xref: /freebsd/sys/kern/uipc_socket.c (revision 38c63bdc46252d4d8cd313dff4183ec4546d26d9)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
5  *	The Regents of the University of California.
6  * Copyright (c) 2004 The FreeBSD Foundation
7  * Copyright (c) 2004-2008 Robert N. M. Watson
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * Comments on the socket life cycle:
37  *
38  * soalloc() sets of socket layer state for a socket, called only by
39  * socreate() and sonewconn().  Socket layer private.
40  *
41  * sodealloc() tears down socket layer state for a socket, called only by
42  * sofree() and sonewconn().  Socket layer private.
43  *
44  * pru_attach() associates protocol layer state with an allocated socket;
45  * called only once, may fail, aborting socket allocation.  This is called
46  * from socreate() and sonewconn().  Socket layer private.
47  *
48  * pru_detach() disassociates protocol layer state from an attached socket,
49  * and will be called exactly once for sockets in which pru_attach() has
50  * been successfully called.  If pru_attach() returned an error,
51  * pru_detach() will not be called.  Socket layer private.
52  *
53  * pru_abort() and pru_close() notify the protocol layer that the last
54  * consumer of a socket is starting to tear down the socket, and that the
55  * protocol should terminate the connection.  Historically, pru_abort() also
56  * detached protocol state from the socket state, but this is no longer the
57  * case.
58  *
59  * socreate() creates a socket and attaches protocol state.  This is a public
60  * interface that may be used by socket layer consumers to create new
61  * sockets.
62  *
63  * sonewconn() creates a socket and attaches protocol state.  This is a
64  * public interface  that may be used by protocols to create new sockets when
65  * a new connection is received and will be available for accept() on a
66  * listen socket.
67  *
68  * soclose() destroys a socket after possibly waiting for it to disconnect.
69  * This is a public interface that socket consumers should use to close and
70  * release a socket when done with it.
71  *
72  * soabort() destroys a socket without waiting for it to disconnect (used
73  * only for incoming connections that are already partially or fully
74  * connected).  This is used internally by the socket layer when clearing
75  * listen socket queues (due to overflow or close on the listen socket), but
76  * is also a public interface protocols may use to abort connections in
77  * their incomplete listen queues should they no longer be required.  Sockets
78  * placed in completed connection listen queues should not be aborted for
79  * reasons described in the comment above the soclose() implementation.  This
80  * is not a general purpose close routine, and except in the specific
81  * circumstances described here, should not be used.
82  *
83  * sofree() will free a socket and its protocol state if all references on
84  * the socket have been released, and is the public interface to attempt to
85  * free a socket when a reference is removed.  This is a socket layer private
86  * interface.
87  *
88  * NOTE: In addition to socreate() and soclose(), which provide a single
89  * socket reference to the consumer to be managed as required, there are two
90  * calls to explicitly manage socket references, soref(), and sorele().
91  * Currently, these are generally required only when transitioning a socket
92  * from a listen queue to a file descriptor, in order to prevent garbage
93  * collection of the socket at an untimely moment.  For a number of reasons,
94  * these interfaces are not preferred, and should be avoided.
95  *
96  * NOTE: With regard to VNETs the general rule is that callers do not set
97  * curvnet. Exceptions to this rule include soabort(), sodisconnect(),
98  * sofree() (and with that sorele(), sotryfree()), as well as sonewconn()
99  * and sorflush(), which are usually called from a pre-set VNET context.
100  * sopoll() currently does not need a VNET context to be set.
101  */
102 
103 #include <sys/cdefs.h>
104 #include "opt_inet.h"
105 #include "opt_inet6.h"
106 #include "opt_kern_tls.h"
107 #include "opt_sctp.h"
108 
109 #include <sys/param.h>
110 #include <sys/systm.h>
111 #include <sys/capsicum.h>
112 #include <sys/fcntl.h>
113 #include <sys/limits.h>
114 #include <sys/lock.h>
115 #include <sys/mac.h>
116 #include <sys/malloc.h>
117 #include <sys/mbuf.h>
118 #include <sys/mutex.h>
119 #include <sys/domain.h>
120 #include <sys/file.h>			/* for struct knote */
121 #include <sys/hhook.h>
122 #include <sys/kernel.h>
123 #include <sys/khelp.h>
124 #include <sys/ktls.h>
125 #include <sys/event.h>
126 #include <sys/eventhandler.h>
127 #include <sys/poll.h>
128 #include <sys/proc.h>
129 #include <sys/protosw.h>
130 #include <sys/sbuf.h>
131 #include <sys/socket.h>
132 #include <sys/socketvar.h>
133 #include <sys/resourcevar.h>
134 #include <net/route.h>
135 #include <sys/signalvar.h>
136 #include <sys/stat.h>
137 #include <sys/sx.h>
138 #include <sys/sysctl.h>
139 #include <sys/taskqueue.h>
140 #include <sys/uio.h>
141 #include <sys/un.h>
142 #include <sys/unpcb.h>
143 #include <sys/jail.h>
144 #include <sys/syslog.h>
145 #include <netinet/in.h>
146 #include <netinet/in_pcb.h>
147 #include <netinet/tcp.h>
148 
149 #include <net/vnet.h>
150 
151 #include <security/mac/mac_framework.h>
152 
153 #include <vm/uma.h>
154 
155 #ifdef COMPAT_FREEBSD32
156 #include <sys/mount.h>
157 #include <sys/sysent.h>
158 #include <compat/freebsd32/freebsd32.h>
159 #endif
160 
161 static int	soreceive_rcvoob(struct socket *so, struct uio *uio,
162 		    int flags);
163 static void	so_rdknl_lock(void *);
164 static void	so_rdknl_unlock(void *);
165 static void	so_rdknl_assert_lock(void *, int);
166 static void	so_wrknl_lock(void *);
167 static void	so_wrknl_unlock(void *);
168 static void	so_wrknl_assert_lock(void *, int);
169 
170 static void	filt_sordetach(struct knote *kn);
171 static int	filt_soread(struct knote *kn, long hint);
172 static void	filt_sowdetach(struct knote *kn);
173 static int	filt_sowrite(struct knote *kn, long hint);
174 static int	filt_soempty(struct knote *kn, long hint);
175 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id);
176 fo_kqfilter_t	soo_kqfilter;
177 
178 static struct filterops soread_filtops = {
179 	.f_isfd = 1,
180 	.f_detach = filt_sordetach,
181 	.f_event = filt_soread,
182 };
183 static struct filterops sowrite_filtops = {
184 	.f_isfd = 1,
185 	.f_detach = filt_sowdetach,
186 	.f_event = filt_sowrite,
187 };
188 static struct filterops soempty_filtops = {
189 	.f_isfd = 1,
190 	.f_detach = filt_sowdetach,
191 	.f_event = filt_soempty,
192 };
193 
194 so_gen_t	so_gencnt;	/* generation count for sockets */
195 
196 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
197 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
198 
199 #define	VNET_SO_ASSERT(so)						\
200 	VNET_ASSERT(curvnet != NULL,					\
201 	    ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so)));
202 
203 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]);
204 #define	V_socket_hhh		VNET(socket_hhh)
205 
206 /*
207  * Limit on the number of connections in the listen queue waiting
208  * for accept(2).
209  * NB: The original sysctl somaxconn is still available but hidden
210  * to prevent confusion about the actual purpose of this number.
211  */
212 static u_int somaxconn = SOMAXCONN;
213 
214 static int
215 sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
216 {
217 	int error;
218 	int val;
219 
220 	val = somaxconn;
221 	error = sysctl_handle_int(oidp, &val, 0, req);
222 	if (error || !req->newptr )
223 		return (error);
224 
225 	/*
226 	 * The purpose of the UINT_MAX / 3 limit, is so that the formula
227 	 *   3 * so_qlimit / 2
228 	 * below, will not overflow.
229          */
230 
231 	if (val < 1 || val > UINT_MAX / 3)
232 		return (EINVAL);
233 
234 	somaxconn = val;
235 	return (0);
236 }
237 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue,
238     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, sizeof(int),
239     sysctl_somaxconn, "I",
240     "Maximum listen socket pending connection accept queue size");
241 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn,
242     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE, 0,
243     sizeof(int), sysctl_somaxconn, "I",
244     "Maximum listen socket pending connection accept queue size (compat)");
245 
246 static int numopensockets;
247 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,
248     &numopensockets, 0, "Number of open sockets");
249 
250 /*
251  * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
252  * so_gencnt field.
253  */
254 static struct mtx so_global_mtx;
255 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
256 
257 /*
258  * General IPC sysctl name space, used by sockets and a variety of other IPC
259  * types.
260  */
261 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
262     "IPC");
263 
264 /*
265  * Initialize the socket subsystem and set up the socket
266  * memory allocator.
267  */
268 static uma_zone_t socket_zone;
269 int	maxsockets;
270 
271 static void
272 socket_zone_change(void *tag)
273 {
274 
275 	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
276 }
277 
278 static void
279 socket_hhook_register(int subtype)
280 {
281 
282 	if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype,
283 	    &V_socket_hhh[subtype],
284 	    HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
285 		printf("%s: WARNING: unable to register hook\n", __func__);
286 }
287 
288 static void
289 socket_hhook_deregister(int subtype)
290 {
291 
292 	if (hhook_head_deregister(V_socket_hhh[subtype]) != 0)
293 		printf("%s: WARNING: unable to deregister hook\n", __func__);
294 }
295 
296 static void
297 socket_init(void *tag)
298 {
299 
300 	socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL,
301 	    NULL, NULL, UMA_ALIGN_PTR, 0);
302 	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
303 	uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached");
304 	EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL,
305 	    EVENTHANDLER_PRI_FIRST);
306 }
307 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL);
308 
309 static void
310 socket_vnet_init(const void *unused __unused)
311 {
312 	int i;
313 
314 	/* We expect a contiguous range */
315 	for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
316 		socket_hhook_register(i);
317 }
318 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
319     socket_vnet_init, NULL);
320 
321 static void
322 socket_vnet_uninit(const void *unused __unused)
323 {
324 	int i;
325 
326 	for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
327 		socket_hhook_deregister(i);
328 }
329 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
330     socket_vnet_uninit, NULL);
331 
332 /*
333  * Initialise maxsockets.  This SYSINIT must be run after
334  * tunable_mbinit().
335  */
336 static void
337 init_maxsockets(void *ignored)
338 {
339 
340 	TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
341 	maxsockets = imax(maxsockets, maxfiles);
342 }
343 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
344 
345 /*
346  * Sysctl to get and set the maximum global sockets limit.  Notify protocols
347  * of the change so that they can update their dependent limits as required.
348  */
349 static int
350 sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
351 {
352 	int error, newmaxsockets;
353 
354 	newmaxsockets = maxsockets;
355 	error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
356 	if (error == 0 && req->newptr && newmaxsockets != maxsockets) {
357 		if (newmaxsockets > maxsockets &&
358 		    newmaxsockets <= maxfiles) {
359 			maxsockets = newmaxsockets;
360 			EVENTHANDLER_INVOKE(maxsockets_change);
361 		} else
362 			error = EINVAL;
363 	}
364 	return (error);
365 }
366 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets,
367     CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE,
368     &maxsockets, 0, sysctl_maxsockets, "IU",
369     "Maximum number of sockets available");
370 
371 /*
372  * Socket operation routines.  These routines are called by the routines in
373  * sys_socket.c or from a system process, and implement the semantics of
374  * socket operations by switching out to the protocol specific routines.
375  */
376 
377 /*
378  * Get a socket structure from our zone, and initialize it.  Note that it
379  * would probably be better to allocate socket and PCB at the same time, but
380  * I'm not convinced that all the protocols can be easily modified to do
381  * this.
382  *
383  * soalloc() returns a socket with a ref count of 0.
384  */
385 static struct socket *
386 soalloc(struct vnet *vnet)
387 {
388 	struct socket *so;
389 
390 	so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
391 	if (so == NULL)
392 		return (NULL);
393 #ifdef MAC
394 	if (mac_socket_init(so, M_NOWAIT) != 0) {
395 		uma_zfree(socket_zone, so);
396 		return (NULL);
397 	}
398 #endif
399 	if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) {
400 		uma_zfree(socket_zone, so);
401 		return (NULL);
402 	}
403 
404 	/*
405 	 * The socket locking protocol allows to lock 2 sockets at a time,
406 	 * however, the first one must be a listening socket.  WITNESS lacks
407 	 * a feature to change class of an existing lock, so we use DUPOK.
408 	 */
409 	mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK);
410 	mtx_init(&so->so_snd_mtx, "so_snd", NULL, MTX_DEF);
411 	mtx_init(&so->so_rcv_mtx, "so_rcv", NULL, MTX_DEF);
412 	so->so_rcv.sb_sel = &so->so_rdsel;
413 	so->so_snd.sb_sel = &so->so_wrsel;
414 	sx_init(&so->so_snd_sx, "so_snd_sx");
415 	sx_init(&so->so_rcv_sx, "so_rcv_sx");
416 	TAILQ_INIT(&so->so_snd.sb_aiojobq);
417 	TAILQ_INIT(&so->so_rcv.sb_aiojobq);
418 	TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so);
419 	TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so);
420 #ifdef VIMAGE
421 	VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p",
422 	    __func__, __LINE__, so));
423 	so->so_vnet = vnet;
424 #endif
425 	/* We shouldn't need the so_global_mtx */
426 	if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) {
427 		/* Do we need more comprehensive error returns? */
428 		uma_zfree(socket_zone, so);
429 		return (NULL);
430 	}
431 	mtx_lock(&so_global_mtx);
432 	so->so_gencnt = ++so_gencnt;
433 	++numopensockets;
434 #ifdef VIMAGE
435 	vnet->vnet_sockcnt++;
436 #endif
437 	mtx_unlock(&so_global_mtx);
438 
439 	return (so);
440 }
441 
442 /*
443  * Free the storage associated with a socket at the socket layer, tear down
444  * locks, labels, etc.  All protocol state is assumed already to have been
445  * torn down (and possibly never set up) by the caller.
446  */
447 void
448 sodealloc(struct socket *so)
449 {
450 
451 	KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
452 	KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
453 
454 	mtx_lock(&so_global_mtx);
455 	so->so_gencnt = ++so_gencnt;
456 	--numopensockets;	/* Could be below, but faster here. */
457 #ifdef VIMAGE
458 	VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p",
459 	    __func__, __LINE__, so));
460 	so->so_vnet->vnet_sockcnt--;
461 #endif
462 	mtx_unlock(&so_global_mtx);
463 #ifdef MAC
464 	mac_socket_destroy(so);
465 #endif
466 	hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE);
467 
468 	khelp_destroy_osd(&so->osd);
469 	if (SOLISTENING(so)) {
470 		if (so->sol_accept_filter != NULL)
471 			accept_filt_setopt(so, NULL);
472 	} else {
473 		if (so->so_rcv.sb_hiwat)
474 			(void)chgsbsize(so->so_cred->cr_uidinfo,
475 			    &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
476 		if (so->so_snd.sb_hiwat)
477 			(void)chgsbsize(so->so_cred->cr_uidinfo,
478 			    &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
479 		sx_destroy(&so->so_snd_sx);
480 		sx_destroy(&so->so_rcv_sx);
481 		mtx_destroy(&so->so_snd_mtx);
482 		mtx_destroy(&so->so_rcv_mtx);
483 	}
484 	crfree(so->so_cred);
485 	mtx_destroy(&so->so_lock);
486 	uma_zfree(socket_zone, so);
487 }
488 
489 /*
490  * socreate returns a socket with a ref count of 1 and a file descriptor
491  * reference.  The socket should be closed with soclose().
492  */
493 int
494 socreate(int dom, struct socket **aso, int type, int proto,
495     struct ucred *cred, struct thread *td)
496 {
497 	struct protosw *prp;
498 	struct socket *so;
499 	int error;
500 
501 	/*
502 	 * XXX: divert(4) historically abused PF_INET.  Keep this compatibility
503 	 * shim until all applications have been updated.
504 	 */
505 	if (__predict_false(dom == PF_INET && type == SOCK_RAW &&
506 	    proto == IPPROTO_DIVERT)) {
507 		dom = PF_DIVERT;
508 		printf("%s uses obsolete way to create divert(4) socket\n",
509 		    td->td_proc->p_comm);
510 	}
511 
512 	prp = pffindproto(dom, type, proto);
513 	if (prp == NULL) {
514 		/* No support for domain. */
515 		if (pffinddomain(dom) == NULL)
516 			return (EAFNOSUPPORT);
517 		/* No support for socket type. */
518 		if (proto == 0 && type != 0)
519 			return (EPROTOTYPE);
520 		return (EPROTONOSUPPORT);
521 	}
522 
523 	MPASS(prp->pr_attach);
524 
525 	if (IN_CAPABILITY_MODE(td) && (prp->pr_flags & PR_CAPATTACH) == 0)
526 		return (ECAPMODE);
527 
528 	if (prison_check_af(cred, prp->pr_domain->dom_family) != 0)
529 		return (EPROTONOSUPPORT);
530 
531 	so = soalloc(CRED_TO_VNET(cred));
532 	if (so == NULL)
533 		return (ENOBUFS);
534 
535 	so->so_type = type;
536 	so->so_cred = crhold(cred);
537 	if ((prp->pr_domain->dom_family == PF_INET) ||
538 	    (prp->pr_domain->dom_family == PF_INET6) ||
539 	    (prp->pr_domain->dom_family == PF_ROUTE))
540 		so->so_fibnum = td->td_proc->p_fibnum;
541 	else
542 		so->so_fibnum = 0;
543 	so->so_proto = prp;
544 #ifdef MAC
545 	mac_socket_create(cred, so);
546 #endif
547 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
548 	    so_rdknl_assert_lock);
549 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
550 	    so_wrknl_assert_lock);
551 	if ((prp->pr_flags & PR_SOCKBUF) == 0) {
552 		so->so_snd.sb_mtx = &so->so_snd_mtx;
553 		so->so_rcv.sb_mtx = &so->so_rcv_mtx;
554 	}
555 	/*
556 	 * Auto-sizing of socket buffers is managed by the protocols and
557 	 * the appropriate flags must be set in the pru_attach function.
558 	 */
559 	CURVNET_SET(so->so_vnet);
560 	error = prp->pr_attach(so, proto, td);
561 	CURVNET_RESTORE();
562 	if (error) {
563 		sodealloc(so);
564 		return (error);
565 	}
566 	soref(so);
567 	*aso = so;
568 	return (0);
569 }
570 
571 #ifdef REGRESSION
572 static int regression_sonewconn_earlytest = 1;
573 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
574     &regression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
575 #endif
576 
577 static int sooverprio = LOG_DEBUG;
578 SYSCTL_INT(_kern_ipc, OID_AUTO, sooverprio, CTLFLAG_RW,
579     &sooverprio, 0, "Log priority for listen socket overflows: 0..7 or -1 to disable");
580 
581 static struct timeval overinterval = { 60, 0 };
582 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW,
583     &overinterval,
584     "Delay in seconds between warnings for listen socket overflows");
585 
586 /*
587  * When an attempt at a new connection is noted on a socket which supports
588  * accept(2), the protocol has two options:
589  * 1) Call legacy sonewconn() function, which would call protocol attach
590  *    method, same as used for socket(2).
591  * 2) Call solisten_clone(), do attach that is specific to a cloned connection,
592  *    and then call solisten_enqueue().
593  *
594  * Note: the ref count on the socket is 0 on return.
595  */
596 struct socket *
597 solisten_clone(struct socket *head)
598 {
599 	struct sbuf descrsb;
600 	struct socket *so;
601 	int len, overcount;
602 	u_int qlen;
603 	const char localprefix[] = "local:";
604 	char descrbuf[SUNPATHLEN + sizeof(localprefix)];
605 #if defined(INET6)
606 	char addrbuf[INET6_ADDRSTRLEN];
607 #elif defined(INET)
608 	char addrbuf[INET_ADDRSTRLEN];
609 #endif
610 	bool dolog, over;
611 
612 	SOLISTEN_LOCK(head);
613 	over = (head->sol_qlen > 3 * head->sol_qlimit / 2);
614 #ifdef REGRESSION
615 	if (regression_sonewconn_earlytest && over) {
616 #else
617 	if (over) {
618 #endif
619 		head->sol_overcount++;
620 		dolog = (sooverprio >= 0) &&
621 			!!ratecheck(&head->sol_lastover, &overinterval);
622 
623 		/*
624 		 * If we're going to log, copy the overflow count and queue
625 		 * length from the listen socket before dropping the lock.
626 		 * Also, reset the overflow count.
627 		 */
628 		if (dolog) {
629 			overcount = head->sol_overcount;
630 			head->sol_overcount = 0;
631 			qlen = head->sol_qlen;
632 		}
633 		SOLISTEN_UNLOCK(head);
634 
635 		if (dolog) {
636 			/*
637 			 * Try to print something descriptive about the
638 			 * socket for the error message.
639 			 */
640 			sbuf_new(&descrsb, descrbuf, sizeof(descrbuf),
641 			    SBUF_FIXEDLEN);
642 			switch (head->so_proto->pr_domain->dom_family) {
643 #if defined(INET) || defined(INET6)
644 #ifdef INET
645 			case AF_INET:
646 #endif
647 #ifdef INET6
648 			case AF_INET6:
649 				if (head->so_proto->pr_domain->dom_family ==
650 				    AF_INET6 ||
651 				    (sotoinpcb(head)->inp_inc.inc_flags &
652 				    INC_ISIPV6)) {
653 					ip6_sprintf(addrbuf,
654 					    &sotoinpcb(head)->inp_inc.inc6_laddr);
655 					sbuf_printf(&descrsb, "[%s]", addrbuf);
656 				} else
657 #endif
658 				{
659 #ifdef INET
660 					inet_ntoa_r(
661 					    sotoinpcb(head)->inp_inc.inc_laddr,
662 					    addrbuf);
663 					sbuf_cat(&descrsb, addrbuf);
664 #endif
665 				}
666 				sbuf_printf(&descrsb, ":%hu (proto %u)",
667 				    ntohs(sotoinpcb(head)->inp_inc.inc_lport),
668 				    head->so_proto->pr_protocol);
669 				break;
670 #endif /* INET || INET6 */
671 			case AF_UNIX:
672 				sbuf_cat(&descrsb, localprefix);
673 				if (sotounpcb(head)->unp_addr != NULL)
674 					len =
675 					    sotounpcb(head)->unp_addr->sun_len -
676 					    offsetof(struct sockaddr_un,
677 					    sun_path);
678 				else
679 					len = 0;
680 				if (len > 0)
681 					sbuf_bcat(&descrsb,
682 					    sotounpcb(head)->unp_addr->sun_path,
683 					    len);
684 				else
685 					sbuf_cat(&descrsb, "(unknown)");
686 				break;
687 			}
688 
689 			/*
690 			 * If we can't print something more specific, at least
691 			 * print the domain name.
692 			 */
693 			if (sbuf_finish(&descrsb) != 0 ||
694 			    sbuf_len(&descrsb) <= 0) {
695 				sbuf_clear(&descrsb);
696 				sbuf_cat(&descrsb,
697 				    head->so_proto->pr_domain->dom_name ?:
698 				    "unknown");
699 				sbuf_finish(&descrsb);
700 			}
701 			KASSERT(sbuf_len(&descrsb) > 0,
702 			    ("%s: sbuf creation failed", __func__));
703 			/*
704 			 * Preserve the historic listen queue overflow log
705 			 * message, that starts with "sonewconn:".  It has
706 			 * been known to sysadmins for years and also test
707 			 * sys/kern/sonewconn_overflow checks for it.
708 			 */
709 			if (head->so_cred == 0) {
710 				log(LOG_PRI(sooverprio),
711 				    "sonewconn: pcb %p (%s): "
712 				    "Listen queue overflow: %i already in "
713 				    "queue awaiting acceptance (%d "
714 				    "occurrences)\n", head->so_pcb,
715 				    sbuf_data(&descrsb),
716 			    	qlen, overcount);
717 			} else {
718 				log(LOG_PRI(sooverprio),
719 				    "sonewconn: pcb %p (%s): "
720 				    "Listen queue overflow: "
721 				    "%i already in queue awaiting acceptance "
722 				    "(%d occurrences), euid %d, rgid %d, jail %s\n",
723 				    head->so_pcb, sbuf_data(&descrsb), qlen,
724 				    overcount, head->so_cred->cr_uid,
725 				    head->so_cred->cr_rgid,
726 				    head->so_cred->cr_prison ?
727 					head->so_cred->cr_prison->pr_name :
728 					"not_jailed");
729 			}
730 			sbuf_delete(&descrsb);
731 
732 			overcount = 0;
733 		}
734 
735 		return (NULL);
736 	}
737 	SOLISTEN_UNLOCK(head);
738 	VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL",
739 	    __func__, head));
740 	so = soalloc(head->so_vnet);
741 	if (so == NULL) {
742 		log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
743 		    "limit reached or out of memory\n",
744 		    __func__, head->so_pcb);
745 		return (NULL);
746 	}
747 	so->so_listen = head;
748 	so->so_type = head->so_type;
749 	/*
750 	 * POSIX is ambiguous on what options an accept(2)ed socket should
751 	 * inherit from the listener.  Words "create a new socket" may be
752 	 * interpreted as not inheriting anything.  Best programming practice
753 	 * for application developers is to not rely on such inheritance.
754 	 * FreeBSD had historically inherited all so_options excluding
755 	 * SO_ACCEPTCONN, which virtually means all SOL_SOCKET level options,
756 	 * including those completely irrelevant to a new born socket.  For
757 	 * compatibility with older versions we will inherit a list of
758 	 * meaningful options.
759 	 */
760 	so->so_options = head->so_options & (SO_KEEPALIVE | SO_DONTROUTE |
761 	    SO_LINGER | SO_OOBINLINE | SO_NOSIGPIPE);
762 	so->so_linger = head->so_linger;
763 	so->so_state = head->so_state;
764 	so->so_fibnum = head->so_fibnum;
765 	so->so_proto = head->so_proto;
766 	so->so_cred = crhold(head->so_cred);
767 #ifdef MAC
768 	mac_socket_newconn(head, so);
769 #endif
770 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
771 	    so_rdknl_assert_lock);
772 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
773 	    so_wrknl_assert_lock);
774 	VNET_SO_ASSERT(head);
775 	if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) {
776 		sodealloc(so);
777 		log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
778 		    __func__, head->so_pcb);
779 		return (NULL);
780 	}
781 	so->so_rcv.sb_lowat = head->sol_sbrcv_lowat;
782 	so->so_snd.sb_lowat = head->sol_sbsnd_lowat;
783 	so->so_rcv.sb_timeo = head->sol_sbrcv_timeo;
784 	so->so_snd.sb_timeo = head->sol_sbsnd_timeo;
785 	so->so_rcv.sb_flags = head->sol_sbrcv_flags & SB_AUTOSIZE;
786 	so->so_snd.sb_flags = head->sol_sbsnd_flags & SB_AUTOSIZE;
787 	if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) {
788 		so->so_snd.sb_mtx = &so->so_snd_mtx;
789 		so->so_rcv.sb_mtx = &so->so_rcv_mtx;
790 	}
791 
792 	return (so);
793 }
794 
795 /* Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED. */
796 struct socket *
797 sonewconn(struct socket *head, int connstatus)
798 {
799 	struct socket *so;
800 
801 	if ((so = solisten_clone(head)) == NULL)
802 		return (NULL);
803 
804 	if (so->so_proto->pr_attach(so, 0, NULL) != 0) {
805 		sodealloc(so);
806 		log(LOG_DEBUG, "%s: pcb %p: pr_attach() failed\n",
807 		    __func__, head->so_pcb);
808 		return (NULL);
809 	}
810 
811 	(void)solisten_enqueue(so, connstatus);
812 
813 	return (so);
814 }
815 
816 /*
817  * Enqueue socket cloned by solisten_clone() to the listen queue of the
818  * listener it has been cloned from.
819  *
820  * Return 'true' if socket landed on complete queue, otherwise 'false'.
821  */
822 bool
823 solisten_enqueue(struct socket *so, int connstatus)
824 {
825 	struct socket *head = so->so_listen;
826 
827 	MPASS(refcount_load(&so->so_count) == 0);
828 	refcount_init(&so->so_count, 1);
829 
830 	SOLISTEN_LOCK(head);
831 	if (head->sol_accept_filter != NULL)
832 		connstatus = 0;
833 	so->so_state |= connstatus;
834 	soref(head); /* A socket on (in)complete queue refs head. */
835 	if (connstatus) {
836 		TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
837 		so->so_qstate = SQ_COMP;
838 		head->sol_qlen++;
839 		solisten_wakeup(head);	/* unlocks */
840 		return (true);
841 	} else {
842 		/*
843 		 * Keep removing sockets from the head until there's room for
844 		 * us to insert on the tail.  In pre-locking revisions, this
845 		 * was a simple if(), but as we could be racing with other
846 		 * threads and soabort() requires dropping locks, we must
847 		 * loop waiting for the condition to be true.
848 		 */
849 		while (head->sol_incqlen > head->sol_qlimit) {
850 			struct socket *sp;
851 
852 			sp = TAILQ_FIRST(&head->sol_incomp);
853 			TAILQ_REMOVE(&head->sol_incomp, sp, so_list);
854 			head->sol_incqlen--;
855 			SOCK_LOCK(sp);
856 			sp->so_qstate = SQ_NONE;
857 			sp->so_listen = NULL;
858 			SOCK_UNLOCK(sp);
859 			sorele_locked(head);	/* does SOLISTEN_UNLOCK, head stays */
860 			soabort(sp);
861 			SOLISTEN_LOCK(head);
862 		}
863 		TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list);
864 		so->so_qstate = SQ_INCOMP;
865 		head->sol_incqlen++;
866 		SOLISTEN_UNLOCK(head);
867 		return (false);
868 	}
869 }
870 
871 #if defined(SCTP) || defined(SCTP_SUPPORT)
872 /*
873  * Socket part of sctp_peeloff().  Detach a new socket from an
874  * association.  The new socket is returned with a reference.
875  *
876  * XXXGL: reduce copy-paste with solisten_clone().
877  */
878 struct socket *
879 sopeeloff(struct socket *head)
880 {
881 	struct socket *so;
882 
883 	VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p",
884 	    __func__, __LINE__, head));
885 	so = soalloc(head->so_vnet);
886 	if (so == NULL) {
887 		log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
888 		    "limit reached or out of memory\n",
889 		    __func__, head->so_pcb);
890 		return (NULL);
891 	}
892 	so->so_type = head->so_type;
893 	so->so_options = head->so_options;
894 	so->so_linger = head->so_linger;
895 	so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED;
896 	so->so_fibnum = head->so_fibnum;
897 	so->so_proto = head->so_proto;
898 	so->so_cred = crhold(head->so_cred);
899 #ifdef MAC
900 	mac_socket_newconn(head, so);
901 #endif
902 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
903 	    so_rdknl_assert_lock);
904 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
905 	    so_wrknl_assert_lock);
906 	VNET_SO_ASSERT(head);
907 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
908 		sodealloc(so);
909 		log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
910 		    __func__, head->so_pcb);
911 		return (NULL);
912 	}
913 	if ((*so->so_proto->pr_attach)(so, 0, NULL)) {
914 		sodealloc(so);
915 		log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n",
916 		    __func__, head->so_pcb);
917 		return (NULL);
918 	}
919 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
920 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
921 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
922 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
923 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
924 	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
925 
926 	soref(so);
927 
928 	return (so);
929 }
930 #endif	/* SCTP */
931 
932 int
933 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
934 {
935 	int error;
936 
937 	CURVNET_SET(so->so_vnet);
938 	error = so->so_proto->pr_bind(so, nam, td);
939 	CURVNET_RESTORE();
940 	return (error);
941 }
942 
943 int
944 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
945 {
946 	int error;
947 
948 	CURVNET_SET(so->so_vnet);
949 	error = so->so_proto->pr_bindat(fd, so, nam, td);
950 	CURVNET_RESTORE();
951 	return (error);
952 }
953 
954 /*
955  * solisten() transitions a socket from a non-listening state to a listening
956  * state, but can also be used to update the listen queue depth on an
957  * existing listen socket.  The protocol will call back into the sockets
958  * layer using solisten_proto_check() and solisten_proto() to check and set
959  * socket-layer listen state.  Call backs are used so that the protocol can
960  * acquire both protocol and socket layer locks in whatever order is required
961  * by the protocol.
962  *
963  * Protocol implementors are advised to hold the socket lock across the
964  * socket-layer test and set to avoid races at the socket layer.
965  */
966 int
967 solisten(struct socket *so, int backlog, struct thread *td)
968 {
969 	int error;
970 
971 	CURVNET_SET(so->so_vnet);
972 	error = so->so_proto->pr_listen(so, backlog, td);
973 	CURVNET_RESTORE();
974 	return (error);
975 }
976 
977 /*
978  * Prepare for a call to solisten_proto().  Acquire all socket buffer locks in
979  * order to interlock with socket I/O.
980  */
981 int
982 solisten_proto_check(struct socket *so)
983 {
984 	SOCK_LOCK_ASSERT(so);
985 
986 	if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
987 	    SS_ISDISCONNECTING)) != 0)
988 		return (EINVAL);
989 
990 	/*
991 	 * Sleeping is not permitted here, so simply fail if userspace is
992 	 * attempting to transmit or receive on the socket.  This kind of
993 	 * transient failure is not ideal, but it should occur only if userspace
994 	 * is misusing the socket interfaces.
995 	 */
996 	if (!sx_try_xlock(&so->so_snd_sx))
997 		return (EAGAIN);
998 	if (!sx_try_xlock(&so->so_rcv_sx)) {
999 		sx_xunlock(&so->so_snd_sx);
1000 		return (EAGAIN);
1001 	}
1002 	mtx_lock(&so->so_snd_mtx);
1003 	mtx_lock(&so->so_rcv_mtx);
1004 
1005 	/* Interlock with soo_aio_queue() and KTLS. */
1006 	if (!SOLISTENING(so)) {
1007 		bool ktls;
1008 
1009 #ifdef KERN_TLS
1010 		ktls = so->so_snd.sb_tls_info != NULL ||
1011 		    so->so_rcv.sb_tls_info != NULL;
1012 #else
1013 		ktls = false;
1014 #endif
1015 		if (ktls ||
1016 		    (so->so_snd.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0 ||
1017 		    (so->so_rcv.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0) {
1018 			solisten_proto_abort(so);
1019 			return (EINVAL);
1020 		}
1021 	}
1022 
1023 	return (0);
1024 }
1025 
1026 /*
1027  * Undo the setup done by solisten_proto_check().
1028  */
1029 void
1030 solisten_proto_abort(struct socket *so)
1031 {
1032 	mtx_unlock(&so->so_snd_mtx);
1033 	mtx_unlock(&so->so_rcv_mtx);
1034 	sx_xunlock(&so->so_snd_sx);
1035 	sx_xunlock(&so->so_rcv_sx);
1036 }
1037 
1038 void
1039 solisten_proto(struct socket *so, int backlog)
1040 {
1041 	int sbrcv_lowat, sbsnd_lowat;
1042 	u_int sbrcv_hiwat, sbsnd_hiwat;
1043 	short sbrcv_flags, sbsnd_flags;
1044 	sbintime_t sbrcv_timeo, sbsnd_timeo;
1045 
1046 	SOCK_LOCK_ASSERT(so);
1047 	KASSERT((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
1048 	    SS_ISDISCONNECTING)) == 0,
1049 	    ("%s: bad socket state %p", __func__, so));
1050 
1051 	if (SOLISTENING(so))
1052 		goto listening;
1053 
1054 	/*
1055 	 * Change this socket to listening state.
1056 	 */
1057 	sbrcv_lowat = so->so_rcv.sb_lowat;
1058 	sbsnd_lowat = so->so_snd.sb_lowat;
1059 	sbrcv_hiwat = so->so_rcv.sb_hiwat;
1060 	sbsnd_hiwat = so->so_snd.sb_hiwat;
1061 	sbrcv_flags = so->so_rcv.sb_flags;
1062 	sbsnd_flags = so->so_snd.sb_flags;
1063 	sbrcv_timeo = so->so_rcv.sb_timeo;
1064 	sbsnd_timeo = so->so_snd.sb_timeo;
1065 
1066 	sbdestroy(so, SO_SND);
1067 	sbdestroy(so, SO_RCV);
1068 
1069 #ifdef INVARIANTS
1070 	bzero(&so->so_rcv,
1071 	    sizeof(struct socket) - offsetof(struct socket, so_rcv));
1072 #endif
1073 
1074 	so->sol_sbrcv_lowat = sbrcv_lowat;
1075 	so->sol_sbsnd_lowat = sbsnd_lowat;
1076 	so->sol_sbrcv_hiwat = sbrcv_hiwat;
1077 	so->sol_sbsnd_hiwat = sbsnd_hiwat;
1078 	so->sol_sbrcv_flags = sbrcv_flags;
1079 	so->sol_sbsnd_flags = sbsnd_flags;
1080 	so->sol_sbrcv_timeo = sbrcv_timeo;
1081 	so->sol_sbsnd_timeo = sbsnd_timeo;
1082 
1083 	so->sol_qlen = so->sol_incqlen = 0;
1084 	TAILQ_INIT(&so->sol_incomp);
1085 	TAILQ_INIT(&so->sol_comp);
1086 
1087 	so->sol_accept_filter = NULL;
1088 	so->sol_accept_filter_arg = NULL;
1089 	so->sol_accept_filter_str = NULL;
1090 
1091 	so->sol_upcall = NULL;
1092 	so->sol_upcallarg = NULL;
1093 
1094 	so->so_options |= SO_ACCEPTCONN;
1095 
1096 listening:
1097 	if (backlog < 0 || backlog > somaxconn)
1098 		backlog = somaxconn;
1099 	so->sol_qlimit = backlog;
1100 
1101 	mtx_unlock(&so->so_snd_mtx);
1102 	mtx_unlock(&so->so_rcv_mtx);
1103 	sx_xunlock(&so->so_snd_sx);
1104 	sx_xunlock(&so->so_rcv_sx);
1105 }
1106 
1107 /*
1108  * Wakeup listeners/subsystems once we have a complete connection.
1109  * Enters with lock, returns unlocked.
1110  */
1111 void
1112 solisten_wakeup(struct socket *sol)
1113 {
1114 
1115 	if (sol->sol_upcall != NULL)
1116 		(void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT);
1117 	else {
1118 		selwakeuppri(&sol->so_rdsel, PSOCK);
1119 		KNOTE_LOCKED(&sol->so_rdsel.si_note, 0);
1120 	}
1121 	SOLISTEN_UNLOCK(sol);
1122 	wakeup_one(&sol->sol_comp);
1123 	if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL)
1124 		pgsigio(&sol->so_sigio, SIGIO, 0);
1125 }
1126 
1127 /*
1128  * Return single connection off a listening socket queue.  Main consumer of
1129  * the function is kern_accept4().  Some modules, that do their own accept
1130  * management also use the function.  The socket reference held by the
1131  * listen queue is handed to the caller.
1132  *
1133  * Listening socket must be locked on entry and is returned unlocked on
1134  * return.
1135  * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT.
1136  */
1137 int
1138 solisten_dequeue(struct socket *head, struct socket **ret, int flags)
1139 {
1140 	struct socket *so;
1141 	int error;
1142 
1143 	SOLISTEN_LOCK_ASSERT(head);
1144 
1145 	while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) &&
1146 	    head->so_error == 0) {
1147 		error = msleep(&head->sol_comp, SOCK_MTX(head), PSOCK | PCATCH,
1148 		    "accept", 0);
1149 		if (error != 0) {
1150 			SOLISTEN_UNLOCK(head);
1151 			return (error);
1152 		}
1153 	}
1154 	if (head->so_error) {
1155 		error = head->so_error;
1156 		head->so_error = 0;
1157 	} else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp))
1158 		error = EWOULDBLOCK;
1159 	else
1160 		error = 0;
1161 	if (error) {
1162 		SOLISTEN_UNLOCK(head);
1163 		return (error);
1164 	}
1165 	so = TAILQ_FIRST(&head->sol_comp);
1166 	SOCK_LOCK(so);
1167 	KASSERT(so->so_qstate == SQ_COMP,
1168 	    ("%s: so %p not SQ_COMP", __func__, so));
1169 	head->sol_qlen--;
1170 	so->so_qstate = SQ_NONE;
1171 	so->so_listen = NULL;
1172 	TAILQ_REMOVE(&head->sol_comp, so, so_list);
1173 	if (flags & ACCEPT4_INHERIT)
1174 		so->so_state |= (head->so_state & SS_NBIO);
1175 	else
1176 		so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0;
1177 	SOCK_UNLOCK(so);
1178 	sorele_locked(head);
1179 
1180 	*ret = so;
1181 	return (0);
1182 }
1183 
1184 /*
1185  * Free socket upon release of the very last reference.
1186  */
1187 static void
1188 sofree(struct socket *so)
1189 {
1190 	struct protosw *pr = so->so_proto;
1191 
1192 	SOCK_LOCK_ASSERT(so);
1193 	KASSERT(refcount_load(&so->so_count) == 0,
1194 	    ("%s: so %p has references", __func__, so));
1195 	KASSERT(SOLISTENING(so) || so->so_qstate == SQ_NONE,
1196 	    ("%s: so %p is on listen queue", __func__, so));
1197 
1198 	SOCK_UNLOCK(so);
1199 
1200 	if (so->so_dtor != NULL)
1201 		so->so_dtor(so);
1202 
1203 	VNET_SO_ASSERT(so);
1204 	if ((pr->pr_flags & PR_RIGHTS) && !SOLISTENING(so)) {
1205 		MPASS(pr->pr_domain->dom_dispose != NULL);
1206 		(*pr->pr_domain->dom_dispose)(so);
1207 	}
1208 	if (pr->pr_detach != NULL)
1209 		pr->pr_detach(so);
1210 
1211 	/*
1212 	 * From this point on, we assume that no other references to this
1213 	 * socket exist anywhere else in the stack.  Therefore, no locks need
1214 	 * to be acquired or held.
1215 	 */
1216 	if (!(pr->pr_flags & PR_SOCKBUF) && !SOLISTENING(so)) {
1217 		sbdestroy(so, SO_SND);
1218 		sbdestroy(so, SO_RCV);
1219 	}
1220 	seldrain(&so->so_rdsel);
1221 	seldrain(&so->so_wrsel);
1222 	knlist_destroy(&so->so_rdsel.si_note);
1223 	knlist_destroy(&so->so_wrsel.si_note);
1224 	sodealloc(so);
1225 }
1226 
1227 /*
1228  * Release a reference on a socket while holding the socket lock.
1229  * Unlocks the socket lock before returning.
1230  */
1231 void
1232 sorele_locked(struct socket *so)
1233 {
1234 	SOCK_LOCK_ASSERT(so);
1235 	if (refcount_release(&so->so_count))
1236 		sofree(so);
1237 	else
1238 		SOCK_UNLOCK(so);
1239 }
1240 
1241 /*
1242  * Close a socket on last file table reference removal.  Initiate disconnect
1243  * if connected.  Free socket when disconnect complete.
1244  *
1245  * This function will sorele() the socket.  Note that soclose() may be called
1246  * prior to the ref count reaching zero.  The actual socket structure will
1247  * not be freed until the ref count reaches zero.
1248  */
1249 int
1250 soclose(struct socket *so)
1251 {
1252 	struct accept_queue lqueue;
1253 	int error = 0;
1254 	bool listening, last __diagused;
1255 
1256 	CURVNET_SET(so->so_vnet);
1257 	funsetown(&so->so_sigio);
1258 	if (so->so_state & SS_ISCONNECTED) {
1259 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
1260 			error = sodisconnect(so);
1261 			if (error) {
1262 				if (error == ENOTCONN)
1263 					error = 0;
1264 				goto drop;
1265 			}
1266 		}
1267 
1268 		if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) {
1269 			if ((so->so_state & SS_ISDISCONNECTING) &&
1270 			    (so->so_state & SS_NBIO))
1271 				goto drop;
1272 			while (so->so_state & SS_ISCONNECTED) {
1273 				error = tsleep(&so->so_timeo,
1274 				    PSOCK | PCATCH, "soclos",
1275 				    so->so_linger * hz);
1276 				if (error)
1277 					break;
1278 			}
1279 		}
1280 	}
1281 
1282 drop:
1283 	if (so->so_proto->pr_close != NULL)
1284 		so->so_proto->pr_close(so);
1285 
1286 	SOCK_LOCK(so);
1287 	if ((listening = SOLISTENING(so))) {
1288 		struct socket *sp;
1289 
1290 		TAILQ_INIT(&lqueue);
1291 		TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list);
1292 		TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list);
1293 
1294 		so->sol_qlen = so->sol_incqlen = 0;
1295 
1296 		TAILQ_FOREACH(sp, &lqueue, so_list) {
1297 			SOCK_LOCK(sp);
1298 			sp->so_qstate = SQ_NONE;
1299 			sp->so_listen = NULL;
1300 			SOCK_UNLOCK(sp);
1301 			last = refcount_release(&so->so_count);
1302 			KASSERT(!last, ("%s: released last reference for %p",
1303 			    __func__, so));
1304 		}
1305 	}
1306 	sorele_locked(so);
1307 	if (listening) {
1308 		struct socket *sp, *tsp;
1309 
1310 		TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp)
1311 			soabort(sp);
1312 	}
1313 	CURVNET_RESTORE();
1314 	return (error);
1315 }
1316 
1317 /*
1318  * soabort() is used to abruptly tear down a connection, such as when a
1319  * resource limit is reached (listen queue depth exceeded), or if a listen
1320  * socket is closed while there are sockets waiting to be accepted.
1321  *
1322  * This interface is tricky, because it is called on an unreferenced socket,
1323  * and must be called only by a thread that has actually removed the socket
1324  * from the listen queue it was on.  Likely this thread holds the last
1325  * reference on the socket and soabort() will proceed with sofree().  But
1326  * it might be not the last, as the sockets on the listen queues are seen
1327  * from the protocol side.
1328  *
1329  * This interface will call into the protocol code, so must not be called
1330  * with any socket locks held.  Protocols do call it while holding their own
1331  * recursible protocol mutexes, but this is something that should be subject
1332  * to review in the future.
1333  *
1334  * Usually socket should have a single reference left, but this is not a
1335  * requirement.  In the past, when we have had named references for file
1336  * descriptor and protocol, we asserted that none of them are being held.
1337  */
1338 void
1339 soabort(struct socket *so)
1340 {
1341 
1342 	VNET_SO_ASSERT(so);
1343 
1344 	if (so->so_proto->pr_abort != NULL)
1345 		so->so_proto->pr_abort(so);
1346 	SOCK_LOCK(so);
1347 	sorele_locked(so);
1348 }
1349 
1350 int
1351 soaccept(struct socket *so, struct sockaddr *sa)
1352 {
1353 #ifdef INVARIANTS
1354 	u_char len = sa->sa_len;
1355 #endif
1356 	int error;
1357 
1358 	CURVNET_SET(so->so_vnet);
1359 	error = so->so_proto->pr_accept(so, sa);
1360 	KASSERT(sa->sa_len <= len,
1361 	    ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
1362 	CURVNET_RESTORE();
1363 	return (error);
1364 }
1365 
1366 int
1367 sopeeraddr(struct socket *so, struct sockaddr *sa)
1368 {
1369 #ifdef INVARIANTS
1370 	u_char len = sa->sa_len;
1371 #endif
1372 	int error;
1373 
1374 	CURVNET_SET(so->so_vnet);
1375 	error = so->so_proto->pr_peeraddr(so, sa);
1376 	KASSERT(sa->sa_len <= len,
1377 	    ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
1378 	CURVNET_RESTORE();
1379 
1380 	return (error);
1381 }
1382 
1383 int
1384 sosockaddr(struct socket *so, struct sockaddr *sa)
1385 {
1386 #ifdef INVARIANTS
1387 	u_char len = sa->sa_len;
1388 #endif
1389 	int error;
1390 
1391 	CURVNET_SET(so->so_vnet);
1392 	error = so->so_proto->pr_sockaddr(so, sa);
1393 	KASSERT(sa->sa_len <= len,
1394 	    ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
1395 	CURVNET_RESTORE();
1396 
1397 	return (error);
1398 }
1399 
1400 int
1401 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
1402 {
1403 
1404 	return (soconnectat(AT_FDCWD, so, nam, td));
1405 }
1406 
1407 int
1408 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
1409 {
1410 	int error;
1411 
1412 	CURVNET_SET(so->so_vnet);
1413 
1414 	/*
1415 	 * If protocol is connection-based, can only connect once.
1416 	 * Otherwise, if connected, try to disconnect first.  This allows
1417 	 * user to disconnect by connecting to, e.g., a null address.
1418 	 *
1419 	 * Note, this check is racy and may need to be re-evaluated at the
1420 	 * protocol layer.
1421 	 */
1422 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
1423 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
1424 	    (error = sodisconnect(so)))) {
1425 		error = EISCONN;
1426 	} else {
1427 		/*
1428 		 * Prevent accumulated error from previous connection from
1429 		 * biting us.
1430 		 */
1431 		so->so_error = 0;
1432 		if (fd == AT_FDCWD) {
1433 			error = so->so_proto->pr_connect(so, nam, td);
1434 		} else {
1435 			error = so->so_proto->pr_connectat(fd, so, nam, td);
1436 		}
1437 	}
1438 	CURVNET_RESTORE();
1439 
1440 	return (error);
1441 }
1442 
1443 int
1444 soconnect2(struct socket *so1, struct socket *so2)
1445 {
1446 	int error;
1447 
1448 	CURVNET_SET(so1->so_vnet);
1449 	error = so1->so_proto->pr_connect2(so1, so2);
1450 	CURVNET_RESTORE();
1451 	return (error);
1452 }
1453 
1454 int
1455 sodisconnect(struct socket *so)
1456 {
1457 	int error;
1458 
1459 	if ((so->so_state & SS_ISCONNECTED) == 0)
1460 		return (ENOTCONN);
1461 	if (so->so_state & SS_ISDISCONNECTING)
1462 		return (EALREADY);
1463 	VNET_SO_ASSERT(so);
1464 	error = so->so_proto->pr_disconnect(so);
1465 	return (error);
1466 }
1467 
1468 int
1469 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
1470     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1471 {
1472 	long space;
1473 	ssize_t resid;
1474 	int clen = 0, error, dontroute;
1475 
1476 	KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM"));
1477 	KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
1478 	    ("sosend_dgram: !PR_ATOMIC"));
1479 
1480 	if (uio != NULL)
1481 		resid = uio->uio_resid;
1482 	else
1483 		resid = top->m_pkthdr.len;
1484 	/*
1485 	 * In theory resid should be unsigned.  However, space must be
1486 	 * signed, as it might be less than 0 if we over-committed, and we
1487 	 * must use a signed comparison of space and resid.  On the other
1488 	 * hand, a negative resid causes us to loop sending 0-length
1489 	 * segments to the protocol.
1490 	 */
1491 	if (resid < 0) {
1492 		error = EINVAL;
1493 		goto out;
1494 	}
1495 
1496 	dontroute =
1497 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
1498 	if (td != NULL)
1499 		td->td_ru.ru_msgsnd++;
1500 	if (control != NULL)
1501 		clen = control->m_len;
1502 
1503 	SOCKBUF_LOCK(&so->so_snd);
1504 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1505 		SOCKBUF_UNLOCK(&so->so_snd);
1506 		error = EPIPE;
1507 		goto out;
1508 	}
1509 	if (so->so_error) {
1510 		error = so->so_error;
1511 		so->so_error = 0;
1512 		SOCKBUF_UNLOCK(&so->so_snd);
1513 		goto out;
1514 	}
1515 	if ((so->so_state & SS_ISCONNECTED) == 0) {
1516 		/*
1517 		 * `sendto' and `sendmsg' is allowed on a connection-based
1518 		 * socket if it supports implied connect.  Return ENOTCONN if
1519 		 * not connected and no address is supplied.
1520 		 */
1521 		if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1522 		    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1523 			if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1524 			    !(resid == 0 && clen != 0)) {
1525 				SOCKBUF_UNLOCK(&so->so_snd);
1526 				error = ENOTCONN;
1527 				goto out;
1528 			}
1529 		} else if (addr == NULL) {
1530 			if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1531 				error = ENOTCONN;
1532 			else
1533 				error = EDESTADDRREQ;
1534 			SOCKBUF_UNLOCK(&so->so_snd);
1535 			goto out;
1536 		}
1537 	}
1538 
1539 	/*
1540 	 * Do we need MSG_OOB support in SOCK_DGRAM?  Signs here may be a
1541 	 * problem and need fixing.
1542 	 */
1543 	space = sbspace(&so->so_snd);
1544 	if (flags & MSG_OOB)
1545 		space += 1024;
1546 	space -= clen;
1547 	SOCKBUF_UNLOCK(&so->so_snd);
1548 	if (resid > space) {
1549 		error = EMSGSIZE;
1550 		goto out;
1551 	}
1552 	if (uio == NULL) {
1553 		resid = 0;
1554 		if (flags & MSG_EOR)
1555 			top->m_flags |= M_EOR;
1556 	} else {
1557 		/*
1558 		 * Copy the data from userland into a mbuf chain.
1559 		 * If no data is to be copied in, a single empty mbuf
1560 		 * is returned.
1561 		 */
1562 		top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
1563 		    (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
1564 		if (top == NULL) {
1565 			error = EFAULT;	/* only possible error */
1566 			goto out;
1567 		}
1568 		space -= resid - uio->uio_resid;
1569 		resid = uio->uio_resid;
1570 	}
1571 	KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
1572 	/*
1573 	 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
1574 	 * than with.
1575 	 */
1576 	if (dontroute) {
1577 		SOCK_LOCK(so);
1578 		so->so_options |= SO_DONTROUTE;
1579 		SOCK_UNLOCK(so);
1580 	}
1581 	/*
1582 	 * XXX all the SBS_CANTSENDMORE checks previously done could be out
1583 	 * of date.  We could have received a reset packet in an interrupt or
1584 	 * maybe we slept while doing page faults in uiomove() etc.  We could
1585 	 * probably recheck again inside the locking protection here, but
1586 	 * there are probably other places that this also happens.  We must
1587 	 * rethink this.
1588 	 */
1589 	VNET_SO_ASSERT(so);
1590 	error = so->so_proto->pr_send(so, (flags & MSG_OOB) ? PRUS_OOB :
1591 	/*
1592 	 * If the user set MSG_EOF, the protocol understands this flag and
1593 	 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
1594 	 */
1595 	    ((flags & MSG_EOF) &&
1596 	     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1597 	     (resid <= 0)) ?
1598 		PRUS_EOF :
1599 		/* If there is more to send set PRUS_MORETOCOME */
1600 		(flags & MSG_MORETOCOME) ||
1601 		(resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1602 		top, addr, control, td);
1603 	if (dontroute) {
1604 		SOCK_LOCK(so);
1605 		so->so_options &= ~SO_DONTROUTE;
1606 		SOCK_UNLOCK(so);
1607 	}
1608 	clen = 0;
1609 	control = NULL;
1610 	top = NULL;
1611 out:
1612 	if (top != NULL)
1613 		m_freem(top);
1614 	if (control != NULL)
1615 		m_freem(control);
1616 	return (error);
1617 }
1618 
1619 /*
1620  * Send on a socket.  If send must go all at once and message is larger than
1621  * send buffering, then hard error.  Lock against other senders.  If must go
1622  * all at once and not enough room now, then inform user that this would
1623  * block and do nothing.  Otherwise, if nonblocking, send as much as
1624  * possible.  The data to be sent is described by "uio" if nonzero, otherwise
1625  * by the mbuf chain "top" (which must be null if uio is not).  Data provided
1626  * in mbuf chain must be small enough to send all at once.
1627  *
1628  * Returns nonzero on error, timeout or signal; callers must check for short
1629  * counts if EINTR/ERESTART are returned.  Data and control buffers are freed
1630  * on return.
1631  */
1632 int
1633 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
1634     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1635 {
1636 	long space;
1637 	ssize_t resid;
1638 	int clen = 0, error, dontroute;
1639 	int atomic = sosendallatonce(so) || top;
1640 	int pr_send_flag;
1641 #ifdef KERN_TLS
1642 	struct ktls_session *tls;
1643 	int tls_enq_cnt, tls_send_flag;
1644 	uint8_t tls_rtype;
1645 
1646 	tls = NULL;
1647 	tls_rtype = TLS_RLTYPE_APP;
1648 #endif
1649 	if (uio != NULL)
1650 		resid = uio->uio_resid;
1651 	else if ((top->m_flags & M_PKTHDR) != 0)
1652 		resid = top->m_pkthdr.len;
1653 	else
1654 		resid = m_length(top, NULL);
1655 	/*
1656 	 * In theory resid should be unsigned.  However, space must be
1657 	 * signed, as it might be less than 0 if we over-committed, and we
1658 	 * must use a signed comparison of space and resid.  On the other
1659 	 * hand, a negative resid causes us to loop sending 0-length
1660 	 * segments to the protocol.
1661 	 *
1662 	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
1663 	 * type sockets since that's an error.
1664 	 */
1665 	if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
1666 		error = EINVAL;
1667 		goto out;
1668 	}
1669 
1670 	dontroute =
1671 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
1672 	    (so->so_proto->pr_flags & PR_ATOMIC);
1673 	if (td != NULL)
1674 		td->td_ru.ru_msgsnd++;
1675 	if (control != NULL)
1676 		clen = control->m_len;
1677 
1678 	error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags));
1679 	if (error)
1680 		goto out;
1681 
1682 #ifdef KERN_TLS
1683 	tls_send_flag = 0;
1684 	tls = ktls_hold(so->so_snd.sb_tls_info);
1685 	if (tls != NULL) {
1686 		if (tls->mode == TCP_TLS_MODE_SW)
1687 			tls_send_flag = PRUS_NOTREADY;
1688 
1689 		if (control != NULL) {
1690 			struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1691 
1692 			if (clen >= sizeof(*cm) &&
1693 			    cm->cmsg_type == TLS_SET_RECORD_TYPE) {
1694 				tls_rtype = *((uint8_t *)CMSG_DATA(cm));
1695 				clen = 0;
1696 				m_freem(control);
1697 				control = NULL;
1698 				atomic = 1;
1699 			}
1700 		}
1701 
1702 		if (resid == 0 && !ktls_permit_empty_frames(tls)) {
1703 			error = EINVAL;
1704 			goto release;
1705 		}
1706 	}
1707 #endif
1708 
1709 restart:
1710 	do {
1711 		SOCKBUF_LOCK(&so->so_snd);
1712 		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1713 			SOCKBUF_UNLOCK(&so->so_snd);
1714 			error = EPIPE;
1715 			goto release;
1716 		}
1717 		if (so->so_error) {
1718 			error = so->so_error;
1719 			so->so_error = 0;
1720 			SOCKBUF_UNLOCK(&so->so_snd);
1721 			goto release;
1722 		}
1723 		if ((so->so_state & SS_ISCONNECTED) == 0) {
1724 			/*
1725 			 * `sendto' and `sendmsg' is allowed on a connection-
1726 			 * based socket if it supports implied connect.
1727 			 * Return ENOTCONN if not connected and no address is
1728 			 * supplied.
1729 			 */
1730 			if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1731 			    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1732 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1733 				    !(resid == 0 && clen != 0)) {
1734 					SOCKBUF_UNLOCK(&so->so_snd);
1735 					error = ENOTCONN;
1736 					goto release;
1737 				}
1738 			} else if (addr == NULL) {
1739 				SOCKBUF_UNLOCK(&so->so_snd);
1740 				if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1741 					error = ENOTCONN;
1742 				else
1743 					error = EDESTADDRREQ;
1744 				goto release;
1745 			}
1746 		}
1747 		space = sbspace(&so->so_snd);
1748 		if (flags & MSG_OOB)
1749 			space += 1024;
1750 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
1751 		    clen > so->so_snd.sb_hiwat) {
1752 			SOCKBUF_UNLOCK(&so->so_snd);
1753 			error = EMSGSIZE;
1754 			goto release;
1755 		}
1756 		if (space < resid + clen &&
1757 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
1758 			if ((so->so_state & SS_NBIO) ||
1759 			    (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) {
1760 				SOCKBUF_UNLOCK(&so->so_snd);
1761 				error = EWOULDBLOCK;
1762 				goto release;
1763 			}
1764 			error = sbwait(so, SO_SND);
1765 			SOCKBUF_UNLOCK(&so->so_snd);
1766 			if (error)
1767 				goto release;
1768 			goto restart;
1769 		}
1770 		SOCKBUF_UNLOCK(&so->so_snd);
1771 		space -= clen;
1772 		do {
1773 			if (uio == NULL) {
1774 				resid = 0;
1775 				if (flags & MSG_EOR)
1776 					top->m_flags |= M_EOR;
1777 #ifdef KERN_TLS
1778 				if (tls != NULL) {
1779 					ktls_frame(top, tls, &tls_enq_cnt,
1780 					    tls_rtype);
1781 					tls_rtype = TLS_RLTYPE_APP;
1782 				}
1783 #endif
1784 			} else {
1785 				/*
1786 				 * Copy the data from userland into a mbuf
1787 				 * chain.  If resid is 0, which can happen
1788 				 * only if we have control to send, then
1789 				 * a single empty mbuf is returned.  This
1790 				 * is a workaround to prevent protocol send
1791 				 * methods to panic.
1792 				 */
1793 #ifdef KERN_TLS
1794 				if (tls != NULL) {
1795 					top = m_uiotombuf(uio, M_WAITOK, space,
1796 					    tls->params.max_frame_len,
1797 					    M_EXTPG |
1798 					    ((flags & MSG_EOR) ? M_EOR : 0));
1799 					if (top != NULL) {
1800 						ktls_frame(top, tls,
1801 						    &tls_enq_cnt, tls_rtype);
1802 					}
1803 					tls_rtype = TLS_RLTYPE_APP;
1804 				} else
1805 #endif
1806 					top = m_uiotombuf(uio, M_WAITOK, space,
1807 					    (atomic ? max_hdr : 0),
1808 					    (atomic ? M_PKTHDR : 0) |
1809 					    ((flags & MSG_EOR) ? M_EOR : 0));
1810 				if (top == NULL) {
1811 					error = EFAULT; /* only possible error */
1812 					goto release;
1813 				}
1814 				space -= resid - uio->uio_resid;
1815 				resid = uio->uio_resid;
1816 			}
1817 			if (dontroute) {
1818 				SOCK_LOCK(so);
1819 				so->so_options |= SO_DONTROUTE;
1820 				SOCK_UNLOCK(so);
1821 			}
1822 			/*
1823 			 * XXX all the SBS_CANTSENDMORE checks previously
1824 			 * done could be out of date.  We could have received
1825 			 * a reset packet in an interrupt or maybe we slept
1826 			 * while doing page faults in uiomove() etc.  We
1827 			 * could probably recheck again inside the locking
1828 			 * protection here, but there are probably other
1829 			 * places that this also happens.  We must rethink
1830 			 * this.
1831 			 */
1832 			VNET_SO_ASSERT(so);
1833 
1834 			pr_send_flag = (flags & MSG_OOB) ? PRUS_OOB :
1835 			/*
1836 			 * If the user set MSG_EOF, the protocol understands
1837 			 * this flag and nothing left to send then use
1838 			 * PRU_SEND_EOF instead of PRU_SEND.
1839 			 */
1840 			    ((flags & MSG_EOF) &&
1841 			     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1842 			     (resid <= 0)) ?
1843 				PRUS_EOF :
1844 			/* If there is more to send set PRUS_MORETOCOME. */
1845 			    (flags & MSG_MORETOCOME) ||
1846 			    (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0;
1847 
1848 #ifdef KERN_TLS
1849 			pr_send_flag |= tls_send_flag;
1850 #endif
1851 
1852 			error = so->so_proto->pr_send(so, pr_send_flag, top,
1853 			    addr, control, td);
1854 
1855 			if (dontroute) {
1856 				SOCK_LOCK(so);
1857 				so->so_options &= ~SO_DONTROUTE;
1858 				SOCK_UNLOCK(so);
1859 			}
1860 
1861 #ifdef KERN_TLS
1862 			if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) {
1863 				if (error != 0) {
1864 					m_freem(top);
1865 					top = NULL;
1866 				} else {
1867 					soref(so);
1868 					ktls_enqueue(top, so, tls_enq_cnt);
1869 				}
1870 			}
1871 #endif
1872 			clen = 0;
1873 			control = NULL;
1874 			top = NULL;
1875 			if (error)
1876 				goto release;
1877 		} while (resid && space > 0);
1878 	} while (resid);
1879 
1880 release:
1881 	SOCK_IO_SEND_UNLOCK(so);
1882 out:
1883 #ifdef KERN_TLS
1884 	if (tls != NULL)
1885 		ktls_free(tls);
1886 #endif
1887 	if (top != NULL)
1888 		m_freem(top);
1889 	if (control != NULL)
1890 		m_freem(control);
1891 	return (error);
1892 }
1893 
1894 /*
1895  * Send to a socket from a kernel thread.
1896  *
1897  * XXXGL: in almost all cases uio is NULL and the mbuf is supplied.
1898  * Exception is nfs/bootp_subr.c.  It is arguable that the VNET context needs
1899  * to be set at all.  This function should just boil down to a static inline
1900  * calling the protocol method.
1901  */
1902 int
1903 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
1904     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1905 {
1906 	int error;
1907 
1908 	CURVNET_SET(so->so_vnet);
1909 	error = so->so_proto->pr_sosend(so, addr, uio,
1910 	    top, control, flags, td);
1911 	CURVNET_RESTORE();
1912 	return (error);
1913 }
1914 
1915 /*
1916  * send(2), write(2) or aio_write(2) on a socket.
1917  */
1918 int
1919 sousrsend(struct socket *so, struct sockaddr *addr, struct uio *uio,
1920     struct mbuf *control, int flags, struct proc *userproc)
1921 {
1922 	struct thread *td;
1923 	ssize_t len;
1924 	int error;
1925 
1926 	td = uio->uio_td;
1927 	len = uio->uio_resid;
1928 	CURVNET_SET(so->so_vnet);
1929 	error = so->so_proto->pr_sosend(so, addr, uio, NULL, control, flags,
1930 	    td);
1931 	CURVNET_RESTORE();
1932 	if (error != 0) {
1933 		/*
1934 		 * Clear transient errors for stream protocols if they made
1935 		 * some progress.  Make exclusion for aio(4) that would
1936 		 * schedule a new write in case of EWOULDBLOCK and clear
1937 		 * error itself.  See soaio_process_job().
1938 		 */
1939 		if (uio->uio_resid != len &&
1940 		    (so->so_proto->pr_flags & PR_ATOMIC) == 0 &&
1941 		    userproc == NULL &&
1942 		    (error == ERESTART || error == EINTR ||
1943 		    error == EWOULDBLOCK))
1944 			error = 0;
1945 		/* Generation of SIGPIPE can be controlled per socket. */
1946 		if (error == EPIPE && (so->so_options & SO_NOSIGPIPE) == 0 &&
1947 		    (flags & MSG_NOSIGNAL) == 0) {
1948 			if (userproc != NULL) {
1949 				/* aio(4) job */
1950 				PROC_LOCK(userproc);
1951 				kern_psignal(userproc, SIGPIPE);
1952 				PROC_UNLOCK(userproc);
1953 			} else {
1954 				PROC_LOCK(td->td_proc);
1955 				tdsignal(td, SIGPIPE);
1956 				PROC_UNLOCK(td->td_proc);
1957 			}
1958 		}
1959 	}
1960 	return (error);
1961 }
1962 
1963 /*
1964  * The part of soreceive() that implements reading non-inline out-of-band
1965  * data from a socket.  For more complete comments, see soreceive(), from
1966  * which this code originated.
1967  *
1968  * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
1969  * unable to return an mbuf chain to the caller.
1970  */
1971 static int
1972 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
1973 {
1974 	struct protosw *pr = so->so_proto;
1975 	struct mbuf *m;
1976 	int error;
1977 
1978 	KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
1979 	VNET_SO_ASSERT(so);
1980 
1981 	m = m_get(M_WAITOK, MT_DATA);
1982 	error = pr->pr_rcvoob(so, m, flags & MSG_PEEK);
1983 	if (error)
1984 		goto bad;
1985 	do {
1986 		error = uiomove(mtod(m, void *),
1987 		    (int) min(uio->uio_resid, m->m_len), uio);
1988 		m = m_free(m);
1989 	} while (uio->uio_resid && error == 0 && m);
1990 bad:
1991 	if (m != NULL)
1992 		m_freem(m);
1993 	return (error);
1994 }
1995 
1996 /*
1997  * Following replacement or removal of the first mbuf on the first mbuf chain
1998  * of a socket buffer, push necessary state changes back into the socket
1999  * buffer so that other consumers see the values consistently.  'nextrecord'
2000  * is the callers locally stored value of the original value of
2001  * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
2002  * NOTE: 'nextrecord' may be NULL.
2003  */
2004 static __inline void
2005 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
2006 {
2007 
2008 	SOCKBUF_LOCK_ASSERT(sb);
2009 	/*
2010 	 * First, update for the new value of nextrecord.  If necessary, make
2011 	 * it the first record.
2012 	 */
2013 	if (sb->sb_mb != NULL)
2014 		sb->sb_mb->m_nextpkt = nextrecord;
2015 	else
2016 		sb->sb_mb = nextrecord;
2017 
2018 	/*
2019 	 * Now update any dependent socket buffer fields to reflect the new
2020 	 * state.  This is an expanded inline of SB_EMPTY_FIXUP(), with the
2021 	 * addition of a second clause that takes care of the case where
2022 	 * sb_mb has been updated, but remains the last record.
2023 	 */
2024 	if (sb->sb_mb == NULL) {
2025 		sb->sb_mbtail = NULL;
2026 		sb->sb_lastrecord = NULL;
2027 	} else if (sb->sb_mb->m_nextpkt == NULL)
2028 		sb->sb_lastrecord = sb->sb_mb;
2029 }
2030 
2031 /*
2032  * Implement receive operations on a socket.  We depend on the way that
2033  * records are added to the sockbuf by sbappend.  In particular, each record
2034  * (mbufs linked through m_next) must begin with an address if the protocol
2035  * so specifies, followed by an optional mbuf or mbufs containing ancillary
2036  * data, and then zero or more mbufs of data.  In order to allow parallelism
2037  * between network receive and copying to user space, as well as avoid
2038  * sleeping with a mutex held, we release the socket buffer mutex during the
2039  * user space copy.  Although the sockbuf is locked, new data may still be
2040  * appended, and thus we must maintain consistency of the sockbuf during that
2041  * time.
2042  *
2043  * The caller may receive the data as a single mbuf chain by supplying an
2044  * mbuf **mp0 for use in returning the chain.  The uio is then used only for
2045  * the count in uio_resid.
2046  */
2047 int
2048 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
2049     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2050 {
2051 	struct mbuf *m, **mp;
2052 	int flags, error, offset;
2053 	ssize_t len;
2054 	struct protosw *pr = so->so_proto;
2055 	struct mbuf *nextrecord;
2056 	int moff, type = 0;
2057 	ssize_t orig_resid = uio->uio_resid;
2058 	bool report_real_len = false;
2059 
2060 	mp = mp0;
2061 	if (psa != NULL)
2062 		*psa = NULL;
2063 	if (controlp != NULL)
2064 		*controlp = NULL;
2065 	if (flagsp != NULL) {
2066 		report_real_len = *flagsp & MSG_TRUNC;
2067 		*flagsp &= ~MSG_TRUNC;
2068 		flags = *flagsp &~ MSG_EOR;
2069 	} else
2070 		flags = 0;
2071 	if (flags & MSG_OOB)
2072 		return (soreceive_rcvoob(so, uio, flags));
2073 	if (mp != NULL)
2074 		*mp = NULL;
2075 	if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING)
2076 	    && uio->uio_resid) {
2077 		VNET_SO_ASSERT(so);
2078 		pr->pr_rcvd(so, 0);
2079 	}
2080 
2081 	error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
2082 	if (error)
2083 		return (error);
2084 
2085 restart:
2086 	SOCKBUF_LOCK(&so->so_rcv);
2087 	m = so->so_rcv.sb_mb;
2088 	/*
2089 	 * If we have less data than requested, block awaiting more (subject
2090 	 * to any timeout) if:
2091 	 *   1. the current count is less than the low water mark, or
2092 	 *   2. MSG_DONTWAIT is not set
2093 	 */
2094 	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
2095 	    sbavail(&so->so_rcv) < uio->uio_resid) &&
2096 	    sbavail(&so->so_rcv) < so->so_rcv.sb_lowat &&
2097 	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
2098 		KASSERT(m != NULL || !sbavail(&so->so_rcv),
2099 		    ("receive: m == %p sbavail == %u",
2100 		    m, sbavail(&so->so_rcv)));
2101 		if (so->so_error || so->so_rerror) {
2102 			if (m != NULL)
2103 				goto dontblock;
2104 			if (so->so_error)
2105 				error = so->so_error;
2106 			else
2107 				error = so->so_rerror;
2108 			if ((flags & MSG_PEEK) == 0) {
2109 				if (so->so_error)
2110 					so->so_error = 0;
2111 				else
2112 					so->so_rerror = 0;
2113 			}
2114 			SOCKBUF_UNLOCK(&so->so_rcv);
2115 			goto release;
2116 		}
2117 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2118 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2119 			if (m != NULL)
2120 				goto dontblock;
2121 #ifdef KERN_TLS
2122 			else if (so->so_rcv.sb_tlsdcc == 0 &&
2123 			    so->so_rcv.sb_tlscc == 0) {
2124 #else
2125 			else {
2126 #endif
2127 				SOCKBUF_UNLOCK(&so->so_rcv);
2128 				goto release;
2129 			}
2130 		}
2131 		for (; m != NULL; m = m->m_next)
2132 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
2133 				m = so->so_rcv.sb_mb;
2134 				goto dontblock;
2135 			}
2136 		if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED |
2137 		    SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 &&
2138 		    (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
2139 			SOCKBUF_UNLOCK(&so->so_rcv);
2140 			error = ENOTCONN;
2141 			goto release;
2142 		}
2143 		if (uio->uio_resid == 0 && !report_real_len) {
2144 			SOCKBUF_UNLOCK(&so->so_rcv);
2145 			goto release;
2146 		}
2147 		if ((so->so_state & SS_NBIO) ||
2148 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
2149 			SOCKBUF_UNLOCK(&so->so_rcv);
2150 			error = EWOULDBLOCK;
2151 			goto release;
2152 		}
2153 		SBLASTRECORDCHK(&so->so_rcv);
2154 		SBLASTMBUFCHK(&so->so_rcv);
2155 		error = sbwait(so, SO_RCV);
2156 		SOCKBUF_UNLOCK(&so->so_rcv);
2157 		if (error)
2158 			goto release;
2159 		goto restart;
2160 	}
2161 dontblock:
2162 	/*
2163 	 * From this point onward, we maintain 'nextrecord' as a cache of the
2164 	 * pointer to the next record in the socket buffer.  We must keep the
2165 	 * various socket buffer pointers and local stack versions of the
2166 	 * pointers in sync, pushing out modifications before dropping the
2167 	 * socket buffer mutex, and re-reading them when picking it up.
2168 	 *
2169 	 * Otherwise, we will race with the network stack appending new data
2170 	 * or records onto the socket buffer by using inconsistent/stale
2171 	 * versions of the field, possibly resulting in socket buffer
2172 	 * corruption.
2173 	 *
2174 	 * By holding the high-level sblock(), we prevent simultaneous
2175 	 * readers from pulling off the front of the socket buffer.
2176 	 */
2177 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2178 	if (uio->uio_td)
2179 		uio->uio_td->td_ru.ru_msgrcv++;
2180 	KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
2181 	SBLASTRECORDCHK(&so->so_rcv);
2182 	SBLASTMBUFCHK(&so->so_rcv);
2183 	nextrecord = m->m_nextpkt;
2184 	if (pr->pr_flags & PR_ADDR) {
2185 		KASSERT(m->m_type == MT_SONAME,
2186 		    ("m->m_type == %d", m->m_type));
2187 		orig_resid = 0;
2188 		if (psa != NULL)
2189 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
2190 			    M_NOWAIT);
2191 		if (flags & MSG_PEEK) {
2192 			m = m->m_next;
2193 		} else {
2194 			sbfree(&so->so_rcv, m);
2195 			so->so_rcv.sb_mb = m_free(m);
2196 			m = so->so_rcv.sb_mb;
2197 			sockbuf_pushsync(&so->so_rcv, nextrecord);
2198 		}
2199 	}
2200 
2201 	/*
2202 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
2203 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
2204 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
2205 	 * perform externalization (or freeing if controlp == NULL).
2206 	 */
2207 	if (m != NULL && m->m_type == MT_CONTROL) {
2208 		struct mbuf *cm = NULL, *cmn;
2209 		struct mbuf **cme = &cm;
2210 #ifdef KERN_TLS
2211 		struct cmsghdr *cmsg;
2212 		struct tls_get_record tgr;
2213 
2214 		/*
2215 		 * For MSG_TLSAPPDATA, check for an alert record.
2216 		 * If found, return ENXIO without removing
2217 		 * it from the receive queue.  This allows a subsequent
2218 		 * call without MSG_TLSAPPDATA to receive it.
2219 		 * Note that, for TLS, there should only be a single
2220 		 * control mbuf with the TLS_GET_RECORD message in it.
2221 		 */
2222 		if (flags & MSG_TLSAPPDATA) {
2223 			cmsg = mtod(m, struct cmsghdr *);
2224 			if (cmsg->cmsg_type == TLS_GET_RECORD &&
2225 			    cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) {
2226 				memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr));
2227 				if (__predict_false(tgr.tls_type ==
2228 				    TLS_RLTYPE_ALERT)) {
2229 					SOCKBUF_UNLOCK(&so->so_rcv);
2230 					error = ENXIO;
2231 					goto release;
2232 				}
2233 			}
2234 		}
2235 #endif
2236 
2237 		do {
2238 			if (flags & MSG_PEEK) {
2239 				if (controlp != NULL) {
2240 					*controlp = m_copym(m, 0, m->m_len,
2241 					    M_NOWAIT);
2242 					controlp = &(*controlp)->m_next;
2243 				}
2244 				m = m->m_next;
2245 			} else {
2246 				sbfree(&so->so_rcv, m);
2247 				so->so_rcv.sb_mb = m->m_next;
2248 				m->m_next = NULL;
2249 				*cme = m;
2250 				cme = &(*cme)->m_next;
2251 				m = so->so_rcv.sb_mb;
2252 			}
2253 		} while (m != NULL && m->m_type == MT_CONTROL);
2254 		if ((flags & MSG_PEEK) == 0)
2255 			sockbuf_pushsync(&so->so_rcv, nextrecord);
2256 		while (cm != NULL) {
2257 			cmn = cm->m_next;
2258 			cm->m_next = NULL;
2259 			if (pr->pr_domain->dom_externalize != NULL) {
2260 				SOCKBUF_UNLOCK(&so->so_rcv);
2261 				VNET_SO_ASSERT(so);
2262 				error = (*pr->pr_domain->dom_externalize)
2263 				    (cm, controlp, flags);
2264 				SOCKBUF_LOCK(&so->so_rcv);
2265 			} else if (controlp != NULL)
2266 				*controlp = cm;
2267 			else
2268 				m_freem(cm);
2269 			if (controlp != NULL) {
2270 				while (*controlp != NULL)
2271 					controlp = &(*controlp)->m_next;
2272 			}
2273 			cm = cmn;
2274 		}
2275 		if (m != NULL)
2276 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
2277 		else
2278 			nextrecord = so->so_rcv.sb_mb;
2279 		orig_resid = 0;
2280 	}
2281 	if (m != NULL) {
2282 		if ((flags & MSG_PEEK) == 0) {
2283 			KASSERT(m->m_nextpkt == nextrecord,
2284 			    ("soreceive: post-control, nextrecord !sync"));
2285 			if (nextrecord == NULL) {
2286 				KASSERT(so->so_rcv.sb_mb == m,
2287 				    ("soreceive: post-control, sb_mb!=m"));
2288 				KASSERT(so->so_rcv.sb_lastrecord == m,
2289 				    ("soreceive: post-control, lastrecord!=m"));
2290 			}
2291 		}
2292 		type = m->m_type;
2293 		if (type == MT_OOBDATA)
2294 			flags |= MSG_OOB;
2295 	} else {
2296 		if ((flags & MSG_PEEK) == 0) {
2297 			KASSERT(so->so_rcv.sb_mb == nextrecord,
2298 			    ("soreceive: sb_mb != nextrecord"));
2299 			if (so->so_rcv.sb_mb == NULL) {
2300 				KASSERT(so->so_rcv.sb_lastrecord == NULL,
2301 				    ("soreceive: sb_lastercord != NULL"));
2302 			}
2303 		}
2304 	}
2305 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2306 	SBLASTRECORDCHK(&so->so_rcv);
2307 	SBLASTMBUFCHK(&so->so_rcv);
2308 
2309 	/*
2310 	 * Now continue to read any data mbufs off of the head of the socket
2311 	 * buffer until the read request is satisfied.  Note that 'type' is
2312 	 * used to store the type of any mbuf reads that have happened so far
2313 	 * such that soreceive() can stop reading if the type changes, which
2314 	 * causes soreceive() to return only one of regular data and inline
2315 	 * out-of-band data in a single socket receive operation.
2316 	 */
2317 	moff = 0;
2318 	offset = 0;
2319 	while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0
2320 	    && error == 0) {
2321 		/*
2322 		 * If the type of mbuf has changed since the last mbuf
2323 		 * examined ('type'), end the receive operation.
2324 		 */
2325 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2326 		if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) {
2327 			if (type != m->m_type)
2328 				break;
2329 		} else if (type == MT_OOBDATA)
2330 			break;
2331 		else
2332 		    KASSERT(m->m_type == MT_DATA,
2333 			("m->m_type == %d", m->m_type));
2334 		so->so_rcv.sb_state &= ~SBS_RCVATMARK;
2335 		len = uio->uio_resid;
2336 		if (so->so_oobmark && len > so->so_oobmark - offset)
2337 			len = so->so_oobmark - offset;
2338 		if (len > m->m_len - moff)
2339 			len = m->m_len - moff;
2340 		/*
2341 		 * If mp is set, just pass back the mbufs.  Otherwise copy
2342 		 * them out via the uio, then free.  Sockbuf must be
2343 		 * consistent here (points to current mbuf, it points to next
2344 		 * record) when we drop priority; we must note any additions
2345 		 * to the sockbuf when we block interrupts again.
2346 		 */
2347 		if (mp == NULL) {
2348 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2349 			SBLASTRECORDCHK(&so->so_rcv);
2350 			SBLASTMBUFCHK(&so->so_rcv);
2351 			SOCKBUF_UNLOCK(&so->so_rcv);
2352 			if ((m->m_flags & M_EXTPG) != 0)
2353 				error = m_unmapped_uiomove(m, moff, uio,
2354 				    (int)len);
2355 			else
2356 				error = uiomove(mtod(m, char *) + moff,
2357 				    (int)len, uio);
2358 			SOCKBUF_LOCK(&so->so_rcv);
2359 			if (error) {
2360 				/*
2361 				 * The MT_SONAME mbuf has already been removed
2362 				 * from the record, so it is necessary to
2363 				 * remove the data mbufs, if any, to preserve
2364 				 * the invariant in the case of PR_ADDR that
2365 				 * requires MT_SONAME mbufs at the head of
2366 				 * each record.
2367 				 */
2368 				if (pr->pr_flags & PR_ATOMIC &&
2369 				    ((flags & MSG_PEEK) == 0))
2370 					(void)sbdroprecord_locked(&so->so_rcv);
2371 				SOCKBUF_UNLOCK(&so->so_rcv);
2372 				goto release;
2373 			}
2374 		} else
2375 			uio->uio_resid -= len;
2376 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2377 		if (len == m->m_len - moff) {
2378 			if (m->m_flags & M_EOR)
2379 				flags |= MSG_EOR;
2380 			if (flags & MSG_PEEK) {
2381 				m = m->m_next;
2382 				moff = 0;
2383 			} else {
2384 				nextrecord = m->m_nextpkt;
2385 				sbfree(&so->so_rcv, m);
2386 				if (mp != NULL) {
2387 					m->m_nextpkt = NULL;
2388 					*mp = m;
2389 					mp = &m->m_next;
2390 					so->so_rcv.sb_mb = m = m->m_next;
2391 					*mp = NULL;
2392 				} else {
2393 					so->so_rcv.sb_mb = m_free(m);
2394 					m = so->so_rcv.sb_mb;
2395 				}
2396 				sockbuf_pushsync(&so->so_rcv, nextrecord);
2397 				SBLASTRECORDCHK(&so->so_rcv);
2398 				SBLASTMBUFCHK(&so->so_rcv);
2399 			}
2400 		} else {
2401 			if (flags & MSG_PEEK)
2402 				moff += len;
2403 			else {
2404 				if (mp != NULL) {
2405 					if (flags & MSG_DONTWAIT) {
2406 						*mp = m_copym(m, 0, len,
2407 						    M_NOWAIT);
2408 						if (*mp == NULL) {
2409 							/*
2410 							 * m_copym() couldn't
2411 							 * allocate an mbuf.
2412 							 * Adjust uio_resid back
2413 							 * (it was adjusted
2414 							 * down by len bytes,
2415 							 * which we didn't end
2416 							 * up "copying" over).
2417 							 */
2418 							uio->uio_resid += len;
2419 							break;
2420 						}
2421 					} else {
2422 						SOCKBUF_UNLOCK(&so->so_rcv);
2423 						*mp = m_copym(m, 0, len,
2424 						    M_WAITOK);
2425 						SOCKBUF_LOCK(&so->so_rcv);
2426 					}
2427 				}
2428 				sbcut_locked(&so->so_rcv, len);
2429 			}
2430 		}
2431 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2432 		if (so->so_oobmark) {
2433 			if ((flags & MSG_PEEK) == 0) {
2434 				so->so_oobmark -= len;
2435 				if (so->so_oobmark == 0) {
2436 					so->so_rcv.sb_state |= SBS_RCVATMARK;
2437 					break;
2438 				}
2439 			} else {
2440 				offset += len;
2441 				if (offset == so->so_oobmark)
2442 					break;
2443 			}
2444 		}
2445 		if (flags & MSG_EOR)
2446 			break;
2447 		/*
2448 		 * If the MSG_WAITALL flag is set (for non-atomic socket), we
2449 		 * must not quit until "uio->uio_resid == 0" or an error
2450 		 * termination.  If a signal/timeout occurs, return with a
2451 		 * short count but without error.  Keep sockbuf locked
2452 		 * against other readers.
2453 		 */
2454 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
2455 		    !sosendallatonce(so) && nextrecord == NULL) {
2456 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2457 			if (so->so_error || so->so_rerror ||
2458 			    so->so_rcv.sb_state & SBS_CANTRCVMORE)
2459 				break;
2460 			/*
2461 			 * Notify the protocol that some data has been
2462 			 * drained before blocking.
2463 			 */
2464 			if (pr->pr_flags & PR_WANTRCVD) {
2465 				SOCKBUF_UNLOCK(&so->so_rcv);
2466 				VNET_SO_ASSERT(so);
2467 				pr->pr_rcvd(so, flags);
2468 				SOCKBUF_LOCK(&so->so_rcv);
2469 				if (__predict_false(so->so_rcv.sb_mb == NULL &&
2470 				    (so->so_error || so->so_rerror ||
2471 				    so->so_rcv.sb_state & SBS_CANTRCVMORE)))
2472 					break;
2473 			}
2474 			SBLASTRECORDCHK(&so->so_rcv);
2475 			SBLASTMBUFCHK(&so->so_rcv);
2476 			/*
2477 			 * We could receive some data while was notifying
2478 			 * the protocol. Skip blocking in this case.
2479 			 */
2480 			if (so->so_rcv.sb_mb == NULL) {
2481 				error = sbwait(so, SO_RCV);
2482 				if (error) {
2483 					SOCKBUF_UNLOCK(&so->so_rcv);
2484 					goto release;
2485 				}
2486 			}
2487 			m = so->so_rcv.sb_mb;
2488 			if (m != NULL)
2489 				nextrecord = m->m_nextpkt;
2490 		}
2491 	}
2492 
2493 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2494 	if (m != NULL && pr->pr_flags & PR_ATOMIC) {
2495 		if (report_real_len)
2496 			uio->uio_resid -= m_length(m, NULL) - moff;
2497 		flags |= MSG_TRUNC;
2498 		if ((flags & MSG_PEEK) == 0)
2499 			(void) sbdroprecord_locked(&so->so_rcv);
2500 	}
2501 	if ((flags & MSG_PEEK) == 0) {
2502 		if (m == NULL) {
2503 			/*
2504 			 * First part is an inline SB_EMPTY_FIXUP().  Second
2505 			 * part makes sure sb_lastrecord is up-to-date if
2506 			 * there is still data in the socket buffer.
2507 			 */
2508 			so->so_rcv.sb_mb = nextrecord;
2509 			if (so->so_rcv.sb_mb == NULL) {
2510 				so->so_rcv.sb_mbtail = NULL;
2511 				so->so_rcv.sb_lastrecord = NULL;
2512 			} else if (nextrecord->m_nextpkt == NULL)
2513 				so->so_rcv.sb_lastrecord = nextrecord;
2514 		}
2515 		SBLASTRECORDCHK(&so->so_rcv);
2516 		SBLASTMBUFCHK(&so->so_rcv);
2517 		/*
2518 		 * If soreceive() is being done from the socket callback,
2519 		 * then don't need to generate ACK to peer to update window,
2520 		 * since ACK will be generated on return to TCP.
2521 		 */
2522 		if (!(flags & MSG_SOCALLBCK) &&
2523 		    (pr->pr_flags & PR_WANTRCVD)) {
2524 			SOCKBUF_UNLOCK(&so->so_rcv);
2525 			VNET_SO_ASSERT(so);
2526 			pr->pr_rcvd(so, flags);
2527 			SOCKBUF_LOCK(&so->so_rcv);
2528 		}
2529 	}
2530 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2531 	if (orig_resid == uio->uio_resid && orig_resid &&
2532 	    (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
2533 		SOCKBUF_UNLOCK(&so->so_rcv);
2534 		goto restart;
2535 	}
2536 	SOCKBUF_UNLOCK(&so->so_rcv);
2537 
2538 	if (flagsp != NULL)
2539 		*flagsp |= flags;
2540 release:
2541 	SOCK_IO_RECV_UNLOCK(so);
2542 	return (error);
2543 }
2544 
2545 /*
2546  * Optimized version of soreceive() for stream (TCP) sockets.
2547  */
2548 int
2549 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio,
2550     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2551 {
2552 	int len = 0, error = 0, flags, oresid;
2553 	struct sockbuf *sb;
2554 	struct mbuf *m, *n = NULL;
2555 
2556 	/* We only do stream sockets. */
2557 	if (so->so_type != SOCK_STREAM)
2558 		return (EINVAL);
2559 	if (psa != NULL)
2560 		*psa = NULL;
2561 	if (flagsp != NULL)
2562 		flags = *flagsp &~ MSG_EOR;
2563 	else
2564 		flags = 0;
2565 	if (controlp != NULL)
2566 		*controlp = NULL;
2567 	if (flags & MSG_OOB)
2568 		return (soreceive_rcvoob(so, uio, flags));
2569 	if (mp0 != NULL)
2570 		*mp0 = NULL;
2571 
2572 	sb = &so->so_rcv;
2573 
2574 #ifdef KERN_TLS
2575 	/*
2576 	 * KTLS store TLS records as records with a control message to
2577 	 * describe the framing.
2578 	 *
2579 	 * We check once here before acquiring locks to optimize the
2580 	 * common case.
2581 	 */
2582 	if (sb->sb_tls_info != NULL)
2583 		return (soreceive_generic(so, psa, uio, mp0, controlp,
2584 		    flagsp));
2585 #endif
2586 
2587 	/* Prevent other readers from entering the socket. */
2588 	error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
2589 	if (error)
2590 		return (error);
2591 	SOCKBUF_LOCK(sb);
2592 
2593 #ifdef KERN_TLS
2594 	if (sb->sb_tls_info != NULL) {
2595 		SOCKBUF_UNLOCK(sb);
2596 		SOCK_IO_RECV_UNLOCK(so);
2597 		return (soreceive_generic(so, psa, uio, mp0, controlp,
2598 		    flagsp));
2599 	}
2600 #endif
2601 
2602 	/* Easy one, no space to copyout anything. */
2603 	if (uio->uio_resid == 0) {
2604 		error = EINVAL;
2605 		goto out;
2606 	}
2607 	oresid = uio->uio_resid;
2608 
2609 	/* We will never ever get anything unless we are or were connected. */
2610 	if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
2611 		error = ENOTCONN;
2612 		goto out;
2613 	}
2614 
2615 restart:
2616 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2617 
2618 	/* Abort if socket has reported problems. */
2619 	if (so->so_error) {
2620 		if (sbavail(sb) > 0)
2621 			goto deliver;
2622 		if (oresid > uio->uio_resid)
2623 			goto out;
2624 		error = so->so_error;
2625 		if (!(flags & MSG_PEEK))
2626 			so->so_error = 0;
2627 		goto out;
2628 	}
2629 
2630 	/* Door is closed.  Deliver what is left, if any. */
2631 	if (sb->sb_state & SBS_CANTRCVMORE) {
2632 		if (sbavail(sb) > 0)
2633 			goto deliver;
2634 		else
2635 			goto out;
2636 	}
2637 
2638 	/* Socket buffer is empty and we shall not block. */
2639 	if (sbavail(sb) == 0 &&
2640 	    ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) {
2641 		error = EAGAIN;
2642 		goto out;
2643 	}
2644 
2645 	/* Socket buffer got some data that we shall deliver now. */
2646 	if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) &&
2647 	    ((so->so_state & SS_NBIO) ||
2648 	     (flags & (MSG_DONTWAIT|MSG_NBIO)) ||
2649 	     sbavail(sb) >= sb->sb_lowat ||
2650 	     sbavail(sb) >= uio->uio_resid ||
2651 	     sbavail(sb) >= sb->sb_hiwat) ) {
2652 		goto deliver;
2653 	}
2654 
2655 	/* On MSG_WAITALL we must wait until all data or error arrives. */
2656 	if ((flags & MSG_WAITALL) &&
2657 	    (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat))
2658 		goto deliver;
2659 
2660 	/*
2661 	 * Wait and block until (more) data comes in.
2662 	 * NB: Drops the sockbuf lock during wait.
2663 	 */
2664 	error = sbwait(so, SO_RCV);
2665 	if (error)
2666 		goto out;
2667 	goto restart;
2668 
2669 deliver:
2670 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2671 	KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__));
2672 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__));
2673 
2674 	/* Statistics. */
2675 	if (uio->uio_td)
2676 		uio->uio_td->td_ru.ru_msgrcv++;
2677 
2678 	/* Fill uio until full or current end of socket buffer is reached. */
2679 	len = min(uio->uio_resid, sbavail(sb));
2680 	if (mp0 != NULL) {
2681 		/* Dequeue as many mbufs as possible. */
2682 		if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) {
2683 			if (*mp0 == NULL)
2684 				*mp0 = sb->sb_mb;
2685 			else
2686 				m_cat(*mp0, sb->sb_mb);
2687 			for (m = sb->sb_mb;
2688 			     m != NULL && m->m_len <= len;
2689 			     m = m->m_next) {
2690 				KASSERT(!(m->m_flags & M_NOTAVAIL),
2691 				    ("%s: m %p not available", __func__, m));
2692 				len -= m->m_len;
2693 				uio->uio_resid -= m->m_len;
2694 				sbfree(sb, m);
2695 				n = m;
2696 			}
2697 			n->m_next = NULL;
2698 			sb->sb_mb = m;
2699 			sb->sb_lastrecord = sb->sb_mb;
2700 			if (sb->sb_mb == NULL)
2701 				SB_EMPTY_FIXUP(sb);
2702 		}
2703 		/* Copy the remainder. */
2704 		if (len > 0) {
2705 			KASSERT(sb->sb_mb != NULL,
2706 			    ("%s: len > 0 && sb->sb_mb empty", __func__));
2707 
2708 			m = m_copym(sb->sb_mb, 0, len, M_NOWAIT);
2709 			if (m == NULL)
2710 				len = 0;	/* Don't flush data from sockbuf. */
2711 			else
2712 				uio->uio_resid -= len;
2713 			if (*mp0 != NULL)
2714 				m_cat(*mp0, m);
2715 			else
2716 				*mp0 = m;
2717 			if (*mp0 == NULL) {
2718 				error = ENOBUFS;
2719 				goto out;
2720 			}
2721 		}
2722 	} else {
2723 		/* NB: Must unlock socket buffer as uiomove may sleep. */
2724 		SOCKBUF_UNLOCK(sb);
2725 		error = m_mbuftouio(uio, sb->sb_mb, len);
2726 		SOCKBUF_LOCK(sb);
2727 		if (error)
2728 			goto out;
2729 	}
2730 	SBLASTRECORDCHK(sb);
2731 	SBLASTMBUFCHK(sb);
2732 
2733 	/*
2734 	 * Remove the delivered data from the socket buffer unless we
2735 	 * were only peeking.
2736 	 */
2737 	if (!(flags & MSG_PEEK)) {
2738 		if (len > 0)
2739 			sbdrop_locked(sb, len);
2740 
2741 		/* Notify protocol that we drained some data. */
2742 		if ((so->so_proto->pr_flags & PR_WANTRCVD) &&
2743 		    (((flags & MSG_WAITALL) && uio->uio_resid > 0) ||
2744 		     !(flags & MSG_SOCALLBCK))) {
2745 			SOCKBUF_UNLOCK(sb);
2746 			VNET_SO_ASSERT(so);
2747 			so->so_proto->pr_rcvd(so, flags);
2748 			SOCKBUF_LOCK(sb);
2749 		}
2750 	}
2751 
2752 	/*
2753 	 * For MSG_WAITALL we may have to loop again and wait for
2754 	 * more data to come in.
2755 	 */
2756 	if ((flags & MSG_WAITALL) && uio->uio_resid > 0)
2757 		goto restart;
2758 out:
2759 	SBLASTRECORDCHK(sb);
2760 	SBLASTMBUFCHK(sb);
2761 	SOCKBUF_UNLOCK(sb);
2762 	SOCK_IO_RECV_UNLOCK(so);
2763 	return (error);
2764 }
2765 
2766 /*
2767  * Optimized version of soreceive() for simple datagram cases from userspace.
2768  * Unlike in the stream case, we're able to drop a datagram if copyout()
2769  * fails, and because we handle datagrams atomically, we don't need to use a
2770  * sleep lock to prevent I/O interlacing.
2771  */
2772 int
2773 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
2774     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2775 {
2776 	struct mbuf *m, *m2;
2777 	int flags, error;
2778 	ssize_t len;
2779 	struct protosw *pr = so->so_proto;
2780 	struct mbuf *nextrecord;
2781 
2782 	if (psa != NULL)
2783 		*psa = NULL;
2784 	if (controlp != NULL)
2785 		*controlp = NULL;
2786 	if (flagsp != NULL)
2787 		flags = *flagsp &~ MSG_EOR;
2788 	else
2789 		flags = 0;
2790 
2791 	/*
2792 	 * For any complicated cases, fall back to the full
2793 	 * soreceive_generic().
2794 	 */
2795 	if (mp0 != NULL || (flags & (MSG_PEEK | MSG_OOB | MSG_TRUNC)))
2796 		return (soreceive_generic(so, psa, uio, mp0, controlp,
2797 		    flagsp));
2798 
2799 	/*
2800 	 * Enforce restrictions on use.
2801 	 */
2802 	KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
2803 	    ("soreceive_dgram: wantrcvd"));
2804 	KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
2805 	KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
2806 	    ("soreceive_dgram: SBS_RCVATMARK"));
2807 	KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
2808 	    ("soreceive_dgram: P_CONNREQUIRED"));
2809 
2810 	/*
2811 	 * Loop blocking while waiting for a datagram.
2812 	 */
2813 	SOCKBUF_LOCK(&so->so_rcv);
2814 	while ((m = so->so_rcv.sb_mb) == NULL) {
2815 		KASSERT(sbavail(&so->so_rcv) == 0,
2816 		    ("soreceive_dgram: sb_mb NULL but sbavail %u",
2817 		    sbavail(&so->so_rcv)));
2818 		if (so->so_error) {
2819 			error = so->so_error;
2820 			so->so_error = 0;
2821 			SOCKBUF_UNLOCK(&so->so_rcv);
2822 			return (error);
2823 		}
2824 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
2825 		    uio->uio_resid == 0) {
2826 			SOCKBUF_UNLOCK(&so->so_rcv);
2827 			return (0);
2828 		}
2829 		if ((so->so_state & SS_NBIO) ||
2830 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
2831 			SOCKBUF_UNLOCK(&so->so_rcv);
2832 			return (EWOULDBLOCK);
2833 		}
2834 		SBLASTRECORDCHK(&so->so_rcv);
2835 		SBLASTMBUFCHK(&so->so_rcv);
2836 		error = sbwait(so, SO_RCV);
2837 		if (error) {
2838 			SOCKBUF_UNLOCK(&so->so_rcv);
2839 			return (error);
2840 		}
2841 	}
2842 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2843 
2844 	if (uio->uio_td)
2845 		uio->uio_td->td_ru.ru_msgrcv++;
2846 	SBLASTRECORDCHK(&so->so_rcv);
2847 	SBLASTMBUFCHK(&so->so_rcv);
2848 	nextrecord = m->m_nextpkt;
2849 	if (nextrecord == NULL) {
2850 		KASSERT(so->so_rcv.sb_lastrecord == m,
2851 		    ("soreceive_dgram: lastrecord != m"));
2852 	}
2853 
2854 	KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
2855 	    ("soreceive_dgram: m_nextpkt != nextrecord"));
2856 
2857 	/*
2858 	 * Pull 'm' and its chain off the front of the packet queue.
2859 	 */
2860 	so->so_rcv.sb_mb = NULL;
2861 	sockbuf_pushsync(&so->so_rcv, nextrecord);
2862 
2863 	/*
2864 	 * Walk 'm's chain and free that many bytes from the socket buffer.
2865 	 */
2866 	for (m2 = m; m2 != NULL; m2 = m2->m_next)
2867 		sbfree(&so->so_rcv, m2);
2868 
2869 	/*
2870 	 * Do a few last checks before we let go of the lock.
2871 	 */
2872 	SBLASTRECORDCHK(&so->so_rcv);
2873 	SBLASTMBUFCHK(&so->so_rcv);
2874 	SOCKBUF_UNLOCK(&so->so_rcv);
2875 
2876 	if (pr->pr_flags & PR_ADDR) {
2877 		KASSERT(m->m_type == MT_SONAME,
2878 		    ("m->m_type == %d", m->m_type));
2879 		if (psa != NULL)
2880 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
2881 			    M_NOWAIT);
2882 		m = m_free(m);
2883 	}
2884 	if (m == NULL) {
2885 		/* XXXRW: Can this happen? */
2886 		return (0);
2887 	}
2888 
2889 	/*
2890 	 * Packet to copyout() is now in 'm' and it is disconnected from the
2891 	 * queue.
2892 	 *
2893 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
2894 	 * in the first mbuf chain on the socket buffer.  We call into the
2895 	 * protocol to perform externalization (or freeing if controlp ==
2896 	 * NULL). In some cases there can be only MT_CONTROL mbufs without
2897 	 * MT_DATA mbufs.
2898 	 */
2899 	if (m->m_type == MT_CONTROL) {
2900 		struct mbuf *cm = NULL, *cmn;
2901 		struct mbuf **cme = &cm;
2902 
2903 		do {
2904 			m2 = m->m_next;
2905 			m->m_next = NULL;
2906 			*cme = m;
2907 			cme = &(*cme)->m_next;
2908 			m = m2;
2909 		} while (m != NULL && m->m_type == MT_CONTROL);
2910 		while (cm != NULL) {
2911 			cmn = cm->m_next;
2912 			cm->m_next = NULL;
2913 			if (pr->pr_domain->dom_externalize != NULL) {
2914 				error = (*pr->pr_domain->dom_externalize)
2915 				    (cm, controlp, flags);
2916 			} else if (controlp != NULL)
2917 				*controlp = cm;
2918 			else
2919 				m_freem(cm);
2920 			if (controlp != NULL) {
2921 				while (*controlp != NULL)
2922 					controlp = &(*controlp)->m_next;
2923 			}
2924 			cm = cmn;
2925 		}
2926 	}
2927 	KASSERT(m == NULL || m->m_type == MT_DATA,
2928 	    ("soreceive_dgram: !data"));
2929 	while (m != NULL && uio->uio_resid > 0) {
2930 		len = uio->uio_resid;
2931 		if (len > m->m_len)
2932 			len = m->m_len;
2933 		error = uiomove(mtod(m, char *), (int)len, uio);
2934 		if (error) {
2935 			m_freem(m);
2936 			return (error);
2937 		}
2938 		if (len == m->m_len)
2939 			m = m_free(m);
2940 		else {
2941 			m->m_data += len;
2942 			m->m_len -= len;
2943 		}
2944 	}
2945 	if (m != NULL) {
2946 		flags |= MSG_TRUNC;
2947 		m_freem(m);
2948 	}
2949 	if (flagsp != NULL)
2950 		*flagsp |= flags;
2951 	return (0);
2952 }
2953 
2954 int
2955 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
2956     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2957 {
2958 	int error;
2959 
2960 	CURVNET_SET(so->so_vnet);
2961 	error = so->so_proto->pr_soreceive(so, psa, uio, mp0, controlp, flagsp);
2962 	CURVNET_RESTORE();
2963 	return (error);
2964 }
2965 
2966 int
2967 soshutdown(struct socket *so, int how)
2968 {
2969 	struct protosw *pr;
2970 	int error, soerror_enotconn;
2971 
2972 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
2973 		return (EINVAL);
2974 
2975 	soerror_enotconn = 0;
2976 	SOCK_LOCK(so);
2977 	if ((so->so_state &
2978 	    (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) {
2979 		/*
2980 		 * POSIX mandates us to return ENOTCONN when shutdown(2) is
2981 		 * invoked on a datagram sockets, however historically we would
2982 		 * actually tear socket down. This is known to be leveraged by
2983 		 * some applications to unblock process waiting in recvXXX(2)
2984 		 * by other process that it shares that socket with. Try to meet
2985 		 * both backward-compatibility and POSIX requirements by forcing
2986 		 * ENOTCONN but still asking protocol to perform pru_shutdown().
2987 		 */
2988 		if (so->so_type != SOCK_DGRAM && !SOLISTENING(so)) {
2989 			SOCK_UNLOCK(so);
2990 			return (ENOTCONN);
2991 		}
2992 		soerror_enotconn = 1;
2993 	}
2994 
2995 	if (SOLISTENING(so)) {
2996 		if (how != SHUT_WR) {
2997 			so->so_error = ECONNABORTED;
2998 			solisten_wakeup(so);	/* unlocks so */
2999 		} else {
3000 			SOCK_UNLOCK(so);
3001 		}
3002 		goto done;
3003 	}
3004 	SOCK_UNLOCK(so);
3005 
3006 	CURVNET_SET(so->so_vnet);
3007 	pr = so->so_proto;
3008 	if (pr->pr_flush != NULL)
3009 		pr->pr_flush(so, how);
3010 	if (how != SHUT_WR)
3011 		sorflush(so);
3012 	if (how != SHUT_RD) {
3013 		error = pr->pr_shutdown(so);
3014 		wakeup(&so->so_timeo);
3015 		CURVNET_RESTORE();
3016 		return ((error == 0 && soerror_enotconn) ? ENOTCONN : error);
3017 	}
3018 	wakeup(&so->so_timeo);
3019 	CURVNET_RESTORE();
3020 
3021 done:
3022 	return (soerror_enotconn ? ENOTCONN : 0);
3023 }
3024 
3025 void
3026 sorflush(struct socket *so)
3027 {
3028 	struct protosw *pr;
3029 	int error;
3030 
3031 	VNET_SO_ASSERT(so);
3032 
3033 	/*
3034 	 * Dislodge threads currently blocked in receive and wait to acquire
3035 	 * a lock against other simultaneous readers before clearing the
3036 	 * socket buffer.  Don't let our acquire be interrupted by a signal
3037 	 * despite any existing socket disposition on interruptable waiting.
3038 	 */
3039 	socantrcvmore(so);
3040 
3041 	error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR);
3042 	if (error != 0) {
3043 		KASSERT(SOLISTENING(so),
3044 		    ("%s: soiolock(%p) failed", __func__, so));
3045 		return;
3046 	}
3047 
3048 	pr = so->so_proto;
3049 	if (pr->pr_flags & PR_RIGHTS) {
3050 		MPASS(pr->pr_domain->dom_dispose != NULL);
3051 		(*pr->pr_domain->dom_dispose)(so);
3052 	} else {
3053 		sbrelease(so, SO_RCV);
3054 		SOCK_IO_RECV_UNLOCK(so);
3055 	}
3056 
3057 }
3058 
3059 /*
3060  * Wrapper for Socket established helper hook.
3061  * Parameters: socket, context of the hook point, hook id.
3062  */
3063 static int inline
3064 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id)
3065 {
3066 	struct socket_hhook_data hhook_data = {
3067 		.so = so,
3068 		.hctx = hctx,
3069 		.m = NULL,
3070 		.status = 0
3071 	};
3072 
3073 	CURVNET_SET(so->so_vnet);
3074 	HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd);
3075 	CURVNET_RESTORE();
3076 
3077 	/* Ugly but needed, since hhooks return void for now */
3078 	return (hhook_data.status);
3079 }
3080 
3081 /*
3082  * Perhaps this routine, and sooptcopyout(), below, ought to come in an
3083  * additional variant to handle the case where the option value needs to be
3084  * some kind of integer, but not a specific size.  In addition to their use
3085  * here, these functions are also called by the protocol-level pr_ctloutput()
3086  * routines.
3087  */
3088 int
3089 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
3090 {
3091 	size_t	valsize;
3092 
3093 	/*
3094 	 * If the user gives us more than we wanted, we ignore it, but if we
3095 	 * don't get the minimum length the caller wants, we return EINVAL.
3096 	 * On success, sopt->sopt_valsize is set to however much we actually
3097 	 * retrieved.
3098 	 */
3099 	if ((valsize = sopt->sopt_valsize) < minlen)
3100 		return EINVAL;
3101 	if (valsize > len)
3102 		sopt->sopt_valsize = valsize = len;
3103 
3104 	if (sopt->sopt_td != NULL)
3105 		return (copyin(sopt->sopt_val, buf, valsize));
3106 
3107 	bcopy(sopt->sopt_val, buf, valsize);
3108 	return (0);
3109 }
3110 
3111 /*
3112  * Kernel version of setsockopt(2).
3113  *
3114  * XXX: optlen is size_t, not socklen_t
3115  */
3116 int
3117 so_setsockopt(struct socket *so, int level, int optname, void *optval,
3118     size_t optlen)
3119 {
3120 	struct sockopt sopt;
3121 
3122 	sopt.sopt_level = level;
3123 	sopt.sopt_name = optname;
3124 	sopt.sopt_dir = SOPT_SET;
3125 	sopt.sopt_val = optval;
3126 	sopt.sopt_valsize = optlen;
3127 	sopt.sopt_td = NULL;
3128 	return (sosetopt(so, &sopt));
3129 }
3130 
3131 int
3132 sosetopt(struct socket *so, struct sockopt *sopt)
3133 {
3134 	int	error, optval;
3135 	struct	linger l;
3136 	struct	timeval tv;
3137 	sbintime_t val, *valp;
3138 	uint32_t val32;
3139 #ifdef MAC
3140 	struct mac extmac;
3141 #endif
3142 
3143 	CURVNET_SET(so->so_vnet);
3144 	error = 0;
3145 	if (sopt->sopt_level != SOL_SOCKET) {
3146 		if (so->so_proto->pr_ctloutput != NULL)
3147 			error = (*so->so_proto->pr_ctloutput)(so, sopt);
3148 		else
3149 			error = ENOPROTOOPT;
3150 	} else {
3151 		switch (sopt->sopt_name) {
3152 		case SO_ACCEPTFILTER:
3153 			error = accept_filt_setopt(so, sopt);
3154 			if (error)
3155 				goto bad;
3156 			break;
3157 
3158 		case SO_LINGER:
3159 			error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
3160 			if (error)
3161 				goto bad;
3162 			if (l.l_linger < 0 ||
3163 			    l.l_linger > USHRT_MAX ||
3164 			    l.l_linger > (INT_MAX / hz)) {
3165 				error = EDOM;
3166 				goto bad;
3167 			}
3168 			SOCK_LOCK(so);
3169 			so->so_linger = l.l_linger;
3170 			if (l.l_onoff)
3171 				so->so_options |= SO_LINGER;
3172 			else
3173 				so->so_options &= ~SO_LINGER;
3174 			SOCK_UNLOCK(so);
3175 			break;
3176 
3177 		case SO_DEBUG:
3178 		case SO_KEEPALIVE:
3179 		case SO_DONTROUTE:
3180 		case SO_USELOOPBACK:
3181 		case SO_BROADCAST:
3182 		case SO_REUSEADDR:
3183 		case SO_REUSEPORT:
3184 		case SO_REUSEPORT_LB:
3185 		case SO_OOBINLINE:
3186 		case SO_TIMESTAMP:
3187 		case SO_BINTIME:
3188 		case SO_NOSIGPIPE:
3189 		case SO_NO_DDP:
3190 		case SO_NO_OFFLOAD:
3191 		case SO_RERROR:
3192 			error = sooptcopyin(sopt, &optval, sizeof optval,
3193 			    sizeof optval);
3194 			if (error)
3195 				goto bad;
3196 			SOCK_LOCK(so);
3197 			if (optval)
3198 				so->so_options |= sopt->sopt_name;
3199 			else
3200 				so->so_options &= ~sopt->sopt_name;
3201 			SOCK_UNLOCK(so);
3202 			break;
3203 
3204 		case SO_SETFIB:
3205 			error = sooptcopyin(sopt, &optval, sizeof optval,
3206 			    sizeof optval);
3207 			if (error)
3208 				goto bad;
3209 
3210 			if (optval < 0 || optval >= rt_numfibs) {
3211 				error = EINVAL;
3212 				goto bad;
3213 			}
3214 			if (((so->so_proto->pr_domain->dom_family == PF_INET) ||
3215 			   (so->so_proto->pr_domain->dom_family == PF_INET6) ||
3216 			   (so->so_proto->pr_domain->dom_family == PF_ROUTE)))
3217 				so->so_fibnum = optval;
3218 			else
3219 				so->so_fibnum = 0;
3220 			break;
3221 
3222 		case SO_USER_COOKIE:
3223 			error = sooptcopyin(sopt, &val32, sizeof val32,
3224 			    sizeof val32);
3225 			if (error)
3226 				goto bad;
3227 			so->so_user_cookie = val32;
3228 			break;
3229 
3230 		case SO_SNDBUF:
3231 		case SO_RCVBUF:
3232 		case SO_SNDLOWAT:
3233 		case SO_RCVLOWAT:
3234 			error = so->so_proto->pr_setsbopt(so, sopt);
3235 			if (error)
3236 				goto bad;
3237 			break;
3238 
3239 		case SO_SNDTIMEO:
3240 		case SO_RCVTIMEO:
3241 #ifdef COMPAT_FREEBSD32
3242 			if (SV_CURPROC_FLAG(SV_ILP32)) {
3243 				struct timeval32 tv32;
3244 
3245 				error = sooptcopyin(sopt, &tv32, sizeof tv32,
3246 				    sizeof tv32);
3247 				CP(tv32, tv, tv_sec);
3248 				CP(tv32, tv, tv_usec);
3249 			} else
3250 #endif
3251 				error = sooptcopyin(sopt, &tv, sizeof tv,
3252 				    sizeof tv);
3253 			if (error)
3254 				goto bad;
3255 			if (tv.tv_sec < 0 || tv.tv_usec < 0 ||
3256 			    tv.tv_usec >= 1000000) {
3257 				error = EDOM;
3258 				goto bad;
3259 			}
3260 			if (tv.tv_sec > INT32_MAX)
3261 				val = SBT_MAX;
3262 			else
3263 				val = tvtosbt(tv);
3264 			SOCK_LOCK(so);
3265 			valp = sopt->sopt_name == SO_SNDTIMEO ?
3266 			    (SOLISTENING(so) ? &so->sol_sbsnd_timeo :
3267 			    &so->so_snd.sb_timeo) :
3268 			    (SOLISTENING(so) ? &so->sol_sbrcv_timeo :
3269 			    &so->so_rcv.sb_timeo);
3270 			*valp = val;
3271 			SOCK_UNLOCK(so);
3272 			break;
3273 
3274 		case SO_LABEL:
3275 #ifdef MAC
3276 			error = sooptcopyin(sopt, &extmac, sizeof extmac,
3277 			    sizeof extmac);
3278 			if (error)
3279 				goto bad;
3280 			error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
3281 			    so, &extmac);
3282 #else
3283 			error = EOPNOTSUPP;
3284 #endif
3285 			break;
3286 
3287 		case SO_TS_CLOCK:
3288 			error = sooptcopyin(sopt, &optval, sizeof optval,
3289 			    sizeof optval);
3290 			if (error)
3291 				goto bad;
3292 			if (optval < 0 || optval > SO_TS_CLOCK_MAX) {
3293 				error = EINVAL;
3294 				goto bad;
3295 			}
3296 			so->so_ts_clock = optval;
3297 			break;
3298 
3299 		case SO_MAX_PACING_RATE:
3300 			error = sooptcopyin(sopt, &val32, sizeof(val32),
3301 			    sizeof(val32));
3302 			if (error)
3303 				goto bad;
3304 			so->so_max_pacing_rate = val32;
3305 			break;
3306 
3307 		default:
3308 			if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
3309 				error = hhook_run_socket(so, sopt,
3310 				    HHOOK_SOCKET_OPT);
3311 			else
3312 				error = ENOPROTOOPT;
3313 			break;
3314 		}
3315 		if (error == 0 && so->so_proto->pr_ctloutput != NULL)
3316 			(void)(*so->so_proto->pr_ctloutput)(so, sopt);
3317 	}
3318 bad:
3319 	CURVNET_RESTORE();
3320 	return (error);
3321 }
3322 
3323 /*
3324  * Helper routine for getsockopt.
3325  */
3326 int
3327 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
3328 {
3329 	int	error;
3330 	size_t	valsize;
3331 
3332 	error = 0;
3333 
3334 	/*
3335 	 * Documented get behavior is that we always return a value, possibly
3336 	 * truncated to fit in the user's buffer.  Traditional behavior is
3337 	 * that we always tell the user precisely how much we copied, rather
3338 	 * than something useful like the total amount we had available for
3339 	 * her.  Note that this interface is not idempotent; the entire
3340 	 * answer must be generated ahead of time.
3341 	 */
3342 	valsize = min(len, sopt->sopt_valsize);
3343 	sopt->sopt_valsize = valsize;
3344 	if (sopt->sopt_val != NULL) {
3345 		if (sopt->sopt_td != NULL)
3346 			error = copyout(buf, sopt->sopt_val, valsize);
3347 		else
3348 			bcopy(buf, sopt->sopt_val, valsize);
3349 	}
3350 	return (error);
3351 }
3352 
3353 int
3354 sogetopt(struct socket *so, struct sockopt *sopt)
3355 {
3356 	int	error, optval;
3357 	struct	linger l;
3358 	struct	timeval tv;
3359 #ifdef MAC
3360 	struct mac extmac;
3361 #endif
3362 
3363 	CURVNET_SET(so->so_vnet);
3364 	error = 0;
3365 	if (sopt->sopt_level != SOL_SOCKET) {
3366 		if (so->so_proto->pr_ctloutput != NULL)
3367 			error = (*so->so_proto->pr_ctloutput)(so, sopt);
3368 		else
3369 			error = ENOPROTOOPT;
3370 		CURVNET_RESTORE();
3371 		return (error);
3372 	} else {
3373 		switch (sopt->sopt_name) {
3374 		case SO_ACCEPTFILTER:
3375 			error = accept_filt_getopt(so, sopt);
3376 			break;
3377 
3378 		case SO_LINGER:
3379 			SOCK_LOCK(so);
3380 			l.l_onoff = so->so_options & SO_LINGER;
3381 			l.l_linger = so->so_linger;
3382 			SOCK_UNLOCK(so);
3383 			error = sooptcopyout(sopt, &l, sizeof l);
3384 			break;
3385 
3386 		case SO_USELOOPBACK:
3387 		case SO_DONTROUTE:
3388 		case SO_DEBUG:
3389 		case SO_KEEPALIVE:
3390 		case SO_REUSEADDR:
3391 		case SO_REUSEPORT:
3392 		case SO_REUSEPORT_LB:
3393 		case SO_BROADCAST:
3394 		case SO_OOBINLINE:
3395 		case SO_ACCEPTCONN:
3396 		case SO_TIMESTAMP:
3397 		case SO_BINTIME:
3398 		case SO_NOSIGPIPE:
3399 		case SO_NO_DDP:
3400 		case SO_NO_OFFLOAD:
3401 		case SO_RERROR:
3402 			optval = so->so_options & sopt->sopt_name;
3403 integer:
3404 			error = sooptcopyout(sopt, &optval, sizeof optval);
3405 			break;
3406 
3407 		case SO_DOMAIN:
3408 			optval = so->so_proto->pr_domain->dom_family;
3409 			goto integer;
3410 
3411 		case SO_TYPE:
3412 			optval = so->so_type;
3413 			goto integer;
3414 
3415 		case SO_PROTOCOL:
3416 			optval = so->so_proto->pr_protocol;
3417 			goto integer;
3418 
3419 		case SO_ERROR:
3420 			SOCK_LOCK(so);
3421 			if (so->so_error) {
3422 				optval = so->so_error;
3423 				so->so_error = 0;
3424 			} else {
3425 				optval = so->so_rerror;
3426 				so->so_rerror = 0;
3427 			}
3428 			SOCK_UNLOCK(so);
3429 			goto integer;
3430 
3431 		case SO_SNDBUF:
3432 			optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat :
3433 			    so->so_snd.sb_hiwat;
3434 			goto integer;
3435 
3436 		case SO_RCVBUF:
3437 			optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat :
3438 			    so->so_rcv.sb_hiwat;
3439 			goto integer;
3440 
3441 		case SO_SNDLOWAT:
3442 			optval = SOLISTENING(so) ? so->sol_sbsnd_lowat :
3443 			    so->so_snd.sb_lowat;
3444 			goto integer;
3445 
3446 		case SO_RCVLOWAT:
3447 			optval = SOLISTENING(so) ? so->sol_sbrcv_lowat :
3448 			    so->so_rcv.sb_lowat;
3449 			goto integer;
3450 
3451 		case SO_SNDTIMEO:
3452 		case SO_RCVTIMEO:
3453 			SOCK_LOCK(so);
3454 			tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ?
3455 			    (SOLISTENING(so) ? so->sol_sbsnd_timeo :
3456 			    so->so_snd.sb_timeo) :
3457 			    (SOLISTENING(so) ? so->sol_sbrcv_timeo :
3458 			    so->so_rcv.sb_timeo));
3459 			SOCK_UNLOCK(so);
3460 #ifdef COMPAT_FREEBSD32
3461 			if (SV_CURPROC_FLAG(SV_ILP32)) {
3462 				struct timeval32 tv32;
3463 
3464 				CP(tv, tv32, tv_sec);
3465 				CP(tv, tv32, tv_usec);
3466 				error = sooptcopyout(sopt, &tv32, sizeof tv32);
3467 			} else
3468 #endif
3469 				error = sooptcopyout(sopt, &tv, sizeof tv);
3470 			break;
3471 
3472 		case SO_LABEL:
3473 #ifdef MAC
3474 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
3475 			    sizeof(extmac));
3476 			if (error)
3477 				goto bad;
3478 			error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
3479 			    so, &extmac);
3480 			if (error)
3481 				goto bad;
3482 			/* Don't copy out extmac, it is unchanged. */
3483 #else
3484 			error = EOPNOTSUPP;
3485 #endif
3486 			break;
3487 
3488 		case SO_PEERLABEL:
3489 #ifdef MAC
3490 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
3491 			    sizeof(extmac));
3492 			if (error)
3493 				goto bad;
3494 			error = mac_getsockopt_peerlabel(
3495 			    sopt->sopt_td->td_ucred, so, &extmac);
3496 			if (error)
3497 				goto bad;
3498 			/* Don't copy out extmac, it is unchanged. */
3499 #else
3500 			error = EOPNOTSUPP;
3501 #endif
3502 			break;
3503 
3504 		case SO_LISTENQLIMIT:
3505 			optval = SOLISTENING(so) ? so->sol_qlimit : 0;
3506 			goto integer;
3507 
3508 		case SO_LISTENQLEN:
3509 			optval = SOLISTENING(so) ? so->sol_qlen : 0;
3510 			goto integer;
3511 
3512 		case SO_LISTENINCQLEN:
3513 			optval = SOLISTENING(so) ? so->sol_incqlen : 0;
3514 			goto integer;
3515 
3516 		case SO_TS_CLOCK:
3517 			optval = so->so_ts_clock;
3518 			goto integer;
3519 
3520 		case SO_MAX_PACING_RATE:
3521 			optval = so->so_max_pacing_rate;
3522 			goto integer;
3523 
3524 		default:
3525 			if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
3526 				error = hhook_run_socket(so, sopt,
3527 				    HHOOK_SOCKET_OPT);
3528 			else
3529 				error = ENOPROTOOPT;
3530 			break;
3531 		}
3532 	}
3533 #ifdef MAC
3534 bad:
3535 #endif
3536 	CURVNET_RESTORE();
3537 	return (error);
3538 }
3539 
3540 int
3541 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
3542 {
3543 	struct mbuf *m, *m_prev;
3544 	int sopt_size = sopt->sopt_valsize;
3545 
3546 	MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
3547 	if (m == NULL)
3548 		return ENOBUFS;
3549 	if (sopt_size > MLEN) {
3550 		MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT);
3551 		if ((m->m_flags & M_EXT) == 0) {
3552 			m_free(m);
3553 			return ENOBUFS;
3554 		}
3555 		m->m_len = min(MCLBYTES, sopt_size);
3556 	} else {
3557 		m->m_len = min(MLEN, sopt_size);
3558 	}
3559 	sopt_size -= m->m_len;
3560 	*mp = m;
3561 	m_prev = m;
3562 
3563 	while (sopt_size) {
3564 		MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
3565 		if (m == NULL) {
3566 			m_freem(*mp);
3567 			return ENOBUFS;
3568 		}
3569 		if (sopt_size > MLEN) {
3570 			MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK :
3571 			    M_NOWAIT);
3572 			if ((m->m_flags & M_EXT) == 0) {
3573 				m_freem(m);
3574 				m_freem(*mp);
3575 				return ENOBUFS;
3576 			}
3577 			m->m_len = min(MCLBYTES, sopt_size);
3578 		} else {
3579 			m->m_len = min(MLEN, sopt_size);
3580 		}
3581 		sopt_size -= m->m_len;
3582 		m_prev->m_next = m;
3583 		m_prev = m;
3584 	}
3585 	return (0);
3586 }
3587 
3588 int
3589 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
3590 {
3591 	struct mbuf *m0 = m;
3592 
3593 	if (sopt->sopt_val == NULL)
3594 		return (0);
3595 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
3596 		if (sopt->sopt_td != NULL) {
3597 			int error;
3598 
3599 			error = copyin(sopt->sopt_val, mtod(m, char *),
3600 			    m->m_len);
3601 			if (error != 0) {
3602 				m_freem(m0);
3603 				return(error);
3604 			}
3605 		} else
3606 			bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
3607 		sopt->sopt_valsize -= m->m_len;
3608 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
3609 		m = m->m_next;
3610 	}
3611 	if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
3612 		panic("ip6_sooptmcopyin");
3613 	return (0);
3614 }
3615 
3616 int
3617 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
3618 {
3619 	struct mbuf *m0 = m;
3620 	size_t valsize = 0;
3621 
3622 	if (sopt->sopt_val == NULL)
3623 		return (0);
3624 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
3625 		if (sopt->sopt_td != NULL) {
3626 			int error;
3627 
3628 			error = copyout(mtod(m, char *), sopt->sopt_val,
3629 			    m->m_len);
3630 			if (error != 0) {
3631 				m_freem(m0);
3632 				return(error);
3633 			}
3634 		} else
3635 			bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
3636 		sopt->sopt_valsize -= m->m_len;
3637 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
3638 		valsize += m->m_len;
3639 		m = m->m_next;
3640 	}
3641 	if (m != NULL) {
3642 		/* enough soopt buffer should be given from user-land */
3643 		m_freem(m0);
3644 		return(EINVAL);
3645 	}
3646 	sopt->sopt_valsize = valsize;
3647 	return (0);
3648 }
3649 
3650 /*
3651  * sohasoutofband(): protocol notifies socket layer of the arrival of new
3652  * out-of-band data, which will then notify socket consumers.
3653  */
3654 void
3655 sohasoutofband(struct socket *so)
3656 {
3657 
3658 	if (so->so_sigio != NULL)
3659 		pgsigio(&so->so_sigio, SIGURG, 0);
3660 	selwakeuppri(&so->so_rdsel, PSOCK);
3661 }
3662 
3663 int
3664 sopoll(struct socket *so, int events, struct ucred *active_cred,
3665     struct thread *td)
3666 {
3667 
3668 	/*
3669 	 * We do not need to set or assert curvnet as long as everyone uses
3670 	 * sopoll_generic().
3671 	 */
3672 	return (so->so_proto->pr_sopoll(so, events, active_cred, td));
3673 }
3674 
3675 int
3676 sopoll_generic(struct socket *so, int events, struct ucred *active_cred,
3677     struct thread *td)
3678 {
3679 	int revents;
3680 
3681 	SOCK_LOCK(so);
3682 	if (SOLISTENING(so)) {
3683 		if (!(events & (POLLIN | POLLRDNORM)))
3684 			revents = 0;
3685 		else if (!TAILQ_EMPTY(&so->sol_comp))
3686 			revents = events & (POLLIN | POLLRDNORM);
3687 		else if ((events & POLLINIGNEOF) == 0 && so->so_error)
3688 			revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP;
3689 		else {
3690 			selrecord(td, &so->so_rdsel);
3691 			revents = 0;
3692 		}
3693 	} else {
3694 		revents = 0;
3695 		SOCK_SENDBUF_LOCK(so);
3696 		SOCK_RECVBUF_LOCK(so);
3697 		if (events & (POLLIN | POLLRDNORM))
3698 			if (soreadabledata(so))
3699 				revents |= events & (POLLIN | POLLRDNORM);
3700 		if (events & (POLLOUT | POLLWRNORM))
3701 			if (sowriteable(so))
3702 				revents |= events & (POLLOUT | POLLWRNORM);
3703 		if (events & (POLLPRI | POLLRDBAND))
3704 			if (so->so_oobmark ||
3705 			    (so->so_rcv.sb_state & SBS_RCVATMARK))
3706 				revents |= events & (POLLPRI | POLLRDBAND);
3707 		if ((events & POLLINIGNEOF) == 0) {
3708 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3709 				revents |= events & (POLLIN | POLLRDNORM);
3710 				if (so->so_snd.sb_state & SBS_CANTSENDMORE)
3711 					revents |= POLLHUP;
3712 			}
3713 		}
3714 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
3715 			revents |= events & POLLRDHUP;
3716 		if (revents == 0) {
3717 			if (events &
3718 			    (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND | POLLRDHUP)) {
3719 				selrecord(td, &so->so_rdsel);
3720 				so->so_rcv.sb_flags |= SB_SEL;
3721 			}
3722 			if (events & (POLLOUT | POLLWRNORM)) {
3723 				selrecord(td, &so->so_wrsel);
3724 				so->so_snd.sb_flags |= SB_SEL;
3725 			}
3726 		}
3727 		SOCK_RECVBUF_UNLOCK(so);
3728 		SOCK_SENDBUF_UNLOCK(so);
3729 	}
3730 	SOCK_UNLOCK(so);
3731 	return (revents);
3732 }
3733 
3734 int
3735 soo_kqfilter(struct file *fp, struct knote *kn)
3736 {
3737 	struct socket *so = kn->kn_fp->f_data;
3738 	struct sockbuf *sb;
3739 	sb_which which;
3740 	struct knlist *knl;
3741 
3742 	switch (kn->kn_filter) {
3743 	case EVFILT_READ:
3744 		kn->kn_fop = &soread_filtops;
3745 		knl = &so->so_rdsel.si_note;
3746 		sb = &so->so_rcv;
3747 		which = SO_RCV;
3748 		break;
3749 	case EVFILT_WRITE:
3750 		kn->kn_fop = &sowrite_filtops;
3751 		knl = &so->so_wrsel.si_note;
3752 		sb = &so->so_snd;
3753 		which = SO_SND;
3754 		break;
3755 	case EVFILT_EMPTY:
3756 		kn->kn_fop = &soempty_filtops;
3757 		knl = &so->so_wrsel.si_note;
3758 		sb = &so->so_snd;
3759 		which = SO_SND;
3760 		break;
3761 	default:
3762 		return (EINVAL);
3763 	}
3764 
3765 	SOCK_LOCK(so);
3766 	if (SOLISTENING(so)) {
3767 		knlist_add(knl, kn, 1);
3768 	} else {
3769 		SOCK_BUF_LOCK(so, which);
3770 		knlist_add(knl, kn, 1);
3771 		sb->sb_flags |= SB_KNOTE;
3772 		SOCK_BUF_UNLOCK(so, which);
3773 	}
3774 	SOCK_UNLOCK(so);
3775 	return (0);
3776 }
3777 
3778 static void
3779 filt_sordetach(struct knote *kn)
3780 {
3781 	struct socket *so = kn->kn_fp->f_data;
3782 
3783 	so_rdknl_lock(so);
3784 	knlist_remove(&so->so_rdsel.si_note, kn, 1);
3785 	if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note))
3786 		so->so_rcv.sb_flags &= ~SB_KNOTE;
3787 	so_rdknl_unlock(so);
3788 }
3789 
3790 /*ARGSUSED*/
3791 static int
3792 filt_soread(struct knote *kn, long hint)
3793 {
3794 	struct socket *so;
3795 
3796 	so = kn->kn_fp->f_data;
3797 
3798 	if (SOLISTENING(so)) {
3799 		SOCK_LOCK_ASSERT(so);
3800 		kn->kn_data = so->sol_qlen;
3801 		if (so->so_error) {
3802 			kn->kn_flags |= EV_EOF;
3803 			kn->kn_fflags = so->so_error;
3804 			return (1);
3805 		}
3806 		return (!TAILQ_EMPTY(&so->sol_comp));
3807 	}
3808 
3809 	SOCK_RECVBUF_LOCK_ASSERT(so);
3810 
3811 	kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl;
3812 	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3813 		kn->kn_flags |= EV_EOF;
3814 		kn->kn_fflags = so->so_error;
3815 		return (1);
3816 	} else if (so->so_error || so->so_rerror)
3817 		return (1);
3818 
3819 	if (kn->kn_sfflags & NOTE_LOWAT) {
3820 		if (kn->kn_data >= kn->kn_sdata)
3821 			return (1);
3822 	} else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat)
3823 		return (1);
3824 
3825 	/* This hook returning non-zero indicates an event, not error */
3826 	return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD));
3827 }
3828 
3829 static void
3830 filt_sowdetach(struct knote *kn)
3831 {
3832 	struct socket *so = kn->kn_fp->f_data;
3833 
3834 	so_wrknl_lock(so);
3835 	knlist_remove(&so->so_wrsel.si_note, kn, 1);
3836 	if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note))
3837 		so->so_snd.sb_flags &= ~SB_KNOTE;
3838 	so_wrknl_unlock(so);
3839 }
3840 
3841 /*ARGSUSED*/
3842 static int
3843 filt_sowrite(struct knote *kn, long hint)
3844 {
3845 	struct socket *so;
3846 
3847 	so = kn->kn_fp->f_data;
3848 
3849 	if (SOLISTENING(so))
3850 		return (0);
3851 
3852 	SOCK_SENDBUF_LOCK_ASSERT(so);
3853 	kn->kn_data = sbspace(&so->so_snd);
3854 
3855 	hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE);
3856 
3857 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
3858 		kn->kn_flags |= EV_EOF;
3859 		kn->kn_fflags = so->so_error;
3860 		return (1);
3861 	} else if (so->so_error)	/* temporary udp error */
3862 		return (1);
3863 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
3864 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
3865 		return (0);
3866 	else if (kn->kn_sfflags & NOTE_LOWAT)
3867 		return (kn->kn_data >= kn->kn_sdata);
3868 	else
3869 		return (kn->kn_data >= so->so_snd.sb_lowat);
3870 }
3871 
3872 static int
3873 filt_soempty(struct knote *kn, long hint)
3874 {
3875 	struct socket *so;
3876 
3877 	so = kn->kn_fp->f_data;
3878 
3879 	if (SOLISTENING(so))
3880 		return (1);
3881 
3882 	SOCK_SENDBUF_LOCK_ASSERT(so);
3883 	kn->kn_data = sbused(&so->so_snd);
3884 
3885 	if (kn->kn_data == 0)
3886 		return (1);
3887 	else
3888 		return (0);
3889 }
3890 
3891 int
3892 socheckuid(struct socket *so, uid_t uid)
3893 {
3894 
3895 	if (so == NULL)
3896 		return (EPERM);
3897 	if (so->so_cred->cr_uid != uid)
3898 		return (EPERM);
3899 	return (0);
3900 }
3901 
3902 /*
3903  * These functions are used by protocols to notify the socket layer (and its
3904  * consumers) of state changes in the sockets driven by protocol-side events.
3905  */
3906 
3907 /*
3908  * Procedures to manipulate state flags of socket and do appropriate wakeups.
3909  *
3910  * Normal sequence from the active (originating) side is that
3911  * soisconnecting() is called during processing of connect() call, resulting
3912  * in an eventual call to soisconnected() if/when the connection is
3913  * established.  When the connection is torn down soisdisconnecting() is
3914  * called during processing of disconnect() call, and soisdisconnected() is
3915  * called when the connection to the peer is totally severed.  The semantics
3916  * of these routines are such that connectionless protocols can call
3917  * soisconnected() and soisdisconnected() only, bypassing the in-progress
3918  * calls when setting up a ``connection'' takes no time.
3919  *
3920  * From the passive side, a socket is created with two queues of sockets:
3921  * so_incomp for connections in progress and so_comp for connections already
3922  * made and awaiting user acceptance.  As a protocol is preparing incoming
3923  * connections, it creates a socket structure queued on so_incomp by calling
3924  * sonewconn().  When the connection is established, soisconnected() is
3925  * called, and transfers the socket structure to so_comp, making it available
3926  * to accept().
3927  *
3928  * If a socket is closed with sockets on either so_incomp or so_comp, these
3929  * sockets are dropped.
3930  *
3931  * If higher-level protocols are implemented in the kernel, the wakeups done
3932  * here will sometimes cause software-interrupt process scheduling.
3933  */
3934 void
3935 soisconnecting(struct socket *so)
3936 {
3937 
3938 	SOCK_LOCK(so);
3939 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
3940 	so->so_state |= SS_ISCONNECTING;
3941 	SOCK_UNLOCK(so);
3942 }
3943 
3944 void
3945 soisconnected(struct socket *so)
3946 {
3947 	bool last __diagused;
3948 
3949 	SOCK_LOCK(so);
3950 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
3951 	so->so_state |= SS_ISCONNECTED;
3952 
3953 	if (so->so_qstate == SQ_INCOMP) {
3954 		struct socket *head = so->so_listen;
3955 		int ret;
3956 
3957 		KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so));
3958 		/*
3959 		 * Promoting a socket from incomplete queue to complete, we
3960 		 * need to go through reverse order of locking.  We first do
3961 		 * trylock, and if that doesn't succeed, we go the hard way
3962 		 * leaving a reference and rechecking consistency after proper
3963 		 * locking.
3964 		 */
3965 		if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) {
3966 			soref(head);
3967 			SOCK_UNLOCK(so);
3968 			SOLISTEN_LOCK(head);
3969 			SOCK_LOCK(so);
3970 			if (__predict_false(head != so->so_listen)) {
3971 				/*
3972 				 * The socket went off the listen queue,
3973 				 * should be lost race to close(2) of sol.
3974 				 * The socket is about to soabort().
3975 				 */
3976 				SOCK_UNLOCK(so);
3977 				sorele_locked(head);
3978 				return;
3979 			}
3980 			last = refcount_release(&head->so_count);
3981 			KASSERT(!last, ("%s: released last reference for %p",
3982 			    __func__, head));
3983 		}
3984 again:
3985 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
3986 			TAILQ_REMOVE(&head->sol_incomp, so, so_list);
3987 			head->sol_incqlen--;
3988 			TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
3989 			head->sol_qlen++;
3990 			so->so_qstate = SQ_COMP;
3991 			SOCK_UNLOCK(so);
3992 			solisten_wakeup(head);	/* unlocks */
3993 		} else {
3994 			SOCK_RECVBUF_LOCK(so);
3995 			soupcall_set(so, SO_RCV,
3996 			    head->sol_accept_filter->accf_callback,
3997 			    head->sol_accept_filter_arg);
3998 			so->so_options &= ~SO_ACCEPTFILTER;
3999 			ret = head->sol_accept_filter->accf_callback(so,
4000 			    head->sol_accept_filter_arg, M_NOWAIT);
4001 			if (ret == SU_ISCONNECTED) {
4002 				soupcall_clear(so, SO_RCV);
4003 				SOCK_RECVBUF_UNLOCK(so);
4004 				goto again;
4005 			}
4006 			SOCK_RECVBUF_UNLOCK(so);
4007 			SOCK_UNLOCK(so);
4008 			SOLISTEN_UNLOCK(head);
4009 		}
4010 		return;
4011 	}
4012 	SOCK_UNLOCK(so);
4013 	wakeup(&so->so_timeo);
4014 	sorwakeup(so);
4015 	sowwakeup(so);
4016 }
4017 
4018 void
4019 soisdisconnecting(struct socket *so)
4020 {
4021 
4022 	SOCK_LOCK(so);
4023 	so->so_state &= ~SS_ISCONNECTING;
4024 	so->so_state |= SS_ISDISCONNECTING;
4025 
4026 	if (!SOLISTENING(so)) {
4027 		SOCK_RECVBUF_LOCK(so);
4028 		socantrcvmore_locked(so);
4029 		SOCK_SENDBUF_LOCK(so);
4030 		socantsendmore_locked(so);
4031 	}
4032 	SOCK_UNLOCK(so);
4033 	wakeup(&so->so_timeo);
4034 }
4035 
4036 void
4037 soisdisconnected(struct socket *so)
4038 {
4039 
4040 	SOCK_LOCK(so);
4041 
4042 	/*
4043 	 * There is at least one reader of so_state that does not
4044 	 * acquire socket lock, namely soreceive_generic().  Ensure
4045 	 * that it never sees all flags that track connection status
4046 	 * cleared, by ordering the update with a barrier semantic of
4047 	 * our release thread fence.
4048 	 */
4049 	so->so_state |= SS_ISDISCONNECTED;
4050 	atomic_thread_fence_rel();
4051 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
4052 
4053 	if (!SOLISTENING(so)) {
4054 		SOCK_UNLOCK(so);
4055 		SOCK_RECVBUF_LOCK(so);
4056 		socantrcvmore_locked(so);
4057 		SOCK_SENDBUF_LOCK(so);
4058 		sbdrop_locked(&so->so_snd, sbused(&so->so_snd));
4059 		socantsendmore_locked(so);
4060 	} else
4061 		SOCK_UNLOCK(so);
4062 	wakeup(&so->so_timeo);
4063 }
4064 
4065 int
4066 soiolock(struct socket *so, struct sx *sx, int flags)
4067 {
4068 	int error;
4069 
4070 	KASSERT((flags & SBL_VALID) == flags,
4071 	    ("soiolock: invalid flags %#x", flags));
4072 
4073 	if ((flags & SBL_WAIT) != 0) {
4074 		if ((flags & SBL_NOINTR) != 0) {
4075 			sx_xlock(sx);
4076 		} else {
4077 			error = sx_xlock_sig(sx);
4078 			if (error != 0)
4079 				return (error);
4080 		}
4081 	} else if (!sx_try_xlock(sx)) {
4082 		return (EWOULDBLOCK);
4083 	}
4084 
4085 	if (__predict_false(SOLISTENING(so))) {
4086 		sx_xunlock(sx);
4087 		return (ENOTCONN);
4088 	}
4089 	return (0);
4090 }
4091 
4092 void
4093 soiounlock(struct sx *sx)
4094 {
4095 	sx_xunlock(sx);
4096 }
4097 
4098 /*
4099  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
4100  */
4101 struct sockaddr *
4102 sodupsockaddr(const struct sockaddr *sa, int mflags)
4103 {
4104 	struct sockaddr *sa2;
4105 
4106 	sa2 = malloc(sa->sa_len, M_SONAME, mflags);
4107 	if (sa2)
4108 		bcopy(sa, sa2, sa->sa_len);
4109 	return sa2;
4110 }
4111 
4112 /*
4113  * Register per-socket destructor.
4114  */
4115 void
4116 sodtor_set(struct socket *so, so_dtor_t *func)
4117 {
4118 
4119 	SOCK_LOCK_ASSERT(so);
4120 	so->so_dtor = func;
4121 }
4122 
4123 /*
4124  * Register per-socket buffer upcalls.
4125  */
4126 void
4127 soupcall_set(struct socket *so, sb_which which, so_upcall_t func, void *arg)
4128 {
4129 	struct sockbuf *sb;
4130 
4131 	KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4132 
4133 	switch (which) {
4134 	case SO_RCV:
4135 		sb = &so->so_rcv;
4136 		break;
4137 	case SO_SND:
4138 		sb = &so->so_snd;
4139 		break;
4140 	}
4141 	SOCK_BUF_LOCK_ASSERT(so, which);
4142 	sb->sb_upcall = func;
4143 	sb->sb_upcallarg = arg;
4144 	sb->sb_flags |= SB_UPCALL;
4145 }
4146 
4147 void
4148 soupcall_clear(struct socket *so, sb_which which)
4149 {
4150 	struct sockbuf *sb;
4151 
4152 	KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4153 
4154 	switch (which) {
4155 	case SO_RCV:
4156 		sb = &so->so_rcv;
4157 		break;
4158 	case SO_SND:
4159 		sb = &so->so_snd;
4160 		break;
4161 	}
4162 	SOCK_BUF_LOCK_ASSERT(so, which);
4163 	KASSERT(sb->sb_upcall != NULL,
4164 	    ("%s: so %p no upcall to clear", __func__, so));
4165 	sb->sb_upcall = NULL;
4166 	sb->sb_upcallarg = NULL;
4167 	sb->sb_flags &= ~SB_UPCALL;
4168 }
4169 
4170 void
4171 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg)
4172 {
4173 
4174 	SOLISTEN_LOCK_ASSERT(so);
4175 	so->sol_upcall = func;
4176 	so->sol_upcallarg = arg;
4177 }
4178 
4179 static void
4180 so_rdknl_lock(void *arg)
4181 {
4182 	struct socket *so = arg;
4183 
4184 retry:
4185 	if (SOLISTENING(so)) {
4186 		SOLISTEN_LOCK(so);
4187 	} else {
4188 		SOCK_RECVBUF_LOCK(so);
4189 		if (__predict_false(SOLISTENING(so))) {
4190 			SOCK_RECVBUF_UNLOCK(so);
4191 			goto retry;
4192 		}
4193 	}
4194 }
4195 
4196 static void
4197 so_rdknl_unlock(void *arg)
4198 {
4199 	struct socket *so = arg;
4200 
4201 	if (SOLISTENING(so))
4202 		SOLISTEN_UNLOCK(so);
4203 	else
4204 		SOCK_RECVBUF_UNLOCK(so);
4205 }
4206 
4207 static void
4208 so_rdknl_assert_lock(void *arg, int what)
4209 {
4210 	struct socket *so = arg;
4211 
4212 	if (what == LA_LOCKED) {
4213 		if (SOLISTENING(so))
4214 			SOLISTEN_LOCK_ASSERT(so);
4215 		else
4216 			SOCK_RECVBUF_LOCK_ASSERT(so);
4217 	} else {
4218 		if (SOLISTENING(so))
4219 			SOLISTEN_UNLOCK_ASSERT(so);
4220 		else
4221 			SOCK_RECVBUF_UNLOCK_ASSERT(so);
4222 	}
4223 }
4224 
4225 static void
4226 so_wrknl_lock(void *arg)
4227 {
4228 	struct socket *so = arg;
4229 
4230 retry:
4231 	if (SOLISTENING(so)) {
4232 		SOLISTEN_LOCK(so);
4233 	} else {
4234 		SOCK_SENDBUF_LOCK(so);
4235 		if (__predict_false(SOLISTENING(so))) {
4236 			SOCK_SENDBUF_UNLOCK(so);
4237 			goto retry;
4238 		}
4239 	}
4240 }
4241 
4242 static void
4243 so_wrknl_unlock(void *arg)
4244 {
4245 	struct socket *so = arg;
4246 
4247 	if (SOLISTENING(so))
4248 		SOLISTEN_UNLOCK(so);
4249 	else
4250 		SOCK_SENDBUF_UNLOCK(so);
4251 }
4252 
4253 static void
4254 so_wrknl_assert_lock(void *arg, int what)
4255 {
4256 	struct socket *so = arg;
4257 
4258 	if (what == LA_LOCKED) {
4259 		if (SOLISTENING(so))
4260 			SOLISTEN_LOCK_ASSERT(so);
4261 		else
4262 			SOCK_SENDBUF_LOCK_ASSERT(so);
4263 	} else {
4264 		if (SOLISTENING(so))
4265 			SOLISTEN_UNLOCK_ASSERT(so);
4266 		else
4267 			SOCK_SENDBUF_UNLOCK_ASSERT(so);
4268 	}
4269 }
4270 
4271 /*
4272  * Create an external-format (``xsocket'') structure using the information in
4273  * the kernel-format socket structure pointed to by so.  This is done to
4274  * reduce the spew of irrelevant information over this interface, to isolate
4275  * user code from changes in the kernel structure, and potentially to provide
4276  * information-hiding if we decide that some of this information should be
4277  * hidden from users.
4278  */
4279 void
4280 sotoxsocket(struct socket *so, struct xsocket *xso)
4281 {
4282 
4283 	bzero(xso, sizeof(*xso));
4284 	xso->xso_len = sizeof *xso;
4285 	xso->xso_so = (uintptr_t)so;
4286 	xso->so_type = so->so_type;
4287 	xso->so_options = so->so_options;
4288 	xso->so_linger = so->so_linger;
4289 	xso->so_state = so->so_state;
4290 	xso->so_pcb = (uintptr_t)so->so_pcb;
4291 	xso->xso_protocol = so->so_proto->pr_protocol;
4292 	xso->xso_family = so->so_proto->pr_domain->dom_family;
4293 	xso->so_timeo = so->so_timeo;
4294 	xso->so_error = so->so_error;
4295 	xso->so_uid = so->so_cred->cr_uid;
4296 	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
4297 	if (SOLISTENING(so)) {
4298 		xso->so_qlen = so->sol_qlen;
4299 		xso->so_incqlen = so->sol_incqlen;
4300 		xso->so_qlimit = so->sol_qlimit;
4301 		xso->so_oobmark = 0;
4302 	} else {
4303 		xso->so_state |= so->so_qstate;
4304 		xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0;
4305 		xso->so_oobmark = so->so_oobmark;
4306 		sbtoxsockbuf(&so->so_snd, &xso->so_snd);
4307 		sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
4308 	}
4309 }
4310 
4311 struct sockbuf *
4312 so_sockbuf_rcv(struct socket *so)
4313 {
4314 
4315 	return (&so->so_rcv);
4316 }
4317 
4318 struct sockbuf *
4319 so_sockbuf_snd(struct socket *so)
4320 {
4321 
4322 	return (&so->so_snd);
4323 }
4324 
4325 int
4326 so_state_get(const struct socket *so)
4327 {
4328 
4329 	return (so->so_state);
4330 }
4331 
4332 void
4333 so_state_set(struct socket *so, int val)
4334 {
4335 
4336 	so->so_state = val;
4337 }
4338 
4339 int
4340 so_options_get(const struct socket *so)
4341 {
4342 
4343 	return (so->so_options);
4344 }
4345 
4346 void
4347 so_options_set(struct socket *so, int val)
4348 {
4349 
4350 	so->so_options = val;
4351 }
4352 
4353 int
4354 so_error_get(const struct socket *so)
4355 {
4356 
4357 	return (so->so_error);
4358 }
4359 
4360 void
4361 so_error_set(struct socket *so, int val)
4362 {
4363 
4364 	so->so_error = val;
4365 }
4366 
4367 int
4368 so_linger_get(const struct socket *so)
4369 {
4370 
4371 	return (so->so_linger);
4372 }
4373 
4374 void
4375 so_linger_set(struct socket *so, int val)
4376 {
4377 
4378 	KASSERT(val >= 0 && val <= USHRT_MAX && val <= (INT_MAX / hz),
4379 	    ("%s: val %d out of range", __func__, val));
4380 
4381 	so->so_linger = val;
4382 }
4383 
4384 struct protosw *
4385 so_protosw_get(const struct socket *so)
4386 {
4387 
4388 	return (so->so_proto);
4389 }
4390 
4391 void
4392 so_protosw_set(struct socket *so, struct protosw *val)
4393 {
4394 
4395 	so->so_proto = val;
4396 }
4397 
4398 void
4399 so_sorwakeup(struct socket *so)
4400 {
4401 
4402 	sorwakeup(so);
4403 }
4404 
4405 void
4406 so_sowwakeup(struct socket *so)
4407 {
4408 
4409 	sowwakeup(so);
4410 }
4411 
4412 void
4413 so_sorwakeup_locked(struct socket *so)
4414 {
4415 
4416 	sorwakeup_locked(so);
4417 }
4418 
4419 void
4420 so_sowwakeup_locked(struct socket *so)
4421 {
4422 
4423 	sowwakeup_locked(so);
4424 }
4425 
4426 void
4427 so_lock(struct socket *so)
4428 {
4429 
4430 	SOCK_LOCK(so);
4431 }
4432 
4433 void
4434 so_unlock(struct socket *so)
4435 {
4436 
4437 	SOCK_UNLOCK(so);
4438 }
4439