1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. 6 * Copyright (c) 2004 The FreeBSD Foundation 7 * Copyright (c) 2004-2008 Robert N. M. Watson 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 35 */ 36 37 /* 38 * Comments on the socket life cycle: 39 * 40 * soalloc() sets of socket layer state for a socket, called only by 41 * socreate() and sonewconn(). Socket layer private. 42 * 43 * sodealloc() tears down socket layer state for a socket, called only by 44 * sofree() and sonewconn(). Socket layer private. 45 * 46 * pru_attach() associates protocol layer state with an allocated socket; 47 * called only once, may fail, aborting socket allocation. This is called 48 * from socreate() and sonewconn(). Socket layer private. 49 * 50 * pru_detach() disassociates protocol layer state from an attached socket, 51 * and will be called exactly once for sockets in which pru_attach() has 52 * been successfully called. If pru_attach() returned an error, 53 * pru_detach() will not be called. Socket layer private. 54 * 55 * pru_abort() and pru_close() notify the protocol layer that the last 56 * consumer of a socket is starting to tear down the socket, and that the 57 * protocol should terminate the connection. Historically, pru_abort() also 58 * detached protocol state from the socket state, but this is no longer the 59 * case. 60 * 61 * socreate() creates a socket and attaches protocol state. This is a public 62 * interface that may be used by socket layer consumers to create new 63 * sockets. 64 * 65 * sonewconn() creates a socket and attaches protocol state. This is a 66 * public interface that may be used by protocols to create new sockets when 67 * a new connection is received and will be available for accept() on a 68 * listen socket. 69 * 70 * soclose() destroys a socket after possibly waiting for it to disconnect. 71 * This is a public interface that socket consumers should use to close and 72 * release a socket when done with it. 73 * 74 * soabort() destroys a socket without waiting for it to disconnect (used 75 * only for incoming connections that are already partially or fully 76 * connected). This is used internally by the socket layer when clearing 77 * listen socket queues (due to overflow or close on the listen socket), but 78 * is also a public interface protocols may use to abort connections in 79 * their incomplete listen queues should they no longer be required. Sockets 80 * placed in completed connection listen queues should not be aborted for 81 * reasons described in the comment above the soclose() implementation. This 82 * is not a general purpose close routine, and except in the specific 83 * circumstances described here, should not be used. 84 * 85 * sofree() will free a socket and its protocol state if all references on 86 * the socket have been released, and is the public interface to attempt to 87 * free a socket when a reference is removed. This is a socket layer private 88 * interface. 89 * 90 * NOTE: In addition to socreate() and soclose(), which provide a single 91 * socket reference to the consumer to be managed as required, there are two 92 * calls to explicitly manage socket references, soref(), and sorele(). 93 * Currently, these are generally required only when transitioning a socket 94 * from a listen queue to a file descriptor, in order to prevent garbage 95 * collection of the socket at an untimely moment. For a number of reasons, 96 * these interfaces are not preferred, and should be avoided. 97 * 98 * NOTE: With regard to VNETs the general rule is that callers do not set 99 * curvnet. Exceptions to this rule include soabort(), sodisconnect(), 100 * sofree() (and with that sorele(), sotryfree()), as well as sonewconn() 101 * and sorflush(), which are usually called from a pre-set VNET context. 102 * sopoll() currently does not need a VNET context to be set. 103 */ 104 105 #include <sys/cdefs.h> 106 __FBSDID("$FreeBSD$"); 107 108 #include "opt_inet.h" 109 #include "opt_inet6.h" 110 #include "opt_kern_tls.h" 111 #include "opt_sctp.h" 112 113 #include <sys/param.h> 114 #include <sys/systm.h> 115 #include <sys/capsicum.h> 116 #include <sys/fcntl.h> 117 #include <sys/limits.h> 118 #include <sys/lock.h> 119 #include <sys/mac.h> 120 #include <sys/malloc.h> 121 #include <sys/mbuf.h> 122 #include <sys/mutex.h> 123 #include <sys/domain.h> 124 #include <sys/file.h> /* for struct knote */ 125 #include <sys/hhook.h> 126 #include <sys/kernel.h> 127 #include <sys/khelp.h> 128 #include <sys/ktls.h> 129 #include <sys/event.h> 130 #include <sys/eventhandler.h> 131 #include <sys/poll.h> 132 #include <sys/proc.h> 133 #include <sys/protosw.h> 134 #include <sys/sbuf.h> 135 #include <sys/socket.h> 136 #include <sys/socketvar.h> 137 #include <sys/resourcevar.h> 138 #include <net/route.h> 139 #include <sys/signalvar.h> 140 #include <sys/stat.h> 141 #include <sys/sx.h> 142 #include <sys/sysctl.h> 143 #include <sys/taskqueue.h> 144 #include <sys/uio.h> 145 #include <sys/un.h> 146 #include <sys/unpcb.h> 147 #include <sys/jail.h> 148 #include <sys/syslog.h> 149 #include <netinet/in.h> 150 #include <netinet/in_pcb.h> 151 #include <netinet/tcp.h> 152 153 #include <net/vnet.h> 154 155 #include <security/mac/mac_framework.h> 156 157 #include <vm/uma.h> 158 159 #ifdef COMPAT_FREEBSD32 160 #include <sys/mount.h> 161 #include <sys/sysent.h> 162 #include <compat/freebsd32/freebsd32.h> 163 #endif 164 165 static int soreceive_rcvoob(struct socket *so, struct uio *uio, 166 int flags); 167 static void so_rdknl_lock(void *); 168 static void so_rdknl_unlock(void *); 169 static void so_rdknl_assert_lock(void *, int); 170 static void so_wrknl_lock(void *); 171 static void so_wrknl_unlock(void *); 172 static void so_wrknl_assert_lock(void *, int); 173 174 static void filt_sordetach(struct knote *kn); 175 static int filt_soread(struct knote *kn, long hint); 176 static void filt_sowdetach(struct knote *kn); 177 static int filt_sowrite(struct knote *kn, long hint); 178 static int filt_soempty(struct knote *kn, long hint); 179 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id); 180 fo_kqfilter_t soo_kqfilter; 181 182 static struct filterops soread_filtops = { 183 .f_isfd = 1, 184 .f_detach = filt_sordetach, 185 .f_event = filt_soread, 186 }; 187 static struct filterops sowrite_filtops = { 188 .f_isfd = 1, 189 .f_detach = filt_sowdetach, 190 .f_event = filt_sowrite, 191 }; 192 static struct filterops soempty_filtops = { 193 .f_isfd = 1, 194 .f_detach = filt_sowdetach, 195 .f_event = filt_soempty, 196 }; 197 198 so_gen_t so_gencnt; /* generation count for sockets */ 199 200 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 201 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 202 203 #define VNET_SO_ASSERT(so) \ 204 VNET_ASSERT(curvnet != NULL, \ 205 ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so))); 206 207 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]); 208 #define V_socket_hhh VNET(socket_hhh) 209 210 /* 211 * Limit on the number of connections in the listen queue waiting 212 * for accept(2). 213 * NB: The original sysctl somaxconn is still available but hidden 214 * to prevent confusion about the actual purpose of this number. 215 */ 216 static u_int somaxconn = SOMAXCONN; 217 218 static int 219 sysctl_somaxconn(SYSCTL_HANDLER_ARGS) 220 { 221 int error; 222 int val; 223 224 val = somaxconn; 225 error = sysctl_handle_int(oidp, &val, 0, req); 226 if (error || !req->newptr ) 227 return (error); 228 229 /* 230 * The purpose of the UINT_MAX / 3 limit, is so that the formula 231 * 3 * so_qlimit / 2 232 * below, will not overflow. 233 */ 234 235 if (val < 1 || val > UINT_MAX / 3) 236 return (EINVAL); 237 238 somaxconn = val; 239 return (0); 240 } 241 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue, 242 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, sizeof(int), 243 sysctl_somaxconn, "I", 244 "Maximum listen socket pending connection accept queue size"); 245 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, 246 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE, 0, 247 sizeof(int), sysctl_somaxconn, "I", 248 "Maximum listen socket pending connection accept queue size (compat)"); 249 250 static int numopensockets; 251 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, 252 &numopensockets, 0, "Number of open sockets"); 253 254 /* 255 * accept_mtx locks down per-socket fields relating to accept queues. See 256 * socketvar.h for an annotation of the protected fields of struct socket. 257 */ 258 struct mtx accept_mtx; 259 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF); 260 261 /* 262 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket 263 * so_gencnt field. 264 */ 265 static struct mtx so_global_mtx; 266 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); 267 268 /* 269 * General IPC sysctl name space, used by sockets and a variety of other IPC 270 * types. 271 */ 272 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 273 "IPC"); 274 275 /* 276 * Initialize the socket subsystem and set up the socket 277 * memory allocator. 278 */ 279 static uma_zone_t socket_zone; 280 int maxsockets; 281 282 static void 283 socket_zone_change(void *tag) 284 { 285 286 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 287 } 288 289 static void 290 socket_hhook_register(int subtype) 291 { 292 293 if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype, 294 &V_socket_hhh[subtype], 295 HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 296 printf("%s: WARNING: unable to register hook\n", __func__); 297 } 298 299 static void 300 socket_hhook_deregister(int subtype) 301 { 302 303 if (hhook_head_deregister(V_socket_hhh[subtype]) != 0) 304 printf("%s: WARNING: unable to deregister hook\n", __func__); 305 } 306 307 static void 308 socket_init(void *tag) 309 { 310 311 socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL, 312 NULL, NULL, UMA_ALIGN_PTR, 0); 313 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 314 uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached"); 315 EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL, 316 EVENTHANDLER_PRI_FIRST); 317 } 318 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL); 319 320 static void 321 socket_vnet_init(const void *unused __unused) 322 { 323 int i; 324 325 /* We expect a contiguous range */ 326 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 327 socket_hhook_register(i); 328 } 329 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 330 socket_vnet_init, NULL); 331 332 static void 333 socket_vnet_uninit(const void *unused __unused) 334 { 335 int i; 336 337 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 338 socket_hhook_deregister(i); 339 } 340 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 341 socket_vnet_uninit, NULL); 342 343 /* 344 * Initialise maxsockets. This SYSINIT must be run after 345 * tunable_mbinit(). 346 */ 347 static void 348 init_maxsockets(void *ignored) 349 { 350 351 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 352 maxsockets = imax(maxsockets, maxfiles); 353 } 354 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 355 356 /* 357 * Sysctl to get and set the maximum global sockets limit. Notify protocols 358 * of the change so that they can update their dependent limits as required. 359 */ 360 static int 361 sysctl_maxsockets(SYSCTL_HANDLER_ARGS) 362 { 363 int error, newmaxsockets; 364 365 newmaxsockets = maxsockets; 366 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req); 367 if (error == 0 && req->newptr && newmaxsockets != maxsockets) { 368 if (newmaxsockets > maxsockets && 369 newmaxsockets <= maxfiles) { 370 maxsockets = newmaxsockets; 371 EVENTHANDLER_INVOKE(maxsockets_change); 372 } else 373 error = EINVAL; 374 } 375 return (error); 376 } 377 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, 378 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, &maxsockets, 0, 379 sysctl_maxsockets, "IU", 380 "Maximum number of sockets available"); 381 382 /* 383 * Socket operation routines. These routines are called by the routines in 384 * sys_socket.c or from a system process, and implement the semantics of 385 * socket operations by switching out to the protocol specific routines. 386 */ 387 388 /* 389 * Get a socket structure from our zone, and initialize it. Note that it 390 * would probably be better to allocate socket and PCB at the same time, but 391 * I'm not convinced that all the protocols can be easily modified to do 392 * this. 393 * 394 * soalloc() returns a socket with a ref count of 0. 395 */ 396 static struct socket * 397 soalloc(struct vnet *vnet) 398 { 399 struct socket *so; 400 401 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO); 402 if (so == NULL) 403 return (NULL); 404 #ifdef MAC 405 if (mac_socket_init(so, M_NOWAIT) != 0) { 406 uma_zfree(socket_zone, so); 407 return (NULL); 408 } 409 #endif 410 if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) { 411 uma_zfree(socket_zone, so); 412 return (NULL); 413 } 414 415 /* 416 * The socket locking protocol allows to lock 2 sockets at a time, 417 * however, the first one must be a listening socket. WITNESS lacks 418 * a feature to change class of an existing lock, so we use DUPOK. 419 */ 420 mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK); 421 so->so_snd.sb_mtx = &so->so_snd_mtx; 422 so->so_rcv.sb_mtx = &so->so_rcv_mtx; 423 mtx_init(&so->so_snd_mtx, "so_snd", NULL, MTX_DEF); 424 mtx_init(&so->so_rcv_mtx, "so_rcv", NULL, MTX_DEF); 425 so->so_rcv.sb_sel = &so->so_rdsel; 426 so->so_snd.sb_sel = &so->so_wrsel; 427 sx_init(&so->so_snd_sx, "so_snd_sx"); 428 sx_init(&so->so_rcv_sx, "so_rcv_sx"); 429 TAILQ_INIT(&so->so_snd.sb_aiojobq); 430 TAILQ_INIT(&so->so_rcv.sb_aiojobq); 431 TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so); 432 TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so); 433 #ifdef VIMAGE 434 VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p", 435 __func__, __LINE__, so)); 436 so->so_vnet = vnet; 437 #endif 438 /* We shouldn't need the so_global_mtx */ 439 if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) { 440 /* Do we need more comprehensive error returns? */ 441 uma_zfree(socket_zone, so); 442 return (NULL); 443 } 444 mtx_lock(&so_global_mtx); 445 so->so_gencnt = ++so_gencnt; 446 ++numopensockets; 447 #ifdef VIMAGE 448 vnet->vnet_sockcnt++; 449 #endif 450 mtx_unlock(&so_global_mtx); 451 452 return (so); 453 } 454 455 /* 456 * Free the storage associated with a socket at the socket layer, tear down 457 * locks, labels, etc. All protocol state is assumed already to have been 458 * torn down (and possibly never set up) by the caller. 459 */ 460 static void 461 sodealloc(struct socket *so) 462 { 463 464 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); 465 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL")); 466 467 mtx_lock(&so_global_mtx); 468 so->so_gencnt = ++so_gencnt; 469 --numopensockets; /* Could be below, but faster here. */ 470 #ifdef VIMAGE 471 VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p", 472 __func__, __LINE__, so)); 473 so->so_vnet->vnet_sockcnt--; 474 #endif 475 mtx_unlock(&so_global_mtx); 476 #ifdef MAC 477 mac_socket_destroy(so); 478 #endif 479 hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE); 480 481 khelp_destroy_osd(&so->osd); 482 if (SOLISTENING(so)) { 483 if (so->sol_accept_filter != NULL) 484 accept_filt_setopt(so, NULL); 485 } else { 486 if (so->so_rcv.sb_hiwat) 487 (void)chgsbsize(so->so_cred->cr_uidinfo, 488 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 489 if (so->so_snd.sb_hiwat) 490 (void)chgsbsize(so->so_cred->cr_uidinfo, 491 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 492 sx_destroy(&so->so_snd_sx); 493 sx_destroy(&so->so_rcv_sx); 494 mtx_destroy(&so->so_snd_mtx); 495 mtx_destroy(&so->so_rcv_mtx); 496 } 497 crfree(so->so_cred); 498 mtx_destroy(&so->so_lock); 499 uma_zfree(socket_zone, so); 500 } 501 502 /* 503 * socreate returns a socket with a ref count of 1. The socket should be 504 * closed with soclose(). 505 */ 506 int 507 socreate(int dom, struct socket **aso, int type, int proto, 508 struct ucred *cred, struct thread *td) 509 { 510 struct protosw *prp; 511 struct socket *so; 512 int error; 513 514 if (proto) 515 prp = pffindproto(dom, proto, type); 516 else 517 prp = pffindtype(dom, type); 518 519 if (prp == NULL) { 520 /* No support for domain. */ 521 if (pffinddomain(dom) == NULL) 522 return (EAFNOSUPPORT); 523 /* No support for socket type. */ 524 if (proto == 0 && type != 0) 525 return (EPROTOTYPE); 526 return (EPROTONOSUPPORT); 527 } 528 if (prp->pr_usrreqs->pru_attach == NULL || 529 prp->pr_usrreqs->pru_attach == pru_attach_notsupp) 530 return (EPROTONOSUPPORT); 531 532 if (IN_CAPABILITY_MODE(td) && (prp->pr_flags & PR_CAPATTACH) == 0) 533 return (ECAPMODE); 534 535 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0) 536 return (EPROTONOSUPPORT); 537 538 if (prp->pr_type != type) 539 return (EPROTOTYPE); 540 so = soalloc(CRED_TO_VNET(cred)); 541 if (so == NULL) 542 return (ENOBUFS); 543 544 so->so_type = type; 545 so->so_cred = crhold(cred); 546 if ((prp->pr_domain->dom_family == PF_INET) || 547 (prp->pr_domain->dom_family == PF_INET6) || 548 (prp->pr_domain->dom_family == PF_ROUTE)) 549 so->so_fibnum = td->td_proc->p_fibnum; 550 else 551 so->so_fibnum = 0; 552 so->so_proto = prp; 553 #ifdef MAC 554 mac_socket_create(cred, so); 555 #endif 556 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 557 so_rdknl_assert_lock); 558 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 559 so_wrknl_assert_lock); 560 /* 561 * Auto-sizing of socket buffers is managed by the protocols and 562 * the appropriate flags must be set in the pru_attach function. 563 */ 564 CURVNET_SET(so->so_vnet); 565 error = (*prp->pr_usrreqs->pru_attach)(so, proto, td); 566 CURVNET_RESTORE(); 567 if (error) { 568 sodealloc(so); 569 return (error); 570 } 571 soref(so); 572 *aso = so; 573 return (0); 574 } 575 576 #ifdef REGRESSION 577 static int regression_sonewconn_earlytest = 1; 578 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW, 579 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test"); 580 #endif 581 582 static struct timeval overinterval = { 60, 0 }; 583 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW, 584 &overinterval, 585 "Delay in seconds between warnings for listen socket overflows"); 586 587 /* 588 * When an attempt at a new connection is noted on a socket which accepts 589 * connections, sonewconn is called. If the connection is possible (subject 590 * to space constraints, etc.) then we allocate a new structure, properly 591 * linked into the data structure of the original socket, and return this. 592 * Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED. 593 * 594 * Note: the ref count on the socket is 0 on return. 595 */ 596 struct socket * 597 sonewconn(struct socket *head, int connstatus) 598 { 599 struct sbuf descrsb; 600 struct socket *so; 601 int len, overcount; 602 u_int qlen; 603 const char localprefix[] = "local:"; 604 char descrbuf[SUNPATHLEN + sizeof(localprefix)]; 605 #if defined(INET6) 606 char addrbuf[INET6_ADDRSTRLEN]; 607 #elif defined(INET) 608 char addrbuf[INET_ADDRSTRLEN]; 609 #endif 610 bool dolog, over; 611 612 SOLISTEN_LOCK(head); 613 over = (head->sol_qlen > 3 * head->sol_qlimit / 2); 614 #ifdef REGRESSION 615 if (regression_sonewconn_earlytest && over) { 616 #else 617 if (over) { 618 #endif 619 head->sol_overcount++; 620 dolog = !!ratecheck(&head->sol_lastover, &overinterval); 621 622 /* 623 * If we're going to log, copy the overflow count and queue 624 * length from the listen socket before dropping the lock. 625 * Also, reset the overflow count. 626 */ 627 if (dolog) { 628 overcount = head->sol_overcount; 629 head->sol_overcount = 0; 630 qlen = head->sol_qlen; 631 } 632 SOLISTEN_UNLOCK(head); 633 634 if (dolog) { 635 /* 636 * Try to print something descriptive about the 637 * socket for the error message. 638 */ 639 sbuf_new(&descrsb, descrbuf, sizeof(descrbuf), 640 SBUF_FIXEDLEN); 641 switch (head->so_proto->pr_domain->dom_family) { 642 #if defined(INET) || defined(INET6) 643 #ifdef INET 644 case AF_INET: 645 #endif 646 #ifdef INET6 647 case AF_INET6: 648 if (head->so_proto->pr_domain->dom_family == 649 AF_INET6 || 650 (sotoinpcb(head)->inp_inc.inc_flags & 651 INC_ISIPV6)) { 652 ip6_sprintf(addrbuf, 653 &sotoinpcb(head)->inp_inc.inc6_laddr); 654 sbuf_printf(&descrsb, "[%s]", addrbuf); 655 } else 656 #endif 657 { 658 #ifdef INET 659 inet_ntoa_r( 660 sotoinpcb(head)->inp_inc.inc_laddr, 661 addrbuf); 662 sbuf_cat(&descrsb, addrbuf); 663 #endif 664 } 665 sbuf_printf(&descrsb, ":%hu (proto %u)", 666 ntohs(sotoinpcb(head)->inp_inc.inc_lport), 667 head->so_proto->pr_protocol); 668 break; 669 #endif /* INET || INET6 */ 670 case AF_UNIX: 671 sbuf_cat(&descrsb, localprefix); 672 if (sotounpcb(head)->unp_addr != NULL) 673 len = 674 sotounpcb(head)->unp_addr->sun_len - 675 offsetof(struct sockaddr_un, 676 sun_path); 677 else 678 len = 0; 679 if (len > 0) 680 sbuf_bcat(&descrsb, 681 sotounpcb(head)->unp_addr->sun_path, 682 len); 683 else 684 sbuf_cat(&descrsb, "(unknown)"); 685 break; 686 } 687 688 /* 689 * If we can't print something more specific, at least 690 * print the domain name. 691 */ 692 if (sbuf_finish(&descrsb) != 0 || 693 sbuf_len(&descrsb) <= 0) { 694 sbuf_clear(&descrsb); 695 sbuf_cat(&descrsb, 696 head->so_proto->pr_domain->dom_name ?: 697 "unknown"); 698 sbuf_finish(&descrsb); 699 } 700 KASSERT(sbuf_len(&descrsb) > 0, 701 ("%s: sbuf creation failed", __func__)); 702 if (head->so_cred == 0) { 703 log(LOG_DEBUG, 704 "%s: pcb %p (%s): Listen queue overflow: " 705 "%i already in queue awaiting acceptance " 706 "(%d occurrences)\n", 707 __func__, head->so_pcb, sbuf_data(&descrsb), 708 qlen, overcount); 709 } else { 710 log(LOG_DEBUG, "%s: pcb %p (%s): Listen queue overflow: " 711 "%i already in queue awaiting acceptance " 712 "(%d occurrences), euid %d, rgid %d, jail %s\n", 713 __func__, head->so_pcb, sbuf_data(&descrsb), 714 qlen, overcount, 715 head->so_cred->cr_uid, head->so_cred->cr_rgid, 716 head->so_cred->cr_prison ? 717 head->so_cred->cr_prison->pr_name : 718 "not_jailed"); 719 } 720 sbuf_delete(&descrsb); 721 722 overcount = 0; 723 } 724 725 return (NULL); 726 } 727 SOLISTEN_UNLOCK(head); 728 VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL", 729 __func__, head)); 730 so = soalloc(head->so_vnet); 731 if (so == NULL) { 732 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 733 "limit reached or out of memory\n", 734 __func__, head->so_pcb); 735 return (NULL); 736 } 737 so->so_listen = head; 738 so->so_type = head->so_type; 739 so->so_options = head->so_options & ~SO_ACCEPTCONN; 740 so->so_linger = head->so_linger; 741 so->so_state = head->so_state | SS_NOFDREF; 742 so->so_fibnum = head->so_fibnum; 743 so->so_proto = head->so_proto; 744 so->so_cred = crhold(head->so_cred); 745 #ifdef MAC 746 mac_socket_newconn(head, so); 747 #endif 748 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 749 so_rdknl_assert_lock); 750 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 751 so_wrknl_assert_lock); 752 VNET_SO_ASSERT(head); 753 if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) { 754 sodealloc(so); 755 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 756 __func__, head->so_pcb); 757 return (NULL); 758 } 759 if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 760 sodealloc(so); 761 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", 762 __func__, head->so_pcb); 763 return (NULL); 764 } 765 so->so_rcv.sb_lowat = head->sol_sbrcv_lowat; 766 so->so_snd.sb_lowat = head->sol_sbsnd_lowat; 767 so->so_rcv.sb_timeo = head->sol_sbrcv_timeo; 768 so->so_snd.sb_timeo = head->sol_sbsnd_timeo; 769 so->so_rcv.sb_flags |= head->sol_sbrcv_flags & SB_AUTOSIZE; 770 so->so_snd.sb_flags |= head->sol_sbsnd_flags & SB_AUTOSIZE; 771 772 SOLISTEN_LOCK(head); 773 if (head->sol_accept_filter != NULL) 774 connstatus = 0; 775 so->so_state |= connstatus; 776 soref(head); /* A socket on (in)complete queue refs head. */ 777 if (connstatus) { 778 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 779 so->so_qstate = SQ_COMP; 780 head->sol_qlen++; 781 solisten_wakeup(head); /* unlocks */ 782 } else { 783 /* 784 * Keep removing sockets from the head until there's room for 785 * us to insert on the tail. In pre-locking revisions, this 786 * was a simple if(), but as we could be racing with other 787 * threads and soabort() requires dropping locks, we must 788 * loop waiting for the condition to be true. 789 */ 790 while (head->sol_incqlen > head->sol_qlimit) { 791 struct socket *sp; 792 793 sp = TAILQ_FIRST(&head->sol_incomp); 794 TAILQ_REMOVE(&head->sol_incomp, sp, so_list); 795 head->sol_incqlen--; 796 SOCK_LOCK(sp); 797 sp->so_qstate = SQ_NONE; 798 sp->so_listen = NULL; 799 SOCK_UNLOCK(sp); 800 sorele_locked(head); /* does SOLISTEN_UNLOCK, head stays */ 801 soabort(sp); 802 SOLISTEN_LOCK(head); 803 } 804 TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list); 805 so->so_qstate = SQ_INCOMP; 806 head->sol_incqlen++; 807 SOLISTEN_UNLOCK(head); 808 } 809 return (so); 810 } 811 812 #if defined(SCTP) || defined(SCTP_SUPPORT) 813 /* 814 * Socket part of sctp_peeloff(). Detach a new socket from an 815 * association. The new socket is returned with a reference. 816 */ 817 struct socket * 818 sopeeloff(struct socket *head) 819 { 820 struct socket *so; 821 822 VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p", 823 __func__, __LINE__, head)); 824 so = soalloc(head->so_vnet); 825 if (so == NULL) { 826 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 827 "limit reached or out of memory\n", 828 __func__, head->so_pcb); 829 return (NULL); 830 } 831 so->so_type = head->so_type; 832 so->so_options = head->so_options; 833 so->so_linger = head->so_linger; 834 so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED; 835 so->so_fibnum = head->so_fibnum; 836 so->so_proto = head->so_proto; 837 so->so_cred = crhold(head->so_cred); 838 #ifdef MAC 839 mac_socket_newconn(head, so); 840 #endif 841 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 842 so_rdknl_assert_lock); 843 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 844 so_wrknl_assert_lock); 845 VNET_SO_ASSERT(head); 846 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) { 847 sodealloc(so); 848 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 849 __func__, head->so_pcb); 850 return (NULL); 851 } 852 if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 853 sodealloc(so); 854 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", 855 __func__, head->so_pcb); 856 return (NULL); 857 } 858 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; 859 so->so_snd.sb_lowat = head->so_snd.sb_lowat; 860 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; 861 so->so_snd.sb_timeo = head->so_snd.sb_timeo; 862 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE; 863 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE; 864 865 soref(so); 866 867 return (so); 868 } 869 #endif /* SCTP */ 870 871 int 872 sobind(struct socket *so, struct sockaddr *nam, struct thread *td) 873 { 874 int error; 875 876 CURVNET_SET(so->so_vnet); 877 error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td); 878 CURVNET_RESTORE(); 879 return (error); 880 } 881 882 int 883 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 884 { 885 int error; 886 887 CURVNET_SET(so->so_vnet); 888 error = (*so->so_proto->pr_usrreqs->pru_bindat)(fd, so, nam, td); 889 CURVNET_RESTORE(); 890 return (error); 891 } 892 893 /* 894 * solisten() transitions a socket from a non-listening state to a listening 895 * state, but can also be used to update the listen queue depth on an 896 * existing listen socket. The protocol will call back into the sockets 897 * layer using solisten_proto_check() and solisten_proto() to check and set 898 * socket-layer listen state. Call backs are used so that the protocol can 899 * acquire both protocol and socket layer locks in whatever order is required 900 * by the protocol. 901 * 902 * Protocol implementors are advised to hold the socket lock across the 903 * socket-layer test and set to avoid races at the socket layer. 904 */ 905 int 906 solisten(struct socket *so, int backlog, struct thread *td) 907 { 908 int error; 909 910 CURVNET_SET(so->so_vnet); 911 error = (*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td); 912 CURVNET_RESTORE(); 913 return (error); 914 } 915 916 /* 917 * Prepare for a call to solisten_proto(). Acquire all socket buffer locks in 918 * order to interlock with socket I/O. 919 */ 920 int 921 solisten_proto_check(struct socket *so) 922 { 923 SOCK_LOCK_ASSERT(so); 924 925 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 926 SS_ISDISCONNECTING)) != 0) 927 return (EINVAL); 928 929 /* 930 * Sleeping is not permitted here, so simply fail if userspace is 931 * attempting to transmit or receive on the socket. This kind of 932 * transient failure is not ideal, but it should occur only if userspace 933 * is misusing the socket interfaces. 934 */ 935 if (!sx_try_xlock(&so->so_snd_sx)) 936 return (EAGAIN); 937 if (!sx_try_xlock(&so->so_rcv_sx)) { 938 sx_xunlock(&so->so_snd_sx); 939 return (EAGAIN); 940 } 941 mtx_lock(&so->so_snd_mtx); 942 mtx_lock(&so->so_rcv_mtx); 943 944 /* Interlock with soo_aio_queue(). */ 945 if ((so->so_snd.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0 || 946 (so->so_rcv.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0) { 947 solisten_proto_abort(so); 948 return (EINVAL); 949 } 950 return (0); 951 } 952 953 /* 954 * Undo the setup done by solisten_proto_check(). 955 */ 956 void 957 solisten_proto_abort(struct socket *so) 958 { 959 mtx_unlock(&so->so_snd_mtx); 960 mtx_unlock(&so->so_rcv_mtx); 961 sx_xunlock(&so->so_snd_sx); 962 sx_xunlock(&so->so_rcv_sx); 963 } 964 965 void 966 solisten_proto(struct socket *so, int backlog) 967 { 968 int sbrcv_lowat, sbsnd_lowat; 969 u_int sbrcv_hiwat, sbsnd_hiwat; 970 short sbrcv_flags, sbsnd_flags; 971 sbintime_t sbrcv_timeo, sbsnd_timeo; 972 973 SOCK_LOCK_ASSERT(so); 974 KASSERT((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 975 SS_ISDISCONNECTING)) == 0, 976 ("%s: bad socket state %p", __func__, so)); 977 978 if (SOLISTENING(so)) 979 goto listening; 980 981 /* 982 * Change this socket to listening state. 983 */ 984 sbrcv_lowat = so->so_rcv.sb_lowat; 985 sbsnd_lowat = so->so_snd.sb_lowat; 986 sbrcv_hiwat = so->so_rcv.sb_hiwat; 987 sbsnd_hiwat = so->so_snd.sb_hiwat; 988 sbrcv_flags = so->so_rcv.sb_flags; 989 sbsnd_flags = so->so_snd.sb_flags; 990 sbrcv_timeo = so->so_rcv.sb_timeo; 991 sbsnd_timeo = so->so_snd.sb_timeo; 992 993 sbdestroy(so, SO_SND); 994 sbdestroy(so, SO_RCV); 995 996 #ifdef INVARIANTS 997 bzero(&so->so_rcv, 998 sizeof(struct socket) - offsetof(struct socket, so_rcv)); 999 #endif 1000 1001 so->sol_sbrcv_lowat = sbrcv_lowat; 1002 so->sol_sbsnd_lowat = sbsnd_lowat; 1003 so->sol_sbrcv_hiwat = sbrcv_hiwat; 1004 so->sol_sbsnd_hiwat = sbsnd_hiwat; 1005 so->sol_sbrcv_flags = sbrcv_flags; 1006 so->sol_sbsnd_flags = sbsnd_flags; 1007 so->sol_sbrcv_timeo = sbrcv_timeo; 1008 so->sol_sbsnd_timeo = sbsnd_timeo; 1009 1010 so->sol_qlen = so->sol_incqlen = 0; 1011 TAILQ_INIT(&so->sol_incomp); 1012 TAILQ_INIT(&so->sol_comp); 1013 1014 so->sol_accept_filter = NULL; 1015 so->sol_accept_filter_arg = NULL; 1016 so->sol_accept_filter_str = NULL; 1017 1018 so->sol_upcall = NULL; 1019 so->sol_upcallarg = NULL; 1020 1021 so->so_options |= SO_ACCEPTCONN; 1022 1023 listening: 1024 if (backlog < 0 || backlog > somaxconn) 1025 backlog = somaxconn; 1026 so->sol_qlimit = backlog; 1027 1028 mtx_unlock(&so->so_snd_mtx); 1029 mtx_unlock(&so->so_rcv_mtx); 1030 sx_xunlock(&so->so_snd_sx); 1031 sx_xunlock(&so->so_rcv_sx); 1032 } 1033 1034 /* 1035 * Wakeup listeners/subsystems once we have a complete connection. 1036 * Enters with lock, returns unlocked. 1037 */ 1038 void 1039 solisten_wakeup(struct socket *sol) 1040 { 1041 1042 if (sol->sol_upcall != NULL) 1043 (void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT); 1044 else { 1045 selwakeuppri(&sol->so_rdsel, PSOCK); 1046 KNOTE_LOCKED(&sol->so_rdsel.si_note, 0); 1047 } 1048 SOLISTEN_UNLOCK(sol); 1049 wakeup_one(&sol->sol_comp); 1050 if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL) 1051 pgsigio(&sol->so_sigio, SIGIO, 0); 1052 } 1053 1054 /* 1055 * Return single connection off a listening socket queue. Main consumer of 1056 * the function is kern_accept4(). Some modules, that do their own accept 1057 * management also use the function. 1058 * 1059 * Listening socket must be locked on entry and is returned unlocked on 1060 * return. 1061 * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT. 1062 */ 1063 int 1064 solisten_dequeue(struct socket *head, struct socket **ret, int flags) 1065 { 1066 struct socket *so; 1067 int error; 1068 1069 SOLISTEN_LOCK_ASSERT(head); 1070 1071 while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) && 1072 head->so_error == 0) { 1073 error = msleep(&head->sol_comp, SOCK_MTX(head), PSOCK | PCATCH, 1074 "accept", 0); 1075 if (error != 0) { 1076 SOLISTEN_UNLOCK(head); 1077 return (error); 1078 } 1079 } 1080 if (head->so_error) { 1081 error = head->so_error; 1082 head->so_error = 0; 1083 } else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp)) 1084 error = EWOULDBLOCK; 1085 else 1086 error = 0; 1087 if (error) { 1088 SOLISTEN_UNLOCK(head); 1089 return (error); 1090 } 1091 so = TAILQ_FIRST(&head->sol_comp); 1092 SOCK_LOCK(so); 1093 KASSERT(so->so_qstate == SQ_COMP, 1094 ("%s: so %p not SQ_COMP", __func__, so)); 1095 soref(so); 1096 head->sol_qlen--; 1097 so->so_qstate = SQ_NONE; 1098 so->so_listen = NULL; 1099 TAILQ_REMOVE(&head->sol_comp, so, so_list); 1100 if (flags & ACCEPT4_INHERIT) 1101 so->so_state |= (head->so_state & SS_NBIO); 1102 else 1103 so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0; 1104 SOCK_UNLOCK(so); 1105 sorele_locked(head); 1106 1107 *ret = so; 1108 return (0); 1109 } 1110 1111 /* 1112 * Evaluate the reference count and named references on a socket; if no 1113 * references remain, free it. This should be called whenever a reference is 1114 * released, such as in sorele(), but also when named reference flags are 1115 * cleared in socket or protocol code. 1116 * 1117 * sofree() will free the socket if: 1118 * 1119 * - There are no outstanding file descriptor references or related consumers 1120 * (so_count == 0). 1121 * 1122 * - The socket has been closed by user space, if ever open (SS_NOFDREF). 1123 * 1124 * - The protocol does not have an outstanding strong reference on the socket 1125 * (SS_PROTOREF). 1126 * 1127 * - The socket is not in a completed connection queue, so a process has been 1128 * notified that it is present. If it is removed, the user process may 1129 * block in accept() despite select() saying the socket was ready. 1130 */ 1131 void 1132 sofree(struct socket *so) 1133 { 1134 struct protosw *pr = so->so_proto; 1135 bool last __diagused; 1136 1137 SOCK_LOCK_ASSERT(so); 1138 1139 if ((so->so_state & (SS_NOFDREF | SS_PROTOREF)) != SS_NOFDREF || 1140 refcount_load(&so->so_count) != 0 || so->so_qstate == SQ_COMP) { 1141 SOCK_UNLOCK(so); 1142 return; 1143 } 1144 1145 if (!SOLISTENING(so) && so->so_qstate == SQ_INCOMP) { 1146 struct socket *sol; 1147 1148 sol = so->so_listen; 1149 KASSERT(sol, ("%s: so %p on incomp of NULL", __func__, so)); 1150 1151 /* 1152 * To solve race between close of a listening socket and 1153 * a socket on its incomplete queue, we need to lock both. 1154 * The order is first listening socket, then regular. 1155 * Since we don't have SS_NOFDREF neither SS_PROTOREF, this 1156 * function and the listening socket are the only pointers 1157 * to so. To preserve so and sol, we reference both and then 1158 * relock. 1159 * After relock the socket may not move to so_comp since it 1160 * doesn't have PCB already, but it may be removed from 1161 * so_incomp. If that happens, we share responsiblity on 1162 * freeing the socket, but soclose() has already removed 1163 * it from queue. 1164 */ 1165 soref(sol); 1166 soref(so); 1167 SOCK_UNLOCK(so); 1168 SOLISTEN_LOCK(sol); 1169 SOCK_LOCK(so); 1170 if (so->so_qstate == SQ_INCOMP) { 1171 KASSERT(so->so_listen == sol, 1172 ("%s: so %p migrated out of sol %p", 1173 __func__, so, sol)); 1174 TAILQ_REMOVE(&sol->sol_incomp, so, so_list); 1175 sol->sol_incqlen--; 1176 last = refcount_release(&sol->so_count); 1177 KASSERT(!last, ("%s: released last reference for %p", 1178 __func__, sol)); 1179 so->so_qstate = SQ_NONE; 1180 so->so_listen = NULL; 1181 } else 1182 KASSERT(so->so_listen == NULL, 1183 ("%s: so %p not on (in)comp with so_listen", 1184 __func__, so)); 1185 sorele_locked(sol); 1186 KASSERT(refcount_load(&so->so_count) == 1, 1187 ("%s: so %p count %u", __func__, so, so->so_count)); 1188 so->so_count = 0; 1189 } 1190 if (SOLISTENING(so)) 1191 so->so_error = ECONNABORTED; 1192 SOCK_UNLOCK(so); 1193 1194 if (so->so_dtor != NULL) 1195 so->so_dtor(so); 1196 1197 VNET_SO_ASSERT(so); 1198 if ((pr->pr_flags & PR_RIGHTS) && !SOLISTENING(so)) { 1199 MPASS(pr->pr_domain->dom_dispose != NULL); 1200 (*pr->pr_domain->dom_dispose)(so); 1201 } 1202 if (pr->pr_usrreqs->pru_detach != NULL) 1203 (*pr->pr_usrreqs->pru_detach)(so); 1204 1205 /* 1206 * From this point on, we assume that no other references to this 1207 * socket exist anywhere else in the stack. Therefore, no locks need 1208 * to be acquired or held. 1209 */ 1210 if (!SOLISTENING(so)) { 1211 sbdestroy(so, SO_SND); 1212 sbdestroy(so, SO_RCV); 1213 } 1214 seldrain(&so->so_rdsel); 1215 seldrain(&so->so_wrsel); 1216 knlist_destroy(&so->so_rdsel.si_note); 1217 knlist_destroy(&so->so_wrsel.si_note); 1218 sodealloc(so); 1219 } 1220 1221 /* 1222 * Release a reference on a socket while holding the socket lock. 1223 * Unlocks the socket lock before returning. 1224 */ 1225 void 1226 sorele_locked(struct socket *so) 1227 { 1228 SOCK_LOCK_ASSERT(so); 1229 if (refcount_release(&so->so_count)) 1230 sofree(so); 1231 else 1232 SOCK_UNLOCK(so); 1233 } 1234 1235 /* 1236 * Close a socket on last file table reference removal. Initiate disconnect 1237 * if connected. Free socket when disconnect complete. 1238 * 1239 * This function will sorele() the socket. Note that soclose() may be called 1240 * prior to the ref count reaching zero. The actual socket structure will 1241 * not be freed until the ref count reaches zero. 1242 */ 1243 int 1244 soclose(struct socket *so) 1245 { 1246 struct accept_queue lqueue; 1247 int error = 0; 1248 bool listening, last __diagused; 1249 1250 KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter")); 1251 1252 CURVNET_SET(so->so_vnet); 1253 funsetown(&so->so_sigio); 1254 if (so->so_state & SS_ISCONNECTED) { 1255 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 1256 error = sodisconnect(so); 1257 if (error) { 1258 if (error == ENOTCONN) 1259 error = 0; 1260 goto drop; 1261 } 1262 } 1263 1264 if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) { 1265 if ((so->so_state & SS_ISDISCONNECTING) && 1266 (so->so_state & SS_NBIO)) 1267 goto drop; 1268 while (so->so_state & SS_ISCONNECTED) { 1269 error = tsleep(&so->so_timeo, 1270 PSOCK | PCATCH, "soclos", 1271 so->so_linger * hz); 1272 if (error) 1273 break; 1274 } 1275 } 1276 } 1277 1278 drop: 1279 if (so->so_proto->pr_usrreqs->pru_close != NULL) 1280 (*so->so_proto->pr_usrreqs->pru_close)(so); 1281 1282 SOCK_LOCK(so); 1283 if ((listening = SOLISTENING(so))) { 1284 struct socket *sp; 1285 1286 TAILQ_INIT(&lqueue); 1287 TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list); 1288 TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list); 1289 1290 so->sol_qlen = so->sol_incqlen = 0; 1291 1292 TAILQ_FOREACH(sp, &lqueue, so_list) { 1293 SOCK_LOCK(sp); 1294 sp->so_qstate = SQ_NONE; 1295 sp->so_listen = NULL; 1296 SOCK_UNLOCK(sp); 1297 last = refcount_release(&so->so_count); 1298 KASSERT(!last, ("%s: released last reference for %p", 1299 __func__, so)); 1300 } 1301 } 1302 KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF")); 1303 so->so_state |= SS_NOFDREF; 1304 sorele_locked(so); 1305 if (listening) { 1306 struct socket *sp, *tsp; 1307 1308 TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp) { 1309 SOCK_LOCK(sp); 1310 if (refcount_load(&sp->so_count) == 0) { 1311 SOCK_UNLOCK(sp); 1312 soabort(sp); 1313 } else { 1314 /* See the handling of queued sockets 1315 in sofree(). */ 1316 SOCK_UNLOCK(sp); 1317 } 1318 } 1319 } 1320 CURVNET_RESTORE(); 1321 return (error); 1322 } 1323 1324 /* 1325 * soabort() is used to abruptly tear down a connection, such as when a 1326 * resource limit is reached (listen queue depth exceeded), or if a listen 1327 * socket is closed while there are sockets waiting to be accepted. 1328 * 1329 * This interface is tricky, because it is called on an unreferenced socket, 1330 * and must be called only by a thread that has actually removed the socket 1331 * from the listen queue it was on, or races with other threads are risked. 1332 * 1333 * This interface will call into the protocol code, so must not be called 1334 * with any socket locks held. Protocols do call it while holding their own 1335 * recursible protocol mutexes, but this is something that should be subject 1336 * to review in the future. 1337 */ 1338 void 1339 soabort(struct socket *so) 1340 { 1341 1342 /* 1343 * In as much as is possible, assert that no references to this 1344 * socket are held. This is not quite the same as asserting that the 1345 * current thread is responsible for arranging for no references, but 1346 * is as close as we can get for now. 1347 */ 1348 KASSERT(so->so_count == 0, ("soabort: so_count")); 1349 KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF")); 1350 KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF")); 1351 VNET_SO_ASSERT(so); 1352 1353 if (so->so_proto->pr_usrreqs->pru_abort != NULL) 1354 (*so->so_proto->pr_usrreqs->pru_abort)(so); 1355 SOCK_LOCK(so); 1356 sofree(so); 1357 } 1358 1359 int 1360 soaccept(struct socket *so, struct sockaddr **nam) 1361 { 1362 int error; 1363 1364 SOCK_LOCK(so); 1365 KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF")); 1366 so->so_state &= ~SS_NOFDREF; 1367 SOCK_UNLOCK(so); 1368 1369 CURVNET_SET(so->so_vnet); 1370 error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam); 1371 CURVNET_RESTORE(); 1372 return (error); 1373 } 1374 1375 int 1376 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td) 1377 { 1378 1379 return (soconnectat(AT_FDCWD, so, nam, td)); 1380 } 1381 1382 int 1383 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 1384 { 1385 int error; 1386 1387 CURVNET_SET(so->so_vnet); 1388 /* 1389 * If protocol is connection-based, can only connect once. 1390 * Otherwise, if connected, try to disconnect first. This allows 1391 * user to disconnect by connecting to, e.g., a null address. 1392 */ 1393 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 1394 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 1395 (error = sodisconnect(so)))) { 1396 error = EISCONN; 1397 } else { 1398 /* 1399 * Prevent accumulated error from previous connection from 1400 * biting us. 1401 */ 1402 so->so_error = 0; 1403 if (fd == AT_FDCWD) { 1404 error = (*so->so_proto->pr_usrreqs->pru_connect)(so, 1405 nam, td); 1406 } else { 1407 error = (*so->so_proto->pr_usrreqs->pru_connectat)(fd, 1408 so, nam, td); 1409 } 1410 } 1411 CURVNET_RESTORE(); 1412 1413 return (error); 1414 } 1415 1416 int 1417 soconnect2(struct socket *so1, struct socket *so2) 1418 { 1419 int error; 1420 1421 CURVNET_SET(so1->so_vnet); 1422 error = (*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2); 1423 CURVNET_RESTORE(); 1424 return (error); 1425 } 1426 1427 int 1428 sodisconnect(struct socket *so) 1429 { 1430 int error; 1431 1432 if ((so->so_state & SS_ISCONNECTED) == 0) 1433 return (ENOTCONN); 1434 if (so->so_state & SS_ISDISCONNECTING) 1435 return (EALREADY); 1436 VNET_SO_ASSERT(so); 1437 error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so); 1438 return (error); 1439 } 1440 1441 int 1442 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, 1443 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1444 { 1445 long space; 1446 ssize_t resid; 1447 int clen = 0, error, dontroute; 1448 1449 KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM")); 1450 KASSERT(so->so_proto->pr_flags & PR_ATOMIC, 1451 ("sosend_dgram: !PR_ATOMIC")); 1452 1453 if (uio != NULL) 1454 resid = uio->uio_resid; 1455 else 1456 resid = top->m_pkthdr.len; 1457 /* 1458 * In theory resid should be unsigned. However, space must be 1459 * signed, as it might be less than 0 if we over-committed, and we 1460 * must use a signed comparison of space and resid. On the other 1461 * hand, a negative resid causes us to loop sending 0-length 1462 * segments to the protocol. 1463 */ 1464 if (resid < 0) { 1465 error = EINVAL; 1466 goto out; 1467 } 1468 1469 dontroute = 1470 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0; 1471 if (td != NULL) 1472 td->td_ru.ru_msgsnd++; 1473 if (control != NULL) 1474 clen = control->m_len; 1475 1476 SOCKBUF_LOCK(&so->so_snd); 1477 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1478 SOCKBUF_UNLOCK(&so->so_snd); 1479 error = EPIPE; 1480 goto out; 1481 } 1482 if (so->so_error) { 1483 error = so->so_error; 1484 so->so_error = 0; 1485 SOCKBUF_UNLOCK(&so->so_snd); 1486 goto out; 1487 } 1488 if ((so->so_state & SS_ISCONNECTED) == 0) { 1489 /* 1490 * `sendto' and `sendmsg' is allowed on a connection-based 1491 * socket if it supports implied connect. Return ENOTCONN if 1492 * not connected and no address is supplied. 1493 */ 1494 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1495 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1496 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1497 !(resid == 0 && clen != 0)) { 1498 SOCKBUF_UNLOCK(&so->so_snd); 1499 error = ENOTCONN; 1500 goto out; 1501 } 1502 } else if (addr == NULL) { 1503 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1504 error = ENOTCONN; 1505 else 1506 error = EDESTADDRREQ; 1507 SOCKBUF_UNLOCK(&so->so_snd); 1508 goto out; 1509 } 1510 } 1511 1512 /* 1513 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a 1514 * problem and need fixing. 1515 */ 1516 space = sbspace(&so->so_snd); 1517 if (flags & MSG_OOB) 1518 space += 1024; 1519 space -= clen; 1520 SOCKBUF_UNLOCK(&so->so_snd); 1521 if (resid > space) { 1522 error = EMSGSIZE; 1523 goto out; 1524 } 1525 if (uio == NULL) { 1526 resid = 0; 1527 if (flags & MSG_EOR) 1528 top->m_flags |= M_EOR; 1529 } else { 1530 /* 1531 * Copy the data from userland into a mbuf chain. 1532 * If no data is to be copied in, a single empty mbuf 1533 * is returned. 1534 */ 1535 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr, 1536 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0))); 1537 if (top == NULL) { 1538 error = EFAULT; /* only possible error */ 1539 goto out; 1540 } 1541 space -= resid - uio->uio_resid; 1542 resid = uio->uio_resid; 1543 } 1544 KASSERT(resid == 0, ("sosend_dgram: resid != 0")); 1545 /* 1546 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock 1547 * than with. 1548 */ 1549 if (dontroute) { 1550 SOCK_LOCK(so); 1551 so->so_options |= SO_DONTROUTE; 1552 SOCK_UNLOCK(so); 1553 } 1554 /* 1555 * XXX all the SBS_CANTSENDMORE checks previously done could be out 1556 * of date. We could have received a reset packet in an interrupt or 1557 * maybe we slept while doing page faults in uiomove() etc. We could 1558 * probably recheck again inside the locking protection here, but 1559 * there are probably other places that this also happens. We must 1560 * rethink this. 1561 */ 1562 VNET_SO_ASSERT(so); 1563 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1564 (flags & MSG_OOB) ? PRUS_OOB : 1565 /* 1566 * If the user set MSG_EOF, the protocol understands this flag and 1567 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND. 1568 */ 1569 ((flags & MSG_EOF) && 1570 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1571 (resid <= 0)) ? 1572 PRUS_EOF : 1573 /* If there is more to send set PRUS_MORETOCOME */ 1574 (flags & MSG_MORETOCOME) || 1575 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1576 top, addr, control, td); 1577 if (dontroute) { 1578 SOCK_LOCK(so); 1579 so->so_options &= ~SO_DONTROUTE; 1580 SOCK_UNLOCK(so); 1581 } 1582 clen = 0; 1583 control = NULL; 1584 top = NULL; 1585 out: 1586 if (top != NULL) 1587 m_freem(top); 1588 if (control != NULL) 1589 m_freem(control); 1590 return (error); 1591 } 1592 1593 /* 1594 * Send on a socket. If send must go all at once and message is larger than 1595 * send buffering, then hard error. Lock against other senders. If must go 1596 * all at once and not enough room now, then inform user that this would 1597 * block and do nothing. Otherwise, if nonblocking, send as much as 1598 * possible. The data to be sent is described by "uio" if nonzero, otherwise 1599 * by the mbuf chain "top" (which must be null if uio is not). Data provided 1600 * in mbuf chain must be small enough to send all at once. 1601 * 1602 * Returns nonzero on error, timeout or signal; callers must check for short 1603 * counts if EINTR/ERESTART are returned. Data and control buffers are freed 1604 * on return. 1605 */ 1606 int 1607 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio, 1608 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1609 { 1610 long space; 1611 ssize_t resid; 1612 int clen = 0, error, dontroute; 1613 int atomic = sosendallatonce(so) || top; 1614 int pru_flag; 1615 #ifdef KERN_TLS 1616 struct ktls_session *tls; 1617 int tls_enq_cnt, tls_pruflag; 1618 uint8_t tls_rtype; 1619 1620 tls = NULL; 1621 tls_rtype = TLS_RLTYPE_APP; 1622 #endif 1623 if (uio != NULL) 1624 resid = uio->uio_resid; 1625 else if ((top->m_flags & M_PKTHDR) != 0) 1626 resid = top->m_pkthdr.len; 1627 else 1628 resid = m_length(top, NULL); 1629 /* 1630 * In theory resid should be unsigned. However, space must be 1631 * signed, as it might be less than 0 if we over-committed, and we 1632 * must use a signed comparison of space and resid. On the other 1633 * hand, a negative resid causes us to loop sending 0-length 1634 * segments to the protocol. 1635 * 1636 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 1637 * type sockets since that's an error. 1638 */ 1639 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 1640 error = EINVAL; 1641 goto out; 1642 } 1643 1644 dontroute = 1645 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 1646 (so->so_proto->pr_flags & PR_ATOMIC); 1647 if (td != NULL) 1648 td->td_ru.ru_msgsnd++; 1649 if (control != NULL) 1650 clen = control->m_len; 1651 1652 error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags)); 1653 if (error) 1654 goto out; 1655 1656 #ifdef KERN_TLS 1657 tls_pruflag = 0; 1658 tls = ktls_hold(so->so_snd.sb_tls_info); 1659 if (tls != NULL) { 1660 if (tls->mode == TCP_TLS_MODE_SW) 1661 tls_pruflag = PRUS_NOTREADY; 1662 1663 if (control != NULL) { 1664 struct cmsghdr *cm = mtod(control, struct cmsghdr *); 1665 1666 if (clen >= sizeof(*cm) && 1667 cm->cmsg_type == TLS_SET_RECORD_TYPE) { 1668 tls_rtype = *((uint8_t *)CMSG_DATA(cm)); 1669 clen = 0; 1670 m_freem(control); 1671 control = NULL; 1672 atomic = 1; 1673 } 1674 } 1675 1676 if (resid == 0 && !ktls_permit_empty_frames(tls)) { 1677 error = EINVAL; 1678 goto release; 1679 } 1680 } 1681 #endif 1682 1683 restart: 1684 do { 1685 SOCKBUF_LOCK(&so->so_snd); 1686 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1687 SOCKBUF_UNLOCK(&so->so_snd); 1688 error = EPIPE; 1689 goto release; 1690 } 1691 if (so->so_error) { 1692 error = so->so_error; 1693 so->so_error = 0; 1694 SOCKBUF_UNLOCK(&so->so_snd); 1695 goto release; 1696 } 1697 if ((so->so_state & SS_ISCONNECTED) == 0) { 1698 /* 1699 * `sendto' and `sendmsg' is allowed on a connection- 1700 * based socket if it supports implied connect. 1701 * Return ENOTCONN if not connected and no address is 1702 * supplied. 1703 */ 1704 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1705 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1706 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1707 !(resid == 0 && clen != 0)) { 1708 SOCKBUF_UNLOCK(&so->so_snd); 1709 error = ENOTCONN; 1710 goto release; 1711 } 1712 } else if (addr == NULL) { 1713 SOCKBUF_UNLOCK(&so->so_snd); 1714 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1715 error = ENOTCONN; 1716 else 1717 error = EDESTADDRREQ; 1718 goto release; 1719 } 1720 } 1721 space = sbspace(&so->so_snd); 1722 if (flags & MSG_OOB) 1723 space += 1024; 1724 if ((atomic && resid > so->so_snd.sb_hiwat) || 1725 clen > so->so_snd.sb_hiwat) { 1726 SOCKBUF_UNLOCK(&so->so_snd); 1727 error = EMSGSIZE; 1728 goto release; 1729 } 1730 if (space < resid + clen && 1731 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 1732 if ((so->so_state & SS_NBIO) || 1733 (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) { 1734 SOCKBUF_UNLOCK(&so->so_snd); 1735 error = EWOULDBLOCK; 1736 goto release; 1737 } 1738 error = sbwait(so, SO_SND); 1739 SOCKBUF_UNLOCK(&so->so_snd); 1740 if (error) 1741 goto release; 1742 goto restart; 1743 } 1744 SOCKBUF_UNLOCK(&so->so_snd); 1745 space -= clen; 1746 do { 1747 if (uio == NULL) { 1748 resid = 0; 1749 if (flags & MSG_EOR) 1750 top->m_flags |= M_EOR; 1751 #ifdef KERN_TLS 1752 if (tls != NULL) { 1753 ktls_frame(top, tls, &tls_enq_cnt, 1754 tls_rtype); 1755 tls_rtype = TLS_RLTYPE_APP; 1756 } 1757 #endif 1758 } else { 1759 /* 1760 * Copy the data from userland into a mbuf 1761 * chain. If resid is 0, which can happen 1762 * only if we have control to send, then 1763 * a single empty mbuf is returned. This 1764 * is a workaround to prevent protocol send 1765 * methods to panic. 1766 */ 1767 #ifdef KERN_TLS 1768 if (tls != NULL) { 1769 top = m_uiotombuf(uio, M_WAITOK, space, 1770 tls->params.max_frame_len, 1771 M_EXTPG | 1772 ((flags & MSG_EOR) ? M_EOR : 0)); 1773 if (top != NULL) { 1774 ktls_frame(top, tls, 1775 &tls_enq_cnt, tls_rtype); 1776 } 1777 tls_rtype = TLS_RLTYPE_APP; 1778 } else 1779 #endif 1780 top = m_uiotombuf(uio, M_WAITOK, space, 1781 (atomic ? max_hdr : 0), 1782 (atomic ? M_PKTHDR : 0) | 1783 ((flags & MSG_EOR) ? M_EOR : 0)); 1784 if (top == NULL) { 1785 error = EFAULT; /* only possible error */ 1786 goto release; 1787 } 1788 space -= resid - uio->uio_resid; 1789 resid = uio->uio_resid; 1790 } 1791 if (dontroute) { 1792 SOCK_LOCK(so); 1793 so->so_options |= SO_DONTROUTE; 1794 SOCK_UNLOCK(so); 1795 } 1796 /* 1797 * XXX all the SBS_CANTSENDMORE checks previously 1798 * done could be out of date. We could have received 1799 * a reset packet in an interrupt or maybe we slept 1800 * while doing page faults in uiomove() etc. We 1801 * could probably recheck again inside the locking 1802 * protection here, but there are probably other 1803 * places that this also happens. We must rethink 1804 * this. 1805 */ 1806 VNET_SO_ASSERT(so); 1807 1808 pru_flag = (flags & MSG_OOB) ? PRUS_OOB : 1809 /* 1810 * If the user set MSG_EOF, the protocol understands 1811 * this flag and nothing left to send then use 1812 * PRU_SEND_EOF instead of PRU_SEND. 1813 */ 1814 ((flags & MSG_EOF) && 1815 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1816 (resid <= 0)) ? 1817 PRUS_EOF : 1818 /* If there is more to send set PRUS_MORETOCOME. */ 1819 (flags & MSG_MORETOCOME) || 1820 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0; 1821 1822 #ifdef KERN_TLS 1823 pru_flag |= tls_pruflag; 1824 #endif 1825 1826 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1827 pru_flag, top, addr, control, td); 1828 1829 if (dontroute) { 1830 SOCK_LOCK(so); 1831 so->so_options &= ~SO_DONTROUTE; 1832 SOCK_UNLOCK(so); 1833 } 1834 1835 #ifdef KERN_TLS 1836 if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) { 1837 if (error != 0) { 1838 m_freem(top); 1839 top = NULL; 1840 } else { 1841 soref(so); 1842 ktls_enqueue(top, so, tls_enq_cnt); 1843 } 1844 } 1845 #endif 1846 clen = 0; 1847 control = NULL; 1848 top = NULL; 1849 if (error) 1850 goto release; 1851 } while (resid && space > 0); 1852 } while (resid); 1853 1854 release: 1855 SOCK_IO_SEND_UNLOCK(so); 1856 out: 1857 #ifdef KERN_TLS 1858 if (tls != NULL) 1859 ktls_free(tls); 1860 #endif 1861 if (top != NULL) 1862 m_freem(top); 1863 if (control != NULL) 1864 m_freem(control); 1865 return (error); 1866 } 1867 1868 int 1869 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, 1870 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1871 { 1872 int error; 1873 1874 CURVNET_SET(so->so_vnet); 1875 error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, 1876 top, control, flags, td); 1877 CURVNET_RESTORE(); 1878 return (error); 1879 } 1880 1881 /* 1882 * The part of soreceive() that implements reading non-inline out-of-band 1883 * data from a socket. For more complete comments, see soreceive(), from 1884 * which this code originated. 1885 * 1886 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is 1887 * unable to return an mbuf chain to the caller. 1888 */ 1889 static int 1890 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags) 1891 { 1892 struct protosw *pr = so->so_proto; 1893 struct mbuf *m; 1894 int error; 1895 1896 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); 1897 VNET_SO_ASSERT(so); 1898 1899 m = m_get(M_WAITOK, MT_DATA); 1900 error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK); 1901 if (error) 1902 goto bad; 1903 do { 1904 error = uiomove(mtod(m, void *), 1905 (int) min(uio->uio_resid, m->m_len), uio); 1906 m = m_free(m); 1907 } while (uio->uio_resid && error == 0 && m); 1908 bad: 1909 if (m != NULL) 1910 m_freem(m); 1911 return (error); 1912 } 1913 1914 /* 1915 * Following replacement or removal of the first mbuf on the first mbuf chain 1916 * of a socket buffer, push necessary state changes back into the socket 1917 * buffer so that other consumers see the values consistently. 'nextrecord' 1918 * is the callers locally stored value of the original value of 1919 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. 1920 * NOTE: 'nextrecord' may be NULL. 1921 */ 1922 static __inline void 1923 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) 1924 { 1925 1926 SOCKBUF_LOCK_ASSERT(sb); 1927 /* 1928 * First, update for the new value of nextrecord. If necessary, make 1929 * it the first record. 1930 */ 1931 if (sb->sb_mb != NULL) 1932 sb->sb_mb->m_nextpkt = nextrecord; 1933 else 1934 sb->sb_mb = nextrecord; 1935 1936 /* 1937 * Now update any dependent socket buffer fields to reflect the new 1938 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the 1939 * addition of a second clause that takes care of the case where 1940 * sb_mb has been updated, but remains the last record. 1941 */ 1942 if (sb->sb_mb == NULL) { 1943 sb->sb_mbtail = NULL; 1944 sb->sb_lastrecord = NULL; 1945 } else if (sb->sb_mb->m_nextpkt == NULL) 1946 sb->sb_lastrecord = sb->sb_mb; 1947 } 1948 1949 /* 1950 * Implement receive operations on a socket. We depend on the way that 1951 * records are added to the sockbuf by sbappend. In particular, each record 1952 * (mbufs linked through m_next) must begin with an address if the protocol 1953 * so specifies, followed by an optional mbuf or mbufs containing ancillary 1954 * data, and then zero or more mbufs of data. In order to allow parallelism 1955 * between network receive and copying to user space, as well as avoid 1956 * sleeping with a mutex held, we release the socket buffer mutex during the 1957 * user space copy. Although the sockbuf is locked, new data may still be 1958 * appended, and thus we must maintain consistency of the sockbuf during that 1959 * time. 1960 * 1961 * The caller may receive the data as a single mbuf chain by supplying an 1962 * mbuf **mp0 for use in returning the chain. The uio is then used only for 1963 * the count in uio_resid. 1964 */ 1965 int 1966 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio, 1967 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1968 { 1969 struct mbuf *m, **mp; 1970 int flags, error, offset; 1971 ssize_t len; 1972 struct protosw *pr = so->so_proto; 1973 struct mbuf *nextrecord; 1974 int moff, type = 0; 1975 ssize_t orig_resid = uio->uio_resid; 1976 1977 mp = mp0; 1978 if (psa != NULL) 1979 *psa = NULL; 1980 if (controlp != NULL) 1981 *controlp = NULL; 1982 if (flagsp != NULL) 1983 flags = *flagsp &~ MSG_EOR; 1984 else 1985 flags = 0; 1986 if (flags & MSG_OOB) 1987 return (soreceive_rcvoob(so, uio, flags)); 1988 if (mp != NULL) 1989 *mp = NULL; 1990 if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING) 1991 && uio->uio_resid) { 1992 VNET_SO_ASSERT(so); 1993 (*pr->pr_usrreqs->pru_rcvd)(so, 0); 1994 } 1995 1996 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags)); 1997 if (error) 1998 return (error); 1999 2000 restart: 2001 SOCKBUF_LOCK(&so->so_rcv); 2002 m = so->so_rcv.sb_mb; 2003 /* 2004 * If we have less data than requested, block awaiting more (subject 2005 * to any timeout) if: 2006 * 1. the current count is less than the low water mark, or 2007 * 2. MSG_DONTWAIT is not set 2008 */ 2009 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 2010 sbavail(&so->so_rcv) < uio->uio_resid) && 2011 sbavail(&so->so_rcv) < so->so_rcv.sb_lowat && 2012 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 2013 KASSERT(m != NULL || !sbavail(&so->so_rcv), 2014 ("receive: m == %p sbavail == %u", 2015 m, sbavail(&so->so_rcv))); 2016 if (so->so_error || so->so_rerror) { 2017 if (m != NULL) 2018 goto dontblock; 2019 if (so->so_error) 2020 error = so->so_error; 2021 else 2022 error = so->so_rerror; 2023 if ((flags & MSG_PEEK) == 0) { 2024 if (so->so_error) 2025 so->so_error = 0; 2026 else 2027 so->so_rerror = 0; 2028 } 2029 SOCKBUF_UNLOCK(&so->so_rcv); 2030 goto release; 2031 } 2032 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2033 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 2034 if (m != NULL) 2035 goto dontblock; 2036 #ifdef KERN_TLS 2037 else if (so->so_rcv.sb_tlsdcc == 0 && 2038 so->so_rcv.sb_tlscc == 0) { 2039 #else 2040 else { 2041 #endif 2042 SOCKBUF_UNLOCK(&so->so_rcv); 2043 goto release; 2044 } 2045 } 2046 for (; m != NULL; m = m->m_next) 2047 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 2048 m = so->so_rcv.sb_mb; 2049 goto dontblock; 2050 } 2051 if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED | 2052 SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 && 2053 (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) { 2054 SOCKBUF_UNLOCK(&so->so_rcv); 2055 error = ENOTCONN; 2056 goto release; 2057 } 2058 if (uio->uio_resid == 0) { 2059 SOCKBUF_UNLOCK(&so->so_rcv); 2060 goto release; 2061 } 2062 if ((so->so_state & SS_NBIO) || 2063 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2064 SOCKBUF_UNLOCK(&so->so_rcv); 2065 error = EWOULDBLOCK; 2066 goto release; 2067 } 2068 SBLASTRECORDCHK(&so->so_rcv); 2069 SBLASTMBUFCHK(&so->so_rcv); 2070 error = sbwait(so, SO_RCV); 2071 SOCKBUF_UNLOCK(&so->so_rcv); 2072 if (error) 2073 goto release; 2074 goto restart; 2075 } 2076 dontblock: 2077 /* 2078 * From this point onward, we maintain 'nextrecord' as a cache of the 2079 * pointer to the next record in the socket buffer. We must keep the 2080 * various socket buffer pointers and local stack versions of the 2081 * pointers in sync, pushing out modifications before dropping the 2082 * socket buffer mutex, and re-reading them when picking it up. 2083 * 2084 * Otherwise, we will race with the network stack appending new data 2085 * or records onto the socket buffer by using inconsistent/stale 2086 * versions of the field, possibly resulting in socket buffer 2087 * corruption. 2088 * 2089 * By holding the high-level sblock(), we prevent simultaneous 2090 * readers from pulling off the front of the socket buffer. 2091 */ 2092 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2093 if (uio->uio_td) 2094 uio->uio_td->td_ru.ru_msgrcv++; 2095 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); 2096 SBLASTRECORDCHK(&so->so_rcv); 2097 SBLASTMBUFCHK(&so->so_rcv); 2098 nextrecord = m->m_nextpkt; 2099 if (pr->pr_flags & PR_ADDR) { 2100 KASSERT(m->m_type == MT_SONAME, 2101 ("m->m_type == %d", m->m_type)); 2102 orig_resid = 0; 2103 if (psa != NULL) 2104 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2105 M_NOWAIT); 2106 if (flags & MSG_PEEK) { 2107 m = m->m_next; 2108 } else { 2109 sbfree(&so->so_rcv, m); 2110 so->so_rcv.sb_mb = m_free(m); 2111 m = so->so_rcv.sb_mb; 2112 sockbuf_pushsync(&so->so_rcv, nextrecord); 2113 } 2114 } 2115 2116 /* 2117 * Process one or more MT_CONTROL mbufs present before any data mbufs 2118 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 2119 * just copy the data; if !MSG_PEEK, we call into the protocol to 2120 * perform externalization (or freeing if controlp == NULL). 2121 */ 2122 if (m != NULL && m->m_type == MT_CONTROL) { 2123 struct mbuf *cm = NULL, *cmn; 2124 struct mbuf **cme = &cm; 2125 #ifdef KERN_TLS 2126 struct cmsghdr *cmsg; 2127 struct tls_get_record tgr; 2128 2129 /* 2130 * For MSG_TLSAPPDATA, check for a non-application data 2131 * record. If found, return ENXIO without removing 2132 * it from the receive queue. This allows a subsequent 2133 * call without MSG_TLSAPPDATA to receive it. 2134 * Note that, for TLS, there should only be a single 2135 * control mbuf with the TLS_GET_RECORD message in it. 2136 */ 2137 if (flags & MSG_TLSAPPDATA) { 2138 cmsg = mtod(m, struct cmsghdr *); 2139 if (cmsg->cmsg_type == TLS_GET_RECORD && 2140 cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) { 2141 memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr)); 2142 /* This will need to change for TLS 1.3. */ 2143 if (tgr.tls_type != TLS_RLTYPE_APP) { 2144 SOCKBUF_UNLOCK(&so->so_rcv); 2145 error = ENXIO; 2146 goto release; 2147 } 2148 } 2149 } 2150 #endif 2151 2152 do { 2153 if (flags & MSG_PEEK) { 2154 if (controlp != NULL) { 2155 *controlp = m_copym(m, 0, m->m_len, 2156 M_NOWAIT); 2157 controlp = &(*controlp)->m_next; 2158 } 2159 m = m->m_next; 2160 } else { 2161 sbfree(&so->so_rcv, m); 2162 so->so_rcv.sb_mb = m->m_next; 2163 m->m_next = NULL; 2164 *cme = m; 2165 cme = &(*cme)->m_next; 2166 m = so->so_rcv.sb_mb; 2167 } 2168 } while (m != NULL && m->m_type == MT_CONTROL); 2169 if ((flags & MSG_PEEK) == 0) 2170 sockbuf_pushsync(&so->so_rcv, nextrecord); 2171 while (cm != NULL) { 2172 cmn = cm->m_next; 2173 cm->m_next = NULL; 2174 if (pr->pr_domain->dom_externalize != NULL) { 2175 SOCKBUF_UNLOCK(&so->so_rcv); 2176 VNET_SO_ASSERT(so); 2177 error = (*pr->pr_domain->dom_externalize) 2178 (cm, controlp, flags); 2179 SOCKBUF_LOCK(&so->so_rcv); 2180 } else if (controlp != NULL) 2181 *controlp = cm; 2182 else 2183 m_freem(cm); 2184 if (controlp != NULL) { 2185 while (*controlp != NULL) 2186 controlp = &(*controlp)->m_next; 2187 } 2188 cm = cmn; 2189 } 2190 if (m != NULL) 2191 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 2192 else 2193 nextrecord = so->so_rcv.sb_mb; 2194 orig_resid = 0; 2195 } 2196 if (m != NULL) { 2197 if ((flags & MSG_PEEK) == 0) { 2198 KASSERT(m->m_nextpkt == nextrecord, 2199 ("soreceive: post-control, nextrecord !sync")); 2200 if (nextrecord == NULL) { 2201 KASSERT(so->so_rcv.sb_mb == m, 2202 ("soreceive: post-control, sb_mb!=m")); 2203 KASSERT(so->so_rcv.sb_lastrecord == m, 2204 ("soreceive: post-control, lastrecord!=m")); 2205 } 2206 } 2207 type = m->m_type; 2208 if (type == MT_OOBDATA) 2209 flags |= MSG_OOB; 2210 } else { 2211 if ((flags & MSG_PEEK) == 0) { 2212 KASSERT(so->so_rcv.sb_mb == nextrecord, 2213 ("soreceive: sb_mb != nextrecord")); 2214 if (so->so_rcv.sb_mb == NULL) { 2215 KASSERT(so->so_rcv.sb_lastrecord == NULL, 2216 ("soreceive: sb_lastercord != NULL")); 2217 } 2218 } 2219 } 2220 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2221 SBLASTRECORDCHK(&so->so_rcv); 2222 SBLASTMBUFCHK(&so->so_rcv); 2223 2224 /* 2225 * Now continue to read any data mbufs off of the head of the socket 2226 * buffer until the read request is satisfied. Note that 'type' is 2227 * used to store the type of any mbuf reads that have happened so far 2228 * such that soreceive() can stop reading if the type changes, which 2229 * causes soreceive() to return only one of regular data and inline 2230 * out-of-band data in a single socket receive operation. 2231 */ 2232 moff = 0; 2233 offset = 0; 2234 while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0 2235 && error == 0) { 2236 /* 2237 * If the type of mbuf has changed since the last mbuf 2238 * examined ('type'), end the receive operation. 2239 */ 2240 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2241 if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) { 2242 if (type != m->m_type) 2243 break; 2244 } else if (type == MT_OOBDATA) 2245 break; 2246 else 2247 KASSERT(m->m_type == MT_DATA, 2248 ("m->m_type == %d", m->m_type)); 2249 so->so_rcv.sb_state &= ~SBS_RCVATMARK; 2250 len = uio->uio_resid; 2251 if (so->so_oobmark && len > so->so_oobmark - offset) 2252 len = so->so_oobmark - offset; 2253 if (len > m->m_len - moff) 2254 len = m->m_len - moff; 2255 /* 2256 * If mp is set, just pass back the mbufs. Otherwise copy 2257 * them out via the uio, then free. Sockbuf must be 2258 * consistent here (points to current mbuf, it points to next 2259 * record) when we drop priority; we must note any additions 2260 * to the sockbuf when we block interrupts again. 2261 */ 2262 if (mp == NULL) { 2263 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2264 SBLASTRECORDCHK(&so->so_rcv); 2265 SBLASTMBUFCHK(&so->so_rcv); 2266 SOCKBUF_UNLOCK(&so->so_rcv); 2267 if ((m->m_flags & M_EXTPG) != 0) 2268 error = m_unmapped_uiomove(m, moff, uio, 2269 (int)len); 2270 else 2271 error = uiomove(mtod(m, char *) + moff, 2272 (int)len, uio); 2273 SOCKBUF_LOCK(&so->so_rcv); 2274 if (error) { 2275 /* 2276 * The MT_SONAME mbuf has already been removed 2277 * from the record, so it is necessary to 2278 * remove the data mbufs, if any, to preserve 2279 * the invariant in the case of PR_ADDR that 2280 * requires MT_SONAME mbufs at the head of 2281 * each record. 2282 */ 2283 if (pr->pr_flags & PR_ATOMIC && 2284 ((flags & MSG_PEEK) == 0)) 2285 (void)sbdroprecord_locked(&so->so_rcv); 2286 SOCKBUF_UNLOCK(&so->so_rcv); 2287 goto release; 2288 } 2289 } else 2290 uio->uio_resid -= len; 2291 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2292 if (len == m->m_len - moff) { 2293 if (m->m_flags & M_EOR) 2294 flags |= MSG_EOR; 2295 if (flags & MSG_PEEK) { 2296 m = m->m_next; 2297 moff = 0; 2298 } else { 2299 nextrecord = m->m_nextpkt; 2300 sbfree(&so->so_rcv, m); 2301 if (mp != NULL) { 2302 m->m_nextpkt = NULL; 2303 *mp = m; 2304 mp = &m->m_next; 2305 so->so_rcv.sb_mb = m = m->m_next; 2306 *mp = NULL; 2307 } else { 2308 so->so_rcv.sb_mb = m_free(m); 2309 m = so->so_rcv.sb_mb; 2310 } 2311 sockbuf_pushsync(&so->so_rcv, nextrecord); 2312 SBLASTRECORDCHK(&so->so_rcv); 2313 SBLASTMBUFCHK(&so->so_rcv); 2314 } 2315 } else { 2316 if (flags & MSG_PEEK) 2317 moff += len; 2318 else { 2319 if (mp != NULL) { 2320 if (flags & MSG_DONTWAIT) { 2321 *mp = m_copym(m, 0, len, 2322 M_NOWAIT); 2323 if (*mp == NULL) { 2324 /* 2325 * m_copym() couldn't 2326 * allocate an mbuf. 2327 * Adjust uio_resid back 2328 * (it was adjusted 2329 * down by len bytes, 2330 * which we didn't end 2331 * up "copying" over). 2332 */ 2333 uio->uio_resid += len; 2334 break; 2335 } 2336 } else { 2337 SOCKBUF_UNLOCK(&so->so_rcv); 2338 *mp = m_copym(m, 0, len, 2339 M_WAITOK); 2340 SOCKBUF_LOCK(&so->so_rcv); 2341 } 2342 } 2343 sbcut_locked(&so->so_rcv, len); 2344 } 2345 } 2346 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2347 if (so->so_oobmark) { 2348 if ((flags & MSG_PEEK) == 0) { 2349 so->so_oobmark -= len; 2350 if (so->so_oobmark == 0) { 2351 so->so_rcv.sb_state |= SBS_RCVATMARK; 2352 break; 2353 } 2354 } else { 2355 offset += len; 2356 if (offset == so->so_oobmark) 2357 break; 2358 } 2359 } 2360 if (flags & MSG_EOR) 2361 break; 2362 /* 2363 * If the MSG_WAITALL flag is set (for non-atomic socket), we 2364 * must not quit until "uio->uio_resid == 0" or an error 2365 * termination. If a signal/timeout occurs, return with a 2366 * short count but without error. Keep sockbuf locked 2367 * against other readers. 2368 */ 2369 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 2370 !sosendallatonce(so) && nextrecord == NULL) { 2371 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2372 if (so->so_error || so->so_rerror || 2373 so->so_rcv.sb_state & SBS_CANTRCVMORE) 2374 break; 2375 /* 2376 * Notify the protocol that some data has been 2377 * drained before blocking. 2378 */ 2379 if (pr->pr_flags & PR_WANTRCVD) { 2380 SOCKBUF_UNLOCK(&so->so_rcv); 2381 VNET_SO_ASSERT(so); 2382 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 2383 SOCKBUF_LOCK(&so->so_rcv); 2384 } 2385 SBLASTRECORDCHK(&so->so_rcv); 2386 SBLASTMBUFCHK(&so->so_rcv); 2387 /* 2388 * We could receive some data while was notifying 2389 * the protocol. Skip blocking in this case. 2390 */ 2391 if (so->so_rcv.sb_mb == NULL) { 2392 error = sbwait(so, SO_RCV); 2393 if (error) { 2394 SOCKBUF_UNLOCK(&so->so_rcv); 2395 goto release; 2396 } 2397 } 2398 m = so->so_rcv.sb_mb; 2399 if (m != NULL) 2400 nextrecord = m->m_nextpkt; 2401 } 2402 } 2403 2404 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2405 if (m != NULL && pr->pr_flags & PR_ATOMIC) { 2406 flags |= MSG_TRUNC; 2407 if ((flags & MSG_PEEK) == 0) 2408 (void) sbdroprecord_locked(&so->so_rcv); 2409 } 2410 if ((flags & MSG_PEEK) == 0) { 2411 if (m == NULL) { 2412 /* 2413 * First part is an inline SB_EMPTY_FIXUP(). Second 2414 * part makes sure sb_lastrecord is up-to-date if 2415 * there is still data in the socket buffer. 2416 */ 2417 so->so_rcv.sb_mb = nextrecord; 2418 if (so->so_rcv.sb_mb == NULL) { 2419 so->so_rcv.sb_mbtail = NULL; 2420 so->so_rcv.sb_lastrecord = NULL; 2421 } else if (nextrecord->m_nextpkt == NULL) 2422 so->so_rcv.sb_lastrecord = nextrecord; 2423 } 2424 SBLASTRECORDCHK(&so->so_rcv); 2425 SBLASTMBUFCHK(&so->so_rcv); 2426 /* 2427 * If soreceive() is being done from the socket callback, 2428 * then don't need to generate ACK to peer to update window, 2429 * since ACK will be generated on return to TCP. 2430 */ 2431 if (!(flags & MSG_SOCALLBCK) && 2432 (pr->pr_flags & PR_WANTRCVD)) { 2433 SOCKBUF_UNLOCK(&so->so_rcv); 2434 VNET_SO_ASSERT(so); 2435 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 2436 SOCKBUF_LOCK(&so->so_rcv); 2437 } 2438 } 2439 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2440 if (orig_resid == uio->uio_resid && orig_resid && 2441 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { 2442 SOCKBUF_UNLOCK(&so->so_rcv); 2443 goto restart; 2444 } 2445 SOCKBUF_UNLOCK(&so->so_rcv); 2446 2447 if (flagsp != NULL) 2448 *flagsp |= flags; 2449 release: 2450 SOCK_IO_RECV_UNLOCK(so); 2451 return (error); 2452 } 2453 2454 /* 2455 * Optimized version of soreceive() for stream (TCP) sockets. 2456 */ 2457 int 2458 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio, 2459 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2460 { 2461 int len = 0, error = 0, flags, oresid; 2462 struct sockbuf *sb; 2463 struct mbuf *m, *n = NULL; 2464 2465 /* We only do stream sockets. */ 2466 if (so->so_type != SOCK_STREAM) 2467 return (EINVAL); 2468 if (psa != NULL) 2469 *psa = NULL; 2470 if (flagsp != NULL) 2471 flags = *flagsp &~ MSG_EOR; 2472 else 2473 flags = 0; 2474 if (controlp != NULL) 2475 *controlp = NULL; 2476 if (flags & MSG_OOB) 2477 return (soreceive_rcvoob(so, uio, flags)); 2478 if (mp0 != NULL) 2479 *mp0 = NULL; 2480 2481 sb = &so->so_rcv; 2482 2483 #ifdef KERN_TLS 2484 /* 2485 * KTLS store TLS records as records with a control message to 2486 * describe the framing. 2487 * 2488 * We check once here before acquiring locks to optimize the 2489 * common case. 2490 */ 2491 if (sb->sb_tls_info != NULL) 2492 return (soreceive_generic(so, psa, uio, mp0, controlp, 2493 flagsp)); 2494 #endif 2495 2496 /* Prevent other readers from entering the socket. */ 2497 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags)); 2498 if (error) 2499 return (error); 2500 SOCKBUF_LOCK(sb); 2501 2502 #ifdef KERN_TLS 2503 if (sb->sb_tls_info != NULL) { 2504 SOCKBUF_UNLOCK(sb); 2505 SOCK_IO_RECV_UNLOCK(so); 2506 return (soreceive_generic(so, psa, uio, mp0, controlp, 2507 flagsp)); 2508 } 2509 #endif 2510 2511 /* Easy one, no space to copyout anything. */ 2512 if (uio->uio_resid == 0) { 2513 error = EINVAL; 2514 goto out; 2515 } 2516 oresid = uio->uio_resid; 2517 2518 /* We will never ever get anything unless we are or were connected. */ 2519 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 2520 error = ENOTCONN; 2521 goto out; 2522 } 2523 2524 restart: 2525 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2526 2527 /* Abort if socket has reported problems. */ 2528 if (so->so_error) { 2529 if (sbavail(sb) > 0) 2530 goto deliver; 2531 if (oresid > uio->uio_resid) 2532 goto out; 2533 error = so->so_error; 2534 if (!(flags & MSG_PEEK)) 2535 so->so_error = 0; 2536 goto out; 2537 } 2538 2539 /* Door is closed. Deliver what is left, if any. */ 2540 if (sb->sb_state & SBS_CANTRCVMORE) { 2541 if (sbavail(sb) > 0) 2542 goto deliver; 2543 else 2544 goto out; 2545 } 2546 2547 /* Socket buffer is empty and we shall not block. */ 2548 if (sbavail(sb) == 0 && 2549 ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) { 2550 error = EAGAIN; 2551 goto out; 2552 } 2553 2554 /* Socket buffer got some data that we shall deliver now. */ 2555 if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) && 2556 ((so->so_state & SS_NBIO) || 2557 (flags & (MSG_DONTWAIT|MSG_NBIO)) || 2558 sbavail(sb) >= sb->sb_lowat || 2559 sbavail(sb) >= uio->uio_resid || 2560 sbavail(sb) >= sb->sb_hiwat) ) { 2561 goto deliver; 2562 } 2563 2564 /* On MSG_WAITALL we must wait until all data or error arrives. */ 2565 if ((flags & MSG_WAITALL) && 2566 (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat)) 2567 goto deliver; 2568 2569 /* 2570 * Wait and block until (more) data comes in. 2571 * NB: Drops the sockbuf lock during wait. 2572 */ 2573 error = sbwait(so, SO_RCV); 2574 if (error) 2575 goto out; 2576 goto restart; 2577 2578 deliver: 2579 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2580 KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__)); 2581 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__)); 2582 2583 /* Statistics. */ 2584 if (uio->uio_td) 2585 uio->uio_td->td_ru.ru_msgrcv++; 2586 2587 /* Fill uio until full or current end of socket buffer is reached. */ 2588 len = min(uio->uio_resid, sbavail(sb)); 2589 if (mp0 != NULL) { 2590 /* Dequeue as many mbufs as possible. */ 2591 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) { 2592 if (*mp0 == NULL) 2593 *mp0 = sb->sb_mb; 2594 else 2595 m_cat(*mp0, sb->sb_mb); 2596 for (m = sb->sb_mb; 2597 m != NULL && m->m_len <= len; 2598 m = m->m_next) { 2599 KASSERT(!(m->m_flags & M_NOTAVAIL), 2600 ("%s: m %p not available", __func__, m)); 2601 len -= m->m_len; 2602 uio->uio_resid -= m->m_len; 2603 sbfree(sb, m); 2604 n = m; 2605 } 2606 n->m_next = NULL; 2607 sb->sb_mb = m; 2608 sb->sb_lastrecord = sb->sb_mb; 2609 if (sb->sb_mb == NULL) 2610 SB_EMPTY_FIXUP(sb); 2611 } 2612 /* Copy the remainder. */ 2613 if (len > 0) { 2614 KASSERT(sb->sb_mb != NULL, 2615 ("%s: len > 0 && sb->sb_mb empty", __func__)); 2616 2617 m = m_copym(sb->sb_mb, 0, len, M_NOWAIT); 2618 if (m == NULL) 2619 len = 0; /* Don't flush data from sockbuf. */ 2620 else 2621 uio->uio_resid -= len; 2622 if (*mp0 != NULL) 2623 m_cat(*mp0, m); 2624 else 2625 *mp0 = m; 2626 if (*mp0 == NULL) { 2627 error = ENOBUFS; 2628 goto out; 2629 } 2630 } 2631 } else { 2632 /* NB: Must unlock socket buffer as uiomove may sleep. */ 2633 SOCKBUF_UNLOCK(sb); 2634 error = m_mbuftouio(uio, sb->sb_mb, len); 2635 SOCKBUF_LOCK(sb); 2636 if (error) 2637 goto out; 2638 } 2639 SBLASTRECORDCHK(sb); 2640 SBLASTMBUFCHK(sb); 2641 2642 /* 2643 * Remove the delivered data from the socket buffer unless we 2644 * were only peeking. 2645 */ 2646 if (!(flags & MSG_PEEK)) { 2647 if (len > 0) 2648 sbdrop_locked(sb, len); 2649 2650 /* Notify protocol that we drained some data. */ 2651 if ((so->so_proto->pr_flags & PR_WANTRCVD) && 2652 (((flags & MSG_WAITALL) && uio->uio_resid > 0) || 2653 !(flags & MSG_SOCALLBCK))) { 2654 SOCKBUF_UNLOCK(sb); 2655 VNET_SO_ASSERT(so); 2656 (*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags); 2657 SOCKBUF_LOCK(sb); 2658 } 2659 } 2660 2661 /* 2662 * For MSG_WAITALL we may have to loop again and wait for 2663 * more data to come in. 2664 */ 2665 if ((flags & MSG_WAITALL) && uio->uio_resid > 0) 2666 goto restart; 2667 out: 2668 SBLASTRECORDCHK(sb); 2669 SBLASTMBUFCHK(sb); 2670 SOCKBUF_UNLOCK(sb); 2671 SOCK_IO_RECV_UNLOCK(so); 2672 return (error); 2673 } 2674 2675 /* 2676 * Optimized version of soreceive() for simple datagram cases from userspace. 2677 * Unlike in the stream case, we're able to drop a datagram if copyout() 2678 * fails, and because we handle datagrams atomically, we don't need to use a 2679 * sleep lock to prevent I/O interlacing. 2680 */ 2681 int 2682 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio, 2683 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2684 { 2685 struct mbuf *m, *m2; 2686 int flags, error; 2687 ssize_t len; 2688 struct protosw *pr = so->so_proto; 2689 struct mbuf *nextrecord; 2690 2691 if (psa != NULL) 2692 *psa = NULL; 2693 if (controlp != NULL) 2694 *controlp = NULL; 2695 if (flagsp != NULL) 2696 flags = *flagsp &~ MSG_EOR; 2697 else 2698 flags = 0; 2699 2700 /* 2701 * For any complicated cases, fall back to the full 2702 * soreceive_generic(). 2703 */ 2704 if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB)) 2705 return (soreceive_generic(so, psa, uio, mp0, controlp, 2706 flagsp)); 2707 2708 /* 2709 * Enforce restrictions on use. 2710 */ 2711 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0, 2712 ("soreceive_dgram: wantrcvd")); 2713 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic")); 2714 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0, 2715 ("soreceive_dgram: SBS_RCVATMARK")); 2716 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0, 2717 ("soreceive_dgram: P_CONNREQUIRED")); 2718 2719 /* 2720 * Loop blocking while waiting for a datagram. 2721 */ 2722 SOCKBUF_LOCK(&so->so_rcv); 2723 while ((m = so->so_rcv.sb_mb) == NULL) { 2724 KASSERT(sbavail(&so->so_rcv) == 0, 2725 ("soreceive_dgram: sb_mb NULL but sbavail %u", 2726 sbavail(&so->so_rcv))); 2727 if (so->so_error) { 2728 error = so->so_error; 2729 so->so_error = 0; 2730 SOCKBUF_UNLOCK(&so->so_rcv); 2731 return (error); 2732 } 2733 if (so->so_rcv.sb_state & SBS_CANTRCVMORE || 2734 uio->uio_resid == 0) { 2735 SOCKBUF_UNLOCK(&so->so_rcv); 2736 return (0); 2737 } 2738 if ((so->so_state & SS_NBIO) || 2739 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2740 SOCKBUF_UNLOCK(&so->so_rcv); 2741 return (EWOULDBLOCK); 2742 } 2743 SBLASTRECORDCHK(&so->so_rcv); 2744 SBLASTMBUFCHK(&so->so_rcv); 2745 error = sbwait(so, SO_RCV); 2746 if (error) { 2747 SOCKBUF_UNLOCK(&so->so_rcv); 2748 return (error); 2749 } 2750 } 2751 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2752 2753 if (uio->uio_td) 2754 uio->uio_td->td_ru.ru_msgrcv++; 2755 SBLASTRECORDCHK(&so->so_rcv); 2756 SBLASTMBUFCHK(&so->so_rcv); 2757 nextrecord = m->m_nextpkt; 2758 if (nextrecord == NULL) { 2759 KASSERT(so->so_rcv.sb_lastrecord == m, 2760 ("soreceive_dgram: lastrecord != m")); 2761 } 2762 2763 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord, 2764 ("soreceive_dgram: m_nextpkt != nextrecord")); 2765 2766 /* 2767 * Pull 'm' and its chain off the front of the packet queue. 2768 */ 2769 so->so_rcv.sb_mb = NULL; 2770 sockbuf_pushsync(&so->so_rcv, nextrecord); 2771 2772 /* 2773 * Walk 'm's chain and free that many bytes from the socket buffer. 2774 */ 2775 for (m2 = m; m2 != NULL; m2 = m2->m_next) 2776 sbfree(&so->so_rcv, m2); 2777 2778 /* 2779 * Do a few last checks before we let go of the lock. 2780 */ 2781 SBLASTRECORDCHK(&so->so_rcv); 2782 SBLASTMBUFCHK(&so->so_rcv); 2783 SOCKBUF_UNLOCK(&so->so_rcv); 2784 2785 if (pr->pr_flags & PR_ADDR) { 2786 KASSERT(m->m_type == MT_SONAME, 2787 ("m->m_type == %d", m->m_type)); 2788 if (psa != NULL) 2789 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2790 M_NOWAIT); 2791 m = m_free(m); 2792 } 2793 if (m == NULL) { 2794 /* XXXRW: Can this happen? */ 2795 return (0); 2796 } 2797 2798 /* 2799 * Packet to copyout() is now in 'm' and it is disconnected from the 2800 * queue. 2801 * 2802 * Process one or more MT_CONTROL mbufs present before any data mbufs 2803 * in the first mbuf chain on the socket buffer. We call into the 2804 * protocol to perform externalization (or freeing if controlp == 2805 * NULL). In some cases there can be only MT_CONTROL mbufs without 2806 * MT_DATA mbufs. 2807 */ 2808 if (m->m_type == MT_CONTROL) { 2809 struct mbuf *cm = NULL, *cmn; 2810 struct mbuf **cme = &cm; 2811 2812 do { 2813 m2 = m->m_next; 2814 m->m_next = NULL; 2815 *cme = m; 2816 cme = &(*cme)->m_next; 2817 m = m2; 2818 } while (m != NULL && m->m_type == MT_CONTROL); 2819 while (cm != NULL) { 2820 cmn = cm->m_next; 2821 cm->m_next = NULL; 2822 if (pr->pr_domain->dom_externalize != NULL) { 2823 error = (*pr->pr_domain->dom_externalize) 2824 (cm, controlp, flags); 2825 } else if (controlp != NULL) 2826 *controlp = cm; 2827 else 2828 m_freem(cm); 2829 if (controlp != NULL) { 2830 while (*controlp != NULL) 2831 controlp = &(*controlp)->m_next; 2832 } 2833 cm = cmn; 2834 } 2835 } 2836 KASSERT(m == NULL || m->m_type == MT_DATA, 2837 ("soreceive_dgram: !data")); 2838 while (m != NULL && uio->uio_resid > 0) { 2839 len = uio->uio_resid; 2840 if (len > m->m_len) 2841 len = m->m_len; 2842 error = uiomove(mtod(m, char *), (int)len, uio); 2843 if (error) { 2844 m_freem(m); 2845 return (error); 2846 } 2847 if (len == m->m_len) 2848 m = m_free(m); 2849 else { 2850 m->m_data += len; 2851 m->m_len -= len; 2852 } 2853 } 2854 if (m != NULL) { 2855 flags |= MSG_TRUNC; 2856 m_freem(m); 2857 } 2858 if (flagsp != NULL) 2859 *flagsp |= flags; 2860 return (0); 2861 } 2862 2863 int 2864 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, 2865 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2866 { 2867 int error; 2868 2869 CURVNET_SET(so->so_vnet); 2870 error = (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, 2871 mp0, controlp, flagsp)); 2872 CURVNET_RESTORE(); 2873 return (error); 2874 } 2875 2876 int 2877 soshutdown(struct socket *so, int how) 2878 { 2879 struct protosw *pr; 2880 int error, soerror_enotconn; 2881 2882 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 2883 return (EINVAL); 2884 2885 soerror_enotconn = 0; 2886 SOCK_LOCK(so); 2887 if ((so->so_state & 2888 (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) { 2889 /* 2890 * POSIX mandates us to return ENOTCONN when shutdown(2) is 2891 * invoked on a datagram sockets, however historically we would 2892 * actually tear socket down. This is known to be leveraged by 2893 * some applications to unblock process waiting in recvXXX(2) 2894 * by other process that it shares that socket with. Try to meet 2895 * both backward-compatibility and POSIX requirements by forcing 2896 * ENOTCONN but still asking protocol to perform pru_shutdown(). 2897 */ 2898 if (so->so_type != SOCK_DGRAM && !SOLISTENING(so)) { 2899 SOCK_UNLOCK(so); 2900 return (ENOTCONN); 2901 } 2902 soerror_enotconn = 1; 2903 } 2904 2905 if (SOLISTENING(so)) { 2906 if (how != SHUT_WR) { 2907 so->so_error = ECONNABORTED; 2908 solisten_wakeup(so); /* unlocks so */ 2909 } else { 2910 SOCK_UNLOCK(so); 2911 } 2912 goto done; 2913 } 2914 SOCK_UNLOCK(so); 2915 2916 CURVNET_SET(so->so_vnet); 2917 pr = so->so_proto; 2918 if (pr->pr_usrreqs->pru_flush != NULL) 2919 (*pr->pr_usrreqs->pru_flush)(so, how); 2920 if (how != SHUT_WR) 2921 sorflush(so); 2922 if (how != SHUT_RD) { 2923 error = (*pr->pr_usrreqs->pru_shutdown)(so); 2924 wakeup(&so->so_timeo); 2925 CURVNET_RESTORE(); 2926 return ((error == 0 && soerror_enotconn) ? ENOTCONN : error); 2927 } 2928 wakeup(&so->so_timeo); 2929 CURVNET_RESTORE(); 2930 2931 done: 2932 return (soerror_enotconn ? ENOTCONN : 0); 2933 } 2934 2935 void 2936 sorflush(struct socket *so) 2937 { 2938 struct protosw *pr; 2939 int error; 2940 2941 VNET_SO_ASSERT(so); 2942 2943 /* 2944 * Dislodge threads currently blocked in receive and wait to acquire 2945 * a lock against other simultaneous readers before clearing the 2946 * socket buffer. Don't let our acquire be interrupted by a signal 2947 * despite any existing socket disposition on interruptable waiting. 2948 */ 2949 socantrcvmore(so); 2950 2951 error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR); 2952 if (error != 0) { 2953 KASSERT(SOLISTENING(so), 2954 ("%s: soiolock(%p) failed", __func__, so)); 2955 return; 2956 } 2957 2958 pr = so->so_proto; 2959 if (pr->pr_flags & PR_RIGHTS) { 2960 MPASS(pr->pr_domain->dom_dispose != NULL); 2961 (*pr->pr_domain->dom_dispose)(so); 2962 } else { 2963 sbrelease(so, SO_RCV); 2964 SOCK_IO_RECV_UNLOCK(so); 2965 } 2966 2967 } 2968 2969 /* 2970 * Wrapper for Socket established helper hook. 2971 * Parameters: socket, context of the hook point, hook id. 2972 */ 2973 static int inline 2974 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id) 2975 { 2976 struct socket_hhook_data hhook_data = { 2977 .so = so, 2978 .hctx = hctx, 2979 .m = NULL, 2980 .status = 0 2981 }; 2982 2983 CURVNET_SET(so->so_vnet); 2984 HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd); 2985 CURVNET_RESTORE(); 2986 2987 /* Ugly but needed, since hhooks return void for now */ 2988 return (hhook_data.status); 2989 } 2990 2991 /* 2992 * Perhaps this routine, and sooptcopyout(), below, ought to come in an 2993 * additional variant to handle the case where the option value needs to be 2994 * some kind of integer, but not a specific size. In addition to their use 2995 * here, these functions are also called by the protocol-level pr_ctloutput() 2996 * routines. 2997 */ 2998 int 2999 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen) 3000 { 3001 size_t valsize; 3002 3003 /* 3004 * If the user gives us more than we wanted, we ignore it, but if we 3005 * don't get the minimum length the caller wants, we return EINVAL. 3006 * On success, sopt->sopt_valsize is set to however much we actually 3007 * retrieved. 3008 */ 3009 if ((valsize = sopt->sopt_valsize) < minlen) 3010 return EINVAL; 3011 if (valsize > len) 3012 sopt->sopt_valsize = valsize = len; 3013 3014 if (sopt->sopt_td != NULL) 3015 return (copyin(sopt->sopt_val, buf, valsize)); 3016 3017 bcopy(sopt->sopt_val, buf, valsize); 3018 return (0); 3019 } 3020 3021 /* 3022 * Kernel version of setsockopt(2). 3023 * 3024 * XXX: optlen is size_t, not socklen_t 3025 */ 3026 int 3027 so_setsockopt(struct socket *so, int level, int optname, void *optval, 3028 size_t optlen) 3029 { 3030 struct sockopt sopt; 3031 3032 sopt.sopt_level = level; 3033 sopt.sopt_name = optname; 3034 sopt.sopt_dir = SOPT_SET; 3035 sopt.sopt_val = optval; 3036 sopt.sopt_valsize = optlen; 3037 sopt.sopt_td = NULL; 3038 return (sosetopt(so, &sopt)); 3039 } 3040 3041 int 3042 sosetopt(struct socket *so, struct sockopt *sopt) 3043 { 3044 int error, optval; 3045 struct linger l; 3046 struct timeval tv; 3047 sbintime_t val; 3048 uint32_t val32; 3049 #ifdef MAC 3050 struct mac extmac; 3051 #endif 3052 3053 CURVNET_SET(so->so_vnet); 3054 error = 0; 3055 if (sopt->sopt_level != SOL_SOCKET) { 3056 if (so->so_proto->pr_ctloutput != NULL) 3057 error = (*so->so_proto->pr_ctloutput)(so, sopt); 3058 else 3059 error = ENOPROTOOPT; 3060 } else { 3061 switch (sopt->sopt_name) { 3062 case SO_ACCEPTFILTER: 3063 error = accept_filt_setopt(so, sopt); 3064 if (error) 3065 goto bad; 3066 break; 3067 3068 case SO_LINGER: 3069 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 3070 if (error) 3071 goto bad; 3072 if (l.l_linger < 0 || 3073 l.l_linger > USHRT_MAX || 3074 l.l_linger > (INT_MAX / hz)) { 3075 error = EDOM; 3076 goto bad; 3077 } 3078 SOCK_LOCK(so); 3079 so->so_linger = l.l_linger; 3080 if (l.l_onoff) 3081 so->so_options |= SO_LINGER; 3082 else 3083 so->so_options &= ~SO_LINGER; 3084 SOCK_UNLOCK(so); 3085 break; 3086 3087 case SO_DEBUG: 3088 case SO_KEEPALIVE: 3089 case SO_DONTROUTE: 3090 case SO_USELOOPBACK: 3091 case SO_BROADCAST: 3092 case SO_REUSEADDR: 3093 case SO_REUSEPORT: 3094 case SO_REUSEPORT_LB: 3095 case SO_OOBINLINE: 3096 case SO_TIMESTAMP: 3097 case SO_BINTIME: 3098 case SO_NOSIGPIPE: 3099 case SO_NO_DDP: 3100 case SO_NO_OFFLOAD: 3101 case SO_RERROR: 3102 error = sooptcopyin(sopt, &optval, sizeof optval, 3103 sizeof optval); 3104 if (error) 3105 goto bad; 3106 SOCK_LOCK(so); 3107 if (optval) 3108 so->so_options |= sopt->sopt_name; 3109 else 3110 so->so_options &= ~sopt->sopt_name; 3111 SOCK_UNLOCK(so); 3112 break; 3113 3114 case SO_SETFIB: 3115 error = sooptcopyin(sopt, &optval, sizeof optval, 3116 sizeof optval); 3117 if (error) 3118 goto bad; 3119 3120 if (optval < 0 || optval >= rt_numfibs) { 3121 error = EINVAL; 3122 goto bad; 3123 } 3124 if (((so->so_proto->pr_domain->dom_family == PF_INET) || 3125 (so->so_proto->pr_domain->dom_family == PF_INET6) || 3126 (so->so_proto->pr_domain->dom_family == PF_ROUTE))) 3127 so->so_fibnum = optval; 3128 else 3129 so->so_fibnum = 0; 3130 break; 3131 3132 case SO_USER_COOKIE: 3133 error = sooptcopyin(sopt, &val32, sizeof val32, 3134 sizeof val32); 3135 if (error) 3136 goto bad; 3137 so->so_user_cookie = val32; 3138 break; 3139 3140 case SO_SNDBUF: 3141 case SO_RCVBUF: 3142 case SO_SNDLOWAT: 3143 case SO_RCVLOWAT: 3144 error = sooptcopyin(sopt, &optval, sizeof optval, 3145 sizeof optval); 3146 if (error) 3147 goto bad; 3148 3149 /* 3150 * Values < 1 make no sense for any of these options, 3151 * so disallow them. 3152 */ 3153 if (optval < 1) { 3154 error = EINVAL; 3155 goto bad; 3156 } 3157 3158 error = sbsetopt(so, sopt->sopt_name, optval); 3159 break; 3160 3161 case SO_SNDTIMEO: 3162 case SO_RCVTIMEO: 3163 #ifdef COMPAT_FREEBSD32 3164 if (SV_CURPROC_FLAG(SV_ILP32)) { 3165 struct timeval32 tv32; 3166 3167 error = sooptcopyin(sopt, &tv32, sizeof tv32, 3168 sizeof tv32); 3169 CP(tv32, tv, tv_sec); 3170 CP(tv32, tv, tv_usec); 3171 } else 3172 #endif 3173 error = sooptcopyin(sopt, &tv, sizeof tv, 3174 sizeof tv); 3175 if (error) 3176 goto bad; 3177 if (tv.tv_sec < 0 || tv.tv_usec < 0 || 3178 tv.tv_usec >= 1000000) { 3179 error = EDOM; 3180 goto bad; 3181 } 3182 if (tv.tv_sec > INT32_MAX) 3183 val = SBT_MAX; 3184 else 3185 val = tvtosbt(tv); 3186 switch (sopt->sopt_name) { 3187 case SO_SNDTIMEO: 3188 so->so_snd.sb_timeo = val; 3189 break; 3190 case SO_RCVTIMEO: 3191 so->so_rcv.sb_timeo = val; 3192 break; 3193 } 3194 break; 3195 3196 case SO_LABEL: 3197 #ifdef MAC 3198 error = sooptcopyin(sopt, &extmac, sizeof extmac, 3199 sizeof extmac); 3200 if (error) 3201 goto bad; 3202 error = mac_setsockopt_label(sopt->sopt_td->td_ucred, 3203 so, &extmac); 3204 #else 3205 error = EOPNOTSUPP; 3206 #endif 3207 break; 3208 3209 case SO_TS_CLOCK: 3210 error = sooptcopyin(sopt, &optval, sizeof optval, 3211 sizeof optval); 3212 if (error) 3213 goto bad; 3214 if (optval < 0 || optval > SO_TS_CLOCK_MAX) { 3215 error = EINVAL; 3216 goto bad; 3217 } 3218 so->so_ts_clock = optval; 3219 break; 3220 3221 case SO_MAX_PACING_RATE: 3222 error = sooptcopyin(sopt, &val32, sizeof(val32), 3223 sizeof(val32)); 3224 if (error) 3225 goto bad; 3226 so->so_max_pacing_rate = val32; 3227 break; 3228 3229 default: 3230 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 3231 error = hhook_run_socket(so, sopt, 3232 HHOOK_SOCKET_OPT); 3233 else 3234 error = ENOPROTOOPT; 3235 break; 3236 } 3237 if (error == 0 && so->so_proto->pr_ctloutput != NULL) 3238 (void)(*so->so_proto->pr_ctloutput)(so, sopt); 3239 } 3240 bad: 3241 CURVNET_RESTORE(); 3242 return (error); 3243 } 3244 3245 /* 3246 * Helper routine for getsockopt. 3247 */ 3248 int 3249 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 3250 { 3251 int error; 3252 size_t valsize; 3253 3254 error = 0; 3255 3256 /* 3257 * Documented get behavior is that we always return a value, possibly 3258 * truncated to fit in the user's buffer. Traditional behavior is 3259 * that we always tell the user precisely how much we copied, rather 3260 * than something useful like the total amount we had available for 3261 * her. Note that this interface is not idempotent; the entire 3262 * answer must be generated ahead of time. 3263 */ 3264 valsize = min(len, sopt->sopt_valsize); 3265 sopt->sopt_valsize = valsize; 3266 if (sopt->sopt_val != NULL) { 3267 if (sopt->sopt_td != NULL) 3268 error = copyout(buf, sopt->sopt_val, valsize); 3269 else 3270 bcopy(buf, sopt->sopt_val, valsize); 3271 } 3272 return (error); 3273 } 3274 3275 int 3276 sogetopt(struct socket *so, struct sockopt *sopt) 3277 { 3278 int error, optval; 3279 struct linger l; 3280 struct timeval tv; 3281 #ifdef MAC 3282 struct mac extmac; 3283 #endif 3284 3285 CURVNET_SET(so->so_vnet); 3286 error = 0; 3287 if (sopt->sopt_level != SOL_SOCKET) { 3288 if (so->so_proto->pr_ctloutput != NULL) 3289 error = (*so->so_proto->pr_ctloutput)(so, sopt); 3290 else 3291 error = ENOPROTOOPT; 3292 CURVNET_RESTORE(); 3293 return (error); 3294 } else { 3295 switch (sopt->sopt_name) { 3296 case SO_ACCEPTFILTER: 3297 error = accept_filt_getopt(so, sopt); 3298 break; 3299 3300 case SO_LINGER: 3301 SOCK_LOCK(so); 3302 l.l_onoff = so->so_options & SO_LINGER; 3303 l.l_linger = so->so_linger; 3304 SOCK_UNLOCK(so); 3305 error = sooptcopyout(sopt, &l, sizeof l); 3306 break; 3307 3308 case SO_USELOOPBACK: 3309 case SO_DONTROUTE: 3310 case SO_DEBUG: 3311 case SO_KEEPALIVE: 3312 case SO_REUSEADDR: 3313 case SO_REUSEPORT: 3314 case SO_REUSEPORT_LB: 3315 case SO_BROADCAST: 3316 case SO_OOBINLINE: 3317 case SO_ACCEPTCONN: 3318 case SO_TIMESTAMP: 3319 case SO_BINTIME: 3320 case SO_NOSIGPIPE: 3321 case SO_NO_DDP: 3322 case SO_NO_OFFLOAD: 3323 case SO_RERROR: 3324 optval = so->so_options & sopt->sopt_name; 3325 integer: 3326 error = sooptcopyout(sopt, &optval, sizeof optval); 3327 break; 3328 3329 case SO_DOMAIN: 3330 optval = so->so_proto->pr_domain->dom_family; 3331 goto integer; 3332 3333 case SO_TYPE: 3334 optval = so->so_type; 3335 goto integer; 3336 3337 case SO_PROTOCOL: 3338 optval = so->so_proto->pr_protocol; 3339 goto integer; 3340 3341 case SO_ERROR: 3342 SOCK_LOCK(so); 3343 if (so->so_error) { 3344 optval = so->so_error; 3345 so->so_error = 0; 3346 } else { 3347 optval = so->so_rerror; 3348 so->so_rerror = 0; 3349 } 3350 SOCK_UNLOCK(so); 3351 goto integer; 3352 3353 case SO_SNDBUF: 3354 optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat : 3355 so->so_snd.sb_hiwat; 3356 goto integer; 3357 3358 case SO_RCVBUF: 3359 optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat : 3360 so->so_rcv.sb_hiwat; 3361 goto integer; 3362 3363 case SO_SNDLOWAT: 3364 optval = SOLISTENING(so) ? so->sol_sbsnd_lowat : 3365 so->so_snd.sb_lowat; 3366 goto integer; 3367 3368 case SO_RCVLOWAT: 3369 optval = SOLISTENING(so) ? so->sol_sbrcv_lowat : 3370 so->so_rcv.sb_lowat; 3371 goto integer; 3372 3373 case SO_SNDTIMEO: 3374 case SO_RCVTIMEO: 3375 tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ? 3376 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 3377 #ifdef COMPAT_FREEBSD32 3378 if (SV_CURPROC_FLAG(SV_ILP32)) { 3379 struct timeval32 tv32; 3380 3381 CP(tv, tv32, tv_sec); 3382 CP(tv, tv32, tv_usec); 3383 error = sooptcopyout(sopt, &tv32, sizeof tv32); 3384 } else 3385 #endif 3386 error = sooptcopyout(sopt, &tv, sizeof tv); 3387 break; 3388 3389 case SO_LABEL: 3390 #ifdef MAC 3391 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 3392 sizeof(extmac)); 3393 if (error) 3394 goto bad; 3395 error = mac_getsockopt_label(sopt->sopt_td->td_ucred, 3396 so, &extmac); 3397 if (error) 3398 goto bad; 3399 error = sooptcopyout(sopt, &extmac, sizeof extmac); 3400 #else 3401 error = EOPNOTSUPP; 3402 #endif 3403 break; 3404 3405 case SO_PEERLABEL: 3406 #ifdef MAC 3407 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 3408 sizeof(extmac)); 3409 if (error) 3410 goto bad; 3411 error = mac_getsockopt_peerlabel( 3412 sopt->sopt_td->td_ucred, so, &extmac); 3413 if (error) 3414 goto bad; 3415 error = sooptcopyout(sopt, &extmac, sizeof extmac); 3416 #else 3417 error = EOPNOTSUPP; 3418 #endif 3419 break; 3420 3421 case SO_LISTENQLIMIT: 3422 optval = SOLISTENING(so) ? so->sol_qlimit : 0; 3423 goto integer; 3424 3425 case SO_LISTENQLEN: 3426 optval = SOLISTENING(so) ? so->sol_qlen : 0; 3427 goto integer; 3428 3429 case SO_LISTENINCQLEN: 3430 optval = SOLISTENING(so) ? so->sol_incqlen : 0; 3431 goto integer; 3432 3433 case SO_TS_CLOCK: 3434 optval = so->so_ts_clock; 3435 goto integer; 3436 3437 case SO_MAX_PACING_RATE: 3438 optval = so->so_max_pacing_rate; 3439 goto integer; 3440 3441 default: 3442 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 3443 error = hhook_run_socket(so, sopt, 3444 HHOOK_SOCKET_OPT); 3445 else 3446 error = ENOPROTOOPT; 3447 break; 3448 } 3449 } 3450 #ifdef MAC 3451 bad: 3452 #endif 3453 CURVNET_RESTORE(); 3454 return (error); 3455 } 3456 3457 int 3458 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 3459 { 3460 struct mbuf *m, *m_prev; 3461 int sopt_size = sopt->sopt_valsize; 3462 3463 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 3464 if (m == NULL) 3465 return ENOBUFS; 3466 if (sopt_size > MLEN) { 3467 MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT); 3468 if ((m->m_flags & M_EXT) == 0) { 3469 m_free(m); 3470 return ENOBUFS; 3471 } 3472 m->m_len = min(MCLBYTES, sopt_size); 3473 } else { 3474 m->m_len = min(MLEN, sopt_size); 3475 } 3476 sopt_size -= m->m_len; 3477 *mp = m; 3478 m_prev = m; 3479 3480 while (sopt_size) { 3481 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 3482 if (m == NULL) { 3483 m_freem(*mp); 3484 return ENOBUFS; 3485 } 3486 if (sopt_size > MLEN) { 3487 MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK : 3488 M_NOWAIT); 3489 if ((m->m_flags & M_EXT) == 0) { 3490 m_freem(m); 3491 m_freem(*mp); 3492 return ENOBUFS; 3493 } 3494 m->m_len = min(MCLBYTES, sopt_size); 3495 } else { 3496 m->m_len = min(MLEN, sopt_size); 3497 } 3498 sopt_size -= m->m_len; 3499 m_prev->m_next = m; 3500 m_prev = m; 3501 } 3502 return (0); 3503 } 3504 3505 int 3506 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 3507 { 3508 struct mbuf *m0 = m; 3509 3510 if (sopt->sopt_val == NULL) 3511 return (0); 3512 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 3513 if (sopt->sopt_td != NULL) { 3514 int error; 3515 3516 error = copyin(sopt->sopt_val, mtod(m, char *), 3517 m->m_len); 3518 if (error != 0) { 3519 m_freem(m0); 3520 return(error); 3521 } 3522 } else 3523 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 3524 sopt->sopt_valsize -= m->m_len; 3525 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 3526 m = m->m_next; 3527 } 3528 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 3529 panic("ip6_sooptmcopyin"); 3530 return (0); 3531 } 3532 3533 int 3534 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 3535 { 3536 struct mbuf *m0 = m; 3537 size_t valsize = 0; 3538 3539 if (sopt->sopt_val == NULL) 3540 return (0); 3541 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 3542 if (sopt->sopt_td != NULL) { 3543 int error; 3544 3545 error = copyout(mtod(m, char *), sopt->sopt_val, 3546 m->m_len); 3547 if (error != 0) { 3548 m_freem(m0); 3549 return(error); 3550 } 3551 } else 3552 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 3553 sopt->sopt_valsize -= m->m_len; 3554 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 3555 valsize += m->m_len; 3556 m = m->m_next; 3557 } 3558 if (m != NULL) { 3559 /* enough soopt buffer should be given from user-land */ 3560 m_freem(m0); 3561 return(EINVAL); 3562 } 3563 sopt->sopt_valsize = valsize; 3564 return (0); 3565 } 3566 3567 /* 3568 * sohasoutofband(): protocol notifies socket layer of the arrival of new 3569 * out-of-band data, which will then notify socket consumers. 3570 */ 3571 void 3572 sohasoutofband(struct socket *so) 3573 { 3574 3575 if (so->so_sigio != NULL) 3576 pgsigio(&so->so_sigio, SIGURG, 0); 3577 selwakeuppri(&so->so_rdsel, PSOCK); 3578 } 3579 3580 int 3581 sopoll(struct socket *so, int events, struct ucred *active_cred, 3582 struct thread *td) 3583 { 3584 3585 /* 3586 * We do not need to set or assert curvnet as long as everyone uses 3587 * sopoll_generic(). 3588 */ 3589 return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred, 3590 td)); 3591 } 3592 3593 int 3594 sopoll_generic(struct socket *so, int events, struct ucred *active_cred, 3595 struct thread *td) 3596 { 3597 int revents; 3598 3599 SOCK_LOCK(so); 3600 if (SOLISTENING(so)) { 3601 if (!(events & (POLLIN | POLLRDNORM))) 3602 revents = 0; 3603 else if (!TAILQ_EMPTY(&so->sol_comp)) 3604 revents = events & (POLLIN | POLLRDNORM); 3605 else if ((events & POLLINIGNEOF) == 0 && so->so_error) 3606 revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP; 3607 else { 3608 selrecord(td, &so->so_rdsel); 3609 revents = 0; 3610 } 3611 } else { 3612 revents = 0; 3613 SOCK_SENDBUF_LOCK(so); 3614 SOCK_RECVBUF_LOCK(so); 3615 if (events & (POLLIN | POLLRDNORM)) 3616 if (soreadabledata(so)) 3617 revents |= events & (POLLIN | POLLRDNORM); 3618 if (events & (POLLOUT | POLLWRNORM)) 3619 if (sowriteable(so)) 3620 revents |= events & (POLLOUT | POLLWRNORM); 3621 if (events & (POLLPRI | POLLRDBAND)) 3622 if (so->so_oobmark || 3623 (so->so_rcv.sb_state & SBS_RCVATMARK)) 3624 revents |= events & (POLLPRI | POLLRDBAND); 3625 if ((events & POLLINIGNEOF) == 0) { 3626 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3627 revents |= events & (POLLIN | POLLRDNORM); 3628 if (so->so_snd.sb_state & SBS_CANTSENDMORE) 3629 revents |= POLLHUP; 3630 } 3631 } 3632 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) 3633 revents |= events & POLLRDHUP; 3634 if (revents == 0) { 3635 if (events & 3636 (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND | POLLRDHUP)) { 3637 selrecord(td, &so->so_rdsel); 3638 so->so_rcv.sb_flags |= SB_SEL; 3639 } 3640 if (events & (POLLOUT | POLLWRNORM)) { 3641 selrecord(td, &so->so_wrsel); 3642 so->so_snd.sb_flags |= SB_SEL; 3643 } 3644 } 3645 SOCK_RECVBUF_UNLOCK(so); 3646 SOCK_SENDBUF_UNLOCK(so); 3647 } 3648 SOCK_UNLOCK(so); 3649 return (revents); 3650 } 3651 3652 int 3653 soo_kqfilter(struct file *fp, struct knote *kn) 3654 { 3655 struct socket *so = kn->kn_fp->f_data; 3656 struct sockbuf *sb; 3657 struct knlist *knl; 3658 3659 switch (kn->kn_filter) { 3660 case EVFILT_READ: 3661 kn->kn_fop = &soread_filtops; 3662 knl = &so->so_rdsel.si_note; 3663 sb = &so->so_rcv; 3664 break; 3665 case EVFILT_WRITE: 3666 kn->kn_fop = &sowrite_filtops; 3667 knl = &so->so_wrsel.si_note; 3668 sb = &so->so_snd; 3669 break; 3670 case EVFILT_EMPTY: 3671 kn->kn_fop = &soempty_filtops; 3672 knl = &so->so_wrsel.si_note; 3673 sb = &so->so_snd; 3674 break; 3675 default: 3676 return (EINVAL); 3677 } 3678 3679 SOCK_LOCK(so); 3680 if (SOLISTENING(so)) { 3681 knlist_add(knl, kn, 1); 3682 } else { 3683 SOCKBUF_LOCK(sb); 3684 knlist_add(knl, kn, 1); 3685 sb->sb_flags |= SB_KNOTE; 3686 SOCKBUF_UNLOCK(sb); 3687 } 3688 SOCK_UNLOCK(so); 3689 return (0); 3690 } 3691 3692 /* 3693 * Some routines that return EOPNOTSUPP for entry points that are not 3694 * supported by a protocol. Fill in as needed. 3695 */ 3696 int 3697 pru_accept_notsupp(struct socket *so, struct sockaddr **nam) 3698 { 3699 3700 return EOPNOTSUPP; 3701 } 3702 3703 int 3704 pru_aio_queue_notsupp(struct socket *so, struct kaiocb *job) 3705 { 3706 3707 return EOPNOTSUPP; 3708 } 3709 3710 int 3711 pru_attach_notsupp(struct socket *so, int proto, struct thread *td) 3712 { 3713 3714 return EOPNOTSUPP; 3715 } 3716 3717 int 3718 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 3719 { 3720 3721 return EOPNOTSUPP; 3722 } 3723 3724 int 3725 pru_bindat_notsupp(int fd, struct socket *so, struct sockaddr *nam, 3726 struct thread *td) 3727 { 3728 3729 return EOPNOTSUPP; 3730 } 3731 3732 int 3733 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 3734 { 3735 3736 return EOPNOTSUPP; 3737 } 3738 3739 int 3740 pru_connectat_notsupp(int fd, struct socket *so, struct sockaddr *nam, 3741 struct thread *td) 3742 { 3743 3744 return EOPNOTSUPP; 3745 } 3746 3747 int 3748 pru_connect2_notsupp(struct socket *so1, struct socket *so2) 3749 { 3750 3751 return EOPNOTSUPP; 3752 } 3753 3754 int 3755 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, 3756 struct ifnet *ifp, struct thread *td) 3757 { 3758 3759 return EOPNOTSUPP; 3760 } 3761 3762 int 3763 pru_disconnect_notsupp(struct socket *so) 3764 { 3765 3766 return EOPNOTSUPP; 3767 } 3768 3769 int 3770 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td) 3771 { 3772 3773 return EOPNOTSUPP; 3774 } 3775 3776 int 3777 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam) 3778 { 3779 3780 return EOPNOTSUPP; 3781 } 3782 3783 int 3784 pru_rcvd_notsupp(struct socket *so, int flags) 3785 { 3786 3787 return EOPNOTSUPP; 3788 } 3789 3790 int 3791 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) 3792 { 3793 3794 return EOPNOTSUPP; 3795 } 3796 3797 int 3798 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m, 3799 struct sockaddr *addr, struct mbuf *control, struct thread *td) 3800 { 3801 3802 if (control != NULL) 3803 m_freem(control); 3804 if ((flags & PRUS_NOTREADY) == 0) 3805 m_freem(m); 3806 return (EOPNOTSUPP); 3807 } 3808 3809 int 3810 pru_ready_notsupp(struct socket *so, struct mbuf *m, int count) 3811 { 3812 3813 return (EOPNOTSUPP); 3814 } 3815 3816 /* 3817 * This isn't really a ``null'' operation, but it's the default one and 3818 * doesn't do anything destructive. 3819 */ 3820 int 3821 pru_sense_null(struct socket *so, struct stat *sb) 3822 { 3823 3824 sb->st_blksize = so->so_snd.sb_hiwat; 3825 return 0; 3826 } 3827 3828 int 3829 pru_shutdown_notsupp(struct socket *so) 3830 { 3831 3832 return EOPNOTSUPP; 3833 } 3834 3835 int 3836 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam) 3837 { 3838 3839 return EOPNOTSUPP; 3840 } 3841 3842 int 3843 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio, 3844 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 3845 { 3846 3847 return EOPNOTSUPP; 3848 } 3849 3850 int 3851 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr, 3852 struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 3853 { 3854 3855 return EOPNOTSUPP; 3856 } 3857 3858 int 3859 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred, 3860 struct thread *td) 3861 { 3862 3863 return EOPNOTSUPP; 3864 } 3865 3866 static void 3867 filt_sordetach(struct knote *kn) 3868 { 3869 struct socket *so = kn->kn_fp->f_data; 3870 3871 so_rdknl_lock(so); 3872 knlist_remove(&so->so_rdsel.si_note, kn, 1); 3873 if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note)) 3874 so->so_rcv.sb_flags &= ~SB_KNOTE; 3875 so_rdknl_unlock(so); 3876 } 3877 3878 /*ARGSUSED*/ 3879 static int 3880 filt_soread(struct knote *kn, long hint) 3881 { 3882 struct socket *so; 3883 3884 so = kn->kn_fp->f_data; 3885 3886 if (SOLISTENING(so)) { 3887 SOCK_LOCK_ASSERT(so); 3888 kn->kn_data = so->sol_qlen; 3889 if (so->so_error) { 3890 kn->kn_flags |= EV_EOF; 3891 kn->kn_fflags = so->so_error; 3892 return (1); 3893 } 3894 return (!TAILQ_EMPTY(&so->sol_comp)); 3895 } 3896 3897 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 3898 3899 kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl; 3900 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3901 kn->kn_flags |= EV_EOF; 3902 kn->kn_fflags = so->so_error; 3903 return (1); 3904 } else if (so->so_error || so->so_rerror) 3905 return (1); 3906 3907 if (kn->kn_sfflags & NOTE_LOWAT) { 3908 if (kn->kn_data >= kn->kn_sdata) 3909 return (1); 3910 } else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat) 3911 return (1); 3912 3913 /* This hook returning non-zero indicates an event, not error */ 3914 return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD)); 3915 } 3916 3917 static void 3918 filt_sowdetach(struct knote *kn) 3919 { 3920 struct socket *so = kn->kn_fp->f_data; 3921 3922 so_wrknl_lock(so); 3923 knlist_remove(&so->so_wrsel.si_note, kn, 1); 3924 if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note)) 3925 so->so_snd.sb_flags &= ~SB_KNOTE; 3926 so_wrknl_unlock(so); 3927 } 3928 3929 /*ARGSUSED*/ 3930 static int 3931 filt_sowrite(struct knote *kn, long hint) 3932 { 3933 struct socket *so; 3934 3935 so = kn->kn_fp->f_data; 3936 3937 if (SOLISTENING(so)) 3938 return (0); 3939 3940 SOCKBUF_LOCK_ASSERT(&so->so_snd); 3941 kn->kn_data = sbspace(&so->so_snd); 3942 3943 hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE); 3944 3945 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 3946 kn->kn_flags |= EV_EOF; 3947 kn->kn_fflags = so->so_error; 3948 return (1); 3949 } else if (so->so_error) /* temporary udp error */ 3950 return (1); 3951 else if (((so->so_state & SS_ISCONNECTED) == 0) && 3952 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 3953 return (0); 3954 else if (kn->kn_sfflags & NOTE_LOWAT) 3955 return (kn->kn_data >= kn->kn_sdata); 3956 else 3957 return (kn->kn_data >= so->so_snd.sb_lowat); 3958 } 3959 3960 static int 3961 filt_soempty(struct knote *kn, long hint) 3962 { 3963 struct socket *so; 3964 3965 so = kn->kn_fp->f_data; 3966 3967 if (SOLISTENING(so)) 3968 return (1); 3969 3970 SOCKBUF_LOCK_ASSERT(&so->so_snd); 3971 kn->kn_data = sbused(&so->so_snd); 3972 3973 if (kn->kn_data == 0) 3974 return (1); 3975 else 3976 return (0); 3977 } 3978 3979 int 3980 socheckuid(struct socket *so, uid_t uid) 3981 { 3982 3983 if (so == NULL) 3984 return (EPERM); 3985 if (so->so_cred->cr_uid != uid) 3986 return (EPERM); 3987 return (0); 3988 } 3989 3990 /* 3991 * These functions are used by protocols to notify the socket layer (and its 3992 * consumers) of state changes in the sockets driven by protocol-side events. 3993 */ 3994 3995 /* 3996 * Procedures to manipulate state flags of socket and do appropriate wakeups. 3997 * 3998 * Normal sequence from the active (originating) side is that 3999 * soisconnecting() is called during processing of connect() call, resulting 4000 * in an eventual call to soisconnected() if/when the connection is 4001 * established. When the connection is torn down soisdisconnecting() is 4002 * called during processing of disconnect() call, and soisdisconnected() is 4003 * called when the connection to the peer is totally severed. The semantics 4004 * of these routines are such that connectionless protocols can call 4005 * soisconnected() and soisdisconnected() only, bypassing the in-progress 4006 * calls when setting up a ``connection'' takes no time. 4007 * 4008 * From the passive side, a socket is created with two queues of sockets: 4009 * so_incomp for connections in progress and so_comp for connections already 4010 * made and awaiting user acceptance. As a protocol is preparing incoming 4011 * connections, it creates a socket structure queued on so_incomp by calling 4012 * sonewconn(). When the connection is established, soisconnected() is 4013 * called, and transfers the socket structure to so_comp, making it available 4014 * to accept(). 4015 * 4016 * If a socket is closed with sockets on either so_incomp or so_comp, these 4017 * sockets are dropped. 4018 * 4019 * If higher-level protocols are implemented in the kernel, the wakeups done 4020 * here will sometimes cause software-interrupt process scheduling. 4021 */ 4022 void 4023 soisconnecting(struct socket *so) 4024 { 4025 4026 SOCK_LOCK(so); 4027 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 4028 so->so_state |= SS_ISCONNECTING; 4029 SOCK_UNLOCK(so); 4030 } 4031 4032 void 4033 soisconnected(struct socket *so) 4034 { 4035 bool last __diagused; 4036 4037 SOCK_LOCK(so); 4038 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 4039 so->so_state |= SS_ISCONNECTED; 4040 4041 if (so->so_qstate == SQ_INCOMP) { 4042 struct socket *head = so->so_listen; 4043 int ret; 4044 4045 KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so)); 4046 /* 4047 * Promoting a socket from incomplete queue to complete, we 4048 * need to go through reverse order of locking. We first do 4049 * trylock, and if that doesn't succeed, we go the hard way 4050 * leaving a reference and rechecking consistency after proper 4051 * locking. 4052 */ 4053 if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) { 4054 soref(head); 4055 SOCK_UNLOCK(so); 4056 SOLISTEN_LOCK(head); 4057 SOCK_LOCK(so); 4058 if (__predict_false(head != so->so_listen)) { 4059 /* 4060 * The socket went off the listen queue, 4061 * should be lost race to close(2) of sol. 4062 * The socket is about to soabort(). 4063 */ 4064 SOCK_UNLOCK(so); 4065 sorele_locked(head); 4066 return; 4067 } 4068 last = refcount_release(&head->so_count); 4069 KASSERT(!last, ("%s: released last reference for %p", 4070 __func__, head)); 4071 } 4072 again: 4073 if ((so->so_options & SO_ACCEPTFILTER) == 0) { 4074 TAILQ_REMOVE(&head->sol_incomp, so, so_list); 4075 head->sol_incqlen--; 4076 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 4077 head->sol_qlen++; 4078 so->so_qstate = SQ_COMP; 4079 SOCK_UNLOCK(so); 4080 solisten_wakeup(head); /* unlocks */ 4081 } else { 4082 SOCKBUF_LOCK(&so->so_rcv); 4083 soupcall_set(so, SO_RCV, 4084 head->sol_accept_filter->accf_callback, 4085 head->sol_accept_filter_arg); 4086 so->so_options &= ~SO_ACCEPTFILTER; 4087 ret = head->sol_accept_filter->accf_callback(so, 4088 head->sol_accept_filter_arg, M_NOWAIT); 4089 if (ret == SU_ISCONNECTED) { 4090 soupcall_clear(so, SO_RCV); 4091 SOCKBUF_UNLOCK(&so->so_rcv); 4092 goto again; 4093 } 4094 SOCKBUF_UNLOCK(&so->so_rcv); 4095 SOCK_UNLOCK(so); 4096 SOLISTEN_UNLOCK(head); 4097 } 4098 return; 4099 } 4100 SOCK_UNLOCK(so); 4101 wakeup(&so->so_timeo); 4102 sorwakeup(so); 4103 sowwakeup(so); 4104 } 4105 4106 void 4107 soisdisconnecting(struct socket *so) 4108 { 4109 4110 SOCK_LOCK(so); 4111 so->so_state &= ~SS_ISCONNECTING; 4112 so->so_state |= SS_ISDISCONNECTING; 4113 4114 if (!SOLISTENING(so)) { 4115 SOCKBUF_LOCK(&so->so_rcv); 4116 socantrcvmore_locked(so); 4117 SOCKBUF_LOCK(&so->so_snd); 4118 socantsendmore_locked(so); 4119 } 4120 SOCK_UNLOCK(so); 4121 wakeup(&so->so_timeo); 4122 } 4123 4124 void 4125 soisdisconnected(struct socket *so) 4126 { 4127 4128 SOCK_LOCK(so); 4129 4130 /* 4131 * There is at least one reader of so_state that does not 4132 * acquire socket lock, namely soreceive_generic(). Ensure 4133 * that it never sees all flags that track connection status 4134 * cleared, by ordering the update with a barrier semantic of 4135 * our release thread fence. 4136 */ 4137 so->so_state |= SS_ISDISCONNECTED; 4138 atomic_thread_fence_rel(); 4139 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 4140 4141 if (!SOLISTENING(so)) { 4142 SOCK_UNLOCK(so); 4143 SOCKBUF_LOCK(&so->so_rcv); 4144 socantrcvmore_locked(so); 4145 SOCKBUF_LOCK(&so->so_snd); 4146 sbdrop_locked(&so->so_snd, sbused(&so->so_snd)); 4147 socantsendmore_locked(so); 4148 } else 4149 SOCK_UNLOCK(so); 4150 wakeup(&so->so_timeo); 4151 } 4152 4153 int 4154 soiolock(struct socket *so, struct sx *sx, int flags) 4155 { 4156 int error; 4157 4158 KASSERT((flags & SBL_VALID) == flags, 4159 ("soiolock: invalid flags %#x", flags)); 4160 4161 if ((flags & SBL_WAIT) != 0) { 4162 if ((flags & SBL_NOINTR) != 0) { 4163 sx_xlock(sx); 4164 } else { 4165 error = sx_xlock_sig(sx); 4166 if (error != 0) 4167 return (error); 4168 } 4169 } else if (!sx_try_xlock(sx)) { 4170 return (EWOULDBLOCK); 4171 } 4172 4173 if (__predict_false(SOLISTENING(so))) { 4174 sx_xunlock(sx); 4175 return (ENOTCONN); 4176 } 4177 return (0); 4178 } 4179 4180 void 4181 soiounlock(struct sx *sx) 4182 { 4183 sx_xunlock(sx); 4184 } 4185 4186 /* 4187 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 4188 */ 4189 struct sockaddr * 4190 sodupsockaddr(const struct sockaddr *sa, int mflags) 4191 { 4192 struct sockaddr *sa2; 4193 4194 sa2 = malloc(sa->sa_len, M_SONAME, mflags); 4195 if (sa2) 4196 bcopy(sa, sa2, sa->sa_len); 4197 return sa2; 4198 } 4199 4200 /* 4201 * Register per-socket destructor. 4202 */ 4203 void 4204 sodtor_set(struct socket *so, so_dtor_t *func) 4205 { 4206 4207 SOCK_LOCK_ASSERT(so); 4208 so->so_dtor = func; 4209 } 4210 4211 /* 4212 * Register per-socket buffer upcalls. 4213 */ 4214 void 4215 soupcall_set(struct socket *so, sb_which which, so_upcall_t func, void *arg) 4216 { 4217 struct sockbuf *sb; 4218 4219 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 4220 4221 switch (which) { 4222 case SO_RCV: 4223 sb = &so->so_rcv; 4224 break; 4225 case SO_SND: 4226 sb = &so->so_snd; 4227 break; 4228 default: 4229 panic("soupcall_set: bad which"); 4230 } 4231 SOCKBUF_LOCK_ASSERT(sb); 4232 sb->sb_upcall = func; 4233 sb->sb_upcallarg = arg; 4234 sb->sb_flags |= SB_UPCALL; 4235 } 4236 4237 void 4238 soupcall_clear(struct socket *so, sb_which which) 4239 { 4240 struct sockbuf *sb; 4241 4242 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 4243 4244 switch (which) { 4245 case SO_RCV: 4246 sb = &so->so_rcv; 4247 break; 4248 case SO_SND: 4249 sb = &so->so_snd; 4250 break; 4251 } 4252 SOCKBUF_LOCK_ASSERT(sb); 4253 KASSERT(sb->sb_upcall != NULL, 4254 ("%s: so %p no upcall to clear", __func__, so)); 4255 sb->sb_upcall = NULL; 4256 sb->sb_upcallarg = NULL; 4257 sb->sb_flags &= ~SB_UPCALL; 4258 } 4259 4260 void 4261 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg) 4262 { 4263 4264 SOLISTEN_LOCK_ASSERT(so); 4265 so->sol_upcall = func; 4266 so->sol_upcallarg = arg; 4267 } 4268 4269 static void 4270 so_rdknl_lock(void *arg) 4271 { 4272 struct socket *so = arg; 4273 4274 if (SOLISTENING(so)) 4275 SOCK_LOCK(so); 4276 else 4277 SOCKBUF_LOCK(&so->so_rcv); 4278 } 4279 4280 static void 4281 so_rdknl_unlock(void *arg) 4282 { 4283 struct socket *so = arg; 4284 4285 if (SOLISTENING(so)) 4286 SOCK_UNLOCK(so); 4287 else 4288 SOCKBUF_UNLOCK(&so->so_rcv); 4289 } 4290 4291 static void 4292 so_rdknl_assert_lock(void *arg, int what) 4293 { 4294 struct socket *so = arg; 4295 4296 if (what == LA_LOCKED) { 4297 if (SOLISTENING(so)) 4298 SOCK_LOCK_ASSERT(so); 4299 else 4300 SOCK_RECVBUF_LOCK_ASSERT(so); 4301 } else { 4302 if (SOLISTENING(so)) 4303 SOCK_UNLOCK_ASSERT(so); 4304 else 4305 SOCK_RECVBUF_UNLOCK_ASSERT(so); 4306 } 4307 } 4308 4309 static void 4310 so_wrknl_lock(void *arg) 4311 { 4312 struct socket *so = arg; 4313 4314 if (SOLISTENING(so)) 4315 SOCK_LOCK(so); 4316 else 4317 SOCK_SENDBUF_LOCK(so); 4318 } 4319 4320 static void 4321 so_wrknl_unlock(void *arg) 4322 { 4323 struct socket *so = arg; 4324 4325 if (SOLISTENING(so)) 4326 SOCK_UNLOCK(so); 4327 else 4328 SOCK_SENDBUF_UNLOCK(so); 4329 } 4330 4331 static void 4332 so_wrknl_assert_lock(void *arg, int what) 4333 { 4334 struct socket *so = arg; 4335 4336 if (what == LA_LOCKED) { 4337 if (SOLISTENING(so)) 4338 SOCK_LOCK_ASSERT(so); 4339 else 4340 SOCK_SENDBUF_LOCK_ASSERT(so); 4341 } else { 4342 if (SOLISTENING(so)) 4343 SOCK_UNLOCK_ASSERT(so); 4344 else 4345 SOCK_SENDBUF_UNLOCK_ASSERT(so); 4346 } 4347 } 4348 4349 /* 4350 * Create an external-format (``xsocket'') structure using the information in 4351 * the kernel-format socket structure pointed to by so. This is done to 4352 * reduce the spew of irrelevant information over this interface, to isolate 4353 * user code from changes in the kernel structure, and potentially to provide 4354 * information-hiding if we decide that some of this information should be 4355 * hidden from users. 4356 */ 4357 void 4358 sotoxsocket(struct socket *so, struct xsocket *xso) 4359 { 4360 4361 bzero(xso, sizeof(*xso)); 4362 xso->xso_len = sizeof *xso; 4363 xso->xso_so = (uintptr_t)so; 4364 xso->so_type = so->so_type; 4365 xso->so_options = so->so_options; 4366 xso->so_linger = so->so_linger; 4367 xso->so_state = so->so_state; 4368 xso->so_pcb = (uintptr_t)so->so_pcb; 4369 xso->xso_protocol = so->so_proto->pr_protocol; 4370 xso->xso_family = so->so_proto->pr_domain->dom_family; 4371 xso->so_timeo = so->so_timeo; 4372 xso->so_error = so->so_error; 4373 xso->so_uid = so->so_cred->cr_uid; 4374 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 4375 if (SOLISTENING(so)) { 4376 xso->so_qlen = so->sol_qlen; 4377 xso->so_incqlen = so->sol_incqlen; 4378 xso->so_qlimit = so->sol_qlimit; 4379 xso->so_oobmark = 0; 4380 } else { 4381 xso->so_state |= so->so_qstate; 4382 xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0; 4383 xso->so_oobmark = so->so_oobmark; 4384 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 4385 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 4386 } 4387 } 4388 4389 struct sockbuf * 4390 so_sockbuf_rcv(struct socket *so) 4391 { 4392 4393 return (&so->so_rcv); 4394 } 4395 4396 struct sockbuf * 4397 so_sockbuf_snd(struct socket *so) 4398 { 4399 4400 return (&so->so_snd); 4401 } 4402 4403 int 4404 so_state_get(const struct socket *so) 4405 { 4406 4407 return (so->so_state); 4408 } 4409 4410 void 4411 so_state_set(struct socket *so, int val) 4412 { 4413 4414 so->so_state = val; 4415 } 4416 4417 int 4418 so_options_get(const struct socket *so) 4419 { 4420 4421 return (so->so_options); 4422 } 4423 4424 void 4425 so_options_set(struct socket *so, int val) 4426 { 4427 4428 so->so_options = val; 4429 } 4430 4431 int 4432 so_error_get(const struct socket *so) 4433 { 4434 4435 return (so->so_error); 4436 } 4437 4438 void 4439 so_error_set(struct socket *so, int val) 4440 { 4441 4442 so->so_error = val; 4443 } 4444 4445 int 4446 so_linger_get(const struct socket *so) 4447 { 4448 4449 return (so->so_linger); 4450 } 4451 4452 void 4453 so_linger_set(struct socket *so, int val) 4454 { 4455 4456 KASSERT(val >= 0 && val <= USHRT_MAX && val <= (INT_MAX / hz), 4457 ("%s: val %d out of range", __func__, val)); 4458 4459 so->so_linger = val; 4460 } 4461 4462 struct protosw * 4463 so_protosw_get(const struct socket *so) 4464 { 4465 4466 return (so->so_proto); 4467 } 4468 4469 void 4470 so_protosw_set(struct socket *so, struct protosw *val) 4471 { 4472 4473 so->so_proto = val; 4474 } 4475 4476 void 4477 so_sorwakeup(struct socket *so) 4478 { 4479 4480 sorwakeup(so); 4481 } 4482 4483 void 4484 so_sowwakeup(struct socket *so) 4485 { 4486 4487 sowwakeup(so); 4488 } 4489 4490 void 4491 so_sorwakeup_locked(struct socket *so) 4492 { 4493 4494 sorwakeup_locked(so); 4495 } 4496 4497 void 4498 so_sowwakeup_locked(struct socket *so) 4499 { 4500 4501 sowwakeup_locked(so); 4502 } 4503 4504 void 4505 so_lock(struct socket *so) 4506 { 4507 4508 SOCK_LOCK(so); 4509 } 4510 4511 void 4512 so_unlock(struct socket *so) 4513 { 4514 4515 SOCK_UNLOCK(so); 4516 } 4517