xref: /freebsd/sys/kern/uipc_socket.c (revision 51015e6d0f570239b0c2088dc6cf2b018928375d)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
5  *	The Regents of the University of California.
6  * Copyright (c) 2004 The FreeBSD Foundation
7  * Copyright (c) 2004-2008 Robert N. M. Watson
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)uipc_socket.c	8.3 (Berkeley) 4/15/94
35  */
36 
37 /*
38  * Comments on the socket life cycle:
39  *
40  * soalloc() sets of socket layer state for a socket, called only by
41  * socreate() and sonewconn().  Socket layer private.
42  *
43  * sodealloc() tears down socket layer state for a socket, called only by
44  * sofree() and sonewconn().  Socket layer private.
45  *
46  * pru_attach() associates protocol layer state with an allocated socket;
47  * called only once, may fail, aborting socket allocation.  This is called
48  * from socreate() and sonewconn().  Socket layer private.
49  *
50  * pru_detach() disassociates protocol layer state from an attached socket,
51  * and will be called exactly once for sockets in which pru_attach() has
52  * been successfully called.  If pru_attach() returned an error,
53  * pru_detach() will not be called.  Socket layer private.
54  *
55  * pru_abort() and pru_close() notify the protocol layer that the last
56  * consumer of a socket is starting to tear down the socket, and that the
57  * protocol should terminate the connection.  Historically, pru_abort() also
58  * detached protocol state from the socket state, but this is no longer the
59  * case.
60  *
61  * socreate() creates a socket and attaches protocol state.  This is a public
62  * interface that may be used by socket layer consumers to create new
63  * sockets.
64  *
65  * sonewconn() creates a socket and attaches protocol state.  This is a
66  * public interface  that may be used by protocols to create new sockets when
67  * a new connection is received and will be available for accept() on a
68  * listen socket.
69  *
70  * soclose() destroys a socket after possibly waiting for it to disconnect.
71  * This is a public interface that socket consumers should use to close and
72  * release a socket when done with it.
73  *
74  * soabort() destroys a socket without waiting for it to disconnect (used
75  * only for incoming connections that are already partially or fully
76  * connected).  This is used internally by the socket layer when clearing
77  * listen socket queues (due to overflow or close on the listen socket), but
78  * is also a public interface protocols may use to abort connections in
79  * their incomplete listen queues should they no longer be required.  Sockets
80  * placed in completed connection listen queues should not be aborted for
81  * reasons described in the comment above the soclose() implementation.  This
82  * is not a general purpose close routine, and except in the specific
83  * circumstances described here, should not be used.
84  *
85  * sofree() will free a socket and its protocol state if all references on
86  * the socket have been released, and is the public interface to attempt to
87  * free a socket when a reference is removed.  This is a socket layer private
88  * interface.
89  *
90  * NOTE: In addition to socreate() and soclose(), which provide a single
91  * socket reference to the consumer to be managed as required, there are two
92  * calls to explicitly manage socket references, soref(), and sorele().
93  * Currently, these are generally required only when transitioning a socket
94  * from a listen queue to a file descriptor, in order to prevent garbage
95  * collection of the socket at an untimely moment.  For a number of reasons,
96  * these interfaces are not preferred, and should be avoided.
97  *
98  * NOTE: With regard to VNETs the general rule is that callers do not set
99  * curvnet. Exceptions to this rule include soabort(), sodisconnect(),
100  * sofree() (and with that sorele(), sotryfree()), as well as sonewconn()
101  * and sorflush(), which are usually called from a pre-set VNET context.
102  * sopoll() currently does not need a VNET context to be set.
103  */
104 
105 #include <sys/cdefs.h>
106 __FBSDID("$FreeBSD$");
107 
108 #include "opt_inet.h"
109 #include "opt_inet6.h"
110 #include "opt_kern_tls.h"
111 #include "opt_sctp.h"
112 
113 #include <sys/param.h>
114 #include <sys/systm.h>
115 #include <sys/capsicum.h>
116 #include <sys/fcntl.h>
117 #include <sys/limits.h>
118 #include <sys/lock.h>
119 #include <sys/mac.h>
120 #include <sys/malloc.h>
121 #include <sys/mbuf.h>
122 #include <sys/mutex.h>
123 #include <sys/domain.h>
124 #include <sys/file.h>			/* for struct knote */
125 #include <sys/hhook.h>
126 #include <sys/kernel.h>
127 #include <sys/khelp.h>
128 #include <sys/ktls.h>
129 #include <sys/event.h>
130 #include <sys/eventhandler.h>
131 #include <sys/poll.h>
132 #include <sys/proc.h>
133 #include <sys/protosw.h>
134 #include <sys/sbuf.h>
135 #include <sys/socket.h>
136 #include <sys/socketvar.h>
137 #include <sys/resourcevar.h>
138 #include <net/route.h>
139 #include <sys/signalvar.h>
140 #include <sys/stat.h>
141 #include <sys/sx.h>
142 #include <sys/sysctl.h>
143 #include <sys/taskqueue.h>
144 #include <sys/uio.h>
145 #include <sys/un.h>
146 #include <sys/unpcb.h>
147 #include <sys/jail.h>
148 #include <sys/syslog.h>
149 #include <netinet/in.h>
150 #include <netinet/in_pcb.h>
151 #include <netinet/tcp.h>
152 
153 #include <net/vnet.h>
154 
155 #include <security/mac/mac_framework.h>
156 
157 #include <vm/uma.h>
158 
159 #ifdef COMPAT_FREEBSD32
160 #include <sys/mount.h>
161 #include <sys/sysent.h>
162 #include <compat/freebsd32/freebsd32.h>
163 #endif
164 
165 static int	soreceive_rcvoob(struct socket *so, struct uio *uio,
166 		    int flags);
167 static void	so_rdknl_lock(void *);
168 static void	so_rdknl_unlock(void *);
169 static void	so_rdknl_assert_lock(void *, int);
170 static void	so_wrknl_lock(void *);
171 static void	so_wrknl_unlock(void *);
172 static void	so_wrknl_assert_lock(void *, int);
173 
174 static void	filt_sordetach(struct knote *kn);
175 static int	filt_soread(struct knote *kn, long hint);
176 static void	filt_sowdetach(struct knote *kn);
177 static int	filt_sowrite(struct knote *kn, long hint);
178 static int	filt_soempty(struct knote *kn, long hint);
179 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id);
180 fo_kqfilter_t	soo_kqfilter;
181 
182 static struct filterops soread_filtops = {
183 	.f_isfd = 1,
184 	.f_detach = filt_sordetach,
185 	.f_event = filt_soread,
186 };
187 static struct filterops sowrite_filtops = {
188 	.f_isfd = 1,
189 	.f_detach = filt_sowdetach,
190 	.f_event = filt_sowrite,
191 };
192 static struct filterops soempty_filtops = {
193 	.f_isfd = 1,
194 	.f_detach = filt_sowdetach,
195 	.f_event = filt_soempty,
196 };
197 
198 so_gen_t	so_gencnt;	/* generation count for sockets */
199 
200 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
201 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
202 
203 #define	VNET_SO_ASSERT(so)						\
204 	VNET_ASSERT(curvnet != NULL,					\
205 	    ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so)));
206 
207 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]);
208 #define	V_socket_hhh		VNET(socket_hhh)
209 
210 /*
211  * Limit on the number of connections in the listen queue waiting
212  * for accept(2).
213  * NB: The original sysctl somaxconn is still available but hidden
214  * to prevent confusion about the actual purpose of this number.
215  */
216 static u_int somaxconn = SOMAXCONN;
217 
218 static int
219 sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
220 {
221 	int error;
222 	int val;
223 
224 	val = somaxconn;
225 	error = sysctl_handle_int(oidp, &val, 0, req);
226 	if (error || !req->newptr )
227 		return (error);
228 
229 	/*
230 	 * The purpose of the UINT_MAX / 3 limit, is so that the formula
231 	 *   3 * so_qlimit / 2
232 	 * below, will not overflow.
233          */
234 
235 	if (val < 1 || val > UINT_MAX / 3)
236 		return (EINVAL);
237 
238 	somaxconn = val;
239 	return (0);
240 }
241 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue,
242     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, sizeof(int),
243     sysctl_somaxconn, "I",
244     "Maximum listen socket pending connection accept queue size");
245 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn,
246     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE, 0,
247     sizeof(int), sysctl_somaxconn, "I",
248     "Maximum listen socket pending connection accept queue size (compat)");
249 
250 static int numopensockets;
251 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,
252     &numopensockets, 0, "Number of open sockets");
253 
254 /*
255  * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
256  * so_gencnt field.
257  */
258 static struct mtx so_global_mtx;
259 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
260 
261 /*
262  * General IPC sysctl name space, used by sockets and a variety of other IPC
263  * types.
264  */
265 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
266     "IPC");
267 
268 /*
269  * Initialize the socket subsystem and set up the socket
270  * memory allocator.
271  */
272 static uma_zone_t socket_zone;
273 int	maxsockets;
274 
275 static void
276 socket_zone_change(void *tag)
277 {
278 
279 	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
280 }
281 
282 static void
283 socket_hhook_register(int subtype)
284 {
285 
286 	if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype,
287 	    &V_socket_hhh[subtype],
288 	    HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
289 		printf("%s: WARNING: unable to register hook\n", __func__);
290 }
291 
292 static void
293 socket_hhook_deregister(int subtype)
294 {
295 
296 	if (hhook_head_deregister(V_socket_hhh[subtype]) != 0)
297 		printf("%s: WARNING: unable to deregister hook\n", __func__);
298 }
299 
300 static void
301 socket_init(void *tag)
302 {
303 
304 	socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL,
305 	    NULL, NULL, UMA_ALIGN_PTR, 0);
306 	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
307 	uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached");
308 	EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL,
309 	    EVENTHANDLER_PRI_FIRST);
310 }
311 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL);
312 
313 static void
314 socket_vnet_init(const void *unused __unused)
315 {
316 	int i;
317 
318 	/* We expect a contiguous range */
319 	for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
320 		socket_hhook_register(i);
321 }
322 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
323     socket_vnet_init, NULL);
324 
325 static void
326 socket_vnet_uninit(const void *unused __unused)
327 {
328 	int i;
329 
330 	for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
331 		socket_hhook_deregister(i);
332 }
333 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
334     socket_vnet_uninit, NULL);
335 
336 /*
337  * Initialise maxsockets.  This SYSINIT must be run after
338  * tunable_mbinit().
339  */
340 static void
341 init_maxsockets(void *ignored)
342 {
343 
344 	TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
345 	maxsockets = imax(maxsockets, maxfiles);
346 }
347 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
348 
349 /*
350  * Sysctl to get and set the maximum global sockets limit.  Notify protocols
351  * of the change so that they can update their dependent limits as required.
352  */
353 static int
354 sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
355 {
356 	int error, newmaxsockets;
357 
358 	newmaxsockets = maxsockets;
359 	error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
360 	if (error == 0 && req->newptr && newmaxsockets != maxsockets) {
361 		if (newmaxsockets > maxsockets &&
362 		    newmaxsockets <= maxfiles) {
363 			maxsockets = newmaxsockets;
364 			EVENTHANDLER_INVOKE(maxsockets_change);
365 		} else
366 			error = EINVAL;
367 	}
368 	return (error);
369 }
370 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets,
371     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, &maxsockets, 0,
372     sysctl_maxsockets, "IU",
373     "Maximum number of sockets available");
374 
375 /*
376  * Socket operation routines.  These routines are called by the routines in
377  * sys_socket.c or from a system process, and implement the semantics of
378  * socket operations by switching out to the protocol specific routines.
379  */
380 
381 /*
382  * Get a socket structure from our zone, and initialize it.  Note that it
383  * would probably be better to allocate socket and PCB at the same time, but
384  * I'm not convinced that all the protocols can be easily modified to do
385  * this.
386  *
387  * soalloc() returns a socket with a ref count of 0.
388  */
389 static struct socket *
390 soalloc(struct vnet *vnet)
391 {
392 	struct socket *so;
393 
394 	so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
395 	if (so == NULL)
396 		return (NULL);
397 #ifdef MAC
398 	if (mac_socket_init(so, M_NOWAIT) != 0) {
399 		uma_zfree(socket_zone, so);
400 		return (NULL);
401 	}
402 #endif
403 	if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) {
404 		uma_zfree(socket_zone, so);
405 		return (NULL);
406 	}
407 
408 	/*
409 	 * The socket locking protocol allows to lock 2 sockets at a time,
410 	 * however, the first one must be a listening socket.  WITNESS lacks
411 	 * a feature to change class of an existing lock, so we use DUPOK.
412 	 */
413 	mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK);
414 	mtx_init(&so->so_snd_mtx, "so_snd", NULL, MTX_DEF);
415 	mtx_init(&so->so_rcv_mtx, "so_rcv", NULL, MTX_DEF);
416 	so->so_rcv.sb_sel = &so->so_rdsel;
417 	so->so_snd.sb_sel = &so->so_wrsel;
418 	sx_init(&so->so_snd_sx, "so_snd_sx");
419 	sx_init(&so->so_rcv_sx, "so_rcv_sx");
420 	TAILQ_INIT(&so->so_snd.sb_aiojobq);
421 	TAILQ_INIT(&so->so_rcv.sb_aiojobq);
422 	TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so);
423 	TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so);
424 #ifdef VIMAGE
425 	VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p",
426 	    __func__, __LINE__, so));
427 	so->so_vnet = vnet;
428 #endif
429 	/* We shouldn't need the so_global_mtx */
430 	if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) {
431 		/* Do we need more comprehensive error returns? */
432 		uma_zfree(socket_zone, so);
433 		return (NULL);
434 	}
435 	mtx_lock(&so_global_mtx);
436 	so->so_gencnt = ++so_gencnt;
437 	++numopensockets;
438 #ifdef VIMAGE
439 	vnet->vnet_sockcnt++;
440 #endif
441 	mtx_unlock(&so_global_mtx);
442 
443 	return (so);
444 }
445 
446 /*
447  * Free the storage associated with a socket at the socket layer, tear down
448  * locks, labels, etc.  All protocol state is assumed already to have been
449  * torn down (and possibly never set up) by the caller.
450  */
451 void
452 sodealloc(struct socket *so)
453 {
454 
455 	KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
456 	KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
457 
458 	mtx_lock(&so_global_mtx);
459 	so->so_gencnt = ++so_gencnt;
460 	--numopensockets;	/* Could be below, but faster here. */
461 #ifdef VIMAGE
462 	VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p",
463 	    __func__, __LINE__, so));
464 	so->so_vnet->vnet_sockcnt--;
465 #endif
466 	mtx_unlock(&so_global_mtx);
467 #ifdef MAC
468 	mac_socket_destroy(so);
469 #endif
470 	hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE);
471 
472 	khelp_destroy_osd(&so->osd);
473 	if (SOLISTENING(so)) {
474 		if (so->sol_accept_filter != NULL)
475 			accept_filt_setopt(so, NULL);
476 	} else {
477 		if (so->so_rcv.sb_hiwat)
478 			(void)chgsbsize(so->so_cred->cr_uidinfo,
479 			    &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
480 		if (so->so_snd.sb_hiwat)
481 			(void)chgsbsize(so->so_cred->cr_uidinfo,
482 			    &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
483 		sx_destroy(&so->so_snd_sx);
484 		sx_destroy(&so->so_rcv_sx);
485 		mtx_destroy(&so->so_snd_mtx);
486 		mtx_destroy(&so->so_rcv_mtx);
487 	}
488 	crfree(so->so_cred);
489 	mtx_destroy(&so->so_lock);
490 	uma_zfree(socket_zone, so);
491 }
492 
493 /*
494  * socreate returns a socket with a ref count of 1 and a file descriptor
495  * reference.  The socket should be closed with soclose().
496  */
497 int
498 socreate(int dom, struct socket **aso, int type, int proto,
499     struct ucred *cred, struct thread *td)
500 {
501 	struct protosw *prp;
502 	struct socket *so;
503 	int error;
504 
505 	/*
506 	 * XXX: divert(4) historically abused PF_INET.  Keep this compatibility
507 	 * shim until all applications have been updated.
508 	 */
509 	if (__predict_false(dom == PF_INET && type == SOCK_RAW &&
510 	    proto == IPPROTO_DIVERT)) {
511 		dom = PF_DIVERT;
512 		printf("%s uses obsolete way to create divert(4) socket\n",
513 		    td->td_proc->p_comm);
514 	}
515 
516 	prp = pffindproto(dom, type, proto);
517 	if (prp == NULL) {
518 		/* No support for domain. */
519 		if (pffinddomain(dom) == NULL)
520 			return (EAFNOSUPPORT);
521 		/* No support for socket type. */
522 		if (proto == 0 && type != 0)
523 			return (EPROTOTYPE);
524 		return (EPROTONOSUPPORT);
525 	}
526 
527 	MPASS(prp->pr_attach);
528 
529 	if (IN_CAPABILITY_MODE(td) && (prp->pr_flags & PR_CAPATTACH) == 0)
530 		return (ECAPMODE);
531 
532 	if (prison_check_af(cred, prp->pr_domain->dom_family) != 0)
533 		return (EPROTONOSUPPORT);
534 
535 	so = soalloc(CRED_TO_VNET(cred));
536 	if (so == NULL)
537 		return (ENOBUFS);
538 
539 	so->so_type = type;
540 	so->so_cred = crhold(cred);
541 	if ((prp->pr_domain->dom_family == PF_INET) ||
542 	    (prp->pr_domain->dom_family == PF_INET6) ||
543 	    (prp->pr_domain->dom_family == PF_ROUTE))
544 		so->so_fibnum = td->td_proc->p_fibnum;
545 	else
546 		so->so_fibnum = 0;
547 	so->so_proto = prp;
548 #ifdef MAC
549 	mac_socket_create(cred, so);
550 #endif
551 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
552 	    so_rdknl_assert_lock);
553 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
554 	    so_wrknl_assert_lock);
555 	if ((prp->pr_flags & PR_SOCKBUF) == 0) {
556 		so->so_snd.sb_mtx = &so->so_snd_mtx;
557 		so->so_rcv.sb_mtx = &so->so_rcv_mtx;
558 	}
559 	/*
560 	 * Auto-sizing of socket buffers is managed by the protocols and
561 	 * the appropriate flags must be set in the pru_attach function.
562 	 */
563 	CURVNET_SET(so->so_vnet);
564 	error = prp->pr_attach(so, proto, td);
565 	CURVNET_RESTORE();
566 	if (error) {
567 		sodealloc(so);
568 		return (error);
569 	}
570 	soref(so);
571 	*aso = so;
572 	return (0);
573 }
574 
575 #ifdef REGRESSION
576 static int regression_sonewconn_earlytest = 1;
577 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
578     &regression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
579 #endif
580 
581 static struct timeval overinterval = { 60, 0 };
582 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW,
583     &overinterval,
584     "Delay in seconds between warnings for listen socket overflows");
585 
586 /*
587  * When an attempt at a new connection is noted on a socket which supports
588  * accept(2), the protocol has two options:
589  * 1) Call legacy sonewconn() function, which would call protocol attach
590  *    method, same as used for socket(2).
591  * 2) Call solisten_clone(), do attach that is specific to a cloned connection,
592  *    and then call solisten_enqueue().
593  *
594  * Note: the ref count on the socket is 0 on return.
595  */
596 struct socket *
597 solisten_clone(struct socket *head)
598 {
599 	struct sbuf descrsb;
600 	struct socket *so;
601 	int len, overcount;
602 	u_int qlen;
603 	const char localprefix[] = "local:";
604 	char descrbuf[SUNPATHLEN + sizeof(localprefix)];
605 #if defined(INET6)
606 	char addrbuf[INET6_ADDRSTRLEN];
607 #elif defined(INET)
608 	char addrbuf[INET_ADDRSTRLEN];
609 #endif
610 	bool dolog, over;
611 
612 	SOLISTEN_LOCK(head);
613 	over = (head->sol_qlen > 3 * head->sol_qlimit / 2);
614 #ifdef REGRESSION
615 	if (regression_sonewconn_earlytest && over) {
616 #else
617 	if (over) {
618 #endif
619 		head->sol_overcount++;
620 		dolog = !!ratecheck(&head->sol_lastover, &overinterval);
621 
622 		/*
623 		 * If we're going to log, copy the overflow count and queue
624 		 * length from the listen socket before dropping the lock.
625 		 * Also, reset the overflow count.
626 		 */
627 		if (dolog) {
628 			overcount = head->sol_overcount;
629 			head->sol_overcount = 0;
630 			qlen = head->sol_qlen;
631 		}
632 		SOLISTEN_UNLOCK(head);
633 
634 		if (dolog) {
635 			/*
636 			 * Try to print something descriptive about the
637 			 * socket for the error message.
638 			 */
639 			sbuf_new(&descrsb, descrbuf, sizeof(descrbuf),
640 			    SBUF_FIXEDLEN);
641 			switch (head->so_proto->pr_domain->dom_family) {
642 #if defined(INET) || defined(INET6)
643 #ifdef INET
644 			case AF_INET:
645 #endif
646 #ifdef INET6
647 			case AF_INET6:
648 				if (head->so_proto->pr_domain->dom_family ==
649 				    AF_INET6 ||
650 				    (sotoinpcb(head)->inp_inc.inc_flags &
651 				    INC_ISIPV6)) {
652 					ip6_sprintf(addrbuf,
653 					    &sotoinpcb(head)->inp_inc.inc6_laddr);
654 					sbuf_printf(&descrsb, "[%s]", addrbuf);
655 				} else
656 #endif
657 				{
658 #ifdef INET
659 					inet_ntoa_r(
660 					    sotoinpcb(head)->inp_inc.inc_laddr,
661 					    addrbuf);
662 					sbuf_cat(&descrsb, addrbuf);
663 #endif
664 				}
665 				sbuf_printf(&descrsb, ":%hu (proto %u)",
666 				    ntohs(sotoinpcb(head)->inp_inc.inc_lport),
667 				    head->so_proto->pr_protocol);
668 				break;
669 #endif /* INET || INET6 */
670 			case AF_UNIX:
671 				sbuf_cat(&descrsb, localprefix);
672 				if (sotounpcb(head)->unp_addr != NULL)
673 					len =
674 					    sotounpcb(head)->unp_addr->sun_len -
675 					    offsetof(struct sockaddr_un,
676 					    sun_path);
677 				else
678 					len = 0;
679 				if (len > 0)
680 					sbuf_bcat(&descrsb,
681 					    sotounpcb(head)->unp_addr->sun_path,
682 					    len);
683 				else
684 					sbuf_cat(&descrsb, "(unknown)");
685 				break;
686 			}
687 
688 			/*
689 			 * If we can't print something more specific, at least
690 			 * print the domain name.
691 			 */
692 			if (sbuf_finish(&descrsb) != 0 ||
693 			    sbuf_len(&descrsb) <= 0) {
694 				sbuf_clear(&descrsb);
695 				sbuf_cat(&descrsb,
696 				    head->so_proto->pr_domain->dom_name ?:
697 				    "unknown");
698 				sbuf_finish(&descrsb);
699 			}
700 			KASSERT(sbuf_len(&descrsb) > 0,
701 			    ("%s: sbuf creation failed", __func__));
702 			/*
703 			 * Preserve the historic listen queue overflow log
704 			 * message, that starts with "sonewconn:".  It has
705 			 * been known to sysadmins for years and also test
706 			 * sys/kern/sonewconn_overflow checks for it.
707 			 */
708 			if (head->so_cred == 0) {
709 				log(LOG_DEBUG, "sonewconn: pcb %p (%s): "
710 				    "Listen queue overflow: %i already in "
711 				    "queue awaiting acceptance (%d "
712 				    "occurrences)\n", head->so_pcb,
713 				    sbuf_data(&descrsb),
714 			    	qlen, overcount);
715 			} else {
716 				log(LOG_DEBUG, "sonewconn: pcb %p (%s): "
717 				    "Listen queue overflow: "
718 				    "%i already in queue awaiting acceptance "
719 				    "(%d occurrences), euid %d, rgid %d, jail %s\n",
720 				    head->so_pcb, sbuf_data(&descrsb), qlen,
721 				    overcount, head->so_cred->cr_uid,
722 				    head->so_cred->cr_rgid,
723 				    head->so_cred->cr_prison ?
724 					head->so_cred->cr_prison->pr_name :
725 					"not_jailed");
726 			}
727 			sbuf_delete(&descrsb);
728 
729 			overcount = 0;
730 		}
731 
732 		return (NULL);
733 	}
734 	SOLISTEN_UNLOCK(head);
735 	VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL",
736 	    __func__, head));
737 	so = soalloc(head->so_vnet);
738 	if (so == NULL) {
739 		log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
740 		    "limit reached or out of memory\n",
741 		    __func__, head->so_pcb);
742 		return (NULL);
743 	}
744 	so->so_listen = head;
745 	so->so_type = head->so_type;
746 	so->so_options = head->so_options & ~SO_ACCEPTCONN;
747 	so->so_linger = head->so_linger;
748 	so->so_state = head->so_state;
749 	so->so_fibnum = head->so_fibnum;
750 	so->so_proto = head->so_proto;
751 	so->so_cred = crhold(head->so_cred);
752 #ifdef MAC
753 	mac_socket_newconn(head, so);
754 #endif
755 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
756 	    so_rdknl_assert_lock);
757 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
758 	    so_wrknl_assert_lock);
759 	VNET_SO_ASSERT(head);
760 	if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) {
761 		sodealloc(so);
762 		log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
763 		    __func__, head->so_pcb);
764 		return (NULL);
765 	}
766 	so->so_rcv.sb_lowat = head->sol_sbrcv_lowat;
767 	so->so_snd.sb_lowat = head->sol_sbsnd_lowat;
768 	so->so_rcv.sb_timeo = head->sol_sbrcv_timeo;
769 	so->so_snd.sb_timeo = head->sol_sbsnd_timeo;
770 	so->so_rcv.sb_flags = head->sol_sbrcv_flags & SB_AUTOSIZE;
771 	so->so_snd.sb_flags = head->sol_sbsnd_flags & SB_AUTOSIZE;
772 	if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) {
773 		so->so_snd.sb_mtx = &so->so_snd_mtx;
774 		so->so_rcv.sb_mtx = &so->so_rcv_mtx;
775 	}
776 
777 	return (so);
778 }
779 
780 /* Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED. */
781 struct socket *
782 sonewconn(struct socket *head, int connstatus)
783 {
784 	struct socket *so;
785 
786 	if ((so = solisten_clone(head)) == NULL)
787 		return (NULL);
788 
789 	if (so->so_proto->pr_attach(so, 0, NULL) != 0) {
790 		sodealloc(so);
791 		log(LOG_DEBUG, "%s: pcb %p: pr_attach() failed\n",
792 		    __func__, head->so_pcb);
793 		return (NULL);
794 	}
795 
796 	(void)solisten_enqueue(so, connstatus);
797 
798 	return (so);
799 }
800 
801 /*
802  * Enqueue socket cloned by solisten_clone() to the listen queue of the
803  * listener it has been cloned from.
804  *
805  * Return 'true' if socket landed on complete queue, otherwise 'false'.
806  */
807 bool
808 solisten_enqueue(struct socket *so, int connstatus)
809 {
810 	struct socket *head = so->so_listen;
811 
812 	MPASS(refcount_load(&so->so_count) == 0);
813 	refcount_init(&so->so_count, 1);
814 
815 	SOLISTEN_LOCK(head);
816 	if (head->sol_accept_filter != NULL)
817 		connstatus = 0;
818 	so->so_state |= connstatus;
819 	soref(head); /* A socket on (in)complete queue refs head. */
820 	if (connstatus) {
821 		TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
822 		so->so_qstate = SQ_COMP;
823 		head->sol_qlen++;
824 		solisten_wakeup(head);	/* unlocks */
825 		return (true);
826 	} else {
827 		/*
828 		 * Keep removing sockets from the head until there's room for
829 		 * us to insert on the tail.  In pre-locking revisions, this
830 		 * was a simple if(), but as we could be racing with other
831 		 * threads and soabort() requires dropping locks, we must
832 		 * loop waiting for the condition to be true.
833 		 */
834 		while (head->sol_incqlen > head->sol_qlimit) {
835 			struct socket *sp;
836 
837 			sp = TAILQ_FIRST(&head->sol_incomp);
838 			TAILQ_REMOVE(&head->sol_incomp, sp, so_list);
839 			head->sol_incqlen--;
840 			SOCK_LOCK(sp);
841 			sp->so_qstate = SQ_NONE;
842 			sp->so_listen = NULL;
843 			SOCK_UNLOCK(sp);
844 			sorele_locked(head);	/* does SOLISTEN_UNLOCK, head stays */
845 			soabort(sp);
846 			SOLISTEN_LOCK(head);
847 		}
848 		TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list);
849 		so->so_qstate = SQ_INCOMP;
850 		head->sol_incqlen++;
851 		SOLISTEN_UNLOCK(head);
852 		return (false);
853 	}
854 }
855 
856 #if defined(SCTP) || defined(SCTP_SUPPORT)
857 /*
858  * Socket part of sctp_peeloff().  Detach a new socket from an
859  * association.  The new socket is returned with a reference.
860  *
861  * XXXGL: reduce copy-paste with solisten_clone().
862  */
863 struct socket *
864 sopeeloff(struct socket *head)
865 {
866 	struct socket *so;
867 
868 	VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p",
869 	    __func__, __LINE__, head));
870 	so = soalloc(head->so_vnet);
871 	if (so == NULL) {
872 		log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
873 		    "limit reached or out of memory\n",
874 		    __func__, head->so_pcb);
875 		return (NULL);
876 	}
877 	so->so_type = head->so_type;
878 	so->so_options = head->so_options;
879 	so->so_linger = head->so_linger;
880 	so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED;
881 	so->so_fibnum = head->so_fibnum;
882 	so->so_proto = head->so_proto;
883 	so->so_cred = crhold(head->so_cred);
884 #ifdef MAC
885 	mac_socket_newconn(head, so);
886 #endif
887 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
888 	    so_rdknl_assert_lock);
889 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
890 	    so_wrknl_assert_lock);
891 	VNET_SO_ASSERT(head);
892 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
893 		sodealloc(so);
894 		log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
895 		    __func__, head->so_pcb);
896 		return (NULL);
897 	}
898 	if ((*so->so_proto->pr_attach)(so, 0, NULL)) {
899 		sodealloc(so);
900 		log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n",
901 		    __func__, head->so_pcb);
902 		return (NULL);
903 	}
904 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
905 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
906 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
907 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
908 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
909 	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
910 
911 	soref(so);
912 
913 	return (so);
914 }
915 #endif	/* SCTP */
916 
917 int
918 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
919 {
920 	int error;
921 
922 	CURVNET_SET(so->so_vnet);
923 	error = so->so_proto->pr_bind(so, nam, td);
924 	CURVNET_RESTORE();
925 	return (error);
926 }
927 
928 int
929 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
930 {
931 	int error;
932 
933 	CURVNET_SET(so->so_vnet);
934 	error = so->so_proto->pr_bindat(fd, so, nam, td);
935 	CURVNET_RESTORE();
936 	return (error);
937 }
938 
939 /*
940  * solisten() transitions a socket from a non-listening state to a listening
941  * state, but can also be used to update the listen queue depth on an
942  * existing listen socket.  The protocol will call back into the sockets
943  * layer using solisten_proto_check() and solisten_proto() to check and set
944  * socket-layer listen state.  Call backs are used so that the protocol can
945  * acquire both protocol and socket layer locks in whatever order is required
946  * by the protocol.
947  *
948  * Protocol implementors are advised to hold the socket lock across the
949  * socket-layer test and set to avoid races at the socket layer.
950  */
951 int
952 solisten(struct socket *so, int backlog, struct thread *td)
953 {
954 	int error;
955 
956 	CURVNET_SET(so->so_vnet);
957 	error = so->so_proto->pr_listen(so, backlog, td);
958 	CURVNET_RESTORE();
959 	return (error);
960 }
961 
962 /*
963  * Prepare for a call to solisten_proto().  Acquire all socket buffer locks in
964  * order to interlock with socket I/O.
965  */
966 int
967 solisten_proto_check(struct socket *so)
968 {
969 	SOCK_LOCK_ASSERT(so);
970 
971 	if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
972 	    SS_ISDISCONNECTING)) != 0)
973 		return (EINVAL);
974 
975 	/*
976 	 * Sleeping is not permitted here, so simply fail if userspace is
977 	 * attempting to transmit or receive on the socket.  This kind of
978 	 * transient failure is not ideal, but it should occur only if userspace
979 	 * is misusing the socket interfaces.
980 	 */
981 	if (!sx_try_xlock(&so->so_snd_sx))
982 		return (EAGAIN);
983 	if (!sx_try_xlock(&so->so_rcv_sx)) {
984 		sx_xunlock(&so->so_snd_sx);
985 		return (EAGAIN);
986 	}
987 	mtx_lock(&so->so_snd_mtx);
988 	mtx_lock(&so->so_rcv_mtx);
989 
990 	/* Interlock with soo_aio_queue(). */
991 	if (!SOLISTENING(so) &&
992 	   ((so->so_snd.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0 ||
993 	   (so->so_rcv.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0)) {
994 		solisten_proto_abort(so);
995 		return (EINVAL);
996 	}
997 	return (0);
998 }
999 
1000 /*
1001  * Undo the setup done by solisten_proto_check().
1002  */
1003 void
1004 solisten_proto_abort(struct socket *so)
1005 {
1006 	mtx_unlock(&so->so_snd_mtx);
1007 	mtx_unlock(&so->so_rcv_mtx);
1008 	sx_xunlock(&so->so_snd_sx);
1009 	sx_xunlock(&so->so_rcv_sx);
1010 }
1011 
1012 void
1013 solisten_proto(struct socket *so, int backlog)
1014 {
1015 	int sbrcv_lowat, sbsnd_lowat;
1016 	u_int sbrcv_hiwat, sbsnd_hiwat;
1017 	short sbrcv_flags, sbsnd_flags;
1018 	sbintime_t sbrcv_timeo, sbsnd_timeo;
1019 
1020 	SOCK_LOCK_ASSERT(so);
1021 	KASSERT((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
1022 	    SS_ISDISCONNECTING)) == 0,
1023 	    ("%s: bad socket state %p", __func__, so));
1024 
1025 	if (SOLISTENING(so))
1026 		goto listening;
1027 
1028 	/*
1029 	 * Change this socket to listening state.
1030 	 */
1031 	sbrcv_lowat = so->so_rcv.sb_lowat;
1032 	sbsnd_lowat = so->so_snd.sb_lowat;
1033 	sbrcv_hiwat = so->so_rcv.sb_hiwat;
1034 	sbsnd_hiwat = so->so_snd.sb_hiwat;
1035 	sbrcv_flags = so->so_rcv.sb_flags;
1036 	sbsnd_flags = so->so_snd.sb_flags;
1037 	sbrcv_timeo = so->so_rcv.sb_timeo;
1038 	sbsnd_timeo = so->so_snd.sb_timeo;
1039 
1040 	sbdestroy(so, SO_SND);
1041 	sbdestroy(so, SO_RCV);
1042 
1043 #ifdef INVARIANTS
1044 	bzero(&so->so_rcv,
1045 	    sizeof(struct socket) - offsetof(struct socket, so_rcv));
1046 #endif
1047 
1048 	so->sol_sbrcv_lowat = sbrcv_lowat;
1049 	so->sol_sbsnd_lowat = sbsnd_lowat;
1050 	so->sol_sbrcv_hiwat = sbrcv_hiwat;
1051 	so->sol_sbsnd_hiwat = sbsnd_hiwat;
1052 	so->sol_sbrcv_flags = sbrcv_flags;
1053 	so->sol_sbsnd_flags = sbsnd_flags;
1054 	so->sol_sbrcv_timeo = sbrcv_timeo;
1055 	so->sol_sbsnd_timeo = sbsnd_timeo;
1056 
1057 	so->sol_qlen = so->sol_incqlen = 0;
1058 	TAILQ_INIT(&so->sol_incomp);
1059 	TAILQ_INIT(&so->sol_comp);
1060 
1061 	so->sol_accept_filter = NULL;
1062 	so->sol_accept_filter_arg = NULL;
1063 	so->sol_accept_filter_str = NULL;
1064 
1065 	so->sol_upcall = NULL;
1066 	so->sol_upcallarg = NULL;
1067 
1068 	so->so_options |= SO_ACCEPTCONN;
1069 
1070 listening:
1071 	if (backlog < 0 || backlog > somaxconn)
1072 		backlog = somaxconn;
1073 	so->sol_qlimit = backlog;
1074 
1075 	mtx_unlock(&so->so_snd_mtx);
1076 	mtx_unlock(&so->so_rcv_mtx);
1077 	sx_xunlock(&so->so_snd_sx);
1078 	sx_xunlock(&so->so_rcv_sx);
1079 }
1080 
1081 /*
1082  * Wakeup listeners/subsystems once we have a complete connection.
1083  * Enters with lock, returns unlocked.
1084  */
1085 void
1086 solisten_wakeup(struct socket *sol)
1087 {
1088 
1089 	if (sol->sol_upcall != NULL)
1090 		(void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT);
1091 	else {
1092 		selwakeuppri(&sol->so_rdsel, PSOCK);
1093 		KNOTE_LOCKED(&sol->so_rdsel.si_note, 0);
1094 	}
1095 	SOLISTEN_UNLOCK(sol);
1096 	wakeup_one(&sol->sol_comp);
1097 	if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL)
1098 		pgsigio(&sol->so_sigio, SIGIO, 0);
1099 }
1100 
1101 /*
1102  * Return single connection off a listening socket queue.  Main consumer of
1103  * the function is kern_accept4().  Some modules, that do their own accept
1104  * management also use the function.  The socket reference held by the
1105  * listen queue is handed to the caller.
1106  *
1107  * Listening socket must be locked on entry and is returned unlocked on
1108  * return.
1109  * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT.
1110  */
1111 int
1112 solisten_dequeue(struct socket *head, struct socket **ret, int flags)
1113 {
1114 	struct socket *so;
1115 	int error;
1116 
1117 	SOLISTEN_LOCK_ASSERT(head);
1118 
1119 	while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) &&
1120 	    head->so_error == 0) {
1121 		error = msleep(&head->sol_comp, SOCK_MTX(head), PSOCK | PCATCH,
1122 		    "accept", 0);
1123 		if (error != 0) {
1124 			SOLISTEN_UNLOCK(head);
1125 			return (error);
1126 		}
1127 	}
1128 	if (head->so_error) {
1129 		error = head->so_error;
1130 		head->so_error = 0;
1131 	} else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp))
1132 		error = EWOULDBLOCK;
1133 	else
1134 		error = 0;
1135 	if (error) {
1136 		SOLISTEN_UNLOCK(head);
1137 		return (error);
1138 	}
1139 	so = TAILQ_FIRST(&head->sol_comp);
1140 	SOCK_LOCK(so);
1141 	KASSERT(so->so_qstate == SQ_COMP,
1142 	    ("%s: so %p not SQ_COMP", __func__, so));
1143 	head->sol_qlen--;
1144 	so->so_qstate = SQ_NONE;
1145 	so->so_listen = NULL;
1146 	TAILQ_REMOVE(&head->sol_comp, so, so_list);
1147 	if (flags & ACCEPT4_INHERIT)
1148 		so->so_state |= (head->so_state & SS_NBIO);
1149 	else
1150 		so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0;
1151 	SOCK_UNLOCK(so);
1152 	sorele_locked(head);
1153 
1154 	*ret = so;
1155 	return (0);
1156 }
1157 
1158 /*
1159  * Free socket upon release of the very last reference.
1160  */
1161 static void
1162 sofree(struct socket *so)
1163 {
1164 	struct protosw *pr = so->so_proto;
1165 
1166 	SOCK_LOCK_ASSERT(so);
1167 	KASSERT(refcount_load(&so->so_count) == 0,
1168 	    ("%s: so %p has references", __func__, so));
1169 	KASSERT(SOLISTENING(so) || so->so_qstate == SQ_NONE,
1170 	    ("%s: so %p is on listen queue", __func__, so));
1171 
1172 	SOCK_UNLOCK(so);
1173 
1174 	if (so->so_dtor != NULL)
1175 		so->so_dtor(so);
1176 
1177 	VNET_SO_ASSERT(so);
1178 	if ((pr->pr_flags & PR_RIGHTS) && !SOLISTENING(so)) {
1179 		MPASS(pr->pr_domain->dom_dispose != NULL);
1180 		(*pr->pr_domain->dom_dispose)(so);
1181 	}
1182 	if (pr->pr_detach != NULL)
1183 		pr->pr_detach(so);
1184 
1185 	/*
1186 	 * From this point on, we assume that no other references to this
1187 	 * socket exist anywhere else in the stack.  Therefore, no locks need
1188 	 * to be acquired or held.
1189 	 */
1190 	if (!(pr->pr_flags & PR_SOCKBUF) && !SOLISTENING(so)) {
1191 		sbdestroy(so, SO_SND);
1192 		sbdestroy(so, SO_RCV);
1193 	}
1194 	seldrain(&so->so_rdsel);
1195 	seldrain(&so->so_wrsel);
1196 	knlist_destroy(&so->so_rdsel.si_note);
1197 	knlist_destroy(&so->so_wrsel.si_note);
1198 	sodealloc(so);
1199 }
1200 
1201 /*
1202  * Release a reference on a socket while holding the socket lock.
1203  * Unlocks the socket lock before returning.
1204  */
1205 void
1206 sorele_locked(struct socket *so)
1207 {
1208 	SOCK_LOCK_ASSERT(so);
1209 	if (refcount_release(&so->so_count))
1210 		sofree(so);
1211 	else
1212 		SOCK_UNLOCK(so);
1213 }
1214 
1215 /*
1216  * Close a socket on last file table reference removal.  Initiate disconnect
1217  * if connected.  Free socket when disconnect complete.
1218  *
1219  * This function will sorele() the socket.  Note that soclose() may be called
1220  * prior to the ref count reaching zero.  The actual socket structure will
1221  * not be freed until the ref count reaches zero.
1222  */
1223 int
1224 soclose(struct socket *so)
1225 {
1226 	struct accept_queue lqueue;
1227 	int error = 0;
1228 	bool listening, last __diagused;
1229 
1230 	CURVNET_SET(so->so_vnet);
1231 	funsetown(&so->so_sigio);
1232 	if (so->so_state & SS_ISCONNECTED) {
1233 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
1234 			error = sodisconnect(so);
1235 			if (error) {
1236 				if (error == ENOTCONN)
1237 					error = 0;
1238 				goto drop;
1239 			}
1240 		}
1241 
1242 		if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) {
1243 			if ((so->so_state & SS_ISDISCONNECTING) &&
1244 			    (so->so_state & SS_NBIO))
1245 				goto drop;
1246 			while (so->so_state & SS_ISCONNECTED) {
1247 				error = tsleep(&so->so_timeo,
1248 				    PSOCK | PCATCH, "soclos",
1249 				    so->so_linger * hz);
1250 				if (error)
1251 					break;
1252 			}
1253 		}
1254 	}
1255 
1256 drop:
1257 	if (so->so_proto->pr_close != NULL)
1258 		so->so_proto->pr_close(so);
1259 
1260 	SOCK_LOCK(so);
1261 	if ((listening = SOLISTENING(so))) {
1262 		struct socket *sp;
1263 
1264 		TAILQ_INIT(&lqueue);
1265 		TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list);
1266 		TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list);
1267 
1268 		so->sol_qlen = so->sol_incqlen = 0;
1269 
1270 		TAILQ_FOREACH(sp, &lqueue, so_list) {
1271 			SOCK_LOCK(sp);
1272 			sp->so_qstate = SQ_NONE;
1273 			sp->so_listen = NULL;
1274 			SOCK_UNLOCK(sp);
1275 			last = refcount_release(&so->so_count);
1276 			KASSERT(!last, ("%s: released last reference for %p",
1277 			    __func__, so));
1278 		}
1279 	}
1280 	sorele_locked(so);
1281 	if (listening) {
1282 		struct socket *sp, *tsp;
1283 
1284 		TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp)
1285 			soabort(sp);
1286 	}
1287 	CURVNET_RESTORE();
1288 	return (error);
1289 }
1290 
1291 /*
1292  * soabort() is used to abruptly tear down a connection, such as when a
1293  * resource limit is reached (listen queue depth exceeded), or if a listen
1294  * socket is closed while there are sockets waiting to be accepted.
1295  *
1296  * This interface is tricky, because it is called on an unreferenced socket,
1297  * and must be called only by a thread that has actually removed the socket
1298  * from the listen queue it was on.  Likely this thread holds the last
1299  * reference on the socket and soabort() will proceed with sofree().  But
1300  * it might be not the last, as the sockets on the listen queues are seen
1301  * from the protocol side.
1302  *
1303  * This interface will call into the protocol code, so must not be called
1304  * with any socket locks held.  Protocols do call it while holding their own
1305  * recursible protocol mutexes, but this is something that should be subject
1306  * to review in the future.
1307  *
1308  * Usually socket should have a single reference left, but this is not a
1309  * requirement.  In the past, when we have had named references for file
1310  * descriptor and protocol, we asserted that none of them are being held.
1311  */
1312 void
1313 soabort(struct socket *so)
1314 {
1315 
1316 	VNET_SO_ASSERT(so);
1317 
1318 	if (so->so_proto->pr_abort != NULL)
1319 		so->so_proto->pr_abort(so);
1320 	SOCK_LOCK(so);
1321 	sorele_locked(so);
1322 }
1323 
1324 int
1325 soaccept(struct socket *so, struct sockaddr **nam)
1326 {
1327 	int error;
1328 
1329 	CURVNET_SET(so->so_vnet);
1330 	error = so->so_proto->pr_accept(so, nam);
1331 	CURVNET_RESTORE();
1332 	return (error);
1333 }
1334 
1335 int
1336 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
1337 {
1338 
1339 	return (soconnectat(AT_FDCWD, so, nam, td));
1340 }
1341 
1342 int
1343 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
1344 {
1345 	int error;
1346 
1347 	CURVNET_SET(so->so_vnet);
1348 
1349 	/*
1350 	 * If protocol is connection-based, can only connect once.
1351 	 * Otherwise, if connected, try to disconnect first.  This allows
1352 	 * user to disconnect by connecting to, e.g., a null address.
1353 	 *
1354 	 * Note, this check is racy and may need to be re-evaluated at the
1355 	 * protocol layer.
1356 	 */
1357 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
1358 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
1359 	    (error = sodisconnect(so)))) {
1360 		error = EISCONN;
1361 	} else {
1362 		/*
1363 		 * Prevent accumulated error from previous connection from
1364 		 * biting us.
1365 		 */
1366 		so->so_error = 0;
1367 		if (fd == AT_FDCWD) {
1368 			error = so->so_proto->pr_connect(so, nam, td);
1369 		} else {
1370 			error = so->so_proto->pr_connectat(fd, so, nam, td);
1371 		}
1372 	}
1373 	CURVNET_RESTORE();
1374 
1375 	return (error);
1376 }
1377 
1378 int
1379 soconnect2(struct socket *so1, struct socket *so2)
1380 {
1381 	int error;
1382 
1383 	CURVNET_SET(so1->so_vnet);
1384 	error = so1->so_proto->pr_connect2(so1, so2);
1385 	CURVNET_RESTORE();
1386 	return (error);
1387 }
1388 
1389 int
1390 sodisconnect(struct socket *so)
1391 {
1392 	int error;
1393 
1394 	if ((so->so_state & SS_ISCONNECTED) == 0)
1395 		return (ENOTCONN);
1396 	if (so->so_state & SS_ISDISCONNECTING)
1397 		return (EALREADY);
1398 	VNET_SO_ASSERT(so);
1399 	error = so->so_proto->pr_disconnect(so);
1400 	return (error);
1401 }
1402 
1403 int
1404 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
1405     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1406 {
1407 	long space;
1408 	ssize_t resid;
1409 	int clen = 0, error, dontroute;
1410 
1411 	KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM"));
1412 	KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
1413 	    ("sosend_dgram: !PR_ATOMIC"));
1414 
1415 	if (uio != NULL)
1416 		resid = uio->uio_resid;
1417 	else
1418 		resid = top->m_pkthdr.len;
1419 	/*
1420 	 * In theory resid should be unsigned.  However, space must be
1421 	 * signed, as it might be less than 0 if we over-committed, and we
1422 	 * must use a signed comparison of space and resid.  On the other
1423 	 * hand, a negative resid causes us to loop sending 0-length
1424 	 * segments to the protocol.
1425 	 */
1426 	if (resid < 0) {
1427 		error = EINVAL;
1428 		goto out;
1429 	}
1430 
1431 	dontroute =
1432 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
1433 	if (td != NULL)
1434 		td->td_ru.ru_msgsnd++;
1435 	if (control != NULL)
1436 		clen = control->m_len;
1437 
1438 	SOCKBUF_LOCK(&so->so_snd);
1439 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1440 		SOCKBUF_UNLOCK(&so->so_snd);
1441 		error = EPIPE;
1442 		goto out;
1443 	}
1444 	if (so->so_error) {
1445 		error = so->so_error;
1446 		so->so_error = 0;
1447 		SOCKBUF_UNLOCK(&so->so_snd);
1448 		goto out;
1449 	}
1450 	if ((so->so_state & SS_ISCONNECTED) == 0) {
1451 		/*
1452 		 * `sendto' and `sendmsg' is allowed on a connection-based
1453 		 * socket if it supports implied connect.  Return ENOTCONN if
1454 		 * not connected and no address is supplied.
1455 		 */
1456 		if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1457 		    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1458 			if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1459 			    !(resid == 0 && clen != 0)) {
1460 				SOCKBUF_UNLOCK(&so->so_snd);
1461 				error = ENOTCONN;
1462 				goto out;
1463 			}
1464 		} else if (addr == NULL) {
1465 			if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1466 				error = ENOTCONN;
1467 			else
1468 				error = EDESTADDRREQ;
1469 			SOCKBUF_UNLOCK(&so->so_snd);
1470 			goto out;
1471 		}
1472 	}
1473 
1474 	/*
1475 	 * Do we need MSG_OOB support in SOCK_DGRAM?  Signs here may be a
1476 	 * problem and need fixing.
1477 	 */
1478 	space = sbspace(&so->so_snd);
1479 	if (flags & MSG_OOB)
1480 		space += 1024;
1481 	space -= clen;
1482 	SOCKBUF_UNLOCK(&so->so_snd);
1483 	if (resid > space) {
1484 		error = EMSGSIZE;
1485 		goto out;
1486 	}
1487 	if (uio == NULL) {
1488 		resid = 0;
1489 		if (flags & MSG_EOR)
1490 			top->m_flags |= M_EOR;
1491 	} else {
1492 		/*
1493 		 * Copy the data from userland into a mbuf chain.
1494 		 * If no data is to be copied in, a single empty mbuf
1495 		 * is returned.
1496 		 */
1497 		top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
1498 		    (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
1499 		if (top == NULL) {
1500 			error = EFAULT;	/* only possible error */
1501 			goto out;
1502 		}
1503 		space -= resid - uio->uio_resid;
1504 		resid = uio->uio_resid;
1505 	}
1506 	KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
1507 	/*
1508 	 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
1509 	 * than with.
1510 	 */
1511 	if (dontroute) {
1512 		SOCK_LOCK(so);
1513 		so->so_options |= SO_DONTROUTE;
1514 		SOCK_UNLOCK(so);
1515 	}
1516 	/*
1517 	 * XXX all the SBS_CANTSENDMORE checks previously done could be out
1518 	 * of date.  We could have received a reset packet in an interrupt or
1519 	 * maybe we slept while doing page faults in uiomove() etc.  We could
1520 	 * probably recheck again inside the locking protection here, but
1521 	 * there are probably other places that this also happens.  We must
1522 	 * rethink this.
1523 	 */
1524 	VNET_SO_ASSERT(so);
1525 	error = so->so_proto->pr_send(so, (flags & MSG_OOB) ? PRUS_OOB :
1526 	/*
1527 	 * If the user set MSG_EOF, the protocol understands this flag and
1528 	 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
1529 	 */
1530 	    ((flags & MSG_EOF) &&
1531 	     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1532 	     (resid <= 0)) ?
1533 		PRUS_EOF :
1534 		/* If there is more to send set PRUS_MORETOCOME */
1535 		(flags & MSG_MORETOCOME) ||
1536 		(resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1537 		top, addr, control, td);
1538 	if (dontroute) {
1539 		SOCK_LOCK(so);
1540 		so->so_options &= ~SO_DONTROUTE;
1541 		SOCK_UNLOCK(so);
1542 	}
1543 	clen = 0;
1544 	control = NULL;
1545 	top = NULL;
1546 out:
1547 	if (top != NULL)
1548 		m_freem(top);
1549 	if (control != NULL)
1550 		m_freem(control);
1551 	return (error);
1552 }
1553 
1554 /*
1555  * Send on a socket.  If send must go all at once and message is larger than
1556  * send buffering, then hard error.  Lock against other senders.  If must go
1557  * all at once and not enough room now, then inform user that this would
1558  * block and do nothing.  Otherwise, if nonblocking, send as much as
1559  * possible.  The data to be sent is described by "uio" if nonzero, otherwise
1560  * by the mbuf chain "top" (which must be null if uio is not).  Data provided
1561  * in mbuf chain must be small enough to send all at once.
1562  *
1563  * Returns nonzero on error, timeout or signal; callers must check for short
1564  * counts if EINTR/ERESTART are returned.  Data and control buffers are freed
1565  * on return.
1566  */
1567 int
1568 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
1569     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1570 {
1571 	long space;
1572 	ssize_t resid;
1573 	int clen = 0, error, dontroute;
1574 	int atomic = sosendallatonce(so) || top;
1575 	int pr_send_flag;
1576 #ifdef KERN_TLS
1577 	struct ktls_session *tls;
1578 	int tls_enq_cnt, tls_send_flag;
1579 	uint8_t tls_rtype;
1580 
1581 	tls = NULL;
1582 	tls_rtype = TLS_RLTYPE_APP;
1583 #endif
1584 	if (uio != NULL)
1585 		resid = uio->uio_resid;
1586 	else if ((top->m_flags & M_PKTHDR) != 0)
1587 		resid = top->m_pkthdr.len;
1588 	else
1589 		resid = m_length(top, NULL);
1590 	/*
1591 	 * In theory resid should be unsigned.  However, space must be
1592 	 * signed, as it might be less than 0 if we over-committed, and we
1593 	 * must use a signed comparison of space and resid.  On the other
1594 	 * hand, a negative resid causes us to loop sending 0-length
1595 	 * segments to the protocol.
1596 	 *
1597 	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
1598 	 * type sockets since that's an error.
1599 	 */
1600 	if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
1601 		error = EINVAL;
1602 		goto out;
1603 	}
1604 
1605 	dontroute =
1606 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
1607 	    (so->so_proto->pr_flags & PR_ATOMIC);
1608 	if (td != NULL)
1609 		td->td_ru.ru_msgsnd++;
1610 	if (control != NULL)
1611 		clen = control->m_len;
1612 
1613 	error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags));
1614 	if (error)
1615 		goto out;
1616 
1617 #ifdef KERN_TLS
1618 	tls_send_flag = 0;
1619 	tls = ktls_hold(so->so_snd.sb_tls_info);
1620 	if (tls != NULL) {
1621 		if (tls->mode == TCP_TLS_MODE_SW)
1622 			tls_send_flag = PRUS_NOTREADY;
1623 
1624 		if (control != NULL) {
1625 			struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1626 
1627 			if (clen >= sizeof(*cm) &&
1628 			    cm->cmsg_type == TLS_SET_RECORD_TYPE) {
1629 				tls_rtype = *((uint8_t *)CMSG_DATA(cm));
1630 				clen = 0;
1631 				m_freem(control);
1632 				control = NULL;
1633 				atomic = 1;
1634 			}
1635 		}
1636 
1637 		if (resid == 0 && !ktls_permit_empty_frames(tls)) {
1638 			error = EINVAL;
1639 			goto release;
1640 		}
1641 	}
1642 #endif
1643 
1644 restart:
1645 	do {
1646 		SOCKBUF_LOCK(&so->so_snd);
1647 		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1648 			SOCKBUF_UNLOCK(&so->so_snd);
1649 			error = EPIPE;
1650 			goto release;
1651 		}
1652 		if (so->so_error) {
1653 			error = so->so_error;
1654 			so->so_error = 0;
1655 			SOCKBUF_UNLOCK(&so->so_snd);
1656 			goto release;
1657 		}
1658 		if ((so->so_state & SS_ISCONNECTED) == 0) {
1659 			/*
1660 			 * `sendto' and `sendmsg' is allowed on a connection-
1661 			 * based socket if it supports implied connect.
1662 			 * Return ENOTCONN if not connected and no address is
1663 			 * supplied.
1664 			 */
1665 			if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1666 			    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1667 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1668 				    !(resid == 0 && clen != 0)) {
1669 					SOCKBUF_UNLOCK(&so->so_snd);
1670 					error = ENOTCONN;
1671 					goto release;
1672 				}
1673 			} else if (addr == NULL) {
1674 				SOCKBUF_UNLOCK(&so->so_snd);
1675 				if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1676 					error = ENOTCONN;
1677 				else
1678 					error = EDESTADDRREQ;
1679 				goto release;
1680 			}
1681 		}
1682 		space = sbspace(&so->so_snd);
1683 		if (flags & MSG_OOB)
1684 			space += 1024;
1685 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
1686 		    clen > so->so_snd.sb_hiwat) {
1687 			SOCKBUF_UNLOCK(&so->so_snd);
1688 			error = EMSGSIZE;
1689 			goto release;
1690 		}
1691 		if (space < resid + clen &&
1692 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
1693 			if ((so->so_state & SS_NBIO) ||
1694 			    (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) {
1695 				SOCKBUF_UNLOCK(&so->so_snd);
1696 				error = EWOULDBLOCK;
1697 				goto release;
1698 			}
1699 			error = sbwait(so, SO_SND);
1700 			SOCKBUF_UNLOCK(&so->so_snd);
1701 			if (error)
1702 				goto release;
1703 			goto restart;
1704 		}
1705 		SOCKBUF_UNLOCK(&so->so_snd);
1706 		space -= clen;
1707 		do {
1708 			if (uio == NULL) {
1709 				resid = 0;
1710 				if (flags & MSG_EOR)
1711 					top->m_flags |= M_EOR;
1712 #ifdef KERN_TLS
1713 				if (tls != NULL) {
1714 					ktls_frame(top, tls, &tls_enq_cnt,
1715 					    tls_rtype);
1716 					tls_rtype = TLS_RLTYPE_APP;
1717 				}
1718 #endif
1719 			} else {
1720 				/*
1721 				 * Copy the data from userland into a mbuf
1722 				 * chain.  If resid is 0, which can happen
1723 				 * only if we have control to send, then
1724 				 * a single empty mbuf is returned.  This
1725 				 * is a workaround to prevent protocol send
1726 				 * methods to panic.
1727 				 */
1728 #ifdef KERN_TLS
1729 				if (tls != NULL) {
1730 					top = m_uiotombuf(uio, M_WAITOK, space,
1731 					    tls->params.max_frame_len,
1732 					    M_EXTPG |
1733 					    ((flags & MSG_EOR) ? M_EOR : 0));
1734 					if (top != NULL) {
1735 						ktls_frame(top, tls,
1736 						    &tls_enq_cnt, tls_rtype);
1737 					}
1738 					tls_rtype = TLS_RLTYPE_APP;
1739 				} else
1740 #endif
1741 					top = m_uiotombuf(uio, M_WAITOK, space,
1742 					    (atomic ? max_hdr : 0),
1743 					    (atomic ? M_PKTHDR : 0) |
1744 					    ((flags & MSG_EOR) ? M_EOR : 0));
1745 				if (top == NULL) {
1746 					error = EFAULT; /* only possible error */
1747 					goto release;
1748 				}
1749 				space -= resid - uio->uio_resid;
1750 				resid = uio->uio_resid;
1751 			}
1752 			if (dontroute) {
1753 				SOCK_LOCK(so);
1754 				so->so_options |= SO_DONTROUTE;
1755 				SOCK_UNLOCK(so);
1756 			}
1757 			/*
1758 			 * XXX all the SBS_CANTSENDMORE checks previously
1759 			 * done could be out of date.  We could have received
1760 			 * a reset packet in an interrupt or maybe we slept
1761 			 * while doing page faults in uiomove() etc.  We
1762 			 * could probably recheck again inside the locking
1763 			 * protection here, but there are probably other
1764 			 * places that this also happens.  We must rethink
1765 			 * this.
1766 			 */
1767 			VNET_SO_ASSERT(so);
1768 
1769 			pr_send_flag = (flags & MSG_OOB) ? PRUS_OOB :
1770 			/*
1771 			 * If the user set MSG_EOF, the protocol understands
1772 			 * this flag and nothing left to send then use
1773 			 * PRU_SEND_EOF instead of PRU_SEND.
1774 			 */
1775 			    ((flags & MSG_EOF) &&
1776 			     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1777 			     (resid <= 0)) ?
1778 				PRUS_EOF :
1779 			/* If there is more to send set PRUS_MORETOCOME. */
1780 			    (flags & MSG_MORETOCOME) ||
1781 			    (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0;
1782 
1783 #ifdef KERN_TLS
1784 			pr_send_flag |= tls_send_flag;
1785 #endif
1786 
1787 			error = so->so_proto->pr_send(so, pr_send_flag, top,
1788 			    addr, control, td);
1789 
1790 			if (dontroute) {
1791 				SOCK_LOCK(so);
1792 				so->so_options &= ~SO_DONTROUTE;
1793 				SOCK_UNLOCK(so);
1794 			}
1795 
1796 #ifdef KERN_TLS
1797 			if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) {
1798 				if (error != 0) {
1799 					m_freem(top);
1800 					top = NULL;
1801 				} else {
1802 					soref(so);
1803 					ktls_enqueue(top, so, tls_enq_cnt);
1804 				}
1805 			}
1806 #endif
1807 			clen = 0;
1808 			control = NULL;
1809 			top = NULL;
1810 			if (error)
1811 				goto release;
1812 		} while (resid && space > 0);
1813 	} while (resid);
1814 
1815 release:
1816 	SOCK_IO_SEND_UNLOCK(so);
1817 out:
1818 #ifdef KERN_TLS
1819 	if (tls != NULL)
1820 		ktls_free(tls);
1821 #endif
1822 	if (top != NULL)
1823 		m_freem(top);
1824 	if (control != NULL)
1825 		m_freem(control);
1826 	return (error);
1827 }
1828 
1829 /*
1830  * Send to a socket from a kernel thread.
1831  *
1832  * XXXGL: in almost all cases uio is NULL and the mbuf is supplied.
1833  * Exception is nfs/bootp_subr.c.  It is arguable that the VNET context needs
1834  * to be set at all.  This function should just boil down to a static inline
1835  * calling the protocol method.
1836  */
1837 int
1838 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
1839     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1840 {
1841 	int error;
1842 
1843 	CURVNET_SET(so->so_vnet);
1844 	error = so->so_proto->pr_sosend(so, addr, uio,
1845 	    top, control, flags, td);
1846 	CURVNET_RESTORE();
1847 	return (error);
1848 }
1849 
1850 /*
1851  * send(2), write(2) or aio_write(2) on a socket.
1852  */
1853 int
1854 sousrsend(struct socket *so, struct sockaddr *addr, struct uio *uio,
1855     struct mbuf *control, int flags, struct proc *userproc)
1856 {
1857 	struct thread *td;
1858 	ssize_t len;
1859 	int error;
1860 
1861 	td = uio->uio_td;
1862 	len = uio->uio_resid;
1863 	CURVNET_SET(so->so_vnet);
1864 	error = so->so_proto->pr_sosend(so, addr, uio, NULL, control, flags,
1865 	    td);
1866 	CURVNET_RESTORE();
1867 	if (error != 0) {
1868 		/*
1869 		 * Clear transient errors for stream protocols if they made
1870 		 * some progress.  Make exclusion for aio(4) that would
1871 		 * schedule a new write in case of EWOULDBLOCK and clear
1872 		 * error itself.  See soaio_process_job().
1873 		 */
1874 		if (uio->uio_resid != len &&
1875 		    (so->so_proto->pr_flags & PR_ATOMIC) == 0 &&
1876 		    userproc == NULL &&
1877 		    (error == ERESTART || error == EINTR ||
1878 		    error == EWOULDBLOCK))
1879 			error = 0;
1880 		/* Generation of SIGPIPE can be controlled per socket. */
1881 		if (error == EPIPE && (so->so_options & SO_NOSIGPIPE) == 0 &&
1882 		    (flags & MSG_NOSIGNAL) == 0) {
1883 			if (userproc != NULL) {
1884 				/* aio(4) job */
1885 				PROC_LOCK(userproc);
1886 				kern_psignal(userproc, SIGPIPE);
1887 				PROC_UNLOCK(userproc);
1888 			} else {
1889 				PROC_LOCK(td->td_proc);
1890 				tdsignal(td, SIGPIPE);
1891 				PROC_UNLOCK(td->td_proc);
1892 			}
1893 		}
1894 	}
1895 	return (error);
1896 }
1897 
1898 /*
1899  * The part of soreceive() that implements reading non-inline out-of-band
1900  * data from a socket.  For more complete comments, see soreceive(), from
1901  * which this code originated.
1902  *
1903  * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
1904  * unable to return an mbuf chain to the caller.
1905  */
1906 static int
1907 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
1908 {
1909 	struct protosw *pr = so->so_proto;
1910 	struct mbuf *m;
1911 	int error;
1912 
1913 	KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
1914 	VNET_SO_ASSERT(so);
1915 
1916 	m = m_get(M_WAITOK, MT_DATA);
1917 	error = pr->pr_rcvoob(so, m, flags & MSG_PEEK);
1918 	if (error)
1919 		goto bad;
1920 	do {
1921 		error = uiomove(mtod(m, void *),
1922 		    (int) min(uio->uio_resid, m->m_len), uio);
1923 		m = m_free(m);
1924 	} while (uio->uio_resid && error == 0 && m);
1925 bad:
1926 	if (m != NULL)
1927 		m_freem(m);
1928 	return (error);
1929 }
1930 
1931 /*
1932  * Following replacement or removal of the first mbuf on the first mbuf chain
1933  * of a socket buffer, push necessary state changes back into the socket
1934  * buffer so that other consumers see the values consistently.  'nextrecord'
1935  * is the callers locally stored value of the original value of
1936  * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
1937  * NOTE: 'nextrecord' may be NULL.
1938  */
1939 static __inline void
1940 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
1941 {
1942 
1943 	SOCKBUF_LOCK_ASSERT(sb);
1944 	/*
1945 	 * First, update for the new value of nextrecord.  If necessary, make
1946 	 * it the first record.
1947 	 */
1948 	if (sb->sb_mb != NULL)
1949 		sb->sb_mb->m_nextpkt = nextrecord;
1950 	else
1951 		sb->sb_mb = nextrecord;
1952 
1953 	/*
1954 	 * Now update any dependent socket buffer fields to reflect the new
1955 	 * state.  This is an expanded inline of SB_EMPTY_FIXUP(), with the
1956 	 * addition of a second clause that takes care of the case where
1957 	 * sb_mb has been updated, but remains the last record.
1958 	 */
1959 	if (sb->sb_mb == NULL) {
1960 		sb->sb_mbtail = NULL;
1961 		sb->sb_lastrecord = NULL;
1962 	} else if (sb->sb_mb->m_nextpkt == NULL)
1963 		sb->sb_lastrecord = sb->sb_mb;
1964 }
1965 
1966 /*
1967  * Implement receive operations on a socket.  We depend on the way that
1968  * records are added to the sockbuf by sbappend.  In particular, each record
1969  * (mbufs linked through m_next) must begin with an address if the protocol
1970  * so specifies, followed by an optional mbuf or mbufs containing ancillary
1971  * data, and then zero or more mbufs of data.  In order to allow parallelism
1972  * between network receive and copying to user space, as well as avoid
1973  * sleeping with a mutex held, we release the socket buffer mutex during the
1974  * user space copy.  Although the sockbuf is locked, new data may still be
1975  * appended, and thus we must maintain consistency of the sockbuf during that
1976  * time.
1977  *
1978  * The caller may receive the data as a single mbuf chain by supplying an
1979  * mbuf **mp0 for use in returning the chain.  The uio is then used only for
1980  * the count in uio_resid.
1981  */
1982 int
1983 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
1984     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1985 {
1986 	struct mbuf *m, **mp;
1987 	int flags, error, offset;
1988 	ssize_t len;
1989 	struct protosw *pr = so->so_proto;
1990 	struct mbuf *nextrecord;
1991 	int moff, type = 0;
1992 	ssize_t orig_resid = uio->uio_resid;
1993 	bool report_real_len = false;
1994 
1995 	mp = mp0;
1996 	if (psa != NULL)
1997 		*psa = NULL;
1998 	if (controlp != NULL)
1999 		*controlp = NULL;
2000 	if (flagsp != NULL) {
2001 		report_real_len = *flagsp & MSG_TRUNC;
2002 		*flagsp &= ~MSG_TRUNC;
2003 		flags = *flagsp &~ MSG_EOR;
2004 	} else
2005 		flags = 0;
2006 	if (flags & MSG_OOB)
2007 		return (soreceive_rcvoob(so, uio, flags));
2008 	if (mp != NULL)
2009 		*mp = NULL;
2010 	if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING)
2011 	    && uio->uio_resid) {
2012 		VNET_SO_ASSERT(so);
2013 		pr->pr_rcvd(so, 0);
2014 	}
2015 
2016 	error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
2017 	if (error)
2018 		return (error);
2019 
2020 restart:
2021 	SOCKBUF_LOCK(&so->so_rcv);
2022 	m = so->so_rcv.sb_mb;
2023 	/*
2024 	 * If we have less data than requested, block awaiting more (subject
2025 	 * to any timeout) if:
2026 	 *   1. the current count is less than the low water mark, or
2027 	 *   2. MSG_DONTWAIT is not set
2028 	 */
2029 	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
2030 	    sbavail(&so->so_rcv) < uio->uio_resid) &&
2031 	    sbavail(&so->so_rcv) < so->so_rcv.sb_lowat &&
2032 	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
2033 		KASSERT(m != NULL || !sbavail(&so->so_rcv),
2034 		    ("receive: m == %p sbavail == %u",
2035 		    m, sbavail(&so->so_rcv)));
2036 		if (so->so_error || so->so_rerror) {
2037 			if (m != NULL)
2038 				goto dontblock;
2039 			if (so->so_error)
2040 				error = so->so_error;
2041 			else
2042 				error = so->so_rerror;
2043 			if ((flags & MSG_PEEK) == 0) {
2044 				if (so->so_error)
2045 					so->so_error = 0;
2046 				else
2047 					so->so_rerror = 0;
2048 			}
2049 			SOCKBUF_UNLOCK(&so->so_rcv);
2050 			goto release;
2051 		}
2052 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2053 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2054 			if (m != NULL)
2055 				goto dontblock;
2056 #ifdef KERN_TLS
2057 			else if (so->so_rcv.sb_tlsdcc == 0 &&
2058 			    so->so_rcv.sb_tlscc == 0) {
2059 #else
2060 			else {
2061 #endif
2062 				SOCKBUF_UNLOCK(&so->so_rcv);
2063 				goto release;
2064 			}
2065 		}
2066 		for (; m != NULL; m = m->m_next)
2067 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
2068 				m = so->so_rcv.sb_mb;
2069 				goto dontblock;
2070 			}
2071 		if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED |
2072 		    SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 &&
2073 		    (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
2074 			SOCKBUF_UNLOCK(&so->so_rcv);
2075 			error = ENOTCONN;
2076 			goto release;
2077 		}
2078 		if (uio->uio_resid == 0 && !report_real_len) {
2079 			SOCKBUF_UNLOCK(&so->so_rcv);
2080 			goto release;
2081 		}
2082 		if ((so->so_state & SS_NBIO) ||
2083 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
2084 			SOCKBUF_UNLOCK(&so->so_rcv);
2085 			error = EWOULDBLOCK;
2086 			goto release;
2087 		}
2088 		SBLASTRECORDCHK(&so->so_rcv);
2089 		SBLASTMBUFCHK(&so->so_rcv);
2090 		error = sbwait(so, SO_RCV);
2091 		SOCKBUF_UNLOCK(&so->so_rcv);
2092 		if (error)
2093 			goto release;
2094 		goto restart;
2095 	}
2096 dontblock:
2097 	/*
2098 	 * From this point onward, we maintain 'nextrecord' as a cache of the
2099 	 * pointer to the next record in the socket buffer.  We must keep the
2100 	 * various socket buffer pointers and local stack versions of the
2101 	 * pointers in sync, pushing out modifications before dropping the
2102 	 * socket buffer mutex, and re-reading them when picking it up.
2103 	 *
2104 	 * Otherwise, we will race with the network stack appending new data
2105 	 * or records onto the socket buffer by using inconsistent/stale
2106 	 * versions of the field, possibly resulting in socket buffer
2107 	 * corruption.
2108 	 *
2109 	 * By holding the high-level sblock(), we prevent simultaneous
2110 	 * readers from pulling off the front of the socket buffer.
2111 	 */
2112 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2113 	if (uio->uio_td)
2114 		uio->uio_td->td_ru.ru_msgrcv++;
2115 	KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
2116 	SBLASTRECORDCHK(&so->so_rcv);
2117 	SBLASTMBUFCHK(&so->so_rcv);
2118 	nextrecord = m->m_nextpkt;
2119 	if (pr->pr_flags & PR_ADDR) {
2120 		KASSERT(m->m_type == MT_SONAME,
2121 		    ("m->m_type == %d", m->m_type));
2122 		orig_resid = 0;
2123 		if (psa != NULL)
2124 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
2125 			    M_NOWAIT);
2126 		if (flags & MSG_PEEK) {
2127 			m = m->m_next;
2128 		} else {
2129 			sbfree(&so->so_rcv, m);
2130 			so->so_rcv.sb_mb = m_free(m);
2131 			m = so->so_rcv.sb_mb;
2132 			sockbuf_pushsync(&so->so_rcv, nextrecord);
2133 		}
2134 	}
2135 
2136 	/*
2137 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
2138 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
2139 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
2140 	 * perform externalization (or freeing if controlp == NULL).
2141 	 */
2142 	if (m != NULL && m->m_type == MT_CONTROL) {
2143 		struct mbuf *cm = NULL, *cmn;
2144 		struct mbuf **cme = &cm;
2145 #ifdef KERN_TLS
2146 		struct cmsghdr *cmsg;
2147 		struct tls_get_record tgr;
2148 
2149 		/*
2150 		 * For MSG_TLSAPPDATA, check for an alert record.
2151 		 * If found, return ENXIO without removing
2152 		 * it from the receive queue.  This allows a subsequent
2153 		 * call without MSG_TLSAPPDATA to receive it.
2154 		 * Note that, for TLS, there should only be a single
2155 		 * control mbuf with the TLS_GET_RECORD message in it.
2156 		 */
2157 		if (flags & MSG_TLSAPPDATA) {
2158 			cmsg = mtod(m, struct cmsghdr *);
2159 			if (cmsg->cmsg_type == TLS_GET_RECORD &&
2160 			    cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) {
2161 				memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr));
2162 				if (__predict_false(tgr.tls_type ==
2163 				    TLS_RLTYPE_ALERT)) {
2164 					SOCKBUF_UNLOCK(&so->so_rcv);
2165 					error = ENXIO;
2166 					goto release;
2167 				}
2168 			}
2169 		}
2170 #endif
2171 
2172 		do {
2173 			if (flags & MSG_PEEK) {
2174 				if (controlp != NULL) {
2175 					*controlp = m_copym(m, 0, m->m_len,
2176 					    M_NOWAIT);
2177 					controlp = &(*controlp)->m_next;
2178 				}
2179 				m = m->m_next;
2180 			} else {
2181 				sbfree(&so->so_rcv, m);
2182 				so->so_rcv.sb_mb = m->m_next;
2183 				m->m_next = NULL;
2184 				*cme = m;
2185 				cme = &(*cme)->m_next;
2186 				m = so->so_rcv.sb_mb;
2187 			}
2188 		} while (m != NULL && m->m_type == MT_CONTROL);
2189 		if ((flags & MSG_PEEK) == 0)
2190 			sockbuf_pushsync(&so->so_rcv, nextrecord);
2191 		while (cm != NULL) {
2192 			cmn = cm->m_next;
2193 			cm->m_next = NULL;
2194 			if (pr->pr_domain->dom_externalize != NULL) {
2195 				SOCKBUF_UNLOCK(&so->so_rcv);
2196 				VNET_SO_ASSERT(so);
2197 				error = (*pr->pr_domain->dom_externalize)
2198 				    (cm, controlp, flags);
2199 				SOCKBUF_LOCK(&so->so_rcv);
2200 			} else if (controlp != NULL)
2201 				*controlp = cm;
2202 			else
2203 				m_freem(cm);
2204 			if (controlp != NULL) {
2205 				while (*controlp != NULL)
2206 					controlp = &(*controlp)->m_next;
2207 			}
2208 			cm = cmn;
2209 		}
2210 		if (m != NULL)
2211 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
2212 		else
2213 			nextrecord = so->so_rcv.sb_mb;
2214 		orig_resid = 0;
2215 	}
2216 	if (m != NULL) {
2217 		if ((flags & MSG_PEEK) == 0) {
2218 			KASSERT(m->m_nextpkt == nextrecord,
2219 			    ("soreceive: post-control, nextrecord !sync"));
2220 			if (nextrecord == NULL) {
2221 				KASSERT(so->so_rcv.sb_mb == m,
2222 				    ("soreceive: post-control, sb_mb!=m"));
2223 				KASSERT(so->so_rcv.sb_lastrecord == m,
2224 				    ("soreceive: post-control, lastrecord!=m"));
2225 			}
2226 		}
2227 		type = m->m_type;
2228 		if (type == MT_OOBDATA)
2229 			flags |= MSG_OOB;
2230 	} else {
2231 		if ((flags & MSG_PEEK) == 0) {
2232 			KASSERT(so->so_rcv.sb_mb == nextrecord,
2233 			    ("soreceive: sb_mb != nextrecord"));
2234 			if (so->so_rcv.sb_mb == NULL) {
2235 				KASSERT(so->so_rcv.sb_lastrecord == NULL,
2236 				    ("soreceive: sb_lastercord != NULL"));
2237 			}
2238 		}
2239 	}
2240 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2241 	SBLASTRECORDCHK(&so->so_rcv);
2242 	SBLASTMBUFCHK(&so->so_rcv);
2243 
2244 	/*
2245 	 * Now continue to read any data mbufs off of the head of the socket
2246 	 * buffer until the read request is satisfied.  Note that 'type' is
2247 	 * used to store the type of any mbuf reads that have happened so far
2248 	 * such that soreceive() can stop reading if the type changes, which
2249 	 * causes soreceive() to return only one of regular data and inline
2250 	 * out-of-band data in a single socket receive operation.
2251 	 */
2252 	moff = 0;
2253 	offset = 0;
2254 	while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0
2255 	    && error == 0) {
2256 		/*
2257 		 * If the type of mbuf has changed since the last mbuf
2258 		 * examined ('type'), end the receive operation.
2259 		 */
2260 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2261 		if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) {
2262 			if (type != m->m_type)
2263 				break;
2264 		} else if (type == MT_OOBDATA)
2265 			break;
2266 		else
2267 		    KASSERT(m->m_type == MT_DATA,
2268 			("m->m_type == %d", m->m_type));
2269 		so->so_rcv.sb_state &= ~SBS_RCVATMARK;
2270 		len = uio->uio_resid;
2271 		if (so->so_oobmark && len > so->so_oobmark - offset)
2272 			len = so->so_oobmark - offset;
2273 		if (len > m->m_len - moff)
2274 			len = m->m_len - moff;
2275 		/*
2276 		 * If mp is set, just pass back the mbufs.  Otherwise copy
2277 		 * them out via the uio, then free.  Sockbuf must be
2278 		 * consistent here (points to current mbuf, it points to next
2279 		 * record) when we drop priority; we must note any additions
2280 		 * to the sockbuf when we block interrupts again.
2281 		 */
2282 		if (mp == NULL) {
2283 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2284 			SBLASTRECORDCHK(&so->so_rcv);
2285 			SBLASTMBUFCHK(&so->so_rcv);
2286 			SOCKBUF_UNLOCK(&so->so_rcv);
2287 			if ((m->m_flags & M_EXTPG) != 0)
2288 				error = m_unmapped_uiomove(m, moff, uio,
2289 				    (int)len);
2290 			else
2291 				error = uiomove(mtod(m, char *) + moff,
2292 				    (int)len, uio);
2293 			SOCKBUF_LOCK(&so->so_rcv);
2294 			if (error) {
2295 				/*
2296 				 * The MT_SONAME mbuf has already been removed
2297 				 * from the record, so it is necessary to
2298 				 * remove the data mbufs, if any, to preserve
2299 				 * the invariant in the case of PR_ADDR that
2300 				 * requires MT_SONAME mbufs at the head of
2301 				 * each record.
2302 				 */
2303 				if (pr->pr_flags & PR_ATOMIC &&
2304 				    ((flags & MSG_PEEK) == 0))
2305 					(void)sbdroprecord_locked(&so->so_rcv);
2306 				SOCKBUF_UNLOCK(&so->so_rcv);
2307 				goto release;
2308 			}
2309 		} else
2310 			uio->uio_resid -= len;
2311 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2312 		if (len == m->m_len - moff) {
2313 			if (m->m_flags & M_EOR)
2314 				flags |= MSG_EOR;
2315 			if (flags & MSG_PEEK) {
2316 				m = m->m_next;
2317 				moff = 0;
2318 			} else {
2319 				nextrecord = m->m_nextpkt;
2320 				sbfree(&so->so_rcv, m);
2321 				if (mp != NULL) {
2322 					m->m_nextpkt = NULL;
2323 					*mp = m;
2324 					mp = &m->m_next;
2325 					so->so_rcv.sb_mb = m = m->m_next;
2326 					*mp = NULL;
2327 				} else {
2328 					so->so_rcv.sb_mb = m_free(m);
2329 					m = so->so_rcv.sb_mb;
2330 				}
2331 				sockbuf_pushsync(&so->so_rcv, nextrecord);
2332 				SBLASTRECORDCHK(&so->so_rcv);
2333 				SBLASTMBUFCHK(&so->so_rcv);
2334 			}
2335 		} else {
2336 			if (flags & MSG_PEEK)
2337 				moff += len;
2338 			else {
2339 				if (mp != NULL) {
2340 					if (flags & MSG_DONTWAIT) {
2341 						*mp = m_copym(m, 0, len,
2342 						    M_NOWAIT);
2343 						if (*mp == NULL) {
2344 							/*
2345 							 * m_copym() couldn't
2346 							 * allocate an mbuf.
2347 							 * Adjust uio_resid back
2348 							 * (it was adjusted
2349 							 * down by len bytes,
2350 							 * which we didn't end
2351 							 * up "copying" over).
2352 							 */
2353 							uio->uio_resid += len;
2354 							break;
2355 						}
2356 					} else {
2357 						SOCKBUF_UNLOCK(&so->so_rcv);
2358 						*mp = m_copym(m, 0, len,
2359 						    M_WAITOK);
2360 						SOCKBUF_LOCK(&so->so_rcv);
2361 					}
2362 				}
2363 				sbcut_locked(&so->so_rcv, len);
2364 			}
2365 		}
2366 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2367 		if (so->so_oobmark) {
2368 			if ((flags & MSG_PEEK) == 0) {
2369 				so->so_oobmark -= len;
2370 				if (so->so_oobmark == 0) {
2371 					so->so_rcv.sb_state |= SBS_RCVATMARK;
2372 					break;
2373 				}
2374 			} else {
2375 				offset += len;
2376 				if (offset == so->so_oobmark)
2377 					break;
2378 			}
2379 		}
2380 		if (flags & MSG_EOR)
2381 			break;
2382 		/*
2383 		 * If the MSG_WAITALL flag is set (for non-atomic socket), we
2384 		 * must not quit until "uio->uio_resid == 0" or an error
2385 		 * termination.  If a signal/timeout occurs, return with a
2386 		 * short count but without error.  Keep sockbuf locked
2387 		 * against other readers.
2388 		 */
2389 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
2390 		    !sosendallatonce(so) && nextrecord == NULL) {
2391 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2392 			if (so->so_error || so->so_rerror ||
2393 			    so->so_rcv.sb_state & SBS_CANTRCVMORE)
2394 				break;
2395 			/*
2396 			 * Notify the protocol that some data has been
2397 			 * drained before blocking.
2398 			 */
2399 			if (pr->pr_flags & PR_WANTRCVD) {
2400 				SOCKBUF_UNLOCK(&so->so_rcv);
2401 				VNET_SO_ASSERT(so);
2402 				pr->pr_rcvd(so, flags);
2403 				SOCKBUF_LOCK(&so->so_rcv);
2404 			}
2405 			SBLASTRECORDCHK(&so->so_rcv);
2406 			SBLASTMBUFCHK(&so->so_rcv);
2407 			/*
2408 			 * We could receive some data while was notifying
2409 			 * the protocol. Skip blocking in this case.
2410 			 */
2411 			if (so->so_rcv.sb_mb == NULL) {
2412 				error = sbwait(so, SO_RCV);
2413 				if (error) {
2414 					SOCKBUF_UNLOCK(&so->so_rcv);
2415 					goto release;
2416 				}
2417 			}
2418 			m = so->so_rcv.sb_mb;
2419 			if (m != NULL)
2420 				nextrecord = m->m_nextpkt;
2421 		}
2422 	}
2423 
2424 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2425 	if (m != NULL && pr->pr_flags & PR_ATOMIC) {
2426 		if (report_real_len)
2427 			uio->uio_resid -= m_length(m, NULL) - moff;
2428 		flags |= MSG_TRUNC;
2429 		if ((flags & MSG_PEEK) == 0)
2430 			(void) sbdroprecord_locked(&so->so_rcv);
2431 	}
2432 	if ((flags & MSG_PEEK) == 0) {
2433 		if (m == NULL) {
2434 			/*
2435 			 * First part is an inline SB_EMPTY_FIXUP().  Second
2436 			 * part makes sure sb_lastrecord is up-to-date if
2437 			 * there is still data in the socket buffer.
2438 			 */
2439 			so->so_rcv.sb_mb = nextrecord;
2440 			if (so->so_rcv.sb_mb == NULL) {
2441 				so->so_rcv.sb_mbtail = NULL;
2442 				so->so_rcv.sb_lastrecord = NULL;
2443 			} else if (nextrecord->m_nextpkt == NULL)
2444 				so->so_rcv.sb_lastrecord = nextrecord;
2445 		}
2446 		SBLASTRECORDCHK(&so->so_rcv);
2447 		SBLASTMBUFCHK(&so->so_rcv);
2448 		/*
2449 		 * If soreceive() is being done from the socket callback,
2450 		 * then don't need to generate ACK to peer to update window,
2451 		 * since ACK will be generated on return to TCP.
2452 		 */
2453 		if (!(flags & MSG_SOCALLBCK) &&
2454 		    (pr->pr_flags & PR_WANTRCVD)) {
2455 			SOCKBUF_UNLOCK(&so->so_rcv);
2456 			VNET_SO_ASSERT(so);
2457 			pr->pr_rcvd(so, flags);
2458 			SOCKBUF_LOCK(&so->so_rcv);
2459 		}
2460 	}
2461 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2462 	if (orig_resid == uio->uio_resid && orig_resid &&
2463 	    (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
2464 		SOCKBUF_UNLOCK(&so->so_rcv);
2465 		goto restart;
2466 	}
2467 	SOCKBUF_UNLOCK(&so->so_rcv);
2468 
2469 	if (flagsp != NULL)
2470 		*flagsp |= flags;
2471 release:
2472 	SOCK_IO_RECV_UNLOCK(so);
2473 	return (error);
2474 }
2475 
2476 /*
2477  * Optimized version of soreceive() for stream (TCP) sockets.
2478  */
2479 int
2480 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio,
2481     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2482 {
2483 	int len = 0, error = 0, flags, oresid;
2484 	struct sockbuf *sb;
2485 	struct mbuf *m, *n = NULL;
2486 
2487 	/* We only do stream sockets. */
2488 	if (so->so_type != SOCK_STREAM)
2489 		return (EINVAL);
2490 	if (psa != NULL)
2491 		*psa = NULL;
2492 	if (flagsp != NULL)
2493 		flags = *flagsp &~ MSG_EOR;
2494 	else
2495 		flags = 0;
2496 	if (controlp != NULL)
2497 		*controlp = NULL;
2498 	if (flags & MSG_OOB)
2499 		return (soreceive_rcvoob(so, uio, flags));
2500 	if (mp0 != NULL)
2501 		*mp0 = NULL;
2502 
2503 	sb = &so->so_rcv;
2504 
2505 #ifdef KERN_TLS
2506 	/*
2507 	 * KTLS store TLS records as records with a control message to
2508 	 * describe the framing.
2509 	 *
2510 	 * We check once here before acquiring locks to optimize the
2511 	 * common case.
2512 	 */
2513 	if (sb->sb_tls_info != NULL)
2514 		return (soreceive_generic(so, psa, uio, mp0, controlp,
2515 		    flagsp));
2516 #endif
2517 
2518 	/* Prevent other readers from entering the socket. */
2519 	error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
2520 	if (error)
2521 		return (error);
2522 	SOCKBUF_LOCK(sb);
2523 
2524 #ifdef KERN_TLS
2525 	if (sb->sb_tls_info != NULL) {
2526 		SOCKBUF_UNLOCK(sb);
2527 		SOCK_IO_RECV_UNLOCK(so);
2528 		return (soreceive_generic(so, psa, uio, mp0, controlp,
2529 		    flagsp));
2530 	}
2531 #endif
2532 
2533 	/* Easy one, no space to copyout anything. */
2534 	if (uio->uio_resid == 0) {
2535 		error = EINVAL;
2536 		goto out;
2537 	}
2538 	oresid = uio->uio_resid;
2539 
2540 	/* We will never ever get anything unless we are or were connected. */
2541 	if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
2542 		error = ENOTCONN;
2543 		goto out;
2544 	}
2545 
2546 restart:
2547 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2548 
2549 	/* Abort if socket has reported problems. */
2550 	if (so->so_error) {
2551 		if (sbavail(sb) > 0)
2552 			goto deliver;
2553 		if (oresid > uio->uio_resid)
2554 			goto out;
2555 		error = so->so_error;
2556 		if (!(flags & MSG_PEEK))
2557 			so->so_error = 0;
2558 		goto out;
2559 	}
2560 
2561 	/* Door is closed.  Deliver what is left, if any. */
2562 	if (sb->sb_state & SBS_CANTRCVMORE) {
2563 		if (sbavail(sb) > 0)
2564 			goto deliver;
2565 		else
2566 			goto out;
2567 	}
2568 
2569 	/* Socket buffer is empty and we shall not block. */
2570 	if (sbavail(sb) == 0 &&
2571 	    ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) {
2572 		error = EAGAIN;
2573 		goto out;
2574 	}
2575 
2576 	/* Socket buffer got some data that we shall deliver now. */
2577 	if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) &&
2578 	    ((so->so_state & SS_NBIO) ||
2579 	     (flags & (MSG_DONTWAIT|MSG_NBIO)) ||
2580 	     sbavail(sb) >= sb->sb_lowat ||
2581 	     sbavail(sb) >= uio->uio_resid ||
2582 	     sbavail(sb) >= sb->sb_hiwat) ) {
2583 		goto deliver;
2584 	}
2585 
2586 	/* On MSG_WAITALL we must wait until all data or error arrives. */
2587 	if ((flags & MSG_WAITALL) &&
2588 	    (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat))
2589 		goto deliver;
2590 
2591 	/*
2592 	 * Wait and block until (more) data comes in.
2593 	 * NB: Drops the sockbuf lock during wait.
2594 	 */
2595 	error = sbwait(so, SO_RCV);
2596 	if (error)
2597 		goto out;
2598 	goto restart;
2599 
2600 deliver:
2601 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2602 	KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__));
2603 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__));
2604 
2605 	/* Statistics. */
2606 	if (uio->uio_td)
2607 		uio->uio_td->td_ru.ru_msgrcv++;
2608 
2609 	/* Fill uio until full or current end of socket buffer is reached. */
2610 	len = min(uio->uio_resid, sbavail(sb));
2611 	if (mp0 != NULL) {
2612 		/* Dequeue as many mbufs as possible. */
2613 		if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) {
2614 			if (*mp0 == NULL)
2615 				*mp0 = sb->sb_mb;
2616 			else
2617 				m_cat(*mp0, sb->sb_mb);
2618 			for (m = sb->sb_mb;
2619 			     m != NULL && m->m_len <= len;
2620 			     m = m->m_next) {
2621 				KASSERT(!(m->m_flags & M_NOTAVAIL),
2622 				    ("%s: m %p not available", __func__, m));
2623 				len -= m->m_len;
2624 				uio->uio_resid -= m->m_len;
2625 				sbfree(sb, m);
2626 				n = m;
2627 			}
2628 			n->m_next = NULL;
2629 			sb->sb_mb = m;
2630 			sb->sb_lastrecord = sb->sb_mb;
2631 			if (sb->sb_mb == NULL)
2632 				SB_EMPTY_FIXUP(sb);
2633 		}
2634 		/* Copy the remainder. */
2635 		if (len > 0) {
2636 			KASSERT(sb->sb_mb != NULL,
2637 			    ("%s: len > 0 && sb->sb_mb empty", __func__));
2638 
2639 			m = m_copym(sb->sb_mb, 0, len, M_NOWAIT);
2640 			if (m == NULL)
2641 				len = 0;	/* Don't flush data from sockbuf. */
2642 			else
2643 				uio->uio_resid -= len;
2644 			if (*mp0 != NULL)
2645 				m_cat(*mp0, m);
2646 			else
2647 				*mp0 = m;
2648 			if (*mp0 == NULL) {
2649 				error = ENOBUFS;
2650 				goto out;
2651 			}
2652 		}
2653 	} else {
2654 		/* NB: Must unlock socket buffer as uiomove may sleep. */
2655 		SOCKBUF_UNLOCK(sb);
2656 		error = m_mbuftouio(uio, sb->sb_mb, len);
2657 		SOCKBUF_LOCK(sb);
2658 		if (error)
2659 			goto out;
2660 	}
2661 	SBLASTRECORDCHK(sb);
2662 	SBLASTMBUFCHK(sb);
2663 
2664 	/*
2665 	 * Remove the delivered data from the socket buffer unless we
2666 	 * were only peeking.
2667 	 */
2668 	if (!(flags & MSG_PEEK)) {
2669 		if (len > 0)
2670 			sbdrop_locked(sb, len);
2671 
2672 		/* Notify protocol that we drained some data. */
2673 		if ((so->so_proto->pr_flags & PR_WANTRCVD) &&
2674 		    (((flags & MSG_WAITALL) && uio->uio_resid > 0) ||
2675 		     !(flags & MSG_SOCALLBCK))) {
2676 			SOCKBUF_UNLOCK(sb);
2677 			VNET_SO_ASSERT(so);
2678 			so->so_proto->pr_rcvd(so, flags);
2679 			SOCKBUF_LOCK(sb);
2680 		}
2681 	}
2682 
2683 	/*
2684 	 * For MSG_WAITALL we may have to loop again and wait for
2685 	 * more data to come in.
2686 	 */
2687 	if ((flags & MSG_WAITALL) && uio->uio_resid > 0)
2688 		goto restart;
2689 out:
2690 	SBLASTRECORDCHK(sb);
2691 	SBLASTMBUFCHK(sb);
2692 	SOCKBUF_UNLOCK(sb);
2693 	SOCK_IO_RECV_UNLOCK(so);
2694 	return (error);
2695 }
2696 
2697 /*
2698  * Optimized version of soreceive() for simple datagram cases from userspace.
2699  * Unlike in the stream case, we're able to drop a datagram if copyout()
2700  * fails, and because we handle datagrams atomically, we don't need to use a
2701  * sleep lock to prevent I/O interlacing.
2702  */
2703 int
2704 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
2705     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2706 {
2707 	struct mbuf *m, *m2;
2708 	int flags, error;
2709 	ssize_t len;
2710 	struct protosw *pr = so->so_proto;
2711 	struct mbuf *nextrecord;
2712 
2713 	if (psa != NULL)
2714 		*psa = NULL;
2715 	if (controlp != NULL)
2716 		*controlp = NULL;
2717 	if (flagsp != NULL)
2718 		flags = *flagsp &~ MSG_EOR;
2719 	else
2720 		flags = 0;
2721 
2722 	/*
2723 	 * For any complicated cases, fall back to the full
2724 	 * soreceive_generic().
2725 	 */
2726 	if (mp0 != NULL || (flags & (MSG_PEEK | MSG_OOB | MSG_TRUNC)))
2727 		return (soreceive_generic(so, psa, uio, mp0, controlp,
2728 		    flagsp));
2729 
2730 	/*
2731 	 * Enforce restrictions on use.
2732 	 */
2733 	KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
2734 	    ("soreceive_dgram: wantrcvd"));
2735 	KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
2736 	KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
2737 	    ("soreceive_dgram: SBS_RCVATMARK"));
2738 	KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
2739 	    ("soreceive_dgram: P_CONNREQUIRED"));
2740 
2741 	/*
2742 	 * Loop blocking while waiting for a datagram.
2743 	 */
2744 	SOCKBUF_LOCK(&so->so_rcv);
2745 	while ((m = so->so_rcv.sb_mb) == NULL) {
2746 		KASSERT(sbavail(&so->so_rcv) == 0,
2747 		    ("soreceive_dgram: sb_mb NULL but sbavail %u",
2748 		    sbavail(&so->so_rcv)));
2749 		if (so->so_error) {
2750 			error = so->so_error;
2751 			so->so_error = 0;
2752 			SOCKBUF_UNLOCK(&so->so_rcv);
2753 			return (error);
2754 		}
2755 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
2756 		    uio->uio_resid == 0) {
2757 			SOCKBUF_UNLOCK(&so->so_rcv);
2758 			return (0);
2759 		}
2760 		if ((so->so_state & SS_NBIO) ||
2761 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
2762 			SOCKBUF_UNLOCK(&so->so_rcv);
2763 			return (EWOULDBLOCK);
2764 		}
2765 		SBLASTRECORDCHK(&so->so_rcv);
2766 		SBLASTMBUFCHK(&so->so_rcv);
2767 		error = sbwait(so, SO_RCV);
2768 		if (error) {
2769 			SOCKBUF_UNLOCK(&so->so_rcv);
2770 			return (error);
2771 		}
2772 	}
2773 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2774 
2775 	if (uio->uio_td)
2776 		uio->uio_td->td_ru.ru_msgrcv++;
2777 	SBLASTRECORDCHK(&so->so_rcv);
2778 	SBLASTMBUFCHK(&so->so_rcv);
2779 	nextrecord = m->m_nextpkt;
2780 	if (nextrecord == NULL) {
2781 		KASSERT(so->so_rcv.sb_lastrecord == m,
2782 		    ("soreceive_dgram: lastrecord != m"));
2783 	}
2784 
2785 	KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
2786 	    ("soreceive_dgram: m_nextpkt != nextrecord"));
2787 
2788 	/*
2789 	 * Pull 'm' and its chain off the front of the packet queue.
2790 	 */
2791 	so->so_rcv.sb_mb = NULL;
2792 	sockbuf_pushsync(&so->so_rcv, nextrecord);
2793 
2794 	/*
2795 	 * Walk 'm's chain and free that many bytes from the socket buffer.
2796 	 */
2797 	for (m2 = m; m2 != NULL; m2 = m2->m_next)
2798 		sbfree(&so->so_rcv, m2);
2799 
2800 	/*
2801 	 * Do a few last checks before we let go of the lock.
2802 	 */
2803 	SBLASTRECORDCHK(&so->so_rcv);
2804 	SBLASTMBUFCHK(&so->so_rcv);
2805 	SOCKBUF_UNLOCK(&so->so_rcv);
2806 
2807 	if (pr->pr_flags & PR_ADDR) {
2808 		KASSERT(m->m_type == MT_SONAME,
2809 		    ("m->m_type == %d", m->m_type));
2810 		if (psa != NULL)
2811 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
2812 			    M_NOWAIT);
2813 		m = m_free(m);
2814 	}
2815 	if (m == NULL) {
2816 		/* XXXRW: Can this happen? */
2817 		return (0);
2818 	}
2819 
2820 	/*
2821 	 * Packet to copyout() is now in 'm' and it is disconnected from the
2822 	 * queue.
2823 	 *
2824 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
2825 	 * in the first mbuf chain on the socket buffer.  We call into the
2826 	 * protocol to perform externalization (or freeing if controlp ==
2827 	 * NULL). In some cases there can be only MT_CONTROL mbufs without
2828 	 * MT_DATA mbufs.
2829 	 */
2830 	if (m->m_type == MT_CONTROL) {
2831 		struct mbuf *cm = NULL, *cmn;
2832 		struct mbuf **cme = &cm;
2833 
2834 		do {
2835 			m2 = m->m_next;
2836 			m->m_next = NULL;
2837 			*cme = m;
2838 			cme = &(*cme)->m_next;
2839 			m = m2;
2840 		} while (m != NULL && m->m_type == MT_CONTROL);
2841 		while (cm != NULL) {
2842 			cmn = cm->m_next;
2843 			cm->m_next = NULL;
2844 			if (pr->pr_domain->dom_externalize != NULL) {
2845 				error = (*pr->pr_domain->dom_externalize)
2846 				    (cm, controlp, flags);
2847 			} else if (controlp != NULL)
2848 				*controlp = cm;
2849 			else
2850 				m_freem(cm);
2851 			if (controlp != NULL) {
2852 				while (*controlp != NULL)
2853 					controlp = &(*controlp)->m_next;
2854 			}
2855 			cm = cmn;
2856 		}
2857 	}
2858 	KASSERT(m == NULL || m->m_type == MT_DATA,
2859 	    ("soreceive_dgram: !data"));
2860 	while (m != NULL && uio->uio_resid > 0) {
2861 		len = uio->uio_resid;
2862 		if (len > m->m_len)
2863 			len = m->m_len;
2864 		error = uiomove(mtod(m, char *), (int)len, uio);
2865 		if (error) {
2866 			m_freem(m);
2867 			return (error);
2868 		}
2869 		if (len == m->m_len)
2870 			m = m_free(m);
2871 		else {
2872 			m->m_data += len;
2873 			m->m_len -= len;
2874 		}
2875 	}
2876 	if (m != NULL) {
2877 		flags |= MSG_TRUNC;
2878 		m_freem(m);
2879 	}
2880 	if (flagsp != NULL)
2881 		*flagsp |= flags;
2882 	return (0);
2883 }
2884 
2885 int
2886 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
2887     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2888 {
2889 	int error;
2890 
2891 	CURVNET_SET(so->so_vnet);
2892 	error = so->so_proto->pr_soreceive(so, psa, uio, mp0, controlp, flagsp);
2893 	CURVNET_RESTORE();
2894 	return (error);
2895 }
2896 
2897 int
2898 soshutdown(struct socket *so, int how)
2899 {
2900 	struct protosw *pr;
2901 	int error, soerror_enotconn;
2902 
2903 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
2904 		return (EINVAL);
2905 
2906 	soerror_enotconn = 0;
2907 	SOCK_LOCK(so);
2908 	if ((so->so_state &
2909 	    (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) {
2910 		/*
2911 		 * POSIX mandates us to return ENOTCONN when shutdown(2) is
2912 		 * invoked on a datagram sockets, however historically we would
2913 		 * actually tear socket down. This is known to be leveraged by
2914 		 * some applications to unblock process waiting in recvXXX(2)
2915 		 * by other process that it shares that socket with. Try to meet
2916 		 * both backward-compatibility and POSIX requirements by forcing
2917 		 * ENOTCONN but still asking protocol to perform pru_shutdown().
2918 		 */
2919 		if (so->so_type != SOCK_DGRAM && !SOLISTENING(so)) {
2920 			SOCK_UNLOCK(so);
2921 			return (ENOTCONN);
2922 		}
2923 		soerror_enotconn = 1;
2924 	}
2925 
2926 	if (SOLISTENING(so)) {
2927 		if (how != SHUT_WR) {
2928 			so->so_error = ECONNABORTED;
2929 			solisten_wakeup(so);	/* unlocks so */
2930 		} else {
2931 			SOCK_UNLOCK(so);
2932 		}
2933 		goto done;
2934 	}
2935 	SOCK_UNLOCK(so);
2936 
2937 	CURVNET_SET(so->so_vnet);
2938 	pr = so->so_proto;
2939 	if (pr->pr_flush != NULL)
2940 		pr->pr_flush(so, how);
2941 	if (how != SHUT_WR)
2942 		sorflush(so);
2943 	if (how != SHUT_RD) {
2944 		error = pr->pr_shutdown(so);
2945 		wakeup(&so->so_timeo);
2946 		CURVNET_RESTORE();
2947 		return ((error == 0 && soerror_enotconn) ? ENOTCONN : error);
2948 	}
2949 	wakeup(&so->so_timeo);
2950 	CURVNET_RESTORE();
2951 
2952 done:
2953 	return (soerror_enotconn ? ENOTCONN : 0);
2954 }
2955 
2956 void
2957 sorflush(struct socket *so)
2958 {
2959 	struct protosw *pr;
2960 	int error;
2961 
2962 	VNET_SO_ASSERT(so);
2963 
2964 	/*
2965 	 * Dislodge threads currently blocked in receive and wait to acquire
2966 	 * a lock against other simultaneous readers before clearing the
2967 	 * socket buffer.  Don't let our acquire be interrupted by a signal
2968 	 * despite any existing socket disposition on interruptable waiting.
2969 	 */
2970 	socantrcvmore(so);
2971 
2972 	error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR);
2973 	if (error != 0) {
2974 		KASSERT(SOLISTENING(so),
2975 		    ("%s: soiolock(%p) failed", __func__, so));
2976 		return;
2977 	}
2978 
2979 	pr = so->so_proto;
2980 	if (pr->pr_flags & PR_RIGHTS) {
2981 		MPASS(pr->pr_domain->dom_dispose != NULL);
2982 		(*pr->pr_domain->dom_dispose)(so);
2983 	} else {
2984 		sbrelease(so, SO_RCV);
2985 		SOCK_IO_RECV_UNLOCK(so);
2986 	}
2987 
2988 }
2989 
2990 /*
2991  * Wrapper for Socket established helper hook.
2992  * Parameters: socket, context of the hook point, hook id.
2993  */
2994 static int inline
2995 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id)
2996 {
2997 	struct socket_hhook_data hhook_data = {
2998 		.so = so,
2999 		.hctx = hctx,
3000 		.m = NULL,
3001 		.status = 0
3002 	};
3003 
3004 	CURVNET_SET(so->so_vnet);
3005 	HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd);
3006 	CURVNET_RESTORE();
3007 
3008 	/* Ugly but needed, since hhooks return void for now */
3009 	return (hhook_data.status);
3010 }
3011 
3012 /*
3013  * Perhaps this routine, and sooptcopyout(), below, ought to come in an
3014  * additional variant to handle the case where the option value needs to be
3015  * some kind of integer, but not a specific size.  In addition to their use
3016  * here, these functions are also called by the protocol-level pr_ctloutput()
3017  * routines.
3018  */
3019 int
3020 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
3021 {
3022 	size_t	valsize;
3023 
3024 	/*
3025 	 * If the user gives us more than we wanted, we ignore it, but if we
3026 	 * don't get the minimum length the caller wants, we return EINVAL.
3027 	 * On success, sopt->sopt_valsize is set to however much we actually
3028 	 * retrieved.
3029 	 */
3030 	if ((valsize = sopt->sopt_valsize) < minlen)
3031 		return EINVAL;
3032 	if (valsize > len)
3033 		sopt->sopt_valsize = valsize = len;
3034 
3035 	if (sopt->sopt_td != NULL)
3036 		return (copyin(sopt->sopt_val, buf, valsize));
3037 
3038 	bcopy(sopt->sopt_val, buf, valsize);
3039 	return (0);
3040 }
3041 
3042 /*
3043  * Kernel version of setsockopt(2).
3044  *
3045  * XXX: optlen is size_t, not socklen_t
3046  */
3047 int
3048 so_setsockopt(struct socket *so, int level, int optname, void *optval,
3049     size_t optlen)
3050 {
3051 	struct sockopt sopt;
3052 
3053 	sopt.sopt_level = level;
3054 	sopt.sopt_name = optname;
3055 	sopt.sopt_dir = SOPT_SET;
3056 	sopt.sopt_val = optval;
3057 	sopt.sopt_valsize = optlen;
3058 	sopt.sopt_td = NULL;
3059 	return (sosetopt(so, &sopt));
3060 }
3061 
3062 int
3063 sosetopt(struct socket *so, struct sockopt *sopt)
3064 {
3065 	int	error, optval;
3066 	struct	linger l;
3067 	struct	timeval tv;
3068 	sbintime_t val, *valp;
3069 	uint32_t val32;
3070 #ifdef MAC
3071 	struct mac extmac;
3072 #endif
3073 
3074 	CURVNET_SET(so->so_vnet);
3075 	error = 0;
3076 	if (sopt->sopt_level != SOL_SOCKET) {
3077 		if (so->so_proto->pr_ctloutput != NULL)
3078 			error = (*so->so_proto->pr_ctloutput)(so, sopt);
3079 		else
3080 			error = ENOPROTOOPT;
3081 	} else {
3082 		switch (sopt->sopt_name) {
3083 		case SO_ACCEPTFILTER:
3084 			error = accept_filt_setopt(so, sopt);
3085 			if (error)
3086 				goto bad;
3087 			break;
3088 
3089 		case SO_LINGER:
3090 			error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
3091 			if (error)
3092 				goto bad;
3093 			if (l.l_linger < 0 ||
3094 			    l.l_linger > USHRT_MAX ||
3095 			    l.l_linger > (INT_MAX / hz)) {
3096 				error = EDOM;
3097 				goto bad;
3098 			}
3099 			SOCK_LOCK(so);
3100 			so->so_linger = l.l_linger;
3101 			if (l.l_onoff)
3102 				so->so_options |= SO_LINGER;
3103 			else
3104 				so->so_options &= ~SO_LINGER;
3105 			SOCK_UNLOCK(so);
3106 			break;
3107 
3108 		case SO_DEBUG:
3109 		case SO_KEEPALIVE:
3110 		case SO_DONTROUTE:
3111 		case SO_USELOOPBACK:
3112 		case SO_BROADCAST:
3113 		case SO_REUSEADDR:
3114 		case SO_REUSEPORT:
3115 		case SO_REUSEPORT_LB:
3116 		case SO_OOBINLINE:
3117 		case SO_TIMESTAMP:
3118 		case SO_BINTIME:
3119 		case SO_NOSIGPIPE:
3120 		case SO_NO_DDP:
3121 		case SO_NO_OFFLOAD:
3122 		case SO_RERROR:
3123 			error = sooptcopyin(sopt, &optval, sizeof optval,
3124 			    sizeof optval);
3125 			if (error)
3126 				goto bad;
3127 			SOCK_LOCK(so);
3128 			if (optval)
3129 				so->so_options |= sopt->sopt_name;
3130 			else
3131 				so->so_options &= ~sopt->sopt_name;
3132 			SOCK_UNLOCK(so);
3133 			break;
3134 
3135 		case SO_SETFIB:
3136 			error = sooptcopyin(sopt, &optval, sizeof optval,
3137 			    sizeof optval);
3138 			if (error)
3139 				goto bad;
3140 
3141 			if (optval < 0 || optval >= rt_numfibs) {
3142 				error = EINVAL;
3143 				goto bad;
3144 			}
3145 			if (((so->so_proto->pr_domain->dom_family == PF_INET) ||
3146 			   (so->so_proto->pr_domain->dom_family == PF_INET6) ||
3147 			   (so->so_proto->pr_domain->dom_family == PF_ROUTE)))
3148 				so->so_fibnum = optval;
3149 			else
3150 				so->so_fibnum = 0;
3151 			break;
3152 
3153 		case SO_USER_COOKIE:
3154 			error = sooptcopyin(sopt, &val32, sizeof val32,
3155 			    sizeof val32);
3156 			if (error)
3157 				goto bad;
3158 			so->so_user_cookie = val32;
3159 			break;
3160 
3161 		case SO_SNDBUF:
3162 		case SO_RCVBUF:
3163 		case SO_SNDLOWAT:
3164 		case SO_RCVLOWAT:
3165 			error = so->so_proto->pr_setsbopt(so, sopt);
3166 			if (error)
3167 				goto bad;
3168 			break;
3169 
3170 		case SO_SNDTIMEO:
3171 		case SO_RCVTIMEO:
3172 #ifdef COMPAT_FREEBSD32
3173 			if (SV_CURPROC_FLAG(SV_ILP32)) {
3174 				struct timeval32 tv32;
3175 
3176 				error = sooptcopyin(sopt, &tv32, sizeof tv32,
3177 				    sizeof tv32);
3178 				CP(tv32, tv, tv_sec);
3179 				CP(tv32, tv, tv_usec);
3180 			} else
3181 #endif
3182 				error = sooptcopyin(sopt, &tv, sizeof tv,
3183 				    sizeof tv);
3184 			if (error)
3185 				goto bad;
3186 			if (tv.tv_sec < 0 || tv.tv_usec < 0 ||
3187 			    tv.tv_usec >= 1000000) {
3188 				error = EDOM;
3189 				goto bad;
3190 			}
3191 			if (tv.tv_sec > INT32_MAX)
3192 				val = SBT_MAX;
3193 			else
3194 				val = tvtosbt(tv);
3195 			SOCK_LOCK(so);
3196 			valp = sopt->sopt_name == SO_SNDTIMEO ?
3197 			    (SOLISTENING(so) ? &so->sol_sbsnd_timeo :
3198 			    &so->so_snd.sb_timeo) :
3199 			    (SOLISTENING(so) ? &so->sol_sbrcv_timeo :
3200 			    &so->so_rcv.sb_timeo);
3201 			*valp = val;
3202 			SOCK_UNLOCK(so);
3203 			break;
3204 
3205 		case SO_LABEL:
3206 #ifdef MAC
3207 			error = sooptcopyin(sopt, &extmac, sizeof extmac,
3208 			    sizeof extmac);
3209 			if (error)
3210 				goto bad;
3211 			error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
3212 			    so, &extmac);
3213 #else
3214 			error = EOPNOTSUPP;
3215 #endif
3216 			break;
3217 
3218 		case SO_TS_CLOCK:
3219 			error = sooptcopyin(sopt, &optval, sizeof optval,
3220 			    sizeof optval);
3221 			if (error)
3222 				goto bad;
3223 			if (optval < 0 || optval > SO_TS_CLOCK_MAX) {
3224 				error = EINVAL;
3225 				goto bad;
3226 			}
3227 			so->so_ts_clock = optval;
3228 			break;
3229 
3230 		case SO_MAX_PACING_RATE:
3231 			error = sooptcopyin(sopt, &val32, sizeof(val32),
3232 			    sizeof(val32));
3233 			if (error)
3234 				goto bad;
3235 			so->so_max_pacing_rate = val32;
3236 			break;
3237 
3238 		default:
3239 			if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
3240 				error = hhook_run_socket(so, sopt,
3241 				    HHOOK_SOCKET_OPT);
3242 			else
3243 				error = ENOPROTOOPT;
3244 			break;
3245 		}
3246 		if (error == 0 && so->so_proto->pr_ctloutput != NULL)
3247 			(void)(*so->so_proto->pr_ctloutput)(so, sopt);
3248 	}
3249 bad:
3250 	CURVNET_RESTORE();
3251 	return (error);
3252 }
3253 
3254 /*
3255  * Helper routine for getsockopt.
3256  */
3257 int
3258 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
3259 {
3260 	int	error;
3261 	size_t	valsize;
3262 
3263 	error = 0;
3264 
3265 	/*
3266 	 * Documented get behavior is that we always return a value, possibly
3267 	 * truncated to fit in the user's buffer.  Traditional behavior is
3268 	 * that we always tell the user precisely how much we copied, rather
3269 	 * than something useful like the total amount we had available for
3270 	 * her.  Note that this interface is not idempotent; the entire
3271 	 * answer must be generated ahead of time.
3272 	 */
3273 	valsize = min(len, sopt->sopt_valsize);
3274 	sopt->sopt_valsize = valsize;
3275 	if (sopt->sopt_val != NULL) {
3276 		if (sopt->sopt_td != NULL)
3277 			error = copyout(buf, sopt->sopt_val, valsize);
3278 		else
3279 			bcopy(buf, sopt->sopt_val, valsize);
3280 	}
3281 	return (error);
3282 }
3283 
3284 int
3285 sogetopt(struct socket *so, struct sockopt *sopt)
3286 {
3287 	int	error, optval;
3288 	struct	linger l;
3289 	struct	timeval tv;
3290 #ifdef MAC
3291 	struct mac extmac;
3292 #endif
3293 
3294 	CURVNET_SET(so->so_vnet);
3295 	error = 0;
3296 	if (sopt->sopt_level != SOL_SOCKET) {
3297 		if (so->so_proto->pr_ctloutput != NULL)
3298 			error = (*so->so_proto->pr_ctloutput)(so, sopt);
3299 		else
3300 			error = ENOPROTOOPT;
3301 		CURVNET_RESTORE();
3302 		return (error);
3303 	} else {
3304 		switch (sopt->sopt_name) {
3305 		case SO_ACCEPTFILTER:
3306 			error = accept_filt_getopt(so, sopt);
3307 			break;
3308 
3309 		case SO_LINGER:
3310 			SOCK_LOCK(so);
3311 			l.l_onoff = so->so_options & SO_LINGER;
3312 			l.l_linger = so->so_linger;
3313 			SOCK_UNLOCK(so);
3314 			error = sooptcopyout(sopt, &l, sizeof l);
3315 			break;
3316 
3317 		case SO_USELOOPBACK:
3318 		case SO_DONTROUTE:
3319 		case SO_DEBUG:
3320 		case SO_KEEPALIVE:
3321 		case SO_REUSEADDR:
3322 		case SO_REUSEPORT:
3323 		case SO_REUSEPORT_LB:
3324 		case SO_BROADCAST:
3325 		case SO_OOBINLINE:
3326 		case SO_ACCEPTCONN:
3327 		case SO_TIMESTAMP:
3328 		case SO_BINTIME:
3329 		case SO_NOSIGPIPE:
3330 		case SO_NO_DDP:
3331 		case SO_NO_OFFLOAD:
3332 		case SO_RERROR:
3333 			optval = so->so_options & sopt->sopt_name;
3334 integer:
3335 			error = sooptcopyout(sopt, &optval, sizeof optval);
3336 			break;
3337 
3338 		case SO_DOMAIN:
3339 			optval = so->so_proto->pr_domain->dom_family;
3340 			goto integer;
3341 
3342 		case SO_TYPE:
3343 			optval = so->so_type;
3344 			goto integer;
3345 
3346 		case SO_PROTOCOL:
3347 			optval = so->so_proto->pr_protocol;
3348 			goto integer;
3349 
3350 		case SO_ERROR:
3351 			SOCK_LOCK(so);
3352 			if (so->so_error) {
3353 				optval = so->so_error;
3354 				so->so_error = 0;
3355 			} else {
3356 				optval = so->so_rerror;
3357 				so->so_rerror = 0;
3358 			}
3359 			SOCK_UNLOCK(so);
3360 			goto integer;
3361 
3362 		case SO_SNDBUF:
3363 			optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat :
3364 			    so->so_snd.sb_hiwat;
3365 			goto integer;
3366 
3367 		case SO_RCVBUF:
3368 			optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat :
3369 			    so->so_rcv.sb_hiwat;
3370 			goto integer;
3371 
3372 		case SO_SNDLOWAT:
3373 			optval = SOLISTENING(so) ? so->sol_sbsnd_lowat :
3374 			    so->so_snd.sb_lowat;
3375 			goto integer;
3376 
3377 		case SO_RCVLOWAT:
3378 			optval = SOLISTENING(so) ? so->sol_sbrcv_lowat :
3379 			    so->so_rcv.sb_lowat;
3380 			goto integer;
3381 
3382 		case SO_SNDTIMEO:
3383 		case SO_RCVTIMEO:
3384 			SOCK_LOCK(so);
3385 			tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ?
3386 			    (SOLISTENING(so) ? so->sol_sbsnd_timeo :
3387 			    so->so_snd.sb_timeo) :
3388 			    (SOLISTENING(so) ? so->sol_sbrcv_timeo :
3389 			    so->so_rcv.sb_timeo));
3390 			SOCK_UNLOCK(so);
3391 #ifdef COMPAT_FREEBSD32
3392 			if (SV_CURPROC_FLAG(SV_ILP32)) {
3393 				struct timeval32 tv32;
3394 
3395 				CP(tv, tv32, tv_sec);
3396 				CP(tv, tv32, tv_usec);
3397 				error = sooptcopyout(sopt, &tv32, sizeof tv32);
3398 			} else
3399 #endif
3400 				error = sooptcopyout(sopt, &tv, sizeof tv);
3401 			break;
3402 
3403 		case SO_LABEL:
3404 #ifdef MAC
3405 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
3406 			    sizeof(extmac));
3407 			if (error)
3408 				goto bad;
3409 			error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
3410 			    so, &extmac);
3411 			if (error)
3412 				goto bad;
3413 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
3414 #else
3415 			error = EOPNOTSUPP;
3416 #endif
3417 			break;
3418 
3419 		case SO_PEERLABEL:
3420 #ifdef MAC
3421 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
3422 			    sizeof(extmac));
3423 			if (error)
3424 				goto bad;
3425 			error = mac_getsockopt_peerlabel(
3426 			    sopt->sopt_td->td_ucred, so, &extmac);
3427 			if (error)
3428 				goto bad;
3429 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
3430 #else
3431 			error = EOPNOTSUPP;
3432 #endif
3433 			break;
3434 
3435 		case SO_LISTENQLIMIT:
3436 			optval = SOLISTENING(so) ? so->sol_qlimit : 0;
3437 			goto integer;
3438 
3439 		case SO_LISTENQLEN:
3440 			optval = SOLISTENING(so) ? so->sol_qlen : 0;
3441 			goto integer;
3442 
3443 		case SO_LISTENINCQLEN:
3444 			optval = SOLISTENING(so) ? so->sol_incqlen : 0;
3445 			goto integer;
3446 
3447 		case SO_TS_CLOCK:
3448 			optval = so->so_ts_clock;
3449 			goto integer;
3450 
3451 		case SO_MAX_PACING_RATE:
3452 			optval = so->so_max_pacing_rate;
3453 			goto integer;
3454 
3455 		default:
3456 			if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
3457 				error = hhook_run_socket(so, sopt,
3458 				    HHOOK_SOCKET_OPT);
3459 			else
3460 				error = ENOPROTOOPT;
3461 			break;
3462 		}
3463 	}
3464 #ifdef MAC
3465 bad:
3466 #endif
3467 	CURVNET_RESTORE();
3468 	return (error);
3469 }
3470 
3471 int
3472 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
3473 {
3474 	struct mbuf *m, *m_prev;
3475 	int sopt_size = sopt->sopt_valsize;
3476 
3477 	MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
3478 	if (m == NULL)
3479 		return ENOBUFS;
3480 	if (sopt_size > MLEN) {
3481 		MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT);
3482 		if ((m->m_flags & M_EXT) == 0) {
3483 			m_free(m);
3484 			return ENOBUFS;
3485 		}
3486 		m->m_len = min(MCLBYTES, sopt_size);
3487 	} else {
3488 		m->m_len = min(MLEN, sopt_size);
3489 	}
3490 	sopt_size -= m->m_len;
3491 	*mp = m;
3492 	m_prev = m;
3493 
3494 	while (sopt_size) {
3495 		MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
3496 		if (m == NULL) {
3497 			m_freem(*mp);
3498 			return ENOBUFS;
3499 		}
3500 		if (sopt_size > MLEN) {
3501 			MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK :
3502 			    M_NOWAIT);
3503 			if ((m->m_flags & M_EXT) == 0) {
3504 				m_freem(m);
3505 				m_freem(*mp);
3506 				return ENOBUFS;
3507 			}
3508 			m->m_len = min(MCLBYTES, sopt_size);
3509 		} else {
3510 			m->m_len = min(MLEN, sopt_size);
3511 		}
3512 		sopt_size -= m->m_len;
3513 		m_prev->m_next = m;
3514 		m_prev = m;
3515 	}
3516 	return (0);
3517 }
3518 
3519 int
3520 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
3521 {
3522 	struct mbuf *m0 = m;
3523 
3524 	if (sopt->sopt_val == NULL)
3525 		return (0);
3526 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
3527 		if (sopt->sopt_td != NULL) {
3528 			int error;
3529 
3530 			error = copyin(sopt->sopt_val, mtod(m, char *),
3531 			    m->m_len);
3532 			if (error != 0) {
3533 				m_freem(m0);
3534 				return(error);
3535 			}
3536 		} else
3537 			bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
3538 		sopt->sopt_valsize -= m->m_len;
3539 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
3540 		m = m->m_next;
3541 	}
3542 	if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
3543 		panic("ip6_sooptmcopyin");
3544 	return (0);
3545 }
3546 
3547 int
3548 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
3549 {
3550 	struct mbuf *m0 = m;
3551 	size_t valsize = 0;
3552 
3553 	if (sopt->sopt_val == NULL)
3554 		return (0);
3555 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
3556 		if (sopt->sopt_td != NULL) {
3557 			int error;
3558 
3559 			error = copyout(mtod(m, char *), sopt->sopt_val,
3560 			    m->m_len);
3561 			if (error != 0) {
3562 				m_freem(m0);
3563 				return(error);
3564 			}
3565 		} else
3566 			bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
3567 		sopt->sopt_valsize -= m->m_len;
3568 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
3569 		valsize += m->m_len;
3570 		m = m->m_next;
3571 	}
3572 	if (m != NULL) {
3573 		/* enough soopt buffer should be given from user-land */
3574 		m_freem(m0);
3575 		return(EINVAL);
3576 	}
3577 	sopt->sopt_valsize = valsize;
3578 	return (0);
3579 }
3580 
3581 /*
3582  * sohasoutofband(): protocol notifies socket layer of the arrival of new
3583  * out-of-band data, which will then notify socket consumers.
3584  */
3585 void
3586 sohasoutofband(struct socket *so)
3587 {
3588 
3589 	if (so->so_sigio != NULL)
3590 		pgsigio(&so->so_sigio, SIGURG, 0);
3591 	selwakeuppri(&so->so_rdsel, PSOCK);
3592 }
3593 
3594 int
3595 sopoll(struct socket *so, int events, struct ucred *active_cred,
3596     struct thread *td)
3597 {
3598 
3599 	/*
3600 	 * We do not need to set or assert curvnet as long as everyone uses
3601 	 * sopoll_generic().
3602 	 */
3603 	return (so->so_proto->pr_sopoll(so, events, active_cred, td));
3604 }
3605 
3606 int
3607 sopoll_generic(struct socket *so, int events, struct ucred *active_cred,
3608     struct thread *td)
3609 {
3610 	int revents;
3611 
3612 	SOCK_LOCK(so);
3613 	if (SOLISTENING(so)) {
3614 		if (!(events & (POLLIN | POLLRDNORM)))
3615 			revents = 0;
3616 		else if (!TAILQ_EMPTY(&so->sol_comp))
3617 			revents = events & (POLLIN | POLLRDNORM);
3618 		else if ((events & POLLINIGNEOF) == 0 && so->so_error)
3619 			revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP;
3620 		else {
3621 			selrecord(td, &so->so_rdsel);
3622 			revents = 0;
3623 		}
3624 	} else {
3625 		revents = 0;
3626 		SOCK_SENDBUF_LOCK(so);
3627 		SOCK_RECVBUF_LOCK(so);
3628 		if (events & (POLLIN | POLLRDNORM))
3629 			if (soreadabledata(so))
3630 				revents |= events & (POLLIN | POLLRDNORM);
3631 		if (events & (POLLOUT | POLLWRNORM))
3632 			if (sowriteable(so))
3633 				revents |= events & (POLLOUT | POLLWRNORM);
3634 		if (events & (POLLPRI | POLLRDBAND))
3635 			if (so->so_oobmark ||
3636 			    (so->so_rcv.sb_state & SBS_RCVATMARK))
3637 				revents |= events & (POLLPRI | POLLRDBAND);
3638 		if ((events & POLLINIGNEOF) == 0) {
3639 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3640 				revents |= events & (POLLIN | POLLRDNORM);
3641 				if (so->so_snd.sb_state & SBS_CANTSENDMORE)
3642 					revents |= POLLHUP;
3643 			}
3644 		}
3645 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
3646 			revents |= events & POLLRDHUP;
3647 		if (revents == 0) {
3648 			if (events &
3649 			    (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND | POLLRDHUP)) {
3650 				selrecord(td, &so->so_rdsel);
3651 				so->so_rcv.sb_flags |= SB_SEL;
3652 			}
3653 			if (events & (POLLOUT | POLLWRNORM)) {
3654 				selrecord(td, &so->so_wrsel);
3655 				so->so_snd.sb_flags |= SB_SEL;
3656 			}
3657 		}
3658 		SOCK_RECVBUF_UNLOCK(so);
3659 		SOCK_SENDBUF_UNLOCK(so);
3660 	}
3661 	SOCK_UNLOCK(so);
3662 	return (revents);
3663 }
3664 
3665 int
3666 soo_kqfilter(struct file *fp, struct knote *kn)
3667 {
3668 	struct socket *so = kn->kn_fp->f_data;
3669 	struct sockbuf *sb;
3670 	sb_which which;
3671 	struct knlist *knl;
3672 
3673 	switch (kn->kn_filter) {
3674 	case EVFILT_READ:
3675 		kn->kn_fop = &soread_filtops;
3676 		knl = &so->so_rdsel.si_note;
3677 		sb = &so->so_rcv;
3678 		which = SO_RCV;
3679 		break;
3680 	case EVFILT_WRITE:
3681 		kn->kn_fop = &sowrite_filtops;
3682 		knl = &so->so_wrsel.si_note;
3683 		sb = &so->so_snd;
3684 		which = SO_SND;
3685 		break;
3686 	case EVFILT_EMPTY:
3687 		kn->kn_fop = &soempty_filtops;
3688 		knl = &so->so_wrsel.si_note;
3689 		sb = &so->so_snd;
3690 		which = SO_SND;
3691 		break;
3692 	default:
3693 		return (EINVAL);
3694 	}
3695 
3696 	SOCK_LOCK(so);
3697 	if (SOLISTENING(so)) {
3698 		knlist_add(knl, kn, 1);
3699 	} else {
3700 		SOCK_BUF_LOCK(so, which);
3701 		knlist_add(knl, kn, 1);
3702 		sb->sb_flags |= SB_KNOTE;
3703 		SOCK_BUF_UNLOCK(so, which);
3704 	}
3705 	SOCK_UNLOCK(so);
3706 	return (0);
3707 }
3708 
3709 static void
3710 filt_sordetach(struct knote *kn)
3711 {
3712 	struct socket *so = kn->kn_fp->f_data;
3713 
3714 	so_rdknl_lock(so);
3715 	knlist_remove(&so->so_rdsel.si_note, kn, 1);
3716 	if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note))
3717 		so->so_rcv.sb_flags &= ~SB_KNOTE;
3718 	so_rdknl_unlock(so);
3719 }
3720 
3721 /*ARGSUSED*/
3722 static int
3723 filt_soread(struct knote *kn, long hint)
3724 {
3725 	struct socket *so;
3726 
3727 	so = kn->kn_fp->f_data;
3728 
3729 	if (SOLISTENING(so)) {
3730 		SOCK_LOCK_ASSERT(so);
3731 		kn->kn_data = so->sol_qlen;
3732 		if (so->so_error) {
3733 			kn->kn_flags |= EV_EOF;
3734 			kn->kn_fflags = so->so_error;
3735 			return (1);
3736 		}
3737 		return (!TAILQ_EMPTY(&so->sol_comp));
3738 	}
3739 
3740 	SOCK_RECVBUF_LOCK_ASSERT(so);
3741 
3742 	kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl;
3743 	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3744 		kn->kn_flags |= EV_EOF;
3745 		kn->kn_fflags = so->so_error;
3746 		return (1);
3747 	} else if (so->so_error || so->so_rerror)
3748 		return (1);
3749 
3750 	if (kn->kn_sfflags & NOTE_LOWAT) {
3751 		if (kn->kn_data >= kn->kn_sdata)
3752 			return (1);
3753 	} else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat)
3754 		return (1);
3755 
3756 	/* This hook returning non-zero indicates an event, not error */
3757 	return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD));
3758 }
3759 
3760 static void
3761 filt_sowdetach(struct knote *kn)
3762 {
3763 	struct socket *so = kn->kn_fp->f_data;
3764 
3765 	so_wrknl_lock(so);
3766 	knlist_remove(&so->so_wrsel.si_note, kn, 1);
3767 	if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note))
3768 		so->so_snd.sb_flags &= ~SB_KNOTE;
3769 	so_wrknl_unlock(so);
3770 }
3771 
3772 /*ARGSUSED*/
3773 static int
3774 filt_sowrite(struct knote *kn, long hint)
3775 {
3776 	struct socket *so;
3777 
3778 	so = kn->kn_fp->f_data;
3779 
3780 	if (SOLISTENING(so))
3781 		return (0);
3782 
3783 	SOCK_SENDBUF_LOCK_ASSERT(so);
3784 	kn->kn_data = sbspace(&so->so_snd);
3785 
3786 	hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE);
3787 
3788 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
3789 		kn->kn_flags |= EV_EOF;
3790 		kn->kn_fflags = so->so_error;
3791 		return (1);
3792 	} else if (so->so_error)	/* temporary udp error */
3793 		return (1);
3794 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
3795 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
3796 		return (0);
3797 	else if (kn->kn_sfflags & NOTE_LOWAT)
3798 		return (kn->kn_data >= kn->kn_sdata);
3799 	else
3800 		return (kn->kn_data >= so->so_snd.sb_lowat);
3801 }
3802 
3803 static int
3804 filt_soempty(struct knote *kn, long hint)
3805 {
3806 	struct socket *so;
3807 
3808 	so = kn->kn_fp->f_data;
3809 
3810 	if (SOLISTENING(so))
3811 		return (1);
3812 
3813 	SOCK_SENDBUF_LOCK_ASSERT(so);
3814 	kn->kn_data = sbused(&so->so_snd);
3815 
3816 	if (kn->kn_data == 0)
3817 		return (1);
3818 	else
3819 		return (0);
3820 }
3821 
3822 int
3823 socheckuid(struct socket *so, uid_t uid)
3824 {
3825 
3826 	if (so == NULL)
3827 		return (EPERM);
3828 	if (so->so_cred->cr_uid != uid)
3829 		return (EPERM);
3830 	return (0);
3831 }
3832 
3833 /*
3834  * These functions are used by protocols to notify the socket layer (and its
3835  * consumers) of state changes in the sockets driven by protocol-side events.
3836  */
3837 
3838 /*
3839  * Procedures to manipulate state flags of socket and do appropriate wakeups.
3840  *
3841  * Normal sequence from the active (originating) side is that
3842  * soisconnecting() is called during processing of connect() call, resulting
3843  * in an eventual call to soisconnected() if/when the connection is
3844  * established.  When the connection is torn down soisdisconnecting() is
3845  * called during processing of disconnect() call, and soisdisconnected() is
3846  * called when the connection to the peer is totally severed.  The semantics
3847  * of these routines are such that connectionless protocols can call
3848  * soisconnected() and soisdisconnected() only, bypassing the in-progress
3849  * calls when setting up a ``connection'' takes no time.
3850  *
3851  * From the passive side, a socket is created with two queues of sockets:
3852  * so_incomp for connections in progress and so_comp for connections already
3853  * made and awaiting user acceptance.  As a protocol is preparing incoming
3854  * connections, it creates a socket structure queued on so_incomp by calling
3855  * sonewconn().  When the connection is established, soisconnected() is
3856  * called, and transfers the socket structure to so_comp, making it available
3857  * to accept().
3858  *
3859  * If a socket is closed with sockets on either so_incomp or so_comp, these
3860  * sockets are dropped.
3861  *
3862  * If higher-level protocols are implemented in the kernel, the wakeups done
3863  * here will sometimes cause software-interrupt process scheduling.
3864  */
3865 void
3866 soisconnecting(struct socket *so)
3867 {
3868 
3869 	SOCK_LOCK(so);
3870 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
3871 	so->so_state |= SS_ISCONNECTING;
3872 	SOCK_UNLOCK(so);
3873 }
3874 
3875 void
3876 soisconnected(struct socket *so)
3877 {
3878 	bool last __diagused;
3879 
3880 	SOCK_LOCK(so);
3881 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
3882 	so->so_state |= SS_ISCONNECTED;
3883 
3884 	if (so->so_qstate == SQ_INCOMP) {
3885 		struct socket *head = so->so_listen;
3886 		int ret;
3887 
3888 		KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so));
3889 		/*
3890 		 * Promoting a socket from incomplete queue to complete, we
3891 		 * need to go through reverse order of locking.  We first do
3892 		 * trylock, and if that doesn't succeed, we go the hard way
3893 		 * leaving a reference and rechecking consistency after proper
3894 		 * locking.
3895 		 */
3896 		if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) {
3897 			soref(head);
3898 			SOCK_UNLOCK(so);
3899 			SOLISTEN_LOCK(head);
3900 			SOCK_LOCK(so);
3901 			if (__predict_false(head != so->so_listen)) {
3902 				/*
3903 				 * The socket went off the listen queue,
3904 				 * should be lost race to close(2) of sol.
3905 				 * The socket is about to soabort().
3906 				 */
3907 				SOCK_UNLOCK(so);
3908 				sorele_locked(head);
3909 				return;
3910 			}
3911 			last = refcount_release(&head->so_count);
3912 			KASSERT(!last, ("%s: released last reference for %p",
3913 			    __func__, head));
3914 		}
3915 again:
3916 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
3917 			TAILQ_REMOVE(&head->sol_incomp, so, so_list);
3918 			head->sol_incqlen--;
3919 			TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
3920 			head->sol_qlen++;
3921 			so->so_qstate = SQ_COMP;
3922 			SOCK_UNLOCK(so);
3923 			solisten_wakeup(head);	/* unlocks */
3924 		} else {
3925 			SOCK_RECVBUF_LOCK(so);
3926 			soupcall_set(so, SO_RCV,
3927 			    head->sol_accept_filter->accf_callback,
3928 			    head->sol_accept_filter_arg);
3929 			so->so_options &= ~SO_ACCEPTFILTER;
3930 			ret = head->sol_accept_filter->accf_callback(so,
3931 			    head->sol_accept_filter_arg, M_NOWAIT);
3932 			if (ret == SU_ISCONNECTED) {
3933 				soupcall_clear(so, SO_RCV);
3934 				SOCK_RECVBUF_UNLOCK(so);
3935 				goto again;
3936 			}
3937 			SOCK_RECVBUF_UNLOCK(so);
3938 			SOCK_UNLOCK(so);
3939 			SOLISTEN_UNLOCK(head);
3940 		}
3941 		return;
3942 	}
3943 	SOCK_UNLOCK(so);
3944 	wakeup(&so->so_timeo);
3945 	sorwakeup(so);
3946 	sowwakeup(so);
3947 }
3948 
3949 void
3950 soisdisconnecting(struct socket *so)
3951 {
3952 
3953 	SOCK_LOCK(so);
3954 	so->so_state &= ~SS_ISCONNECTING;
3955 	so->so_state |= SS_ISDISCONNECTING;
3956 
3957 	if (!SOLISTENING(so)) {
3958 		SOCK_RECVBUF_LOCK(so);
3959 		socantrcvmore_locked(so);
3960 		SOCK_SENDBUF_LOCK(so);
3961 		socantsendmore_locked(so);
3962 	}
3963 	SOCK_UNLOCK(so);
3964 	wakeup(&so->so_timeo);
3965 }
3966 
3967 void
3968 soisdisconnected(struct socket *so)
3969 {
3970 
3971 	SOCK_LOCK(so);
3972 
3973 	/*
3974 	 * There is at least one reader of so_state that does not
3975 	 * acquire socket lock, namely soreceive_generic().  Ensure
3976 	 * that it never sees all flags that track connection status
3977 	 * cleared, by ordering the update with a barrier semantic of
3978 	 * our release thread fence.
3979 	 */
3980 	so->so_state |= SS_ISDISCONNECTED;
3981 	atomic_thread_fence_rel();
3982 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
3983 
3984 	if (!SOLISTENING(so)) {
3985 		SOCK_UNLOCK(so);
3986 		SOCK_RECVBUF_LOCK(so);
3987 		socantrcvmore_locked(so);
3988 		SOCK_SENDBUF_LOCK(so);
3989 		sbdrop_locked(&so->so_snd, sbused(&so->so_snd));
3990 		socantsendmore_locked(so);
3991 	} else
3992 		SOCK_UNLOCK(so);
3993 	wakeup(&so->so_timeo);
3994 }
3995 
3996 int
3997 soiolock(struct socket *so, struct sx *sx, int flags)
3998 {
3999 	int error;
4000 
4001 	KASSERT((flags & SBL_VALID) == flags,
4002 	    ("soiolock: invalid flags %#x", flags));
4003 
4004 	if ((flags & SBL_WAIT) != 0) {
4005 		if ((flags & SBL_NOINTR) != 0) {
4006 			sx_xlock(sx);
4007 		} else {
4008 			error = sx_xlock_sig(sx);
4009 			if (error != 0)
4010 				return (error);
4011 		}
4012 	} else if (!sx_try_xlock(sx)) {
4013 		return (EWOULDBLOCK);
4014 	}
4015 
4016 	if (__predict_false(SOLISTENING(so))) {
4017 		sx_xunlock(sx);
4018 		return (ENOTCONN);
4019 	}
4020 	return (0);
4021 }
4022 
4023 void
4024 soiounlock(struct sx *sx)
4025 {
4026 	sx_xunlock(sx);
4027 }
4028 
4029 /*
4030  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
4031  */
4032 struct sockaddr *
4033 sodupsockaddr(const struct sockaddr *sa, int mflags)
4034 {
4035 	struct sockaddr *sa2;
4036 
4037 	sa2 = malloc(sa->sa_len, M_SONAME, mflags);
4038 	if (sa2)
4039 		bcopy(sa, sa2, sa->sa_len);
4040 	return sa2;
4041 }
4042 
4043 /*
4044  * Register per-socket destructor.
4045  */
4046 void
4047 sodtor_set(struct socket *so, so_dtor_t *func)
4048 {
4049 
4050 	SOCK_LOCK_ASSERT(so);
4051 	so->so_dtor = func;
4052 }
4053 
4054 /*
4055  * Register per-socket buffer upcalls.
4056  */
4057 void
4058 soupcall_set(struct socket *so, sb_which which, so_upcall_t func, void *arg)
4059 {
4060 	struct sockbuf *sb;
4061 
4062 	KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4063 
4064 	switch (which) {
4065 	case SO_RCV:
4066 		sb = &so->so_rcv;
4067 		break;
4068 	case SO_SND:
4069 		sb = &so->so_snd;
4070 		break;
4071 	}
4072 	SOCK_BUF_LOCK_ASSERT(so, which);
4073 	sb->sb_upcall = func;
4074 	sb->sb_upcallarg = arg;
4075 	sb->sb_flags |= SB_UPCALL;
4076 }
4077 
4078 void
4079 soupcall_clear(struct socket *so, sb_which which)
4080 {
4081 	struct sockbuf *sb;
4082 
4083 	KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4084 
4085 	switch (which) {
4086 	case SO_RCV:
4087 		sb = &so->so_rcv;
4088 		break;
4089 	case SO_SND:
4090 		sb = &so->so_snd;
4091 		break;
4092 	}
4093 	SOCK_BUF_LOCK_ASSERT(so, which);
4094 	KASSERT(sb->sb_upcall != NULL,
4095 	    ("%s: so %p no upcall to clear", __func__, so));
4096 	sb->sb_upcall = NULL;
4097 	sb->sb_upcallarg = NULL;
4098 	sb->sb_flags &= ~SB_UPCALL;
4099 }
4100 
4101 void
4102 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg)
4103 {
4104 
4105 	SOLISTEN_LOCK_ASSERT(so);
4106 	so->sol_upcall = func;
4107 	so->sol_upcallarg = arg;
4108 }
4109 
4110 static void
4111 so_rdknl_lock(void *arg)
4112 {
4113 	struct socket *so = arg;
4114 
4115 retry:
4116 	if (SOLISTENING(so)) {
4117 		SOLISTEN_LOCK(so);
4118 	} else {
4119 		SOCK_RECVBUF_LOCK(so);
4120 		if (__predict_false(SOLISTENING(so))) {
4121 			SOCK_RECVBUF_UNLOCK(so);
4122 			goto retry;
4123 		}
4124 	}
4125 }
4126 
4127 static void
4128 so_rdknl_unlock(void *arg)
4129 {
4130 	struct socket *so = arg;
4131 
4132 	if (SOLISTENING(so))
4133 		SOLISTEN_UNLOCK(so);
4134 	else
4135 		SOCK_RECVBUF_UNLOCK(so);
4136 }
4137 
4138 static void
4139 so_rdknl_assert_lock(void *arg, int what)
4140 {
4141 	struct socket *so = arg;
4142 
4143 	if (what == LA_LOCKED) {
4144 		if (SOLISTENING(so))
4145 			SOLISTEN_LOCK_ASSERT(so);
4146 		else
4147 			SOCK_RECVBUF_LOCK_ASSERT(so);
4148 	} else {
4149 		if (SOLISTENING(so))
4150 			SOLISTEN_UNLOCK_ASSERT(so);
4151 		else
4152 			SOCK_RECVBUF_UNLOCK_ASSERT(so);
4153 	}
4154 }
4155 
4156 static void
4157 so_wrknl_lock(void *arg)
4158 {
4159 	struct socket *so = arg;
4160 
4161 retry:
4162 	if (SOLISTENING(so)) {
4163 		SOLISTEN_LOCK(so);
4164 	} else {
4165 		SOCK_SENDBUF_LOCK(so);
4166 		if (__predict_false(SOLISTENING(so))) {
4167 			SOCK_SENDBUF_UNLOCK(so);
4168 			goto retry;
4169 		}
4170 	}
4171 }
4172 
4173 static void
4174 so_wrknl_unlock(void *arg)
4175 {
4176 	struct socket *so = arg;
4177 
4178 	if (SOLISTENING(so))
4179 		SOLISTEN_UNLOCK(so);
4180 	else
4181 		SOCK_SENDBUF_UNLOCK(so);
4182 }
4183 
4184 static void
4185 so_wrknl_assert_lock(void *arg, int what)
4186 {
4187 	struct socket *so = arg;
4188 
4189 	if (what == LA_LOCKED) {
4190 		if (SOLISTENING(so))
4191 			SOLISTEN_LOCK_ASSERT(so);
4192 		else
4193 			SOCK_SENDBUF_LOCK_ASSERT(so);
4194 	} else {
4195 		if (SOLISTENING(so))
4196 			SOLISTEN_UNLOCK_ASSERT(so);
4197 		else
4198 			SOCK_SENDBUF_UNLOCK_ASSERT(so);
4199 	}
4200 }
4201 
4202 /*
4203  * Create an external-format (``xsocket'') structure using the information in
4204  * the kernel-format socket structure pointed to by so.  This is done to
4205  * reduce the spew of irrelevant information over this interface, to isolate
4206  * user code from changes in the kernel structure, and potentially to provide
4207  * information-hiding if we decide that some of this information should be
4208  * hidden from users.
4209  */
4210 void
4211 sotoxsocket(struct socket *so, struct xsocket *xso)
4212 {
4213 
4214 	bzero(xso, sizeof(*xso));
4215 	xso->xso_len = sizeof *xso;
4216 	xso->xso_so = (uintptr_t)so;
4217 	xso->so_type = so->so_type;
4218 	xso->so_options = so->so_options;
4219 	xso->so_linger = so->so_linger;
4220 	xso->so_state = so->so_state;
4221 	xso->so_pcb = (uintptr_t)so->so_pcb;
4222 	xso->xso_protocol = so->so_proto->pr_protocol;
4223 	xso->xso_family = so->so_proto->pr_domain->dom_family;
4224 	xso->so_timeo = so->so_timeo;
4225 	xso->so_error = so->so_error;
4226 	xso->so_uid = so->so_cred->cr_uid;
4227 	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
4228 	if (SOLISTENING(so)) {
4229 		xso->so_qlen = so->sol_qlen;
4230 		xso->so_incqlen = so->sol_incqlen;
4231 		xso->so_qlimit = so->sol_qlimit;
4232 		xso->so_oobmark = 0;
4233 	} else {
4234 		xso->so_state |= so->so_qstate;
4235 		xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0;
4236 		xso->so_oobmark = so->so_oobmark;
4237 		sbtoxsockbuf(&so->so_snd, &xso->so_snd);
4238 		sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
4239 	}
4240 }
4241 
4242 struct sockbuf *
4243 so_sockbuf_rcv(struct socket *so)
4244 {
4245 
4246 	return (&so->so_rcv);
4247 }
4248 
4249 struct sockbuf *
4250 so_sockbuf_snd(struct socket *so)
4251 {
4252 
4253 	return (&so->so_snd);
4254 }
4255 
4256 int
4257 so_state_get(const struct socket *so)
4258 {
4259 
4260 	return (so->so_state);
4261 }
4262 
4263 void
4264 so_state_set(struct socket *so, int val)
4265 {
4266 
4267 	so->so_state = val;
4268 }
4269 
4270 int
4271 so_options_get(const struct socket *so)
4272 {
4273 
4274 	return (so->so_options);
4275 }
4276 
4277 void
4278 so_options_set(struct socket *so, int val)
4279 {
4280 
4281 	so->so_options = val;
4282 }
4283 
4284 int
4285 so_error_get(const struct socket *so)
4286 {
4287 
4288 	return (so->so_error);
4289 }
4290 
4291 void
4292 so_error_set(struct socket *so, int val)
4293 {
4294 
4295 	so->so_error = val;
4296 }
4297 
4298 int
4299 so_linger_get(const struct socket *so)
4300 {
4301 
4302 	return (so->so_linger);
4303 }
4304 
4305 void
4306 so_linger_set(struct socket *so, int val)
4307 {
4308 
4309 	KASSERT(val >= 0 && val <= USHRT_MAX && val <= (INT_MAX / hz),
4310 	    ("%s: val %d out of range", __func__, val));
4311 
4312 	so->so_linger = val;
4313 }
4314 
4315 struct protosw *
4316 so_protosw_get(const struct socket *so)
4317 {
4318 
4319 	return (so->so_proto);
4320 }
4321 
4322 void
4323 so_protosw_set(struct socket *so, struct protosw *val)
4324 {
4325 
4326 	so->so_proto = val;
4327 }
4328 
4329 void
4330 so_sorwakeup(struct socket *so)
4331 {
4332 
4333 	sorwakeup(so);
4334 }
4335 
4336 void
4337 so_sowwakeup(struct socket *so)
4338 {
4339 
4340 	sowwakeup(so);
4341 }
4342 
4343 void
4344 so_sorwakeup_locked(struct socket *so)
4345 {
4346 
4347 	sorwakeup_locked(so);
4348 }
4349 
4350 void
4351 so_sowwakeup_locked(struct socket *so)
4352 {
4353 
4354 	sowwakeup_locked(so);
4355 }
4356 
4357 void
4358 so_lock(struct socket *so)
4359 {
4360 
4361 	SOCK_LOCK(so);
4362 }
4363 
4364 void
4365 so_unlock(struct socket *so)
4366 {
4367 
4368 	SOCK_UNLOCK(so);
4369 }
4370