1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993 3 * The Regents of the University of California. 4 * Copyright (c) 2004 The FreeBSD Foundation 5 * Copyright (c) 2004-2008 Robert N. M. Watson 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 33 */ 34 35 /* 36 * Comments on the socket life cycle: 37 * 38 * soalloc() sets of socket layer state for a socket, called only by 39 * socreate() and sonewconn(). Socket layer private. 40 * 41 * sodealloc() tears down socket layer state for a socket, called only by 42 * sofree() and sonewconn(). Socket layer private. 43 * 44 * pru_attach() associates protocol layer state with an allocated socket; 45 * called only once, may fail, aborting socket allocation. This is called 46 * from socreate() and sonewconn(). Socket layer private. 47 * 48 * pru_detach() disassociates protocol layer state from an attached socket, 49 * and will be called exactly once for sockets in which pru_attach() has 50 * been successfully called. If pru_attach() returned an error, 51 * pru_detach() will not be called. Socket layer private. 52 * 53 * pru_abort() and pru_close() notify the protocol layer that the last 54 * consumer of a socket is starting to tear down the socket, and that the 55 * protocol should terminate the connection. Historically, pru_abort() also 56 * detached protocol state from the socket state, but this is no longer the 57 * case. 58 * 59 * socreate() creates a socket and attaches protocol state. This is a public 60 * interface that may be used by socket layer consumers to create new 61 * sockets. 62 * 63 * sonewconn() creates a socket and attaches protocol state. This is a 64 * public interface that may be used by protocols to create new sockets when 65 * a new connection is received and will be available for accept() on a 66 * listen socket. 67 * 68 * soclose() destroys a socket after possibly waiting for it to disconnect. 69 * This is a public interface that socket consumers should use to close and 70 * release a socket when done with it. 71 * 72 * soabort() destroys a socket without waiting for it to disconnect (used 73 * only for incoming connections that are already partially or fully 74 * connected). This is used internally by the socket layer when clearing 75 * listen socket queues (due to overflow or close on the listen socket), but 76 * is also a public interface protocols may use to abort connections in 77 * their incomplete listen queues should they no longer be required. Sockets 78 * placed in completed connection listen queues should not be aborted for 79 * reasons described in the comment above the soclose() implementation. This 80 * is not a general purpose close routine, and except in the specific 81 * circumstances described here, should not be used. 82 * 83 * sofree() will free a socket and its protocol state if all references on 84 * the socket have been released, and is the public interface to attempt to 85 * free a socket when a reference is removed. This is a socket layer private 86 * interface. 87 * 88 * NOTE: In addition to socreate() and soclose(), which provide a single 89 * socket reference to the consumer to be managed as required, there are two 90 * calls to explicitly manage socket references, soref(), and sorele(). 91 * Currently, these are generally required only when transitioning a socket 92 * from a listen queue to a file descriptor, in order to prevent garbage 93 * collection of the socket at an untimely moment. For a number of reasons, 94 * these interfaces are not preferred, and should be avoided. 95 */ 96 97 #include <sys/cdefs.h> 98 __FBSDID("$FreeBSD$"); 99 100 #include "opt_inet.h" 101 #include "opt_inet6.h" 102 #include "opt_zero.h" 103 #include "opt_compat.h" 104 105 #include <sys/param.h> 106 #include <sys/systm.h> 107 #include <sys/fcntl.h> 108 #include <sys/limits.h> 109 #include <sys/lock.h> 110 #include <sys/mac.h> 111 #include <sys/malloc.h> 112 #include <sys/mbuf.h> 113 #include <sys/mutex.h> 114 #include <sys/domain.h> 115 #include <sys/file.h> /* for struct knote */ 116 #include <sys/kernel.h> 117 #include <sys/event.h> 118 #include <sys/eventhandler.h> 119 #include <sys/poll.h> 120 #include <sys/proc.h> 121 #include <sys/protosw.h> 122 #include <sys/socket.h> 123 #include <sys/socketvar.h> 124 #include <sys/resourcevar.h> 125 #include <net/route.h> 126 #include <sys/signalvar.h> 127 #include <sys/stat.h> 128 #include <sys/sx.h> 129 #include <sys/sysctl.h> 130 #include <sys/uio.h> 131 #include <sys/jail.h> 132 133 #include <net/vnet.h> 134 135 #include <security/mac/mac_framework.h> 136 137 #include <vm/uma.h> 138 139 #ifdef COMPAT_IA32 140 #include <sys/mount.h> 141 #include <sys/sysent.h> 142 #include <compat/freebsd32/freebsd32.h> 143 #endif 144 145 static int soreceive_rcvoob(struct socket *so, struct uio *uio, 146 int flags); 147 148 static void filt_sordetach(struct knote *kn); 149 static int filt_soread(struct knote *kn, long hint); 150 static void filt_sowdetach(struct knote *kn); 151 static int filt_sowrite(struct knote *kn, long hint); 152 static int filt_solisten(struct knote *kn, long hint); 153 154 static struct filterops solisten_filtops = { 155 .f_isfd = 1, 156 .f_detach = filt_sordetach, 157 .f_event = filt_solisten, 158 }; 159 static struct filterops soread_filtops = { 160 .f_isfd = 1, 161 .f_detach = filt_sordetach, 162 .f_event = filt_soread, 163 }; 164 static struct filterops sowrite_filtops = { 165 .f_isfd = 1, 166 .f_detach = filt_sowdetach, 167 .f_event = filt_sowrite, 168 }; 169 170 uma_zone_t socket_zone; 171 so_gen_t so_gencnt; /* generation count for sockets */ 172 173 int maxsockets; 174 175 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 176 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 177 178 static int somaxconn = SOMAXCONN; 179 static int sysctl_somaxconn(SYSCTL_HANDLER_ARGS); 180 /* XXX: we dont have SYSCTL_USHORT */ 181 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLTYPE_UINT | CTLFLAG_RW, 182 0, sizeof(int), sysctl_somaxconn, "I", "Maximum pending socket connection " 183 "queue size"); 184 static int numopensockets; 185 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, 186 &numopensockets, 0, "Number of open sockets"); 187 #ifdef ZERO_COPY_SOCKETS 188 /* These aren't static because they're used in other files. */ 189 int so_zero_copy_send = 1; 190 int so_zero_copy_receive = 1; 191 SYSCTL_NODE(_kern_ipc, OID_AUTO, zero_copy, CTLFLAG_RD, 0, 192 "Zero copy controls"); 193 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, receive, CTLFLAG_RW, 194 &so_zero_copy_receive, 0, "Enable zero copy receive"); 195 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, send, CTLFLAG_RW, 196 &so_zero_copy_send, 0, "Enable zero copy send"); 197 #endif /* ZERO_COPY_SOCKETS */ 198 199 /* 200 * accept_mtx locks down per-socket fields relating to accept queues. See 201 * socketvar.h for an annotation of the protected fields of struct socket. 202 */ 203 struct mtx accept_mtx; 204 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF); 205 206 /* 207 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket 208 * so_gencnt field. 209 */ 210 static struct mtx so_global_mtx; 211 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); 212 213 /* 214 * General IPC sysctl name space, used by sockets and a variety of other IPC 215 * types. 216 */ 217 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC"); 218 219 /* 220 * Sysctl to get and set the maximum global sockets limit. Notify protocols 221 * of the change so that they can update their dependent limits as required. 222 */ 223 static int 224 sysctl_maxsockets(SYSCTL_HANDLER_ARGS) 225 { 226 int error, newmaxsockets; 227 228 newmaxsockets = maxsockets; 229 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req); 230 if (error == 0 && req->newptr) { 231 if (newmaxsockets > maxsockets) { 232 maxsockets = newmaxsockets; 233 if (maxsockets > ((maxfiles / 4) * 3)) { 234 maxfiles = (maxsockets * 5) / 4; 235 maxfilesperproc = (maxfiles * 9) / 10; 236 } 237 EVENTHANDLER_INVOKE(maxsockets_change); 238 } else 239 error = EINVAL; 240 } 241 return (error); 242 } 243 244 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, CTLTYPE_INT|CTLFLAG_RW, 245 &maxsockets, 0, sysctl_maxsockets, "IU", 246 "Maximum number of sockets avaliable"); 247 248 /* 249 * Initialise maxsockets. This SYSINIT must be run after 250 * tunable_mbinit(). 251 */ 252 static void 253 init_maxsockets(void *ignored) 254 { 255 256 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 257 maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters)); 258 } 259 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 260 261 /* 262 * Socket operation routines. These routines are called by the routines in 263 * sys_socket.c or from a system process, and implement the semantics of 264 * socket operations by switching out to the protocol specific routines. 265 */ 266 267 /* 268 * Get a socket structure from our zone, and initialize it. Note that it 269 * would probably be better to allocate socket and PCB at the same time, but 270 * I'm not convinced that all the protocols can be easily modified to do 271 * this. 272 * 273 * soalloc() returns a socket with a ref count of 0. 274 */ 275 static struct socket * 276 soalloc(struct vnet *vnet) 277 { 278 struct socket *so; 279 280 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO); 281 if (so == NULL) 282 return (NULL); 283 #ifdef MAC 284 if (mac_socket_init(so, M_NOWAIT) != 0) { 285 uma_zfree(socket_zone, so); 286 return (NULL); 287 } 288 #endif 289 SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd"); 290 SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv"); 291 sx_init(&so->so_snd.sb_sx, "so_snd_sx"); 292 sx_init(&so->so_rcv.sb_sx, "so_rcv_sx"); 293 TAILQ_INIT(&so->so_aiojobq); 294 mtx_lock(&so_global_mtx); 295 so->so_gencnt = ++so_gencnt; 296 ++numopensockets; 297 #ifdef VIMAGE 298 vnet->vnet_sockcnt++; 299 so->so_vnet = vnet; 300 #endif 301 mtx_unlock(&so_global_mtx); 302 return (so); 303 } 304 305 /* 306 * Free the storage associated with a socket at the socket layer, tear down 307 * locks, labels, etc. All protocol state is assumed already to have been 308 * torn down (and possibly never set up) by the caller. 309 */ 310 static void 311 sodealloc(struct socket *so) 312 { 313 314 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); 315 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL")); 316 317 mtx_lock(&so_global_mtx); 318 so->so_gencnt = ++so_gencnt; 319 --numopensockets; /* Could be below, but faster here. */ 320 #ifdef VIMAGE 321 so->so_vnet->vnet_sockcnt--; 322 #endif 323 mtx_unlock(&so_global_mtx); 324 if (so->so_rcv.sb_hiwat) 325 (void)chgsbsize(so->so_cred->cr_uidinfo, 326 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 327 if (so->so_snd.sb_hiwat) 328 (void)chgsbsize(so->so_cred->cr_uidinfo, 329 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 330 #ifdef INET 331 /* remove acccept filter if one is present. */ 332 if (so->so_accf != NULL) 333 do_setopt_accept_filter(so, NULL); 334 #endif 335 #ifdef MAC 336 mac_socket_destroy(so); 337 #endif 338 crfree(so->so_cred); 339 sx_destroy(&so->so_snd.sb_sx); 340 sx_destroy(&so->so_rcv.sb_sx); 341 SOCKBUF_LOCK_DESTROY(&so->so_snd); 342 SOCKBUF_LOCK_DESTROY(&so->so_rcv); 343 uma_zfree(socket_zone, so); 344 } 345 346 /* 347 * socreate returns a socket with a ref count of 1. The socket should be 348 * closed with soclose(). 349 */ 350 int 351 socreate(int dom, struct socket **aso, int type, int proto, 352 struct ucred *cred, struct thread *td) 353 { 354 struct protosw *prp; 355 struct socket *so; 356 int error; 357 358 if (proto) 359 prp = pffindproto(dom, proto, type); 360 else 361 prp = pffindtype(dom, type); 362 363 if (prp == NULL || prp->pr_usrreqs->pru_attach == NULL || 364 prp->pr_usrreqs->pru_attach == pru_attach_notsupp) 365 return (EPROTONOSUPPORT); 366 367 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0) 368 return (EPROTONOSUPPORT); 369 370 if (prp->pr_type != type) 371 return (EPROTOTYPE); 372 so = soalloc(CRED_TO_VNET(cred)); 373 if (so == NULL) 374 return (ENOBUFS); 375 376 TAILQ_INIT(&so->so_incomp); 377 TAILQ_INIT(&so->so_comp); 378 so->so_type = type; 379 so->so_cred = crhold(cred); 380 if ((prp->pr_domain->dom_family == PF_INET) || 381 (prp->pr_domain->dom_family == PF_ROUTE)) 382 so->so_fibnum = td->td_proc->p_fibnum; 383 else 384 so->so_fibnum = 0; 385 so->so_proto = prp; 386 #ifdef MAC 387 mac_socket_create(cred, so); 388 #endif 389 knlist_init_mtx(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv)); 390 knlist_init_mtx(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd)); 391 so->so_count = 1; 392 /* 393 * Auto-sizing of socket buffers is managed by the protocols and 394 * the appropriate flags must be set in the pru_attach function. 395 */ 396 CURVNET_SET(so->so_vnet); 397 error = (*prp->pr_usrreqs->pru_attach)(so, proto, td); 398 CURVNET_RESTORE(); 399 if (error) { 400 KASSERT(so->so_count == 1, ("socreate: so_count %d", 401 so->so_count)); 402 so->so_count = 0; 403 sodealloc(so); 404 return (error); 405 } 406 *aso = so; 407 return (0); 408 } 409 410 #ifdef REGRESSION 411 static int regression_sonewconn_earlytest = 1; 412 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW, 413 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test"); 414 #endif 415 416 /* 417 * When an attempt at a new connection is noted on a socket which accepts 418 * connections, sonewconn is called. If the connection is possible (subject 419 * to space constraints, etc.) then we allocate a new structure, propoerly 420 * linked into the data structure of the original socket, and return this. 421 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED. 422 * 423 * Note: the ref count on the socket is 0 on return. 424 */ 425 struct socket * 426 sonewconn(struct socket *head, int connstatus) 427 { 428 struct socket *so; 429 int over; 430 431 ACCEPT_LOCK(); 432 over = (head->so_qlen > 3 * head->so_qlimit / 2); 433 ACCEPT_UNLOCK(); 434 #ifdef REGRESSION 435 if (regression_sonewconn_earlytest && over) 436 #else 437 if (over) 438 #endif 439 return (NULL); 440 VNET_ASSERT(head->so_vnet); 441 so = soalloc(head->so_vnet); 442 if (so == NULL) 443 return (NULL); 444 if ((head->so_options & SO_ACCEPTFILTER) != 0) 445 connstatus = 0; 446 so->so_head = head; 447 so->so_type = head->so_type; 448 so->so_options = head->so_options &~ SO_ACCEPTCONN; 449 so->so_linger = head->so_linger; 450 so->so_state = head->so_state | SS_NOFDREF; 451 so->so_fibnum = head->so_fibnum; 452 so->so_proto = head->so_proto; 453 so->so_cred = crhold(head->so_cred); 454 #ifdef MAC 455 mac_socket_newconn(head, so); 456 #endif 457 knlist_init_mtx(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv)); 458 knlist_init_mtx(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd)); 459 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) || 460 (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 461 sodealloc(so); 462 return (NULL); 463 } 464 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; 465 so->so_snd.sb_lowat = head->so_snd.sb_lowat; 466 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; 467 so->so_snd.sb_timeo = head->so_snd.sb_timeo; 468 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE; 469 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE; 470 so->so_state |= connstatus; 471 ACCEPT_LOCK(); 472 if (connstatus) { 473 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 474 so->so_qstate |= SQ_COMP; 475 head->so_qlen++; 476 } else { 477 /* 478 * Keep removing sockets from the head until there's room for 479 * us to insert on the tail. In pre-locking revisions, this 480 * was a simple if(), but as we could be racing with other 481 * threads and soabort() requires dropping locks, we must 482 * loop waiting for the condition to be true. 483 */ 484 while (head->so_incqlen > head->so_qlimit) { 485 struct socket *sp; 486 sp = TAILQ_FIRST(&head->so_incomp); 487 TAILQ_REMOVE(&head->so_incomp, sp, so_list); 488 head->so_incqlen--; 489 sp->so_qstate &= ~SQ_INCOMP; 490 sp->so_head = NULL; 491 ACCEPT_UNLOCK(); 492 soabort(sp); 493 ACCEPT_LOCK(); 494 } 495 TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list); 496 so->so_qstate |= SQ_INCOMP; 497 head->so_incqlen++; 498 } 499 ACCEPT_UNLOCK(); 500 if (connstatus) { 501 sorwakeup(head); 502 wakeup_one(&head->so_timeo); 503 } 504 return (so); 505 } 506 507 int 508 sobind(struct socket *so, struct sockaddr *nam, struct thread *td) 509 { 510 int error; 511 512 CURVNET_SET(so->so_vnet); 513 error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td); 514 CURVNET_RESTORE(); 515 return error; 516 } 517 518 /* 519 * solisten() transitions a socket from a non-listening state to a listening 520 * state, but can also be used to update the listen queue depth on an 521 * existing listen socket. The protocol will call back into the sockets 522 * layer using solisten_proto_check() and solisten_proto() to check and set 523 * socket-layer listen state. Call backs are used so that the protocol can 524 * acquire both protocol and socket layer locks in whatever order is required 525 * by the protocol. 526 * 527 * Protocol implementors are advised to hold the socket lock across the 528 * socket-layer test and set to avoid races at the socket layer. 529 */ 530 int 531 solisten(struct socket *so, int backlog, struct thread *td) 532 { 533 534 return ((*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td)); 535 } 536 537 int 538 solisten_proto_check(struct socket *so) 539 { 540 541 SOCK_LOCK_ASSERT(so); 542 543 if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 544 SS_ISDISCONNECTING)) 545 return (EINVAL); 546 return (0); 547 } 548 549 void 550 solisten_proto(struct socket *so, int backlog) 551 { 552 553 SOCK_LOCK_ASSERT(so); 554 555 if (backlog < 0 || backlog > somaxconn) 556 backlog = somaxconn; 557 so->so_qlimit = backlog; 558 so->so_options |= SO_ACCEPTCONN; 559 } 560 561 /* 562 * Attempt to free a socket. This should really be sotryfree(). 563 * 564 * sofree() will succeed if: 565 * 566 * - There are no outstanding file descriptor references or related consumers 567 * (so_count == 0). 568 * 569 * - The socket has been closed by user space, if ever open (SS_NOFDREF). 570 * 571 * - The protocol does not have an outstanding strong reference on the socket 572 * (SS_PROTOREF). 573 * 574 * - The socket is not in a completed connection queue, so a process has been 575 * notified that it is present. If it is removed, the user process may 576 * block in accept() despite select() saying the socket was ready. 577 * 578 * Otherwise, it will quietly abort so that a future call to sofree(), when 579 * conditions are right, can succeed. 580 */ 581 void 582 sofree(struct socket *so) 583 { 584 struct protosw *pr = so->so_proto; 585 struct socket *head; 586 587 ACCEPT_LOCK_ASSERT(); 588 SOCK_LOCK_ASSERT(so); 589 590 if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 || 591 (so->so_state & SS_PROTOREF) || (so->so_qstate & SQ_COMP)) { 592 SOCK_UNLOCK(so); 593 ACCEPT_UNLOCK(); 594 return; 595 } 596 597 head = so->so_head; 598 if (head != NULL) { 599 KASSERT((so->so_qstate & SQ_COMP) != 0 || 600 (so->so_qstate & SQ_INCOMP) != 0, 601 ("sofree: so_head != NULL, but neither SQ_COMP nor " 602 "SQ_INCOMP")); 603 KASSERT((so->so_qstate & SQ_COMP) == 0 || 604 (so->so_qstate & SQ_INCOMP) == 0, 605 ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP")); 606 TAILQ_REMOVE(&head->so_incomp, so, so_list); 607 head->so_incqlen--; 608 so->so_qstate &= ~SQ_INCOMP; 609 so->so_head = NULL; 610 } 611 KASSERT((so->so_qstate & SQ_COMP) == 0 && 612 (so->so_qstate & SQ_INCOMP) == 0, 613 ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)", 614 so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP)); 615 if (so->so_options & SO_ACCEPTCONN) { 616 KASSERT((TAILQ_EMPTY(&so->so_comp)), ("sofree: so_comp populated")); 617 KASSERT((TAILQ_EMPTY(&so->so_incomp)), ("sofree: so_comp populated")); 618 } 619 SOCK_UNLOCK(so); 620 ACCEPT_UNLOCK(); 621 622 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 623 (*pr->pr_domain->dom_dispose)(so->so_rcv.sb_mb); 624 if (pr->pr_usrreqs->pru_detach != NULL) 625 (*pr->pr_usrreqs->pru_detach)(so); 626 627 /* 628 * From this point on, we assume that no other references to this 629 * socket exist anywhere else in the stack. Therefore, no locks need 630 * to be acquired or held. 631 * 632 * We used to do a lot of socket buffer and socket locking here, as 633 * well as invoke sorflush() and perform wakeups. The direct call to 634 * dom_dispose() and sbrelease_internal() are an inlining of what was 635 * necessary from sorflush(). 636 * 637 * Notice that the socket buffer and kqueue state are torn down 638 * before calling pru_detach. This means that protocols shold not 639 * assume they can perform socket wakeups, etc, in their detach code. 640 */ 641 sbdestroy(&so->so_snd, so); 642 sbdestroy(&so->so_rcv, so); 643 knlist_destroy(&so->so_rcv.sb_sel.si_note); 644 knlist_destroy(&so->so_snd.sb_sel.si_note); 645 sodealloc(so); 646 } 647 648 /* 649 * Close a socket on last file table reference removal. Initiate disconnect 650 * if connected. Free socket when disconnect complete. 651 * 652 * This function will sorele() the socket. Note that soclose() may be called 653 * prior to the ref count reaching zero. The actual socket structure will 654 * not be freed until the ref count reaches zero. 655 */ 656 int 657 soclose(struct socket *so) 658 { 659 int error = 0; 660 661 KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter")); 662 663 CURVNET_SET(so->so_vnet); 664 funsetown(&so->so_sigio); 665 if (so->so_state & SS_ISCONNECTED) { 666 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 667 error = sodisconnect(so); 668 if (error) 669 goto drop; 670 } 671 if (so->so_options & SO_LINGER) { 672 if ((so->so_state & SS_ISDISCONNECTING) && 673 (so->so_state & SS_NBIO)) 674 goto drop; 675 while (so->so_state & SS_ISCONNECTED) { 676 error = tsleep(&so->so_timeo, 677 PSOCK | PCATCH, "soclos", so->so_linger * hz); 678 if (error) 679 break; 680 } 681 } 682 } 683 684 drop: 685 if (so->so_proto->pr_usrreqs->pru_close != NULL) 686 (*so->so_proto->pr_usrreqs->pru_close)(so); 687 if (so->so_options & SO_ACCEPTCONN) { 688 struct socket *sp; 689 ACCEPT_LOCK(); 690 while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) { 691 TAILQ_REMOVE(&so->so_incomp, sp, so_list); 692 so->so_incqlen--; 693 sp->so_qstate &= ~SQ_INCOMP; 694 sp->so_head = NULL; 695 ACCEPT_UNLOCK(); 696 soabort(sp); 697 ACCEPT_LOCK(); 698 } 699 while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) { 700 TAILQ_REMOVE(&so->so_comp, sp, so_list); 701 so->so_qlen--; 702 sp->so_qstate &= ~SQ_COMP; 703 sp->so_head = NULL; 704 ACCEPT_UNLOCK(); 705 soabort(sp); 706 ACCEPT_LOCK(); 707 } 708 ACCEPT_UNLOCK(); 709 } 710 ACCEPT_LOCK(); 711 SOCK_LOCK(so); 712 KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF")); 713 so->so_state |= SS_NOFDREF; 714 sorele(so); 715 CURVNET_RESTORE(); 716 return (error); 717 } 718 719 /* 720 * soabort() is used to abruptly tear down a connection, such as when a 721 * resource limit is reached (listen queue depth exceeded), or if a listen 722 * socket is closed while there are sockets waiting to be accepted. 723 * 724 * This interface is tricky, because it is called on an unreferenced socket, 725 * and must be called only by a thread that has actually removed the socket 726 * from the listen queue it was on, or races with other threads are risked. 727 * 728 * This interface will call into the protocol code, so must not be called 729 * with any socket locks held. Protocols do call it while holding their own 730 * recursible protocol mutexes, but this is something that should be subject 731 * to review in the future. 732 */ 733 void 734 soabort(struct socket *so) 735 { 736 737 /* 738 * In as much as is possible, assert that no references to this 739 * socket are held. This is not quite the same as asserting that the 740 * current thread is responsible for arranging for no references, but 741 * is as close as we can get for now. 742 */ 743 KASSERT(so->so_count == 0, ("soabort: so_count")); 744 KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF")); 745 KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF")); 746 KASSERT((so->so_state & SQ_COMP) == 0, ("soabort: SQ_COMP")); 747 KASSERT((so->so_state & SQ_INCOMP) == 0, ("soabort: SQ_INCOMP")); 748 749 if (so->so_proto->pr_usrreqs->pru_abort != NULL) 750 (*so->so_proto->pr_usrreqs->pru_abort)(so); 751 ACCEPT_LOCK(); 752 SOCK_LOCK(so); 753 sofree(so); 754 } 755 756 int 757 soaccept(struct socket *so, struct sockaddr **nam) 758 { 759 int error; 760 761 SOCK_LOCK(so); 762 KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF")); 763 so->so_state &= ~SS_NOFDREF; 764 SOCK_UNLOCK(so); 765 error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam); 766 return (error); 767 } 768 769 int 770 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td) 771 { 772 int error; 773 774 if (so->so_options & SO_ACCEPTCONN) 775 return (EOPNOTSUPP); 776 /* 777 * If protocol is connection-based, can only connect once. 778 * Otherwise, if connected, try to disconnect first. This allows 779 * user to disconnect by connecting to, e.g., a null address. 780 */ 781 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 782 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 783 (error = sodisconnect(so)))) { 784 error = EISCONN; 785 } else { 786 /* 787 * Prevent accumulated error from previous connection from 788 * biting us. 789 */ 790 so->so_error = 0; 791 CURVNET_SET(so->so_vnet); 792 error = (*so->so_proto->pr_usrreqs->pru_connect)(so, nam, td); 793 CURVNET_RESTORE(); 794 } 795 796 return (error); 797 } 798 799 int 800 soconnect2(struct socket *so1, struct socket *so2) 801 { 802 803 return ((*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2)); 804 } 805 806 int 807 sodisconnect(struct socket *so) 808 { 809 int error; 810 811 if ((so->so_state & SS_ISCONNECTED) == 0) 812 return (ENOTCONN); 813 if (so->so_state & SS_ISDISCONNECTING) 814 return (EALREADY); 815 error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so); 816 return (error); 817 } 818 819 #ifdef ZERO_COPY_SOCKETS 820 struct so_zerocopy_stats{ 821 int size_ok; 822 int align_ok; 823 int found_ifp; 824 }; 825 struct so_zerocopy_stats so_zerocp_stats = {0,0,0}; 826 #include <netinet/in.h> 827 #include <net/route.h> 828 #include <netinet/in_pcb.h> 829 #include <vm/vm.h> 830 #include <vm/vm_page.h> 831 #include <vm/vm_object.h> 832 833 /* 834 * sosend_copyin() is only used if zero copy sockets are enabled. Otherwise 835 * sosend_dgram() and sosend_generic() use m_uiotombuf(). 836 * 837 * sosend_copyin() accepts a uio and prepares an mbuf chain holding part or 838 * all of the data referenced by the uio. If desired, it uses zero-copy. 839 * *space will be updated to reflect data copied in. 840 * 841 * NB: If atomic I/O is requested, the caller must already have checked that 842 * space can hold resid bytes. 843 * 844 * NB: In the event of an error, the caller may need to free the partial 845 * chain pointed to by *mpp. The contents of both *uio and *space may be 846 * modified even in the case of an error. 847 */ 848 static int 849 sosend_copyin(struct uio *uio, struct mbuf **retmp, int atomic, long *space, 850 int flags) 851 { 852 struct mbuf *m, **mp, *top; 853 long len, resid; 854 int error; 855 #ifdef ZERO_COPY_SOCKETS 856 int cow_send; 857 #endif 858 859 *retmp = top = NULL; 860 mp = ⊤ 861 len = 0; 862 resid = uio->uio_resid; 863 error = 0; 864 do { 865 #ifdef ZERO_COPY_SOCKETS 866 cow_send = 0; 867 #endif /* ZERO_COPY_SOCKETS */ 868 if (resid >= MINCLSIZE) { 869 #ifdef ZERO_COPY_SOCKETS 870 if (top == NULL) { 871 m = m_gethdr(M_WAITOK, MT_DATA); 872 m->m_pkthdr.len = 0; 873 m->m_pkthdr.rcvif = NULL; 874 } else 875 m = m_get(M_WAITOK, MT_DATA); 876 if (so_zero_copy_send && 877 resid>=PAGE_SIZE && 878 *space>=PAGE_SIZE && 879 uio->uio_iov->iov_len>=PAGE_SIZE) { 880 so_zerocp_stats.size_ok++; 881 so_zerocp_stats.align_ok++; 882 cow_send = socow_setup(m, uio); 883 len = cow_send; 884 } 885 if (!cow_send) { 886 m_clget(m, M_WAITOK); 887 len = min(min(MCLBYTES, resid), *space); 888 } 889 #else /* ZERO_COPY_SOCKETS */ 890 if (top == NULL) { 891 m = m_getcl(M_WAIT, MT_DATA, M_PKTHDR); 892 m->m_pkthdr.len = 0; 893 m->m_pkthdr.rcvif = NULL; 894 } else 895 m = m_getcl(M_WAIT, MT_DATA, 0); 896 len = min(min(MCLBYTES, resid), *space); 897 #endif /* ZERO_COPY_SOCKETS */ 898 } else { 899 if (top == NULL) { 900 m = m_gethdr(M_WAIT, MT_DATA); 901 m->m_pkthdr.len = 0; 902 m->m_pkthdr.rcvif = NULL; 903 904 len = min(min(MHLEN, resid), *space); 905 /* 906 * For datagram protocols, leave room 907 * for protocol headers in first mbuf. 908 */ 909 if (atomic && m && len < MHLEN) 910 MH_ALIGN(m, len); 911 } else { 912 m = m_get(M_WAIT, MT_DATA); 913 len = min(min(MLEN, resid), *space); 914 } 915 } 916 if (m == NULL) { 917 error = ENOBUFS; 918 goto out; 919 } 920 921 *space -= len; 922 #ifdef ZERO_COPY_SOCKETS 923 if (cow_send) 924 error = 0; 925 else 926 #endif /* ZERO_COPY_SOCKETS */ 927 error = uiomove(mtod(m, void *), (int)len, uio); 928 resid = uio->uio_resid; 929 m->m_len = len; 930 *mp = m; 931 top->m_pkthdr.len += len; 932 if (error) 933 goto out; 934 mp = &m->m_next; 935 if (resid <= 0) { 936 if (flags & MSG_EOR) 937 top->m_flags |= M_EOR; 938 break; 939 } 940 } while (*space > 0 && atomic); 941 out: 942 *retmp = top; 943 return (error); 944 } 945 #endif /*ZERO_COPY_SOCKETS*/ 946 947 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT) 948 949 int 950 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, 951 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 952 { 953 long space, resid; 954 int clen = 0, error, dontroute; 955 #ifdef ZERO_COPY_SOCKETS 956 int atomic = sosendallatonce(so) || top; 957 #endif 958 959 KASSERT(so->so_type == SOCK_DGRAM, ("sodgram_send: !SOCK_DGRAM")); 960 KASSERT(so->so_proto->pr_flags & PR_ATOMIC, 961 ("sodgram_send: !PR_ATOMIC")); 962 963 if (uio != NULL) 964 resid = uio->uio_resid; 965 else 966 resid = top->m_pkthdr.len; 967 /* 968 * In theory resid should be unsigned. However, space must be 969 * signed, as it might be less than 0 if we over-committed, and we 970 * must use a signed comparison of space and resid. On the other 971 * hand, a negative resid causes us to loop sending 0-length 972 * segments to the protocol. 973 */ 974 if (resid < 0) { 975 error = EINVAL; 976 goto out; 977 } 978 979 dontroute = 980 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0; 981 if (td != NULL) 982 td->td_ru.ru_msgsnd++; 983 if (control != NULL) 984 clen = control->m_len; 985 986 SOCKBUF_LOCK(&so->so_snd); 987 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 988 SOCKBUF_UNLOCK(&so->so_snd); 989 error = EPIPE; 990 goto out; 991 } 992 if (so->so_error) { 993 error = so->so_error; 994 so->so_error = 0; 995 SOCKBUF_UNLOCK(&so->so_snd); 996 goto out; 997 } 998 if ((so->so_state & SS_ISCONNECTED) == 0) { 999 /* 1000 * `sendto' and `sendmsg' is allowed on a connection-based 1001 * socket if it supports implied connect. Return ENOTCONN if 1002 * not connected and no address is supplied. 1003 */ 1004 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1005 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1006 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1007 !(resid == 0 && clen != 0)) { 1008 SOCKBUF_UNLOCK(&so->so_snd); 1009 error = ENOTCONN; 1010 goto out; 1011 } 1012 } else if (addr == NULL) { 1013 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1014 error = ENOTCONN; 1015 else 1016 error = EDESTADDRREQ; 1017 SOCKBUF_UNLOCK(&so->so_snd); 1018 goto out; 1019 } 1020 } 1021 1022 /* 1023 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a 1024 * problem and need fixing. 1025 */ 1026 space = sbspace(&so->so_snd); 1027 if (flags & MSG_OOB) 1028 space += 1024; 1029 space -= clen; 1030 SOCKBUF_UNLOCK(&so->so_snd); 1031 if (resid > space) { 1032 error = EMSGSIZE; 1033 goto out; 1034 } 1035 if (uio == NULL) { 1036 resid = 0; 1037 if (flags & MSG_EOR) 1038 top->m_flags |= M_EOR; 1039 } else { 1040 #ifdef ZERO_COPY_SOCKETS 1041 error = sosend_copyin(uio, &top, atomic, &space, flags); 1042 if (error) 1043 goto out; 1044 #else 1045 /* 1046 * Copy the data from userland into a mbuf chain. 1047 * If no data is to be copied in, a single empty mbuf 1048 * is returned. 1049 */ 1050 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr, 1051 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0))); 1052 if (top == NULL) { 1053 error = EFAULT; /* only possible error */ 1054 goto out; 1055 } 1056 space -= resid - uio->uio_resid; 1057 #endif 1058 resid = uio->uio_resid; 1059 } 1060 KASSERT(resid == 0, ("sosend_dgram: resid != 0")); 1061 /* 1062 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock 1063 * than with. 1064 */ 1065 if (dontroute) { 1066 SOCK_LOCK(so); 1067 so->so_options |= SO_DONTROUTE; 1068 SOCK_UNLOCK(so); 1069 } 1070 /* 1071 * XXX all the SBS_CANTSENDMORE checks previously done could be out 1072 * of date. We could have recieved a reset packet in an interrupt or 1073 * maybe we slept while doing page faults in uiomove() etc. We could 1074 * probably recheck again inside the locking protection here, but 1075 * there are probably other places that this also happens. We must 1076 * rethink this. 1077 */ 1078 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1079 (flags & MSG_OOB) ? PRUS_OOB : 1080 /* 1081 * If the user set MSG_EOF, the protocol understands this flag and 1082 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND. 1083 */ 1084 ((flags & MSG_EOF) && 1085 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1086 (resid <= 0)) ? 1087 PRUS_EOF : 1088 /* If there is more to send set PRUS_MORETOCOME */ 1089 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1090 top, addr, control, td); 1091 if (dontroute) { 1092 SOCK_LOCK(so); 1093 so->so_options &= ~SO_DONTROUTE; 1094 SOCK_UNLOCK(so); 1095 } 1096 clen = 0; 1097 control = NULL; 1098 top = NULL; 1099 out: 1100 if (top != NULL) 1101 m_freem(top); 1102 if (control != NULL) 1103 m_freem(control); 1104 return (error); 1105 } 1106 1107 /* 1108 * Send on a socket. If send must go all at once and message is larger than 1109 * send buffering, then hard error. Lock against other senders. If must go 1110 * all at once and not enough room now, then inform user that this would 1111 * block and do nothing. Otherwise, if nonblocking, send as much as 1112 * possible. The data to be sent is described by "uio" if nonzero, otherwise 1113 * by the mbuf chain "top" (which must be null if uio is not). Data provided 1114 * in mbuf chain must be small enough to send all at once. 1115 * 1116 * Returns nonzero on error, timeout or signal; callers must check for short 1117 * counts if EINTR/ERESTART are returned. Data and control buffers are freed 1118 * on return. 1119 */ 1120 int 1121 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio, 1122 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1123 { 1124 long space, resid; 1125 int clen = 0, error, dontroute; 1126 int atomic = sosendallatonce(so) || top; 1127 1128 if (uio != NULL) 1129 resid = uio->uio_resid; 1130 else 1131 resid = top->m_pkthdr.len; 1132 /* 1133 * In theory resid should be unsigned. However, space must be 1134 * signed, as it might be less than 0 if we over-committed, and we 1135 * must use a signed comparison of space and resid. On the other 1136 * hand, a negative resid causes us to loop sending 0-length 1137 * segments to the protocol. 1138 * 1139 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 1140 * type sockets since that's an error. 1141 */ 1142 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 1143 error = EINVAL; 1144 goto out; 1145 } 1146 1147 dontroute = 1148 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 1149 (so->so_proto->pr_flags & PR_ATOMIC); 1150 if (td != NULL) 1151 td->td_ru.ru_msgsnd++; 1152 if (control != NULL) 1153 clen = control->m_len; 1154 1155 error = sblock(&so->so_snd, SBLOCKWAIT(flags)); 1156 if (error) 1157 goto out; 1158 1159 restart: 1160 do { 1161 SOCKBUF_LOCK(&so->so_snd); 1162 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1163 SOCKBUF_UNLOCK(&so->so_snd); 1164 error = EPIPE; 1165 goto release; 1166 } 1167 if (so->so_error) { 1168 error = so->so_error; 1169 so->so_error = 0; 1170 SOCKBUF_UNLOCK(&so->so_snd); 1171 goto release; 1172 } 1173 if ((so->so_state & SS_ISCONNECTED) == 0) { 1174 /* 1175 * `sendto' and `sendmsg' is allowed on a connection- 1176 * based socket if it supports implied connect. 1177 * Return ENOTCONN if not connected and no address is 1178 * supplied. 1179 */ 1180 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1181 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1182 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1183 !(resid == 0 && clen != 0)) { 1184 SOCKBUF_UNLOCK(&so->so_snd); 1185 error = ENOTCONN; 1186 goto release; 1187 } 1188 } else if (addr == NULL) { 1189 SOCKBUF_UNLOCK(&so->so_snd); 1190 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1191 error = ENOTCONN; 1192 else 1193 error = EDESTADDRREQ; 1194 goto release; 1195 } 1196 } 1197 space = sbspace(&so->so_snd); 1198 if (flags & MSG_OOB) 1199 space += 1024; 1200 if ((atomic && resid > so->so_snd.sb_hiwat) || 1201 clen > so->so_snd.sb_hiwat) { 1202 SOCKBUF_UNLOCK(&so->so_snd); 1203 error = EMSGSIZE; 1204 goto release; 1205 } 1206 if (space < resid + clen && 1207 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 1208 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) { 1209 SOCKBUF_UNLOCK(&so->so_snd); 1210 error = EWOULDBLOCK; 1211 goto release; 1212 } 1213 error = sbwait(&so->so_snd); 1214 SOCKBUF_UNLOCK(&so->so_snd); 1215 if (error) 1216 goto release; 1217 goto restart; 1218 } 1219 SOCKBUF_UNLOCK(&so->so_snd); 1220 space -= clen; 1221 do { 1222 if (uio == NULL) { 1223 resid = 0; 1224 if (flags & MSG_EOR) 1225 top->m_flags |= M_EOR; 1226 } else { 1227 #ifdef ZERO_COPY_SOCKETS 1228 error = sosend_copyin(uio, &top, atomic, 1229 &space, flags); 1230 if (error != 0) 1231 goto release; 1232 #else 1233 /* 1234 * Copy the data from userland into a mbuf 1235 * chain. If no data is to be copied in, 1236 * a single empty mbuf is returned. 1237 */ 1238 top = m_uiotombuf(uio, M_WAITOK, space, 1239 (atomic ? max_hdr : 0), 1240 (atomic ? M_PKTHDR : 0) | 1241 ((flags & MSG_EOR) ? M_EOR : 0)); 1242 if (top == NULL) { 1243 error = EFAULT; /* only possible error */ 1244 goto release; 1245 } 1246 space -= resid - uio->uio_resid; 1247 #endif 1248 resid = uio->uio_resid; 1249 } 1250 if (dontroute) { 1251 SOCK_LOCK(so); 1252 so->so_options |= SO_DONTROUTE; 1253 SOCK_UNLOCK(so); 1254 } 1255 /* 1256 * XXX all the SBS_CANTSENDMORE checks previously 1257 * done could be out of date. We could have recieved 1258 * a reset packet in an interrupt or maybe we slept 1259 * while doing page faults in uiomove() etc. We 1260 * could probably recheck again inside the locking 1261 * protection here, but there are probably other 1262 * places that this also happens. We must rethink 1263 * this. 1264 */ 1265 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1266 (flags & MSG_OOB) ? PRUS_OOB : 1267 /* 1268 * If the user set MSG_EOF, the protocol understands 1269 * this flag and nothing left to send then use 1270 * PRU_SEND_EOF instead of PRU_SEND. 1271 */ 1272 ((flags & MSG_EOF) && 1273 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1274 (resid <= 0)) ? 1275 PRUS_EOF : 1276 /* If there is more to send set PRUS_MORETOCOME. */ 1277 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1278 top, addr, control, td); 1279 if (dontroute) { 1280 SOCK_LOCK(so); 1281 so->so_options &= ~SO_DONTROUTE; 1282 SOCK_UNLOCK(so); 1283 } 1284 clen = 0; 1285 control = NULL; 1286 top = NULL; 1287 if (error) 1288 goto release; 1289 } while (resid && space > 0); 1290 } while (resid); 1291 1292 release: 1293 sbunlock(&so->so_snd); 1294 out: 1295 if (top != NULL) 1296 m_freem(top); 1297 if (control != NULL) 1298 m_freem(control); 1299 return (error); 1300 } 1301 1302 int 1303 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, 1304 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1305 { 1306 int error; 1307 1308 CURVNET_SET(so->so_vnet); 1309 error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, top, 1310 control, flags, td); 1311 CURVNET_RESTORE(); 1312 return (error); 1313 } 1314 1315 /* 1316 * The part of soreceive() that implements reading non-inline out-of-band 1317 * data from a socket. For more complete comments, see soreceive(), from 1318 * which this code originated. 1319 * 1320 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is 1321 * unable to return an mbuf chain to the caller. 1322 */ 1323 static int 1324 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags) 1325 { 1326 struct protosw *pr = so->so_proto; 1327 struct mbuf *m; 1328 int error; 1329 1330 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); 1331 1332 m = m_get(M_WAIT, MT_DATA); 1333 error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK); 1334 if (error) 1335 goto bad; 1336 do { 1337 #ifdef ZERO_COPY_SOCKETS 1338 if (so_zero_copy_receive) { 1339 int disposable; 1340 1341 if ((m->m_flags & M_EXT) 1342 && (m->m_ext.ext_type == EXT_DISPOSABLE)) 1343 disposable = 1; 1344 else 1345 disposable = 0; 1346 1347 error = uiomoveco(mtod(m, void *), 1348 min(uio->uio_resid, m->m_len), 1349 uio, disposable); 1350 } else 1351 #endif /* ZERO_COPY_SOCKETS */ 1352 error = uiomove(mtod(m, void *), 1353 (int) min(uio->uio_resid, m->m_len), uio); 1354 m = m_free(m); 1355 } while (uio->uio_resid && error == 0 && m); 1356 bad: 1357 if (m != NULL) 1358 m_freem(m); 1359 return (error); 1360 } 1361 1362 /* 1363 * Following replacement or removal of the first mbuf on the first mbuf chain 1364 * of a socket buffer, push necessary state changes back into the socket 1365 * buffer so that other consumers see the values consistently. 'nextrecord' 1366 * is the callers locally stored value of the original value of 1367 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. 1368 * NOTE: 'nextrecord' may be NULL. 1369 */ 1370 static __inline void 1371 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) 1372 { 1373 1374 SOCKBUF_LOCK_ASSERT(sb); 1375 /* 1376 * First, update for the new value of nextrecord. If necessary, make 1377 * it the first record. 1378 */ 1379 if (sb->sb_mb != NULL) 1380 sb->sb_mb->m_nextpkt = nextrecord; 1381 else 1382 sb->sb_mb = nextrecord; 1383 1384 /* 1385 * Now update any dependent socket buffer fields to reflect the new 1386 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the 1387 * addition of a second clause that takes care of the case where 1388 * sb_mb has been updated, but remains the last record. 1389 */ 1390 if (sb->sb_mb == NULL) { 1391 sb->sb_mbtail = NULL; 1392 sb->sb_lastrecord = NULL; 1393 } else if (sb->sb_mb->m_nextpkt == NULL) 1394 sb->sb_lastrecord = sb->sb_mb; 1395 } 1396 1397 1398 /* 1399 * Implement receive operations on a socket. We depend on the way that 1400 * records are added to the sockbuf by sbappend. In particular, each record 1401 * (mbufs linked through m_next) must begin with an address if the protocol 1402 * so specifies, followed by an optional mbuf or mbufs containing ancillary 1403 * data, and then zero or more mbufs of data. In order to allow parallelism 1404 * between network receive and copying to user space, as well as avoid 1405 * sleeping with a mutex held, we release the socket buffer mutex during the 1406 * user space copy. Although the sockbuf is locked, new data may still be 1407 * appended, and thus we must maintain consistency of the sockbuf during that 1408 * time. 1409 * 1410 * The caller may receive the data as a single mbuf chain by supplying an 1411 * mbuf **mp0 for use in returning the chain. The uio is then used only for 1412 * the count in uio_resid. 1413 */ 1414 int 1415 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio, 1416 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1417 { 1418 struct mbuf *m, **mp; 1419 int flags, len, error, offset; 1420 struct protosw *pr = so->so_proto; 1421 struct mbuf *nextrecord; 1422 int moff, type = 0; 1423 int orig_resid = uio->uio_resid; 1424 1425 mp = mp0; 1426 if (psa != NULL) 1427 *psa = NULL; 1428 if (controlp != NULL) 1429 *controlp = NULL; 1430 if (flagsp != NULL) 1431 flags = *flagsp &~ MSG_EOR; 1432 else 1433 flags = 0; 1434 if (flags & MSG_OOB) 1435 return (soreceive_rcvoob(so, uio, flags)); 1436 if (mp != NULL) 1437 *mp = NULL; 1438 if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING) 1439 && uio->uio_resid) 1440 (*pr->pr_usrreqs->pru_rcvd)(so, 0); 1441 1442 error = sblock(&so->so_rcv, SBLOCKWAIT(flags)); 1443 if (error) 1444 return (error); 1445 1446 restart: 1447 SOCKBUF_LOCK(&so->so_rcv); 1448 m = so->so_rcv.sb_mb; 1449 /* 1450 * If we have less data than requested, block awaiting more (subject 1451 * to any timeout) if: 1452 * 1. the current count is less than the low water mark, or 1453 * 2. MSG_WAITALL is set, and it is possible to do the entire 1454 * receive operation at once if we block (resid <= hiwat). 1455 * 3. MSG_DONTWAIT is not set 1456 * If MSG_WAITALL is set but resid is larger than the receive buffer, 1457 * we have to do the receive in sections, and thus risk returning a 1458 * short count if a timeout or signal occurs after we start. 1459 */ 1460 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 1461 so->so_rcv.sb_cc < uio->uio_resid) && 1462 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat || 1463 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) && 1464 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 1465 KASSERT(m != NULL || !so->so_rcv.sb_cc, 1466 ("receive: m == %p so->so_rcv.sb_cc == %u", 1467 m, so->so_rcv.sb_cc)); 1468 if (so->so_error) { 1469 if (m != NULL) 1470 goto dontblock; 1471 error = so->so_error; 1472 if ((flags & MSG_PEEK) == 0) 1473 so->so_error = 0; 1474 SOCKBUF_UNLOCK(&so->so_rcv); 1475 goto release; 1476 } 1477 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1478 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 1479 if (m == NULL) { 1480 SOCKBUF_UNLOCK(&so->so_rcv); 1481 goto release; 1482 } else 1483 goto dontblock; 1484 } 1485 for (; m != NULL; m = m->m_next) 1486 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 1487 m = so->so_rcv.sb_mb; 1488 goto dontblock; 1489 } 1490 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 1491 (so->so_proto->pr_flags & PR_CONNREQUIRED)) { 1492 SOCKBUF_UNLOCK(&so->so_rcv); 1493 error = ENOTCONN; 1494 goto release; 1495 } 1496 if (uio->uio_resid == 0) { 1497 SOCKBUF_UNLOCK(&so->so_rcv); 1498 goto release; 1499 } 1500 if ((so->so_state & SS_NBIO) || 1501 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 1502 SOCKBUF_UNLOCK(&so->so_rcv); 1503 error = EWOULDBLOCK; 1504 goto release; 1505 } 1506 SBLASTRECORDCHK(&so->so_rcv); 1507 SBLASTMBUFCHK(&so->so_rcv); 1508 error = sbwait(&so->so_rcv); 1509 SOCKBUF_UNLOCK(&so->so_rcv); 1510 if (error) 1511 goto release; 1512 goto restart; 1513 } 1514 dontblock: 1515 /* 1516 * From this point onward, we maintain 'nextrecord' as a cache of the 1517 * pointer to the next record in the socket buffer. We must keep the 1518 * various socket buffer pointers and local stack versions of the 1519 * pointers in sync, pushing out modifications before dropping the 1520 * socket buffer mutex, and re-reading them when picking it up. 1521 * 1522 * Otherwise, we will race with the network stack appending new data 1523 * or records onto the socket buffer by using inconsistent/stale 1524 * versions of the field, possibly resulting in socket buffer 1525 * corruption. 1526 * 1527 * By holding the high-level sblock(), we prevent simultaneous 1528 * readers from pulling off the front of the socket buffer. 1529 */ 1530 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1531 if (uio->uio_td) 1532 uio->uio_td->td_ru.ru_msgrcv++; 1533 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); 1534 SBLASTRECORDCHK(&so->so_rcv); 1535 SBLASTMBUFCHK(&so->so_rcv); 1536 nextrecord = m->m_nextpkt; 1537 if (pr->pr_flags & PR_ADDR) { 1538 KASSERT(m->m_type == MT_SONAME, 1539 ("m->m_type == %d", m->m_type)); 1540 orig_resid = 0; 1541 if (psa != NULL) 1542 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 1543 M_NOWAIT); 1544 if (flags & MSG_PEEK) { 1545 m = m->m_next; 1546 } else { 1547 sbfree(&so->so_rcv, m); 1548 so->so_rcv.sb_mb = m_free(m); 1549 m = so->so_rcv.sb_mb; 1550 sockbuf_pushsync(&so->so_rcv, nextrecord); 1551 } 1552 } 1553 1554 /* 1555 * Process one or more MT_CONTROL mbufs present before any data mbufs 1556 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 1557 * just copy the data; if !MSG_PEEK, we call into the protocol to 1558 * perform externalization (or freeing if controlp == NULL). 1559 */ 1560 if (m != NULL && m->m_type == MT_CONTROL) { 1561 struct mbuf *cm = NULL, *cmn; 1562 struct mbuf **cme = &cm; 1563 1564 do { 1565 if (flags & MSG_PEEK) { 1566 if (controlp != NULL) { 1567 *controlp = m_copy(m, 0, m->m_len); 1568 controlp = &(*controlp)->m_next; 1569 } 1570 m = m->m_next; 1571 } else { 1572 sbfree(&so->so_rcv, m); 1573 so->so_rcv.sb_mb = m->m_next; 1574 m->m_next = NULL; 1575 *cme = m; 1576 cme = &(*cme)->m_next; 1577 m = so->so_rcv.sb_mb; 1578 } 1579 } while (m != NULL && m->m_type == MT_CONTROL); 1580 if ((flags & MSG_PEEK) == 0) 1581 sockbuf_pushsync(&so->so_rcv, nextrecord); 1582 while (cm != NULL) { 1583 cmn = cm->m_next; 1584 cm->m_next = NULL; 1585 if (pr->pr_domain->dom_externalize != NULL) { 1586 SOCKBUF_UNLOCK(&so->so_rcv); 1587 error = (*pr->pr_domain->dom_externalize) 1588 (cm, controlp); 1589 SOCKBUF_LOCK(&so->so_rcv); 1590 } else if (controlp != NULL) 1591 *controlp = cm; 1592 else 1593 m_freem(cm); 1594 if (controlp != NULL) { 1595 orig_resid = 0; 1596 while (*controlp != NULL) 1597 controlp = &(*controlp)->m_next; 1598 } 1599 cm = cmn; 1600 } 1601 if (m != NULL) 1602 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 1603 else 1604 nextrecord = so->so_rcv.sb_mb; 1605 orig_resid = 0; 1606 } 1607 if (m != NULL) { 1608 if ((flags & MSG_PEEK) == 0) { 1609 KASSERT(m->m_nextpkt == nextrecord, 1610 ("soreceive: post-control, nextrecord !sync")); 1611 if (nextrecord == NULL) { 1612 KASSERT(so->so_rcv.sb_mb == m, 1613 ("soreceive: post-control, sb_mb!=m")); 1614 KASSERT(so->so_rcv.sb_lastrecord == m, 1615 ("soreceive: post-control, lastrecord!=m")); 1616 } 1617 } 1618 type = m->m_type; 1619 if (type == MT_OOBDATA) 1620 flags |= MSG_OOB; 1621 } else { 1622 if ((flags & MSG_PEEK) == 0) { 1623 KASSERT(so->so_rcv.sb_mb == nextrecord, 1624 ("soreceive: sb_mb != nextrecord")); 1625 if (so->so_rcv.sb_mb == NULL) { 1626 KASSERT(so->so_rcv.sb_lastrecord == NULL, 1627 ("soreceive: sb_lastercord != NULL")); 1628 } 1629 } 1630 } 1631 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1632 SBLASTRECORDCHK(&so->so_rcv); 1633 SBLASTMBUFCHK(&so->so_rcv); 1634 1635 /* 1636 * Now continue to read any data mbufs off of the head of the socket 1637 * buffer until the read request is satisfied. Note that 'type' is 1638 * used to store the type of any mbuf reads that have happened so far 1639 * such that soreceive() can stop reading if the type changes, which 1640 * causes soreceive() to return only one of regular data and inline 1641 * out-of-band data in a single socket receive operation. 1642 */ 1643 moff = 0; 1644 offset = 0; 1645 while (m != NULL && uio->uio_resid > 0 && error == 0) { 1646 /* 1647 * If the type of mbuf has changed since the last mbuf 1648 * examined ('type'), end the receive operation. 1649 */ 1650 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1651 if (m->m_type == MT_OOBDATA) { 1652 if (type != MT_OOBDATA) 1653 break; 1654 } else if (type == MT_OOBDATA) 1655 break; 1656 else 1657 KASSERT(m->m_type == MT_DATA, 1658 ("m->m_type == %d", m->m_type)); 1659 so->so_rcv.sb_state &= ~SBS_RCVATMARK; 1660 len = uio->uio_resid; 1661 if (so->so_oobmark && len > so->so_oobmark - offset) 1662 len = so->so_oobmark - offset; 1663 if (len > m->m_len - moff) 1664 len = m->m_len - moff; 1665 /* 1666 * If mp is set, just pass back the mbufs. Otherwise copy 1667 * them out via the uio, then free. Sockbuf must be 1668 * consistent here (points to current mbuf, it points to next 1669 * record) when we drop priority; we must note any additions 1670 * to the sockbuf when we block interrupts again. 1671 */ 1672 if (mp == NULL) { 1673 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1674 SBLASTRECORDCHK(&so->so_rcv); 1675 SBLASTMBUFCHK(&so->so_rcv); 1676 SOCKBUF_UNLOCK(&so->so_rcv); 1677 #ifdef ZERO_COPY_SOCKETS 1678 if (so_zero_copy_receive) { 1679 int disposable; 1680 1681 if ((m->m_flags & M_EXT) 1682 && (m->m_ext.ext_type == EXT_DISPOSABLE)) 1683 disposable = 1; 1684 else 1685 disposable = 0; 1686 1687 error = uiomoveco(mtod(m, char *) + moff, 1688 (int)len, uio, 1689 disposable); 1690 } else 1691 #endif /* ZERO_COPY_SOCKETS */ 1692 error = uiomove(mtod(m, char *) + moff, (int)len, uio); 1693 SOCKBUF_LOCK(&so->so_rcv); 1694 if (error) { 1695 /* 1696 * The MT_SONAME mbuf has already been removed 1697 * from the record, so it is necessary to 1698 * remove the data mbufs, if any, to preserve 1699 * the invariant in the case of PR_ADDR that 1700 * requires MT_SONAME mbufs at the head of 1701 * each record. 1702 */ 1703 if (m && pr->pr_flags & PR_ATOMIC && 1704 ((flags & MSG_PEEK) == 0)) 1705 (void)sbdroprecord_locked(&so->so_rcv); 1706 SOCKBUF_UNLOCK(&so->so_rcv); 1707 goto release; 1708 } 1709 } else 1710 uio->uio_resid -= len; 1711 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1712 if (len == m->m_len - moff) { 1713 if (m->m_flags & M_EOR) 1714 flags |= MSG_EOR; 1715 if (flags & MSG_PEEK) { 1716 m = m->m_next; 1717 moff = 0; 1718 } else { 1719 nextrecord = m->m_nextpkt; 1720 sbfree(&so->so_rcv, m); 1721 if (mp != NULL) { 1722 *mp = m; 1723 mp = &m->m_next; 1724 so->so_rcv.sb_mb = m = m->m_next; 1725 *mp = NULL; 1726 } else { 1727 so->so_rcv.sb_mb = m_free(m); 1728 m = so->so_rcv.sb_mb; 1729 } 1730 sockbuf_pushsync(&so->so_rcv, nextrecord); 1731 SBLASTRECORDCHK(&so->so_rcv); 1732 SBLASTMBUFCHK(&so->so_rcv); 1733 } 1734 } else { 1735 if (flags & MSG_PEEK) 1736 moff += len; 1737 else { 1738 if (mp != NULL) { 1739 int copy_flag; 1740 1741 if (flags & MSG_DONTWAIT) 1742 copy_flag = M_DONTWAIT; 1743 else 1744 copy_flag = M_WAIT; 1745 if (copy_flag == M_WAIT) 1746 SOCKBUF_UNLOCK(&so->so_rcv); 1747 *mp = m_copym(m, 0, len, copy_flag); 1748 if (copy_flag == M_WAIT) 1749 SOCKBUF_LOCK(&so->so_rcv); 1750 if (*mp == NULL) { 1751 /* 1752 * m_copym() couldn't 1753 * allocate an mbuf. Adjust 1754 * uio_resid back (it was 1755 * adjusted down by len 1756 * bytes, which we didn't end 1757 * up "copying" over). 1758 */ 1759 uio->uio_resid += len; 1760 break; 1761 } 1762 } 1763 m->m_data += len; 1764 m->m_len -= len; 1765 so->so_rcv.sb_cc -= len; 1766 } 1767 } 1768 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1769 if (so->so_oobmark) { 1770 if ((flags & MSG_PEEK) == 0) { 1771 so->so_oobmark -= len; 1772 if (so->so_oobmark == 0) { 1773 so->so_rcv.sb_state |= SBS_RCVATMARK; 1774 break; 1775 } 1776 } else { 1777 offset += len; 1778 if (offset == so->so_oobmark) 1779 break; 1780 } 1781 } 1782 if (flags & MSG_EOR) 1783 break; 1784 /* 1785 * If the MSG_WAITALL flag is set (for non-atomic socket), we 1786 * must not quit until "uio->uio_resid == 0" or an error 1787 * termination. If a signal/timeout occurs, return with a 1788 * short count but without error. Keep sockbuf locked 1789 * against other readers. 1790 */ 1791 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 1792 !sosendallatonce(so) && nextrecord == NULL) { 1793 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1794 if (so->so_error || so->so_rcv.sb_state & SBS_CANTRCVMORE) 1795 break; 1796 /* 1797 * Notify the protocol that some data has been 1798 * drained before blocking. 1799 */ 1800 if (pr->pr_flags & PR_WANTRCVD) { 1801 SOCKBUF_UNLOCK(&so->so_rcv); 1802 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 1803 SOCKBUF_LOCK(&so->so_rcv); 1804 } 1805 SBLASTRECORDCHK(&so->so_rcv); 1806 SBLASTMBUFCHK(&so->so_rcv); 1807 error = sbwait(&so->so_rcv); 1808 if (error) { 1809 SOCKBUF_UNLOCK(&so->so_rcv); 1810 goto release; 1811 } 1812 m = so->so_rcv.sb_mb; 1813 if (m != NULL) 1814 nextrecord = m->m_nextpkt; 1815 } 1816 } 1817 1818 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1819 if (m != NULL && pr->pr_flags & PR_ATOMIC) { 1820 flags |= MSG_TRUNC; 1821 if ((flags & MSG_PEEK) == 0) 1822 (void) sbdroprecord_locked(&so->so_rcv); 1823 } 1824 if ((flags & MSG_PEEK) == 0) { 1825 if (m == NULL) { 1826 /* 1827 * First part is an inline SB_EMPTY_FIXUP(). Second 1828 * part makes sure sb_lastrecord is up-to-date if 1829 * there is still data in the socket buffer. 1830 */ 1831 so->so_rcv.sb_mb = nextrecord; 1832 if (so->so_rcv.sb_mb == NULL) { 1833 so->so_rcv.sb_mbtail = NULL; 1834 so->so_rcv.sb_lastrecord = NULL; 1835 } else if (nextrecord->m_nextpkt == NULL) 1836 so->so_rcv.sb_lastrecord = nextrecord; 1837 } 1838 SBLASTRECORDCHK(&so->so_rcv); 1839 SBLASTMBUFCHK(&so->so_rcv); 1840 /* 1841 * If soreceive() is being done from the socket callback, 1842 * then don't need to generate ACK to peer to update window, 1843 * since ACK will be generated on return to TCP. 1844 */ 1845 if (!(flags & MSG_SOCALLBCK) && 1846 (pr->pr_flags & PR_WANTRCVD)) { 1847 SOCKBUF_UNLOCK(&so->so_rcv); 1848 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 1849 SOCKBUF_LOCK(&so->so_rcv); 1850 } 1851 } 1852 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1853 if (orig_resid == uio->uio_resid && orig_resid && 1854 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { 1855 SOCKBUF_UNLOCK(&so->so_rcv); 1856 goto restart; 1857 } 1858 SOCKBUF_UNLOCK(&so->so_rcv); 1859 1860 if (flagsp != NULL) 1861 *flagsp |= flags; 1862 release: 1863 sbunlock(&so->so_rcv); 1864 return (error); 1865 } 1866 1867 /* 1868 * Optimized version of soreceive() for stream (TCP) sockets. 1869 */ 1870 #ifdef TCP_SORECEIVE_STREAM 1871 int 1872 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio, 1873 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1874 { 1875 int len = 0, error = 0, flags, oresid; 1876 struct sockbuf *sb; 1877 struct mbuf *m, *n = NULL; 1878 1879 /* We only do stream sockets. */ 1880 if (so->so_type != SOCK_STREAM) 1881 return (EINVAL); 1882 if (psa != NULL) 1883 *psa = NULL; 1884 if (controlp != NULL) 1885 return (EINVAL); 1886 if (flagsp != NULL) 1887 flags = *flagsp &~ MSG_EOR; 1888 else 1889 flags = 0; 1890 if (flags & MSG_OOB) 1891 return (soreceive_rcvoob(so, uio, flags)); 1892 if (mp0 != NULL) 1893 *mp0 = NULL; 1894 1895 sb = &so->so_rcv; 1896 1897 /* Prevent other readers from entering the socket. */ 1898 error = sblock(sb, SBLOCKWAIT(flags)); 1899 if (error) 1900 goto out; 1901 SOCKBUF_LOCK(sb); 1902 1903 /* Easy one, no space to copyout anything. */ 1904 if (uio->uio_resid == 0) { 1905 error = EINVAL; 1906 goto out; 1907 } 1908 oresid = uio->uio_resid; 1909 1910 /* We will never ever get anything unless we are connected. */ 1911 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 1912 /* When disconnecting there may be still some data left. */ 1913 if (sb->sb_cc > 0) 1914 goto deliver; 1915 if (!(so->so_state & SS_ISDISCONNECTED)) 1916 error = ENOTCONN; 1917 goto out; 1918 } 1919 1920 /* Socket buffer is empty and we shall not block. */ 1921 if (sb->sb_cc == 0 && 1922 ((sb->sb_flags & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) { 1923 error = EAGAIN; 1924 goto out; 1925 } 1926 1927 restart: 1928 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1929 1930 /* Abort if socket has reported problems. */ 1931 if (so->so_error) { 1932 if (sb->sb_cc > 0) 1933 goto deliver; 1934 if (oresid > uio->uio_resid) 1935 goto out; 1936 error = so->so_error; 1937 if (!(flags & MSG_PEEK)) 1938 so->so_error = 0; 1939 goto out; 1940 } 1941 1942 /* Door is closed. Deliver what is left, if any. */ 1943 if (sb->sb_state & SBS_CANTRCVMORE) { 1944 if (sb->sb_cc > 0) 1945 goto deliver; 1946 else 1947 goto out; 1948 } 1949 1950 /* Socket buffer got some data that we shall deliver now. */ 1951 if (sb->sb_cc > 0 && !(flags & MSG_WAITALL) && 1952 ((sb->sb_flags & SS_NBIO) || 1953 (flags & (MSG_DONTWAIT|MSG_NBIO)) || 1954 sb->sb_cc >= sb->sb_lowat || 1955 sb->sb_cc >= uio->uio_resid || 1956 sb->sb_cc >= sb->sb_hiwat) ) { 1957 goto deliver; 1958 } 1959 1960 /* On MSG_WAITALL we must wait until all data or error arrives. */ 1961 if ((flags & MSG_WAITALL) && 1962 (sb->sb_cc >= uio->uio_resid || sb->sb_cc >= sb->sb_lowat)) 1963 goto deliver; 1964 1965 /* 1966 * Wait and block until (more) data comes in. 1967 * NB: Drops the sockbuf lock during wait. 1968 */ 1969 error = sbwait(sb); 1970 if (error) 1971 goto out; 1972 goto restart; 1973 1974 deliver: 1975 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1976 KASSERT(sb->sb_cc > 0, ("%s: sockbuf empty", __func__)); 1977 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__)); 1978 1979 /* Statistics. */ 1980 if (uio->uio_td) 1981 uio->uio_td->td_ru.ru_msgrcv++; 1982 1983 /* Fill uio until full or current end of socket buffer is reached. */ 1984 len = min(uio->uio_resid, sb->sb_cc); 1985 if (mp0 != NULL) { 1986 /* Dequeue as many mbufs as possible. */ 1987 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) { 1988 for (*mp0 = m = sb->sb_mb; 1989 m != NULL && m->m_len <= len; 1990 m = m->m_next) { 1991 len -= m->m_len; 1992 uio->uio_resid -= m->m_len; 1993 sbfree(sb, m); 1994 n = m; 1995 } 1996 sb->sb_mb = m; 1997 if (sb->sb_mb == NULL) 1998 SB_EMPTY_FIXUP(sb); 1999 n->m_next = NULL; 2000 } 2001 /* Copy the remainder. */ 2002 if (len > 0) { 2003 KASSERT(sb->sb_mb != NULL, 2004 ("%s: len > 0 && sb->sb_mb empty", __func__)); 2005 2006 m = m_copym(sb->sb_mb, 0, len, M_DONTWAIT); 2007 if (m == NULL) 2008 len = 0; /* Don't flush data from sockbuf. */ 2009 else 2010 uio->uio_resid -= m->m_len; 2011 if (*mp0 != NULL) 2012 n->m_next = m; 2013 else 2014 *mp0 = m; 2015 if (*mp0 == NULL) { 2016 error = ENOBUFS; 2017 goto out; 2018 } 2019 } 2020 } else { 2021 /* NB: Must unlock socket buffer as uiomove may sleep. */ 2022 SOCKBUF_UNLOCK(sb); 2023 error = m_mbuftouio(uio, sb->sb_mb, len); 2024 SOCKBUF_LOCK(sb); 2025 if (error) 2026 goto out; 2027 } 2028 SBLASTRECORDCHK(sb); 2029 SBLASTMBUFCHK(sb); 2030 2031 /* 2032 * Remove the delivered data from the socket buffer unless we 2033 * were only peeking. 2034 */ 2035 if (!(flags & MSG_PEEK)) { 2036 if (len > 0) 2037 sbdrop_locked(sb, len); 2038 2039 /* Notify protocol that we drained some data. */ 2040 if ((so->so_proto->pr_flags & PR_WANTRCVD) && 2041 (((flags & MSG_WAITALL) && uio->uio_resid > 0) || 2042 !(flags & MSG_SOCALLBCK))) { 2043 SOCKBUF_UNLOCK(sb); 2044 (*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags); 2045 SOCKBUF_LOCK(sb); 2046 } 2047 } 2048 2049 /* 2050 * For MSG_WAITALL we may have to loop again and wait for 2051 * more data to come in. 2052 */ 2053 if ((flags & MSG_WAITALL) && uio->uio_resid > 0) 2054 goto restart; 2055 out: 2056 SOCKBUF_LOCK_ASSERT(sb); 2057 SBLASTRECORDCHK(sb); 2058 SBLASTMBUFCHK(sb); 2059 SOCKBUF_UNLOCK(sb); 2060 sbunlock(sb); 2061 return (error); 2062 } 2063 #endif /* TCP_SORECEIVE_STREAM */ 2064 2065 /* 2066 * Optimized version of soreceive() for simple datagram cases from userspace. 2067 * Unlike in the stream case, we're able to drop a datagram if copyout() 2068 * fails, and because we handle datagrams atomically, we don't need to use a 2069 * sleep lock to prevent I/O interlacing. 2070 */ 2071 int 2072 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio, 2073 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2074 { 2075 struct mbuf *m, *m2; 2076 int flags, len, error; 2077 struct protosw *pr = so->so_proto; 2078 struct mbuf *nextrecord; 2079 2080 if (psa != NULL) 2081 *psa = NULL; 2082 if (controlp != NULL) 2083 *controlp = NULL; 2084 if (flagsp != NULL) 2085 flags = *flagsp &~ MSG_EOR; 2086 else 2087 flags = 0; 2088 2089 /* 2090 * For any complicated cases, fall back to the full 2091 * soreceive_generic(). 2092 */ 2093 if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB)) 2094 return (soreceive_generic(so, psa, uio, mp0, controlp, 2095 flagsp)); 2096 2097 /* 2098 * Enforce restrictions on use. 2099 */ 2100 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0, 2101 ("soreceive_dgram: wantrcvd")); 2102 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic")); 2103 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0, 2104 ("soreceive_dgram: SBS_RCVATMARK")); 2105 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0, 2106 ("soreceive_dgram: P_CONNREQUIRED")); 2107 2108 /* 2109 * Loop blocking while waiting for a datagram. 2110 */ 2111 SOCKBUF_LOCK(&so->so_rcv); 2112 while ((m = so->so_rcv.sb_mb) == NULL) { 2113 KASSERT(so->so_rcv.sb_cc == 0, 2114 ("soreceive_dgram: sb_mb NULL but sb_cc %u", 2115 so->so_rcv.sb_cc)); 2116 if (so->so_error) { 2117 error = so->so_error; 2118 so->so_error = 0; 2119 SOCKBUF_UNLOCK(&so->so_rcv); 2120 return (error); 2121 } 2122 if (so->so_rcv.sb_state & SBS_CANTRCVMORE || 2123 uio->uio_resid == 0) { 2124 SOCKBUF_UNLOCK(&so->so_rcv); 2125 return (0); 2126 } 2127 if ((so->so_state & SS_NBIO) || 2128 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2129 SOCKBUF_UNLOCK(&so->so_rcv); 2130 return (EWOULDBLOCK); 2131 } 2132 SBLASTRECORDCHK(&so->so_rcv); 2133 SBLASTMBUFCHK(&so->so_rcv); 2134 error = sbwait(&so->so_rcv); 2135 if (error) { 2136 SOCKBUF_UNLOCK(&so->so_rcv); 2137 return (error); 2138 } 2139 } 2140 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2141 2142 if (uio->uio_td) 2143 uio->uio_td->td_ru.ru_msgrcv++; 2144 SBLASTRECORDCHK(&so->so_rcv); 2145 SBLASTMBUFCHK(&so->so_rcv); 2146 nextrecord = m->m_nextpkt; 2147 if (nextrecord == NULL) { 2148 KASSERT(so->so_rcv.sb_lastrecord == m, 2149 ("soreceive_dgram: lastrecord != m")); 2150 } 2151 2152 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord, 2153 ("soreceive_dgram: m_nextpkt != nextrecord")); 2154 2155 /* 2156 * Pull 'm' and its chain off the front of the packet queue. 2157 */ 2158 so->so_rcv.sb_mb = NULL; 2159 sockbuf_pushsync(&so->so_rcv, nextrecord); 2160 2161 /* 2162 * Walk 'm's chain and free that many bytes from the socket buffer. 2163 */ 2164 for (m2 = m; m2 != NULL; m2 = m2->m_next) 2165 sbfree(&so->so_rcv, m2); 2166 2167 /* 2168 * Do a few last checks before we let go of the lock. 2169 */ 2170 SBLASTRECORDCHK(&so->so_rcv); 2171 SBLASTMBUFCHK(&so->so_rcv); 2172 SOCKBUF_UNLOCK(&so->so_rcv); 2173 2174 if (pr->pr_flags & PR_ADDR) { 2175 KASSERT(m->m_type == MT_SONAME, 2176 ("m->m_type == %d", m->m_type)); 2177 if (psa != NULL) 2178 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2179 M_NOWAIT); 2180 m = m_free(m); 2181 } 2182 if (m == NULL) { 2183 /* XXXRW: Can this happen? */ 2184 return (0); 2185 } 2186 2187 /* 2188 * Packet to copyout() is now in 'm' and it is disconnected from the 2189 * queue. 2190 * 2191 * Process one or more MT_CONTROL mbufs present before any data mbufs 2192 * in the first mbuf chain on the socket buffer. We call into the 2193 * protocol to perform externalization (or freeing if controlp == 2194 * NULL). 2195 */ 2196 if (m->m_type == MT_CONTROL) { 2197 struct mbuf *cm = NULL, *cmn; 2198 struct mbuf **cme = &cm; 2199 2200 do { 2201 m2 = m->m_next; 2202 m->m_next = NULL; 2203 *cme = m; 2204 cme = &(*cme)->m_next; 2205 m = m2; 2206 } while (m != NULL && m->m_type == MT_CONTROL); 2207 while (cm != NULL) { 2208 cmn = cm->m_next; 2209 cm->m_next = NULL; 2210 if (pr->pr_domain->dom_externalize != NULL) { 2211 error = (*pr->pr_domain->dom_externalize) 2212 (cm, controlp); 2213 } else if (controlp != NULL) 2214 *controlp = cm; 2215 else 2216 m_freem(cm); 2217 if (controlp != NULL) { 2218 while (*controlp != NULL) 2219 controlp = &(*controlp)->m_next; 2220 } 2221 cm = cmn; 2222 } 2223 } 2224 KASSERT(m->m_type == MT_DATA, ("soreceive_dgram: !data")); 2225 2226 while (m != NULL && uio->uio_resid > 0) { 2227 len = uio->uio_resid; 2228 if (len > m->m_len) 2229 len = m->m_len; 2230 error = uiomove(mtod(m, char *), (int)len, uio); 2231 if (error) { 2232 m_freem(m); 2233 return (error); 2234 } 2235 m = m_free(m); 2236 } 2237 if (m != NULL) 2238 flags |= MSG_TRUNC; 2239 m_freem(m); 2240 if (flagsp != NULL) 2241 *flagsp |= flags; 2242 return (0); 2243 } 2244 2245 int 2246 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, 2247 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2248 { 2249 2250 return (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, mp0, 2251 controlp, flagsp)); 2252 } 2253 2254 int 2255 soshutdown(struct socket *so, int how) 2256 { 2257 struct protosw *pr = so->so_proto; 2258 int error; 2259 2260 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 2261 return (EINVAL); 2262 if (pr->pr_usrreqs->pru_flush != NULL) { 2263 (*pr->pr_usrreqs->pru_flush)(so, how); 2264 } 2265 if (how != SHUT_WR) 2266 sorflush(so); 2267 if (how != SHUT_RD) { 2268 CURVNET_SET(so->so_vnet); 2269 error = (*pr->pr_usrreqs->pru_shutdown)(so); 2270 CURVNET_RESTORE(); 2271 return (error); 2272 } 2273 return (0); 2274 } 2275 2276 void 2277 sorflush(struct socket *so) 2278 { 2279 struct sockbuf *sb = &so->so_rcv; 2280 struct protosw *pr = so->so_proto; 2281 struct sockbuf asb; 2282 2283 /* 2284 * In order to avoid calling dom_dispose with the socket buffer mutex 2285 * held, and in order to generally avoid holding the lock for a long 2286 * time, we make a copy of the socket buffer and clear the original 2287 * (except locks, state). The new socket buffer copy won't have 2288 * initialized locks so we can only call routines that won't use or 2289 * assert those locks. 2290 * 2291 * Dislodge threads currently blocked in receive and wait to acquire 2292 * a lock against other simultaneous readers before clearing the 2293 * socket buffer. Don't let our acquire be interrupted by a signal 2294 * despite any existing socket disposition on interruptable waiting. 2295 */ 2296 CURVNET_SET(so->so_vnet); 2297 socantrcvmore(so); 2298 (void) sblock(sb, SBL_WAIT | SBL_NOINTR); 2299 2300 /* 2301 * Invalidate/clear most of the sockbuf structure, but leave selinfo 2302 * and mutex data unchanged. 2303 */ 2304 SOCKBUF_LOCK(sb); 2305 bzero(&asb, offsetof(struct sockbuf, sb_startzero)); 2306 bcopy(&sb->sb_startzero, &asb.sb_startzero, 2307 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 2308 bzero(&sb->sb_startzero, 2309 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 2310 SOCKBUF_UNLOCK(sb); 2311 sbunlock(sb); 2312 2313 /* 2314 * Dispose of special rights and flush the socket buffer. Don't call 2315 * any unsafe routines (that rely on locks being initialized) on asb. 2316 */ 2317 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 2318 (*pr->pr_domain->dom_dispose)(asb.sb_mb); 2319 sbrelease_internal(&asb, so); 2320 CURVNET_RESTORE(); 2321 } 2322 2323 /* 2324 * Perhaps this routine, and sooptcopyout(), below, ought to come in an 2325 * additional variant to handle the case where the option value needs to be 2326 * some kind of integer, but not a specific size. In addition to their use 2327 * here, these functions are also called by the protocol-level pr_ctloutput() 2328 * routines. 2329 */ 2330 int 2331 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen) 2332 { 2333 size_t valsize; 2334 2335 /* 2336 * If the user gives us more than we wanted, we ignore it, but if we 2337 * don't get the minimum length the caller wants, we return EINVAL. 2338 * On success, sopt->sopt_valsize is set to however much we actually 2339 * retrieved. 2340 */ 2341 if ((valsize = sopt->sopt_valsize) < minlen) 2342 return EINVAL; 2343 if (valsize > len) 2344 sopt->sopt_valsize = valsize = len; 2345 2346 if (sopt->sopt_td != NULL) 2347 return (copyin(sopt->sopt_val, buf, valsize)); 2348 2349 bcopy(sopt->sopt_val, buf, valsize); 2350 return (0); 2351 } 2352 2353 /* 2354 * Kernel version of setsockopt(2). 2355 * 2356 * XXX: optlen is size_t, not socklen_t 2357 */ 2358 int 2359 so_setsockopt(struct socket *so, int level, int optname, void *optval, 2360 size_t optlen) 2361 { 2362 struct sockopt sopt; 2363 2364 sopt.sopt_level = level; 2365 sopt.sopt_name = optname; 2366 sopt.sopt_dir = SOPT_SET; 2367 sopt.sopt_val = optval; 2368 sopt.sopt_valsize = optlen; 2369 sopt.sopt_td = NULL; 2370 return (sosetopt(so, &sopt)); 2371 } 2372 2373 int 2374 sosetopt(struct socket *so, struct sockopt *sopt) 2375 { 2376 int error, optval; 2377 struct linger l; 2378 struct timeval tv; 2379 u_long val; 2380 #ifdef MAC 2381 struct mac extmac; 2382 #endif 2383 2384 error = 0; 2385 if (sopt->sopt_level != SOL_SOCKET) { 2386 if (so->so_proto && so->so_proto->pr_ctloutput) 2387 return ((*so->so_proto->pr_ctloutput) 2388 (so, sopt)); 2389 error = ENOPROTOOPT; 2390 } else { 2391 switch (sopt->sopt_name) { 2392 #ifdef INET 2393 case SO_ACCEPTFILTER: 2394 error = do_setopt_accept_filter(so, sopt); 2395 if (error) 2396 goto bad; 2397 break; 2398 #endif 2399 case SO_LINGER: 2400 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 2401 if (error) 2402 goto bad; 2403 2404 SOCK_LOCK(so); 2405 so->so_linger = l.l_linger; 2406 if (l.l_onoff) 2407 so->so_options |= SO_LINGER; 2408 else 2409 so->so_options &= ~SO_LINGER; 2410 SOCK_UNLOCK(so); 2411 break; 2412 2413 case SO_DEBUG: 2414 case SO_KEEPALIVE: 2415 case SO_DONTROUTE: 2416 case SO_USELOOPBACK: 2417 case SO_BROADCAST: 2418 case SO_REUSEADDR: 2419 case SO_REUSEPORT: 2420 case SO_OOBINLINE: 2421 case SO_TIMESTAMP: 2422 case SO_BINTIME: 2423 case SO_NOSIGPIPE: 2424 case SO_NO_DDP: 2425 case SO_NO_OFFLOAD: 2426 error = sooptcopyin(sopt, &optval, sizeof optval, 2427 sizeof optval); 2428 if (error) 2429 goto bad; 2430 SOCK_LOCK(so); 2431 if (optval) 2432 so->so_options |= sopt->sopt_name; 2433 else 2434 so->so_options &= ~sopt->sopt_name; 2435 SOCK_UNLOCK(so); 2436 break; 2437 2438 case SO_SETFIB: 2439 error = sooptcopyin(sopt, &optval, sizeof optval, 2440 sizeof optval); 2441 if (optval < 1 || optval > rt_numfibs) { 2442 error = EINVAL; 2443 goto bad; 2444 } 2445 if ((so->so_proto->pr_domain->dom_family == PF_INET) || 2446 (so->so_proto->pr_domain->dom_family == PF_ROUTE)) { 2447 so->so_fibnum = optval; 2448 /* Note: ignore error */ 2449 if (so->so_proto && so->so_proto->pr_ctloutput) 2450 (*so->so_proto->pr_ctloutput)(so, sopt); 2451 } else { 2452 so->so_fibnum = 0; 2453 } 2454 break; 2455 case SO_SNDBUF: 2456 case SO_RCVBUF: 2457 case SO_SNDLOWAT: 2458 case SO_RCVLOWAT: 2459 error = sooptcopyin(sopt, &optval, sizeof optval, 2460 sizeof optval); 2461 if (error) 2462 goto bad; 2463 2464 /* 2465 * Values < 1 make no sense for any of these options, 2466 * so disallow them. 2467 */ 2468 if (optval < 1) { 2469 error = EINVAL; 2470 goto bad; 2471 } 2472 2473 switch (sopt->sopt_name) { 2474 case SO_SNDBUF: 2475 case SO_RCVBUF: 2476 if (sbreserve(sopt->sopt_name == SO_SNDBUF ? 2477 &so->so_snd : &so->so_rcv, (u_long)optval, 2478 so, curthread) == 0) { 2479 error = ENOBUFS; 2480 goto bad; 2481 } 2482 (sopt->sopt_name == SO_SNDBUF ? &so->so_snd : 2483 &so->so_rcv)->sb_flags &= ~SB_AUTOSIZE; 2484 break; 2485 2486 /* 2487 * Make sure the low-water is never greater than the 2488 * high-water. 2489 */ 2490 case SO_SNDLOWAT: 2491 SOCKBUF_LOCK(&so->so_snd); 2492 so->so_snd.sb_lowat = 2493 (optval > so->so_snd.sb_hiwat) ? 2494 so->so_snd.sb_hiwat : optval; 2495 SOCKBUF_UNLOCK(&so->so_snd); 2496 break; 2497 case SO_RCVLOWAT: 2498 SOCKBUF_LOCK(&so->so_rcv); 2499 so->so_rcv.sb_lowat = 2500 (optval > so->so_rcv.sb_hiwat) ? 2501 so->so_rcv.sb_hiwat : optval; 2502 SOCKBUF_UNLOCK(&so->so_rcv); 2503 break; 2504 } 2505 break; 2506 2507 case SO_SNDTIMEO: 2508 case SO_RCVTIMEO: 2509 #ifdef COMPAT_IA32 2510 if (SV_CURPROC_FLAG(SV_ILP32)) { 2511 struct timeval32 tv32; 2512 2513 error = sooptcopyin(sopt, &tv32, sizeof tv32, 2514 sizeof tv32); 2515 CP(tv32, tv, tv_sec); 2516 CP(tv32, tv, tv_usec); 2517 } else 2518 #endif 2519 error = sooptcopyin(sopt, &tv, sizeof tv, 2520 sizeof tv); 2521 if (error) 2522 goto bad; 2523 2524 /* assert(hz > 0); */ 2525 if (tv.tv_sec < 0 || tv.tv_sec > INT_MAX / hz || 2526 tv.tv_usec < 0 || tv.tv_usec >= 1000000) { 2527 error = EDOM; 2528 goto bad; 2529 } 2530 /* assert(tick > 0); */ 2531 /* assert(ULONG_MAX - INT_MAX >= 1000000); */ 2532 val = (u_long)(tv.tv_sec * hz) + tv.tv_usec / tick; 2533 if (val > INT_MAX) { 2534 error = EDOM; 2535 goto bad; 2536 } 2537 if (val == 0 && tv.tv_usec != 0) 2538 val = 1; 2539 2540 switch (sopt->sopt_name) { 2541 case SO_SNDTIMEO: 2542 so->so_snd.sb_timeo = val; 2543 break; 2544 case SO_RCVTIMEO: 2545 so->so_rcv.sb_timeo = val; 2546 break; 2547 } 2548 break; 2549 2550 case SO_LABEL: 2551 #ifdef MAC 2552 error = sooptcopyin(sopt, &extmac, sizeof extmac, 2553 sizeof extmac); 2554 if (error) 2555 goto bad; 2556 error = mac_setsockopt_label(sopt->sopt_td->td_ucred, 2557 so, &extmac); 2558 #else 2559 error = EOPNOTSUPP; 2560 #endif 2561 break; 2562 2563 default: 2564 error = ENOPROTOOPT; 2565 break; 2566 } 2567 if (error == 0 && so->so_proto != NULL && 2568 so->so_proto->pr_ctloutput != NULL) { 2569 (void) ((*so->so_proto->pr_ctloutput) 2570 (so, sopt)); 2571 } 2572 } 2573 bad: 2574 return (error); 2575 } 2576 2577 /* 2578 * Helper routine for getsockopt. 2579 */ 2580 int 2581 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 2582 { 2583 int error; 2584 size_t valsize; 2585 2586 error = 0; 2587 2588 /* 2589 * Documented get behavior is that we always return a value, possibly 2590 * truncated to fit in the user's buffer. Traditional behavior is 2591 * that we always tell the user precisely how much we copied, rather 2592 * than something useful like the total amount we had available for 2593 * her. Note that this interface is not idempotent; the entire 2594 * answer must generated ahead of time. 2595 */ 2596 valsize = min(len, sopt->sopt_valsize); 2597 sopt->sopt_valsize = valsize; 2598 if (sopt->sopt_val != NULL) { 2599 if (sopt->sopt_td != NULL) 2600 error = copyout(buf, sopt->sopt_val, valsize); 2601 else 2602 bcopy(buf, sopt->sopt_val, valsize); 2603 } 2604 return (error); 2605 } 2606 2607 int 2608 sogetopt(struct socket *so, struct sockopt *sopt) 2609 { 2610 int error, optval; 2611 struct linger l; 2612 struct timeval tv; 2613 #ifdef MAC 2614 struct mac extmac; 2615 #endif 2616 2617 error = 0; 2618 if (sopt->sopt_level != SOL_SOCKET) { 2619 if (so->so_proto && so->so_proto->pr_ctloutput) { 2620 return ((*so->so_proto->pr_ctloutput) 2621 (so, sopt)); 2622 } else 2623 return (ENOPROTOOPT); 2624 } else { 2625 switch (sopt->sopt_name) { 2626 #ifdef INET 2627 case SO_ACCEPTFILTER: 2628 error = do_getopt_accept_filter(so, sopt); 2629 break; 2630 #endif 2631 case SO_LINGER: 2632 SOCK_LOCK(so); 2633 l.l_onoff = so->so_options & SO_LINGER; 2634 l.l_linger = so->so_linger; 2635 SOCK_UNLOCK(so); 2636 error = sooptcopyout(sopt, &l, sizeof l); 2637 break; 2638 2639 case SO_USELOOPBACK: 2640 case SO_DONTROUTE: 2641 case SO_DEBUG: 2642 case SO_KEEPALIVE: 2643 case SO_REUSEADDR: 2644 case SO_REUSEPORT: 2645 case SO_BROADCAST: 2646 case SO_OOBINLINE: 2647 case SO_ACCEPTCONN: 2648 case SO_TIMESTAMP: 2649 case SO_BINTIME: 2650 case SO_NOSIGPIPE: 2651 optval = so->so_options & sopt->sopt_name; 2652 integer: 2653 error = sooptcopyout(sopt, &optval, sizeof optval); 2654 break; 2655 2656 case SO_TYPE: 2657 optval = so->so_type; 2658 goto integer; 2659 2660 case SO_ERROR: 2661 SOCK_LOCK(so); 2662 optval = so->so_error; 2663 so->so_error = 0; 2664 SOCK_UNLOCK(so); 2665 goto integer; 2666 2667 case SO_SNDBUF: 2668 optval = so->so_snd.sb_hiwat; 2669 goto integer; 2670 2671 case SO_RCVBUF: 2672 optval = so->so_rcv.sb_hiwat; 2673 goto integer; 2674 2675 case SO_SNDLOWAT: 2676 optval = so->so_snd.sb_lowat; 2677 goto integer; 2678 2679 case SO_RCVLOWAT: 2680 optval = so->so_rcv.sb_lowat; 2681 goto integer; 2682 2683 case SO_SNDTIMEO: 2684 case SO_RCVTIMEO: 2685 optval = (sopt->sopt_name == SO_SNDTIMEO ? 2686 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 2687 2688 tv.tv_sec = optval / hz; 2689 tv.tv_usec = (optval % hz) * tick; 2690 #ifdef COMPAT_IA32 2691 if (SV_CURPROC_FLAG(SV_ILP32)) { 2692 struct timeval32 tv32; 2693 2694 CP(tv, tv32, tv_sec); 2695 CP(tv, tv32, tv_usec); 2696 error = sooptcopyout(sopt, &tv32, sizeof tv32); 2697 } else 2698 #endif 2699 error = sooptcopyout(sopt, &tv, sizeof tv); 2700 break; 2701 2702 case SO_LABEL: 2703 #ifdef MAC 2704 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 2705 sizeof(extmac)); 2706 if (error) 2707 return (error); 2708 error = mac_getsockopt_label(sopt->sopt_td->td_ucred, 2709 so, &extmac); 2710 if (error) 2711 return (error); 2712 error = sooptcopyout(sopt, &extmac, sizeof extmac); 2713 #else 2714 error = EOPNOTSUPP; 2715 #endif 2716 break; 2717 2718 case SO_PEERLABEL: 2719 #ifdef MAC 2720 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 2721 sizeof(extmac)); 2722 if (error) 2723 return (error); 2724 error = mac_getsockopt_peerlabel( 2725 sopt->sopt_td->td_ucred, so, &extmac); 2726 if (error) 2727 return (error); 2728 error = sooptcopyout(sopt, &extmac, sizeof extmac); 2729 #else 2730 error = EOPNOTSUPP; 2731 #endif 2732 break; 2733 2734 case SO_LISTENQLIMIT: 2735 optval = so->so_qlimit; 2736 goto integer; 2737 2738 case SO_LISTENQLEN: 2739 optval = so->so_qlen; 2740 goto integer; 2741 2742 case SO_LISTENINCQLEN: 2743 optval = so->so_incqlen; 2744 goto integer; 2745 2746 default: 2747 error = ENOPROTOOPT; 2748 break; 2749 } 2750 return (error); 2751 } 2752 } 2753 2754 /* XXX; prepare mbuf for (__FreeBSD__ < 3) routines. */ 2755 int 2756 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 2757 { 2758 struct mbuf *m, *m_prev; 2759 int sopt_size = sopt->sopt_valsize; 2760 2761 MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA); 2762 if (m == NULL) 2763 return ENOBUFS; 2764 if (sopt_size > MLEN) { 2765 MCLGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT); 2766 if ((m->m_flags & M_EXT) == 0) { 2767 m_free(m); 2768 return ENOBUFS; 2769 } 2770 m->m_len = min(MCLBYTES, sopt_size); 2771 } else { 2772 m->m_len = min(MLEN, sopt_size); 2773 } 2774 sopt_size -= m->m_len; 2775 *mp = m; 2776 m_prev = m; 2777 2778 while (sopt_size) { 2779 MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA); 2780 if (m == NULL) { 2781 m_freem(*mp); 2782 return ENOBUFS; 2783 } 2784 if (sopt_size > MLEN) { 2785 MCLGET(m, sopt->sopt_td != NULL ? M_WAIT : 2786 M_DONTWAIT); 2787 if ((m->m_flags & M_EXT) == 0) { 2788 m_freem(m); 2789 m_freem(*mp); 2790 return ENOBUFS; 2791 } 2792 m->m_len = min(MCLBYTES, sopt_size); 2793 } else { 2794 m->m_len = min(MLEN, sopt_size); 2795 } 2796 sopt_size -= m->m_len; 2797 m_prev->m_next = m; 2798 m_prev = m; 2799 } 2800 return (0); 2801 } 2802 2803 /* XXX; copyin sopt data into mbuf chain for (__FreeBSD__ < 3) routines. */ 2804 int 2805 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 2806 { 2807 struct mbuf *m0 = m; 2808 2809 if (sopt->sopt_val == NULL) 2810 return (0); 2811 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 2812 if (sopt->sopt_td != NULL) { 2813 int error; 2814 2815 error = copyin(sopt->sopt_val, mtod(m, char *), 2816 m->m_len); 2817 if (error != 0) { 2818 m_freem(m0); 2819 return(error); 2820 } 2821 } else 2822 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 2823 sopt->sopt_valsize -= m->m_len; 2824 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 2825 m = m->m_next; 2826 } 2827 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 2828 panic("ip6_sooptmcopyin"); 2829 return (0); 2830 } 2831 2832 /* XXX; copyout mbuf chain data into soopt for (__FreeBSD__ < 3) routines. */ 2833 int 2834 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 2835 { 2836 struct mbuf *m0 = m; 2837 size_t valsize = 0; 2838 2839 if (sopt->sopt_val == NULL) 2840 return (0); 2841 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 2842 if (sopt->sopt_td != NULL) { 2843 int error; 2844 2845 error = copyout(mtod(m, char *), sopt->sopt_val, 2846 m->m_len); 2847 if (error != 0) { 2848 m_freem(m0); 2849 return(error); 2850 } 2851 } else 2852 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 2853 sopt->sopt_valsize -= m->m_len; 2854 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 2855 valsize += m->m_len; 2856 m = m->m_next; 2857 } 2858 if (m != NULL) { 2859 /* enough soopt buffer should be given from user-land */ 2860 m_freem(m0); 2861 return(EINVAL); 2862 } 2863 sopt->sopt_valsize = valsize; 2864 return (0); 2865 } 2866 2867 /* 2868 * sohasoutofband(): protocol notifies socket layer of the arrival of new 2869 * out-of-band data, which will then notify socket consumers. 2870 */ 2871 void 2872 sohasoutofband(struct socket *so) 2873 { 2874 2875 if (so->so_sigio != NULL) 2876 pgsigio(&so->so_sigio, SIGURG, 0); 2877 selwakeuppri(&so->so_rcv.sb_sel, PSOCK); 2878 } 2879 2880 int 2881 sopoll(struct socket *so, int events, struct ucred *active_cred, 2882 struct thread *td) 2883 { 2884 2885 return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred, 2886 td)); 2887 } 2888 2889 int 2890 sopoll_generic(struct socket *so, int events, struct ucred *active_cred, 2891 struct thread *td) 2892 { 2893 int revents = 0; 2894 2895 SOCKBUF_LOCK(&so->so_snd); 2896 SOCKBUF_LOCK(&so->so_rcv); 2897 if (events & (POLLIN | POLLRDNORM)) 2898 if (soreadabledata(so)) 2899 revents |= events & (POLLIN | POLLRDNORM); 2900 2901 if (events & (POLLOUT | POLLWRNORM)) 2902 if (sowriteable(so)) 2903 revents |= events & (POLLOUT | POLLWRNORM); 2904 2905 if (events & (POLLPRI | POLLRDBAND)) 2906 if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK)) 2907 revents |= events & (POLLPRI | POLLRDBAND); 2908 2909 if ((events & POLLINIGNEOF) == 0) { 2910 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 2911 revents |= events & (POLLIN | POLLRDNORM); 2912 if (so->so_snd.sb_state & SBS_CANTSENDMORE) 2913 revents |= POLLHUP; 2914 } 2915 } 2916 2917 if (revents == 0) { 2918 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) { 2919 selrecord(td, &so->so_rcv.sb_sel); 2920 so->so_rcv.sb_flags |= SB_SEL; 2921 } 2922 2923 if (events & (POLLOUT | POLLWRNORM)) { 2924 selrecord(td, &so->so_snd.sb_sel); 2925 so->so_snd.sb_flags |= SB_SEL; 2926 } 2927 } 2928 2929 SOCKBUF_UNLOCK(&so->so_rcv); 2930 SOCKBUF_UNLOCK(&so->so_snd); 2931 return (revents); 2932 } 2933 2934 int 2935 soo_kqfilter(struct file *fp, struct knote *kn) 2936 { 2937 struct socket *so = kn->kn_fp->f_data; 2938 struct sockbuf *sb; 2939 2940 switch (kn->kn_filter) { 2941 case EVFILT_READ: 2942 if (so->so_options & SO_ACCEPTCONN) 2943 kn->kn_fop = &solisten_filtops; 2944 else 2945 kn->kn_fop = &soread_filtops; 2946 sb = &so->so_rcv; 2947 break; 2948 case EVFILT_WRITE: 2949 kn->kn_fop = &sowrite_filtops; 2950 sb = &so->so_snd; 2951 break; 2952 default: 2953 return (EINVAL); 2954 } 2955 2956 SOCKBUF_LOCK(sb); 2957 knlist_add(&sb->sb_sel.si_note, kn, 1); 2958 sb->sb_flags |= SB_KNOTE; 2959 SOCKBUF_UNLOCK(sb); 2960 return (0); 2961 } 2962 2963 /* 2964 * Some routines that return EOPNOTSUPP for entry points that are not 2965 * supported by a protocol. Fill in as needed. 2966 */ 2967 int 2968 pru_accept_notsupp(struct socket *so, struct sockaddr **nam) 2969 { 2970 2971 return EOPNOTSUPP; 2972 } 2973 2974 int 2975 pru_attach_notsupp(struct socket *so, int proto, struct thread *td) 2976 { 2977 2978 return EOPNOTSUPP; 2979 } 2980 2981 int 2982 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 2983 { 2984 2985 return EOPNOTSUPP; 2986 } 2987 2988 int 2989 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 2990 { 2991 2992 return EOPNOTSUPP; 2993 } 2994 2995 int 2996 pru_connect2_notsupp(struct socket *so1, struct socket *so2) 2997 { 2998 2999 return EOPNOTSUPP; 3000 } 3001 3002 int 3003 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, 3004 struct ifnet *ifp, struct thread *td) 3005 { 3006 3007 return EOPNOTSUPP; 3008 } 3009 3010 int 3011 pru_disconnect_notsupp(struct socket *so) 3012 { 3013 3014 return EOPNOTSUPP; 3015 } 3016 3017 int 3018 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td) 3019 { 3020 3021 return EOPNOTSUPP; 3022 } 3023 3024 int 3025 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam) 3026 { 3027 3028 return EOPNOTSUPP; 3029 } 3030 3031 int 3032 pru_rcvd_notsupp(struct socket *so, int flags) 3033 { 3034 3035 return EOPNOTSUPP; 3036 } 3037 3038 int 3039 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) 3040 { 3041 3042 return EOPNOTSUPP; 3043 } 3044 3045 int 3046 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m, 3047 struct sockaddr *addr, struct mbuf *control, struct thread *td) 3048 { 3049 3050 return EOPNOTSUPP; 3051 } 3052 3053 /* 3054 * This isn't really a ``null'' operation, but it's the default one and 3055 * doesn't do anything destructive. 3056 */ 3057 int 3058 pru_sense_null(struct socket *so, struct stat *sb) 3059 { 3060 3061 sb->st_blksize = so->so_snd.sb_hiwat; 3062 return 0; 3063 } 3064 3065 int 3066 pru_shutdown_notsupp(struct socket *so) 3067 { 3068 3069 return EOPNOTSUPP; 3070 } 3071 3072 int 3073 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam) 3074 { 3075 3076 return EOPNOTSUPP; 3077 } 3078 3079 int 3080 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio, 3081 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 3082 { 3083 3084 return EOPNOTSUPP; 3085 } 3086 3087 int 3088 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr, 3089 struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 3090 { 3091 3092 return EOPNOTSUPP; 3093 } 3094 3095 int 3096 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred, 3097 struct thread *td) 3098 { 3099 3100 return EOPNOTSUPP; 3101 } 3102 3103 static void 3104 filt_sordetach(struct knote *kn) 3105 { 3106 struct socket *so = kn->kn_fp->f_data; 3107 3108 SOCKBUF_LOCK(&so->so_rcv); 3109 knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1); 3110 if (knlist_empty(&so->so_rcv.sb_sel.si_note)) 3111 so->so_rcv.sb_flags &= ~SB_KNOTE; 3112 SOCKBUF_UNLOCK(&so->so_rcv); 3113 } 3114 3115 /*ARGSUSED*/ 3116 static int 3117 filt_soread(struct knote *kn, long hint) 3118 { 3119 struct socket *so; 3120 3121 so = kn->kn_fp->f_data; 3122 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 3123 3124 kn->kn_data = so->so_rcv.sb_cc - so->so_rcv.sb_ctl; 3125 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3126 kn->kn_flags |= EV_EOF; 3127 kn->kn_fflags = so->so_error; 3128 return (1); 3129 } else if (so->so_error) /* temporary udp error */ 3130 return (1); 3131 else if (kn->kn_sfflags & NOTE_LOWAT) 3132 return (kn->kn_data >= kn->kn_sdata); 3133 else 3134 return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat); 3135 } 3136 3137 static void 3138 filt_sowdetach(struct knote *kn) 3139 { 3140 struct socket *so = kn->kn_fp->f_data; 3141 3142 SOCKBUF_LOCK(&so->so_snd); 3143 knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1); 3144 if (knlist_empty(&so->so_snd.sb_sel.si_note)) 3145 so->so_snd.sb_flags &= ~SB_KNOTE; 3146 SOCKBUF_UNLOCK(&so->so_snd); 3147 } 3148 3149 /*ARGSUSED*/ 3150 static int 3151 filt_sowrite(struct knote *kn, long hint) 3152 { 3153 struct socket *so; 3154 3155 so = kn->kn_fp->f_data; 3156 SOCKBUF_LOCK_ASSERT(&so->so_snd); 3157 kn->kn_data = sbspace(&so->so_snd); 3158 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 3159 kn->kn_flags |= EV_EOF; 3160 kn->kn_fflags = so->so_error; 3161 return (1); 3162 } else if (so->so_error) /* temporary udp error */ 3163 return (1); 3164 else if (((so->so_state & SS_ISCONNECTED) == 0) && 3165 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 3166 return (0); 3167 else if (kn->kn_sfflags & NOTE_LOWAT) 3168 return (kn->kn_data >= kn->kn_sdata); 3169 else 3170 return (kn->kn_data >= so->so_snd.sb_lowat); 3171 } 3172 3173 /*ARGSUSED*/ 3174 static int 3175 filt_solisten(struct knote *kn, long hint) 3176 { 3177 struct socket *so = kn->kn_fp->f_data; 3178 3179 kn->kn_data = so->so_qlen; 3180 return (! TAILQ_EMPTY(&so->so_comp)); 3181 } 3182 3183 int 3184 socheckuid(struct socket *so, uid_t uid) 3185 { 3186 3187 if (so == NULL) 3188 return (EPERM); 3189 if (so->so_cred->cr_uid != uid) 3190 return (EPERM); 3191 return (0); 3192 } 3193 3194 static int 3195 sysctl_somaxconn(SYSCTL_HANDLER_ARGS) 3196 { 3197 int error; 3198 int val; 3199 3200 val = somaxconn; 3201 error = sysctl_handle_int(oidp, &val, 0, req); 3202 if (error || !req->newptr ) 3203 return (error); 3204 3205 if (val < 1 || val > USHRT_MAX) 3206 return (EINVAL); 3207 3208 somaxconn = val; 3209 return (0); 3210 } 3211 3212 /* 3213 * These functions are used by protocols to notify the socket layer (and its 3214 * consumers) of state changes in the sockets driven by protocol-side events. 3215 */ 3216 3217 /* 3218 * Procedures to manipulate state flags of socket and do appropriate wakeups. 3219 * 3220 * Normal sequence from the active (originating) side is that 3221 * soisconnecting() is called during processing of connect() call, resulting 3222 * in an eventual call to soisconnected() if/when the connection is 3223 * established. When the connection is torn down soisdisconnecting() is 3224 * called during processing of disconnect() call, and soisdisconnected() is 3225 * called when the connection to the peer is totally severed. The semantics 3226 * of these routines are such that connectionless protocols can call 3227 * soisconnected() and soisdisconnected() only, bypassing the in-progress 3228 * calls when setting up a ``connection'' takes no time. 3229 * 3230 * From the passive side, a socket is created with two queues of sockets: 3231 * so_incomp for connections in progress and so_comp for connections already 3232 * made and awaiting user acceptance. As a protocol is preparing incoming 3233 * connections, it creates a socket structure queued on so_incomp by calling 3234 * sonewconn(). When the connection is established, soisconnected() is 3235 * called, and transfers the socket structure to so_comp, making it available 3236 * to accept(). 3237 * 3238 * If a socket is closed with sockets on either so_incomp or so_comp, these 3239 * sockets are dropped. 3240 * 3241 * If higher-level protocols are implemented in the kernel, the wakeups done 3242 * here will sometimes cause software-interrupt process scheduling. 3243 */ 3244 void 3245 soisconnecting(struct socket *so) 3246 { 3247 3248 SOCK_LOCK(so); 3249 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 3250 so->so_state |= SS_ISCONNECTING; 3251 SOCK_UNLOCK(so); 3252 } 3253 3254 void 3255 soisconnected(struct socket *so) 3256 { 3257 struct socket *head; 3258 int ret; 3259 3260 restart: 3261 ACCEPT_LOCK(); 3262 SOCK_LOCK(so); 3263 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 3264 so->so_state |= SS_ISCONNECTED; 3265 head = so->so_head; 3266 if (head != NULL && (so->so_qstate & SQ_INCOMP)) { 3267 if ((so->so_options & SO_ACCEPTFILTER) == 0) { 3268 SOCK_UNLOCK(so); 3269 TAILQ_REMOVE(&head->so_incomp, so, so_list); 3270 head->so_incqlen--; 3271 so->so_qstate &= ~SQ_INCOMP; 3272 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 3273 head->so_qlen++; 3274 so->so_qstate |= SQ_COMP; 3275 ACCEPT_UNLOCK(); 3276 sorwakeup(head); 3277 wakeup_one(&head->so_timeo); 3278 } else { 3279 ACCEPT_UNLOCK(); 3280 soupcall_set(so, SO_RCV, 3281 head->so_accf->so_accept_filter->accf_callback, 3282 head->so_accf->so_accept_filter_arg); 3283 so->so_options &= ~SO_ACCEPTFILTER; 3284 ret = head->so_accf->so_accept_filter->accf_callback(so, 3285 head->so_accf->so_accept_filter_arg, M_DONTWAIT); 3286 if (ret == SU_ISCONNECTED) 3287 soupcall_clear(so, SO_RCV); 3288 SOCK_UNLOCK(so); 3289 if (ret == SU_ISCONNECTED) 3290 goto restart; 3291 } 3292 return; 3293 } 3294 SOCK_UNLOCK(so); 3295 ACCEPT_UNLOCK(); 3296 wakeup(&so->so_timeo); 3297 sorwakeup(so); 3298 sowwakeup(so); 3299 } 3300 3301 void 3302 soisdisconnecting(struct socket *so) 3303 { 3304 3305 /* 3306 * Note: This code assumes that SOCK_LOCK(so) and 3307 * SOCKBUF_LOCK(&so->so_rcv) are the same. 3308 */ 3309 SOCKBUF_LOCK(&so->so_rcv); 3310 so->so_state &= ~SS_ISCONNECTING; 3311 so->so_state |= SS_ISDISCONNECTING; 3312 so->so_rcv.sb_state |= SBS_CANTRCVMORE; 3313 sorwakeup_locked(so); 3314 SOCKBUF_LOCK(&so->so_snd); 3315 so->so_snd.sb_state |= SBS_CANTSENDMORE; 3316 sowwakeup_locked(so); 3317 wakeup(&so->so_timeo); 3318 } 3319 3320 void 3321 soisdisconnected(struct socket *so) 3322 { 3323 3324 /* 3325 * Note: This code assumes that SOCK_LOCK(so) and 3326 * SOCKBUF_LOCK(&so->so_rcv) are the same. 3327 */ 3328 SOCKBUF_LOCK(&so->so_rcv); 3329 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 3330 so->so_state |= SS_ISDISCONNECTED; 3331 so->so_rcv.sb_state |= SBS_CANTRCVMORE; 3332 sorwakeup_locked(so); 3333 SOCKBUF_LOCK(&so->so_snd); 3334 so->so_snd.sb_state |= SBS_CANTSENDMORE; 3335 sbdrop_locked(&so->so_snd, so->so_snd.sb_cc); 3336 sowwakeup_locked(so); 3337 wakeup(&so->so_timeo); 3338 } 3339 3340 /* 3341 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 3342 */ 3343 struct sockaddr * 3344 sodupsockaddr(const struct sockaddr *sa, int mflags) 3345 { 3346 struct sockaddr *sa2; 3347 3348 sa2 = malloc(sa->sa_len, M_SONAME, mflags); 3349 if (sa2) 3350 bcopy(sa, sa2, sa->sa_len); 3351 return sa2; 3352 } 3353 3354 /* 3355 * Register per-socket buffer upcalls. 3356 */ 3357 void 3358 soupcall_set(struct socket *so, int which, 3359 int (*func)(struct socket *, void *, int), void *arg) 3360 { 3361 struct sockbuf *sb; 3362 3363 switch (which) { 3364 case SO_RCV: 3365 sb = &so->so_rcv; 3366 break; 3367 case SO_SND: 3368 sb = &so->so_snd; 3369 break; 3370 default: 3371 panic("soupcall_set: bad which"); 3372 } 3373 SOCKBUF_LOCK_ASSERT(sb); 3374 #if 0 3375 /* XXX: accf_http actually wants to do this on purpose. */ 3376 KASSERT(sb->sb_upcall == NULL, ("soupcall_set: overwriting upcall")); 3377 #endif 3378 sb->sb_upcall = func; 3379 sb->sb_upcallarg = arg; 3380 sb->sb_flags |= SB_UPCALL; 3381 } 3382 3383 void 3384 soupcall_clear(struct socket *so, int which) 3385 { 3386 struct sockbuf *sb; 3387 3388 switch (which) { 3389 case SO_RCV: 3390 sb = &so->so_rcv; 3391 break; 3392 case SO_SND: 3393 sb = &so->so_snd; 3394 break; 3395 default: 3396 panic("soupcall_clear: bad which"); 3397 } 3398 SOCKBUF_LOCK_ASSERT(sb); 3399 KASSERT(sb->sb_upcall != NULL, ("soupcall_clear: no upcall to clear")); 3400 sb->sb_upcall = NULL; 3401 sb->sb_upcallarg = NULL; 3402 sb->sb_flags &= ~SB_UPCALL; 3403 } 3404 3405 /* 3406 * Create an external-format (``xsocket'') structure using the information in 3407 * the kernel-format socket structure pointed to by so. This is done to 3408 * reduce the spew of irrelevant information over this interface, to isolate 3409 * user code from changes in the kernel structure, and potentially to provide 3410 * information-hiding if we decide that some of this information should be 3411 * hidden from users. 3412 */ 3413 void 3414 sotoxsocket(struct socket *so, struct xsocket *xso) 3415 { 3416 3417 xso->xso_len = sizeof *xso; 3418 xso->xso_so = so; 3419 xso->so_type = so->so_type; 3420 xso->so_options = so->so_options; 3421 xso->so_linger = so->so_linger; 3422 xso->so_state = so->so_state; 3423 xso->so_pcb = so->so_pcb; 3424 xso->xso_protocol = so->so_proto->pr_protocol; 3425 xso->xso_family = so->so_proto->pr_domain->dom_family; 3426 xso->so_qlen = so->so_qlen; 3427 xso->so_incqlen = so->so_incqlen; 3428 xso->so_qlimit = so->so_qlimit; 3429 xso->so_timeo = so->so_timeo; 3430 xso->so_error = so->so_error; 3431 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 3432 xso->so_oobmark = so->so_oobmark; 3433 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 3434 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 3435 xso->so_uid = so->so_cred->cr_uid; 3436 } 3437 3438 3439 /* 3440 * Socket accessor functions to provide external consumers with 3441 * a safe interface to socket state 3442 * 3443 */ 3444 3445 void 3446 so_listeners_apply_all(struct socket *so, void (*func)(struct socket *, void *), void *arg) 3447 { 3448 3449 TAILQ_FOREACH(so, &so->so_comp, so_list) 3450 func(so, arg); 3451 } 3452 3453 struct sockbuf * 3454 so_sockbuf_rcv(struct socket *so) 3455 { 3456 3457 return (&so->so_rcv); 3458 } 3459 3460 struct sockbuf * 3461 so_sockbuf_snd(struct socket *so) 3462 { 3463 3464 return (&so->so_snd); 3465 } 3466 3467 int 3468 so_state_get(const struct socket *so) 3469 { 3470 3471 return (so->so_state); 3472 } 3473 3474 void 3475 so_state_set(struct socket *so, int val) 3476 { 3477 3478 so->so_state = val; 3479 } 3480 3481 int 3482 so_options_get(const struct socket *so) 3483 { 3484 3485 return (so->so_options); 3486 } 3487 3488 void 3489 so_options_set(struct socket *so, int val) 3490 { 3491 3492 so->so_options = val; 3493 } 3494 3495 int 3496 so_error_get(const struct socket *so) 3497 { 3498 3499 return (so->so_error); 3500 } 3501 3502 void 3503 so_error_set(struct socket *so, int val) 3504 { 3505 3506 so->so_error = val; 3507 } 3508 3509 int 3510 so_linger_get(const struct socket *so) 3511 { 3512 3513 return (so->so_linger); 3514 } 3515 3516 void 3517 so_linger_set(struct socket *so, int val) 3518 { 3519 3520 so->so_linger = val; 3521 } 3522 3523 struct protosw * 3524 so_protosw_get(const struct socket *so) 3525 { 3526 3527 return (so->so_proto); 3528 } 3529 3530 void 3531 so_protosw_set(struct socket *so, struct protosw *val) 3532 { 3533 3534 so->so_proto = val; 3535 } 3536 3537 void 3538 so_sorwakeup(struct socket *so) 3539 { 3540 3541 sorwakeup(so); 3542 } 3543 3544 void 3545 so_sowwakeup(struct socket *so) 3546 { 3547 3548 sowwakeup(so); 3549 } 3550 3551 void 3552 so_sorwakeup_locked(struct socket *so) 3553 { 3554 3555 sorwakeup_locked(so); 3556 } 3557 3558 void 3559 so_sowwakeup_locked(struct socket *so) 3560 { 3561 3562 sowwakeup_locked(so); 3563 } 3564 3565 void 3566 so_lock(struct socket *so) 3567 { 3568 SOCK_LOCK(so); 3569 } 3570 3571 void 3572 so_unlock(struct socket *so) 3573 { 3574 SOCK_UNLOCK(so); 3575 } 3576