xref: /freebsd/sys/kern/uipc_socket.c (revision 4ed925457ab06e83238a5db33e89ccc94b99a713)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.
4  * Copyright (c) 2004 The FreeBSD Foundation
5  * Copyright (c) 2004-2008 Robert N. M. Watson
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)uipc_socket.c	8.3 (Berkeley) 4/15/94
33  */
34 
35 /*
36  * Comments on the socket life cycle:
37  *
38  * soalloc() sets of socket layer state for a socket, called only by
39  * socreate() and sonewconn().  Socket layer private.
40  *
41  * sodealloc() tears down socket layer state for a socket, called only by
42  * sofree() and sonewconn().  Socket layer private.
43  *
44  * pru_attach() associates protocol layer state with an allocated socket;
45  * called only once, may fail, aborting socket allocation.  This is called
46  * from socreate() and sonewconn().  Socket layer private.
47  *
48  * pru_detach() disassociates protocol layer state from an attached socket,
49  * and will be called exactly once for sockets in which pru_attach() has
50  * been successfully called.  If pru_attach() returned an error,
51  * pru_detach() will not be called.  Socket layer private.
52  *
53  * pru_abort() and pru_close() notify the protocol layer that the last
54  * consumer of a socket is starting to tear down the socket, and that the
55  * protocol should terminate the connection.  Historically, pru_abort() also
56  * detached protocol state from the socket state, but this is no longer the
57  * case.
58  *
59  * socreate() creates a socket and attaches protocol state.  This is a public
60  * interface that may be used by socket layer consumers to create new
61  * sockets.
62  *
63  * sonewconn() creates a socket and attaches protocol state.  This is a
64  * public interface  that may be used by protocols to create new sockets when
65  * a new connection is received and will be available for accept() on a
66  * listen socket.
67  *
68  * soclose() destroys a socket after possibly waiting for it to disconnect.
69  * This is a public interface that socket consumers should use to close and
70  * release a socket when done with it.
71  *
72  * soabort() destroys a socket without waiting for it to disconnect (used
73  * only for incoming connections that are already partially or fully
74  * connected).  This is used internally by the socket layer when clearing
75  * listen socket queues (due to overflow or close on the listen socket), but
76  * is also a public interface protocols may use to abort connections in
77  * their incomplete listen queues should they no longer be required.  Sockets
78  * placed in completed connection listen queues should not be aborted for
79  * reasons described in the comment above the soclose() implementation.  This
80  * is not a general purpose close routine, and except in the specific
81  * circumstances described here, should not be used.
82  *
83  * sofree() will free a socket and its protocol state if all references on
84  * the socket have been released, and is the public interface to attempt to
85  * free a socket when a reference is removed.  This is a socket layer private
86  * interface.
87  *
88  * NOTE: In addition to socreate() and soclose(), which provide a single
89  * socket reference to the consumer to be managed as required, there are two
90  * calls to explicitly manage socket references, soref(), and sorele().
91  * Currently, these are generally required only when transitioning a socket
92  * from a listen queue to a file descriptor, in order to prevent garbage
93  * collection of the socket at an untimely moment.  For a number of reasons,
94  * these interfaces are not preferred, and should be avoided.
95  */
96 
97 #include <sys/cdefs.h>
98 __FBSDID("$FreeBSD$");
99 
100 #include "opt_inet.h"
101 #include "opt_inet6.h"
102 #include "opt_zero.h"
103 #include "opt_compat.h"
104 
105 #include <sys/param.h>
106 #include <sys/systm.h>
107 #include <sys/fcntl.h>
108 #include <sys/limits.h>
109 #include <sys/lock.h>
110 #include <sys/mac.h>
111 #include <sys/malloc.h>
112 #include <sys/mbuf.h>
113 #include <sys/mutex.h>
114 #include <sys/domain.h>
115 #include <sys/file.h>			/* for struct knote */
116 #include <sys/kernel.h>
117 #include <sys/event.h>
118 #include <sys/eventhandler.h>
119 #include <sys/poll.h>
120 #include <sys/proc.h>
121 #include <sys/protosw.h>
122 #include <sys/socket.h>
123 #include <sys/socketvar.h>
124 #include <sys/resourcevar.h>
125 #include <net/route.h>
126 #include <sys/signalvar.h>
127 #include <sys/stat.h>
128 #include <sys/sx.h>
129 #include <sys/sysctl.h>
130 #include <sys/uio.h>
131 #include <sys/jail.h>
132 
133 #include <net/vnet.h>
134 
135 #include <security/mac/mac_framework.h>
136 
137 #include <vm/uma.h>
138 
139 #ifdef COMPAT_IA32
140 #include <sys/mount.h>
141 #include <sys/sysent.h>
142 #include <compat/freebsd32/freebsd32.h>
143 #endif
144 
145 static int	soreceive_rcvoob(struct socket *so, struct uio *uio,
146 		    int flags);
147 
148 static void	filt_sordetach(struct knote *kn);
149 static int	filt_soread(struct knote *kn, long hint);
150 static void	filt_sowdetach(struct knote *kn);
151 static int	filt_sowrite(struct knote *kn, long hint);
152 static int	filt_solisten(struct knote *kn, long hint);
153 
154 static struct filterops solisten_filtops = {
155 	.f_isfd = 1,
156 	.f_detach = filt_sordetach,
157 	.f_event = filt_solisten,
158 };
159 static struct filterops soread_filtops = {
160 	.f_isfd = 1,
161 	.f_detach = filt_sordetach,
162 	.f_event = filt_soread,
163 };
164 static struct filterops sowrite_filtops = {
165 	.f_isfd = 1,
166 	.f_detach = filt_sowdetach,
167 	.f_event = filt_sowrite,
168 };
169 
170 uma_zone_t socket_zone;
171 so_gen_t	so_gencnt;	/* generation count for sockets */
172 
173 int	maxsockets;
174 
175 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
176 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
177 
178 static int somaxconn = SOMAXCONN;
179 static int sysctl_somaxconn(SYSCTL_HANDLER_ARGS);
180 /* XXX: we dont have SYSCTL_USHORT */
181 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLTYPE_UINT | CTLFLAG_RW,
182     0, sizeof(int), sysctl_somaxconn, "I", "Maximum pending socket connection "
183     "queue size");
184 static int numopensockets;
185 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,
186     &numopensockets, 0, "Number of open sockets");
187 #ifdef ZERO_COPY_SOCKETS
188 /* These aren't static because they're used in other files. */
189 int so_zero_copy_send = 1;
190 int so_zero_copy_receive = 1;
191 SYSCTL_NODE(_kern_ipc, OID_AUTO, zero_copy, CTLFLAG_RD, 0,
192     "Zero copy controls");
193 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, receive, CTLFLAG_RW,
194     &so_zero_copy_receive, 0, "Enable zero copy receive");
195 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, send, CTLFLAG_RW,
196     &so_zero_copy_send, 0, "Enable zero copy send");
197 #endif /* ZERO_COPY_SOCKETS */
198 
199 /*
200  * accept_mtx locks down per-socket fields relating to accept queues.  See
201  * socketvar.h for an annotation of the protected fields of struct socket.
202  */
203 struct mtx accept_mtx;
204 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF);
205 
206 /*
207  * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
208  * so_gencnt field.
209  */
210 static struct mtx so_global_mtx;
211 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
212 
213 /*
214  * General IPC sysctl name space, used by sockets and a variety of other IPC
215  * types.
216  */
217 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
218 
219 /*
220  * Sysctl to get and set the maximum global sockets limit.  Notify protocols
221  * of the change so that they can update their dependent limits as required.
222  */
223 static int
224 sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
225 {
226 	int error, newmaxsockets;
227 
228 	newmaxsockets = maxsockets;
229 	error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
230 	if (error == 0 && req->newptr) {
231 		if (newmaxsockets > maxsockets) {
232 			maxsockets = newmaxsockets;
233 			if (maxsockets > ((maxfiles / 4) * 3)) {
234 				maxfiles = (maxsockets * 5) / 4;
235 				maxfilesperproc = (maxfiles * 9) / 10;
236 			}
237 			EVENTHANDLER_INVOKE(maxsockets_change);
238 		} else
239 			error = EINVAL;
240 	}
241 	return (error);
242 }
243 
244 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, CTLTYPE_INT|CTLFLAG_RW,
245     &maxsockets, 0, sysctl_maxsockets, "IU",
246     "Maximum number of sockets avaliable");
247 
248 /*
249  * Initialise maxsockets.  This SYSINIT must be run after
250  * tunable_mbinit().
251  */
252 static void
253 init_maxsockets(void *ignored)
254 {
255 
256 	TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
257 	maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters));
258 }
259 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
260 
261 /*
262  * Socket operation routines.  These routines are called by the routines in
263  * sys_socket.c or from a system process, and implement the semantics of
264  * socket operations by switching out to the protocol specific routines.
265  */
266 
267 /*
268  * Get a socket structure from our zone, and initialize it.  Note that it
269  * would probably be better to allocate socket and PCB at the same time, but
270  * I'm not convinced that all the protocols can be easily modified to do
271  * this.
272  *
273  * soalloc() returns a socket with a ref count of 0.
274  */
275 static struct socket *
276 soalloc(struct vnet *vnet)
277 {
278 	struct socket *so;
279 
280 	so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
281 	if (so == NULL)
282 		return (NULL);
283 #ifdef MAC
284 	if (mac_socket_init(so, M_NOWAIT) != 0) {
285 		uma_zfree(socket_zone, so);
286 		return (NULL);
287 	}
288 #endif
289 	SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd");
290 	SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv");
291 	sx_init(&so->so_snd.sb_sx, "so_snd_sx");
292 	sx_init(&so->so_rcv.sb_sx, "so_rcv_sx");
293 	TAILQ_INIT(&so->so_aiojobq);
294 	mtx_lock(&so_global_mtx);
295 	so->so_gencnt = ++so_gencnt;
296 	++numopensockets;
297 #ifdef VIMAGE
298 	vnet->vnet_sockcnt++;
299 	so->so_vnet = vnet;
300 #endif
301 	mtx_unlock(&so_global_mtx);
302 	return (so);
303 }
304 
305 /*
306  * Free the storage associated with a socket at the socket layer, tear down
307  * locks, labels, etc.  All protocol state is assumed already to have been
308  * torn down (and possibly never set up) by the caller.
309  */
310 static void
311 sodealloc(struct socket *so)
312 {
313 
314 	KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
315 	KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
316 
317 	mtx_lock(&so_global_mtx);
318 	so->so_gencnt = ++so_gencnt;
319 	--numopensockets;	/* Could be below, but faster here. */
320 #ifdef VIMAGE
321 	so->so_vnet->vnet_sockcnt--;
322 #endif
323 	mtx_unlock(&so_global_mtx);
324 	if (so->so_rcv.sb_hiwat)
325 		(void)chgsbsize(so->so_cred->cr_uidinfo,
326 		    &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
327 	if (so->so_snd.sb_hiwat)
328 		(void)chgsbsize(so->so_cred->cr_uidinfo,
329 		    &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
330 #ifdef INET
331 	/* remove acccept filter if one is present. */
332 	if (so->so_accf != NULL)
333 		do_setopt_accept_filter(so, NULL);
334 #endif
335 #ifdef MAC
336 	mac_socket_destroy(so);
337 #endif
338 	crfree(so->so_cred);
339 	sx_destroy(&so->so_snd.sb_sx);
340 	sx_destroy(&so->so_rcv.sb_sx);
341 	SOCKBUF_LOCK_DESTROY(&so->so_snd);
342 	SOCKBUF_LOCK_DESTROY(&so->so_rcv);
343 	uma_zfree(socket_zone, so);
344 }
345 
346 /*
347  * socreate returns a socket with a ref count of 1.  The socket should be
348  * closed with soclose().
349  */
350 int
351 socreate(int dom, struct socket **aso, int type, int proto,
352     struct ucred *cred, struct thread *td)
353 {
354 	struct protosw *prp;
355 	struct socket *so;
356 	int error;
357 
358 	if (proto)
359 		prp = pffindproto(dom, proto, type);
360 	else
361 		prp = pffindtype(dom, type);
362 
363 	if (prp == NULL || prp->pr_usrreqs->pru_attach == NULL ||
364 	    prp->pr_usrreqs->pru_attach == pru_attach_notsupp)
365 		return (EPROTONOSUPPORT);
366 
367 	if (prison_check_af(cred, prp->pr_domain->dom_family) != 0)
368 		return (EPROTONOSUPPORT);
369 
370 	if (prp->pr_type != type)
371 		return (EPROTOTYPE);
372 	so = soalloc(CRED_TO_VNET(cred));
373 	if (so == NULL)
374 		return (ENOBUFS);
375 
376 	TAILQ_INIT(&so->so_incomp);
377 	TAILQ_INIT(&so->so_comp);
378 	so->so_type = type;
379 	so->so_cred = crhold(cred);
380 	if ((prp->pr_domain->dom_family == PF_INET) ||
381 	    (prp->pr_domain->dom_family == PF_ROUTE))
382 		so->so_fibnum = td->td_proc->p_fibnum;
383 	else
384 		so->so_fibnum = 0;
385 	so->so_proto = prp;
386 #ifdef MAC
387 	mac_socket_create(cred, so);
388 #endif
389 	knlist_init_mtx(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv));
390 	knlist_init_mtx(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd));
391 	so->so_count = 1;
392 	/*
393 	 * Auto-sizing of socket buffers is managed by the protocols and
394 	 * the appropriate flags must be set in the pru_attach function.
395 	 */
396 	CURVNET_SET(so->so_vnet);
397 	error = (*prp->pr_usrreqs->pru_attach)(so, proto, td);
398 	CURVNET_RESTORE();
399 	if (error) {
400 		KASSERT(so->so_count == 1, ("socreate: so_count %d",
401 		    so->so_count));
402 		so->so_count = 0;
403 		sodealloc(so);
404 		return (error);
405 	}
406 	*aso = so;
407 	return (0);
408 }
409 
410 #ifdef REGRESSION
411 static int regression_sonewconn_earlytest = 1;
412 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
413     &regression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
414 #endif
415 
416 /*
417  * When an attempt at a new connection is noted on a socket which accepts
418  * connections, sonewconn is called.  If the connection is possible (subject
419  * to space constraints, etc.) then we allocate a new structure, propoerly
420  * linked into the data structure of the original socket, and return this.
421  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
422  *
423  * Note: the ref count on the socket is 0 on return.
424  */
425 struct socket *
426 sonewconn(struct socket *head, int connstatus)
427 {
428 	struct socket *so;
429 	int over;
430 
431 	ACCEPT_LOCK();
432 	over = (head->so_qlen > 3 * head->so_qlimit / 2);
433 	ACCEPT_UNLOCK();
434 #ifdef REGRESSION
435 	if (regression_sonewconn_earlytest && over)
436 #else
437 	if (over)
438 #endif
439 		return (NULL);
440 	VNET_ASSERT(head->so_vnet);
441 	so = soalloc(head->so_vnet);
442 	if (so == NULL)
443 		return (NULL);
444 	if ((head->so_options & SO_ACCEPTFILTER) != 0)
445 		connstatus = 0;
446 	so->so_head = head;
447 	so->so_type = head->so_type;
448 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
449 	so->so_linger = head->so_linger;
450 	so->so_state = head->so_state | SS_NOFDREF;
451 	so->so_fibnum = head->so_fibnum;
452 	so->so_proto = head->so_proto;
453 	so->so_cred = crhold(head->so_cred);
454 #ifdef MAC
455 	mac_socket_newconn(head, so);
456 #endif
457 	knlist_init_mtx(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv));
458 	knlist_init_mtx(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd));
459 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) ||
460 	    (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
461 		sodealloc(so);
462 		return (NULL);
463 	}
464 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
465 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
466 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
467 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
468 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
469 	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
470 	so->so_state |= connstatus;
471 	ACCEPT_LOCK();
472 	if (connstatus) {
473 		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
474 		so->so_qstate |= SQ_COMP;
475 		head->so_qlen++;
476 	} else {
477 		/*
478 		 * Keep removing sockets from the head until there's room for
479 		 * us to insert on the tail.  In pre-locking revisions, this
480 		 * was a simple if(), but as we could be racing with other
481 		 * threads and soabort() requires dropping locks, we must
482 		 * loop waiting for the condition to be true.
483 		 */
484 		while (head->so_incqlen > head->so_qlimit) {
485 			struct socket *sp;
486 			sp = TAILQ_FIRST(&head->so_incomp);
487 			TAILQ_REMOVE(&head->so_incomp, sp, so_list);
488 			head->so_incqlen--;
489 			sp->so_qstate &= ~SQ_INCOMP;
490 			sp->so_head = NULL;
491 			ACCEPT_UNLOCK();
492 			soabort(sp);
493 			ACCEPT_LOCK();
494 		}
495 		TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
496 		so->so_qstate |= SQ_INCOMP;
497 		head->so_incqlen++;
498 	}
499 	ACCEPT_UNLOCK();
500 	if (connstatus) {
501 		sorwakeup(head);
502 		wakeup_one(&head->so_timeo);
503 	}
504 	return (so);
505 }
506 
507 int
508 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
509 {
510 	int error;
511 
512 	CURVNET_SET(so->so_vnet);
513 	error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td);
514 	CURVNET_RESTORE();
515 	return error;
516 }
517 
518 /*
519  * solisten() transitions a socket from a non-listening state to a listening
520  * state, but can also be used to update the listen queue depth on an
521  * existing listen socket.  The protocol will call back into the sockets
522  * layer using solisten_proto_check() and solisten_proto() to check and set
523  * socket-layer listen state.  Call backs are used so that the protocol can
524  * acquire both protocol and socket layer locks in whatever order is required
525  * by the protocol.
526  *
527  * Protocol implementors are advised to hold the socket lock across the
528  * socket-layer test and set to avoid races at the socket layer.
529  */
530 int
531 solisten(struct socket *so, int backlog, struct thread *td)
532 {
533 
534 	return ((*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td));
535 }
536 
537 int
538 solisten_proto_check(struct socket *so)
539 {
540 
541 	SOCK_LOCK_ASSERT(so);
542 
543 	if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
544 	    SS_ISDISCONNECTING))
545 		return (EINVAL);
546 	return (0);
547 }
548 
549 void
550 solisten_proto(struct socket *so, int backlog)
551 {
552 
553 	SOCK_LOCK_ASSERT(so);
554 
555 	if (backlog < 0 || backlog > somaxconn)
556 		backlog = somaxconn;
557 	so->so_qlimit = backlog;
558 	so->so_options |= SO_ACCEPTCONN;
559 }
560 
561 /*
562  * Attempt to free a socket.  This should really be sotryfree().
563  *
564  * sofree() will succeed if:
565  *
566  * - There are no outstanding file descriptor references or related consumers
567  *   (so_count == 0).
568  *
569  * - The socket has been closed by user space, if ever open (SS_NOFDREF).
570  *
571  * - The protocol does not have an outstanding strong reference on the socket
572  *   (SS_PROTOREF).
573  *
574  * - The socket is not in a completed connection queue, so a process has been
575  *   notified that it is present.  If it is removed, the user process may
576  *   block in accept() despite select() saying the socket was ready.
577  *
578  * Otherwise, it will quietly abort so that a future call to sofree(), when
579  * conditions are right, can succeed.
580  */
581 void
582 sofree(struct socket *so)
583 {
584 	struct protosw *pr = so->so_proto;
585 	struct socket *head;
586 
587 	ACCEPT_LOCK_ASSERT();
588 	SOCK_LOCK_ASSERT(so);
589 
590 	if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 ||
591 	    (so->so_state & SS_PROTOREF) || (so->so_qstate & SQ_COMP)) {
592 		SOCK_UNLOCK(so);
593 		ACCEPT_UNLOCK();
594 		return;
595 	}
596 
597 	head = so->so_head;
598 	if (head != NULL) {
599 		KASSERT((so->so_qstate & SQ_COMP) != 0 ||
600 		    (so->so_qstate & SQ_INCOMP) != 0,
601 		    ("sofree: so_head != NULL, but neither SQ_COMP nor "
602 		    "SQ_INCOMP"));
603 		KASSERT((so->so_qstate & SQ_COMP) == 0 ||
604 		    (so->so_qstate & SQ_INCOMP) == 0,
605 		    ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP"));
606 		TAILQ_REMOVE(&head->so_incomp, so, so_list);
607 		head->so_incqlen--;
608 		so->so_qstate &= ~SQ_INCOMP;
609 		so->so_head = NULL;
610 	}
611 	KASSERT((so->so_qstate & SQ_COMP) == 0 &&
612 	    (so->so_qstate & SQ_INCOMP) == 0,
613 	    ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)",
614 	    so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP));
615 	if (so->so_options & SO_ACCEPTCONN) {
616 		KASSERT((TAILQ_EMPTY(&so->so_comp)), ("sofree: so_comp populated"));
617 		KASSERT((TAILQ_EMPTY(&so->so_incomp)), ("sofree: so_comp populated"));
618 	}
619 	SOCK_UNLOCK(so);
620 	ACCEPT_UNLOCK();
621 
622 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
623 		(*pr->pr_domain->dom_dispose)(so->so_rcv.sb_mb);
624 	if (pr->pr_usrreqs->pru_detach != NULL)
625 		(*pr->pr_usrreqs->pru_detach)(so);
626 
627 	/*
628 	 * From this point on, we assume that no other references to this
629 	 * socket exist anywhere else in the stack.  Therefore, no locks need
630 	 * to be acquired or held.
631 	 *
632 	 * We used to do a lot of socket buffer and socket locking here, as
633 	 * well as invoke sorflush() and perform wakeups.  The direct call to
634 	 * dom_dispose() and sbrelease_internal() are an inlining of what was
635 	 * necessary from sorflush().
636 	 *
637 	 * Notice that the socket buffer and kqueue state are torn down
638 	 * before calling pru_detach.  This means that protocols shold not
639 	 * assume they can perform socket wakeups, etc, in their detach code.
640 	 */
641 	sbdestroy(&so->so_snd, so);
642 	sbdestroy(&so->so_rcv, so);
643 	knlist_destroy(&so->so_rcv.sb_sel.si_note);
644 	knlist_destroy(&so->so_snd.sb_sel.si_note);
645 	sodealloc(so);
646 }
647 
648 /*
649  * Close a socket on last file table reference removal.  Initiate disconnect
650  * if connected.  Free socket when disconnect complete.
651  *
652  * This function will sorele() the socket.  Note that soclose() may be called
653  * prior to the ref count reaching zero.  The actual socket structure will
654  * not be freed until the ref count reaches zero.
655  */
656 int
657 soclose(struct socket *so)
658 {
659 	int error = 0;
660 
661 	KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter"));
662 
663 	CURVNET_SET(so->so_vnet);
664 	funsetown(&so->so_sigio);
665 	if (so->so_state & SS_ISCONNECTED) {
666 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
667 			error = sodisconnect(so);
668 			if (error)
669 				goto drop;
670 		}
671 		if (so->so_options & SO_LINGER) {
672 			if ((so->so_state & SS_ISDISCONNECTING) &&
673 			    (so->so_state & SS_NBIO))
674 				goto drop;
675 			while (so->so_state & SS_ISCONNECTED) {
676 				error = tsleep(&so->so_timeo,
677 				    PSOCK | PCATCH, "soclos", so->so_linger * hz);
678 				if (error)
679 					break;
680 			}
681 		}
682 	}
683 
684 drop:
685 	if (so->so_proto->pr_usrreqs->pru_close != NULL)
686 		(*so->so_proto->pr_usrreqs->pru_close)(so);
687 	if (so->so_options & SO_ACCEPTCONN) {
688 		struct socket *sp;
689 		ACCEPT_LOCK();
690 		while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) {
691 			TAILQ_REMOVE(&so->so_incomp, sp, so_list);
692 			so->so_incqlen--;
693 			sp->so_qstate &= ~SQ_INCOMP;
694 			sp->so_head = NULL;
695 			ACCEPT_UNLOCK();
696 			soabort(sp);
697 			ACCEPT_LOCK();
698 		}
699 		while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) {
700 			TAILQ_REMOVE(&so->so_comp, sp, so_list);
701 			so->so_qlen--;
702 			sp->so_qstate &= ~SQ_COMP;
703 			sp->so_head = NULL;
704 			ACCEPT_UNLOCK();
705 			soabort(sp);
706 			ACCEPT_LOCK();
707 		}
708 		ACCEPT_UNLOCK();
709 	}
710 	ACCEPT_LOCK();
711 	SOCK_LOCK(so);
712 	KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF"));
713 	so->so_state |= SS_NOFDREF;
714 	sorele(so);
715 	CURVNET_RESTORE();
716 	return (error);
717 }
718 
719 /*
720  * soabort() is used to abruptly tear down a connection, such as when a
721  * resource limit is reached (listen queue depth exceeded), or if a listen
722  * socket is closed while there are sockets waiting to be accepted.
723  *
724  * This interface is tricky, because it is called on an unreferenced socket,
725  * and must be called only by a thread that has actually removed the socket
726  * from the listen queue it was on, or races with other threads are risked.
727  *
728  * This interface will call into the protocol code, so must not be called
729  * with any socket locks held.  Protocols do call it while holding their own
730  * recursible protocol mutexes, but this is something that should be subject
731  * to review in the future.
732  */
733 void
734 soabort(struct socket *so)
735 {
736 
737 	/*
738 	 * In as much as is possible, assert that no references to this
739 	 * socket are held.  This is not quite the same as asserting that the
740 	 * current thread is responsible for arranging for no references, but
741 	 * is as close as we can get for now.
742 	 */
743 	KASSERT(so->so_count == 0, ("soabort: so_count"));
744 	KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF"));
745 	KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF"));
746 	KASSERT((so->so_state & SQ_COMP) == 0, ("soabort: SQ_COMP"));
747 	KASSERT((so->so_state & SQ_INCOMP) == 0, ("soabort: SQ_INCOMP"));
748 
749 	if (so->so_proto->pr_usrreqs->pru_abort != NULL)
750 		(*so->so_proto->pr_usrreqs->pru_abort)(so);
751 	ACCEPT_LOCK();
752 	SOCK_LOCK(so);
753 	sofree(so);
754 }
755 
756 int
757 soaccept(struct socket *so, struct sockaddr **nam)
758 {
759 	int error;
760 
761 	SOCK_LOCK(so);
762 	KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF"));
763 	so->so_state &= ~SS_NOFDREF;
764 	SOCK_UNLOCK(so);
765 	error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam);
766 	return (error);
767 }
768 
769 int
770 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
771 {
772 	int error;
773 
774 	if (so->so_options & SO_ACCEPTCONN)
775 		return (EOPNOTSUPP);
776 	/*
777 	 * If protocol is connection-based, can only connect once.
778 	 * Otherwise, if connected, try to disconnect first.  This allows
779 	 * user to disconnect by connecting to, e.g., a null address.
780 	 */
781 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
782 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
783 	    (error = sodisconnect(so)))) {
784 		error = EISCONN;
785 	} else {
786 		/*
787 		 * Prevent accumulated error from previous connection from
788 		 * biting us.
789 		 */
790 		so->so_error = 0;
791 		CURVNET_SET(so->so_vnet);
792 		error = (*so->so_proto->pr_usrreqs->pru_connect)(so, nam, td);
793 		CURVNET_RESTORE();
794 	}
795 
796 	return (error);
797 }
798 
799 int
800 soconnect2(struct socket *so1, struct socket *so2)
801 {
802 
803 	return ((*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2));
804 }
805 
806 int
807 sodisconnect(struct socket *so)
808 {
809 	int error;
810 
811 	if ((so->so_state & SS_ISCONNECTED) == 0)
812 		return (ENOTCONN);
813 	if (so->so_state & SS_ISDISCONNECTING)
814 		return (EALREADY);
815 	error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so);
816 	return (error);
817 }
818 
819 #ifdef ZERO_COPY_SOCKETS
820 struct so_zerocopy_stats{
821 	int size_ok;
822 	int align_ok;
823 	int found_ifp;
824 };
825 struct so_zerocopy_stats so_zerocp_stats = {0,0,0};
826 #include <netinet/in.h>
827 #include <net/route.h>
828 #include <netinet/in_pcb.h>
829 #include <vm/vm.h>
830 #include <vm/vm_page.h>
831 #include <vm/vm_object.h>
832 
833 /*
834  * sosend_copyin() is only used if zero copy sockets are enabled.  Otherwise
835  * sosend_dgram() and sosend_generic() use m_uiotombuf().
836  *
837  * sosend_copyin() accepts a uio and prepares an mbuf chain holding part or
838  * all of the data referenced by the uio.  If desired, it uses zero-copy.
839  * *space will be updated to reflect data copied in.
840  *
841  * NB: If atomic I/O is requested, the caller must already have checked that
842  * space can hold resid bytes.
843  *
844  * NB: In the event of an error, the caller may need to free the partial
845  * chain pointed to by *mpp.  The contents of both *uio and *space may be
846  * modified even in the case of an error.
847  */
848 static int
849 sosend_copyin(struct uio *uio, struct mbuf **retmp, int atomic, long *space,
850     int flags)
851 {
852 	struct mbuf *m, **mp, *top;
853 	long len, resid;
854 	int error;
855 #ifdef ZERO_COPY_SOCKETS
856 	int cow_send;
857 #endif
858 
859 	*retmp = top = NULL;
860 	mp = &top;
861 	len = 0;
862 	resid = uio->uio_resid;
863 	error = 0;
864 	do {
865 #ifdef ZERO_COPY_SOCKETS
866 		cow_send = 0;
867 #endif /* ZERO_COPY_SOCKETS */
868 		if (resid >= MINCLSIZE) {
869 #ifdef ZERO_COPY_SOCKETS
870 			if (top == NULL) {
871 				m = m_gethdr(M_WAITOK, MT_DATA);
872 				m->m_pkthdr.len = 0;
873 				m->m_pkthdr.rcvif = NULL;
874 			} else
875 				m = m_get(M_WAITOK, MT_DATA);
876 			if (so_zero_copy_send &&
877 			    resid>=PAGE_SIZE &&
878 			    *space>=PAGE_SIZE &&
879 			    uio->uio_iov->iov_len>=PAGE_SIZE) {
880 				so_zerocp_stats.size_ok++;
881 				so_zerocp_stats.align_ok++;
882 				cow_send = socow_setup(m, uio);
883 				len = cow_send;
884 			}
885 			if (!cow_send) {
886 				m_clget(m, M_WAITOK);
887 				len = min(min(MCLBYTES, resid), *space);
888 			}
889 #else /* ZERO_COPY_SOCKETS */
890 			if (top == NULL) {
891 				m = m_getcl(M_WAIT, MT_DATA, M_PKTHDR);
892 				m->m_pkthdr.len = 0;
893 				m->m_pkthdr.rcvif = NULL;
894 			} else
895 				m = m_getcl(M_WAIT, MT_DATA, 0);
896 			len = min(min(MCLBYTES, resid), *space);
897 #endif /* ZERO_COPY_SOCKETS */
898 		} else {
899 			if (top == NULL) {
900 				m = m_gethdr(M_WAIT, MT_DATA);
901 				m->m_pkthdr.len = 0;
902 				m->m_pkthdr.rcvif = NULL;
903 
904 				len = min(min(MHLEN, resid), *space);
905 				/*
906 				 * For datagram protocols, leave room
907 				 * for protocol headers in first mbuf.
908 				 */
909 				if (atomic && m && len < MHLEN)
910 					MH_ALIGN(m, len);
911 			} else {
912 				m = m_get(M_WAIT, MT_DATA);
913 				len = min(min(MLEN, resid), *space);
914 			}
915 		}
916 		if (m == NULL) {
917 			error = ENOBUFS;
918 			goto out;
919 		}
920 
921 		*space -= len;
922 #ifdef ZERO_COPY_SOCKETS
923 		if (cow_send)
924 			error = 0;
925 		else
926 #endif /* ZERO_COPY_SOCKETS */
927 		error = uiomove(mtod(m, void *), (int)len, uio);
928 		resid = uio->uio_resid;
929 		m->m_len = len;
930 		*mp = m;
931 		top->m_pkthdr.len += len;
932 		if (error)
933 			goto out;
934 		mp = &m->m_next;
935 		if (resid <= 0) {
936 			if (flags & MSG_EOR)
937 				top->m_flags |= M_EOR;
938 			break;
939 		}
940 	} while (*space > 0 && atomic);
941 out:
942 	*retmp = top;
943 	return (error);
944 }
945 #endif /*ZERO_COPY_SOCKETS*/
946 
947 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT)
948 
949 int
950 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
951     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
952 {
953 	long space, resid;
954 	int clen = 0, error, dontroute;
955 #ifdef ZERO_COPY_SOCKETS
956 	int atomic = sosendallatonce(so) || top;
957 #endif
958 
959 	KASSERT(so->so_type == SOCK_DGRAM, ("sodgram_send: !SOCK_DGRAM"));
960 	KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
961 	    ("sodgram_send: !PR_ATOMIC"));
962 
963 	if (uio != NULL)
964 		resid = uio->uio_resid;
965 	else
966 		resid = top->m_pkthdr.len;
967 	/*
968 	 * In theory resid should be unsigned.  However, space must be
969 	 * signed, as it might be less than 0 if we over-committed, and we
970 	 * must use a signed comparison of space and resid.  On the other
971 	 * hand, a negative resid causes us to loop sending 0-length
972 	 * segments to the protocol.
973 	 */
974 	if (resid < 0) {
975 		error = EINVAL;
976 		goto out;
977 	}
978 
979 	dontroute =
980 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
981 	if (td != NULL)
982 		td->td_ru.ru_msgsnd++;
983 	if (control != NULL)
984 		clen = control->m_len;
985 
986 	SOCKBUF_LOCK(&so->so_snd);
987 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
988 		SOCKBUF_UNLOCK(&so->so_snd);
989 		error = EPIPE;
990 		goto out;
991 	}
992 	if (so->so_error) {
993 		error = so->so_error;
994 		so->so_error = 0;
995 		SOCKBUF_UNLOCK(&so->so_snd);
996 		goto out;
997 	}
998 	if ((so->so_state & SS_ISCONNECTED) == 0) {
999 		/*
1000 		 * `sendto' and `sendmsg' is allowed on a connection-based
1001 		 * socket if it supports implied connect.  Return ENOTCONN if
1002 		 * not connected and no address is supplied.
1003 		 */
1004 		if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1005 		    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1006 			if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1007 			    !(resid == 0 && clen != 0)) {
1008 				SOCKBUF_UNLOCK(&so->so_snd);
1009 				error = ENOTCONN;
1010 				goto out;
1011 			}
1012 		} else if (addr == NULL) {
1013 			if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1014 				error = ENOTCONN;
1015 			else
1016 				error = EDESTADDRREQ;
1017 			SOCKBUF_UNLOCK(&so->so_snd);
1018 			goto out;
1019 		}
1020 	}
1021 
1022 	/*
1023 	 * Do we need MSG_OOB support in SOCK_DGRAM?  Signs here may be a
1024 	 * problem and need fixing.
1025 	 */
1026 	space = sbspace(&so->so_snd);
1027 	if (flags & MSG_OOB)
1028 		space += 1024;
1029 	space -= clen;
1030 	SOCKBUF_UNLOCK(&so->so_snd);
1031 	if (resid > space) {
1032 		error = EMSGSIZE;
1033 		goto out;
1034 	}
1035 	if (uio == NULL) {
1036 		resid = 0;
1037 		if (flags & MSG_EOR)
1038 			top->m_flags |= M_EOR;
1039 	} else {
1040 #ifdef ZERO_COPY_SOCKETS
1041 		error = sosend_copyin(uio, &top, atomic, &space, flags);
1042 		if (error)
1043 			goto out;
1044 #else
1045 		/*
1046 		 * Copy the data from userland into a mbuf chain.
1047 		 * If no data is to be copied in, a single empty mbuf
1048 		 * is returned.
1049 		 */
1050 		top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
1051 		    (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
1052 		if (top == NULL) {
1053 			error = EFAULT;	/* only possible error */
1054 			goto out;
1055 		}
1056 		space -= resid - uio->uio_resid;
1057 #endif
1058 		resid = uio->uio_resid;
1059 	}
1060 	KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
1061 	/*
1062 	 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
1063 	 * than with.
1064 	 */
1065 	if (dontroute) {
1066 		SOCK_LOCK(so);
1067 		so->so_options |= SO_DONTROUTE;
1068 		SOCK_UNLOCK(so);
1069 	}
1070 	/*
1071 	 * XXX all the SBS_CANTSENDMORE checks previously done could be out
1072 	 * of date.  We could have recieved a reset packet in an interrupt or
1073 	 * maybe we slept while doing page faults in uiomove() etc.  We could
1074 	 * probably recheck again inside the locking protection here, but
1075 	 * there are probably other places that this also happens.  We must
1076 	 * rethink this.
1077 	 */
1078 	error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1079 	    (flags & MSG_OOB) ? PRUS_OOB :
1080 	/*
1081 	 * If the user set MSG_EOF, the protocol understands this flag and
1082 	 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
1083 	 */
1084 	    ((flags & MSG_EOF) &&
1085 	     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1086 	     (resid <= 0)) ?
1087 		PRUS_EOF :
1088 		/* If there is more to send set PRUS_MORETOCOME */
1089 		(resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1090 		top, addr, control, td);
1091 	if (dontroute) {
1092 		SOCK_LOCK(so);
1093 		so->so_options &= ~SO_DONTROUTE;
1094 		SOCK_UNLOCK(so);
1095 	}
1096 	clen = 0;
1097 	control = NULL;
1098 	top = NULL;
1099 out:
1100 	if (top != NULL)
1101 		m_freem(top);
1102 	if (control != NULL)
1103 		m_freem(control);
1104 	return (error);
1105 }
1106 
1107 /*
1108  * Send on a socket.  If send must go all at once and message is larger than
1109  * send buffering, then hard error.  Lock against other senders.  If must go
1110  * all at once and not enough room now, then inform user that this would
1111  * block and do nothing.  Otherwise, if nonblocking, send as much as
1112  * possible.  The data to be sent is described by "uio" if nonzero, otherwise
1113  * by the mbuf chain "top" (which must be null if uio is not).  Data provided
1114  * in mbuf chain must be small enough to send all at once.
1115  *
1116  * Returns nonzero on error, timeout or signal; callers must check for short
1117  * counts if EINTR/ERESTART are returned.  Data and control buffers are freed
1118  * on return.
1119  */
1120 int
1121 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
1122     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1123 {
1124 	long space, resid;
1125 	int clen = 0, error, dontroute;
1126 	int atomic = sosendallatonce(so) || top;
1127 
1128 	if (uio != NULL)
1129 		resid = uio->uio_resid;
1130 	else
1131 		resid = top->m_pkthdr.len;
1132 	/*
1133 	 * In theory resid should be unsigned.  However, space must be
1134 	 * signed, as it might be less than 0 if we over-committed, and we
1135 	 * must use a signed comparison of space and resid.  On the other
1136 	 * hand, a negative resid causes us to loop sending 0-length
1137 	 * segments to the protocol.
1138 	 *
1139 	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
1140 	 * type sockets since that's an error.
1141 	 */
1142 	if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
1143 		error = EINVAL;
1144 		goto out;
1145 	}
1146 
1147 	dontroute =
1148 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
1149 	    (so->so_proto->pr_flags & PR_ATOMIC);
1150 	if (td != NULL)
1151 		td->td_ru.ru_msgsnd++;
1152 	if (control != NULL)
1153 		clen = control->m_len;
1154 
1155 	error = sblock(&so->so_snd, SBLOCKWAIT(flags));
1156 	if (error)
1157 		goto out;
1158 
1159 restart:
1160 	do {
1161 		SOCKBUF_LOCK(&so->so_snd);
1162 		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1163 			SOCKBUF_UNLOCK(&so->so_snd);
1164 			error = EPIPE;
1165 			goto release;
1166 		}
1167 		if (so->so_error) {
1168 			error = so->so_error;
1169 			so->so_error = 0;
1170 			SOCKBUF_UNLOCK(&so->so_snd);
1171 			goto release;
1172 		}
1173 		if ((so->so_state & SS_ISCONNECTED) == 0) {
1174 			/*
1175 			 * `sendto' and `sendmsg' is allowed on a connection-
1176 			 * based socket if it supports implied connect.
1177 			 * Return ENOTCONN if not connected and no address is
1178 			 * supplied.
1179 			 */
1180 			if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1181 			    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1182 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1183 				    !(resid == 0 && clen != 0)) {
1184 					SOCKBUF_UNLOCK(&so->so_snd);
1185 					error = ENOTCONN;
1186 					goto release;
1187 				}
1188 			} else if (addr == NULL) {
1189 				SOCKBUF_UNLOCK(&so->so_snd);
1190 				if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1191 					error = ENOTCONN;
1192 				else
1193 					error = EDESTADDRREQ;
1194 				goto release;
1195 			}
1196 		}
1197 		space = sbspace(&so->so_snd);
1198 		if (flags & MSG_OOB)
1199 			space += 1024;
1200 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
1201 		    clen > so->so_snd.sb_hiwat) {
1202 			SOCKBUF_UNLOCK(&so->so_snd);
1203 			error = EMSGSIZE;
1204 			goto release;
1205 		}
1206 		if (space < resid + clen &&
1207 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
1208 			if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
1209 				SOCKBUF_UNLOCK(&so->so_snd);
1210 				error = EWOULDBLOCK;
1211 				goto release;
1212 			}
1213 			error = sbwait(&so->so_snd);
1214 			SOCKBUF_UNLOCK(&so->so_snd);
1215 			if (error)
1216 				goto release;
1217 			goto restart;
1218 		}
1219 		SOCKBUF_UNLOCK(&so->so_snd);
1220 		space -= clen;
1221 		do {
1222 			if (uio == NULL) {
1223 				resid = 0;
1224 				if (flags & MSG_EOR)
1225 					top->m_flags |= M_EOR;
1226 			} else {
1227 #ifdef ZERO_COPY_SOCKETS
1228 				error = sosend_copyin(uio, &top, atomic,
1229 				    &space, flags);
1230 				if (error != 0)
1231 					goto release;
1232 #else
1233 				/*
1234 				 * Copy the data from userland into a mbuf
1235 				 * chain.  If no data is to be copied in,
1236 				 * a single empty mbuf is returned.
1237 				 */
1238 				top = m_uiotombuf(uio, M_WAITOK, space,
1239 				    (atomic ? max_hdr : 0),
1240 				    (atomic ? M_PKTHDR : 0) |
1241 				    ((flags & MSG_EOR) ? M_EOR : 0));
1242 				if (top == NULL) {
1243 					error = EFAULT; /* only possible error */
1244 					goto release;
1245 				}
1246 				space -= resid - uio->uio_resid;
1247 #endif
1248 				resid = uio->uio_resid;
1249 			}
1250 			if (dontroute) {
1251 				SOCK_LOCK(so);
1252 				so->so_options |= SO_DONTROUTE;
1253 				SOCK_UNLOCK(so);
1254 			}
1255 			/*
1256 			 * XXX all the SBS_CANTSENDMORE checks previously
1257 			 * done could be out of date.  We could have recieved
1258 			 * a reset packet in an interrupt or maybe we slept
1259 			 * while doing page faults in uiomove() etc.  We
1260 			 * could probably recheck again inside the locking
1261 			 * protection here, but there are probably other
1262 			 * places that this also happens.  We must rethink
1263 			 * this.
1264 			 */
1265 			error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1266 			    (flags & MSG_OOB) ? PRUS_OOB :
1267 			/*
1268 			 * If the user set MSG_EOF, the protocol understands
1269 			 * this flag and nothing left to send then use
1270 			 * PRU_SEND_EOF instead of PRU_SEND.
1271 			 */
1272 			    ((flags & MSG_EOF) &&
1273 			     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1274 			     (resid <= 0)) ?
1275 				PRUS_EOF :
1276 			/* If there is more to send set PRUS_MORETOCOME. */
1277 			    (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1278 			    top, addr, control, td);
1279 			if (dontroute) {
1280 				SOCK_LOCK(so);
1281 				so->so_options &= ~SO_DONTROUTE;
1282 				SOCK_UNLOCK(so);
1283 			}
1284 			clen = 0;
1285 			control = NULL;
1286 			top = NULL;
1287 			if (error)
1288 				goto release;
1289 		} while (resid && space > 0);
1290 	} while (resid);
1291 
1292 release:
1293 	sbunlock(&so->so_snd);
1294 out:
1295 	if (top != NULL)
1296 		m_freem(top);
1297 	if (control != NULL)
1298 		m_freem(control);
1299 	return (error);
1300 }
1301 
1302 int
1303 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
1304     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1305 {
1306 	int error;
1307 
1308 	CURVNET_SET(so->so_vnet);
1309 	error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, top,
1310 	    control, flags, td);
1311 	CURVNET_RESTORE();
1312 	return (error);
1313 }
1314 
1315 /*
1316  * The part of soreceive() that implements reading non-inline out-of-band
1317  * data from a socket.  For more complete comments, see soreceive(), from
1318  * which this code originated.
1319  *
1320  * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
1321  * unable to return an mbuf chain to the caller.
1322  */
1323 static int
1324 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
1325 {
1326 	struct protosw *pr = so->so_proto;
1327 	struct mbuf *m;
1328 	int error;
1329 
1330 	KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
1331 
1332 	m = m_get(M_WAIT, MT_DATA);
1333 	error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK);
1334 	if (error)
1335 		goto bad;
1336 	do {
1337 #ifdef ZERO_COPY_SOCKETS
1338 		if (so_zero_copy_receive) {
1339 			int disposable;
1340 
1341 			if ((m->m_flags & M_EXT)
1342 			 && (m->m_ext.ext_type == EXT_DISPOSABLE))
1343 				disposable = 1;
1344 			else
1345 				disposable = 0;
1346 
1347 			error = uiomoveco(mtod(m, void *),
1348 					  min(uio->uio_resid, m->m_len),
1349 					  uio, disposable);
1350 		} else
1351 #endif /* ZERO_COPY_SOCKETS */
1352 		error = uiomove(mtod(m, void *),
1353 		    (int) min(uio->uio_resid, m->m_len), uio);
1354 		m = m_free(m);
1355 	} while (uio->uio_resid && error == 0 && m);
1356 bad:
1357 	if (m != NULL)
1358 		m_freem(m);
1359 	return (error);
1360 }
1361 
1362 /*
1363  * Following replacement or removal of the first mbuf on the first mbuf chain
1364  * of a socket buffer, push necessary state changes back into the socket
1365  * buffer so that other consumers see the values consistently.  'nextrecord'
1366  * is the callers locally stored value of the original value of
1367  * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
1368  * NOTE: 'nextrecord' may be NULL.
1369  */
1370 static __inline void
1371 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
1372 {
1373 
1374 	SOCKBUF_LOCK_ASSERT(sb);
1375 	/*
1376 	 * First, update for the new value of nextrecord.  If necessary, make
1377 	 * it the first record.
1378 	 */
1379 	if (sb->sb_mb != NULL)
1380 		sb->sb_mb->m_nextpkt = nextrecord;
1381 	else
1382 		sb->sb_mb = nextrecord;
1383 
1384         /*
1385          * Now update any dependent socket buffer fields to reflect the new
1386          * state.  This is an expanded inline of SB_EMPTY_FIXUP(), with the
1387 	 * addition of a second clause that takes care of the case where
1388 	 * sb_mb has been updated, but remains the last record.
1389          */
1390         if (sb->sb_mb == NULL) {
1391                 sb->sb_mbtail = NULL;
1392                 sb->sb_lastrecord = NULL;
1393         } else if (sb->sb_mb->m_nextpkt == NULL)
1394                 sb->sb_lastrecord = sb->sb_mb;
1395 }
1396 
1397 
1398 /*
1399  * Implement receive operations on a socket.  We depend on the way that
1400  * records are added to the sockbuf by sbappend.  In particular, each record
1401  * (mbufs linked through m_next) must begin with an address if the protocol
1402  * so specifies, followed by an optional mbuf or mbufs containing ancillary
1403  * data, and then zero or more mbufs of data.  In order to allow parallelism
1404  * between network receive and copying to user space, as well as avoid
1405  * sleeping with a mutex held, we release the socket buffer mutex during the
1406  * user space copy.  Although the sockbuf is locked, new data may still be
1407  * appended, and thus we must maintain consistency of the sockbuf during that
1408  * time.
1409  *
1410  * The caller may receive the data as a single mbuf chain by supplying an
1411  * mbuf **mp0 for use in returning the chain.  The uio is then used only for
1412  * the count in uio_resid.
1413  */
1414 int
1415 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
1416     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1417 {
1418 	struct mbuf *m, **mp;
1419 	int flags, len, error, offset;
1420 	struct protosw *pr = so->so_proto;
1421 	struct mbuf *nextrecord;
1422 	int moff, type = 0;
1423 	int orig_resid = uio->uio_resid;
1424 
1425 	mp = mp0;
1426 	if (psa != NULL)
1427 		*psa = NULL;
1428 	if (controlp != NULL)
1429 		*controlp = NULL;
1430 	if (flagsp != NULL)
1431 		flags = *flagsp &~ MSG_EOR;
1432 	else
1433 		flags = 0;
1434 	if (flags & MSG_OOB)
1435 		return (soreceive_rcvoob(so, uio, flags));
1436 	if (mp != NULL)
1437 		*mp = NULL;
1438 	if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING)
1439 	    && uio->uio_resid)
1440 		(*pr->pr_usrreqs->pru_rcvd)(so, 0);
1441 
1442 	error = sblock(&so->so_rcv, SBLOCKWAIT(flags));
1443 	if (error)
1444 		return (error);
1445 
1446 restart:
1447 	SOCKBUF_LOCK(&so->so_rcv);
1448 	m = so->so_rcv.sb_mb;
1449 	/*
1450 	 * If we have less data than requested, block awaiting more (subject
1451 	 * to any timeout) if:
1452 	 *   1. the current count is less than the low water mark, or
1453 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
1454 	 *	receive operation at once if we block (resid <= hiwat).
1455 	 *   3. MSG_DONTWAIT is not set
1456 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1457 	 * we have to do the receive in sections, and thus risk returning a
1458 	 * short count if a timeout or signal occurs after we start.
1459 	 */
1460 	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
1461 	    so->so_rcv.sb_cc < uio->uio_resid) &&
1462 	    (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1463 	    ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1464 	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
1465 		KASSERT(m != NULL || !so->so_rcv.sb_cc,
1466 		    ("receive: m == %p so->so_rcv.sb_cc == %u",
1467 		    m, so->so_rcv.sb_cc));
1468 		if (so->so_error) {
1469 			if (m != NULL)
1470 				goto dontblock;
1471 			error = so->so_error;
1472 			if ((flags & MSG_PEEK) == 0)
1473 				so->so_error = 0;
1474 			SOCKBUF_UNLOCK(&so->so_rcv);
1475 			goto release;
1476 		}
1477 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1478 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1479 			if (m == NULL) {
1480 				SOCKBUF_UNLOCK(&so->so_rcv);
1481 				goto release;
1482 			} else
1483 				goto dontblock;
1484 		}
1485 		for (; m != NULL; m = m->m_next)
1486 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
1487 				m = so->so_rcv.sb_mb;
1488 				goto dontblock;
1489 			}
1490 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1491 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1492 			SOCKBUF_UNLOCK(&so->so_rcv);
1493 			error = ENOTCONN;
1494 			goto release;
1495 		}
1496 		if (uio->uio_resid == 0) {
1497 			SOCKBUF_UNLOCK(&so->so_rcv);
1498 			goto release;
1499 		}
1500 		if ((so->so_state & SS_NBIO) ||
1501 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1502 			SOCKBUF_UNLOCK(&so->so_rcv);
1503 			error = EWOULDBLOCK;
1504 			goto release;
1505 		}
1506 		SBLASTRECORDCHK(&so->so_rcv);
1507 		SBLASTMBUFCHK(&so->so_rcv);
1508 		error = sbwait(&so->so_rcv);
1509 		SOCKBUF_UNLOCK(&so->so_rcv);
1510 		if (error)
1511 			goto release;
1512 		goto restart;
1513 	}
1514 dontblock:
1515 	/*
1516 	 * From this point onward, we maintain 'nextrecord' as a cache of the
1517 	 * pointer to the next record in the socket buffer.  We must keep the
1518 	 * various socket buffer pointers and local stack versions of the
1519 	 * pointers in sync, pushing out modifications before dropping the
1520 	 * socket buffer mutex, and re-reading them when picking it up.
1521 	 *
1522 	 * Otherwise, we will race with the network stack appending new data
1523 	 * or records onto the socket buffer by using inconsistent/stale
1524 	 * versions of the field, possibly resulting in socket buffer
1525 	 * corruption.
1526 	 *
1527 	 * By holding the high-level sblock(), we prevent simultaneous
1528 	 * readers from pulling off the front of the socket buffer.
1529 	 */
1530 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1531 	if (uio->uio_td)
1532 		uio->uio_td->td_ru.ru_msgrcv++;
1533 	KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
1534 	SBLASTRECORDCHK(&so->so_rcv);
1535 	SBLASTMBUFCHK(&so->so_rcv);
1536 	nextrecord = m->m_nextpkt;
1537 	if (pr->pr_flags & PR_ADDR) {
1538 		KASSERT(m->m_type == MT_SONAME,
1539 		    ("m->m_type == %d", m->m_type));
1540 		orig_resid = 0;
1541 		if (psa != NULL)
1542 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
1543 			    M_NOWAIT);
1544 		if (flags & MSG_PEEK) {
1545 			m = m->m_next;
1546 		} else {
1547 			sbfree(&so->so_rcv, m);
1548 			so->so_rcv.sb_mb = m_free(m);
1549 			m = so->so_rcv.sb_mb;
1550 			sockbuf_pushsync(&so->so_rcv, nextrecord);
1551 		}
1552 	}
1553 
1554 	/*
1555 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
1556 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
1557 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
1558 	 * perform externalization (or freeing if controlp == NULL).
1559 	 */
1560 	if (m != NULL && m->m_type == MT_CONTROL) {
1561 		struct mbuf *cm = NULL, *cmn;
1562 		struct mbuf **cme = &cm;
1563 
1564 		do {
1565 			if (flags & MSG_PEEK) {
1566 				if (controlp != NULL) {
1567 					*controlp = m_copy(m, 0, m->m_len);
1568 					controlp = &(*controlp)->m_next;
1569 				}
1570 				m = m->m_next;
1571 			} else {
1572 				sbfree(&so->so_rcv, m);
1573 				so->so_rcv.sb_mb = m->m_next;
1574 				m->m_next = NULL;
1575 				*cme = m;
1576 				cme = &(*cme)->m_next;
1577 				m = so->so_rcv.sb_mb;
1578 			}
1579 		} while (m != NULL && m->m_type == MT_CONTROL);
1580 		if ((flags & MSG_PEEK) == 0)
1581 			sockbuf_pushsync(&so->so_rcv, nextrecord);
1582 		while (cm != NULL) {
1583 			cmn = cm->m_next;
1584 			cm->m_next = NULL;
1585 			if (pr->pr_domain->dom_externalize != NULL) {
1586 				SOCKBUF_UNLOCK(&so->so_rcv);
1587 				error = (*pr->pr_domain->dom_externalize)
1588 				    (cm, controlp);
1589 				SOCKBUF_LOCK(&so->so_rcv);
1590 			} else if (controlp != NULL)
1591 				*controlp = cm;
1592 			else
1593 				m_freem(cm);
1594 			if (controlp != NULL) {
1595 				orig_resid = 0;
1596 				while (*controlp != NULL)
1597 					controlp = &(*controlp)->m_next;
1598 			}
1599 			cm = cmn;
1600 		}
1601 		if (m != NULL)
1602 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1603 		else
1604 			nextrecord = so->so_rcv.sb_mb;
1605 		orig_resid = 0;
1606 	}
1607 	if (m != NULL) {
1608 		if ((flags & MSG_PEEK) == 0) {
1609 			KASSERT(m->m_nextpkt == nextrecord,
1610 			    ("soreceive: post-control, nextrecord !sync"));
1611 			if (nextrecord == NULL) {
1612 				KASSERT(so->so_rcv.sb_mb == m,
1613 				    ("soreceive: post-control, sb_mb!=m"));
1614 				KASSERT(so->so_rcv.sb_lastrecord == m,
1615 				    ("soreceive: post-control, lastrecord!=m"));
1616 			}
1617 		}
1618 		type = m->m_type;
1619 		if (type == MT_OOBDATA)
1620 			flags |= MSG_OOB;
1621 	} else {
1622 		if ((flags & MSG_PEEK) == 0) {
1623 			KASSERT(so->so_rcv.sb_mb == nextrecord,
1624 			    ("soreceive: sb_mb != nextrecord"));
1625 			if (so->so_rcv.sb_mb == NULL) {
1626 				KASSERT(so->so_rcv.sb_lastrecord == NULL,
1627 				    ("soreceive: sb_lastercord != NULL"));
1628 			}
1629 		}
1630 	}
1631 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1632 	SBLASTRECORDCHK(&so->so_rcv);
1633 	SBLASTMBUFCHK(&so->so_rcv);
1634 
1635 	/*
1636 	 * Now continue to read any data mbufs off of the head of the socket
1637 	 * buffer until the read request is satisfied.  Note that 'type' is
1638 	 * used to store the type of any mbuf reads that have happened so far
1639 	 * such that soreceive() can stop reading if the type changes, which
1640 	 * causes soreceive() to return only one of regular data and inline
1641 	 * out-of-band data in a single socket receive operation.
1642 	 */
1643 	moff = 0;
1644 	offset = 0;
1645 	while (m != NULL && uio->uio_resid > 0 && error == 0) {
1646 		/*
1647 		 * If the type of mbuf has changed since the last mbuf
1648 		 * examined ('type'), end the receive operation.
1649 	 	 */
1650 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1651 		if (m->m_type == MT_OOBDATA) {
1652 			if (type != MT_OOBDATA)
1653 				break;
1654 		} else if (type == MT_OOBDATA)
1655 			break;
1656 		else
1657 		    KASSERT(m->m_type == MT_DATA,
1658 			("m->m_type == %d", m->m_type));
1659 		so->so_rcv.sb_state &= ~SBS_RCVATMARK;
1660 		len = uio->uio_resid;
1661 		if (so->so_oobmark && len > so->so_oobmark - offset)
1662 			len = so->so_oobmark - offset;
1663 		if (len > m->m_len - moff)
1664 			len = m->m_len - moff;
1665 		/*
1666 		 * If mp is set, just pass back the mbufs.  Otherwise copy
1667 		 * them out via the uio, then free.  Sockbuf must be
1668 		 * consistent here (points to current mbuf, it points to next
1669 		 * record) when we drop priority; we must note any additions
1670 		 * to the sockbuf when we block interrupts again.
1671 		 */
1672 		if (mp == NULL) {
1673 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1674 			SBLASTRECORDCHK(&so->so_rcv);
1675 			SBLASTMBUFCHK(&so->so_rcv);
1676 			SOCKBUF_UNLOCK(&so->so_rcv);
1677 #ifdef ZERO_COPY_SOCKETS
1678 			if (so_zero_copy_receive) {
1679 				int disposable;
1680 
1681 				if ((m->m_flags & M_EXT)
1682 				 && (m->m_ext.ext_type == EXT_DISPOSABLE))
1683 					disposable = 1;
1684 				else
1685 					disposable = 0;
1686 
1687 				error = uiomoveco(mtod(m, char *) + moff,
1688 						  (int)len, uio,
1689 						  disposable);
1690 			} else
1691 #endif /* ZERO_COPY_SOCKETS */
1692 			error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1693 			SOCKBUF_LOCK(&so->so_rcv);
1694 			if (error) {
1695 				/*
1696 				 * The MT_SONAME mbuf has already been removed
1697 				 * from the record, so it is necessary to
1698 				 * remove the data mbufs, if any, to preserve
1699 				 * the invariant in the case of PR_ADDR that
1700 				 * requires MT_SONAME mbufs at the head of
1701 				 * each record.
1702 				 */
1703 				if (m && pr->pr_flags & PR_ATOMIC &&
1704 				    ((flags & MSG_PEEK) == 0))
1705 					(void)sbdroprecord_locked(&so->so_rcv);
1706 				SOCKBUF_UNLOCK(&so->so_rcv);
1707 				goto release;
1708 			}
1709 		} else
1710 			uio->uio_resid -= len;
1711 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1712 		if (len == m->m_len - moff) {
1713 			if (m->m_flags & M_EOR)
1714 				flags |= MSG_EOR;
1715 			if (flags & MSG_PEEK) {
1716 				m = m->m_next;
1717 				moff = 0;
1718 			} else {
1719 				nextrecord = m->m_nextpkt;
1720 				sbfree(&so->so_rcv, m);
1721 				if (mp != NULL) {
1722 					*mp = m;
1723 					mp = &m->m_next;
1724 					so->so_rcv.sb_mb = m = m->m_next;
1725 					*mp = NULL;
1726 				} else {
1727 					so->so_rcv.sb_mb = m_free(m);
1728 					m = so->so_rcv.sb_mb;
1729 				}
1730 				sockbuf_pushsync(&so->so_rcv, nextrecord);
1731 				SBLASTRECORDCHK(&so->so_rcv);
1732 				SBLASTMBUFCHK(&so->so_rcv);
1733 			}
1734 		} else {
1735 			if (flags & MSG_PEEK)
1736 				moff += len;
1737 			else {
1738 				if (mp != NULL) {
1739 					int copy_flag;
1740 
1741 					if (flags & MSG_DONTWAIT)
1742 						copy_flag = M_DONTWAIT;
1743 					else
1744 						copy_flag = M_WAIT;
1745 					if (copy_flag == M_WAIT)
1746 						SOCKBUF_UNLOCK(&so->so_rcv);
1747 					*mp = m_copym(m, 0, len, copy_flag);
1748 					if (copy_flag == M_WAIT)
1749 						SOCKBUF_LOCK(&so->so_rcv);
1750  					if (*mp == NULL) {
1751  						/*
1752  						 * m_copym() couldn't
1753 						 * allocate an mbuf.  Adjust
1754 						 * uio_resid back (it was
1755 						 * adjusted down by len
1756 						 * bytes, which we didn't end
1757 						 * up "copying" over).
1758  						 */
1759  						uio->uio_resid += len;
1760  						break;
1761  					}
1762 				}
1763 				m->m_data += len;
1764 				m->m_len -= len;
1765 				so->so_rcv.sb_cc -= len;
1766 			}
1767 		}
1768 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1769 		if (so->so_oobmark) {
1770 			if ((flags & MSG_PEEK) == 0) {
1771 				so->so_oobmark -= len;
1772 				if (so->so_oobmark == 0) {
1773 					so->so_rcv.sb_state |= SBS_RCVATMARK;
1774 					break;
1775 				}
1776 			} else {
1777 				offset += len;
1778 				if (offset == so->so_oobmark)
1779 					break;
1780 			}
1781 		}
1782 		if (flags & MSG_EOR)
1783 			break;
1784 		/*
1785 		 * If the MSG_WAITALL flag is set (for non-atomic socket), we
1786 		 * must not quit until "uio->uio_resid == 0" or an error
1787 		 * termination.  If a signal/timeout occurs, return with a
1788 		 * short count but without error.  Keep sockbuf locked
1789 		 * against other readers.
1790 		 */
1791 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1792 		    !sosendallatonce(so) && nextrecord == NULL) {
1793 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1794 			if (so->so_error || so->so_rcv.sb_state & SBS_CANTRCVMORE)
1795 				break;
1796 			/*
1797 			 * Notify the protocol that some data has been
1798 			 * drained before blocking.
1799 			 */
1800 			if (pr->pr_flags & PR_WANTRCVD) {
1801 				SOCKBUF_UNLOCK(&so->so_rcv);
1802 				(*pr->pr_usrreqs->pru_rcvd)(so, flags);
1803 				SOCKBUF_LOCK(&so->so_rcv);
1804 			}
1805 			SBLASTRECORDCHK(&so->so_rcv);
1806 			SBLASTMBUFCHK(&so->so_rcv);
1807 			error = sbwait(&so->so_rcv);
1808 			if (error) {
1809 				SOCKBUF_UNLOCK(&so->so_rcv);
1810 				goto release;
1811 			}
1812 			m = so->so_rcv.sb_mb;
1813 			if (m != NULL)
1814 				nextrecord = m->m_nextpkt;
1815 		}
1816 	}
1817 
1818 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1819 	if (m != NULL && pr->pr_flags & PR_ATOMIC) {
1820 		flags |= MSG_TRUNC;
1821 		if ((flags & MSG_PEEK) == 0)
1822 			(void) sbdroprecord_locked(&so->so_rcv);
1823 	}
1824 	if ((flags & MSG_PEEK) == 0) {
1825 		if (m == NULL) {
1826 			/*
1827 			 * First part is an inline SB_EMPTY_FIXUP().  Second
1828 			 * part makes sure sb_lastrecord is up-to-date if
1829 			 * there is still data in the socket buffer.
1830 			 */
1831 			so->so_rcv.sb_mb = nextrecord;
1832 			if (so->so_rcv.sb_mb == NULL) {
1833 				so->so_rcv.sb_mbtail = NULL;
1834 				so->so_rcv.sb_lastrecord = NULL;
1835 			} else if (nextrecord->m_nextpkt == NULL)
1836 				so->so_rcv.sb_lastrecord = nextrecord;
1837 		}
1838 		SBLASTRECORDCHK(&so->so_rcv);
1839 		SBLASTMBUFCHK(&so->so_rcv);
1840 		/*
1841 		 * If soreceive() is being done from the socket callback,
1842 		 * then don't need to generate ACK to peer to update window,
1843 		 * since ACK will be generated on return to TCP.
1844 		 */
1845 		if (!(flags & MSG_SOCALLBCK) &&
1846 		    (pr->pr_flags & PR_WANTRCVD)) {
1847 			SOCKBUF_UNLOCK(&so->so_rcv);
1848 			(*pr->pr_usrreqs->pru_rcvd)(so, flags);
1849 			SOCKBUF_LOCK(&so->so_rcv);
1850 		}
1851 	}
1852 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1853 	if (orig_resid == uio->uio_resid && orig_resid &&
1854 	    (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
1855 		SOCKBUF_UNLOCK(&so->so_rcv);
1856 		goto restart;
1857 	}
1858 	SOCKBUF_UNLOCK(&so->so_rcv);
1859 
1860 	if (flagsp != NULL)
1861 		*flagsp |= flags;
1862 release:
1863 	sbunlock(&so->so_rcv);
1864 	return (error);
1865 }
1866 
1867 /*
1868  * Optimized version of soreceive() for stream (TCP) sockets.
1869  */
1870 #ifdef TCP_SORECEIVE_STREAM
1871 int
1872 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio,
1873     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1874 {
1875 	int len = 0, error = 0, flags, oresid;
1876 	struct sockbuf *sb;
1877 	struct mbuf *m, *n = NULL;
1878 
1879 	/* We only do stream sockets. */
1880 	if (so->so_type != SOCK_STREAM)
1881 		return (EINVAL);
1882 	if (psa != NULL)
1883 		*psa = NULL;
1884 	if (controlp != NULL)
1885 		return (EINVAL);
1886 	if (flagsp != NULL)
1887 		flags = *flagsp &~ MSG_EOR;
1888 	else
1889 		flags = 0;
1890 	if (flags & MSG_OOB)
1891 		return (soreceive_rcvoob(so, uio, flags));
1892 	if (mp0 != NULL)
1893 		*mp0 = NULL;
1894 
1895 	sb = &so->so_rcv;
1896 
1897 	/* Prevent other readers from entering the socket. */
1898 	error = sblock(sb, SBLOCKWAIT(flags));
1899 	if (error)
1900 		goto out;
1901 	SOCKBUF_LOCK(sb);
1902 
1903 	/* Easy one, no space to copyout anything. */
1904 	if (uio->uio_resid == 0) {
1905 		error = EINVAL;
1906 		goto out;
1907 	}
1908 	oresid = uio->uio_resid;
1909 
1910 	/* We will never ever get anything unless we are connected. */
1911 	if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
1912 		/* When disconnecting there may be still some data left. */
1913 		if (sb->sb_cc > 0)
1914 			goto deliver;
1915 		if (!(so->so_state & SS_ISDISCONNECTED))
1916 			error = ENOTCONN;
1917 		goto out;
1918 	}
1919 
1920 	/* Socket buffer is empty and we shall not block. */
1921 	if (sb->sb_cc == 0 &&
1922 	    ((sb->sb_flags & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) {
1923 		error = EAGAIN;
1924 		goto out;
1925 	}
1926 
1927 restart:
1928 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1929 
1930 	/* Abort if socket has reported problems. */
1931 	if (so->so_error) {
1932 		if (sb->sb_cc > 0)
1933 			goto deliver;
1934 		if (oresid > uio->uio_resid)
1935 			goto out;
1936 		error = so->so_error;
1937 		if (!(flags & MSG_PEEK))
1938 			so->so_error = 0;
1939 		goto out;
1940 	}
1941 
1942 	/* Door is closed.  Deliver what is left, if any. */
1943 	if (sb->sb_state & SBS_CANTRCVMORE) {
1944 		if (sb->sb_cc > 0)
1945 			goto deliver;
1946 		else
1947 			goto out;
1948 	}
1949 
1950 	/* Socket buffer got some data that we shall deliver now. */
1951 	if (sb->sb_cc > 0 && !(flags & MSG_WAITALL) &&
1952 	    ((sb->sb_flags & SS_NBIO) ||
1953 	     (flags & (MSG_DONTWAIT|MSG_NBIO)) ||
1954 	     sb->sb_cc >= sb->sb_lowat ||
1955 	     sb->sb_cc >= uio->uio_resid ||
1956 	     sb->sb_cc >= sb->sb_hiwat) ) {
1957 		goto deliver;
1958 	}
1959 
1960 	/* On MSG_WAITALL we must wait until all data or error arrives. */
1961 	if ((flags & MSG_WAITALL) &&
1962 	    (sb->sb_cc >= uio->uio_resid || sb->sb_cc >= sb->sb_lowat))
1963 		goto deliver;
1964 
1965 	/*
1966 	 * Wait and block until (more) data comes in.
1967 	 * NB: Drops the sockbuf lock during wait.
1968 	 */
1969 	error = sbwait(sb);
1970 	if (error)
1971 		goto out;
1972 	goto restart;
1973 
1974 deliver:
1975 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1976 	KASSERT(sb->sb_cc > 0, ("%s: sockbuf empty", __func__));
1977 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__));
1978 
1979 	/* Statistics. */
1980 	if (uio->uio_td)
1981 		uio->uio_td->td_ru.ru_msgrcv++;
1982 
1983 	/* Fill uio until full or current end of socket buffer is reached. */
1984 	len = min(uio->uio_resid, sb->sb_cc);
1985 	if (mp0 != NULL) {
1986 		/* Dequeue as many mbufs as possible. */
1987 		if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) {
1988 			for (*mp0 = m = sb->sb_mb;
1989 			     m != NULL && m->m_len <= len;
1990 			     m = m->m_next) {
1991 				len -= m->m_len;
1992 				uio->uio_resid -= m->m_len;
1993 				sbfree(sb, m);
1994 				n = m;
1995 			}
1996 			sb->sb_mb = m;
1997 			if (sb->sb_mb == NULL)
1998 				SB_EMPTY_FIXUP(sb);
1999 			n->m_next = NULL;
2000 		}
2001 		/* Copy the remainder. */
2002 		if (len > 0) {
2003 			KASSERT(sb->sb_mb != NULL,
2004 			    ("%s: len > 0 && sb->sb_mb empty", __func__));
2005 
2006 			m = m_copym(sb->sb_mb, 0, len, M_DONTWAIT);
2007 			if (m == NULL)
2008 				len = 0;	/* Don't flush data from sockbuf. */
2009 			else
2010 				uio->uio_resid -= m->m_len;
2011 			if (*mp0 != NULL)
2012 				n->m_next = m;
2013 			else
2014 				*mp0 = m;
2015 			if (*mp0 == NULL) {
2016 				error = ENOBUFS;
2017 				goto out;
2018 			}
2019 		}
2020 	} else {
2021 		/* NB: Must unlock socket buffer as uiomove may sleep. */
2022 		SOCKBUF_UNLOCK(sb);
2023 		error = m_mbuftouio(uio, sb->sb_mb, len);
2024 		SOCKBUF_LOCK(sb);
2025 		if (error)
2026 			goto out;
2027 	}
2028 	SBLASTRECORDCHK(sb);
2029 	SBLASTMBUFCHK(sb);
2030 
2031 	/*
2032 	 * Remove the delivered data from the socket buffer unless we
2033 	 * were only peeking.
2034 	 */
2035 	if (!(flags & MSG_PEEK)) {
2036 		if (len > 0)
2037 			sbdrop_locked(sb, len);
2038 
2039 		/* Notify protocol that we drained some data. */
2040 		if ((so->so_proto->pr_flags & PR_WANTRCVD) &&
2041 		    (((flags & MSG_WAITALL) && uio->uio_resid > 0) ||
2042 		     !(flags & MSG_SOCALLBCK))) {
2043 			SOCKBUF_UNLOCK(sb);
2044 			(*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags);
2045 			SOCKBUF_LOCK(sb);
2046 		}
2047 	}
2048 
2049 	/*
2050 	 * For MSG_WAITALL we may have to loop again and wait for
2051 	 * more data to come in.
2052 	 */
2053 	if ((flags & MSG_WAITALL) && uio->uio_resid > 0)
2054 		goto restart;
2055 out:
2056 	SOCKBUF_LOCK_ASSERT(sb);
2057 	SBLASTRECORDCHK(sb);
2058 	SBLASTMBUFCHK(sb);
2059 	SOCKBUF_UNLOCK(sb);
2060 	sbunlock(sb);
2061 	return (error);
2062 }
2063 #endif /* TCP_SORECEIVE_STREAM */
2064 
2065 /*
2066  * Optimized version of soreceive() for simple datagram cases from userspace.
2067  * Unlike in the stream case, we're able to drop a datagram if copyout()
2068  * fails, and because we handle datagrams atomically, we don't need to use a
2069  * sleep lock to prevent I/O interlacing.
2070  */
2071 int
2072 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
2073     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2074 {
2075 	struct mbuf *m, *m2;
2076 	int flags, len, error;
2077 	struct protosw *pr = so->so_proto;
2078 	struct mbuf *nextrecord;
2079 
2080 	if (psa != NULL)
2081 		*psa = NULL;
2082 	if (controlp != NULL)
2083 		*controlp = NULL;
2084 	if (flagsp != NULL)
2085 		flags = *flagsp &~ MSG_EOR;
2086 	else
2087 		flags = 0;
2088 
2089 	/*
2090 	 * For any complicated cases, fall back to the full
2091 	 * soreceive_generic().
2092 	 */
2093 	if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB))
2094 		return (soreceive_generic(so, psa, uio, mp0, controlp,
2095 		    flagsp));
2096 
2097 	/*
2098 	 * Enforce restrictions on use.
2099 	 */
2100 	KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
2101 	    ("soreceive_dgram: wantrcvd"));
2102 	KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
2103 	KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
2104 	    ("soreceive_dgram: SBS_RCVATMARK"));
2105 	KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
2106 	    ("soreceive_dgram: P_CONNREQUIRED"));
2107 
2108 	/*
2109 	 * Loop blocking while waiting for a datagram.
2110 	 */
2111 	SOCKBUF_LOCK(&so->so_rcv);
2112 	while ((m = so->so_rcv.sb_mb) == NULL) {
2113 		KASSERT(so->so_rcv.sb_cc == 0,
2114 		    ("soreceive_dgram: sb_mb NULL but sb_cc %u",
2115 		    so->so_rcv.sb_cc));
2116 		if (so->so_error) {
2117 			error = so->so_error;
2118 			so->so_error = 0;
2119 			SOCKBUF_UNLOCK(&so->so_rcv);
2120 			return (error);
2121 		}
2122 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
2123 		    uio->uio_resid == 0) {
2124 			SOCKBUF_UNLOCK(&so->so_rcv);
2125 			return (0);
2126 		}
2127 		if ((so->so_state & SS_NBIO) ||
2128 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
2129 			SOCKBUF_UNLOCK(&so->so_rcv);
2130 			return (EWOULDBLOCK);
2131 		}
2132 		SBLASTRECORDCHK(&so->so_rcv);
2133 		SBLASTMBUFCHK(&so->so_rcv);
2134 		error = sbwait(&so->so_rcv);
2135 		if (error) {
2136 			SOCKBUF_UNLOCK(&so->so_rcv);
2137 			return (error);
2138 		}
2139 	}
2140 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2141 
2142 	if (uio->uio_td)
2143 		uio->uio_td->td_ru.ru_msgrcv++;
2144 	SBLASTRECORDCHK(&so->so_rcv);
2145 	SBLASTMBUFCHK(&so->so_rcv);
2146 	nextrecord = m->m_nextpkt;
2147 	if (nextrecord == NULL) {
2148 		KASSERT(so->so_rcv.sb_lastrecord == m,
2149 		    ("soreceive_dgram: lastrecord != m"));
2150 	}
2151 
2152 	KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
2153 	    ("soreceive_dgram: m_nextpkt != nextrecord"));
2154 
2155 	/*
2156 	 * Pull 'm' and its chain off the front of the packet queue.
2157 	 */
2158 	so->so_rcv.sb_mb = NULL;
2159 	sockbuf_pushsync(&so->so_rcv, nextrecord);
2160 
2161 	/*
2162 	 * Walk 'm's chain and free that many bytes from the socket buffer.
2163 	 */
2164 	for (m2 = m; m2 != NULL; m2 = m2->m_next)
2165 		sbfree(&so->so_rcv, m2);
2166 
2167 	/*
2168 	 * Do a few last checks before we let go of the lock.
2169 	 */
2170 	SBLASTRECORDCHK(&so->so_rcv);
2171 	SBLASTMBUFCHK(&so->so_rcv);
2172 	SOCKBUF_UNLOCK(&so->so_rcv);
2173 
2174 	if (pr->pr_flags & PR_ADDR) {
2175 		KASSERT(m->m_type == MT_SONAME,
2176 		    ("m->m_type == %d", m->m_type));
2177 		if (psa != NULL)
2178 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
2179 			    M_NOWAIT);
2180 		m = m_free(m);
2181 	}
2182 	if (m == NULL) {
2183 		/* XXXRW: Can this happen? */
2184 		return (0);
2185 	}
2186 
2187 	/*
2188 	 * Packet to copyout() is now in 'm' and it is disconnected from the
2189 	 * queue.
2190 	 *
2191 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
2192 	 * in the first mbuf chain on the socket buffer.  We call into the
2193 	 * protocol to perform externalization (or freeing if controlp ==
2194 	 * NULL).
2195 	 */
2196 	if (m->m_type == MT_CONTROL) {
2197 		struct mbuf *cm = NULL, *cmn;
2198 		struct mbuf **cme = &cm;
2199 
2200 		do {
2201 			m2 = m->m_next;
2202 			m->m_next = NULL;
2203 			*cme = m;
2204 			cme = &(*cme)->m_next;
2205 			m = m2;
2206 		} while (m != NULL && m->m_type == MT_CONTROL);
2207 		while (cm != NULL) {
2208 			cmn = cm->m_next;
2209 			cm->m_next = NULL;
2210 			if (pr->pr_domain->dom_externalize != NULL) {
2211 				error = (*pr->pr_domain->dom_externalize)
2212 				    (cm, controlp);
2213 			} else if (controlp != NULL)
2214 				*controlp = cm;
2215 			else
2216 				m_freem(cm);
2217 			if (controlp != NULL) {
2218 				while (*controlp != NULL)
2219 					controlp = &(*controlp)->m_next;
2220 			}
2221 			cm = cmn;
2222 		}
2223 	}
2224 	KASSERT(m->m_type == MT_DATA, ("soreceive_dgram: !data"));
2225 
2226 	while (m != NULL && uio->uio_resid > 0) {
2227 		len = uio->uio_resid;
2228 		if (len > m->m_len)
2229 			len = m->m_len;
2230 		error = uiomove(mtod(m, char *), (int)len, uio);
2231 		if (error) {
2232 			m_freem(m);
2233 			return (error);
2234 		}
2235 		m = m_free(m);
2236 	}
2237 	if (m != NULL)
2238 		flags |= MSG_TRUNC;
2239 	m_freem(m);
2240 	if (flagsp != NULL)
2241 		*flagsp |= flags;
2242 	return (0);
2243 }
2244 
2245 int
2246 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
2247     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2248 {
2249 
2250 	return (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, mp0,
2251 	    controlp, flagsp));
2252 }
2253 
2254 int
2255 soshutdown(struct socket *so, int how)
2256 {
2257 	struct protosw *pr = so->so_proto;
2258 	int error;
2259 
2260 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
2261 		return (EINVAL);
2262 	if (pr->pr_usrreqs->pru_flush != NULL) {
2263 	        (*pr->pr_usrreqs->pru_flush)(so, how);
2264 	}
2265 	if (how != SHUT_WR)
2266 		sorflush(so);
2267 	if (how != SHUT_RD) {
2268 		CURVNET_SET(so->so_vnet);
2269 		error = (*pr->pr_usrreqs->pru_shutdown)(so);
2270 		CURVNET_RESTORE();
2271 		return (error);
2272 	}
2273 	return (0);
2274 }
2275 
2276 void
2277 sorflush(struct socket *so)
2278 {
2279 	struct sockbuf *sb = &so->so_rcv;
2280 	struct protosw *pr = so->so_proto;
2281 	struct sockbuf asb;
2282 
2283 	/*
2284 	 * In order to avoid calling dom_dispose with the socket buffer mutex
2285 	 * held, and in order to generally avoid holding the lock for a long
2286 	 * time, we make a copy of the socket buffer and clear the original
2287 	 * (except locks, state).  The new socket buffer copy won't have
2288 	 * initialized locks so we can only call routines that won't use or
2289 	 * assert those locks.
2290 	 *
2291 	 * Dislodge threads currently blocked in receive and wait to acquire
2292 	 * a lock against other simultaneous readers before clearing the
2293 	 * socket buffer.  Don't let our acquire be interrupted by a signal
2294 	 * despite any existing socket disposition on interruptable waiting.
2295 	 */
2296 	CURVNET_SET(so->so_vnet);
2297 	socantrcvmore(so);
2298 	(void) sblock(sb, SBL_WAIT | SBL_NOINTR);
2299 
2300 	/*
2301 	 * Invalidate/clear most of the sockbuf structure, but leave selinfo
2302 	 * and mutex data unchanged.
2303 	 */
2304 	SOCKBUF_LOCK(sb);
2305 	bzero(&asb, offsetof(struct sockbuf, sb_startzero));
2306 	bcopy(&sb->sb_startzero, &asb.sb_startzero,
2307 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
2308 	bzero(&sb->sb_startzero,
2309 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
2310 	SOCKBUF_UNLOCK(sb);
2311 	sbunlock(sb);
2312 
2313 	/*
2314 	 * Dispose of special rights and flush the socket buffer.  Don't call
2315 	 * any unsafe routines (that rely on locks being initialized) on asb.
2316 	 */
2317 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
2318 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
2319 	sbrelease_internal(&asb, so);
2320 	CURVNET_RESTORE();
2321 }
2322 
2323 /*
2324  * Perhaps this routine, and sooptcopyout(), below, ought to come in an
2325  * additional variant to handle the case where the option value needs to be
2326  * some kind of integer, but not a specific size.  In addition to their use
2327  * here, these functions are also called by the protocol-level pr_ctloutput()
2328  * routines.
2329  */
2330 int
2331 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
2332 {
2333 	size_t	valsize;
2334 
2335 	/*
2336 	 * If the user gives us more than we wanted, we ignore it, but if we
2337 	 * don't get the minimum length the caller wants, we return EINVAL.
2338 	 * On success, sopt->sopt_valsize is set to however much we actually
2339 	 * retrieved.
2340 	 */
2341 	if ((valsize = sopt->sopt_valsize) < minlen)
2342 		return EINVAL;
2343 	if (valsize > len)
2344 		sopt->sopt_valsize = valsize = len;
2345 
2346 	if (sopt->sopt_td != NULL)
2347 		return (copyin(sopt->sopt_val, buf, valsize));
2348 
2349 	bcopy(sopt->sopt_val, buf, valsize);
2350 	return (0);
2351 }
2352 
2353 /*
2354  * Kernel version of setsockopt(2).
2355  *
2356  * XXX: optlen is size_t, not socklen_t
2357  */
2358 int
2359 so_setsockopt(struct socket *so, int level, int optname, void *optval,
2360     size_t optlen)
2361 {
2362 	struct sockopt sopt;
2363 
2364 	sopt.sopt_level = level;
2365 	sopt.sopt_name = optname;
2366 	sopt.sopt_dir = SOPT_SET;
2367 	sopt.sopt_val = optval;
2368 	sopt.sopt_valsize = optlen;
2369 	sopt.sopt_td = NULL;
2370 	return (sosetopt(so, &sopt));
2371 }
2372 
2373 int
2374 sosetopt(struct socket *so, struct sockopt *sopt)
2375 {
2376 	int	error, optval;
2377 	struct	linger l;
2378 	struct	timeval tv;
2379 	u_long  val;
2380 #ifdef MAC
2381 	struct mac extmac;
2382 #endif
2383 
2384 	error = 0;
2385 	if (sopt->sopt_level != SOL_SOCKET) {
2386 		if (so->so_proto && so->so_proto->pr_ctloutput)
2387 			return ((*so->so_proto->pr_ctloutput)
2388 				  (so, sopt));
2389 		error = ENOPROTOOPT;
2390 	} else {
2391 		switch (sopt->sopt_name) {
2392 #ifdef INET
2393 		case SO_ACCEPTFILTER:
2394 			error = do_setopt_accept_filter(so, sopt);
2395 			if (error)
2396 				goto bad;
2397 			break;
2398 #endif
2399 		case SO_LINGER:
2400 			error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
2401 			if (error)
2402 				goto bad;
2403 
2404 			SOCK_LOCK(so);
2405 			so->so_linger = l.l_linger;
2406 			if (l.l_onoff)
2407 				so->so_options |= SO_LINGER;
2408 			else
2409 				so->so_options &= ~SO_LINGER;
2410 			SOCK_UNLOCK(so);
2411 			break;
2412 
2413 		case SO_DEBUG:
2414 		case SO_KEEPALIVE:
2415 		case SO_DONTROUTE:
2416 		case SO_USELOOPBACK:
2417 		case SO_BROADCAST:
2418 		case SO_REUSEADDR:
2419 		case SO_REUSEPORT:
2420 		case SO_OOBINLINE:
2421 		case SO_TIMESTAMP:
2422 		case SO_BINTIME:
2423 		case SO_NOSIGPIPE:
2424 		case SO_NO_DDP:
2425 		case SO_NO_OFFLOAD:
2426 			error = sooptcopyin(sopt, &optval, sizeof optval,
2427 					    sizeof optval);
2428 			if (error)
2429 				goto bad;
2430 			SOCK_LOCK(so);
2431 			if (optval)
2432 				so->so_options |= sopt->sopt_name;
2433 			else
2434 				so->so_options &= ~sopt->sopt_name;
2435 			SOCK_UNLOCK(so);
2436 			break;
2437 
2438 		case SO_SETFIB:
2439 			error = sooptcopyin(sopt, &optval, sizeof optval,
2440 					    sizeof optval);
2441 			if (optval < 1 || optval > rt_numfibs) {
2442 				error = EINVAL;
2443 				goto bad;
2444 			}
2445 			if ((so->so_proto->pr_domain->dom_family == PF_INET) ||
2446 			    (so->so_proto->pr_domain->dom_family == PF_ROUTE)) {
2447 				so->so_fibnum = optval;
2448 				/* Note: ignore error */
2449 				if (so->so_proto && so->so_proto->pr_ctloutput)
2450 					(*so->so_proto->pr_ctloutput)(so, sopt);
2451 			} else {
2452 				so->so_fibnum = 0;
2453 			}
2454 			break;
2455 		case SO_SNDBUF:
2456 		case SO_RCVBUF:
2457 		case SO_SNDLOWAT:
2458 		case SO_RCVLOWAT:
2459 			error = sooptcopyin(sopt, &optval, sizeof optval,
2460 					    sizeof optval);
2461 			if (error)
2462 				goto bad;
2463 
2464 			/*
2465 			 * Values < 1 make no sense for any of these options,
2466 			 * so disallow them.
2467 			 */
2468 			if (optval < 1) {
2469 				error = EINVAL;
2470 				goto bad;
2471 			}
2472 
2473 			switch (sopt->sopt_name) {
2474 			case SO_SNDBUF:
2475 			case SO_RCVBUF:
2476 				if (sbreserve(sopt->sopt_name == SO_SNDBUF ?
2477 				    &so->so_snd : &so->so_rcv, (u_long)optval,
2478 				    so, curthread) == 0) {
2479 					error = ENOBUFS;
2480 					goto bad;
2481 				}
2482 				(sopt->sopt_name == SO_SNDBUF ? &so->so_snd :
2483 				    &so->so_rcv)->sb_flags &= ~SB_AUTOSIZE;
2484 				break;
2485 
2486 			/*
2487 			 * Make sure the low-water is never greater than the
2488 			 * high-water.
2489 			 */
2490 			case SO_SNDLOWAT:
2491 				SOCKBUF_LOCK(&so->so_snd);
2492 				so->so_snd.sb_lowat =
2493 				    (optval > so->so_snd.sb_hiwat) ?
2494 				    so->so_snd.sb_hiwat : optval;
2495 				SOCKBUF_UNLOCK(&so->so_snd);
2496 				break;
2497 			case SO_RCVLOWAT:
2498 				SOCKBUF_LOCK(&so->so_rcv);
2499 				so->so_rcv.sb_lowat =
2500 				    (optval > so->so_rcv.sb_hiwat) ?
2501 				    so->so_rcv.sb_hiwat : optval;
2502 				SOCKBUF_UNLOCK(&so->so_rcv);
2503 				break;
2504 			}
2505 			break;
2506 
2507 		case SO_SNDTIMEO:
2508 		case SO_RCVTIMEO:
2509 #ifdef COMPAT_IA32
2510 			if (SV_CURPROC_FLAG(SV_ILP32)) {
2511 				struct timeval32 tv32;
2512 
2513 				error = sooptcopyin(sopt, &tv32, sizeof tv32,
2514 				    sizeof tv32);
2515 				CP(tv32, tv, tv_sec);
2516 				CP(tv32, tv, tv_usec);
2517 			} else
2518 #endif
2519 				error = sooptcopyin(sopt, &tv, sizeof tv,
2520 				    sizeof tv);
2521 			if (error)
2522 				goto bad;
2523 
2524 			/* assert(hz > 0); */
2525 			if (tv.tv_sec < 0 || tv.tv_sec > INT_MAX / hz ||
2526 			    tv.tv_usec < 0 || tv.tv_usec >= 1000000) {
2527 				error = EDOM;
2528 				goto bad;
2529 			}
2530 			/* assert(tick > 0); */
2531 			/* assert(ULONG_MAX - INT_MAX >= 1000000); */
2532 			val = (u_long)(tv.tv_sec * hz) + tv.tv_usec / tick;
2533 			if (val > INT_MAX) {
2534 				error = EDOM;
2535 				goto bad;
2536 			}
2537 			if (val == 0 && tv.tv_usec != 0)
2538 				val = 1;
2539 
2540 			switch (sopt->sopt_name) {
2541 			case SO_SNDTIMEO:
2542 				so->so_snd.sb_timeo = val;
2543 				break;
2544 			case SO_RCVTIMEO:
2545 				so->so_rcv.sb_timeo = val;
2546 				break;
2547 			}
2548 			break;
2549 
2550 		case SO_LABEL:
2551 #ifdef MAC
2552 			error = sooptcopyin(sopt, &extmac, sizeof extmac,
2553 			    sizeof extmac);
2554 			if (error)
2555 				goto bad;
2556 			error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
2557 			    so, &extmac);
2558 #else
2559 			error = EOPNOTSUPP;
2560 #endif
2561 			break;
2562 
2563 		default:
2564 			error = ENOPROTOOPT;
2565 			break;
2566 		}
2567 		if (error == 0 && so->so_proto != NULL &&
2568 		    so->so_proto->pr_ctloutput != NULL) {
2569 			(void) ((*so->so_proto->pr_ctloutput)
2570 				  (so, sopt));
2571 		}
2572 	}
2573 bad:
2574 	return (error);
2575 }
2576 
2577 /*
2578  * Helper routine for getsockopt.
2579  */
2580 int
2581 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
2582 {
2583 	int	error;
2584 	size_t	valsize;
2585 
2586 	error = 0;
2587 
2588 	/*
2589 	 * Documented get behavior is that we always return a value, possibly
2590 	 * truncated to fit in the user's buffer.  Traditional behavior is
2591 	 * that we always tell the user precisely how much we copied, rather
2592 	 * than something useful like the total amount we had available for
2593 	 * her.  Note that this interface is not idempotent; the entire
2594 	 * answer must generated ahead of time.
2595 	 */
2596 	valsize = min(len, sopt->sopt_valsize);
2597 	sopt->sopt_valsize = valsize;
2598 	if (sopt->sopt_val != NULL) {
2599 		if (sopt->sopt_td != NULL)
2600 			error = copyout(buf, sopt->sopt_val, valsize);
2601 		else
2602 			bcopy(buf, sopt->sopt_val, valsize);
2603 	}
2604 	return (error);
2605 }
2606 
2607 int
2608 sogetopt(struct socket *so, struct sockopt *sopt)
2609 {
2610 	int	error, optval;
2611 	struct	linger l;
2612 	struct	timeval tv;
2613 #ifdef MAC
2614 	struct mac extmac;
2615 #endif
2616 
2617 	error = 0;
2618 	if (sopt->sopt_level != SOL_SOCKET) {
2619 		if (so->so_proto && so->so_proto->pr_ctloutput) {
2620 			return ((*so->so_proto->pr_ctloutput)
2621 				  (so, sopt));
2622 		} else
2623 			return (ENOPROTOOPT);
2624 	} else {
2625 		switch (sopt->sopt_name) {
2626 #ifdef INET
2627 		case SO_ACCEPTFILTER:
2628 			error = do_getopt_accept_filter(so, sopt);
2629 			break;
2630 #endif
2631 		case SO_LINGER:
2632 			SOCK_LOCK(so);
2633 			l.l_onoff = so->so_options & SO_LINGER;
2634 			l.l_linger = so->so_linger;
2635 			SOCK_UNLOCK(so);
2636 			error = sooptcopyout(sopt, &l, sizeof l);
2637 			break;
2638 
2639 		case SO_USELOOPBACK:
2640 		case SO_DONTROUTE:
2641 		case SO_DEBUG:
2642 		case SO_KEEPALIVE:
2643 		case SO_REUSEADDR:
2644 		case SO_REUSEPORT:
2645 		case SO_BROADCAST:
2646 		case SO_OOBINLINE:
2647 		case SO_ACCEPTCONN:
2648 		case SO_TIMESTAMP:
2649 		case SO_BINTIME:
2650 		case SO_NOSIGPIPE:
2651 			optval = so->so_options & sopt->sopt_name;
2652 integer:
2653 			error = sooptcopyout(sopt, &optval, sizeof optval);
2654 			break;
2655 
2656 		case SO_TYPE:
2657 			optval = so->so_type;
2658 			goto integer;
2659 
2660 		case SO_ERROR:
2661 			SOCK_LOCK(so);
2662 			optval = so->so_error;
2663 			so->so_error = 0;
2664 			SOCK_UNLOCK(so);
2665 			goto integer;
2666 
2667 		case SO_SNDBUF:
2668 			optval = so->so_snd.sb_hiwat;
2669 			goto integer;
2670 
2671 		case SO_RCVBUF:
2672 			optval = so->so_rcv.sb_hiwat;
2673 			goto integer;
2674 
2675 		case SO_SNDLOWAT:
2676 			optval = so->so_snd.sb_lowat;
2677 			goto integer;
2678 
2679 		case SO_RCVLOWAT:
2680 			optval = so->so_rcv.sb_lowat;
2681 			goto integer;
2682 
2683 		case SO_SNDTIMEO:
2684 		case SO_RCVTIMEO:
2685 			optval = (sopt->sopt_name == SO_SNDTIMEO ?
2686 				  so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
2687 
2688 			tv.tv_sec = optval / hz;
2689 			tv.tv_usec = (optval % hz) * tick;
2690 #ifdef COMPAT_IA32
2691 			if (SV_CURPROC_FLAG(SV_ILP32)) {
2692 				struct timeval32 tv32;
2693 
2694 				CP(tv, tv32, tv_sec);
2695 				CP(tv, tv32, tv_usec);
2696 				error = sooptcopyout(sopt, &tv32, sizeof tv32);
2697 			} else
2698 #endif
2699 				error = sooptcopyout(sopt, &tv, sizeof tv);
2700 			break;
2701 
2702 		case SO_LABEL:
2703 #ifdef MAC
2704 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
2705 			    sizeof(extmac));
2706 			if (error)
2707 				return (error);
2708 			error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
2709 			    so, &extmac);
2710 			if (error)
2711 				return (error);
2712 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
2713 #else
2714 			error = EOPNOTSUPP;
2715 #endif
2716 			break;
2717 
2718 		case SO_PEERLABEL:
2719 #ifdef MAC
2720 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
2721 			    sizeof(extmac));
2722 			if (error)
2723 				return (error);
2724 			error = mac_getsockopt_peerlabel(
2725 			    sopt->sopt_td->td_ucred, so, &extmac);
2726 			if (error)
2727 				return (error);
2728 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
2729 #else
2730 			error = EOPNOTSUPP;
2731 #endif
2732 			break;
2733 
2734 		case SO_LISTENQLIMIT:
2735 			optval = so->so_qlimit;
2736 			goto integer;
2737 
2738 		case SO_LISTENQLEN:
2739 			optval = so->so_qlen;
2740 			goto integer;
2741 
2742 		case SO_LISTENINCQLEN:
2743 			optval = so->so_incqlen;
2744 			goto integer;
2745 
2746 		default:
2747 			error = ENOPROTOOPT;
2748 			break;
2749 		}
2750 		return (error);
2751 	}
2752 }
2753 
2754 /* XXX; prepare mbuf for (__FreeBSD__ < 3) routines. */
2755 int
2756 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
2757 {
2758 	struct mbuf *m, *m_prev;
2759 	int sopt_size = sopt->sopt_valsize;
2760 
2761 	MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA);
2762 	if (m == NULL)
2763 		return ENOBUFS;
2764 	if (sopt_size > MLEN) {
2765 		MCLGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT);
2766 		if ((m->m_flags & M_EXT) == 0) {
2767 			m_free(m);
2768 			return ENOBUFS;
2769 		}
2770 		m->m_len = min(MCLBYTES, sopt_size);
2771 	} else {
2772 		m->m_len = min(MLEN, sopt_size);
2773 	}
2774 	sopt_size -= m->m_len;
2775 	*mp = m;
2776 	m_prev = m;
2777 
2778 	while (sopt_size) {
2779 		MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA);
2780 		if (m == NULL) {
2781 			m_freem(*mp);
2782 			return ENOBUFS;
2783 		}
2784 		if (sopt_size > MLEN) {
2785 			MCLGET(m, sopt->sopt_td != NULL ? M_WAIT :
2786 			    M_DONTWAIT);
2787 			if ((m->m_flags & M_EXT) == 0) {
2788 				m_freem(m);
2789 				m_freem(*mp);
2790 				return ENOBUFS;
2791 			}
2792 			m->m_len = min(MCLBYTES, sopt_size);
2793 		} else {
2794 			m->m_len = min(MLEN, sopt_size);
2795 		}
2796 		sopt_size -= m->m_len;
2797 		m_prev->m_next = m;
2798 		m_prev = m;
2799 	}
2800 	return (0);
2801 }
2802 
2803 /* XXX; copyin sopt data into mbuf chain for (__FreeBSD__ < 3) routines. */
2804 int
2805 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
2806 {
2807 	struct mbuf *m0 = m;
2808 
2809 	if (sopt->sopt_val == NULL)
2810 		return (0);
2811 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
2812 		if (sopt->sopt_td != NULL) {
2813 			int error;
2814 
2815 			error = copyin(sopt->sopt_val, mtod(m, char *),
2816 				       m->m_len);
2817 			if (error != 0) {
2818 				m_freem(m0);
2819 				return(error);
2820 			}
2821 		} else
2822 			bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
2823 		sopt->sopt_valsize -= m->m_len;
2824 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
2825 		m = m->m_next;
2826 	}
2827 	if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
2828 		panic("ip6_sooptmcopyin");
2829 	return (0);
2830 }
2831 
2832 /* XXX; copyout mbuf chain data into soopt for (__FreeBSD__ < 3) routines. */
2833 int
2834 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
2835 {
2836 	struct mbuf *m0 = m;
2837 	size_t valsize = 0;
2838 
2839 	if (sopt->sopt_val == NULL)
2840 		return (0);
2841 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
2842 		if (sopt->sopt_td != NULL) {
2843 			int error;
2844 
2845 			error = copyout(mtod(m, char *), sopt->sopt_val,
2846 				       m->m_len);
2847 			if (error != 0) {
2848 				m_freem(m0);
2849 				return(error);
2850 			}
2851 		} else
2852 			bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
2853 	       sopt->sopt_valsize -= m->m_len;
2854 	       sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
2855 	       valsize += m->m_len;
2856 	       m = m->m_next;
2857 	}
2858 	if (m != NULL) {
2859 		/* enough soopt buffer should be given from user-land */
2860 		m_freem(m0);
2861 		return(EINVAL);
2862 	}
2863 	sopt->sopt_valsize = valsize;
2864 	return (0);
2865 }
2866 
2867 /*
2868  * sohasoutofband(): protocol notifies socket layer of the arrival of new
2869  * out-of-band data, which will then notify socket consumers.
2870  */
2871 void
2872 sohasoutofband(struct socket *so)
2873 {
2874 
2875 	if (so->so_sigio != NULL)
2876 		pgsigio(&so->so_sigio, SIGURG, 0);
2877 	selwakeuppri(&so->so_rcv.sb_sel, PSOCK);
2878 }
2879 
2880 int
2881 sopoll(struct socket *so, int events, struct ucred *active_cred,
2882     struct thread *td)
2883 {
2884 
2885 	return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred,
2886 	    td));
2887 }
2888 
2889 int
2890 sopoll_generic(struct socket *so, int events, struct ucred *active_cred,
2891     struct thread *td)
2892 {
2893 	int revents = 0;
2894 
2895 	SOCKBUF_LOCK(&so->so_snd);
2896 	SOCKBUF_LOCK(&so->so_rcv);
2897 	if (events & (POLLIN | POLLRDNORM))
2898 		if (soreadabledata(so))
2899 			revents |= events & (POLLIN | POLLRDNORM);
2900 
2901 	if (events & (POLLOUT | POLLWRNORM))
2902 		if (sowriteable(so))
2903 			revents |= events & (POLLOUT | POLLWRNORM);
2904 
2905 	if (events & (POLLPRI | POLLRDBAND))
2906 		if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK))
2907 			revents |= events & (POLLPRI | POLLRDBAND);
2908 
2909 	if ((events & POLLINIGNEOF) == 0) {
2910 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2911 			revents |= events & (POLLIN | POLLRDNORM);
2912 			if (so->so_snd.sb_state & SBS_CANTSENDMORE)
2913 				revents |= POLLHUP;
2914 		}
2915 	}
2916 
2917 	if (revents == 0) {
2918 		if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2919 			selrecord(td, &so->so_rcv.sb_sel);
2920 			so->so_rcv.sb_flags |= SB_SEL;
2921 		}
2922 
2923 		if (events & (POLLOUT | POLLWRNORM)) {
2924 			selrecord(td, &so->so_snd.sb_sel);
2925 			so->so_snd.sb_flags |= SB_SEL;
2926 		}
2927 	}
2928 
2929 	SOCKBUF_UNLOCK(&so->so_rcv);
2930 	SOCKBUF_UNLOCK(&so->so_snd);
2931 	return (revents);
2932 }
2933 
2934 int
2935 soo_kqfilter(struct file *fp, struct knote *kn)
2936 {
2937 	struct socket *so = kn->kn_fp->f_data;
2938 	struct sockbuf *sb;
2939 
2940 	switch (kn->kn_filter) {
2941 	case EVFILT_READ:
2942 		if (so->so_options & SO_ACCEPTCONN)
2943 			kn->kn_fop = &solisten_filtops;
2944 		else
2945 			kn->kn_fop = &soread_filtops;
2946 		sb = &so->so_rcv;
2947 		break;
2948 	case EVFILT_WRITE:
2949 		kn->kn_fop = &sowrite_filtops;
2950 		sb = &so->so_snd;
2951 		break;
2952 	default:
2953 		return (EINVAL);
2954 	}
2955 
2956 	SOCKBUF_LOCK(sb);
2957 	knlist_add(&sb->sb_sel.si_note, kn, 1);
2958 	sb->sb_flags |= SB_KNOTE;
2959 	SOCKBUF_UNLOCK(sb);
2960 	return (0);
2961 }
2962 
2963 /*
2964  * Some routines that return EOPNOTSUPP for entry points that are not
2965  * supported by a protocol.  Fill in as needed.
2966  */
2967 int
2968 pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
2969 {
2970 
2971 	return EOPNOTSUPP;
2972 }
2973 
2974 int
2975 pru_attach_notsupp(struct socket *so, int proto, struct thread *td)
2976 {
2977 
2978 	return EOPNOTSUPP;
2979 }
2980 
2981 int
2982 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
2983 {
2984 
2985 	return EOPNOTSUPP;
2986 }
2987 
2988 int
2989 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
2990 {
2991 
2992 	return EOPNOTSUPP;
2993 }
2994 
2995 int
2996 pru_connect2_notsupp(struct socket *so1, struct socket *so2)
2997 {
2998 
2999 	return EOPNOTSUPP;
3000 }
3001 
3002 int
3003 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
3004     struct ifnet *ifp, struct thread *td)
3005 {
3006 
3007 	return EOPNOTSUPP;
3008 }
3009 
3010 int
3011 pru_disconnect_notsupp(struct socket *so)
3012 {
3013 
3014 	return EOPNOTSUPP;
3015 }
3016 
3017 int
3018 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td)
3019 {
3020 
3021 	return EOPNOTSUPP;
3022 }
3023 
3024 int
3025 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam)
3026 {
3027 
3028 	return EOPNOTSUPP;
3029 }
3030 
3031 int
3032 pru_rcvd_notsupp(struct socket *so, int flags)
3033 {
3034 
3035 	return EOPNOTSUPP;
3036 }
3037 
3038 int
3039 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
3040 {
3041 
3042 	return EOPNOTSUPP;
3043 }
3044 
3045 int
3046 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m,
3047     struct sockaddr *addr, struct mbuf *control, struct thread *td)
3048 {
3049 
3050 	return EOPNOTSUPP;
3051 }
3052 
3053 /*
3054  * This isn't really a ``null'' operation, but it's the default one and
3055  * doesn't do anything destructive.
3056  */
3057 int
3058 pru_sense_null(struct socket *so, struct stat *sb)
3059 {
3060 
3061 	sb->st_blksize = so->so_snd.sb_hiwat;
3062 	return 0;
3063 }
3064 
3065 int
3066 pru_shutdown_notsupp(struct socket *so)
3067 {
3068 
3069 	return EOPNOTSUPP;
3070 }
3071 
3072 int
3073 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam)
3074 {
3075 
3076 	return EOPNOTSUPP;
3077 }
3078 
3079 int
3080 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio,
3081     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
3082 {
3083 
3084 	return EOPNOTSUPP;
3085 }
3086 
3087 int
3088 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr,
3089     struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3090 {
3091 
3092 	return EOPNOTSUPP;
3093 }
3094 
3095 int
3096 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred,
3097     struct thread *td)
3098 {
3099 
3100 	return EOPNOTSUPP;
3101 }
3102 
3103 static void
3104 filt_sordetach(struct knote *kn)
3105 {
3106 	struct socket *so = kn->kn_fp->f_data;
3107 
3108 	SOCKBUF_LOCK(&so->so_rcv);
3109 	knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1);
3110 	if (knlist_empty(&so->so_rcv.sb_sel.si_note))
3111 		so->so_rcv.sb_flags &= ~SB_KNOTE;
3112 	SOCKBUF_UNLOCK(&so->so_rcv);
3113 }
3114 
3115 /*ARGSUSED*/
3116 static int
3117 filt_soread(struct knote *kn, long hint)
3118 {
3119 	struct socket *so;
3120 
3121 	so = kn->kn_fp->f_data;
3122 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3123 
3124 	kn->kn_data = so->so_rcv.sb_cc - so->so_rcv.sb_ctl;
3125 	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3126 		kn->kn_flags |= EV_EOF;
3127 		kn->kn_fflags = so->so_error;
3128 		return (1);
3129 	} else if (so->so_error)	/* temporary udp error */
3130 		return (1);
3131 	else if (kn->kn_sfflags & NOTE_LOWAT)
3132 		return (kn->kn_data >= kn->kn_sdata);
3133 	else
3134 		return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat);
3135 }
3136 
3137 static void
3138 filt_sowdetach(struct knote *kn)
3139 {
3140 	struct socket *so = kn->kn_fp->f_data;
3141 
3142 	SOCKBUF_LOCK(&so->so_snd);
3143 	knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1);
3144 	if (knlist_empty(&so->so_snd.sb_sel.si_note))
3145 		so->so_snd.sb_flags &= ~SB_KNOTE;
3146 	SOCKBUF_UNLOCK(&so->so_snd);
3147 }
3148 
3149 /*ARGSUSED*/
3150 static int
3151 filt_sowrite(struct knote *kn, long hint)
3152 {
3153 	struct socket *so;
3154 
3155 	so = kn->kn_fp->f_data;
3156 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
3157 	kn->kn_data = sbspace(&so->so_snd);
3158 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
3159 		kn->kn_flags |= EV_EOF;
3160 		kn->kn_fflags = so->so_error;
3161 		return (1);
3162 	} else if (so->so_error)	/* temporary udp error */
3163 		return (1);
3164 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
3165 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
3166 		return (0);
3167 	else if (kn->kn_sfflags & NOTE_LOWAT)
3168 		return (kn->kn_data >= kn->kn_sdata);
3169 	else
3170 		return (kn->kn_data >= so->so_snd.sb_lowat);
3171 }
3172 
3173 /*ARGSUSED*/
3174 static int
3175 filt_solisten(struct knote *kn, long hint)
3176 {
3177 	struct socket *so = kn->kn_fp->f_data;
3178 
3179 	kn->kn_data = so->so_qlen;
3180 	return (! TAILQ_EMPTY(&so->so_comp));
3181 }
3182 
3183 int
3184 socheckuid(struct socket *so, uid_t uid)
3185 {
3186 
3187 	if (so == NULL)
3188 		return (EPERM);
3189 	if (so->so_cred->cr_uid != uid)
3190 		return (EPERM);
3191 	return (0);
3192 }
3193 
3194 static int
3195 sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
3196 {
3197 	int error;
3198 	int val;
3199 
3200 	val = somaxconn;
3201 	error = sysctl_handle_int(oidp, &val, 0, req);
3202 	if (error || !req->newptr )
3203 		return (error);
3204 
3205 	if (val < 1 || val > USHRT_MAX)
3206 		return (EINVAL);
3207 
3208 	somaxconn = val;
3209 	return (0);
3210 }
3211 
3212 /*
3213  * These functions are used by protocols to notify the socket layer (and its
3214  * consumers) of state changes in the sockets driven by protocol-side events.
3215  */
3216 
3217 /*
3218  * Procedures to manipulate state flags of socket and do appropriate wakeups.
3219  *
3220  * Normal sequence from the active (originating) side is that
3221  * soisconnecting() is called during processing of connect() call, resulting
3222  * in an eventual call to soisconnected() if/when the connection is
3223  * established.  When the connection is torn down soisdisconnecting() is
3224  * called during processing of disconnect() call, and soisdisconnected() is
3225  * called when the connection to the peer is totally severed.  The semantics
3226  * of these routines are such that connectionless protocols can call
3227  * soisconnected() and soisdisconnected() only, bypassing the in-progress
3228  * calls when setting up a ``connection'' takes no time.
3229  *
3230  * From the passive side, a socket is created with two queues of sockets:
3231  * so_incomp for connections in progress and so_comp for connections already
3232  * made and awaiting user acceptance.  As a protocol is preparing incoming
3233  * connections, it creates a socket structure queued on so_incomp by calling
3234  * sonewconn().  When the connection is established, soisconnected() is
3235  * called, and transfers the socket structure to so_comp, making it available
3236  * to accept().
3237  *
3238  * If a socket is closed with sockets on either so_incomp or so_comp, these
3239  * sockets are dropped.
3240  *
3241  * If higher-level protocols are implemented in the kernel, the wakeups done
3242  * here will sometimes cause software-interrupt process scheduling.
3243  */
3244 void
3245 soisconnecting(struct socket *so)
3246 {
3247 
3248 	SOCK_LOCK(so);
3249 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
3250 	so->so_state |= SS_ISCONNECTING;
3251 	SOCK_UNLOCK(so);
3252 }
3253 
3254 void
3255 soisconnected(struct socket *so)
3256 {
3257 	struct socket *head;
3258 	int ret;
3259 
3260 restart:
3261 	ACCEPT_LOCK();
3262 	SOCK_LOCK(so);
3263 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
3264 	so->so_state |= SS_ISCONNECTED;
3265 	head = so->so_head;
3266 	if (head != NULL && (so->so_qstate & SQ_INCOMP)) {
3267 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
3268 			SOCK_UNLOCK(so);
3269 			TAILQ_REMOVE(&head->so_incomp, so, so_list);
3270 			head->so_incqlen--;
3271 			so->so_qstate &= ~SQ_INCOMP;
3272 			TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
3273 			head->so_qlen++;
3274 			so->so_qstate |= SQ_COMP;
3275 			ACCEPT_UNLOCK();
3276 			sorwakeup(head);
3277 			wakeup_one(&head->so_timeo);
3278 		} else {
3279 			ACCEPT_UNLOCK();
3280 			soupcall_set(so, SO_RCV,
3281 			    head->so_accf->so_accept_filter->accf_callback,
3282 			    head->so_accf->so_accept_filter_arg);
3283 			so->so_options &= ~SO_ACCEPTFILTER;
3284 			ret = head->so_accf->so_accept_filter->accf_callback(so,
3285 			    head->so_accf->so_accept_filter_arg, M_DONTWAIT);
3286 			if (ret == SU_ISCONNECTED)
3287 				soupcall_clear(so, SO_RCV);
3288 			SOCK_UNLOCK(so);
3289 			if (ret == SU_ISCONNECTED)
3290 				goto restart;
3291 		}
3292 		return;
3293 	}
3294 	SOCK_UNLOCK(so);
3295 	ACCEPT_UNLOCK();
3296 	wakeup(&so->so_timeo);
3297 	sorwakeup(so);
3298 	sowwakeup(so);
3299 }
3300 
3301 void
3302 soisdisconnecting(struct socket *so)
3303 {
3304 
3305 	/*
3306 	 * Note: This code assumes that SOCK_LOCK(so) and
3307 	 * SOCKBUF_LOCK(&so->so_rcv) are the same.
3308 	 */
3309 	SOCKBUF_LOCK(&so->so_rcv);
3310 	so->so_state &= ~SS_ISCONNECTING;
3311 	so->so_state |= SS_ISDISCONNECTING;
3312 	so->so_rcv.sb_state |= SBS_CANTRCVMORE;
3313 	sorwakeup_locked(so);
3314 	SOCKBUF_LOCK(&so->so_snd);
3315 	so->so_snd.sb_state |= SBS_CANTSENDMORE;
3316 	sowwakeup_locked(so);
3317 	wakeup(&so->so_timeo);
3318 }
3319 
3320 void
3321 soisdisconnected(struct socket *so)
3322 {
3323 
3324 	/*
3325 	 * Note: This code assumes that SOCK_LOCK(so) and
3326 	 * SOCKBUF_LOCK(&so->so_rcv) are the same.
3327 	 */
3328 	SOCKBUF_LOCK(&so->so_rcv);
3329 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
3330 	so->so_state |= SS_ISDISCONNECTED;
3331 	so->so_rcv.sb_state |= SBS_CANTRCVMORE;
3332 	sorwakeup_locked(so);
3333 	SOCKBUF_LOCK(&so->so_snd);
3334 	so->so_snd.sb_state |= SBS_CANTSENDMORE;
3335 	sbdrop_locked(&so->so_snd, so->so_snd.sb_cc);
3336 	sowwakeup_locked(so);
3337 	wakeup(&so->so_timeo);
3338 }
3339 
3340 /*
3341  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
3342  */
3343 struct sockaddr *
3344 sodupsockaddr(const struct sockaddr *sa, int mflags)
3345 {
3346 	struct sockaddr *sa2;
3347 
3348 	sa2 = malloc(sa->sa_len, M_SONAME, mflags);
3349 	if (sa2)
3350 		bcopy(sa, sa2, sa->sa_len);
3351 	return sa2;
3352 }
3353 
3354 /*
3355  * Register per-socket buffer upcalls.
3356  */
3357 void
3358 soupcall_set(struct socket *so, int which,
3359     int (*func)(struct socket *, void *, int), void *arg)
3360 {
3361 	struct sockbuf *sb;
3362 
3363 	switch (which) {
3364 	case SO_RCV:
3365 		sb = &so->so_rcv;
3366 		break;
3367 	case SO_SND:
3368 		sb = &so->so_snd;
3369 		break;
3370 	default:
3371 		panic("soupcall_set: bad which");
3372 	}
3373 	SOCKBUF_LOCK_ASSERT(sb);
3374 #if 0
3375 	/* XXX: accf_http actually wants to do this on purpose. */
3376 	KASSERT(sb->sb_upcall == NULL, ("soupcall_set: overwriting upcall"));
3377 #endif
3378 	sb->sb_upcall = func;
3379 	sb->sb_upcallarg = arg;
3380 	sb->sb_flags |= SB_UPCALL;
3381 }
3382 
3383 void
3384 soupcall_clear(struct socket *so, int which)
3385 {
3386 	struct sockbuf *sb;
3387 
3388 	switch (which) {
3389 	case SO_RCV:
3390 		sb = &so->so_rcv;
3391 		break;
3392 	case SO_SND:
3393 		sb = &so->so_snd;
3394 		break;
3395 	default:
3396 		panic("soupcall_clear: bad which");
3397 	}
3398 	SOCKBUF_LOCK_ASSERT(sb);
3399 	KASSERT(sb->sb_upcall != NULL, ("soupcall_clear: no upcall to clear"));
3400 	sb->sb_upcall = NULL;
3401 	sb->sb_upcallarg = NULL;
3402 	sb->sb_flags &= ~SB_UPCALL;
3403 }
3404 
3405 /*
3406  * Create an external-format (``xsocket'') structure using the information in
3407  * the kernel-format socket structure pointed to by so.  This is done to
3408  * reduce the spew of irrelevant information over this interface, to isolate
3409  * user code from changes in the kernel structure, and potentially to provide
3410  * information-hiding if we decide that some of this information should be
3411  * hidden from users.
3412  */
3413 void
3414 sotoxsocket(struct socket *so, struct xsocket *xso)
3415 {
3416 
3417 	xso->xso_len = sizeof *xso;
3418 	xso->xso_so = so;
3419 	xso->so_type = so->so_type;
3420 	xso->so_options = so->so_options;
3421 	xso->so_linger = so->so_linger;
3422 	xso->so_state = so->so_state;
3423 	xso->so_pcb = so->so_pcb;
3424 	xso->xso_protocol = so->so_proto->pr_protocol;
3425 	xso->xso_family = so->so_proto->pr_domain->dom_family;
3426 	xso->so_qlen = so->so_qlen;
3427 	xso->so_incqlen = so->so_incqlen;
3428 	xso->so_qlimit = so->so_qlimit;
3429 	xso->so_timeo = so->so_timeo;
3430 	xso->so_error = so->so_error;
3431 	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
3432 	xso->so_oobmark = so->so_oobmark;
3433 	sbtoxsockbuf(&so->so_snd, &xso->so_snd);
3434 	sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
3435 	xso->so_uid = so->so_cred->cr_uid;
3436 }
3437 
3438 
3439 /*
3440  * Socket accessor functions to provide external consumers with
3441  * a safe interface to socket state
3442  *
3443  */
3444 
3445 void
3446 so_listeners_apply_all(struct socket *so, void (*func)(struct socket *, void *), void *arg)
3447 {
3448 
3449 	TAILQ_FOREACH(so, &so->so_comp, so_list)
3450 		func(so, arg);
3451 }
3452 
3453 struct sockbuf *
3454 so_sockbuf_rcv(struct socket *so)
3455 {
3456 
3457 	return (&so->so_rcv);
3458 }
3459 
3460 struct sockbuf *
3461 so_sockbuf_snd(struct socket *so)
3462 {
3463 
3464 	return (&so->so_snd);
3465 }
3466 
3467 int
3468 so_state_get(const struct socket *so)
3469 {
3470 
3471 	return (so->so_state);
3472 }
3473 
3474 void
3475 so_state_set(struct socket *so, int val)
3476 {
3477 
3478 	so->so_state = val;
3479 }
3480 
3481 int
3482 so_options_get(const struct socket *so)
3483 {
3484 
3485 	return (so->so_options);
3486 }
3487 
3488 void
3489 so_options_set(struct socket *so, int val)
3490 {
3491 
3492 	so->so_options = val;
3493 }
3494 
3495 int
3496 so_error_get(const struct socket *so)
3497 {
3498 
3499 	return (so->so_error);
3500 }
3501 
3502 void
3503 so_error_set(struct socket *so, int val)
3504 {
3505 
3506 	so->so_error = val;
3507 }
3508 
3509 int
3510 so_linger_get(const struct socket *so)
3511 {
3512 
3513 	return (so->so_linger);
3514 }
3515 
3516 void
3517 so_linger_set(struct socket *so, int val)
3518 {
3519 
3520 	so->so_linger = val;
3521 }
3522 
3523 struct protosw *
3524 so_protosw_get(const struct socket *so)
3525 {
3526 
3527 	return (so->so_proto);
3528 }
3529 
3530 void
3531 so_protosw_set(struct socket *so, struct protosw *val)
3532 {
3533 
3534 	so->so_proto = val;
3535 }
3536 
3537 void
3538 so_sorwakeup(struct socket *so)
3539 {
3540 
3541 	sorwakeup(so);
3542 }
3543 
3544 void
3545 so_sowwakeup(struct socket *so)
3546 {
3547 
3548 	sowwakeup(so);
3549 }
3550 
3551 void
3552 so_sorwakeup_locked(struct socket *so)
3553 {
3554 
3555 	sorwakeup_locked(so);
3556 }
3557 
3558 void
3559 so_sowwakeup_locked(struct socket *so)
3560 {
3561 
3562 	sowwakeup_locked(so);
3563 }
3564 
3565 void
3566 so_lock(struct socket *so)
3567 {
3568 	SOCK_LOCK(so);
3569 }
3570 
3571 void
3572 so_unlock(struct socket *so)
3573 {
3574 	SOCK_UNLOCK(so);
3575 }
3576