;
2976 	error = sysctl_handle_int(oidp, &val, 0, req);
2977 	if (error || !req->newptr )
2978 		return (error);
2979 
2980 	if (val < 1 || val > USHRT_MAX)
2981 		return (EINVAL);
2982 
2983 	somaxconn = val;
2984 	return (0);
2985 }
2986 
2987 /*
2988  * These functions are used by protocols to notify the socket layer (and its
2989  * consumers) of state changes in the sockets driven by protocol-side events.
2990  */
2991 
2992 /*
2993  * Procedures to manipulate state flags of socket and do appropriate wakeups.
2994  *
2995  * Normal sequence from the active (originating) side is that
2996  * soisconnecting() is called during processing of connect() call, resulting
2997  * in an eventual call to soisconnected() if/when the connection is
2998  * established.  When the connection is torn down soisdisconnecting() is
2999  * called during processing of disconnect() call, and soisdisconnected() is
3000  * called when the connection to the peer is totally severed.  The semantics
3001  * of these routines are such that connectionless protocols can call
3002  * soisconnected() and soisdisconnected() only, bypassing the in-progress
3003  * calls when setting up a ``connection'' takes no time.
3004  *
3005  * From the passive side, a socket is created with two queues of sockets:
3006  * so_incomp for connections in progress and so_comp for connections already
3007  * made and awaiting user acceptance.  As a protocol is preparing incoming
3008  * connections, it creates a socket structure queued on so_incomp by calling
3009  * sonewconn().  When the connection is established, soisconnected() is
3010  * called, and transfers the socket structure to so_comp, making it available
3011  * to accept().
3012  *
3013  * If a socket is closed with sockets on either so_incomp or so_comp, these
3014  * sockets are dropped.
3015  *
3016  * If higher-level protocols are implemented in the kernel, the wakeups done
3017  * here will sometimes cause software-interrupt process scheduling.
3018  */
3019 void
3020 soisconnecting(struct socket *so)
3021 {
3022 
3023 	SOCK_LOCK(so);
3024 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
3025 	so->so_state |= SS_ISCONNECTING;
3026 	SOCK_UNLOCK(so);
3027 }
3028 
3029 void
3030 soisconnected(struct socket *so)
3031 {
3032 	struct socket *head;
3033 
3034 	ACCEPT_LOCK();
3035 	SOCK_LOCK(so);
3036 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
3037 	so->so_state |= SS_ISCONNECTED;
3038 	head = so->so_head;
3039 	if (head != NULL && (so->so_qstate & SQ_INCOMP)) {
3040 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
3041 			SOCK_UNLOCK(so);
3042 			TAILQ_REMOVE(&head->so_incomp, so, so_list);
3043 			head->so_incqlen--;
3044 			so->so_qstate &= ~SQ_INCOMP;
3045 			TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
3046 			head->so_qlen++;
3047 			so->so_qstate |= SQ_COMP;
3048 			ACCEPT_UNLOCK();
3049 			sorwakeup(head);
3050 			wakeup_one(&head->so_timeo);
3051 		} else {
3052 			ACCEPT_UNLOCK();
3053 			so->so_upcall =
3054 			    head->so_accf->so_accept_filter->accf_callback;
3055 			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
3056 			so->so_rcv.sb_flags |= SB_UPCALL;
3057 			so->so_options &= ~SO_ACCEPTFILTER;
3058 			SOCK_UNLOCK(so);
3059 			so->so_upcall(so, so->so_upcallarg, M_DONTWAIT);
3060 		}
3061 		return;
3062 	}
3063 	SOCK_UNLOCK(so);
3064 	ACCEPT_UNLOCK();
3065 	wakeup(&so->so_timeo);
3066 	sorwakeup(so);
3067 	sowwakeup(so);
3068 }
3069 
3070 void
3071 soisdisconnecting(struct socket *so)
3072 {
3073 
3074 	/*
3075 	 * Note: This code assumes that SOCK_LOCK(so) and
3076 	 * SOCKBUF_LOCK(&so->so_rcv) are the same.
3077 	 */
3078 	SOCKBUF_LOCK(&so->so_rcv);
3079 	so->so_state &= ~SS_ISCONNECTING;
3080 	so->so_state |= SS_ISDISCONNECTING;
3081 	so->so_rcv.sb_state |= SBS_CANTRCVMORE;
3082 	sorwakeup_locked(so);
3083 	SOCKBUF_LOCK(&so->so_snd);
3084 	so->so_snd.sb_state |= SBS_CANTSENDMORE;
3085 	sowwakeup_locked(so);
3086 	wakeup(&so->so_timeo);
3087 }
3088 
3089 void
3090 soisdisconnected(struct socket *so)
3091 {
3092 
3093 	/*
3094 	 * Note: This code assumes that SOCK_LOCK(so) and
3095 	 * SOCKBUF_LOCK(&so->so_rcv) are the same.
3096 	 */
3097 	SOCKBUF_LOCK(&so->so_rcv);
3098 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
3099 	so->so_state |= SS_ISDISCONNECTED;
3100 	so->so_rcv.sb_state |= SBS_CANTRCVMORE;
3101 	sorwakeup_locked(so);
3102 	SOCKBUF_LOCK(&so->so_snd);
3103 	so->so_snd.sb_state |= SBS_CANTSENDMORE;
3104 	sbdrop_locked(&so->so_snd, so->so_snd.sb_cc);
3105 	sowwakeup_locked(so);
3106 	wakeup(&so->so_timeo);
3107 }
3108 
3109 /*
3110  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
3111  */
3112 struct sockaddr *
3113 sodupsockaddr(const struct sockaddr *sa, int mflags)
3114 {
3115 	struct sockaddr *sa2;
3116 
3117 	sa2 = malloc(sa->sa_len, M_SONAME, mflags);
3118 	if (sa2)
3119 		bcopy(sa, sa2, sa->sa_len);
3120 	return sa2;
3121 }
3122 
3123 /*
3124  * Create an external-format (``xsocket'') structure using the information in
3125  * the kernel-format socket structure pointed to by so.  This is done to
3126  * reduce the spew of irrelevant information over this interface, to isolate
3127  * user code from changes in the kernel structure, and potentially to provide
3128  * information-hiding if we decide that some of this information should be
3129  * hidden from users.
3130  */
3131 void
3132 sotoxsocket(struct socket *so, struct xsocket *xso)
3133 {
3134 
3135 	xso->xso_len = sizeof *xso;
3136 	xso->xso_so = so;
3137 	xso->so_type = so->so_type;
3138 	xso->so_options = so->so_options;
3139 	xso->so_linger = so->so_linger;
3140 	xso->so_state = so->so_state;
3141 	xso->so_pcb = so->so_pcb;
3142 	xso->xso_protocol = so->so_proto->pr_protocol;
3143 	xso->xso_family = so->so_proto->pr_domain->dom_family;
3144 	xso->so_qlen = so->so_qlen;
3145 	xso->so_incqlen = so->so_incqlen;
3146 	xso->so_qlimit = so->so_qlimit;
3147 	xso->so_timeo = so->so_timeo;
3148 	xso->so_error = so->so_error;
3149 	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
3150 	xso->so_oobmark = so->so_oobmark;
3151 	sbtoxsockbuf(&so->so_snd, &xso->so_snd);
3152 	sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
3153 	xso->so_uid = so->so_cred->cr_uid;
3154 }
3155 
3156 
3157 /*
3158  * Socket accessor functions to provide external consumers with
3159  * a safe interface to socket state
3160  *
3161  */
3162 
3163 void
3164 so_listeners_apply_all(struct socket *so, void (*func)(struct socket *, void *), void *arg)
3165 {
3166 
3167 	TAILQ_FOREACH(so, &so->so_comp, so_list)
3168 		func(so, arg);
3169 }
3170 
3171 struct sockbuf *
3172 so_sockbuf_rcv(struct socket *so)
3173 {
3174 
3175 	return (&so->so_rcv);
3176 }
3177 
3178 struct sockbuf *
3179 so_sockbuf_snd(struct socket *so)
3180 {
3181 
3182 	return (&so->so_snd);
3183 }
3184 
3185 int
3186 so_state_get(const struct socket *so)
3187 {
3188 
3189 	return (so->so_state);
3190 }
3191 
3192 void
3193 so_state_set(struct socket *so, int val)
3194 {
3195 
3196 	so->so_state = val;
3197 }
3198 
3199 int
3200 so_options_get(const struct socket *so)
3201 {
3202 
3203 	return (so->so_options);
3204 }
3205 
3206 void
3207 so_options_set(struct socket *so, int val)
3208 {
3209 
3210 	so->so_options = val;
3211 }
3212 
3213 int
3214 so_error_get(const struct socket *so)
3215 {
3216 
3217 	return (so->so_error);
3218 }
3219 
3220 void
3221 so_error_set(struct socket *so, int val)
3222 {
3223 
3224 	so->so_error = val;
3225 }
3226 
3227 int
3228 so_linger_get(const struct socket *so)
3229 {
3230 
3231 	return (so->so_linger);
3232 }
3233 
3234 void
3235 so_linger_set(struct socket *so, int val)
3236 {
3237 
3238 	so->so_linger = val;
3239 }
3240 
3241 struct protosw *
3242 so_protosw_get(const struct socket *so)
3243 {
3244 
3245 	return (so->so_proto);
3246 }
3247 
3248 void
3249 so_protosw_set(struct socket *so, struct protosw *val)
3250 {
3251 
3252 	so->so_proto = val;
3253 }
3254 
3255 void
3256 so_sorwakeup(struct socket *so)
3257 {
3258 
3259 	sorwakeup(so);
3260 }
3261 
3262 void
3263 so_sowwakeup(struct socket *so)
3264 {
3265 
3266 	sowwakeup(so);
3267 }
3268 
3269 void
3270 so_sorwakeup_locked(struct socket *so)
3271 {
3272 
3273 	sorwakeup_locked(so);
3274 }
3275 
3276 void
3277 so_sowwakeup_locked(struct socket *so)
3278 {
3279 
3280 	sowwakeup_locked(so);
3281 }
3282 
3283 void
3284 so_lock(struct socket *so)
3285 {
3286 	SOCK_LOCK(so);
3287 }
3288 
3289 void
3290 so_unlock(struct socket *so)
3291 {
3292 	SOCK_UNLOCK(so);
3293 }
3294