xref: /freebsd/sys/kern/uipc_socket.c (revision 4f0c9b76cf75724ef0b9c59bb8c182be24361d7c)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
5  *	The Regents of the University of California.
6  * Copyright (c) 2004 The FreeBSD Foundation
7  * Copyright (c) 2004-2008 Robert N. M. Watson
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)uipc_socket.c	8.3 (Berkeley) 4/15/94
35  */
36 
37 /*
38  * Comments on the socket life cycle:
39  *
40  * soalloc() sets of socket layer state for a socket, called only by
41  * socreate() and sonewconn().  Socket layer private.
42  *
43  * sodealloc() tears down socket layer state for a socket, called only by
44  * sofree() and sonewconn().  Socket layer private.
45  *
46  * pru_attach() associates protocol layer state with an allocated socket;
47  * called only once, may fail, aborting socket allocation.  This is called
48  * from socreate() and sonewconn().  Socket layer private.
49  *
50  * pru_detach() disassociates protocol layer state from an attached socket,
51  * and will be called exactly once for sockets in which pru_attach() has
52  * been successfully called.  If pru_attach() returned an error,
53  * pru_detach() will not be called.  Socket layer private.
54  *
55  * pru_abort() and pru_close() notify the protocol layer that the last
56  * consumer of a socket is starting to tear down the socket, and that the
57  * protocol should terminate the connection.  Historically, pru_abort() also
58  * detached protocol state from the socket state, but this is no longer the
59  * case.
60  *
61  * socreate() creates a socket and attaches protocol state.  This is a public
62  * interface that may be used by socket layer consumers to create new
63  * sockets.
64  *
65  * sonewconn() creates a socket and attaches protocol state.  This is a
66  * public interface  that may be used by protocols to create new sockets when
67  * a new connection is received and will be available for accept() on a
68  * listen socket.
69  *
70  * soclose() destroys a socket after possibly waiting for it to disconnect.
71  * This is a public interface that socket consumers should use to close and
72  * release a socket when done with it.
73  *
74  * soabort() destroys a socket without waiting for it to disconnect (used
75  * only for incoming connections that are already partially or fully
76  * connected).  This is used internally by the socket layer when clearing
77  * listen socket queues (due to overflow or close on the listen socket), but
78  * is also a public interface protocols may use to abort connections in
79  * their incomplete listen queues should they no longer be required.  Sockets
80  * placed in completed connection listen queues should not be aborted for
81  * reasons described in the comment above the soclose() implementation.  This
82  * is not a general purpose close routine, and except in the specific
83  * circumstances described here, should not be used.
84  *
85  * sofree() will free a socket and its protocol state if all references on
86  * the socket have been released, and is the public interface to attempt to
87  * free a socket when a reference is removed.  This is a socket layer private
88  * interface.
89  *
90  * NOTE: In addition to socreate() and soclose(), which provide a single
91  * socket reference to the consumer to be managed as required, there are two
92  * calls to explicitly manage socket references, soref(), and sorele().
93  * Currently, these are generally required only when transitioning a socket
94  * from a listen queue to a file descriptor, in order to prevent garbage
95  * collection of the socket at an untimely moment.  For a number of reasons,
96  * these interfaces are not preferred, and should be avoided.
97  *
98  * NOTE: With regard to VNETs the general rule is that callers do not set
99  * curvnet. Exceptions to this rule include soabort(), sodisconnect(),
100  * sofree() (and with that sorele(), sotryfree()), as well as sonewconn()
101  * and sorflush(), which are usually called from a pre-set VNET context.
102  * sopoll() currently does not need a VNET context to be set.
103  */
104 
105 #include <sys/cdefs.h>
106 __FBSDID("$FreeBSD$");
107 
108 #include "opt_inet.h"
109 #include "opt_inet6.h"
110 #include "opt_kern_tls.h"
111 #include "opt_sctp.h"
112 
113 #include <sys/param.h>
114 #include <sys/systm.h>
115 #include <sys/capsicum.h>
116 #include <sys/fcntl.h>
117 #include <sys/limits.h>
118 #include <sys/lock.h>
119 #include <sys/mac.h>
120 #include <sys/malloc.h>
121 #include <sys/mbuf.h>
122 #include <sys/mutex.h>
123 #include <sys/domain.h>
124 #include <sys/file.h>			/* for struct knote */
125 #include <sys/hhook.h>
126 #include <sys/kernel.h>
127 #include <sys/khelp.h>
128 #include <sys/ktls.h>
129 #include <sys/event.h>
130 #include <sys/eventhandler.h>
131 #include <sys/poll.h>
132 #include <sys/proc.h>
133 #include <sys/protosw.h>
134 #include <sys/sbuf.h>
135 #include <sys/socket.h>
136 #include <sys/socketvar.h>
137 #include <sys/resourcevar.h>
138 #include <net/route.h>
139 #include <sys/signalvar.h>
140 #include <sys/stat.h>
141 #include <sys/sx.h>
142 #include <sys/sysctl.h>
143 #include <sys/taskqueue.h>
144 #include <sys/uio.h>
145 #include <sys/un.h>
146 #include <sys/unpcb.h>
147 #include <sys/jail.h>
148 #include <sys/syslog.h>
149 #include <netinet/in.h>
150 #include <netinet/in_pcb.h>
151 #include <netinet/tcp.h>
152 
153 #include <net/vnet.h>
154 
155 #include <security/mac/mac_framework.h>
156 
157 #include <vm/uma.h>
158 
159 #ifdef COMPAT_FREEBSD32
160 #include <sys/mount.h>
161 #include <sys/sysent.h>
162 #include <compat/freebsd32/freebsd32.h>
163 #endif
164 
165 static int	soreceive_rcvoob(struct socket *so, struct uio *uio,
166 		    int flags);
167 static void	so_rdknl_lock(void *);
168 static void	so_rdknl_unlock(void *);
169 static void	so_rdknl_assert_lock(void *, int);
170 static void	so_wrknl_lock(void *);
171 static void	so_wrknl_unlock(void *);
172 static void	so_wrknl_assert_lock(void *, int);
173 
174 static void	filt_sordetach(struct knote *kn);
175 static int	filt_soread(struct knote *kn, long hint);
176 static void	filt_sowdetach(struct knote *kn);
177 static int	filt_sowrite(struct knote *kn, long hint);
178 static int	filt_soempty(struct knote *kn, long hint);
179 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id);
180 fo_kqfilter_t	soo_kqfilter;
181 
182 static struct filterops soread_filtops = {
183 	.f_isfd = 1,
184 	.f_detach = filt_sordetach,
185 	.f_event = filt_soread,
186 };
187 static struct filterops sowrite_filtops = {
188 	.f_isfd = 1,
189 	.f_detach = filt_sowdetach,
190 	.f_event = filt_sowrite,
191 };
192 static struct filterops soempty_filtops = {
193 	.f_isfd = 1,
194 	.f_detach = filt_sowdetach,
195 	.f_event = filt_soempty,
196 };
197 
198 so_gen_t	so_gencnt;	/* generation count for sockets */
199 
200 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
201 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
202 
203 #define	VNET_SO_ASSERT(so)						\
204 	VNET_ASSERT(curvnet != NULL,					\
205 	    ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so)));
206 
207 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]);
208 #define	V_socket_hhh		VNET(socket_hhh)
209 
210 /*
211  * Limit on the number of connections in the listen queue waiting
212  * for accept(2).
213  * NB: The original sysctl somaxconn is still available but hidden
214  * to prevent confusion about the actual purpose of this number.
215  */
216 static u_int somaxconn = SOMAXCONN;
217 
218 static int
219 sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
220 {
221 	int error;
222 	int val;
223 
224 	val = somaxconn;
225 	error = sysctl_handle_int(oidp, &val, 0, req);
226 	if (error || !req->newptr )
227 		return (error);
228 
229 	/*
230 	 * The purpose of the UINT_MAX / 3 limit, is so that the formula
231 	 *   3 * so_qlimit / 2
232 	 * below, will not overflow.
233          */
234 
235 	if (val < 1 || val > UINT_MAX / 3)
236 		return (EINVAL);
237 
238 	somaxconn = val;
239 	return (0);
240 }
241 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue,
242     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, sizeof(int),
243     sysctl_somaxconn, "I",
244     "Maximum listen socket pending connection accept queue size");
245 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn,
246     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE, 0,
247     sizeof(int), sysctl_somaxconn, "I",
248     "Maximum listen socket pending connection accept queue size (compat)");
249 
250 static int numopensockets;
251 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,
252     &numopensockets, 0, "Number of open sockets");
253 
254 /*
255  * accept_mtx locks down per-socket fields relating to accept queues.  See
256  * socketvar.h for an annotation of the protected fields of struct socket.
257  */
258 struct mtx accept_mtx;
259 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF);
260 
261 /*
262  * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
263  * so_gencnt field.
264  */
265 static struct mtx so_global_mtx;
266 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
267 
268 /*
269  * General IPC sysctl name space, used by sockets and a variety of other IPC
270  * types.
271  */
272 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
273     "IPC");
274 
275 /*
276  * Initialize the socket subsystem and set up the socket
277  * memory allocator.
278  */
279 static uma_zone_t socket_zone;
280 int	maxsockets;
281 
282 static void
283 socket_zone_change(void *tag)
284 {
285 
286 	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
287 }
288 
289 static void
290 socket_hhook_register(int subtype)
291 {
292 
293 	if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype,
294 	    &V_socket_hhh[subtype],
295 	    HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
296 		printf("%s: WARNING: unable to register hook\n", __func__);
297 }
298 
299 static void
300 socket_hhook_deregister(int subtype)
301 {
302 
303 	if (hhook_head_deregister(V_socket_hhh[subtype]) != 0)
304 		printf("%s: WARNING: unable to deregister hook\n", __func__);
305 }
306 
307 static void
308 socket_init(void *tag)
309 {
310 
311 	socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL,
312 	    NULL, NULL, UMA_ALIGN_PTR, 0);
313 	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
314 	uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached");
315 	EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL,
316 	    EVENTHANDLER_PRI_FIRST);
317 }
318 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL);
319 
320 static void
321 socket_vnet_init(const void *unused __unused)
322 {
323 	int i;
324 
325 	/* We expect a contiguous range */
326 	for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
327 		socket_hhook_register(i);
328 }
329 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
330     socket_vnet_init, NULL);
331 
332 static void
333 socket_vnet_uninit(const void *unused __unused)
334 {
335 	int i;
336 
337 	for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
338 		socket_hhook_deregister(i);
339 }
340 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
341     socket_vnet_uninit, NULL);
342 
343 /*
344  * Initialise maxsockets.  This SYSINIT must be run after
345  * tunable_mbinit().
346  */
347 static void
348 init_maxsockets(void *ignored)
349 {
350 
351 	TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
352 	maxsockets = imax(maxsockets, maxfiles);
353 }
354 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
355 
356 /*
357  * Sysctl to get and set the maximum global sockets limit.  Notify protocols
358  * of the change so that they can update their dependent limits as required.
359  */
360 static int
361 sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
362 {
363 	int error, newmaxsockets;
364 
365 	newmaxsockets = maxsockets;
366 	error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
367 	if (error == 0 && req->newptr && newmaxsockets != maxsockets) {
368 		if (newmaxsockets > maxsockets &&
369 		    newmaxsockets <= maxfiles) {
370 			maxsockets = newmaxsockets;
371 			EVENTHANDLER_INVOKE(maxsockets_change);
372 		} else
373 			error = EINVAL;
374 	}
375 	return (error);
376 }
377 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets,
378     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, &maxsockets, 0,
379     sysctl_maxsockets, "IU",
380     "Maximum number of sockets available");
381 
382 /*
383  * Socket operation routines.  These routines are called by the routines in
384  * sys_socket.c or from a system process, and implement the semantics of
385  * socket operations by switching out to the protocol specific routines.
386  */
387 
388 /*
389  * Get a socket structure from our zone, and initialize it.  Note that it
390  * would probably be better to allocate socket and PCB at the same time, but
391  * I'm not convinced that all the protocols can be easily modified to do
392  * this.
393  *
394  * soalloc() returns a socket with a ref count of 0.
395  */
396 static struct socket *
397 soalloc(struct vnet *vnet)
398 {
399 	struct socket *so;
400 
401 	so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
402 	if (so == NULL)
403 		return (NULL);
404 #ifdef MAC
405 	if (mac_socket_init(so, M_NOWAIT) != 0) {
406 		uma_zfree(socket_zone, so);
407 		return (NULL);
408 	}
409 #endif
410 	if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) {
411 		uma_zfree(socket_zone, so);
412 		return (NULL);
413 	}
414 
415 	/*
416 	 * The socket locking protocol allows to lock 2 sockets at a time,
417 	 * however, the first one must be a listening socket.  WITNESS lacks
418 	 * a feature to change class of an existing lock, so we use DUPOK.
419 	 */
420 	mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK);
421 	mtx_init(&so->so_snd_mtx, "so_snd", NULL, MTX_DEF);
422 	mtx_init(&so->so_rcv_mtx, "so_rcv", NULL, MTX_DEF);
423 	so->so_rcv.sb_sel = &so->so_rdsel;
424 	so->so_snd.sb_sel = &so->so_wrsel;
425 	sx_init(&so->so_snd_sx, "so_snd_sx");
426 	sx_init(&so->so_rcv_sx, "so_rcv_sx");
427 	TAILQ_INIT(&so->so_snd.sb_aiojobq);
428 	TAILQ_INIT(&so->so_rcv.sb_aiojobq);
429 	TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so);
430 	TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so);
431 #ifdef VIMAGE
432 	VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p",
433 	    __func__, __LINE__, so));
434 	so->so_vnet = vnet;
435 #endif
436 	/* We shouldn't need the so_global_mtx */
437 	if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) {
438 		/* Do we need more comprehensive error returns? */
439 		uma_zfree(socket_zone, so);
440 		return (NULL);
441 	}
442 	mtx_lock(&so_global_mtx);
443 	so->so_gencnt = ++so_gencnt;
444 	++numopensockets;
445 #ifdef VIMAGE
446 	vnet->vnet_sockcnt++;
447 #endif
448 	mtx_unlock(&so_global_mtx);
449 
450 	return (so);
451 }
452 
453 /*
454  * Free the storage associated with a socket at the socket layer, tear down
455  * locks, labels, etc.  All protocol state is assumed already to have been
456  * torn down (and possibly never set up) by the caller.
457  */
458 void
459 sodealloc(struct socket *so)
460 {
461 
462 	KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
463 	KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
464 
465 	mtx_lock(&so_global_mtx);
466 	so->so_gencnt = ++so_gencnt;
467 	--numopensockets;	/* Could be below, but faster here. */
468 #ifdef VIMAGE
469 	VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p",
470 	    __func__, __LINE__, so));
471 	so->so_vnet->vnet_sockcnt--;
472 #endif
473 	mtx_unlock(&so_global_mtx);
474 #ifdef MAC
475 	mac_socket_destroy(so);
476 #endif
477 	hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE);
478 
479 	khelp_destroy_osd(&so->osd);
480 	if (SOLISTENING(so)) {
481 		if (so->sol_accept_filter != NULL)
482 			accept_filt_setopt(so, NULL);
483 	} else {
484 		if (so->so_rcv.sb_hiwat)
485 			(void)chgsbsize(so->so_cred->cr_uidinfo,
486 			    &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
487 		if (so->so_snd.sb_hiwat)
488 			(void)chgsbsize(so->so_cred->cr_uidinfo,
489 			    &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
490 		sx_destroy(&so->so_snd_sx);
491 		sx_destroy(&so->so_rcv_sx);
492 		mtx_destroy(&so->so_snd_mtx);
493 		mtx_destroy(&so->so_rcv_mtx);
494 	}
495 	crfree(so->so_cred);
496 	mtx_destroy(&so->so_lock);
497 	uma_zfree(socket_zone, so);
498 }
499 
500 /*
501  * socreate returns a socket with a ref count of 1 and a file descriptor
502  * reference.  The socket should be closed with soclose().
503  */
504 int
505 socreate(int dom, struct socket **aso, int type, int proto,
506     struct ucred *cred, struct thread *td)
507 {
508 	struct protosw *prp;
509 	struct socket *so;
510 	int error;
511 
512 	if (proto)
513 		prp = pffindproto(dom, proto, type);
514 	else
515 		prp = pffindtype(dom, type);
516 
517 	if (prp == NULL) {
518 		/* No support for domain. */
519 		if (pffinddomain(dom) == NULL)
520 			return (EAFNOSUPPORT);
521 		/* No support for socket type. */
522 		if (proto == 0 && type != 0)
523 			return (EPROTOTYPE);
524 		return (EPROTONOSUPPORT);
525 	}
526 	if (prp->pr_usrreqs->pru_attach == NULL ||
527 	    prp->pr_usrreqs->pru_attach == pru_attach_notsupp)
528 		return (EPROTONOSUPPORT);
529 
530 	if (IN_CAPABILITY_MODE(td) && (prp->pr_flags & PR_CAPATTACH) == 0)
531 		return (ECAPMODE);
532 
533 	if (prison_check_af(cred, prp->pr_domain->dom_family) != 0)
534 		return (EPROTONOSUPPORT);
535 
536 	if (prp->pr_type != type)
537 		return (EPROTOTYPE);
538 	so = soalloc(CRED_TO_VNET(cred));
539 	if (so == NULL)
540 		return (ENOBUFS);
541 
542 	so->so_type = type;
543 	so->so_cred = crhold(cred);
544 	if ((prp->pr_domain->dom_family == PF_INET) ||
545 	    (prp->pr_domain->dom_family == PF_INET6) ||
546 	    (prp->pr_domain->dom_family == PF_ROUTE))
547 		so->so_fibnum = td->td_proc->p_fibnum;
548 	else
549 		so->so_fibnum = 0;
550 	so->so_proto = prp;
551 #ifdef MAC
552 	mac_socket_create(cred, so);
553 #endif
554 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
555 	    so_rdknl_assert_lock);
556 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
557 	    so_wrknl_assert_lock);
558 	if ((prp->pr_flags & PR_SOCKBUF) == 0) {
559 		so->so_snd.sb_mtx = &so->so_snd_mtx;
560 		so->so_rcv.sb_mtx = &so->so_rcv_mtx;
561 	}
562 	/*
563 	 * Auto-sizing of socket buffers is managed by the protocols and
564 	 * the appropriate flags must be set in the pru_attach function.
565 	 */
566 	CURVNET_SET(so->so_vnet);
567 	error = (*prp->pr_usrreqs->pru_attach)(so, proto, td);
568 	CURVNET_RESTORE();
569 	if (error) {
570 		sodealloc(so);
571 		return (error);
572 	}
573 	soref(so);
574 	*aso = so;
575 	return (0);
576 }
577 
578 #ifdef REGRESSION
579 static int regression_sonewconn_earlytest = 1;
580 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
581     &regression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
582 #endif
583 
584 static struct timeval overinterval = { 60, 0 };
585 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW,
586     &overinterval,
587     "Delay in seconds between warnings for listen socket overflows");
588 
589 /*
590  * When an attempt at a new connection is noted on a socket which supports
591  * accept(2), the protocol has two options:
592  * 1) Call legacy sonewconn() function, which would call protocol attach
593  *    method, same as used for socket(2).
594  * 2) Call solisten_clone(), do attach that is specific to a cloned connection,
595  *    and then call solisten_enqueue().
596  *
597  * Note: the ref count on the socket is 0 on return.
598  */
599 struct socket *
600 solisten_clone(struct socket *head)
601 {
602 	struct sbuf descrsb;
603 	struct socket *so;
604 	int len, overcount;
605 	u_int qlen;
606 	const char localprefix[] = "local:";
607 	char descrbuf[SUNPATHLEN + sizeof(localprefix)];
608 #if defined(INET6)
609 	char addrbuf[INET6_ADDRSTRLEN];
610 #elif defined(INET)
611 	char addrbuf[INET_ADDRSTRLEN];
612 #endif
613 	bool dolog, over;
614 
615 	SOLISTEN_LOCK(head);
616 	over = (head->sol_qlen > 3 * head->sol_qlimit / 2);
617 #ifdef REGRESSION
618 	if (regression_sonewconn_earlytest && over) {
619 #else
620 	if (over) {
621 #endif
622 		head->sol_overcount++;
623 		dolog = !!ratecheck(&head->sol_lastover, &overinterval);
624 
625 		/*
626 		 * If we're going to log, copy the overflow count and queue
627 		 * length from the listen socket before dropping the lock.
628 		 * Also, reset the overflow count.
629 		 */
630 		if (dolog) {
631 			overcount = head->sol_overcount;
632 			head->sol_overcount = 0;
633 			qlen = head->sol_qlen;
634 		}
635 		SOLISTEN_UNLOCK(head);
636 
637 		if (dolog) {
638 			/*
639 			 * Try to print something descriptive about the
640 			 * socket for the error message.
641 			 */
642 			sbuf_new(&descrsb, descrbuf, sizeof(descrbuf),
643 			    SBUF_FIXEDLEN);
644 			switch (head->so_proto->pr_domain->dom_family) {
645 #if defined(INET) || defined(INET6)
646 #ifdef INET
647 			case AF_INET:
648 #endif
649 #ifdef INET6
650 			case AF_INET6:
651 				if (head->so_proto->pr_domain->dom_family ==
652 				    AF_INET6 ||
653 				    (sotoinpcb(head)->inp_inc.inc_flags &
654 				    INC_ISIPV6)) {
655 					ip6_sprintf(addrbuf,
656 					    &sotoinpcb(head)->inp_inc.inc6_laddr);
657 					sbuf_printf(&descrsb, "[%s]", addrbuf);
658 				} else
659 #endif
660 				{
661 #ifdef INET
662 					inet_ntoa_r(
663 					    sotoinpcb(head)->inp_inc.inc_laddr,
664 					    addrbuf);
665 					sbuf_cat(&descrsb, addrbuf);
666 #endif
667 				}
668 				sbuf_printf(&descrsb, ":%hu (proto %u)",
669 				    ntohs(sotoinpcb(head)->inp_inc.inc_lport),
670 				    head->so_proto->pr_protocol);
671 				break;
672 #endif /* INET || INET6 */
673 			case AF_UNIX:
674 				sbuf_cat(&descrsb, localprefix);
675 				if (sotounpcb(head)->unp_addr != NULL)
676 					len =
677 					    sotounpcb(head)->unp_addr->sun_len -
678 					    offsetof(struct sockaddr_un,
679 					    sun_path);
680 				else
681 					len = 0;
682 				if (len > 0)
683 					sbuf_bcat(&descrsb,
684 					    sotounpcb(head)->unp_addr->sun_path,
685 					    len);
686 				else
687 					sbuf_cat(&descrsb, "(unknown)");
688 				break;
689 			}
690 
691 			/*
692 			 * If we can't print something more specific, at least
693 			 * print the domain name.
694 			 */
695 			if (sbuf_finish(&descrsb) != 0 ||
696 			    sbuf_len(&descrsb) <= 0) {
697 				sbuf_clear(&descrsb);
698 				sbuf_cat(&descrsb,
699 				    head->so_proto->pr_domain->dom_name ?:
700 				    "unknown");
701 				sbuf_finish(&descrsb);
702 			}
703 			KASSERT(sbuf_len(&descrsb) > 0,
704 			    ("%s: sbuf creation failed", __func__));
705 			/*
706 			 * Preserve the historic listen queue overflow log
707 			 * message, that starts with "sonewconn:".  It has
708 			 * been known to sysadmins for years and also test
709 			 * sys/kern/sonewconn_overflow checks for it.
710 			 */
711 			if (head->so_cred == 0) {
712 				log(LOG_DEBUG, "sonewconn: pcb %p (%s): "
713 				    "Listen queue overflow: %i already in "
714 				    "queue awaiting acceptance (%d "
715 				    "occurrences)\n", head->so_pcb,
716 				    sbuf_data(&descrsb),
717 			    	qlen, overcount);
718 			} else {
719 				log(LOG_DEBUG, "sonewconn: pcb %p (%s): "
720 				    "Listen queue overflow: "
721 				    "%i already in queue awaiting acceptance "
722 				    "(%d occurrences), euid %d, rgid %d, jail %s\n",
723 				    head->so_pcb, sbuf_data(&descrsb), qlen,
724 				    overcount, head->so_cred->cr_uid,
725 				    head->so_cred->cr_rgid,
726 				    head->so_cred->cr_prison ?
727 					head->so_cred->cr_prison->pr_name :
728 					"not_jailed");
729 			}
730 			sbuf_delete(&descrsb);
731 
732 			overcount = 0;
733 		}
734 
735 		return (NULL);
736 	}
737 	SOLISTEN_UNLOCK(head);
738 	VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL",
739 	    __func__, head));
740 	so = soalloc(head->so_vnet);
741 	if (so == NULL) {
742 		log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
743 		    "limit reached or out of memory\n",
744 		    __func__, head->so_pcb);
745 		return (NULL);
746 	}
747 	so->so_listen = head;
748 	so->so_type = head->so_type;
749 	so->so_options = head->so_options & ~SO_ACCEPTCONN;
750 	so->so_linger = head->so_linger;
751 	so->so_state = head->so_state;
752 	so->so_fibnum = head->so_fibnum;
753 	so->so_proto = head->so_proto;
754 	so->so_cred = crhold(head->so_cred);
755 #ifdef MAC
756 	mac_socket_newconn(head, so);
757 #endif
758 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
759 	    so_rdknl_assert_lock);
760 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
761 	    so_wrknl_assert_lock);
762 	VNET_SO_ASSERT(head);
763 	if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) {
764 		sodealloc(so);
765 		log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
766 		    __func__, head->so_pcb);
767 		return (NULL);
768 	}
769 	so->so_rcv.sb_lowat = head->sol_sbrcv_lowat;
770 	so->so_snd.sb_lowat = head->sol_sbsnd_lowat;
771 	so->so_rcv.sb_timeo = head->sol_sbrcv_timeo;
772 	so->so_snd.sb_timeo = head->sol_sbsnd_timeo;
773 	so->so_rcv.sb_flags = head->sol_sbrcv_flags & SB_AUTOSIZE;
774 	so->so_snd.sb_flags = head->sol_sbsnd_flags & SB_AUTOSIZE;
775 	if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) {
776 		so->so_snd.sb_mtx = &so->so_snd_mtx;
777 		so->so_rcv.sb_mtx = &so->so_rcv_mtx;
778 	}
779 
780 	return (so);
781 }
782 
783 /* Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED. */
784 struct socket *
785 sonewconn(struct socket *head, int connstatus)
786 {
787 	struct socket *so;
788 
789 	if ((so = solisten_clone(head)) == NULL)
790 		return (NULL);
791 
792 	if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
793 		sodealloc(so);
794 		log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n",
795 		    __func__, head->so_pcb);
796 		return (NULL);
797 	}
798 
799 	solisten_enqueue(so, connstatus);
800 
801 	return (so);
802 }
803 
804 /*
805  * Enqueue socket cloned by solisten_clone() to the listen queue of the
806  * listener it has been cloned from.
807  */
808 void
809 solisten_enqueue(struct socket *so, int connstatus)
810 {
811 	struct socket *head = so->so_listen;
812 
813 	MPASS(refcount_load(&so->so_count) == 0);
814 	refcount_init(&so->so_count, 1);
815 
816 	SOLISTEN_LOCK(head);
817 	if (head->sol_accept_filter != NULL)
818 		connstatus = 0;
819 	so->so_state |= connstatus;
820 	soref(head); /* A socket on (in)complete queue refs head. */
821 	if (connstatus) {
822 		TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
823 		so->so_qstate = SQ_COMP;
824 		head->sol_qlen++;
825 		solisten_wakeup(head);	/* unlocks */
826 	} else {
827 		/*
828 		 * Keep removing sockets from the head until there's room for
829 		 * us to insert on the tail.  In pre-locking revisions, this
830 		 * was a simple if(), but as we could be racing with other
831 		 * threads and soabort() requires dropping locks, we must
832 		 * loop waiting for the condition to be true.
833 		 */
834 		while (head->sol_incqlen > head->sol_qlimit) {
835 			struct socket *sp;
836 
837 			sp = TAILQ_FIRST(&head->sol_incomp);
838 			TAILQ_REMOVE(&head->sol_incomp, sp, so_list);
839 			head->sol_incqlen--;
840 			SOCK_LOCK(sp);
841 			sp->so_qstate = SQ_NONE;
842 			sp->so_listen = NULL;
843 			SOCK_UNLOCK(sp);
844 			sorele_locked(head);	/* does SOLISTEN_UNLOCK, head stays */
845 			soabort(sp);
846 			SOLISTEN_LOCK(head);
847 		}
848 		TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list);
849 		so->so_qstate = SQ_INCOMP;
850 		head->sol_incqlen++;
851 		SOLISTEN_UNLOCK(head);
852 	}
853 }
854 
855 #if defined(SCTP) || defined(SCTP_SUPPORT)
856 /*
857  * Socket part of sctp_peeloff().  Detach a new socket from an
858  * association.  The new socket is returned with a reference.
859  *
860  * XXXGL: reduce copy-paste with solisten_clone().
861  */
862 struct socket *
863 sopeeloff(struct socket *head)
864 {
865 	struct socket *so;
866 
867 	VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p",
868 	    __func__, __LINE__, head));
869 	so = soalloc(head->so_vnet);
870 	if (so == NULL) {
871 		log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
872 		    "limit reached or out of memory\n",
873 		    __func__, head->so_pcb);
874 		return (NULL);
875 	}
876 	so->so_type = head->so_type;
877 	so->so_options = head->so_options;
878 	so->so_linger = head->so_linger;
879 	so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED;
880 	so->so_fibnum = head->so_fibnum;
881 	so->so_proto = head->so_proto;
882 	so->so_cred = crhold(head->so_cred);
883 #ifdef MAC
884 	mac_socket_newconn(head, so);
885 #endif
886 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
887 	    so_rdknl_assert_lock);
888 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
889 	    so_wrknl_assert_lock);
890 	VNET_SO_ASSERT(head);
891 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
892 		sodealloc(so);
893 		log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
894 		    __func__, head->so_pcb);
895 		return (NULL);
896 	}
897 	if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
898 		sodealloc(so);
899 		log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n",
900 		    __func__, head->so_pcb);
901 		return (NULL);
902 	}
903 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
904 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
905 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
906 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
907 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
908 	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
909 
910 	soref(so);
911 
912 	return (so);
913 }
914 #endif	/* SCTP */
915 
916 int
917 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
918 {
919 	int error;
920 
921 	CURVNET_SET(so->so_vnet);
922 	error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td);
923 	CURVNET_RESTORE();
924 	return (error);
925 }
926 
927 int
928 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
929 {
930 	int error;
931 
932 	CURVNET_SET(so->so_vnet);
933 	error = (*so->so_proto->pr_usrreqs->pru_bindat)(fd, so, nam, td);
934 	CURVNET_RESTORE();
935 	return (error);
936 }
937 
938 /*
939  * solisten() transitions a socket from a non-listening state to a listening
940  * state, but can also be used to update the listen queue depth on an
941  * existing listen socket.  The protocol will call back into the sockets
942  * layer using solisten_proto_check() and solisten_proto() to check and set
943  * socket-layer listen state.  Call backs are used so that the protocol can
944  * acquire both protocol and socket layer locks in whatever order is required
945  * by the protocol.
946  *
947  * Protocol implementors are advised to hold the socket lock across the
948  * socket-layer test and set to avoid races at the socket layer.
949  */
950 int
951 solisten(struct socket *so, int backlog, struct thread *td)
952 {
953 	int error;
954 
955 	CURVNET_SET(so->so_vnet);
956 	error = (*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td);
957 	CURVNET_RESTORE();
958 	return (error);
959 }
960 
961 /*
962  * Prepare for a call to solisten_proto().  Acquire all socket buffer locks in
963  * order to interlock with socket I/O.
964  */
965 int
966 solisten_proto_check(struct socket *so)
967 {
968 	SOCK_LOCK_ASSERT(so);
969 
970 	if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
971 	    SS_ISDISCONNECTING)) != 0)
972 		return (EINVAL);
973 
974 	/*
975 	 * Sleeping is not permitted here, so simply fail if userspace is
976 	 * attempting to transmit or receive on the socket.  This kind of
977 	 * transient failure is not ideal, but it should occur only if userspace
978 	 * is misusing the socket interfaces.
979 	 */
980 	if (!sx_try_xlock(&so->so_snd_sx))
981 		return (EAGAIN);
982 	if (!sx_try_xlock(&so->so_rcv_sx)) {
983 		sx_xunlock(&so->so_snd_sx);
984 		return (EAGAIN);
985 	}
986 	mtx_lock(&so->so_snd_mtx);
987 	mtx_lock(&so->so_rcv_mtx);
988 
989 	/* Interlock with soo_aio_queue(). */
990 	if (!SOLISTENING(so) &&
991 	   ((so->so_snd.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0 ||
992 	   (so->so_rcv.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0)) {
993 		solisten_proto_abort(so);
994 		return (EINVAL);
995 	}
996 	return (0);
997 }
998 
999 /*
1000  * Undo the setup done by solisten_proto_check().
1001  */
1002 void
1003 solisten_proto_abort(struct socket *so)
1004 {
1005 	mtx_unlock(&so->so_snd_mtx);
1006 	mtx_unlock(&so->so_rcv_mtx);
1007 	sx_xunlock(&so->so_snd_sx);
1008 	sx_xunlock(&so->so_rcv_sx);
1009 }
1010 
1011 void
1012 solisten_proto(struct socket *so, int backlog)
1013 {
1014 	int sbrcv_lowat, sbsnd_lowat;
1015 	u_int sbrcv_hiwat, sbsnd_hiwat;
1016 	short sbrcv_flags, sbsnd_flags;
1017 	sbintime_t sbrcv_timeo, sbsnd_timeo;
1018 
1019 	SOCK_LOCK_ASSERT(so);
1020 	KASSERT((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
1021 	    SS_ISDISCONNECTING)) == 0,
1022 	    ("%s: bad socket state %p", __func__, so));
1023 
1024 	if (SOLISTENING(so))
1025 		goto listening;
1026 
1027 	/*
1028 	 * Change this socket to listening state.
1029 	 */
1030 	sbrcv_lowat = so->so_rcv.sb_lowat;
1031 	sbsnd_lowat = so->so_snd.sb_lowat;
1032 	sbrcv_hiwat = so->so_rcv.sb_hiwat;
1033 	sbsnd_hiwat = so->so_snd.sb_hiwat;
1034 	sbrcv_flags = so->so_rcv.sb_flags;
1035 	sbsnd_flags = so->so_snd.sb_flags;
1036 	sbrcv_timeo = so->so_rcv.sb_timeo;
1037 	sbsnd_timeo = so->so_snd.sb_timeo;
1038 
1039 	sbdestroy(so, SO_SND);
1040 	sbdestroy(so, SO_RCV);
1041 
1042 #ifdef INVARIANTS
1043 	bzero(&so->so_rcv,
1044 	    sizeof(struct socket) - offsetof(struct socket, so_rcv));
1045 #endif
1046 
1047 	so->sol_sbrcv_lowat = sbrcv_lowat;
1048 	so->sol_sbsnd_lowat = sbsnd_lowat;
1049 	so->sol_sbrcv_hiwat = sbrcv_hiwat;
1050 	so->sol_sbsnd_hiwat = sbsnd_hiwat;
1051 	so->sol_sbrcv_flags = sbrcv_flags;
1052 	so->sol_sbsnd_flags = sbsnd_flags;
1053 	so->sol_sbrcv_timeo = sbrcv_timeo;
1054 	so->sol_sbsnd_timeo = sbsnd_timeo;
1055 
1056 	so->sol_qlen = so->sol_incqlen = 0;
1057 	TAILQ_INIT(&so->sol_incomp);
1058 	TAILQ_INIT(&so->sol_comp);
1059 
1060 	so->sol_accept_filter = NULL;
1061 	so->sol_accept_filter_arg = NULL;
1062 	so->sol_accept_filter_str = NULL;
1063 
1064 	so->sol_upcall = NULL;
1065 	so->sol_upcallarg = NULL;
1066 
1067 	so->so_options |= SO_ACCEPTCONN;
1068 
1069 listening:
1070 	if (backlog < 0 || backlog > somaxconn)
1071 		backlog = somaxconn;
1072 	so->sol_qlimit = backlog;
1073 
1074 	mtx_unlock(&so->so_snd_mtx);
1075 	mtx_unlock(&so->so_rcv_mtx);
1076 	sx_xunlock(&so->so_snd_sx);
1077 	sx_xunlock(&so->so_rcv_sx);
1078 }
1079 
1080 /*
1081  * Wakeup listeners/subsystems once we have a complete connection.
1082  * Enters with lock, returns unlocked.
1083  */
1084 void
1085 solisten_wakeup(struct socket *sol)
1086 {
1087 
1088 	if (sol->sol_upcall != NULL)
1089 		(void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT);
1090 	else {
1091 		selwakeuppri(&sol->so_rdsel, PSOCK);
1092 		KNOTE_LOCKED(&sol->so_rdsel.si_note, 0);
1093 	}
1094 	SOLISTEN_UNLOCK(sol);
1095 	wakeup_one(&sol->sol_comp);
1096 	if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL)
1097 		pgsigio(&sol->so_sigio, SIGIO, 0);
1098 }
1099 
1100 /*
1101  * Return single connection off a listening socket queue.  Main consumer of
1102  * the function is kern_accept4().  Some modules, that do their own accept
1103  * management also use the function.  The socket reference held by the
1104  * listen queue is handed to the caller.
1105  *
1106  * Listening socket must be locked on entry and is returned unlocked on
1107  * return.
1108  * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT.
1109  */
1110 int
1111 solisten_dequeue(struct socket *head, struct socket **ret, int flags)
1112 {
1113 	struct socket *so;
1114 	int error;
1115 
1116 	SOLISTEN_LOCK_ASSERT(head);
1117 
1118 	while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) &&
1119 	    head->so_error == 0) {
1120 		error = msleep(&head->sol_comp, SOCK_MTX(head), PSOCK | PCATCH,
1121 		    "accept", 0);
1122 		if (error != 0) {
1123 			SOLISTEN_UNLOCK(head);
1124 			return (error);
1125 		}
1126 	}
1127 	if (head->so_error) {
1128 		error = head->so_error;
1129 		head->so_error = 0;
1130 	} else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp))
1131 		error = EWOULDBLOCK;
1132 	else
1133 		error = 0;
1134 	if (error) {
1135 		SOLISTEN_UNLOCK(head);
1136 		return (error);
1137 	}
1138 	so = TAILQ_FIRST(&head->sol_comp);
1139 	SOCK_LOCK(so);
1140 	KASSERT(so->so_qstate == SQ_COMP,
1141 	    ("%s: so %p not SQ_COMP", __func__, so));
1142 	head->sol_qlen--;
1143 	so->so_qstate = SQ_NONE;
1144 	so->so_listen = NULL;
1145 	TAILQ_REMOVE(&head->sol_comp, so, so_list);
1146 	if (flags & ACCEPT4_INHERIT)
1147 		so->so_state |= (head->so_state & SS_NBIO);
1148 	else
1149 		so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0;
1150 	SOCK_UNLOCK(so);
1151 	sorele_locked(head);
1152 
1153 	*ret = so;
1154 	return (0);
1155 }
1156 
1157 /*
1158  * Free socket upon release of the very last reference.
1159  */
1160 static void
1161 sofree(struct socket *so)
1162 {
1163 	struct protosw *pr = so->so_proto;
1164 
1165 	SOCK_LOCK_ASSERT(so);
1166 	KASSERT(refcount_load(&so->so_count) == 0,
1167 	    ("%s: so %p has references", __func__, so));
1168 	KASSERT(SOLISTENING(so) || so->so_qstate == SQ_NONE,
1169 	    ("%s: so %p is on listen queue", __func__, so));
1170 
1171 	SOCK_UNLOCK(so);
1172 
1173 	if (so->so_dtor != NULL)
1174 		so->so_dtor(so);
1175 
1176 	VNET_SO_ASSERT(so);
1177 	if ((pr->pr_flags & PR_RIGHTS) && !SOLISTENING(so)) {
1178 		MPASS(pr->pr_domain->dom_dispose != NULL);
1179 		(*pr->pr_domain->dom_dispose)(so);
1180 	}
1181 	if (pr->pr_usrreqs->pru_detach != NULL)
1182 		(*pr->pr_usrreqs->pru_detach)(so);
1183 
1184 	/*
1185 	 * From this point on, we assume that no other references to this
1186 	 * socket exist anywhere else in the stack.  Therefore, no locks need
1187 	 * to be acquired or held.
1188 	 */
1189 	if (!(pr->pr_flags & PR_SOCKBUF) && !SOLISTENING(so)) {
1190 		sbdestroy(so, SO_SND);
1191 		sbdestroy(so, SO_RCV);
1192 	}
1193 	seldrain(&so->so_rdsel);
1194 	seldrain(&so->so_wrsel);
1195 	knlist_destroy(&so->so_rdsel.si_note);
1196 	knlist_destroy(&so->so_wrsel.si_note);
1197 	sodealloc(so);
1198 }
1199 
1200 /*
1201  * Release a reference on a socket while holding the socket lock.
1202  * Unlocks the socket lock before returning.
1203  */
1204 void
1205 sorele_locked(struct socket *so)
1206 {
1207 	SOCK_LOCK_ASSERT(so);
1208 	if (refcount_release(&so->so_count))
1209 		sofree(so);
1210 	else
1211 		SOCK_UNLOCK(so);
1212 }
1213 
1214 /*
1215  * Close a socket on last file table reference removal.  Initiate disconnect
1216  * if connected.  Free socket when disconnect complete.
1217  *
1218  * This function will sorele() the socket.  Note that soclose() may be called
1219  * prior to the ref count reaching zero.  The actual socket structure will
1220  * not be freed until the ref count reaches zero.
1221  */
1222 int
1223 soclose(struct socket *so)
1224 {
1225 	struct accept_queue lqueue;
1226 	int error = 0;
1227 	bool listening, last __diagused;
1228 
1229 	CURVNET_SET(so->so_vnet);
1230 	funsetown(&so->so_sigio);
1231 	if (so->so_state & SS_ISCONNECTED) {
1232 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
1233 			error = sodisconnect(so);
1234 			if (error) {
1235 				if (error == ENOTCONN)
1236 					error = 0;
1237 				goto drop;
1238 			}
1239 		}
1240 
1241 		if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) {
1242 			if ((so->so_state & SS_ISDISCONNECTING) &&
1243 			    (so->so_state & SS_NBIO))
1244 				goto drop;
1245 			while (so->so_state & SS_ISCONNECTED) {
1246 				error = tsleep(&so->so_timeo,
1247 				    PSOCK | PCATCH, "soclos",
1248 				    so->so_linger * hz);
1249 				if (error)
1250 					break;
1251 			}
1252 		}
1253 	}
1254 
1255 drop:
1256 	if (so->so_proto->pr_usrreqs->pru_close != NULL)
1257 		(*so->so_proto->pr_usrreqs->pru_close)(so);
1258 
1259 	SOCK_LOCK(so);
1260 	if ((listening = SOLISTENING(so))) {
1261 		struct socket *sp;
1262 
1263 		TAILQ_INIT(&lqueue);
1264 		TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list);
1265 		TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list);
1266 
1267 		so->sol_qlen = so->sol_incqlen = 0;
1268 
1269 		TAILQ_FOREACH(sp, &lqueue, so_list) {
1270 			SOCK_LOCK(sp);
1271 			sp->so_qstate = SQ_NONE;
1272 			sp->so_listen = NULL;
1273 			SOCK_UNLOCK(sp);
1274 			last = refcount_release(&so->so_count);
1275 			KASSERT(!last, ("%s: released last reference for %p",
1276 			    __func__, so));
1277 		}
1278 	}
1279 	sorele_locked(so);
1280 	if (listening) {
1281 		struct socket *sp, *tsp;
1282 
1283 		TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp)
1284 			soabort(sp);
1285 	}
1286 	CURVNET_RESTORE();
1287 	return (error);
1288 }
1289 
1290 /*
1291  * soabort() is used to abruptly tear down a connection, such as when a
1292  * resource limit is reached (listen queue depth exceeded), or if a listen
1293  * socket is closed while there are sockets waiting to be accepted.
1294  *
1295  * This interface is tricky, because it is called on an unreferenced socket,
1296  * and must be called only by a thread that has actually removed the socket
1297  * from the listen queue it was on.  Likely this thread holds the last
1298  * reference on the socket and soabort() will proceed with sofree().  But
1299  * it might be not the last, as the sockets on the listen queues are seen
1300  * from the protocol side.
1301  *
1302  * This interface will call into the protocol code, so must not be called
1303  * with any socket locks held.  Protocols do call it while holding their own
1304  * recursible protocol mutexes, but this is something that should be subject
1305  * to review in the future.
1306  *
1307  * Usually socket should have a single reference left, but this is not a
1308  * requirement.  In the past, when we have had named references for file
1309  * descriptor and protocol, we asserted that none of them are being held.
1310  */
1311 void
1312 soabort(struct socket *so)
1313 {
1314 
1315 	VNET_SO_ASSERT(so);
1316 
1317 	if (so->so_proto->pr_usrreqs->pru_abort != NULL)
1318 		(*so->so_proto->pr_usrreqs->pru_abort)(so);
1319 	SOCK_LOCK(so);
1320 	sorele_locked(so);
1321 }
1322 
1323 int
1324 soaccept(struct socket *so, struct sockaddr **nam)
1325 {
1326 	int error;
1327 
1328 	CURVNET_SET(so->so_vnet);
1329 	error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam);
1330 	CURVNET_RESTORE();
1331 	return (error);
1332 }
1333 
1334 int
1335 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
1336 {
1337 
1338 	return (soconnectat(AT_FDCWD, so, nam, td));
1339 }
1340 
1341 int
1342 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
1343 {
1344 	int error;
1345 
1346 	CURVNET_SET(so->so_vnet);
1347 	/*
1348 	 * If protocol is connection-based, can only connect once.
1349 	 * Otherwise, if connected, try to disconnect first.  This allows
1350 	 * user to disconnect by connecting to, e.g., a null address.
1351 	 */
1352 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
1353 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
1354 	    (error = sodisconnect(so)))) {
1355 		error = EISCONN;
1356 	} else {
1357 		/*
1358 		 * Prevent accumulated error from previous connection from
1359 		 * biting us.
1360 		 */
1361 		so->so_error = 0;
1362 		if (fd == AT_FDCWD) {
1363 			error = (*so->so_proto->pr_usrreqs->pru_connect)(so,
1364 			    nam, td);
1365 		} else {
1366 			error = (*so->so_proto->pr_usrreqs->pru_connectat)(fd,
1367 			    so, nam, td);
1368 		}
1369 	}
1370 	CURVNET_RESTORE();
1371 
1372 	return (error);
1373 }
1374 
1375 int
1376 soconnect2(struct socket *so1, struct socket *so2)
1377 {
1378 	int error;
1379 
1380 	CURVNET_SET(so1->so_vnet);
1381 	error = (*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2);
1382 	CURVNET_RESTORE();
1383 	return (error);
1384 }
1385 
1386 int
1387 sodisconnect(struct socket *so)
1388 {
1389 	int error;
1390 
1391 	if ((so->so_state & SS_ISCONNECTED) == 0)
1392 		return (ENOTCONN);
1393 	if (so->so_state & SS_ISDISCONNECTING)
1394 		return (EALREADY);
1395 	VNET_SO_ASSERT(so);
1396 	error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so);
1397 	return (error);
1398 }
1399 
1400 int
1401 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
1402     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1403 {
1404 	long space;
1405 	ssize_t resid;
1406 	int clen = 0, error, dontroute;
1407 
1408 	KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM"));
1409 	KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
1410 	    ("sosend_dgram: !PR_ATOMIC"));
1411 
1412 	if (uio != NULL)
1413 		resid = uio->uio_resid;
1414 	else
1415 		resid = top->m_pkthdr.len;
1416 	/*
1417 	 * In theory resid should be unsigned.  However, space must be
1418 	 * signed, as it might be less than 0 if we over-committed, and we
1419 	 * must use a signed comparison of space and resid.  On the other
1420 	 * hand, a negative resid causes us to loop sending 0-length
1421 	 * segments to the protocol.
1422 	 */
1423 	if (resid < 0) {
1424 		error = EINVAL;
1425 		goto out;
1426 	}
1427 
1428 	dontroute =
1429 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
1430 	if (td != NULL)
1431 		td->td_ru.ru_msgsnd++;
1432 	if (control != NULL)
1433 		clen = control->m_len;
1434 
1435 	SOCKBUF_LOCK(&so->so_snd);
1436 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1437 		SOCKBUF_UNLOCK(&so->so_snd);
1438 		error = EPIPE;
1439 		goto out;
1440 	}
1441 	if (so->so_error) {
1442 		error = so->so_error;
1443 		so->so_error = 0;
1444 		SOCKBUF_UNLOCK(&so->so_snd);
1445 		goto out;
1446 	}
1447 	if ((so->so_state & SS_ISCONNECTED) == 0) {
1448 		/*
1449 		 * `sendto' and `sendmsg' is allowed on a connection-based
1450 		 * socket if it supports implied connect.  Return ENOTCONN if
1451 		 * not connected and no address is supplied.
1452 		 */
1453 		if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1454 		    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1455 			if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1456 			    !(resid == 0 && clen != 0)) {
1457 				SOCKBUF_UNLOCK(&so->so_snd);
1458 				error = ENOTCONN;
1459 				goto out;
1460 			}
1461 		} else if (addr == NULL) {
1462 			if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1463 				error = ENOTCONN;
1464 			else
1465 				error = EDESTADDRREQ;
1466 			SOCKBUF_UNLOCK(&so->so_snd);
1467 			goto out;
1468 		}
1469 	}
1470 
1471 	/*
1472 	 * Do we need MSG_OOB support in SOCK_DGRAM?  Signs here may be a
1473 	 * problem and need fixing.
1474 	 */
1475 	space = sbspace(&so->so_snd);
1476 	if (flags & MSG_OOB)
1477 		space += 1024;
1478 	space -= clen;
1479 	SOCKBUF_UNLOCK(&so->so_snd);
1480 	if (resid > space) {
1481 		error = EMSGSIZE;
1482 		goto out;
1483 	}
1484 	if (uio == NULL) {
1485 		resid = 0;
1486 		if (flags & MSG_EOR)
1487 			top->m_flags |= M_EOR;
1488 	} else {
1489 		/*
1490 		 * Copy the data from userland into a mbuf chain.
1491 		 * If no data is to be copied in, a single empty mbuf
1492 		 * is returned.
1493 		 */
1494 		top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
1495 		    (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
1496 		if (top == NULL) {
1497 			error = EFAULT;	/* only possible error */
1498 			goto out;
1499 		}
1500 		space -= resid - uio->uio_resid;
1501 		resid = uio->uio_resid;
1502 	}
1503 	KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
1504 	/*
1505 	 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
1506 	 * than with.
1507 	 */
1508 	if (dontroute) {
1509 		SOCK_LOCK(so);
1510 		so->so_options |= SO_DONTROUTE;
1511 		SOCK_UNLOCK(so);
1512 	}
1513 	/*
1514 	 * XXX all the SBS_CANTSENDMORE checks previously done could be out
1515 	 * of date.  We could have received a reset packet in an interrupt or
1516 	 * maybe we slept while doing page faults in uiomove() etc.  We could
1517 	 * probably recheck again inside the locking protection here, but
1518 	 * there are probably other places that this also happens.  We must
1519 	 * rethink this.
1520 	 */
1521 	VNET_SO_ASSERT(so);
1522 	error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1523 	    (flags & MSG_OOB) ? PRUS_OOB :
1524 	/*
1525 	 * If the user set MSG_EOF, the protocol understands this flag and
1526 	 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
1527 	 */
1528 	    ((flags & MSG_EOF) &&
1529 	     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1530 	     (resid <= 0)) ?
1531 		PRUS_EOF :
1532 		/* If there is more to send set PRUS_MORETOCOME */
1533 		(flags & MSG_MORETOCOME) ||
1534 		(resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1535 		top, addr, control, td);
1536 	if (dontroute) {
1537 		SOCK_LOCK(so);
1538 		so->so_options &= ~SO_DONTROUTE;
1539 		SOCK_UNLOCK(so);
1540 	}
1541 	clen = 0;
1542 	control = NULL;
1543 	top = NULL;
1544 out:
1545 	if (top != NULL)
1546 		m_freem(top);
1547 	if (control != NULL)
1548 		m_freem(control);
1549 	return (error);
1550 }
1551 
1552 /*
1553  * Send on a socket.  If send must go all at once and message is larger than
1554  * send buffering, then hard error.  Lock against other senders.  If must go
1555  * all at once and not enough room now, then inform user that this would
1556  * block and do nothing.  Otherwise, if nonblocking, send as much as
1557  * possible.  The data to be sent is described by "uio" if nonzero, otherwise
1558  * by the mbuf chain "top" (which must be null if uio is not).  Data provided
1559  * in mbuf chain must be small enough to send all at once.
1560  *
1561  * Returns nonzero on error, timeout or signal; callers must check for short
1562  * counts if EINTR/ERESTART are returned.  Data and control buffers are freed
1563  * on return.
1564  */
1565 int
1566 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
1567     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1568 {
1569 	long space;
1570 	ssize_t resid;
1571 	int clen = 0, error, dontroute;
1572 	int atomic = sosendallatonce(so) || top;
1573 	int pru_flag;
1574 #ifdef KERN_TLS
1575 	struct ktls_session *tls;
1576 	int tls_enq_cnt, tls_pruflag;
1577 	uint8_t tls_rtype;
1578 
1579 	tls = NULL;
1580 	tls_rtype = TLS_RLTYPE_APP;
1581 #endif
1582 	if (uio != NULL)
1583 		resid = uio->uio_resid;
1584 	else if ((top->m_flags & M_PKTHDR) != 0)
1585 		resid = top->m_pkthdr.len;
1586 	else
1587 		resid = m_length(top, NULL);
1588 	/*
1589 	 * In theory resid should be unsigned.  However, space must be
1590 	 * signed, as it might be less than 0 if we over-committed, and we
1591 	 * must use a signed comparison of space and resid.  On the other
1592 	 * hand, a negative resid causes us to loop sending 0-length
1593 	 * segments to the protocol.
1594 	 *
1595 	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
1596 	 * type sockets since that's an error.
1597 	 */
1598 	if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
1599 		error = EINVAL;
1600 		goto out;
1601 	}
1602 
1603 	dontroute =
1604 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
1605 	    (so->so_proto->pr_flags & PR_ATOMIC);
1606 	if (td != NULL)
1607 		td->td_ru.ru_msgsnd++;
1608 	if (control != NULL)
1609 		clen = control->m_len;
1610 
1611 	error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags));
1612 	if (error)
1613 		goto out;
1614 
1615 #ifdef KERN_TLS
1616 	tls_pruflag = 0;
1617 	tls = ktls_hold(so->so_snd.sb_tls_info);
1618 	if (tls != NULL) {
1619 		if (tls->mode == TCP_TLS_MODE_SW)
1620 			tls_pruflag = PRUS_NOTREADY;
1621 
1622 		if (control != NULL) {
1623 			struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1624 
1625 			if (clen >= sizeof(*cm) &&
1626 			    cm->cmsg_type == TLS_SET_RECORD_TYPE) {
1627 				tls_rtype = *((uint8_t *)CMSG_DATA(cm));
1628 				clen = 0;
1629 				m_freem(control);
1630 				control = NULL;
1631 				atomic = 1;
1632 			}
1633 		}
1634 
1635 		if (resid == 0 && !ktls_permit_empty_frames(tls)) {
1636 			error = EINVAL;
1637 			goto release;
1638 		}
1639 	}
1640 #endif
1641 
1642 restart:
1643 	do {
1644 		SOCKBUF_LOCK(&so->so_snd);
1645 		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1646 			SOCKBUF_UNLOCK(&so->so_snd);
1647 			error = EPIPE;
1648 			goto release;
1649 		}
1650 		if (so->so_error) {
1651 			error = so->so_error;
1652 			so->so_error = 0;
1653 			SOCKBUF_UNLOCK(&so->so_snd);
1654 			goto release;
1655 		}
1656 		if ((so->so_state & SS_ISCONNECTED) == 0) {
1657 			/*
1658 			 * `sendto' and `sendmsg' is allowed on a connection-
1659 			 * based socket if it supports implied connect.
1660 			 * Return ENOTCONN if not connected and no address is
1661 			 * supplied.
1662 			 */
1663 			if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1664 			    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1665 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1666 				    !(resid == 0 && clen != 0)) {
1667 					SOCKBUF_UNLOCK(&so->so_snd);
1668 					error = ENOTCONN;
1669 					goto release;
1670 				}
1671 			} else if (addr == NULL) {
1672 				SOCKBUF_UNLOCK(&so->so_snd);
1673 				if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1674 					error = ENOTCONN;
1675 				else
1676 					error = EDESTADDRREQ;
1677 				goto release;
1678 			}
1679 		}
1680 		space = sbspace(&so->so_snd);
1681 		if (flags & MSG_OOB)
1682 			space += 1024;
1683 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
1684 		    clen > so->so_snd.sb_hiwat) {
1685 			SOCKBUF_UNLOCK(&so->so_snd);
1686 			error = EMSGSIZE;
1687 			goto release;
1688 		}
1689 		if (space < resid + clen &&
1690 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
1691 			if ((so->so_state & SS_NBIO) ||
1692 			    (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) {
1693 				SOCKBUF_UNLOCK(&so->so_snd);
1694 				error = EWOULDBLOCK;
1695 				goto release;
1696 			}
1697 			error = sbwait(so, SO_SND);
1698 			SOCKBUF_UNLOCK(&so->so_snd);
1699 			if (error)
1700 				goto release;
1701 			goto restart;
1702 		}
1703 		SOCKBUF_UNLOCK(&so->so_snd);
1704 		space -= clen;
1705 		do {
1706 			if (uio == NULL) {
1707 				resid = 0;
1708 				if (flags & MSG_EOR)
1709 					top->m_flags |= M_EOR;
1710 #ifdef KERN_TLS
1711 				if (tls != NULL) {
1712 					ktls_frame(top, tls, &tls_enq_cnt,
1713 					    tls_rtype);
1714 					tls_rtype = TLS_RLTYPE_APP;
1715 				}
1716 #endif
1717 			} else {
1718 				/*
1719 				 * Copy the data from userland into a mbuf
1720 				 * chain.  If resid is 0, which can happen
1721 				 * only if we have control to send, then
1722 				 * a single empty mbuf is returned.  This
1723 				 * is a workaround to prevent protocol send
1724 				 * methods to panic.
1725 				 */
1726 #ifdef KERN_TLS
1727 				if (tls != NULL) {
1728 					top = m_uiotombuf(uio, M_WAITOK, space,
1729 					    tls->params.max_frame_len,
1730 					    M_EXTPG |
1731 					    ((flags & MSG_EOR) ? M_EOR : 0));
1732 					if (top != NULL) {
1733 						ktls_frame(top, tls,
1734 						    &tls_enq_cnt, tls_rtype);
1735 					}
1736 					tls_rtype = TLS_RLTYPE_APP;
1737 				} else
1738 #endif
1739 					top = m_uiotombuf(uio, M_WAITOK, space,
1740 					    (atomic ? max_hdr : 0),
1741 					    (atomic ? M_PKTHDR : 0) |
1742 					    ((flags & MSG_EOR) ? M_EOR : 0));
1743 				if (top == NULL) {
1744 					error = EFAULT; /* only possible error */
1745 					goto release;
1746 				}
1747 				space -= resid - uio->uio_resid;
1748 				resid = uio->uio_resid;
1749 			}
1750 			if (dontroute) {
1751 				SOCK_LOCK(so);
1752 				so->so_options |= SO_DONTROUTE;
1753 				SOCK_UNLOCK(so);
1754 			}
1755 			/*
1756 			 * XXX all the SBS_CANTSENDMORE checks previously
1757 			 * done could be out of date.  We could have received
1758 			 * a reset packet in an interrupt or maybe we slept
1759 			 * while doing page faults in uiomove() etc.  We
1760 			 * could probably recheck again inside the locking
1761 			 * protection here, but there are probably other
1762 			 * places that this also happens.  We must rethink
1763 			 * this.
1764 			 */
1765 			VNET_SO_ASSERT(so);
1766 
1767 			pru_flag = (flags & MSG_OOB) ? PRUS_OOB :
1768 			/*
1769 			 * If the user set MSG_EOF, the protocol understands
1770 			 * this flag and nothing left to send then use
1771 			 * PRU_SEND_EOF instead of PRU_SEND.
1772 			 */
1773 			    ((flags & MSG_EOF) &&
1774 			     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1775 			     (resid <= 0)) ?
1776 				PRUS_EOF :
1777 			/* If there is more to send set PRUS_MORETOCOME. */
1778 			    (flags & MSG_MORETOCOME) ||
1779 			    (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0;
1780 
1781 #ifdef KERN_TLS
1782 			pru_flag |= tls_pruflag;
1783 #endif
1784 
1785 			error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1786 			    pru_flag, top, addr, control, td);
1787 
1788 			if (dontroute) {
1789 				SOCK_LOCK(so);
1790 				so->so_options &= ~SO_DONTROUTE;
1791 				SOCK_UNLOCK(so);
1792 			}
1793 
1794 #ifdef KERN_TLS
1795 			if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) {
1796 				if (error != 0) {
1797 					m_freem(top);
1798 					top = NULL;
1799 				} else {
1800 					soref(so);
1801 					ktls_enqueue(top, so, tls_enq_cnt);
1802 				}
1803 			}
1804 #endif
1805 			clen = 0;
1806 			control = NULL;
1807 			top = NULL;
1808 			if (error)
1809 				goto release;
1810 		} while (resid && space > 0);
1811 	} while (resid);
1812 
1813 release:
1814 	SOCK_IO_SEND_UNLOCK(so);
1815 out:
1816 #ifdef KERN_TLS
1817 	if (tls != NULL)
1818 		ktls_free(tls);
1819 #endif
1820 	if (top != NULL)
1821 		m_freem(top);
1822 	if (control != NULL)
1823 		m_freem(control);
1824 	return (error);
1825 }
1826 
1827 int
1828 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
1829     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1830 {
1831 	int error;
1832 
1833 	CURVNET_SET(so->so_vnet);
1834 	error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio,
1835 	    top, control, flags, td);
1836 	CURVNET_RESTORE();
1837 	return (error);
1838 }
1839 
1840 /*
1841  * The part of soreceive() that implements reading non-inline out-of-band
1842  * data from a socket.  For more complete comments, see soreceive(), from
1843  * which this code originated.
1844  *
1845  * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
1846  * unable to return an mbuf chain to the caller.
1847  */
1848 static int
1849 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
1850 {
1851 	struct protosw *pr = so->so_proto;
1852 	struct mbuf *m;
1853 	int error;
1854 
1855 	KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
1856 	VNET_SO_ASSERT(so);
1857 
1858 	m = m_get(M_WAITOK, MT_DATA);
1859 	error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK);
1860 	if (error)
1861 		goto bad;
1862 	do {
1863 		error = uiomove(mtod(m, void *),
1864 		    (int) min(uio->uio_resid, m->m_len), uio);
1865 		m = m_free(m);
1866 	} while (uio->uio_resid && error == 0 && m);
1867 bad:
1868 	if (m != NULL)
1869 		m_freem(m);
1870 	return (error);
1871 }
1872 
1873 /*
1874  * Following replacement or removal of the first mbuf on the first mbuf chain
1875  * of a socket buffer, push necessary state changes back into the socket
1876  * buffer so that other consumers see the values consistently.  'nextrecord'
1877  * is the callers locally stored value of the original value of
1878  * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
1879  * NOTE: 'nextrecord' may be NULL.
1880  */
1881 static __inline void
1882 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
1883 {
1884 
1885 	SOCKBUF_LOCK_ASSERT(sb);
1886 	/*
1887 	 * First, update for the new value of nextrecord.  If necessary, make
1888 	 * it the first record.
1889 	 */
1890 	if (sb->sb_mb != NULL)
1891 		sb->sb_mb->m_nextpkt = nextrecord;
1892 	else
1893 		sb->sb_mb = nextrecord;
1894 
1895 	/*
1896 	 * Now update any dependent socket buffer fields to reflect the new
1897 	 * state.  This is an expanded inline of SB_EMPTY_FIXUP(), with the
1898 	 * addition of a second clause that takes care of the case where
1899 	 * sb_mb has been updated, but remains the last record.
1900 	 */
1901 	if (sb->sb_mb == NULL) {
1902 		sb->sb_mbtail = NULL;
1903 		sb->sb_lastrecord = NULL;
1904 	} else if (sb->sb_mb->m_nextpkt == NULL)
1905 		sb->sb_lastrecord = sb->sb_mb;
1906 }
1907 
1908 /*
1909  * Implement receive operations on a socket.  We depend on the way that
1910  * records are added to the sockbuf by sbappend.  In particular, each record
1911  * (mbufs linked through m_next) must begin with an address if the protocol
1912  * so specifies, followed by an optional mbuf or mbufs containing ancillary
1913  * data, and then zero or more mbufs of data.  In order to allow parallelism
1914  * between network receive and copying to user space, as well as avoid
1915  * sleeping with a mutex held, we release the socket buffer mutex during the
1916  * user space copy.  Although the sockbuf is locked, new data may still be
1917  * appended, and thus we must maintain consistency of the sockbuf during that
1918  * time.
1919  *
1920  * The caller may receive the data as a single mbuf chain by supplying an
1921  * mbuf **mp0 for use in returning the chain.  The uio is then used only for
1922  * the count in uio_resid.
1923  */
1924 int
1925 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
1926     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1927 {
1928 	struct mbuf *m, **mp;
1929 	int flags, error, offset;
1930 	ssize_t len;
1931 	struct protosw *pr = so->so_proto;
1932 	struct mbuf *nextrecord;
1933 	int moff, type = 0;
1934 	ssize_t orig_resid = uio->uio_resid;
1935 	bool report_real_len = false;
1936 
1937 	mp = mp0;
1938 	if (psa != NULL)
1939 		*psa = NULL;
1940 	if (controlp != NULL)
1941 		*controlp = NULL;
1942 	if (flagsp != NULL) {
1943 		report_real_len = *flagsp & MSG_TRUNC;
1944 		*flagsp &= ~MSG_TRUNC;
1945 		flags = *flagsp &~ MSG_EOR;
1946 	} else
1947 		flags = 0;
1948 	if (flags & MSG_OOB)
1949 		return (soreceive_rcvoob(so, uio, flags));
1950 	if (mp != NULL)
1951 		*mp = NULL;
1952 	if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING)
1953 	    && uio->uio_resid) {
1954 		VNET_SO_ASSERT(so);
1955 		(*pr->pr_usrreqs->pru_rcvd)(so, 0);
1956 	}
1957 
1958 	error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
1959 	if (error)
1960 		return (error);
1961 
1962 restart:
1963 	SOCKBUF_LOCK(&so->so_rcv);
1964 	m = so->so_rcv.sb_mb;
1965 	/*
1966 	 * If we have less data than requested, block awaiting more (subject
1967 	 * to any timeout) if:
1968 	 *   1. the current count is less than the low water mark, or
1969 	 *   2. MSG_DONTWAIT is not set
1970 	 */
1971 	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
1972 	    sbavail(&so->so_rcv) < uio->uio_resid) &&
1973 	    sbavail(&so->so_rcv) < so->so_rcv.sb_lowat &&
1974 	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
1975 		KASSERT(m != NULL || !sbavail(&so->so_rcv),
1976 		    ("receive: m == %p sbavail == %u",
1977 		    m, sbavail(&so->so_rcv)));
1978 		if (so->so_error || so->so_rerror) {
1979 			if (m != NULL)
1980 				goto dontblock;
1981 			if (so->so_error)
1982 				error = so->so_error;
1983 			else
1984 				error = so->so_rerror;
1985 			if ((flags & MSG_PEEK) == 0) {
1986 				if (so->so_error)
1987 					so->so_error = 0;
1988 				else
1989 					so->so_rerror = 0;
1990 			}
1991 			SOCKBUF_UNLOCK(&so->so_rcv);
1992 			goto release;
1993 		}
1994 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1995 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1996 			if (m != NULL)
1997 				goto dontblock;
1998 #ifdef KERN_TLS
1999 			else if (so->so_rcv.sb_tlsdcc == 0 &&
2000 			    so->so_rcv.sb_tlscc == 0) {
2001 #else
2002 			else {
2003 #endif
2004 				SOCKBUF_UNLOCK(&so->so_rcv);
2005 				goto release;
2006 			}
2007 		}
2008 		for (; m != NULL; m = m->m_next)
2009 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
2010 				m = so->so_rcv.sb_mb;
2011 				goto dontblock;
2012 			}
2013 		if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED |
2014 		    SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 &&
2015 		    (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
2016 			SOCKBUF_UNLOCK(&so->so_rcv);
2017 			error = ENOTCONN;
2018 			goto release;
2019 		}
2020 		if (uio->uio_resid == 0 && !report_real_len) {
2021 			SOCKBUF_UNLOCK(&so->so_rcv);
2022 			goto release;
2023 		}
2024 		if ((so->so_state & SS_NBIO) ||
2025 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
2026 			SOCKBUF_UNLOCK(&so->so_rcv);
2027 			error = EWOULDBLOCK;
2028 			goto release;
2029 		}
2030 		SBLASTRECORDCHK(&so->so_rcv);
2031 		SBLASTMBUFCHK(&so->so_rcv);
2032 		error = sbwait(so, SO_RCV);
2033 		SOCKBUF_UNLOCK(&so->so_rcv);
2034 		if (error)
2035 			goto release;
2036 		goto restart;
2037 	}
2038 dontblock:
2039 	/*
2040 	 * From this point onward, we maintain 'nextrecord' as a cache of the
2041 	 * pointer to the next record in the socket buffer.  We must keep the
2042 	 * various socket buffer pointers and local stack versions of the
2043 	 * pointers in sync, pushing out modifications before dropping the
2044 	 * socket buffer mutex, and re-reading them when picking it up.
2045 	 *
2046 	 * Otherwise, we will race with the network stack appending new data
2047 	 * or records onto the socket buffer by using inconsistent/stale
2048 	 * versions of the field, possibly resulting in socket buffer
2049 	 * corruption.
2050 	 *
2051 	 * By holding the high-level sblock(), we prevent simultaneous
2052 	 * readers from pulling off the front of the socket buffer.
2053 	 */
2054 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2055 	if (uio->uio_td)
2056 		uio->uio_td->td_ru.ru_msgrcv++;
2057 	KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
2058 	SBLASTRECORDCHK(&so->so_rcv);
2059 	SBLASTMBUFCHK(&so->so_rcv);
2060 	nextrecord = m->m_nextpkt;
2061 	if (pr->pr_flags & PR_ADDR) {
2062 		KASSERT(m->m_type == MT_SONAME,
2063 		    ("m->m_type == %d", m->m_type));
2064 		orig_resid = 0;
2065 		if (psa != NULL)
2066 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
2067 			    M_NOWAIT);
2068 		if (flags & MSG_PEEK) {
2069 			m = m->m_next;
2070 		} else {
2071 			sbfree(&so->so_rcv, m);
2072 			so->so_rcv.sb_mb = m_free(m);
2073 			m = so->so_rcv.sb_mb;
2074 			sockbuf_pushsync(&so->so_rcv, nextrecord);
2075 		}
2076 	}
2077 
2078 	/*
2079 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
2080 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
2081 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
2082 	 * perform externalization (or freeing if controlp == NULL).
2083 	 */
2084 	if (m != NULL && m->m_type == MT_CONTROL) {
2085 		struct mbuf *cm = NULL, *cmn;
2086 		struct mbuf **cme = &cm;
2087 #ifdef KERN_TLS
2088 		struct cmsghdr *cmsg;
2089 		struct tls_get_record tgr;
2090 
2091 		/*
2092 		 * For MSG_TLSAPPDATA, check for an alert record.
2093 		 * If found, return ENXIO without removing
2094 		 * it from the receive queue.  This allows a subsequent
2095 		 * call without MSG_TLSAPPDATA to receive it.
2096 		 * Note that, for TLS, there should only be a single
2097 		 * control mbuf with the TLS_GET_RECORD message in it.
2098 		 */
2099 		if (flags & MSG_TLSAPPDATA) {
2100 			cmsg = mtod(m, struct cmsghdr *);
2101 			if (cmsg->cmsg_type == TLS_GET_RECORD &&
2102 			    cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) {
2103 				memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr));
2104 				if (__predict_false(tgr.tls_type ==
2105 				    TLS_RLTYPE_ALERT)) {
2106 					SOCKBUF_UNLOCK(&so->so_rcv);
2107 					error = ENXIO;
2108 					goto release;
2109 				}
2110 			}
2111 		}
2112 #endif
2113 
2114 		do {
2115 			if (flags & MSG_PEEK) {
2116 				if (controlp != NULL) {
2117 					*controlp = m_copym(m, 0, m->m_len,
2118 					    M_NOWAIT);
2119 					controlp = &(*controlp)->m_next;
2120 				}
2121 				m = m->m_next;
2122 			} else {
2123 				sbfree(&so->so_rcv, m);
2124 				so->so_rcv.sb_mb = m->m_next;
2125 				m->m_next = NULL;
2126 				*cme = m;
2127 				cme = &(*cme)->m_next;
2128 				m = so->so_rcv.sb_mb;
2129 			}
2130 		} while (m != NULL && m->m_type == MT_CONTROL);
2131 		if ((flags & MSG_PEEK) == 0)
2132 			sockbuf_pushsync(&so->so_rcv, nextrecord);
2133 		while (cm != NULL) {
2134 			cmn = cm->m_next;
2135 			cm->m_next = NULL;
2136 			if (pr->pr_domain->dom_externalize != NULL) {
2137 				SOCKBUF_UNLOCK(&so->so_rcv);
2138 				VNET_SO_ASSERT(so);
2139 				error = (*pr->pr_domain->dom_externalize)
2140 				    (cm, controlp, flags);
2141 				SOCKBUF_LOCK(&so->so_rcv);
2142 			} else if (controlp != NULL)
2143 				*controlp = cm;
2144 			else
2145 				m_freem(cm);
2146 			if (controlp != NULL) {
2147 				while (*controlp != NULL)
2148 					controlp = &(*controlp)->m_next;
2149 			}
2150 			cm = cmn;
2151 		}
2152 		if (m != NULL)
2153 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
2154 		else
2155 			nextrecord = so->so_rcv.sb_mb;
2156 		orig_resid = 0;
2157 	}
2158 	if (m != NULL) {
2159 		if ((flags & MSG_PEEK) == 0) {
2160 			KASSERT(m->m_nextpkt == nextrecord,
2161 			    ("soreceive: post-control, nextrecord !sync"));
2162 			if (nextrecord == NULL) {
2163 				KASSERT(so->so_rcv.sb_mb == m,
2164 				    ("soreceive: post-control, sb_mb!=m"));
2165 				KASSERT(so->so_rcv.sb_lastrecord == m,
2166 				    ("soreceive: post-control, lastrecord!=m"));
2167 			}
2168 		}
2169 		type = m->m_type;
2170 		if (type == MT_OOBDATA)
2171 			flags |= MSG_OOB;
2172 	} else {
2173 		if ((flags & MSG_PEEK) == 0) {
2174 			KASSERT(so->so_rcv.sb_mb == nextrecord,
2175 			    ("soreceive: sb_mb != nextrecord"));
2176 			if (so->so_rcv.sb_mb == NULL) {
2177 				KASSERT(so->so_rcv.sb_lastrecord == NULL,
2178 				    ("soreceive: sb_lastercord != NULL"));
2179 			}
2180 		}
2181 	}
2182 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2183 	SBLASTRECORDCHK(&so->so_rcv);
2184 	SBLASTMBUFCHK(&so->so_rcv);
2185 
2186 	/*
2187 	 * Now continue to read any data mbufs off of the head of the socket
2188 	 * buffer until the read request is satisfied.  Note that 'type' is
2189 	 * used to store the type of any mbuf reads that have happened so far
2190 	 * such that soreceive() can stop reading if the type changes, which
2191 	 * causes soreceive() to return only one of regular data and inline
2192 	 * out-of-band data in a single socket receive operation.
2193 	 */
2194 	moff = 0;
2195 	offset = 0;
2196 	while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0
2197 	    && error == 0) {
2198 		/*
2199 		 * If the type of mbuf has changed since the last mbuf
2200 		 * examined ('type'), end the receive operation.
2201 		 */
2202 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2203 		if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) {
2204 			if (type != m->m_type)
2205 				break;
2206 		} else if (type == MT_OOBDATA)
2207 			break;
2208 		else
2209 		    KASSERT(m->m_type == MT_DATA,
2210 			("m->m_type == %d", m->m_type));
2211 		so->so_rcv.sb_state &= ~SBS_RCVATMARK;
2212 		len = uio->uio_resid;
2213 		if (so->so_oobmark && len > so->so_oobmark - offset)
2214 			len = so->so_oobmark - offset;
2215 		if (len > m->m_len - moff)
2216 			len = m->m_len - moff;
2217 		/*
2218 		 * If mp is set, just pass back the mbufs.  Otherwise copy
2219 		 * them out via the uio, then free.  Sockbuf must be
2220 		 * consistent here (points to current mbuf, it points to next
2221 		 * record) when we drop priority; we must note any additions
2222 		 * to the sockbuf when we block interrupts again.
2223 		 */
2224 		if (mp == NULL) {
2225 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2226 			SBLASTRECORDCHK(&so->so_rcv);
2227 			SBLASTMBUFCHK(&so->so_rcv);
2228 			SOCKBUF_UNLOCK(&so->so_rcv);
2229 			if ((m->m_flags & M_EXTPG) != 0)
2230 				error = m_unmapped_uiomove(m, moff, uio,
2231 				    (int)len);
2232 			else
2233 				error = uiomove(mtod(m, char *) + moff,
2234 				    (int)len, uio);
2235 			SOCKBUF_LOCK(&so->so_rcv);
2236 			if (error) {
2237 				/*
2238 				 * The MT_SONAME mbuf has already been removed
2239 				 * from the record, so it is necessary to
2240 				 * remove the data mbufs, if any, to preserve
2241 				 * the invariant in the case of PR_ADDR that
2242 				 * requires MT_SONAME mbufs at the head of
2243 				 * each record.
2244 				 */
2245 				if (pr->pr_flags & PR_ATOMIC &&
2246 				    ((flags & MSG_PEEK) == 0))
2247 					(void)sbdroprecord_locked(&so->so_rcv);
2248 				SOCKBUF_UNLOCK(&so->so_rcv);
2249 				goto release;
2250 			}
2251 		} else
2252 			uio->uio_resid -= len;
2253 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2254 		if (len == m->m_len - moff) {
2255 			if (m->m_flags & M_EOR)
2256 				flags |= MSG_EOR;
2257 			if (flags & MSG_PEEK) {
2258 				m = m->m_next;
2259 				moff = 0;
2260 			} else {
2261 				nextrecord = m->m_nextpkt;
2262 				sbfree(&so->so_rcv, m);
2263 				if (mp != NULL) {
2264 					m->m_nextpkt = NULL;
2265 					*mp = m;
2266 					mp = &m->m_next;
2267 					so->so_rcv.sb_mb = m = m->m_next;
2268 					*mp = NULL;
2269 				} else {
2270 					so->so_rcv.sb_mb = m_free(m);
2271 					m = so->so_rcv.sb_mb;
2272 				}
2273 				sockbuf_pushsync(&so->so_rcv, nextrecord);
2274 				SBLASTRECORDCHK(&so->so_rcv);
2275 				SBLASTMBUFCHK(&so->so_rcv);
2276 			}
2277 		} else {
2278 			if (flags & MSG_PEEK)
2279 				moff += len;
2280 			else {
2281 				if (mp != NULL) {
2282 					if (flags & MSG_DONTWAIT) {
2283 						*mp = m_copym(m, 0, len,
2284 						    M_NOWAIT);
2285 						if (*mp == NULL) {
2286 							/*
2287 							 * m_copym() couldn't
2288 							 * allocate an mbuf.
2289 							 * Adjust uio_resid back
2290 							 * (it was adjusted
2291 							 * down by len bytes,
2292 							 * which we didn't end
2293 							 * up "copying" over).
2294 							 */
2295 							uio->uio_resid += len;
2296 							break;
2297 						}
2298 					} else {
2299 						SOCKBUF_UNLOCK(&so->so_rcv);
2300 						*mp = m_copym(m, 0, len,
2301 						    M_WAITOK);
2302 						SOCKBUF_LOCK(&so->so_rcv);
2303 					}
2304 				}
2305 				sbcut_locked(&so->so_rcv, len);
2306 			}
2307 		}
2308 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2309 		if (so->so_oobmark) {
2310 			if ((flags & MSG_PEEK) == 0) {
2311 				so->so_oobmark -= len;
2312 				if (so->so_oobmark == 0) {
2313 					so->so_rcv.sb_state |= SBS_RCVATMARK;
2314 					break;
2315 				}
2316 			} else {
2317 				offset += len;
2318 				if (offset == so->so_oobmark)
2319 					break;
2320 			}
2321 		}
2322 		if (flags & MSG_EOR)
2323 			break;
2324 		/*
2325 		 * If the MSG_WAITALL flag is set (for non-atomic socket), we
2326 		 * must not quit until "uio->uio_resid == 0" or an error
2327 		 * termination.  If a signal/timeout occurs, return with a
2328 		 * short count but without error.  Keep sockbuf locked
2329 		 * against other readers.
2330 		 */
2331 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
2332 		    !sosendallatonce(so) && nextrecord == NULL) {
2333 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2334 			if (so->so_error || so->so_rerror ||
2335 			    so->so_rcv.sb_state & SBS_CANTRCVMORE)
2336 				break;
2337 			/*
2338 			 * Notify the protocol that some data has been
2339 			 * drained before blocking.
2340 			 */
2341 			if (pr->pr_flags & PR_WANTRCVD) {
2342 				SOCKBUF_UNLOCK(&so->so_rcv);
2343 				VNET_SO_ASSERT(so);
2344 				(*pr->pr_usrreqs->pru_rcvd)(so, flags);
2345 				SOCKBUF_LOCK(&so->so_rcv);
2346 			}
2347 			SBLASTRECORDCHK(&so->so_rcv);
2348 			SBLASTMBUFCHK(&so->so_rcv);
2349 			/*
2350 			 * We could receive some data while was notifying
2351 			 * the protocol. Skip blocking in this case.
2352 			 */
2353 			if (so->so_rcv.sb_mb == NULL) {
2354 				error = sbwait(so, SO_RCV);
2355 				if (error) {
2356 					SOCKBUF_UNLOCK(&so->so_rcv);
2357 					goto release;
2358 				}
2359 			}
2360 			m = so->so_rcv.sb_mb;
2361 			if (m != NULL)
2362 				nextrecord = m->m_nextpkt;
2363 		}
2364 	}
2365 
2366 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2367 	if (m != NULL && pr->pr_flags & PR_ATOMIC) {
2368 		if (report_real_len)
2369 			uio->uio_resid -= m_length(m, NULL) - moff;
2370 		flags |= MSG_TRUNC;
2371 		if ((flags & MSG_PEEK) == 0)
2372 			(void) sbdroprecord_locked(&so->so_rcv);
2373 	}
2374 	if ((flags & MSG_PEEK) == 0) {
2375 		if (m == NULL) {
2376 			/*
2377 			 * First part is an inline SB_EMPTY_FIXUP().  Second
2378 			 * part makes sure sb_lastrecord is up-to-date if
2379 			 * there is still data in the socket buffer.
2380 			 */
2381 			so->so_rcv.sb_mb = nextrecord;
2382 			if (so->so_rcv.sb_mb == NULL) {
2383 				so->so_rcv.sb_mbtail = NULL;
2384 				so->so_rcv.sb_lastrecord = NULL;
2385 			} else if (nextrecord->m_nextpkt == NULL)
2386 				so->so_rcv.sb_lastrecord = nextrecord;
2387 		}
2388 		SBLASTRECORDCHK(&so->so_rcv);
2389 		SBLASTMBUFCHK(&so->so_rcv);
2390 		/*
2391 		 * If soreceive() is being done from the socket callback,
2392 		 * then don't need to generate ACK to peer to update window,
2393 		 * since ACK will be generated on return to TCP.
2394 		 */
2395 		if (!(flags & MSG_SOCALLBCK) &&
2396 		    (pr->pr_flags & PR_WANTRCVD)) {
2397 			SOCKBUF_UNLOCK(&so->so_rcv);
2398 			VNET_SO_ASSERT(so);
2399 			(*pr->pr_usrreqs->pru_rcvd)(so, flags);
2400 			SOCKBUF_LOCK(&so->so_rcv);
2401 		}
2402 	}
2403 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2404 	if (orig_resid == uio->uio_resid && orig_resid &&
2405 	    (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
2406 		SOCKBUF_UNLOCK(&so->so_rcv);
2407 		goto restart;
2408 	}
2409 	SOCKBUF_UNLOCK(&so->so_rcv);
2410 
2411 	if (flagsp != NULL)
2412 		*flagsp |= flags;
2413 release:
2414 	SOCK_IO_RECV_UNLOCK(so);
2415 	return (error);
2416 }
2417 
2418 /*
2419  * Optimized version of soreceive() for stream (TCP) sockets.
2420  */
2421 int
2422 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio,
2423     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2424 {
2425 	int len = 0, error = 0, flags, oresid;
2426 	struct sockbuf *sb;
2427 	struct mbuf *m, *n = NULL;
2428 
2429 	/* We only do stream sockets. */
2430 	if (so->so_type != SOCK_STREAM)
2431 		return (EINVAL);
2432 	if (psa != NULL)
2433 		*psa = NULL;
2434 	if (flagsp != NULL)
2435 		flags = *flagsp &~ MSG_EOR;
2436 	else
2437 		flags = 0;
2438 	if (controlp != NULL)
2439 		*controlp = NULL;
2440 	if (flags & MSG_OOB)
2441 		return (soreceive_rcvoob(so, uio, flags));
2442 	if (mp0 != NULL)
2443 		*mp0 = NULL;
2444 
2445 	sb = &so->so_rcv;
2446 
2447 #ifdef KERN_TLS
2448 	/*
2449 	 * KTLS store TLS records as records with a control message to
2450 	 * describe the framing.
2451 	 *
2452 	 * We check once here before acquiring locks to optimize the
2453 	 * common case.
2454 	 */
2455 	if (sb->sb_tls_info != NULL)
2456 		return (soreceive_generic(so, psa, uio, mp0, controlp,
2457 		    flagsp));
2458 #endif
2459 
2460 	/* Prevent other readers from entering the socket. */
2461 	error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
2462 	if (error)
2463 		return (error);
2464 	SOCKBUF_LOCK(sb);
2465 
2466 #ifdef KERN_TLS
2467 	if (sb->sb_tls_info != NULL) {
2468 		SOCKBUF_UNLOCK(sb);
2469 		SOCK_IO_RECV_UNLOCK(so);
2470 		return (soreceive_generic(so, psa, uio, mp0, controlp,
2471 		    flagsp));
2472 	}
2473 #endif
2474 
2475 	/* Easy one, no space to copyout anything. */
2476 	if (uio->uio_resid == 0) {
2477 		error = EINVAL;
2478 		goto out;
2479 	}
2480 	oresid = uio->uio_resid;
2481 
2482 	/* We will never ever get anything unless we are or were connected. */
2483 	if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
2484 		error = ENOTCONN;
2485 		goto out;
2486 	}
2487 
2488 restart:
2489 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2490 
2491 	/* Abort if socket has reported problems. */
2492 	if (so->so_error) {
2493 		if (sbavail(sb) > 0)
2494 			goto deliver;
2495 		if (oresid > uio->uio_resid)
2496 			goto out;
2497 		error = so->so_error;
2498 		if (!(flags & MSG_PEEK))
2499 			so->so_error = 0;
2500 		goto out;
2501 	}
2502 
2503 	/* Door is closed.  Deliver what is left, if any. */
2504 	if (sb->sb_state & SBS_CANTRCVMORE) {
2505 		if (sbavail(sb) > 0)
2506 			goto deliver;
2507 		else
2508 			goto out;
2509 	}
2510 
2511 	/* Socket buffer is empty and we shall not block. */
2512 	if (sbavail(sb) == 0 &&
2513 	    ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) {
2514 		error = EAGAIN;
2515 		goto out;
2516 	}
2517 
2518 	/* Socket buffer got some data that we shall deliver now. */
2519 	if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) &&
2520 	    ((so->so_state & SS_NBIO) ||
2521 	     (flags & (MSG_DONTWAIT|MSG_NBIO)) ||
2522 	     sbavail(sb) >= sb->sb_lowat ||
2523 	     sbavail(sb) >= uio->uio_resid ||
2524 	     sbavail(sb) >= sb->sb_hiwat) ) {
2525 		goto deliver;
2526 	}
2527 
2528 	/* On MSG_WAITALL we must wait until all data or error arrives. */
2529 	if ((flags & MSG_WAITALL) &&
2530 	    (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat))
2531 		goto deliver;
2532 
2533 	/*
2534 	 * Wait and block until (more) data comes in.
2535 	 * NB: Drops the sockbuf lock during wait.
2536 	 */
2537 	error = sbwait(so, SO_RCV);
2538 	if (error)
2539 		goto out;
2540 	goto restart;
2541 
2542 deliver:
2543 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2544 	KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__));
2545 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__));
2546 
2547 	/* Statistics. */
2548 	if (uio->uio_td)
2549 		uio->uio_td->td_ru.ru_msgrcv++;
2550 
2551 	/* Fill uio until full or current end of socket buffer is reached. */
2552 	len = min(uio->uio_resid, sbavail(sb));
2553 	if (mp0 != NULL) {
2554 		/* Dequeue as many mbufs as possible. */
2555 		if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) {
2556 			if (*mp0 == NULL)
2557 				*mp0 = sb->sb_mb;
2558 			else
2559 				m_cat(*mp0, sb->sb_mb);
2560 			for (m = sb->sb_mb;
2561 			     m != NULL && m->m_len <= len;
2562 			     m = m->m_next) {
2563 				KASSERT(!(m->m_flags & M_NOTAVAIL),
2564 				    ("%s: m %p not available", __func__, m));
2565 				len -= m->m_len;
2566 				uio->uio_resid -= m->m_len;
2567 				sbfree(sb, m);
2568 				n = m;
2569 			}
2570 			n->m_next = NULL;
2571 			sb->sb_mb = m;
2572 			sb->sb_lastrecord = sb->sb_mb;
2573 			if (sb->sb_mb == NULL)
2574 				SB_EMPTY_FIXUP(sb);
2575 		}
2576 		/* Copy the remainder. */
2577 		if (len > 0) {
2578 			KASSERT(sb->sb_mb != NULL,
2579 			    ("%s: len > 0 && sb->sb_mb empty", __func__));
2580 
2581 			m = m_copym(sb->sb_mb, 0, len, M_NOWAIT);
2582 			if (m == NULL)
2583 				len = 0;	/* Don't flush data from sockbuf. */
2584 			else
2585 				uio->uio_resid -= len;
2586 			if (*mp0 != NULL)
2587 				m_cat(*mp0, m);
2588 			else
2589 				*mp0 = m;
2590 			if (*mp0 == NULL) {
2591 				error = ENOBUFS;
2592 				goto out;
2593 			}
2594 		}
2595 	} else {
2596 		/* NB: Must unlock socket buffer as uiomove may sleep. */
2597 		SOCKBUF_UNLOCK(sb);
2598 		error = m_mbuftouio(uio, sb->sb_mb, len);
2599 		SOCKBUF_LOCK(sb);
2600 		if (error)
2601 			goto out;
2602 	}
2603 	SBLASTRECORDCHK(sb);
2604 	SBLASTMBUFCHK(sb);
2605 
2606 	/*
2607 	 * Remove the delivered data from the socket buffer unless we
2608 	 * were only peeking.
2609 	 */
2610 	if (!(flags & MSG_PEEK)) {
2611 		if (len > 0)
2612 			sbdrop_locked(sb, len);
2613 
2614 		/* Notify protocol that we drained some data. */
2615 		if ((so->so_proto->pr_flags & PR_WANTRCVD) &&
2616 		    (((flags & MSG_WAITALL) && uio->uio_resid > 0) ||
2617 		     !(flags & MSG_SOCALLBCK))) {
2618 			SOCKBUF_UNLOCK(sb);
2619 			VNET_SO_ASSERT(so);
2620 			(*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags);
2621 			SOCKBUF_LOCK(sb);
2622 		}
2623 	}
2624 
2625 	/*
2626 	 * For MSG_WAITALL we may have to loop again and wait for
2627 	 * more data to come in.
2628 	 */
2629 	if ((flags & MSG_WAITALL) && uio->uio_resid > 0)
2630 		goto restart;
2631 out:
2632 	SBLASTRECORDCHK(sb);
2633 	SBLASTMBUFCHK(sb);
2634 	SOCKBUF_UNLOCK(sb);
2635 	SOCK_IO_RECV_UNLOCK(so);
2636 	return (error);
2637 }
2638 
2639 /*
2640  * Optimized version of soreceive() for simple datagram cases from userspace.
2641  * Unlike in the stream case, we're able to drop a datagram if copyout()
2642  * fails, and because we handle datagrams atomically, we don't need to use a
2643  * sleep lock to prevent I/O interlacing.
2644  */
2645 int
2646 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
2647     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2648 {
2649 	struct mbuf *m, *m2;
2650 	int flags, error;
2651 	ssize_t len;
2652 	struct protosw *pr = so->so_proto;
2653 	struct mbuf *nextrecord;
2654 
2655 	if (psa != NULL)
2656 		*psa = NULL;
2657 	if (controlp != NULL)
2658 		*controlp = NULL;
2659 	if (flagsp != NULL)
2660 		flags = *flagsp &~ MSG_EOR;
2661 	else
2662 		flags = 0;
2663 
2664 	/*
2665 	 * For any complicated cases, fall back to the full
2666 	 * soreceive_generic().
2667 	 */
2668 	if (mp0 != NULL || (flags & (MSG_PEEK | MSG_OOB | MSG_TRUNC)))
2669 		return (soreceive_generic(so, psa, uio, mp0, controlp,
2670 		    flagsp));
2671 
2672 	/*
2673 	 * Enforce restrictions on use.
2674 	 */
2675 	KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
2676 	    ("soreceive_dgram: wantrcvd"));
2677 	KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
2678 	KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
2679 	    ("soreceive_dgram: SBS_RCVATMARK"));
2680 	KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
2681 	    ("soreceive_dgram: P_CONNREQUIRED"));
2682 
2683 	/*
2684 	 * Loop blocking while waiting for a datagram.
2685 	 */
2686 	SOCKBUF_LOCK(&so->so_rcv);
2687 	while ((m = so->so_rcv.sb_mb) == NULL) {
2688 		KASSERT(sbavail(&so->so_rcv) == 0,
2689 		    ("soreceive_dgram: sb_mb NULL but sbavail %u",
2690 		    sbavail(&so->so_rcv)));
2691 		if (so->so_error) {
2692 			error = so->so_error;
2693 			so->so_error = 0;
2694 			SOCKBUF_UNLOCK(&so->so_rcv);
2695 			return (error);
2696 		}
2697 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
2698 		    uio->uio_resid == 0) {
2699 			SOCKBUF_UNLOCK(&so->so_rcv);
2700 			return (0);
2701 		}
2702 		if ((so->so_state & SS_NBIO) ||
2703 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
2704 			SOCKBUF_UNLOCK(&so->so_rcv);
2705 			return (EWOULDBLOCK);
2706 		}
2707 		SBLASTRECORDCHK(&so->so_rcv);
2708 		SBLASTMBUFCHK(&so->so_rcv);
2709 		error = sbwait(so, SO_RCV);
2710 		if (error) {
2711 			SOCKBUF_UNLOCK(&so->so_rcv);
2712 			return (error);
2713 		}
2714 	}
2715 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2716 
2717 	if (uio->uio_td)
2718 		uio->uio_td->td_ru.ru_msgrcv++;
2719 	SBLASTRECORDCHK(&so->so_rcv);
2720 	SBLASTMBUFCHK(&so->so_rcv);
2721 	nextrecord = m->m_nextpkt;
2722 	if (nextrecord == NULL) {
2723 		KASSERT(so->so_rcv.sb_lastrecord == m,
2724 		    ("soreceive_dgram: lastrecord != m"));
2725 	}
2726 
2727 	KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
2728 	    ("soreceive_dgram: m_nextpkt != nextrecord"));
2729 
2730 	/*
2731 	 * Pull 'm' and its chain off the front of the packet queue.
2732 	 */
2733 	so->so_rcv.sb_mb = NULL;
2734 	sockbuf_pushsync(&so->so_rcv, nextrecord);
2735 
2736 	/*
2737 	 * Walk 'm's chain and free that many bytes from the socket buffer.
2738 	 */
2739 	for (m2 = m; m2 != NULL; m2 = m2->m_next)
2740 		sbfree(&so->so_rcv, m2);
2741 
2742 	/*
2743 	 * Do a few last checks before we let go of the lock.
2744 	 */
2745 	SBLASTRECORDCHK(&so->so_rcv);
2746 	SBLASTMBUFCHK(&so->so_rcv);
2747 	SOCKBUF_UNLOCK(&so->so_rcv);
2748 
2749 	if (pr->pr_flags & PR_ADDR) {
2750 		KASSERT(m->m_type == MT_SONAME,
2751 		    ("m->m_type == %d", m->m_type));
2752 		if (psa != NULL)
2753 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
2754 			    M_NOWAIT);
2755 		m = m_free(m);
2756 	}
2757 	if (m == NULL) {
2758 		/* XXXRW: Can this happen? */
2759 		return (0);
2760 	}
2761 
2762 	/*
2763 	 * Packet to copyout() is now in 'm' and it is disconnected from the
2764 	 * queue.
2765 	 *
2766 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
2767 	 * in the first mbuf chain on the socket buffer.  We call into the
2768 	 * protocol to perform externalization (or freeing if controlp ==
2769 	 * NULL). In some cases there can be only MT_CONTROL mbufs without
2770 	 * MT_DATA mbufs.
2771 	 */
2772 	if (m->m_type == MT_CONTROL) {
2773 		struct mbuf *cm = NULL, *cmn;
2774 		struct mbuf **cme = &cm;
2775 
2776 		do {
2777 			m2 = m->m_next;
2778 			m->m_next = NULL;
2779 			*cme = m;
2780 			cme = &(*cme)->m_next;
2781 			m = m2;
2782 		} while (m != NULL && m->m_type == MT_CONTROL);
2783 		while (cm != NULL) {
2784 			cmn = cm->m_next;
2785 			cm->m_next = NULL;
2786 			if (pr->pr_domain->dom_externalize != NULL) {
2787 				error = (*pr->pr_domain->dom_externalize)
2788 				    (cm, controlp, flags);
2789 			} else if (controlp != NULL)
2790 				*controlp = cm;
2791 			else
2792 				m_freem(cm);
2793 			if (controlp != NULL) {
2794 				while (*controlp != NULL)
2795 					controlp = &(*controlp)->m_next;
2796 			}
2797 			cm = cmn;
2798 		}
2799 	}
2800 	KASSERT(m == NULL || m->m_type == MT_DATA,
2801 	    ("soreceive_dgram: !data"));
2802 	while (m != NULL && uio->uio_resid > 0) {
2803 		len = uio->uio_resid;
2804 		if (len > m->m_len)
2805 			len = m->m_len;
2806 		error = uiomove(mtod(m, char *), (int)len, uio);
2807 		if (error) {
2808 			m_freem(m);
2809 			return (error);
2810 		}
2811 		if (len == m->m_len)
2812 			m = m_free(m);
2813 		else {
2814 			m->m_data += len;
2815 			m->m_len -= len;
2816 		}
2817 	}
2818 	if (m != NULL) {
2819 		flags |= MSG_TRUNC;
2820 		m_freem(m);
2821 	}
2822 	if (flagsp != NULL)
2823 		*flagsp |= flags;
2824 	return (0);
2825 }
2826 
2827 int
2828 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
2829     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2830 {
2831 	int error;
2832 
2833 	CURVNET_SET(so->so_vnet);
2834 	error = (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio,
2835 	    mp0, controlp, flagsp));
2836 	CURVNET_RESTORE();
2837 	return (error);
2838 }
2839 
2840 int
2841 soshutdown(struct socket *so, int how)
2842 {
2843 	struct protosw *pr;
2844 	int error, soerror_enotconn;
2845 
2846 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
2847 		return (EINVAL);
2848 
2849 	soerror_enotconn = 0;
2850 	SOCK_LOCK(so);
2851 	if ((so->so_state &
2852 	    (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) {
2853 		/*
2854 		 * POSIX mandates us to return ENOTCONN when shutdown(2) is
2855 		 * invoked on a datagram sockets, however historically we would
2856 		 * actually tear socket down. This is known to be leveraged by
2857 		 * some applications to unblock process waiting in recvXXX(2)
2858 		 * by other process that it shares that socket with. Try to meet
2859 		 * both backward-compatibility and POSIX requirements by forcing
2860 		 * ENOTCONN but still asking protocol to perform pru_shutdown().
2861 		 */
2862 		if (so->so_type != SOCK_DGRAM && !SOLISTENING(so)) {
2863 			SOCK_UNLOCK(so);
2864 			return (ENOTCONN);
2865 		}
2866 		soerror_enotconn = 1;
2867 	}
2868 
2869 	if (SOLISTENING(so)) {
2870 		if (how != SHUT_WR) {
2871 			so->so_error = ECONNABORTED;
2872 			solisten_wakeup(so);	/* unlocks so */
2873 		} else {
2874 			SOCK_UNLOCK(so);
2875 		}
2876 		goto done;
2877 	}
2878 	SOCK_UNLOCK(so);
2879 
2880 	CURVNET_SET(so->so_vnet);
2881 	pr = so->so_proto;
2882 	if (pr->pr_usrreqs->pru_flush != NULL)
2883 		(*pr->pr_usrreqs->pru_flush)(so, how);
2884 	if (how != SHUT_WR)
2885 		sorflush(so);
2886 	if (how != SHUT_RD) {
2887 		error = (*pr->pr_usrreqs->pru_shutdown)(so);
2888 		wakeup(&so->so_timeo);
2889 		CURVNET_RESTORE();
2890 		return ((error == 0 && soerror_enotconn) ? ENOTCONN : error);
2891 	}
2892 	wakeup(&so->so_timeo);
2893 	CURVNET_RESTORE();
2894 
2895 done:
2896 	return (soerror_enotconn ? ENOTCONN : 0);
2897 }
2898 
2899 void
2900 sorflush(struct socket *so)
2901 {
2902 	struct protosw *pr;
2903 	int error;
2904 
2905 	VNET_SO_ASSERT(so);
2906 
2907 	/*
2908 	 * Dislodge threads currently blocked in receive and wait to acquire
2909 	 * a lock against other simultaneous readers before clearing the
2910 	 * socket buffer.  Don't let our acquire be interrupted by a signal
2911 	 * despite any existing socket disposition on interruptable waiting.
2912 	 */
2913 	socantrcvmore(so);
2914 
2915 	error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR);
2916 	if (error != 0) {
2917 		KASSERT(SOLISTENING(so),
2918 		    ("%s: soiolock(%p) failed", __func__, so));
2919 		return;
2920 	}
2921 
2922 	pr = so->so_proto;
2923 	if (pr->pr_flags & PR_RIGHTS) {
2924 		MPASS(pr->pr_domain->dom_dispose != NULL);
2925 		(*pr->pr_domain->dom_dispose)(so);
2926 	} else {
2927 		sbrelease(so, SO_RCV);
2928 		SOCK_IO_RECV_UNLOCK(so);
2929 	}
2930 
2931 }
2932 
2933 /*
2934  * Wrapper for Socket established helper hook.
2935  * Parameters: socket, context of the hook point, hook id.
2936  */
2937 static int inline
2938 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id)
2939 {
2940 	struct socket_hhook_data hhook_data = {
2941 		.so = so,
2942 		.hctx = hctx,
2943 		.m = NULL,
2944 		.status = 0
2945 	};
2946 
2947 	CURVNET_SET(so->so_vnet);
2948 	HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd);
2949 	CURVNET_RESTORE();
2950 
2951 	/* Ugly but needed, since hhooks return void for now */
2952 	return (hhook_data.status);
2953 }
2954 
2955 /*
2956  * Perhaps this routine, and sooptcopyout(), below, ought to come in an
2957  * additional variant to handle the case where the option value needs to be
2958  * some kind of integer, but not a specific size.  In addition to their use
2959  * here, these functions are also called by the protocol-level pr_ctloutput()
2960  * routines.
2961  */
2962 int
2963 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
2964 {
2965 	size_t	valsize;
2966 
2967 	/*
2968 	 * If the user gives us more than we wanted, we ignore it, but if we
2969 	 * don't get the minimum length the caller wants, we return EINVAL.
2970 	 * On success, sopt->sopt_valsize is set to however much we actually
2971 	 * retrieved.
2972 	 */
2973 	if ((valsize = sopt->sopt_valsize) < minlen)
2974 		return EINVAL;
2975 	if (valsize > len)
2976 		sopt->sopt_valsize = valsize = len;
2977 
2978 	if (sopt->sopt_td != NULL)
2979 		return (copyin(sopt->sopt_val, buf, valsize));
2980 
2981 	bcopy(sopt->sopt_val, buf, valsize);
2982 	return (0);
2983 }
2984 
2985 /*
2986  * Kernel version of setsockopt(2).
2987  *
2988  * XXX: optlen is size_t, not socklen_t
2989  */
2990 int
2991 so_setsockopt(struct socket *so, int level, int optname, void *optval,
2992     size_t optlen)
2993 {
2994 	struct sockopt sopt;
2995 
2996 	sopt.sopt_level = level;
2997 	sopt.sopt_name = optname;
2998 	sopt.sopt_dir = SOPT_SET;
2999 	sopt.sopt_val = optval;
3000 	sopt.sopt_valsize = optlen;
3001 	sopt.sopt_td = NULL;
3002 	return (sosetopt(so, &sopt));
3003 }
3004 
3005 int
3006 sosetopt(struct socket *so, struct sockopt *sopt)
3007 {
3008 	int	error, optval;
3009 	struct	linger l;
3010 	struct	timeval tv;
3011 	sbintime_t val, *valp;
3012 	uint32_t val32;
3013 #ifdef MAC
3014 	struct mac extmac;
3015 #endif
3016 
3017 	CURVNET_SET(so->so_vnet);
3018 	error = 0;
3019 	if (sopt->sopt_level != SOL_SOCKET) {
3020 		if (so->so_proto->pr_ctloutput != NULL)
3021 			error = (*so->so_proto->pr_ctloutput)(so, sopt);
3022 		else
3023 			error = ENOPROTOOPT;
3024 	} else {
3025 		switch (sopt->sopt_name) {
3026 		case SO_ACCEPTFILTER:
3027 			error = accept_filt_setopt(so, sopt);
3028 			if (error)
3029 				goto bad;
3030 			break;
3031 
3032 		case SO_LINGER:
3033 			error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
3034 			if (error)
3035 				goto bad;
3036 			if (l.l_linger < 0 ||
3037 			    l.l_linger > USHRT_MAX ||
3038 			    l.l_linger > (INT_MAX / hz)) {
3039 				error = EDOM;
3040 				goto bad;
3041 			}
3042 			SOCK_LOCK(so);
3043 			so->so_linger = l.l_linger;
3044 			if (l.l_onoff)
3045 				so->so_options |= SO_LINGER;
3046 			else
3047 				so->so_options &= ~SO_LINGER;
3048 			SOCK_UNLOCK(so);
3049 			break;
3050 
3051 		case SO_DEBUG:
3052 		case SO_KEEPALIVE:
3053 		case SO_DONTROUTE:
3054 		case SO_USELOOPBACK:
3055 		case SO_BROADCAST:
3056 		case SO_REUSEADDR:
3057 		case SO_REUSEPORT:
3058 		case SO_REUSEPORT_LB:
3059 		case SO_OOBINLINE:
3060 		case SO_TIMESTAMP:
3061 		case SO_BINTIME:
3062 		case SO_NOSIGPIPE:
3063 		case SO_NO_DDP:
3064 		case SO_NO_OFFLOAD:
3065 		case SO_RERROR:
3066 			error = sooptcopyin(sopt, &optval, sizeof optval,
3067 			    sizeof optval);
3068 			if (error)
3069 				goto bad;
3070 			SOCK_LOCK(so);
3071 			if (optval)
3072 				so->so_options |= sopt->sopt_name;
3073 			else
3074 				so->so_options &= ~sopt->sopt_name;
3075 			SOCK_UNLOCK(so);
3076 			break;
3077 
3078 		case SO_SETFIB:
3079 			error = sooptcopyin(sopt, &optval, sizeof optval,
3080 			    sizeof optval);
3081 			if (error)
3082 				goto bad;
3083 
3084 			if (optval < 0 || optval >= rt_numfibs) {
3085 				error = EINVAL;
3086 				goto bad;
3087 			}
3088 			if (((so->so_proto->pr_domain->dom_family == PF_INET) ||
3089 			   (so->so_proto->pr_domain->dom_family == PF_INET6) ||
3090 			   (so->so_proto->pr_domain->dom_family == PF_ROUTE)))
3091 				so->so_fibnum = optval;
3092 			else
3093 				so->so_fibnum = 0;
3094 			break;
3095 
3096 		case SO_USER_COOKIE:
3097 			error = sooptcopyin(sopt, &val32, sizeof val32,
3098 			    sizeof val32);
3099 			if (error)
3100 				goto bad;
3101 			so->so_user_cookie = val32;
3102 			break;
3103 
3104 		case SO_SNDBUF:
3105 		case SO_RCVBUF:
3106 		case SO_SNDLOWAT:
3107 		case SO_RCVLOWAT:
3108 			error = sooptcopyin(sopt, &optval, sizeof optval,
3109 			    sizeof optval);
3110 			if (error)
3111 				goto bad;
3112 
3113 			/*
3114 			 * Values < 1 make no sense for any of these options,
3115 			 * so disallow them.
3116 			 */
3117 			if (optval < 1) {
3118 				error = EINVAL;
3119 				goto bad;
3120 			}
3121 
3122 			error = sbsetopt(so, sopt->sopt_name, optval);
3123 			break;
3124 
3125 		case SO_SNDTIMEO:
3126 		case SO_RCVTIMEO:
3127 #ifdef COMPAT_FREEBSD32
3128 			if (SV_CURPROC_FLAG(SV_ILP32)) {
3129 				struct timeval32 tv32;
3130 
3131 				error = sooptcopyin(sopt, &tv32, sizeof tv32,
3132 				    sizeof tv32);
3133 				CP(tv32, tv, tv_sec);
3134 				CP(tv32, tv, tv_usec);
3135 			} else
3136 #endif
3137 				error = sooptcopyin(sopt, &tv, sizeof tv,
3138 				    sizeof tv);
3139 			if (error)
3140 				goto bad;
3141 			if (tv.tv_sec < 0 || tv.tv_usec < 0 ||
3142 			    tv.tv_usec >= 1000000) {
3143 				error = EDOM;
3144 				goto bad;
3145 			}
3146 			if (tv.tv_sec > INT32_MAX)
3147 				val = SBT_MAX;
3148 			else
3149 				val = tvtosbt(tv);
3150 			SOCK_LOCK(so);
3151 			valp = sopt->sopt_name == SO_SNDTIMEO ?
3152 			    (SOLISTENING(so) ? &so->sol_sbsnd_timeo :
3153 			    &so->so_snd.sb_timeo) :
3154 			    (SOLISTENING(so) ? &so->sol_sbrcv_timeo :
3155 			    &so->so_rcv.sb_timeo);
3156 			*valp = val;
3157 			SOCK_UNLOCK(so);
3158 			break;
3159 
3160 		case SO_LABEL:
3161 #ifdef MAC
3162 			error = sooptcopyin(sopt, &extmac, sizeof extmac,
3163 			    sizeof extmac);
3164 			if (error)
3165 				goto bad;
3166 			error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
3167 			    so, &extmac);
3168 #else
3169 			error = EOPNOTSUPP;
3170 #endif
3171 			break;
3172 
3173 		case SO_TS_CLOCK:
3174 			error = sooptcopyin(sopt, &optval, sizeof optval,
3175 			    sizeof optval);
3176 			if (error)
3177 				goto bad;
3178 			if (optval < 0 || optval > SO_TS_CLOCK_MAX) {
3179 				error = EINVAL;
3180 				goto bad;
3181 			}
3182 			so->so_ts_clock = optval;
3183 			break;
3184 
3185 		case SO_MAX_PACING_RATE:
3186 			error = sooptcopyin(sopt, &val32, sizeof(val32),
3187 			    sizeof(val32));
3188 			if (error)
3189 				goto bad;
3190 			so->so_max_pacing_rate = val32;
3191 			break;
3192 
3193 		default:
3194 			if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
3195 				error = hhook_run_socket(so, sopt,
3196 				    HHOOK_SOCKET_OPT);
3197 			else
3198 				error = ENOPROTOOPT;
3199 			break;
3200 		}
3201 		if (error == 0 && so->so_proto->pr_ctloutput != NULL)
3202 			(void)(*so->so_proto->pr_ctloutput)(so, sopt);
3203 	}
3204 bad:
3205 	CURVNET_RESTORE();
3206 	return (error);
3207 }
3208 
3209 /*
3210  * Helper routine for getsockopt.
3211  */
3212 int
3213 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
3214 {
3215 	int	error;
3216 	size_t	valsize;
3217 
3218 	error = 0;
3219 
3220 	/*
3221 	 * Documented get behavior is that we always return a value, possibly
3222 	 * truncated to fit in the user's buffer.  Traditional behavior is
3223 	 * that we always tell the user precisely how much we copied, rather
3224 	 * than something useful like the total amount we had available for
3225 	 * her.  Note that this interface is not idempotent; the entire
3226 	 * answer must be generated ahead of time.
3227 	 */
3228 	valsize = min(len, sopt->sopt_valsize);
3229 	sopt->sopt_valsize = valsize;
3230 	if (sopt->sopt_val != NULL) {
3231 		if (sopt->sopt_td != NULL)
3232 			error = copyout(buf, sopt->sopt_val, valsize);
3233 		else
3234 			bcopy(buf, sopt->sopt_val, valsize);
3235 	}
3236 	return (error);
3237 }
3238 
3239 int
3240 sogetopt(struct socket *so, struct sockopt *sopt)
3241 {
3242 	int	error, optval;
3243 	struct	linger l;
3244 	struct	timeval tv;
3245 #ifdef MAC
3246 	struct mac extmac;
3247 #endif
3248 
3249 	CURVNET_SET(so->so_vnet);
3250 	error = 0;
3251 	if (sopt->sopt_level != SOL_SOCKET) {
3252 		if (so->so_proto->pr_ctloutput != NULL)
3253 			error = (*so->so_proto->pr_ctloutput)(so, sopt);
3254 		else
3255 			error = ENOPROTOOPT;
3256 		CURVNET_RESTORE();
3257 		return (error);
3258 	} else {
3259 		switch (sopt->sopt_name) {
3260 		case SO_ACCEPTFILTER:
3261 			error = accept_filt_getopt(so, sopt);
3262 			break;
3263 
3264 		case SO_LINGER:
3265 			SOCK_LOCK(so);
3266 			l.l_onoff = so->so_options & SO_LINGER;
3267 			l.l_linger = so->so_linger;
3268 			SOCK_UNLOCK(so);
3269 			error = sooptcopyout(sopt, &l, sizeof l);
3270 			break;
3271 
3272 		case SO_USELOOPBACK:
3273 		case SO_DONTROUTE:
3274 		case SO_DEBUG:
3275 		case SO_KEEPALIVE:
3276 		case SO_REUSEADDR:
3277 		case SO_REUSEPORT:
3278 		case SO_REUSEPORT_LB:
3279 		case SO_BROADCAST:
3280 		case SO_OOBINLINE:
3281 		case SO_ACCEPTCONN:
3282 		case SO_TIMESTAMP:
3283 		case SO_BINTIME:
3284 		case SO_NOSIGPIPE:
3285 		case SO_NO_DDP:
3286 		case SO_NO_OFFLOAD:
3287 		case SO_RERROR:
3288 			optval = so->so_options & sopt->sopt_name;
3289 integer:
3290 			error = sooptcopyout(sopt, &optval, sizeof optval);
3291 			break;
3292 
3293 		case SO_DOMAIN:
3294 			optval = so->so_proto->pr_domain->dom_family;
3295 			goto integer;
3296 
3297 		case SO_TYPE:
3298 			optval = so->so_type;
3299 			goto integer;
3300 
3301 		case SO_PROTOCOL:
3302 			optval = so->so_proto->pr_protocol;
3303 			goto integer;
3304 
3305 		case SO_ERROR:
3306 			SOCK_LOCK(so);
3307 			if (so->so_error) {
3308 				optval = so->so_error;
3309 				so->so_error = 0;
3310 			} else {
3311 				optval = so->so_rerror;
3312 				so->so_rerror = 0;
3313 			}
3314 			SOCK_UNLOCK(so);
3315 			goto integer;
3316 
3317 		case SO_SNDBUF:
3318 			optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat :
3319 			    so->so_snd.sb_hiwat;
3320 			goto integer;
3321 
3322 		case SO_RCVBUF:
3323 			optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat :
3324 			    so->so_rcv.sb_hiwat;
3325 			goto integer;
3326 
3327 		case SO_SNDLOWAT:
3328 			optval = SOLISTENING(so) ? so->sol_sbsnd_lowat :
3329 			    so->so_snd.sb_lowat;
3330 			goto integer;
3331 
3332 		case SO_RCVLOWAT:
3333 			optval = SOLISTENING(so) ? so->sol_sbrcv_lowat :
3334 			    so->so_rcv.sb_lowat;
3335 			goto integer;
3336 
3337 		case SO_SNDTIMEO:
3338 		case SO_RCVTIMEO:
3339 			SOCK_LOCK(so);
3340 			tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ?
3341 			    (SOLISTENING(so) ? so->sol_sbsnd_timeo :
3342 			    so->so_snd.sb_timeo) :
3343 			    (SOLISTENING(so) ? so->sol_sbrcv_timeo :
3344 			    so->so_rcv.sb_timeo));
3345 			SOCK_UNLOCK(so);
3346 #ifdef COMPAT_FREEBSD32
3347 			if (SV_CURPROC_FLAG(SV_ILP32)) {
3348 				struct timeval32 tv32;
3349 
3350 				CP(tv, tv32, tv_sec);
3351 				CP(tv, tv32, tv_usec);
3352 				error = sooptcopyout(sopt, &tv32, sizeof tv32);
3353 			} else
3354 #endif
3355 				error = sooptcopyout(sopt, &tv, sizeof tv);
3356 			break;
3357 
3358 		case SO_LABEL:
3359 #ifdef MAC
3360 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
3361 			    sizeof(extmac));
3362 			if (error)
3363 				goto bad;
3364 			error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
3365 			    so, &extmac);
3366 			if (error)
3367 				goto bad;
3368 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
3369 #else
3370 			error = EOPNOTSUPP;
3371 #endif
3372 			break;
3373 
3374 		case SO_PEERLABEL:
3375 #ifdef MAC
3376 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
3377 			    sizeof(extmac));
3378 			if (error)
3379 				goto bad;
3380 			error = mac_getsockopt_peerlabel(
3381 			    sopt->sopt_td->td_ucred, so, &extmac);
3382 			if (error)
3383 				goto bad;
3384 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
3385 #else
3386 			error = EOPNOTSUPP;
3387 #endif
3388 			break;
3389 
3390 		case SO_LISTENQLIMIT:
3391 			optval = SOLISTENING(so) ? so->sol_qlimit : 0;
3392 			goto integer;
3393 
3394 		case SO_LISTENQLEN:
3395 			optval = SOLISTENING(so) ? so->sol_qlen : 0;
3396 			goto integer;
3397 
3398 		case SO_LISTENINCQLEN:
3399 			optval = SOLISTENING(so) ? so->sol_incqlen : 0;
3400 			goto integer;
3401 
3402 		case SO_TS_CLOCK:
3403 			optval = so->so_ts_clock;
3404 			goto integer;
3405 
3406 		case SO_MAX_PACING_RATE:
3407 			optval = so->so_max_pacing_rate;
3408 			goto integer;
3409 
3410 		default:
3411 			if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
3412 				error = hhook_run_socket(so, sopt,
3413 				    HHOOK_SOCKET_OPT);
3414 			else
3415 				error = ENOPROTOOPT;
3416 			break;
3417 		}
3418 	}
3419 #ifdef MAC
3420 bad:
3421 #endif
3422 	CURVNET_RESTORE();
3423 	return (error);
3424 }
3425 
3426 int
3427 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
3428 {
3429 	struct mbuf *m, *m_prev;
3430 	int sopt_size = sopt->sopt_valsize;
3431 
3432 	MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
3433 	if (m == NULL)
3434 		return ENOBUFS;
3435 	if (sopt_size > MLEN) {
3436 		MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT);
3437 		if ((m->m_flags & M_EXT) == 0) {
3438 			m_free(m);
3439 			return ENOBUFS;
3440 		}
3441 		m->m_len = min(MCLBYTES, sopt_size);
3442 	} else {
3443 		m->m_len = min(MLEN, sopt_size);
3444 	}
3445 	sopt_size -= m->m_len;
3446 	*mp = m;
3447 	m_prev = m;
3448 
3449 	while (sopt_size) {
3450 		MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
3451 		if (m == NULL) {
3452 			m_freem(*mp);
3453 			return ENOBUFS;
3454 		}
3455 		if (sopt_size > MLEN) {
3456 			MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK :
3457 			    M_NOWAIT);
3458 			if ((m->m_flags & M_EXT) == 0) {
3459 				m_freem(m);
3460 				m_freem(*mp);
3461 				return ENOBUFS;
3462 			}
3463 			m->m_len = min(MCLBYTES, sopt_size);
3464 		} else {
3465 			m->m_len = min(MLEN, sopt_size);
3466 		}
3467 		sopt_size -= m->m_len;
3468 		m_prev->m_next = m;
3469 		m_prev = m;
3470 	}
3471 	return (0);
3472 }
3473 
3474 int
3475 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
3476 {
3477 	struct mbuf *m0 = m;
3478 
3479 	if (sopt->sopt_val == NULL)
3480 		return (0);
3481 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
3482 		if (sopt->sopt_td != NULL) {
3483 			int error;
3484 
3485 			error = copyin(sopt->sopt_val, mtod(m, char *),
3486 			    m->m_len);
3487 			if (error != 0) {
3488 				m_freem(m0);
3489 				return(error);
3490 			}
3491 		} else
3492 			bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
3493 		sopt->sopt_valsize -= m->m_len;
3494 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
3495 		m = m->m_next;
3496 	}
3497 	if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
3498 		panic("ip6_sooptmcopyin");
3499 	return (0);
3500 }
3501 
3502 int
3503 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
3504 {
3505 	struct mbuf *m0 = m;
3506 	size_t valsize = 0;
3507 
3508 	if (sopt->sopt_val == NULL)
3509 		return (0);
3510 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
3511 		if (sopt->sopt_td != NULL) {
3512 			int error;
3513 
3514 			error = copyout(mtod(m, char *), sopt->sopt_val,
3515 			    m->m_len);
3516 			if (error != 0) {
3517 				m_freem(m0);
3518 				return(error);
3519 			}
3520 		} else
3521 			bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
3522 		sopt->sopt_valsize -= m->m_len;
3523 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
3524 		valsize += m->m_len;
3525 		m = m->m_next;
3526 	}
3527 	if (m != NULL) {
3528 		/* enough soopt buffer should be given from user-land */
3529 		m_freem(m0);
3530 		return(EINVAL);
3531 	}
3532 	sopt->sopt_valsize = valsize;
3533 	return (0);
3534 }
3535 
3536 /*
3537  * sohasoutofband(): protocol notifies socket layer of the arrival of new
3538  * out-of-band data, which will then notify socket consumers.
3539  */
3540 void
3541 sohasoutofband(struct socket *so)
3542 {
3543 
3544 	if (so->so_sigio != NULL)
3545 		pgsigio(&so->so_sigio, SIGURG, 0);
3546 	selwakeuppri(&so->so_rdsel, PSOCK);
3547 }
3548 
3549 int
3550 sopoll(struct socket *so, int events, struct ucred *active_cred,
3551     struct thread *td)
3552 {
3553 
3554 	/*
3555 	 * We do not need to set or assert curvnet as long as everyone uses
3556 	 * sopoll_generic().
3557 	 */
3558 	return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred,
3559 	    td));
3560 }
3561 
3562 int
3563 sopoll_generic(struct socket *so, int events, struct ucred *active_cred,
3564     struct thread *td)
3565 {
3566 	int revents;
3567 
3568 	SOCK_LOCK(so);
3569 	if (SOLISTENING(so)) {
3570 		if (!(events & (POLLIN | POLLRDNORM)))
3571 			revents = 0;
3572 		else if (!TAILQ_EMPTY(&so->sol_comp))
3573 			revents = events & (POLLIN | POLLRDNORM);
3574 		else if ((events & POLLINIGNEOF) == 0 && so->so_error)
3575 			revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP;
3576 		else {
3577 			selrecord(td, &so->so_rdsel);
3578 			revents = 0;
3579 		}
3580 	} else {
3581 		revents = 0;
3582 		SOCK_SENDBUF_LOCK(so);
3583 		SOCK_RECVBUF_LOCK(so);
3584 		if (events & (POLLIN | POLLRDNORM))
3585 			if (soreadabledata(so))
3586 				revents |= events & (POLLIN | POLLRDNORM);
3587 		if (events & (POLLOUT | POLLWRNORM))
3588 			if (sowriteable(so))
3589 				revents |= events & (POLLOUT | POLLWRNORM);
3590 		if (events & (POLLPRI | POLLRDBAND))
3591 			if (so->so_oobmark ||
3592 			    (so->so_rcv.sb_state & SBS_RCVATMARK))
3593 				revents |= events & (POLLPRI | POLLRDBAND);
3594 		if ((events & POLLINIGNEOF) == 0) {
3595 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3596 				revents |= events & (POLLIN | POLLRDNORM);
3597 				if (so->so_snd.sb_state & SBS_CANTSENDMORE)
3598 					revents |= POLLHUP;
3599 			}
3600 		}
3601 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
3602 			revents |= events & POLLRDHUP;
3603 		if (revents == 0) {
3604 			if (events &
3605 			    (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND | POLLRDHUP)) {
3606 				selrecord(td, &so->so_rdsel);
3607 				so->so_rcv.sb_flags |= SB_SEL;
3608 			}
3609 			if (events & (POLLOUT | POLLWRNORM)) {
3610 				selrecord(td, &so->so_wrsel);
3611 				so->so_snd.sb_flags |= SB_SEL;
3612 			}
3613 		}
3614 		SOCK_RECVBUF_UNLOCK(so);
3615 		SOCK_SENDBUF_UNLOCK(so);
3616 	}
3617 	SOCK_UNLOCK(so);
3618 	return (revents);
3619 }
3620 
3621 int
3622 soo_kqfilter(struct file *fp, struct knote *kn)
3623 {
3624 	struct socket *so = kn->kn_fp->f_data;
3625 	struct sockbuf *sb;
3626 	sb_which which;
3627 	struct knlist *knl;
3628 
3629 	switch (kn->kn_filter) {
3630 	case EVFILT_READ:
3631 		kn->kn_fop = &soread_filtops;
3632 		knl = &so->so_rdsel.si_note;
3633 		sb = &so->so_rcv;
3634 		which = SO_RCV;
3635 		break;
3636 	case EVFILT_WRITE:
3637 		kn->kn_fop = &sowrite_filtops;
3638 		knl = &so->so_wrsel.si_note;
3639 		sb = &so->so_snd;
3640 		which = SO_SND;
3641 		break;
3642 	case EVFILT_EMPTY:
3643 		kn->kn_fop = &soempty_filtops;
3644 		knl = &so->so_wrsel.si_note;
3645 		sb = &so->so_snd;
3646 		which = SO_SND;
3647 		break;
3648 	default:
3649 		return (EINVAL);
3650 	}
3651 
3652 	SOCK_LOCK(so);
3653 	if (SOLISTENING(so)) {
3654 		knlist_add(knl, kn, 1);
3655 	} else {
3656 		SOCK_BUF_LOCK(so, which);
3657 		knlist_add(knl, kn, 1);
3658 		sb->sb_flags |= SB_KNOTE;
3659 		SOCK_BUF_UNLOCK(so, which);
3660 	}
3661 	SOCK_UNLOCK(so);
3662 	return (0);
3663 }
3664 
3665 /*
3666  * Some routines that return EOPNOTSUPP for entry points that are not
3667  * supported by a protocol.  Fill in as needed.
3668  */
3669 int
3670 pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
3671 {
3672 
3673 	return EOPNOTSUPP;
3674 }
3675 
3676 int
3677 pru_aio_queue_notsupp(struct socket *so, struct kaiocb *job)
3678 {
3679 
3680 	return EOPNOTSUPP;
3681 }
3682 
3683 int
3684 pru_attach_notsupp(struct socket *so, int proto, struct thread *td)
3685 {
3686 
3687 	return EOPNOTSUPP;
3688 }
3689 
3690 int
3691 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
3692 {
3693 
3694 	return EOPNOTSUPP;
3695 }
3696 
3697 int
3698 pru_bindat_notsupp(int fd, struct socket *so, struct sockaddr *nam,
3699     struct thread *td)
3700 {
3701 
3702 	return EOPNOTSUPP;
3703 }
3704 
3705 int
3706 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
3707 {
3708 
3709 	return EOPNOTSUPP;
3710 }
3711 
3712 int
3713 pru_connectat_notsupp(int fd, struct socket *so, struct sockaddr *nam,
3714     struct thread *td)
3715 {
3716 
3717 	return EOPNOTSUPP;
3718 }
3719 
3720 int
3721 pru_connect2_notsupp(struct socket *so1, struct socket *so2)
3722 {
3723 
3724 	return EOPNOTSUPP;
3725 }
3726 
3727 int
3728 pru_control_notsupp(struct socket *so, u_long cmd, void *data,
3729     struct ifnet *ifp, struct thread *td)
3730 {
3731 
3732 	return EOPNOTSUPP;
3733 }
3734 
3735 int
3736 pru_disconnect_notsupp(struct socket *so)
3737 {
3738 
3739 	return EOPNOTSUPP;
3740 }
3741 
3742 int
3743 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td)
3744 {
3745 
3746 	return EOPNOTSUPP;
3747 }
3748 
3749 int
3750 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam)
3751 {
3752 
3753 	return EOPNOTSUPP;
3754 }
3755 
3756 int
3757 pru_rcvd_notsupp(struct socket *so, int flags)
3758 {
3759 
3760 	return EOPNOTSUPP;
3761 }
3762 
3763 int
3764 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
3765 {
3766 
3767 	return EOPNOTSUPP;
3768 }
3769 
3770 int
3771 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m,
3772     struct sockaddr *addr, struct mbuf *control, struct thread *td)
3773 {
3774 
3775 	if (control != NULL)
3776 		m_freem(control);
3777 	if ((flags & PRUS_NOTREADY) == 0)
3778 		m_freem(m);
3779 	return (EOPNOTSUPP);
3780 }
3781 
3782 int
3783 pru_ready_notsupp(struct socket *so, struct mbuf *m, int count)
3784 {
3785 
3786 	return (EOPNOTSUPP);
3787 }
3788 
3789 /*
3790  * This isn't really a ``null'' operation, but it's the default one and
3791  * doesn't do anything destructive.
3792  */
3793 int
3794 pru_sense_null(struct socket *so, struct stat *sb)
3795 {
3796 
3797 	sb->st_blksize = so->so_snd.sb_hiwat;
3798 	return 0;
3799 }
3800 
3801 int
3802 pru_shutdown_notsupp(struct socket *so)
3803 {
3804 
3805 	return EOPNOTSUPP;
3806 }
3807 
3808 int
3809 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam)
3810 {
3811 
3812 	return EOPNOTSUPP;
3813 }
3814 
3815 int
3816 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio,
3817     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
3818 {
3819 
3820 	return EOPNOTSUPP;
3821 }
3822 
3823 int
3824 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr,
3825     struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3826 {
3827 
3828 	return EOPNOTSUPP;
3829 }
3830 
3831 int
3832 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred,
3833     struct thread *td)
3834 {
3835 
3836 	return EOPNOTSUPP;
3837 }
3838 
3839 static void
3840 filt_sordetach(struct knote *kn)
3841 {
3842 	struct socket *so = kn->kn_fp->f_data;
3843 
3844 	so_rdknl_lock(so);
3845 	knlist_remove(&so->so_rdsel.si_note, kn, 1);
3846 	if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note))
3847 		so->so_rcv.sb_flags &= ~SB_KNOTE;
3848 	so_rdknl_unlock(so);
3849 }
3850 
3851 /*ARGSUSED*/
3852 static int
3853 filt_soread(struct knote *kn, long hint)
3854 {
3855 	struct socket *so;
3856 
3857 	so = kn->kn_fp->f_data;
3858 
3859 	if (SOLISTENING(so)) {
3860 		SOCK_LOCK_ASSERT(so);
3861 		kn->kn_data = so->sol_qlen;
3862 		if (so->so_error) {
3863 			kn->kn_flags |= EV_EOF;
3864 			kn->kn_fflags = so->so_error;
3865 			return (1);
3866 		}
3867 		return (!TAILQ_EMPTY(&so->sol_comp));
3868 	}
3869 
3870 	SOCK_RECVBUF_LOCK_ASSERT(so);
3871 
3872 	kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl;
3873 	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3874 		kn->kn_flags |= EV_EOF;
3875 		kn->kn_fflags = so->so_error;
3876 		return (1);
3877 	} else if (so->so_error || so->so_rerror)
3878 		return (1);
3879 
3880 	if (kn->kn_sfflags & NOTE_LOWAT) {
3881 		if (kn->kn_data >= kn->kn_sdata)
3882 			return (1);
3883 	} else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat)
3884 		return (1);
3885 
3886 	/* This hook returning non-zero indicates an event, not error */
3887 	return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD));
3888 }
3889 
3890 static void
3891 filt_sowdetach(struct knote *kn)
3892 {
3893 	struct socket *so = kn->kn_fp->f_data;
3894 
3895 	so_wrknl_lock(so);
3896 	knlist_remove(&so->so_wrsel.si_note, kn, 1);
3897 	if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note))
3898 		so->so_snd.sb_flags &= ~SB_KNOTE;
3899 	so_wrknl_unlock(so);
3900 }
3901 
3902 /*ARGSUSED*/
3903 static int
3904 filt_sowrite(struct knote *kn, long hint)
3905 {
3906 	struct socket *so;
3907 
3908 	so = kn->kn_fp->f_data;
3909 
3910 	if (SOLISTENING(so))
3911 		return (0);
3912 
3913 	SOCK_SENDBUF_LOCK_ASSERT(so);
3914 	kn->kn_data = sbspace(&so->so_snd);
3915 
3916 	hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE);
3917 
3918 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
3919 		kn->kn_flags |= EV_EOF;
3920 		kn->kn_fflags = so->so_error;
3921 		return (1);
3922 	} else if (so->so_error)	/* temporary udp error */
3923 		return (1);
3924 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
3925 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
3926 		return (0);
3927 	else if (kn->kn_sfflags & NOTE_LOWAT)
3928 		return (kn->kn_data >= kn->kn_sdata);
3929 	else
3930 		return (kn->kn_data >= so->so_snd.sb_lowat);
3931 }
3932 
3933 static int
3934 filt_soempty(struct knote *kn, long hint)
3935 {
3936 	struct socket *so;
3937 
3938 	so = kn->kn_fp->f_data;
3939 
3940 	if (SOLISTENING(so))
3941 		return (1);
3942 
3943 	SOCK_SENDBUF_LOCK_ASSERT(so);
3944 	kn->kn_data = sbused(&so->so_snd);
3945 
3946 	if (kn->kn_data == 0)
3947 		return (1);
3948 	else
3949 		return (0);
3950 }
3951 
3952 int
3953 socheckuid(struct socket *so, uid_t uid)
3954 {
3955 
3956 	if (so == NULL)
3957 		return (EPERM);
3958 	if (so->so_cred->cr_uid != uid)
3959 		return (EPERM);
3960 	return (0);
3961 }
3962 
3963 /*
3964  * These functions are used by protocols to notify the socket layer (and its
3965  * consumers) of state changes in the sockets driven by protocol-side events.
3966  */
3967 
3968 /*
3969  * Procedures to manipulate state flags of socket and do appropriate wakeups.
3970  *
3971  * Normal sequence from the active (originating) side is that
3972  * soisconnecting() is called during processing of connect() call, resulting
3973  * in an eventual call to soisconnected() if/when the connection is
3974  * established.  When the connection is torn down soisdisconnecting() is
3975  * called during processing of disconnect() call, and soisdisconnected() is
3976  * called when the connection to the peer is totally severed.  The semantics
3977  * of these routines are such that connectionless protocols can call
3978  * soisconnected() and soisdisconnected() only, bypassing the in-progress
3979  * calls when setting up a ``connection'' takes no time.
3980  *
3981  * From the passive side, a socket is created with two queues of sockets:
3982  * so_incomp for connections in progress and so_comp for connections already
3983  * made and awaiting user acceptance.  As a protocol is preparing incoming
3984  * connections, it creates a socket structure queued on so_incomp by calling
3985  * sonewconn().  When the connection is established, soisconnected() is
3986  * called, and transfers the socket structure to so_comp, making it available
3987  * to accept().
3988  *
3989  * If a socket is closed with sockets on either so_incomp or so_comp, these
3990  * sockets are dropped.
3991  *
3992  * If higher-level protocols are implemented in the kernel, the wakeups done
3993  * here will sometimes cause software-interrupt process scheduling.
3994  */
3995 void
3996 soisconnecting(struct socket *so)
3997 {
3998 
3999 	SOCK_LOCK(so);
4000 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
4001 	so->so_state |= SS_ISCONNECTING;
4002 	SOCK_UNLOCK(so);
4003 }
4004 
4005 void
4006 soisconnected(struct socket *so)
4007 {
4008 	bool last __diagused;
4009 
4010 	SOCK_LOCK(so);
4011 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
4012 	so->so_state |= SS_ISCONNECTED;
4013 
4014 	if (so->so_qstate == SQ_INCOMP) {
4015 		struct socket *head = so->so_listen;
4016 		int ret;
4017 
4018 		KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so));
4019 		/*
4020 		 * Promoting a socket from incomplete queue to complete, we
4021 		 * need to go through reverse order of locking.  We first do
4022 		 * trylock, and if that doesn't succeed, we go the hard way
4023 		 * leaving a reference and rechecking consistency after proper
4024 		 * locking.
4025 		 */
4026 		if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) {
4027 			soref(head);
4028 			SOCK_UNLOCK(so);
4029 			SOLISTEN_LOCK(head);
4030 			SOCK_LOCK(so);
4031 			if (__predict_false(head != so->so_listen)) {
4032 				/*
4033 				 * The socket went off the listen queue,
4034 				 * should be lost race to close(2) of sol.
4035 				 * The socket is about to soabort().
4036 				 */
4037 				SOCK_UNLOCK(so);
4038 				sorele_locked(head);
4039 				return;
4040 			}
4041 			last = refcount_release(&head->so_count);
4042 			KASSERT(!last, ("%s: released last reference for %p",
4043 			    __func__, head));
4044 		}
4045 again:
4046 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
4047 			TAILQ_REMOVE(&head->sol_incomp, so, so_list);
4048 			head->sol_incqlen--;
4049 			TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
4050 			head->sol_qlen++;
4051 			so->so_qstate = SQ_COMP;
4052 			SOCK_UNLOCK(so);
4053 			solisten_wakeup(head);	/* unlocks */
4054 		} else {
4055 			SOCK_RECVBUF_LOCK(so);
4056 			soupcall_set(so, SO_RCV,
4057 			    head->sol_accept_filter->accf_callback,
4058 			    head->sol_accept_filter_arg);
4059 			so->so_options &= ~SO_ACCEPTFILTER;
4060 			ret = head->sol_accept_filter->accf_callback(so,
4061 			    head->sol_accept_filter_arg, M_NOWAIT);
4062 			if (ret == SU_ISCONNECTED) {
4063 				soupcall_clear(so, SO_RCV);
4064 				SOCK_RECVBUF_UNLOCK(so);
4065 				goto again;
4066 			}
4067 			SOCK_RECVBUF_UNLOCK(so);
4068 			SOCK_UNLOCK(so);
4069 			SOLISTEN_UNLOCK(head);
4070 		}
4071 		return;
4072 	}
4073 	SOCK_UNLOCK(so);
4074 	wakeup(&so->so_timeo);
4075 	sorwakeup(so);
4076 	sowwakeup(so);
4077 }
4078 
4079 void
4080 soisdisconnecting(struct socket *so)
4081 {
4082 
4083 	SOCK_LOCK(so);
4084 	so->so_state &= ~SS_ISCONNECTING;
4085 	so->so_state |= SS_ISDISCONNECTING;
4086 
4087 	if (!SOLISTENING(so)) {
4088 		SOCK_RECVBUF_LOCK(so);
4089 		socantrcvmore_locked(so);
4090 		SOCK_SENDBUF_LOCK(so);
4091 		socantsendmore_locked(so);
4092 	}
4093 	SOCK_UNLOCK(so);
4094 	wakeup(&so->so_timeo);
4095 }
4096 
4097 void
4098 soisdisconnected(struct socket *so)
4099 {
4100 
4101 	SOCK_LOCK(so);
4102 
4103 	/*
4104 	 * There is at least one reader of so_state that does not
4105 	 * acquire socket lock, namely soreceive_generic().  Ensure
4106 	 * that it never sees all flags that track connection status
4107 	 * cleared, by ordering the update with a barrier semantic of
4108 	 * our release thread fence.
4109 	 */
4110 	so->so_state |= SS_ISDISCONNECTED;
4111 	atomic_thread_fence_rel();
4112 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
4113 
4114 	if (!SOLISTENING(so)) {
4115 		SOCK_UNLOCK(so);
4116 		SOCK_RECVBUF_LOCK(so);
4117 		socantrcvmore_locked(so);
4118 		SOCK_SENDBUF_LOCK(so);
4119 		sbdrop_locked(&so->so_snd, sbused(&so->so_snd));
4120 		socantsendmore_locked(so);
4121 	} else
4122 		SOCK_UNLOCK(so);
4123 	wakeup(&so->so_timeo);
4124 }
4125 
4126 int
4127 soiolock(struct socket *so, struct sx *sx, int flags)
4128 {
4129 	int error;
4130 
4131 	KASSERT((flags & SBL_VALID) == flags,
4132 	    ("soiolock: invalid flags %#x", flags));
4133 
4134 	if ((flags & SBL_WAIT) != 0) {
4135 		if ((flags & SBL_NOINTR) != 0) {
4136 			sx_xlock(sx);
4137 		} else {
4138 			error = sx_xlock_sig(sx);
4139 			if (error != 0)
4140 				return (error);
4141 		}
4142 	} else if (!sx_try_xlock(sx)) {
4143 		return (EWOULDBLOCK);
4144 	}
4145 
4146 	if (__predict_false(SOLISTENING(so))) {
4147 		sx_xunlock(sx);
4148 		return (ENOTCONN);
4149 	}
4150 	return (0);
4151 }
4152 
4153 void
4154 soiounlock(struct sx *sx)
4155 {
4156 	sx_xunlock(sx);
4157 }
4158 
4159 /*
4160  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
4161  */
4162 struct sockaddr *
4163 sodupsockaddr(const struct sockaddr *sa, int mflags)
4164 {
4165 	struct sockaddr *sa2;
4166 
4167 	sa2 = malloc(sa->sa_len, M_SONAME, mflags);
4168 	if (sa2)
4169 		bcopy(sa, sa2, sa->sa_len);
4170 	return sa2;
4171 }
4172 
4173 /*
4174  * Register per-socket destructor.
4175  */
4176 void
4177 sodtor_set(struct socket *so, so_dtor_t *func)
4178 {
4179 
4180 	SOCK_LOCK_ASSERT(so);
4181 	so->so_dtor = func;
4182 }
4183 
4184 /*
4185  * Register per-socket buffer upcalls.
4186  */
4187 void
4188 soupcall_set(struct socket *so, sb_which which, so_upcall_t func, void *arg)
4189 {
4190 	struct sockbuf *sb;
4191 
4192 	KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4193 
4194 	switch (which) {
4195 	case SO_RCV:
4196 		sb = &so->so_rcv;
4197 		break;
4198 	case SO_SND:
4199 		sb = &so->so_snd;
4200 		break;
4201 	}
4202 	SOCK_BUF_LOCK_ASSERT(so, which);
4203 	sb->sb_upcall = func;
4204 	sb->sb_upcallarg = arg;
4205 	sb->sb_flags |= SB_UPCALL;
4206 }
4207 
4208 void
4209 soupcall_clear(struct socket *so, sb_which which)
4210 {
4211 	struct sockbuf *sb;
4212 
4213 	KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4214 
4215 	switch (which) {
4216 	case SO_RCV:
4217 		sb = &so->so_rcv;
4218 		break;
4219 	case SO_SND:
4220 		sb = &so->so_snd;
4221 		break;
4222 	}
4223 	SOCK_BUF_LOCK_ASSERT(so, which);
4224 	KASSERT(sb->sb_upcall != NULL,
4225 	    ("%s: so %p no upcall to clear", __func__, so));
4226 	sb->sb_upcall = NULL;
4227 	sb->sb_upcallarg = NULL;
4228 	sb->sb_flags &= ~SB_UPCALL;
4229 }
4230 
4231 void
4232 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg)
4233 {
4234 
4235 	SOLISTEN_LOCK_ASSERT(so);
4236 	so->sol_upcall = func;
4237 	so->sol_upcallarg = arg;
4238 }
4239 
4240 static void
4241 so_rdknl_lock(void *arg)
4242 {
4243 	struct socket *so = arg;
4244 
4245 retry:
4246 	if (SOLISTENING(so)) {
4247 		SOLISTEN_LOCK(so);
4248 	} else {
4249 		SOCK_RECVBUF_LOCK(so);
4250 		if (__predict_false(SOLISTENING(so))) {
4251 			SOCK_RECVBUF_UNLOCK(so);
4252 			goto retry;
4253 		}
4254 	}
4255 }
4256 
4257 static void
4258 so_rdknl_unlock(void *arg)
4259 {
4260 	struct socket *so = arg;
4261 
4262 	if (SOLISTENING(so))
4263 		SOLISTEN_UNLOCK(so);
4264 	else
4265 		SOCK_RECVBUF_UNLOCK(so);
4266 }
4267 
4268 static void
4269 so_rdknl_assert_lock(void *arg, int what)
4270 {
4271 	struct socket *so = arg;
4272 
4273 	if (what == LA_LOCKED) {
4274 		if (SOLISTENING(so))
4275 			SOLISTEN_LOCK_ASSERT(so);
4276 		else
4277 			SOCK_RECVBUF_LOCK_ASSERT(so);
4278 	} else {
4279 		if (SOLISTENING(so))
4280 			SOLISTEN_UNLOCK_ASSERT(so);
4281 		else
4282 			SOCK_RECVBUF_UNLOCK_ASSERT(so);
4283 	}
4284 }
4285 
4286 static void
4287 so_wrknl_lock(void *arg)
4288 {
4289 	struct socket *so = arg;
4290 
4291 retry:
4292 	if (SOLISTENING(so)) {
4293 		SOLISTEN_LOCK(so);
4294 	} else {
4295 		SOCK_SENDBUF_LOCK(so);
4296 		if (__predict_false(SOLISTENING(so))) {
4297 			SOCK_SENDBUF_UNLOCK(so);
4298 			goto retry;
4299 		}
4300 	}
4301 }
4302 
4303 static void
4304 so_wrknl_unlock(void *arg)
4305 {
4306 	struct socket *so = arg;
4307 
4308 	if (SOLISTENING(so))
4309 		SOLISTEN_UNLOCK(so);
4310 	else
4311 		SOCK_SENDBUF_UNLOCK(so);
4312 }
4313 
4314 static void
4315 so_wrknl_assert_lock(void *arg, int what)
4316 {
4317 	struct socket *so = arg;
4318 
4319 	if (what == LA_LOCKED) {
4320 		if (SOLISTENING(so))
4321 			SOLISTEN_LOCK_ASSERT(so);
4322 		else
4323 			SOCK_SENDBUF_LOCK_ASSERT(so);
4324 	} else {
4325 		if (SOLISTENING(so))
4326 			SOLISTEN_UNLOCK_ASSERT(so);
4327 		else
4328 			SOCK_SENDBUF_UNLOCK_ASSERT(so);
4329 	}
4330 }
4331 
4332 /*
4333  * Create an external-format (``xsocket'') structure using the information in
4334  * the kernel-format socket structure pointed to by so.  This is done to
4335  * reduce the spew of irrelevant information over this interface, to isolate
4336  * user code from changes in the kernel structure, and potentially to provide
4337  * information-hiding if we decide that some of this information should be
4338  * hidden from users.
4339  */
4340 void
4341 sotoxsocket(struct socket *so, struct xsocket *xso)
4342 {
4343 
4344 	bzero(xso, sizeof(*xso));
4345 	xso->xso_len = sizeof *xso;
4346 	xso->xso_so = (uintptr_t)so;
4347 	xso->so_type = so->so_type;
4348 	xso->so_options = so->so_options;
4349 	xso->so_linger = so->so_linger;
4350 	xso->so_state = so->so_state;
4351 	xso->so_pcb = (uintptr_t)so->so_pcb;
4352 	xso->xso_protocol = so->so_proto->pr_protocol;
4353 	xso->xso_family = so->so_proto->pr_domain->dom_family;
4354 	xso->so_timeo = so->so_timeo;
4355 	xso->so_error = so->so_error;
4356 	xso->so_uid = so->so_cred->cr_uid;
4357 	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
4358 	if (SOLISTENING(so)) {
4359 		xso->so_qlen = so->sol_qlen;
4360 		xso->so_incqlen = so->sol_incqlen;
4361 		xso->so_qlimit = so->sol_qlimit;
4362 		xso->so_oobmark = 0;
4363 	} else {
4364 		xso->so_state |= so->so_qstate;
4365 		xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0;
4366 		xso->so_oobmark = so->so_oobmark;
4367 		sbtoxsockbuf(&so->so_snd, &xso->so_snd);
4368 		sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
4369 	}
4370 }
4371 
4372 struct sockbuf *
4373 so_sockbuf_rcv(struct socket *so)
4374 {
4375 
4376 	return (&so->so_rcv);
4377 }
4378 
4379 struct sockbuf *
4380 so_sockbuf_snd(struct socket *so)
4381 {
4382 
4383 	return (&so->so_snd);
4384 }
4385 
4386 int
4387 so_state_get(const struct socket *so)
4388 {
4389 
4390 	return (so->so_state);
4391 }
4392 
4393 void
4394 so_state_set(struct socket *so, int val)
4395 {
4396 
4397 	so->so_state = val;
4398 }
4399 
4400 int
4401 so_options_get(const struct socket *so)
4402 {
4403 
4404 	return (so->so_options);
4405 }
4406 
4407 void
4408 so_options_set(struct socket *so, int val)
4409 {
4410 
4411 	so->so_options = val;
4412 }
4413 
4414 int
4415 so_error_get(const struct socket *so)
4416 {
4417 
4418 	return (so->so_error);
4419 }
4420 
4421 void
4422 so_error_set(struct socket *so, int val)
4423 {
4424 
4425 	so->so_error = val;
4426 }
4427 
4428 int
4429 so_linger_get(const struct socket *so)
4430 {
4431 
4432 	return (so->so_linger);
4433 }
4434 
4435 void
4436 so_linger_set(struct socket *so, int val)
4437 {
4438 
4439 	KASSERT(val >= 0 && val <= USHRT_MAX && val <= (INT_MAX / hz),
4440 	    ("%s: val %d out of range", __func__, val));
4441 
4442 	so->so_linger = val;
4443 }
4444 
4445 struct protosw *
4446 so_protosw_get(const struct socket *so)
4447 {
4448 
4449 	return (so->so_proto);
4450 }
4451 
4452 void
4453 so_protosw_set(struct socket *so, struct protosw *val)
4454 {
4455 
4456 	so->so_proto = val;
4457 }
4458 
4459 void
4460 so_sorwakeup(struct socket *so)
4461 {
4462 
4463 	sorwakeup(so);
4464 }
4465 
4466 void
4467 so_sowwakeup(struct socket *so)
4468 {
4469 
4470 	sowwakeup(so);
4471 }
4472 
4473 void
4474 so_sorwakeup_locked(struct socket *so)
4475 {
4476 
4477 	sorwakeup_locked(so);
4478 }
4479 
4480 void
4481 so_sowwakeup_locked(struct socket *so)
4482 {
4483 
4484 	sowwakeup_locked(so);
4485 }
4486 
4487 void
4488 so_lock(struct socket *so)
4489 {
4490 
4491 	SOCK_LOCK(so);
4492 }
4493 
4494 void
4495 so_unlock(struct socket *so)
4496 {
4497 
4498 	SOCK_UNLOCK(so);
4499 }
4500