1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. 6 * Copyright (c) 2004 The FreeBSD Foundation 7 * Copyright (c) 2004-2008 Robert N. M. Watson 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 /* 36 * Comments on the socket life cycle: 37 * 38 * soalloc() sets of socket layer state for a socket, called only by 39 * socreate() and sonewconn(). Socket layer private. 40 * 41 * sodealloc() tears down socket layer state for a socket, called only by 42 * sofree() and sonewconn(). Socket layer private. 43 * 44 * pru_attach() associates protocol layer state with an allocated socket; 45 * called only once, may fail, aborting socket allocation. This is called 46 * from socreate() and sonewconn(). Socket layer private. 47 * 48 * pru_detach() disassociates protocol layer state from an attached socket, 49 * and will be called exactly once for sockets in which pru_attach() has 50 * been successfully called. If pru_attach() returned an error, 51 * pru_detach() will not be called. Socket layer private. 52 * 53 * pru_abort() and pru_close() notify the protocol layer that the last 54 * consumer of a socket is starting to tear down the socket, and that the 55 * protocol should terminate the connection. Historically, pru_abort() also 56 * detached protocol state from the socket state, but this is no longer the 57 * case. 58 * 59 * socreate() creates a socket and attaches protocol state. This is a public 60 * interface that may be used by socket layer consumers to create new 61 * sockets. 62 * 63 * sonewconn() creates a socket and attaches protocol state. This is a 64 * public interface that may be used by protocols to create new sockets when 65 * a new connection is received and will be available for accept() on a 66 * listen socket. 67 * 68 * soclose() destroys a socket after possibly waiting for it to disconnect. 69 * This is a public interface that socket consumers should use to close and 70 * release a socket when done with it. 71 * 72 * soabort() destroys a socket without waiting for it to disconnect (used 73 * only for incoming connections that are already partially or fully 74 * connected). This is used internally by the socket layer when clearing 75 * listen socket queues (due to overflow or close on the listen socket), but 76 * is also a public interface protocols may use to abort connections in 77 * their incomplete listen queues should they no longer be required. Sockets 78 * placed in completed connection listen queues should not be aborted for 79 * reasons described in the comment above the soclose() implementation. This 80 * is not a general purpose close routine, and except in the specific 81 * circumstances described here, should not be used. 82 * 83 * sofree() will free a socket and its protocol state if all references on 84 * the socket have been released, and is the public interface to attempt to 85 * free a socket when a reference is removed. This is a socket layer private 86 * interface. 87 * 88 * NOTE: In addition to socreate() and soclose(), which provide a single 89 * socket reference to the consumer to be managed as required, there are two 90 * calls to explicitly manage socket references, soref(), and sorele(). 91 * Currently, these are generally required only when transitioning a socket 92 * from a listen queue to a file descriptor, in order to prevent garbage 93 * collection of the socket at an untimely moment. For a number of reasons, 94 * these interfaces are not preferred, and should be avoided. 95 * 96 * NOTE: With regard to VNETs the general rule is that callers do not set 97 * curvnet. Exceptions to this rule include soabort(), sodisconnect(), 98 * sofree() (and with that sorele(), sotryfree()), as well as sonewconn() 99 * and sorflush(), which are usually called from a pre-set VNET context. 100 * sopoll() currently does not need a VNET context to be set. 101 */ 102 103 #include <sys/cdefs.h> 104 #include "opt_inet.h" 105 #include "opt_inet6.h" 106 #include "opt_kern_tls.h" 107 #include "opt_sctp.h" 108 109 #include <sys/param.h> 110 #include <sys/systm.h> 111 #include <sys/capsicum.h> 112 #include <sys/fcntl.h> 113 #include <sys/limits.h> 114 #include <sys/lock.h> 115 #include <sys/mac.h> 116 #include <sys/malloc.h> 117 #include <sys/mbuf.h> 118 #include <sys/mutex.h> 119 #include <sys/domain.h> 120 #include <sys/file.h> /* for struct knote */ 121 #include <sys/hhook.h> 122 #include <sys/kernel.h> 123 #include <sys/khelp.h> 124 #include <sys/ktls.h> 125 #include <sys/event.h> 126 #include <sys/eventhandler.h> 127 #include <sys/poll.h> 128 #include <sys/proc.h> 129 #include <sys/protosw.h> 130 #include <sys/sbuf.h> 131 #include <sys/socket.h> 132 #include <sys/socketvar.h> 133 #include <sys/resourcevar.h> 134 #include <net/route.h> 135 #include <sys/signalvar.h> 136 #include <sys/stat.h> 137 #include <sys/sx.h> 138 #include <sys/sysctl.h> 139 #include <sys/taskqueue.h> 140 #include <sys/uio.h> 141 #include <sys/un.h> 142 #include <sys/unpcb.h> 143 #include <sys/jail.h> 144 #include <sys/syslog.h> 145 #include <netinet/in.h> 146 #include <netinet/in_pcb.h> 147 #include <netinet/tcp.h> 148 149 #include <net/vnet.h> 150 151 #include <security/mac/mac_framework.h> 152 153 #include <vm/uma.h> 154 155 #ifdef COMPAT_FREEBSD32 156 #include <sys/mount.h> 157 #include <sys/sysent.h> 158 #include <compat/freebsd32/freebsd32.h> 159 #endif 160 161 static int soreceive_rcvoob(struct socket *so, struct uio *uio, 162 int flags); 163 static void so_rdknl_lock(void *); 164 static void so_rdknl_unlock(void *); 165 static void so_rdknl_assert_lock(void *, int); 166 static void so_wrknl_lock(void *); 167 static void so_wrknl_unlock(void *); 168 static void so_wrknl_assert_lock(void *, int); 169 170 static void filt_sordetach(struct knote *kn); 171 static int filt_soread(struct knote *kn, long hint); 172 static void filt_sowdetach(struct knote *kn); 173 static int filt_sowrite(struct knote *kn, long hint); 174 static int filt_soempty(struct knote *kn, long hint); 175 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id); 176 fo_kqfilter_t soo_kqfilter; 177 178 static struct filterops soread_filtops = { 179 .f_isfd = 1, 180 .f_detach = filt_sordetach, 181 .f_event = filt_soread, 182 }; 183 static struct filterops sowrite_filtops = { 184 .f_isfd = 1, 185 .f_detach = filt_sowdetach, 186 .f_event = filt_sowrite, 187 }; 188 static struct filterops soempty_filtops = { 189 .f_isfd = 1, 190 .f_detach = filt_sowdetach, 191 .f_event = filt_soempty, 192 }; 193 194 so_gen_t so_gencnt; /* generation count for sockets */ 195 196 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 197 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 198 199 #define VNET_SO_ASSERT(so) \ 200 VNET_ASSERT(curvnet != NULL, \ 201 ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so))); 202 203 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]); 204 #define V_socket_hhh VNET(socket_hhh) 205 206 /* 207 * Limit on the number of connections in the listen queue waiting 208 * for accept(2). 209 * NB: The original sysctl somaxconn is still available but hidden 210 * to prevent confusion about the actual purpose of this number. 211 */ 212 static u_int somaxconn = SOMAXCONN; 213 214 static int 215 sysctl_somaxconn(SYSCTL_HANDLER_ARGS) 216 { 217 int error; 218 int val; 219 220 val = somaxconn; 221 error = sysctl_handle_int(oidp, &val, 0, req); 222 if (error || !req->newptr ) 223 return (error); 224 225 /* 226 * The purpose of the UINT_MAX / 3 limit, is so that the formula 227 * 3 * so_qlimit / 2 228 * below, will not overflow. 229 */ 230 231 if (val < 1 || val > UINT_MAX / 3) 232 return (EINVAL); 233 234 somaxconn = val; 235 return (0); 236 } 237 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue, 238 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, sizeof(int), 239 sysctl_somaxconn, "I", 240 "Maximum listen socket pending connection accept queue size"); 241 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, 242 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE, 0, 243 sizeof(int), sysctl_somaxconn, "I", 244 "Maximum listen socket pending connection accept queue size (compat)"); 245 246 static int numopensockets; 247 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, 248 &numopensockets, 0, "Number of open sockets"); 249 250 /* 251 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket 252 * so_gencnt field. 253 */ 254 static struct mtx so_global_mtx; 255 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); 256 257 /* 258 * General IPC sysctl name space, used by sockets and a variety of other IPC 259 * types. 260 */ 261 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 262 "IPC"); 263 264 /* 265 * Initialize the socket subsystem and set up the socket 266 * memory allocator. 267 */ 268 static uma_zone_t socket_zone; 269 int maxsockets; 270 271 static void 272 socket_zone_change(void *tag) 273 { 274 275 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 276 } 277 278 static void 279 socket_hhook_register(int subtype) 280 { 281 282 if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype, 283 &V_socket_hhh[subtype], 284 HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 285 printf("%s: WARNING: unable to register hook\n", __func__); 286 } 287 288 static void 289 socket_hhook_deregister(int subtype) 290 { 291 292 if (hhook_head_deregister(V_socket_hhh[subtype]) != 0) 293 printf("%s: WARNING: unable to deregister hook\n", __func__); 294 } 295 296 static void 297 socket_init(void *tag) 298 { 299 300 socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL, 301 NULL, NULL, UMA_ALIGN_PTR, 0); 302 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 303 uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached"); 304 EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL, 305 EVENTHANDLER_PRI_FIRST); 306 } 307 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL); 308 309 static void 310 socket_vnet_init(const void *unused __unused) 311 { 312 int i; 313 314 /* We expect a contiguous range */ 315 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 316 socket_hhook_register(i); 317 } 318 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 319 socket_vnet_init, NULL); 320 321 static void 322 socket_vnet_uninit(const void *unused __unused) 323 { 324 int i; 325 326 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 327 socket_hhook_deregister(i); 328 } 329 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 330 socket_vnet_uninit, NULL); 331 332 /* 333 * Initialise maxsockets. This SYSINIT must be run after 334 * tunable_mbinit(). 335 */ 336 static void 337 init_maxsockets(void *ignored) 338 { 339 340 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 341 maxsockets = imax(maxsockets, maxfiles); 342 } 343 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 344 345 /* 346 * Sysctl to get and set the maximum global sockets limit. Notify protocols 347 * of the change so that they can update their dependent limits as required. 348 */ 349 static int 350 sysctl_maxsockets(SYSCTL_HANDLER_ARGS) 351 { 352 int error, newmaxsockets; 353 354 newmaxsockets = maxsockets; 355 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req); 356 if (error == 0 && req->newptr && newmaxsockets != maxsockets) { 357 if (newmaxsockets > maxsockets && 358 newmaxsockets <= maxfiles) { 359 maxsockets = newmaxsockets; 360 EVENTHANDLER_INVOKE(maxsockets_change); 361 } else 362 error = EINVAL; 363 } 364 return (error); 365 } 366 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, 367 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE, 368 &maxsockets, 0, sysctl_maxsockets, "IU", 369 "Maximum number of sockets available"); 370 371 /* 372 * Socket operation routines. These routines are called by the routines in 373 * sys_socket.c or from a system process, and implement the semantics of 374 * socket operations by switching out to the protocol specific routines. 375 */ 376 377 /* 378 * Get a socket structure from our zone, and initialize it. Note that it 379 * would probably be better to allocate socket and PCB at the same time, but 380 * I'm not convinced that all the protocols can be easily modified to do 381 * this. 382 * 383 * soalloc() returns a socket with a ref count of 0. 384 */ 385 static struct socket * 386 soalloc(struct vnet *vnet) 387 { 388 struct socket *so; 389 390 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO); 391 if (so == NULL) 392 return (NULL); 393 #ifdef MAC 394 if (mac_socket_init(so, M_NOWAIT) != 0) { 395 uma_zfree(socket_zone, so); 396 return (NULL); 397 } 398 #endif 399 if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) { 400 uma_zfree(socket_zone, so); 401 return (NULL); 402 } 403 404 /* 405 * The socket locking protocol allows to lock 2 sockets at a time, 406 * however, the first one must be a listening socket. WITNESS lacks 407 * a feature to change class of an existing lock, so we use DUPOK. 408 */ 409 mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK); 410 mtx_init(&so->so_snd_mtx, "so_snd", NULL, MTX_DEF); 411 mtx_init(&so->so_rcv_mtx, "so_rcv", NULL, MTX_DEF); 412 so->so_rcv.sb_sel = &so->so_rdsel; 413 so->so_snd.sb_sel = &so->so_wrsel; 414 sx_init(&so->so_snd_sx, "so_snd_sx"); 415 sx_init(&so->so_rcv_sx, "so_rcv_sx"); 416 TAILQ_INIT(&so->so_snd.sb_aiojobq); 417 TAILQ_INIT(&so->so_rcv.sb_aiojobq); 418 TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so); 419 TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so); 420 #ifdef VIMAGE 421 VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p", 422 __func__, __LINE__, so)); 423 so->so_vnet = vnet; 424 #endif 425 /* We shouldn't need the so_global_mtx */ 426 if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) { 427 /* Do we need more comprehensive error returns? */ 428 uma_zfree(socket_zone, so); 429 return (NULL); 430 } 431 mtx_lock(&so_global_mtx); 432 so->so_gencnt = ++so_gencnt; 433 ++numopensockets; 434 #ifdef VIMAGE 435 vnet->vnet_sockcnt++; 436 #endif 437 mtx_unlock(&so_global_mtx); 438 439 return (so); 440 } 441 442 /* 443 * Free the storage associated with a socket at the socket layer, tear down 444 * locks, labels, etc. All protocol state is assumed already to have been 445 * torn down (and possibly never set up) by the caller. 446 */ 447 void 448 sodealloc(struct socket *so) 449 { 450 451 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); 452 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL")); 453 454 mtx_lock(&so_global_mtx); 455 so->so_gencnt = ++so_gencnt; 456 --numopensockets; /* Could be below, but faster here. */ 457 #ifdef VIMAGE 458 VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p", 459 __func__, __LINE__, so)); 460 so->so_vnet->vnet_sockcnt--; 461 #endif 462 mtx_unlock(&so_global_mtx); 463 #ifdef MAC 464 mac_socket_destroy(so); 465 #endif 466 hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE); 467 468 khelp_destroy_osd(&so->osd); 469 if (SOLISTENING(so)) { 470 if (so->sol_accept_filter != NULL) 471 accept_filt_setopt(so, NULL); 472 } else { 473 if (so->so_rcv.sb_hiwat) 474 (void)chgsbsize(so->so_cred->cr_uidinfo, 475 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 476 if (so->so_snd.sb_hiwat) 477 (void)chgsbsize(so->so_cred->cr_uidinfo, 478 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 479 sx_destroy(&so->so_snd_sx); 480 sx_destroy(&so->so_rcv_sx); 481 mtx_destroy(&so->so_snd_mtx); 482 mtx_destroy(&so->so_rcv_mtx); 483 } 484 crfree(so->so_cred); 485 mtx_destroy(&so->so_lock); 486 uma_zfree(socket_zone, so); 487 } 488 489 /* 490 * socreate returns a socket with a ref count of 1 and a file descriptor 491 * reference. The socket should be closed with soclose(). 492 */ 493 int 494 socreate(int dom, struct socket **aso, int type, int proto, 495 struct ucred *cred, struct thread *td) 496 { 497 struct protosw *prp; 498 struct socket *so; 499 int error; 500 501 /* 502 * XXX: divert(4) historically abused PF_INET. Keep this compatibility 503 * shim until all applications have been updated. 504 */ 505 if (__predict_false(dom == PF_INET && type == SOCK_RAW && 506 proto == IPPROTO_DIVERT)) { 507 dom = PF_DIVERT; 508 printf("%s uses obsolete way to create divert(4) socket\n", 509 td->td_proc->p_comm); 510 } 511 512 prp = pffindproto(dom, type, proto); 513 if (prp == NULL) { 514 /* No support for domain. */ 515 if (pffinddomain(dom) == NULL) 516 return (EAFNOSUPPORT); 517 /* No support for socket type. */ 518 if (proto == 0 && type != 0) 519 return (EPROTOTYPE); 520 return (EPROTONOSUPPORT); 521 } 522 523 MPASS(prp->pr_attach); 524 525 if (IN_CAPABILITY_MODE(td) && (prp->pr_flags & PR_CAPATTACH) == 0) 526 return (ECAPMODE); 527 528 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0) 529 return (EPROTONOSUPPORT); 530 531 so = soalloc(CRED_TO_VNET(cred)); 532 if (so == NULL) 533 return (ENOBUFS); 534 535 so->so_type = type; 536 so->so_cred = crhold(cred); 537 if ((prp->pr_domain->dom_family == PF_INET) || 538 (prp->pr_domain->dom_family == PF_INET6) || 539 (prp->pr_domain->dom_family == PF_ROUTE)) 540 so->so_fibnum = td->td_proc->p_fibnum; 541 else 542 so->so_fibnum = 0; 543 so->so_proto = prp; 544 #ifdef MAC 545 mac_socket_create(cred, so); 546 #endif 547 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 548 so_rdknl_assert_lock); 549 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 550 so_wrknl_assert_lock); 551 if ((prp->pr_flags & PR_SOCKBUF) == 0) { 552 so->so_snd.sb_mtx = &so->so_snd_mtx; 553 so->so_rcv.sb_mtx = &so->so_rcv_mtx; 554 } 555 /* 556 * Auto-sizing of socket buffers is managed by the protocols and 557 * the appropriate flags must be set in the pru_attach function. 558 */ 559 CURVNET_SET(so->so_vnet); 560 error = prp->pr_attach(so, proto, td); 561 CURVNET_RESTORE(); 562 if (error) { 563 sodealloc(so); 564 return (error); 565 } 566 soref(so); 567 *aso = so; 568 return (0); 569 } 570 571 #ifdef REGRESSION 572 static int regression_sonewconn_earlytest = 1; 573 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW, 574 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test"); 575 #endif 576 577 static int sooverprio = LOG_DEBUG; 578 SYSCTL_INT(_kern_ipc, OID_AUTO, sooverprio, CTLFLAG_RW, 579 &sooverprio, 0, "Log priority for listen socket overflows: 0..7 or -1 to disable"); 580 581 static struct timeval overinterval = { 60, 0 }; 582 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW, 583 &overinterval, 584 "Delay in seconds between warnings for listen socket overflows"); 585 586 /* 587 * When an attempt at a new connection is noted on a socket which supports 588 * accept(2), the protocol has two options: 589 * 1) Call legacy sonewconn() function, which would call protocol attach 590 * method, same as used for socket(2). 591 * 2) Call solisten_clone(), do attach that is specific to a cloned connection, 592 * and then call solisten_enqueue(). 593 * 594 * Note: the ref count on the socket is 0 on return. 595 */ 596 struct socket * 597 solisten_clone(struct socket *head) 598 { 599 struct sbuf descrsb; 600 struct socket *so; 601 int len, overcount; 602 u_int qlen; 603 const char localprefix[] = "local:"; 604 char descrbuf[SUNPATHLEN + sizeof(localprefix)]; 605 #if defined(INET6) 606 char addrbuf[INET6_ADDRSTRLEN]; 607 #elif defined(INET) 608 char addrbuf[INET_ADDRSTRLEN]; 609 #endif 610 bool dolog, over; 611 612 SOLISTEN_LOCK(head); 613 over = (head->sol_qlen > 3 * head->sol_qlimit / 2); 614 #ifdef REGRESSION 615 if (regression_sonewconn_earlytest && over) { 616 #else 617 if (over) { 618 #endif 619 head->sol_overcount++; 620 dolog = (sooverprio >= 0) && 621 !!ratecheck(&head->sol_lastover, &overinterval); 622 623 /* 624 * If we're going to log, copy the overflow count and queue 625 * length from the listen socket before dropping the lock. 626 * Also, reset the overflow count. 627 */ 628 if (dolog) { 629 overcount = head->sol_overcount; 630 head->sol_overcount = 0; 631 qlen = head->sol_qlen; 632 } 633 SOLISTEN_UNLOCK(head); 634 635 if (dolog) { 636 /* 637 * Try to print something descriptive about the 638 * socket for the error message. 639 */ 640 sbuf_new(&descrsb, descrbuf, sizeof(descrbuf), 641 SBUF_FIXEDLEN); 642 switch (head->so_proto->pr_domain->dom_family) { 643 #if defined(INET) || defined(INET6) 644 #ifdef INET 645 case AF_INET: 646 #endif 647 #ifdef INET6 648 case AF_INET6: 649 if (head->so_proto->pr_domain->dom_family == 650 AF_INET6 || 651 (sotoinpcb(head)->inp_inc.inc_flags & 652 INC_ISIPV6)) { 653 ip6_sprintf(addrbuf, 654 &sotoinpcb(head)->inp_inc.inc6_laddr); 655 sbuf_printf(&descrsb, "[%s]", addrbuf); 656 } else 657 #endif 658 { 659 #ifdef INET 660 inet_ntoa_r( 661 sotoinpcb(head)->inp_inc.inc_laddr, 662 addrbuf); 663 sbuf_cat(&descrsb, addrbuf); 664 #endif 665 } 666 sbuf_printf(&descrsb, ":%hu (proto %u)", 667 ntohs(sotoinpcb(head)->inp_inc.inc_lport), 668 head->so_proto->pr_protocol); 669 break; 670 #endif /* INET || INET6 */ 671 case AF_UNIX: 672 sbuf_cat(&descrsb, localprefix); 673 if (sotounpcb(head)->unp_addr != NULL) 674 len = 675 sotounpcb(head)->unp_addr->sun_len - 676 offsetof(struct sockaddr_un, 677 sun_path); 678 else 679 len = 0; 680 if (len > 0) 681 sbuf_bcat(&descrsb, 682 sotounpcb(head)->unp_addr->sun_path, 683 len); 684 else 685 sbuf_cat(&descrsb, "(unknown)"); 686 break; 687 } 688 689 /* 690 * If we can't print something more specific, at least 691 * print the domain name. 692 */ 693 if (sbuf_finish(&descrsb) != 0 || 694 sbuf_len(&descrsb) <= 0) { 695 sbuf_clear(&descrsb); 696 sbuf_cat(&descrsb, 697 head->so_proto->pr_domain->dom_name ?: 698 "unknown"); 699 sbuf_finish(&descrsb); 700 } 701 KASSERT(sbuf_len(&descrsb) > 0, 702 ("%s: sbuf creation failed", __func__)); 703 /* 704 * Preserve the historic listen queue overflow log 705 * message, that starts with "sonewconn:". It has 706 * been known to sysadmins for years and also test 707 * sys/kern/sonewconn_overflow checks for it. 708 */ 709 if (head->so_cred == 0) { 710 log(LOG_PRI(sooverprio), 711 "sonewconn: pcb %p (%s): " 712 "Listen queue overflow: %i already in " 713 "queue awaiting acceptance (%d " 714 "occurrences)\n", head->so_pcb, 715 sbuf_data(&descrsb), 716 qlen, overcount); 717 } else { 718 log(LOG_PRI(sooverprio), 719 "sonewconn: pcb %p (%s): " 720 "Listen queue overflow: " 721 "%i already in queue awaiting acceptance " 722 "(%d occurrences), euid %d, rgid %d, jail %s\n", 723 head->so_pcb, sbuf_data(&descrsb), qlen, 724 overcount, head->so_cred->cr_uid, 725 head->so_cred->cr_rgid, 726 head->so_cred->cr_prison ? 727 head->so_cred->cr_prison->pr_name : 728 "not_jailed"); 729 } 730 sbuf_delete(&descrsb); 731 732 overcount = 0; 733 } 734 735 return (NULL); 736 } 737 SOLISTEN_UNLOCK(head); 738 VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL", 739 __func__, head)); 740 so = soalloc(head->so_vnet); 741 if (so == NULL) { 742 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 743 "limit reached or out of memory\n", 744 __func__, head->so_pcb); 745 return (NULL); 746 } 747 so->so_listen = head; 748 so->so_type = head->so_type; 749 /* 750 * POSIX is ambiguous on what options an accept(2)ed socket should 751 * inherit from the listener. Words "create a new socket" may be 752 * interpreted as not inheriting anything. Best programming practice 753 * for application developers is to not rely on such inheritance. 754 * FreeBSD had historically inherited all so_options excluding 755 * SO_ACCEPTCONN, which virtually means all SOL_SOCKET level options, 756 * including those completely irrelevant to a new born socket. For 757 * compatibility with older versions we will inherit a list of 758 * meaningful options. 759 */ 760 so->so_options = head->so_options & (SO_KEEPALIVE | SO_DONTROUTE | 761 SO_LINGER | SO_OOBINLINE | SO_NOSIGPIPE); 762 so->so_linger = head->so_linger; 763 so->so_state = head->so_state; 764 so->so_fibnum = head->so_fibnum; 765 so->so_proto = head->so_proto; 766 so->so_cred = crhold(head->so_cred); 767 #ifdef MAC 768 mac_socket_newconn(head, so); 769 #endif 770 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 771 so_rdknl_assert_lock); 772 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 773 so_wrknl_assert_lock); 774 VNET_SO_ASSERT(head); 775 if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) { 776 sodealloc(so); 777 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 778 __func__, head->so_pcb); 779 return (NULL); 780 } 781 so->so_rcv.sb_lowat = head->sol_sbrcv_lowat; 782 so->so_snd.sb_lowat = head->sol_sbsnd_lowat; 783 so->so_rcv.sb_timeo = head->sol_sbrcv_timeo; 784 so->so_snd.sb_timeo = head->sol_sbsnd_timeo; 785 so->so_rcv.sb_flags = head->sol_sbrcv_flags & SB_AUTOSIZE; 786 so->so_snd.sb_flags = head->sol_sbsnd_flags & SB_AUTOSIZE; 787 if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) { 788 so->so_snd.sb_mtx = &so->so_snd_mtx; 789 so->so_rcv.sb_mtx = &so->so_rcv_mtx; 790 } 791 792 return (so); 793 } 794 795 /* Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED. */ 796 struct socket * 797 sonewconn(struct socket *head, int connstatus) 798 { 799 struct socket *so; 800 801 if ((so = solisten_clone(head)) == NULL) 802 return (NULL); 803 804 if (so->so_proto->pr_attach(so, 0, NULL) != 0) { 805 sodealloc(so); 806 log(LOG_DEBUG, "%s: pcb %p: pr_attach() failed\n", 807 __func__, head->so_pcb); 808 return (NULL); 809 } 810 811 (void)solisten_enqueue(so, connstatus); 812 813 return (so); 814 } 815 816 /* 817 * Enqueue socket cloned by solisten_clone() to the listen queue of the 818 * listener it has been cloned from. 819 * 820 * Return 'true' if socket landed on complete queue, otherwise 'false'. 821 */ 822 bool 823 solisten_enqueue(struct socket *so, int connstatus) 824 { 825 struct socket *head = so->so_listen; 826 827 MPASS(refcount_load(&so->so_count) == 0); 828 refcount_init(&so->so_count, 1); 829 830 SOLISTEN_LOCK(head); 831 if (head->sol_accept_filter != NULL) 832 connstatus = 0; 833 so->so_state |= connstatus; 834 soref(head); /* A socket on (in)complete queue refs head. */ 835 if (connstatus) { 836 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 837 so->so_qstate = SQ_COMP; 838 head->sol_qlen++; 839 solisten_wakeup(head); /* unlocks */ 840 return (true); 841 } else { 842 /* 843 * Keep removing sockets from the head until there's room for 844 * us to insert on the tail. In pre-locking revisions, this 845 * was a simple if(), but as we could be racing with other 846 * threads and soabort() requires dropping locks, we must 847 * loop waiting for the condition to be true. 848 */ 849 while (head->sol_incqlen > head->sol_qlimit) { 850 struct socket *sp; 851 852 sp = TAILQ_FIRST(&head->sol_incomp); 853 TAILQ_REMOVE(&head->sol_incomp, sp, so_list); 854 head->sol_incqlen--; 855 SOCK_LOCK(sp); 856 sp->so_qstate = SQ_NONE; 857 sp->so_listen = NULL; 858 SOCK_UNLOCK(sp); 859 sorele_locked(head); /* does SOLISTEN_UNLOCK, head stays */ 860 soabort(sp); 861 SOLISTEN_LOCK(head); 862 } 863 TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list); 864 so->so_qstate = SQ_INCOMP; 865 head->sol_incqlen++; 866 SOLISTEN_UNLOCK(head); 867 return (false); 868 } 869 } 870 871 #if defined(SCTP) || defined(SCTP_SUPPORT) 872 /* 873 * Socket part of sctp_peeloff(). Detach a new socket from an 874 * association. The new socket is returned with a reference. 875 * 876 * XXXGL: reduce copy-paste with solisten_clone(). 877 */ 878 struct socket * 879 sopeeloff(struct socket *head) 880 { 881 struct socket *so; 882 883 VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p", 884 __func__, __LINE__, head)); 885 so = soalloc(head->so_vnet); 886 if (so == NULL) { 887 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 888 "limit reached or out of memory\n", 889 __func__, head->so_pcb); 890 return (NULL); 891 } 892 so->so_type = head->so_type; 893 so->so_options = head->so_options; 894 so->so_linger = head->so_linger; 895 so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED; 896 so->so_fibnum = head->so_fibnum; 897 so->so_proto = head->so_proto; 898 so->so_cred = crhold(head->so_cred); 899 #ifdef MAC 900 mac_socket_newconn(head, so); 901 #endif 902 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 903 so_rdknl_assert_lock); 904 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 905 so_wrknl_assert_lock); 906 VNET_SO_ASSERT(head); 907 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) { 908 sodealloc(so); 909 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 910 __func__, head->so_pcb); 911 return (NULL); 912 } 913 if ((*so->so_proto->pr_attach)(so, 0, NULL)) { 914 sodealloc(so); 915 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", 916 __func__, head->so_pcb); 917 return (NULL); 918 } 919 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; 920 so->so_snd.sb_lowat = head->so_snd.sb_lowat; 921 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; 922 so->so_snd.sb_timeo = head->so_snd.sb_timeo; 923 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE; 924 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE; 925 926 soref(so); 927 928 return (so); 929 } 930 #endif /* SCTP */ 931 932 int 933 sobind(struct socket *so, struct sockaddr *nam, struct thread *td) 934 { 935 int error; 936 937 CURVNET_SET(so->so_vnet); 938 error = so->so_proto->pr_bind(so, nam, td); 939 CURVNET_RESTORE(); 940 return (error); 941 } 942 943 int 944 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 945 { 946 int error; 947 948 CURVNET_SET(so->so_vnet); 949 error = so->so_proto->pr_bindat(fd, so, nam, td); 950 CURVNET_RESTORE(); 951 return (error); 952 } 953 954 /* 955 * solisten() transitions a socket from a non-listening state to a listening 956 * state, but can also be used to update the listen queue depth on an 957 * existing listen socket. The protocol will call back into the sockets 958 * layer using solisten_proto_check() and solisten_proto() to check and set 959 * socket-layer listen state. Call backs are used so that the protocol can 960 * acquire both protocol and socket layer locks in whatever order is required 961 * by the protocol. 962 * 963 * Protocol implementors are advised to hold the socket lock across the 964 * socket-layer test and set to avoid races at the socket layer. 965 */ 966 int 967 solisten(struct socket *so, int backlog, struct thread *td) 968 { 969 int error; 970 971 CURVNET_SET(so->so_vnet); 972 error = so->so_proto->pr_listen(so, backlog, td); 973 CURVNET_RESTORE(); 974 return (error); 975 } 976 977 /* 978 * Prepare for a call to solisten_proto(). Acquire all socket buffer locks in 979 * order to interlock with socket I/O. 980 */ 981 int 982 solisten_proto_check(struct socket *so) 983 { 984 SOCK_LOCK_ASSERT(so); 985 986 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 987 SS_ISDISCONNECTING)) != 0) 988 return (EINVAL); 989 990 /* 991 * Sleeping is not permitted here, so simply fail if userspace is 992 * attempting to transmit or receive on the socket. This kind of 993 * transient failure is not ideal, but it should occur only if userspace 994 * is misusing the socket interfaces. 995 */ 996 if (!sx_try_xlock(&so->so_snd_sx)) 997 return (EAGAIN); 998 if (!sx_try_xlock(&so->so_rcv_sx)) { 999 sx_xunlock(&so->so_snd_sx); 1000 return (EAGAIN); 1001 } 1002 mtx_lock(&so->so_snd_mtx); 1003 mtx_lock(&so->so_rcv_mtx); 1004 1005 /* Interlock with soo_aio_queue() and KTLS. */ 1006 if (!SOLISTENING(so)) { 1007 bool ktls; 1008 1009 #ifdef KERN_TLS 1010 ktls = so->so_snd.sb_tls_info != NULL || 1011 so->so_rcv.sb_tls_info != NULL; 1012 #else 1013 ktls = false; 1014 #endif 1015 if (ktls || 1016 (so->so_snd.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0 || 1017 (so->so_rcv.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0) { 1018 solisten_proto_abort(so); 1019 return (EINVAL); 1020 } 1021 } 1022 1023 return (0); 1024 } 1025 1026 /* 1027 * Undo the setup done by solisten_proto_check(). 1028 */ 1029 void 1030 solisten_proto_abort(struct socket *so) 1031 { 1032 mtx_unlock(&so->so_snd_mtx); 1033 mtx_unlock(&so->so_rcv_mtx); 1034 sx_xunlock(&so->so_snd_sx); 1035 sx_xunlock(&so->so_rcv_sx); 1036 } 1037 1038 void 1039 solisten_proto(struct socket *so, int backlog) 1040 { 1041 int sbrcv_lowat, sbsnd_lowat; 1042 u_int sbrcv_hiwat, sbsnd_hiwat; 1043 short sbrcv_flags, sbsnd_flags; 1044 sbintime_t sbrcv_timeo, sbsnd_timeo; 1045 1046 SOCK_LOCK_ASSERT(so); 1047 KASSERT((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 1048 SS_ISDISCONNECTING)) == 0, 1049 ("%s: bad socket state %p", __func__, so)); 1050 1051 if (SOLISTENING(so)) 1052 goto listening; 1053 1054 /* 1055 * Change this socket to listening state. 1056 */ 1057 sbrcv_lowat = so->so_rcv.sb_lowat; 1058 sbsnd_lowat = so->so_snd.sb_lowat; 1059 sbrcv_hiwat = so->so_rcv.sb_hiwat; 1060 sbsnd_hiwat = so->so_snd.sb_hiwat; 1061 sbrcv_flags = so->so_rcv.sb_flags; 1062 sbsnd_flags = so->so_snd.sb_flags; 1063 sbrcv_timeo = so->so_rcv.sb_timeo; 1064 sbsnd_timeo = so->so_snd.sb_timeo; 1065 1066 sbdestroy(so, SO_SND); 1067 sbdestroy(so, SO_RCV); 1068 1069 #ifdef INVARIANTS 1070 bzero(&so->so_rcv, 1071 sizeof(struct socket) - offsetof(struct socket, so_rcv)); 1072 #endif 1073 1074 so->sol_sbrcv_lowat = sbrcv_lowat; 1075 so->sol_sbsnd_lowat = sbsnd_lowat; 1076 so->sol_sbrcv_hiwat = sbrcv_hiwat; 1077 so->sol_sbsnd_hiwat = sbsnd_hiwat; 1078 so->sol_sbrcv_flags = sbrcv_flags; 1079 so->sol_sbsnd_flags = sbsnd_flags; 1080 so->sol_sbrcv_timeo = sbrcv_timeo; 1081 so->sol_sbsnd_timeo = sbsnd_timeo; 1082 1083 so->sol_qlen = so->sol_incqlen = 0; 1084 TAILQ_INIT(&so->sol_incomp); 1085 TAILQ_INIT(&so->sol_comp); 1086 1087 so->sol_accept_filter = NULL; 1088 so->sol_accept_filter_arg = NULL; 1089 so->sol_accept_filter_str = NULL; 1090 1091 so->sol_upcall = NULL; 1092 so->sol_upcallarg = NULL; 1093 1094 so->so_options |= SO_ACCEPTCONN; 1095 1096 listening: 1097 if (backlog < 0 || backlog > somaxconn) 1098 backlog = somaxconn; 1099 so->sol_qlimit = backlog; 1100 1101 mtx_unlock(&so->so_snd_mtx); 1102 mtx_unlock(&so->so_rcv_mtx); 1103 sx_xunlock(&so->so_snd_sx); 1104 sx_xunlock(&so->so_rcv_sx); 1105 } 1106 1107 /* 1108 * Wakeup listeners/subsystems once we have a complete connection. 1109 * Enters with lock, returns unlocked. 1110 */ 1111 void 1112 solisten_wakeup(struct socket *sol) 1113 { 1114 1115 if (sol->sol_upcall != NULL) 1116 (void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT); 1117 else { 1118 selwakeuppri(&sol->so_rdsel, PSOCK); 1119 KNOTE_LOCKED(&sol->so_rdsel.si_note, 0); 1120 } 1121 SOLISTEN_UNLOCK(sol); 1122 wakeup_one(&sol->sol_comp); 1123 if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL) 1124 pgsigio(&sol->so_sigio, SIGIO, 0); 1125 } 1126 1127 /* 1128 * Return single connection off a listening socket queue. Main consumer of 1129 * the function is kern_accept4(). Some modules, that do their own accept 1130 * management also use the function. The socket reference held by the 1131 * listen queue is handed to the caller. 1132 * 1133 * Listening socket must be locked on entry and is returned unlocked on 1134 * return. 1135 * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT. 1136 */ 1137 int 1138 solisten_dequeue(struct socket *head, struct socket **ret, int flags) 1139 { 1140 struct socket *so; 1141 int error; 1142 1143 SOLISTEN_LOCK_ASSERT(head); 1144 1145 while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) && 1146 head->so_error == 0) { 1147 error = msleep(&head->sol_comp, SOCK_MTX(head), PSOCK | PCATCH, 1148 "accept", 0); 1149 if (error != 0) { 1150 SOLISTEN_UNLOCK(head); 1151 return (error); 1152 } 1153 } 1154 if (head->so_error) { 1155 error = head->so_error; 1156 head->so_error = 0; 1157 } else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp)) 1158 error = EWOULDBLOCK; 1159 else 1160 error = 0; 1161 if (error) { 1162 SOLISTEN_UNLOCK(head); 1163 return (error); 1164 } 1165 so = TAILQ_FIRST(&head->sol_comp); 1166 SOCK_LOCK(so); 1167 KASSERT(so->so_qstate == SQ_COMP, 1168 ("%s: so %p not SQ_COMP", __func__, so)); 1169 head->sol_qlen--; 1170 so->so_qstate = SQ_NONE; 1171 so->so_listen = NULL; 1172 TAILQ_REMOVE(&head->sol_comp, so, so_list); 1173 if (flags & ACCEPT4_INHERIT) 1174 so->so_state |= (head->so_state & SS_NBIO); 1175 else 1176 so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0; 1177 SOCK_UNLOCK(so); 1178 sorele_locked(head); 1179 1180 *ret = so; 1181 return (0); 1182 } 1183 1184 /* 1185 * Free socket upon release of the very last reference. 1186 */ 1187 static void 1188 sofree(struct socket *so) 1189 { 1190 struct protosw *pr = so->so_proto; 1191 1192 SOCK_LOCK_ASSERT(so); 1193 KASSERT(refcount_load(&so->so_count) == 0, 1194 ("%s: so %p has references", __func__, so)); 1195 KASSERT(SOLISTENING(so) || so->so_qstate == SQ_NONE, 1196 ("%s: so %p is on listen queue", __func__, so)); 1197 1198 SOCK_UNLOCK(so); 1199 1200 if (so->so_dtor != NULL) 1201 so->so_dtor(so); 1202 1203 VNET_SO_ASSERT(so); 1204 if ((pr->pr_flags & PR_RIGHTS) && !SOLISTENING(so)) { 1205 MPASS(pr->pr_domain->dom_dispose != NULL); 1206 (*pr->pr_domain->dom_dispose)(so); 1207 } 1208 if (pr->pr_detach != NULL) 1209 pr->pr_detach(so); 1210 1211 /* 1212 * From this point on, we assume that no other references to this 1213 * socket exist anywhere else in the stack. Therefore, no locks need 1214 * to be acquired or held. 1215 */ 1216 if (!(pr->pr_flags & PR_SOCKBUF) && !SOLISTENING(so)) { 1217 sbdestroy(so, SO_SND); 1218 sbdestroy(so, SO_RCV); 1219 } 1220 seldrain(&so->so_rdsel); 1221 seldrain(&so->so_wrsel); 1222 knlist_destroy(&so->so_rdsel.si_note); 1223 knlist_destroy(&so->so_wrsel.si_note); 1224 sodealloc(so); 1225 } 1226 1227 /* 1228 * Release a reference on a socket while holding the socket lock. 1229 * Unlocks the socket lock before returning. 1230 */ 1231 void 1232 sorele_locked(struct socket *so) 1233 { 1234 SOCK_LOCK_ASSERT(so); 1235 if (refcount_release(&so->so_count)) 1236 sofree(so); 1237 else 1238 SOCK_UNLOCK(so); 1239 } 1240 1241 /* 1242 * Close a socket on last file table reference removal. Initiate disconnect 1243 * if connected. Free socket when disconnect complete. 1244 * 1245 * This function will sorele() the socket. Note that soclose() may be called 1246 * prior to the ref count reaching zero. The actual socket structure will 1247 * not be freed until the ref count reaches zero. 1248 */ 1249 int 1250 soclose(struct socket *so) 1251 { 1252 struct accept_queue lqueue; 1253 int error = 0; 1254 bool listening, last __diagused; 1255 1256 CURVNET_SET(so->so_vnet); 1257 funsetown(&so->so_sigio); 1258 if (so->so_state & SS_ISCONNECTED) { 1259 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 1260 error = sodisconnect(so); 1261 if (error) { 1262 if (error == ENOTCONN) 1263 error = 0; 1264 goto drop; 1265 } 1266 } 1267 1268 if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) { 1269 if ((so->so_state & SS_ISDISCONNECTING) && 1270 (so->so_state & SS_NBIO)) 1271 goto drop; 1272 while (so->so_state & SS_ISCONNECTED) { 1273 error = tsleep(&so->so_timeo, 1274 PSOCK | PCATCH, "soclos", 1275 so->so_linger * hz); 1276 if (error) 1277 break; 1278 } 1279 } 1280 } 1281 1282 drop: 1283 if (so->so_proto->pr_close != NULL) 1284 so->so_proto->pr_close(so); 1285 1286 SOCK_LOCK(so); 1287 if ((listening = SOLISTENING(so))) { 1288 struct socket *sp; 1289 1290 TAILQ_INIT(&lqueue); 1291 TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list); 1292 TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list); 1293 1294 so->sol_qlen = so->sol_incqlen = 0; 1295 1296 TAILQ_FOREACH(sp, &lqueue, so_list) { 1297 SOCK_LOCK(sp); 1298 sp->so_qstate = SQ_NONE; 1299 sp->so_listen = NULL; 1300 SOCK_UNLOCK(sp); 1301 last = refcount_release(&so->so_count); 1302 KASSERT(!last, ("%s: released last reference for %p", 1303 __func__, so)); 1304 } 1305 } 1306 sorele_locked(so); 1307 if (listening) { 1308 struct socket *sp, *tsp; 1309 1310 TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp) 1311 soabort(sp); 1312 } 1313 CURVNET_RESTORE(); 1314 return (error); 1315 } 1316 1317 /* 1318 * soabort() is used to abruptly tear down a connection, such as when a 1319 * resource limit is reached (listen queue depth exceeded), or if a listen 1320 * socket is closed while there are sockets waiting to be accepted. 1321 * 1322 * This interface is tricky, because it is called on an unreferenced socket, 1323 * and must be called only by a thread that has actually removed the socket 1324 * from the listen queue it was on. Likely this thread holds the last 1325 * reference on the socket and soabort() will proceed with sofree(). But 1326 * it might be not the last, as the sockets on the listen queues are seen 1327 * from the protocol side. 1328 * 1329 * This interface will call into the protocol code, so must not be called 1330 * with any socket locks held. Protocols do call it while holding their own 1331 * recursible protocol mutexes, but this is something that should be subject 1332 * to review in the future. 1333 * 1334 * Usually socket should have a single reference left, but this is not a 1335 * requirement. In the past, when we have had named references for file 1336 * descriptor and protocol, we asserted that none of them are being held. 1337 */ 1338 void 1339 soabort(struct socket *so) 1340 { 1341 1342 VNET_SO_ASSERT(so); 1343 1344 if (so->so_proto->pr_abort != NULL) 1345 so->so_proto->pr_abort(so); 1346 SOCK_LOCK(so); 1347 sorele_locked(so); 1348 } 1349 1350 int 1351 soaccept(struct socket *so, struct sockaddr *sa) 1352 { 1353 #ifdef INVARIANTS 1354 u_char len = sa->sa_len; 1355 #endif 1356 int error; 1357 1358 CURVNET_SET(so->so_vnet); 1359 error = so->so_proto->pr_accept(so, sa); 1360 KASSERT(sa->sa_len <= len, 1361 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto)); 1362 CURVNET_RESTORE(); 1363 return (error); 1364 } 1365 1366 int 1367 sopeeraddr(struct socket *so, struct sockaddr *sa) 1368 { 1369 #ifdef INVARIANTS 1370 u_char len = sa->sa_len; 1371 #endif 1372 int error; 1373 1374 CURVNET_SET(so->so_vnet); 1375 error = so->so_proto->pr_peeraddr(so, sa); 1376 KASSERT(sa->sa_len <= len, 1377 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto)); 1378 CURVNET_RESTORE(); 1379 1380 return (error); 1381 } 1382 1383 int 1384 sosockaddr(struct socket *so, struct sockaddr *sa) 1385 { 1386 #ifdef INVARIANTS 1387 u_char len = sa->sa_len; 1388 #endif 1389 int error; 1390 1391 CURVNET_SET(so->so_vnet); 1392 error = so->so_proto->pr_sockaddr(so, sa); 1393 KASSERT(sa->sa_len <= len, 1394 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto)); 1395 CURVNET_RESTORE(); 1396 1397 return (error); 1398 } 1399 1400 int 1401 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td) 1402 { 1403 1404 return (soconnectat(AT_FDCWD, so, nam, td)); 1405 } 1406 1407 int 1408 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 1409 { 1410 int error; 1411 1412 CURVNET_SET(so->so_vnet); 1413 1414 /* 1415 * If protocol is connection-based, can only connect once. 1416 * Otherwise, if connected, try to disconnect first. This allows 1417 * user to disconnect by connecting to, e.g., a null address. 1418 * 1419 * Note, this check is racy and may need to be re-evaluated at the 1420 * protocol layer. 1421 */ 1422 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 1423 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 1424 (error = sodisconnect(so)))) { 1425 error = EISCONN; 1426 } else { 1427 /* 1428 * Prevent accumulated error from previous connection from 1429 * biting us. 1430 */ 1431 so->so_error = 0; 1432 if (fd == AT_FDCWD) { 1433 error = so->so_proto->pr_connect(so, nam, td); 1434 } else { 1435 error = so->so_proto->pr_connectat(fd, so, nam, td); 1436 } 1437 } 1438 CURVNET_RESTORE(); 1439 1440 return (error); 1441 } 1442 1443 int 1444 soconnect2(struct socket *so1, struct socket *so2) 1445 { 1446 int error; 1447 1448 CURVNET_SET(so1->so_vnet); 1449 error = so1->so_proto->pr_connect2(so1, so2); 1450 CURVNET_RESTORE(); 1451 return (error); 1452 } 1453 1454 int 1455 sodisconnect(struct socket *so) 1456 { 1457 int error; 1458 1459 if ((so->so_state & SS_ISCONNECTED) == 0) 1460 return (ENOTCONN); 1461 if (so->so_state & SS_ISDISCONNECTING) 1462 return (EALREADY); 1463 VNET_SO_ASSERT(so); 1464 error = so->so_proto->pr_disconnect(so); 1465 return (error); 1466 } 1467 1468 int 1469 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, 1470 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1471 { 1472 long space; 1473 ssize_t resid; 1474 int clen = 0, error, dontroute; 1475 1476 KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM")); 1477 KASSERT(so->so_proto->pr_flags & PR_ATOMIC, 1478 ("sosend_dgram: !PR_ATOMIC")); 1479 1480 if (uio != NULL) 1481 resid = uio->uio_resid; 1482 else 1483 resid = top->m_pkthdr.len; 1484 /* 1485 * In theory resid should be unsigned. However, space must be 1486 * signed, as it might be less than 0 if we over-committed, and we 1487 * must use a signed comparison of space and resid. On the other 1488 * hand, a negative resid causes us to loop sending 0-length 1489 * segments to the protocol. 1490 */ 1491 if (resid < 0) { 1492 error = EINVAL; 1493 goto out; 1494 } 1495 1496 dontroute = 1497 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0; 1498 if (td != NULL) 1499 td->td_ru.ru_msgsnd++; 1500 if (control != NULL) 1501 clen = control->m_len; 1502 1503 SOCKBUF_LOCK(&so->so_snd); 1504 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1505 SOCKBUF_UNLOCK(&so->so_snd); 1506 error = EPIPE; 1507 goto out; 1508 } 1509 if (so->so_error) { 1510 error = so->so_error; 1511 so->so_error = 0; 1512 SOCKBUF_UNLOCK(&so->so_snd); 1513 goto out; 1514 } 1515 if ((so->so_state & SS_ISCONNECTED) == 0) { 1516 /* 1517 * `sendto' and `sendmsg' is allowed on a connection-based 1518 * socket if it supports implied connect. Return ENOTCONN if 1519 * not connected and no address is supplied. 1520 */ 1521 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1522 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1523 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1524 !(resid == 0 && clen != 0)) { 1525 SOCKBUF_UNLOCK(&so->so_snd); 1526 error = ENOTCONN; 1527 goto out; 1528 } 1529 } else if (addr == NULL) { 1530 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1531 error = ENOTCONN; 1532 else 1533 error = EDESTADDRREQ; 1534 SOCKBUF_UNLOCK(&so->so_snd); 1535 goto out; 1536 } 1537 } 1538 1539 /* 1540 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a 1541 * problem and need fixing. 1542 */ 1543 space = sbspace(&so->so_snd); 1544 if (flags & MSG_OOB) 1545 space += 1024; 1546 space -= clen; 1547 SOCKBUF_UNLOCK(&so->so_snd); 1548 if (resid > space) { 1549 error = EMSGSIZE; 1550 goto out; 1551 } 1552 if (uio == NULL) { 1553 resid = 0; 1554 if (flags & MSG_EOR) 1555 top->m_flags |= M_EOR; 1556 } else { 1557 /* 1558 * Copy the data from userland into a mbuf chain. 1559 * If no data is to be copied in, a single empty mbuf 1560 * is returned. 1561 */ 1562 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr, 1563 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0))); 1564 if (top == NULL) { 1565 error = EFAULT; /* only possible error */ 1566 goto out; 1567 } 1568 space -= resid - uio->uio_resid; 1569 resid = uio->uio_resid; 1570 } 1571 KASSERT(resid == 0, ("sosend_dgram: resid != 0")); 1572 /* 1573 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock 1574 * than with. 1575 */ 1576 if (dontroute) { 1577 SOCK_LOCK(so); 1578 so->so_options |= SO_DONTROUTE; 1579 SOCK_UNLOCK(so); 1580 } 1581 /* 1582 * XXX all the SBS_CANTSENDMORE checks previously done could be out 1583 * of date. We could have received a reset packet in an interrupt or 1584 * maybe we slept while doing page faults in uiomove() etc. We could 1585 * probably recheck again inside the locking protection here, but 1586 * there are probably other places that this also happens. We must 1587 * rethink this. 1588 */ 1589 VNET_SO_ASSERT(so); 1590 error = so->so_proto->pr_send(so, (flags & MSG_OOB) ? PRUS_OOB : 1591 /* 1592 * If the user set MSG_EOF, the protocol understands this flag and 1593 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND. 1594 */ 1595 ((flags & MSG_EOF) && 1596 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1597 (resid <= 0)) ? 1598 PRUS_EOF : 1599 /* If there is more to send set PRUS_MORETOCOME */ 1600 (flags & MSG_MORETOCOME) || 1601 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1602 top, addr, control, td); 1603 if (dontroute) { 1604 SOCK_LOCK(so); 1605 so->so_options &= ~SO_DONTROUTE; 1606 SOCK_UNLOCK(so); 1607 } 1608 clen = 0; 1609 control = NULL; 1610 top = NULL; 1611 out: 1612 if (top != NULL) 1613 m_freem(top); 1614 if (control != NULL) 1615 m_freem(control); 1616 return (error); 1617 } 1618 1619 /* 1620 * Send on a socket. If send must go all at once and message is larger than 1621 * send buffering, then hard error. Lock against other senders. If must go 1622 * all at once and not enough room now, then inform user that this would 1623 * block and do nothing. Otherwise, if nonblocking, send as much as 1624 * possible. The data to be sent is described by "uio" if nonzero, otherwise 1625 * by the mbuf chain "top" (which must be null if uio is not). Data provided 1626 * in mbuf chain must be small enough to send all at once. 1627 * 1628 * Returns nonzero on error, timeout or signal; callers must check for short 1629 * counts if EINTR/ERESTART are returned. Data and control buffers are freed 1630 * on return. 1631 */ 1632 int 1633 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio, 1634 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1635 { 1636 long space; 1637 ssize_t resid; 1638 int clen = 0, error, dontroute; 1639 int atomic = sosendallatonce(so) || top; 1640 int pr_send_flag; 1641 #ifdef KERN_TLS 1642 struct ktls_session *tls; 1643 int tls_enq_cnt, tls_send_flag; 1644 uint8_t tls_rtype; 1645 1646 tls = NULL; 1647 tls_rtype = TLS_RLTYPE_APP; 1648 #endif 1649 if (uio != NULL) 1650 resid = uio->uio_resid; 1651 else if ((top->m_flags & M_PKTHDR) != 0) 1652 resid = top->m_pkthdr.len; 1653 else 1654 resid = m_length(top, NULL); 1655 /* 1656 * In theory resid should be unsigned. However, space must be 1657 * signed, as it might be less than 0 if we over-committed, and we 1658 * must use a signed comparison of space and resid. On the other 1659 * hand, a negative resid causes us to loop sending 0-length 1660 * segments to the protocol. 1661 * 1662 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 1663 * type sockets since that's an error. 1664 */ 1665 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 1666 error = EINVAL; 1667 goto out; 1668 } 1669 1670 dontroute = 1671 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 1672 (so->so_proto->pr_flags & PR_ATOMIC); 1673 if (td != NULL) 1674 td->td_ru.ru_msgsnd++; 1675 if (control != NULL) 1676 clen = control->m_len; 1677 1678 error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags)); 1679 if (error) 1680 goto out; 1681 1682 #ifdef KERN_TLS 1683 tls_send_flag = 0; 1684 tls = ktls_hold(so->so_snd.sb_tls_info); 1685 if (tls != NULL) { 1686 if (tls->mode == TCP_TLS_MODE_SW) 1687 tls_send_flag = PRUS_NOTREADY; 1688 1689 if (control != NULL) { 1690 struct cmsghdr *cm = mtod(control, struct cmsghdr *); 1691 1692 if (clen >= sizeof(*cm) && 1693 cm->cmsg_type == TLS_SET_RECORD_TYPE) { 1694 tls_rtype = *((uint8_t *)CMSG_DATA(cm)); 1695 clen = 0; 1696 m_freem(control); 1697 control = NULL; 1698 atomic = 1; 1699 } 1700 } 1701 1702 if (resid == 0 && !ktls_permit_empty_frames(tls)) { 1703 error = EINVAL; 1704 goto release; 1705 } 1706 } 1707 #endif 1708 1709 restart: 1710 do { 1711 SOCKBUF_LOCK(&so->so_snd); 1712 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1713 SOCKBUF_UNLOCK(&so->so_snd); 1714 error = EPIPE; 1715 goto release; 1716 } 1717 if (so->so_error) { 1718 error = so->so_error; 1719 so->so_error = 0; 1720 SOCKBUF_UNLOCK(&so->so_snd); 1721 goto release; 1722 } 1723 if ((so->so_state & SS_ISCONNECTED) == 0) { 1724 /* 1725 * `sendto' and `sendmsg' is allowed on a connection- 1726 * based socket if it supports implied connect. 1727 * Return ENOTCONN if not connected and no address is 1728 * supplied. 1729 */ 1730 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1731 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1732 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1733 !(resid == 0 && clen != 0)) { 1734 SOCKBUF_UNLOCK(&so->so_snd); 1735 error = ENOTCONN; 1736 goto release; 1737 } 1738 } else if (addr == NULL) { 1739 SOCKBUF_UNLOCK(&so->so_snd); 1740 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1741 error = ENOTCONN; 1742 else 1743 error = EDESTADDRREQ; 1744 goto release; 1745 } 1746 } 1747 space = sbspace(&so->so_snd); 1748 if (flags & MSG_OOB) 1749 space += 1024; 1750 if ((atomic && resid > so->so_snd.sb_hiwat) || 1751 clen > so->so_snd.sb_hiwat) { 1752 SOCKBUF_UNLOCK(&so->so_snd); 1753 error = EMSGSIZE; 1754 goto release; 1755 } 1756 if (space < resid + clen && 1757 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 1758 if ((so->so_state & SS_NBIO) || 1759 (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) { 1760 SOCKBUF_UNLOCK(&so->so_snd); 1761 error = EWOULDBLOCK; 1762 goto release; 1763 } 1764 error = sbwait(so, SO_SND); 1765 SOCKBUF_UNLOCK(&so->so_snd); 1766 if (error) 1767 goto release; 1768 goto restart; 1769 } 1770 SOCKBUF_UNLOCK(&so->so_snd); 1771 space -= clen; 1772 do { 1773 if (uio == NULL) { 1774 resid = 0; 1775 if (flags & MSG_EOR) 1776 top->m_flags |= M_EOR; 1777 #ifdef KERN_TLS 1778 if (tls != NULL) { 1779 ktls_frame(top, tls, &tls_enq_cnt, 1780 tls_rtype); 1781 tls_rtype = TLS_RLTYPE_APP; 1782 } 1783 #endif 1784 } else { 1785 /* 1786 * Copy the data from userland into a mbuf 1787 * chain. If resid is 0, which can happen 1788 * only if we have control to send, then 1789 * a single empty mbuf is returned. This 1790 * is a workaround to prevent protocol send 1791 * methods to panic. 1792 */ 1793 #ifdef KERN_TLS 1794 if (tls != NULL) { 1795 top = m_uiotombuf(uio, M_WAITOK, space, 1796 tls->params.max_frame_len, 1797 M_EXTPG | 1798 ((flags & MSG_EOR) ? M_EOR : 0)); 1799 if (top != NULL) { 1800 ktls_frame(top, tls, 1801 &tls_enq_cnt, tls_rtype); 1802 } 1803 tls_rtype = TLS_RLTYPE_APP; 1804 } else 1805 #endif 1806 top = m_uiotombuf(uio, M_WAITOK, space, 1807 (atomic ? max_hdr : 0), 1808 (atomic ? M_PKTHDR : 0) | 1809 ((flags & MSG_EOR) ? M_EOR : 0)); 1810 if (top == NULL) { 1811 error = EFAULT; /* only possible error */ 1812 goto release; 1813 } 1814 space -= resid - uio->uio_resid; 1815 resid = uio->uio_resid; 1816 } 1817 if (dontroute) { 1818 SOCK_LOCK(so); 1819 so->so_options |= SO_DONTROUTE; 1820 SOCK_UNLOCK(so); 1821 } 1822 /* 1823 * XXX all the SBS_CANTSENDMORE checks previously 1824 * done could be out of date. We could have received 1825 * a reset packet in an interrupt or maybe we slept 1826 * while doing page faults in uiomove() etc. We 1827 * could probably recheck again inside the locking 1828 * protection here, but there are probably other 1829 * places that this also happens. We must rethink 1830 * this. 1831 */ 1832 VNET_SO_ASSERT(so); 1833 1834 pr_send_flag = (flags & MSG_OOB) ? PRUS_OOB : 1835 /* 1836 * If the user set MSG_EOF, the protocol understands 1837 * this flag and nothing left to send then use 1838 * PRU_SEND_EOF instead of PRU_SEND. 1839 */ 1840 ((flags & MSG_EOF) && 1841 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1842 (resid <= 0)) ? 1843 PRUS_EOF : 1844 /* If there is more to send set PRUS_MORETOCOME. */ 1845 (flags & MSG_MORETOCOME) || 1846 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0; 1847 1848 #ifdef KERN_TLS 1849 pr_send_flag |= tls_send_flag; 1850 #endif 1851 1852 error = so->so_proto->pr_send(so, pr_send_flag, top, 1853 addr, control, td); 1854 1855 if (dontroute) { 1856 SOCK_LOCK(so); 1857 so->so_options &= ~SO_DONTROUTE; 1858 SOCK_UNLOCK(so); 1859 } 1860 1861 #ifdef KERN_TLS 1862 if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) { 1863 if (error != 0) { 1864 m_freem(top); 1865 top = NULL; 1866 } else { 1867 soref(so); 1868 ktls_enqueue(top, so, tls_enq_cnt); 1869 } 1870 } 1871 #endif 1872 clen = 0; 1873 control = NULL; 1874 top = NULL; 1875 if (error) 1876 goto release; 1877 } while (resid && space > 0); 1878 } while (resid); 1879 1880 release: 1881 SOCK_IO_SEND_UNLOCK(so); 1882 out: 1883 #ifdef KERN_TLS 1884 if (tls != NULL) 1885 ktls_free(tls); 1886 #endif 1887 if (top != NULL) 1888 m_freem(top); 1889 if (control != NULL) 1890 m_freem(control); 1891 return (error); 1892 } 1893 1894 /* 1895 * Send to a socket from a kernel thread. 1896 * 1897 * XXXGL: in almost all cases uio is NULL and the mbuf is supplied. 1898 * Exception is nfs/bootp_subr.c. It is arguable that the VNET context needs 1899 * to be set at all. This function should just boil down to a static inline 1900 * calling the protocol method. 1901 */ 1902 int 1903 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, 1904 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1905 { 1906 int error; 1907 1908 CURVNET_SET(so->so_vnet); 1909 error = so->so_proto->pr_sosend(so, addr, uio, 1910 top, control, flags, td); 1911 CURVNET_RESTORE(); 1912 return (error); 1913 } 1914 1915 /* 1916 * send(2), write(2) or aio_write(2) on a socket. 1917 */ 1918 int 1919 sousrsend(struct socket *so, struct sockaddr *addr, struct uio *uio, 1920 struct mbuf *control, int flags, struct proc *userproc) 1921 { 1922 struct thread *td; 1923 ssize_t len; 1924 int error; 1925 1926 td = uio->uio_td; 1927 len = uio->uio_resid; 1928 CURVNET_SET(so->so_vnet); 1929 error = so->so_proto->pr_sosend(so, addr, uio, NULL, control, flags, 1930 td); 1931 CURVNET_RESTORE(); 1932 if (error != 0) { 1933 /* 1934 * Clear transient errors for stream protocols if they made 1935 * some progress. Make exclusion for aio(4) that would 1936 * schedule a new write in case of EWOULDBLOCK and clear 1937 * error itself. See soaio_process_job(). 1938 */ 1939 if (uio->uio_resid != len && 1940 (so->so_proto->pr_flags & PR_ATOMIC) == 0 && 1941 userproc == NULL && 1942 (error == ERESTART || error == EINTR || 1943 error == EWOULDBLOCK)) 1944 error = 0; 1945 /* Generation of SIGPIPE can be controlled per socket. */ 1946 if (error == EPIPE && (so->so_options & SO_NOSIGPIPE) == 0 && 1947 (flags & MSG_NOSIGNAL) == 0) { 1948 if (userproc != NULL) { 1949 /* aio(4) job */ 1950 PROC_LOCK(userproc); 1951 kern_psignal(userproc, SIGPIPE); 1952 PROC_UNLOCK(userproc); 1953 } else { 1954 PROC_LOCK(td->td_proc); 1955 tdsignal(td, SIGPIPE); 1956 PROC_UNLOCK(td->td_proc); 1957 } 1958 } 1959 } 1960 return (error); 1961 } 1962 1963 /* 1964 * The part of soreceive() that implements reading non-inline out-of-band 1965 * data from a socket. For more complete comments, see soreceive(), from 1966 * which this code originated. 1967 * 1968 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is 1969 * unable to return an mbuf chain to the caller. 1970 */ 1971 static int 1972 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags) 1973 { 1974 struct protosw *pr = so->so_proto; 1975 struct mbuf *m; 1976 int error; 1977 1978 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); 1979 VNET_SO_ASSERT(so); 1980 1981 m = m_get(M_WAITOK, MT_DATA); 1982 error = pr->pr_rcvoob(so, m, flags & MSG_PEEK); 1983 if (error) 1984 goto bad; 1985 do { 1986 error = uiomove(mtod(m, void *), 1987 (int) min(uio->uio_resid, m->m_len), uio); 1988 m = m_free(m); 1989 } while (uio->uio_resid && error == 0 && m); 1990 bad: 1991 if (m != NULL) 1992 m_freem(m); 1993 return (error); 1994 } 1995 1996 /* 1997 * Following replacement or removal of the first mbuf on the first mbuf chain 1998 * of a socket buffer, push necessary state changes back into the socket 1999 * buffer so that other consumers see the values consistently. 'nextrecord' 2000 * is the callers locally stored value of the original value of 2001 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. 2002 * NOTE: 'nextrecord' may be NULL. 2003 */ 2004 static __inline void 2005 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) 2006 { 2007 2008 SOCKBUF_LOCK_ASSERT(sb); 2009 /* 2010 * First, update for the new value of nextrecord. If necessary, make 2011 * it the first record. 2012 */ 2013 if (sb->sb_mb != NULL) 2014 sb->sb_mb->m_nextpkt = nextrecord; 2015 else 2016 sb->sb_mb = nextrecord; 2017 2018 /* 2019 * Now update any dependent socket buffer fields to reflect the new 2020 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the 2021 * addition of a second clause that takes care of the case where 2022 * sb_mb has been updated, but remains the last record. 2023 */ 2024 if (sb->sb_mb == NULL) { 2025 sb->sb_mbtail = NULL; 2026 sb->sb_lastrecord = NULL; 2027 } else if (sb->sb_mb->m_nextpkt == NULL) 2028 sb->sb_lastrecord = sb->sb_mb; 2029 } 2030 2031 /* 2032 * Implement receive operations on a socket. We depend on the way that 2033 * records are added to the sockbuf by sbappend. In particular, each record 2034 * (mbufs linked through m_next) must begin with an address if the protocol 2035 * so specifies, followed by an optional mbuf or mbufs containing ancillary 2036 * data, and then zero or more mbufs of data. In order to allow parallelism 2037 * between network receive and copying to user space, as well as avoid 2038 * sleeping with a mutex held, we release the socket buffer mutex during the 2039 * user space copy. Although the sockbuf is locked, new data may still be 2040 * appended, and thus we must maintain consistency of the sockbuf during that 2041 * time. 2042 * 2043 * The caller may receive the data as a single mbuf chain by supplying an 2044 * mbuf **mp0 for use in returning the chain. The uio is then used only for 2045 * the count in uio_resid. 2046 */ 2047 int 2048 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio, 2049 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2050 { 2051 struct mbuf *m, **mp; 2052 int flags, error, offset; 2053 ssize_t len; 2054 struct protosw *pr = so->so_proto; 2055 struct mbuf *nextrecord; 2056 int moff, type = 0; 2057 ssize_t orig_resid = uio->uio_resid; 2058 bool report_real_len = false; 2059 2060 mp = mp0; 2061 if (psa != NULL) 2062 *psa = NULL; 2063 if (controlp != NULL) 2064 *controlp = NULL; 2065 if (flagsp != NULL) { 2066 report_real_len = *flagsp & MSG_TRUNC; 2067 *flagsp &= ~MSG_TRUNC; 2068 flags = *flagsp &~ MSG_EOR; 2069 } else 2070 flags = 0; 2071 if (flags & MSG_OOB) 2072 return (soreceive_rcvoob(so, uio, flags)); 2073 if (mp != NULL) 2074 *mp = NULL; 2075 if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING) 2076 && uio->uio_resid) { 2077 VNET_SO_ASSERT(so); 2078 pr->pr_rcvd(so, 0); 2079 } 2080 2081 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags)); 2082 if (error) 2083 return (error); 2084 2085 restart: 2086 SOCKBUF_LOCK(&so->so_rcv); 2087 m = so->so_rcv.sb_mb; 2088 /* 2089 * If we have less data than requested, block awaiting more (subject 2090 * to any timeout) if: 2091 * 1. the current count is less than the low water mark, or 2092 * 2. MSG_DONTWAIT is not set 2093 */ 2094 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 2095 sbavail(&so->so_rcv) < uio->uio_resid) && 2096 sbavail(&so->so_rcv) < so->so_rcv.sb_lowat && 2097 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 2098 KASSERT(m != NULL || !sbavail(&so->so_rcv), 2099 ("receive: m == %p sbavail == %u", 2100 m, sbavail(&so->so_rcv))); 2101 if (so->so_error || so->so_rerror) { 2102 if (m != NULL) 2103 goto dontblock; 2104 if (so->so_error) 2105 error = so->so_error; 2106 else 2107 error = so->so_rerror; 2108 if ((flags & MSG_PEEK) == 0) { 2109 if (so->so_error) 2110 so->so_error = 0; 2111 else 2112 so->so_rerror = 0; 2113 } 2114 SOCKBUF_UNLOCK(&so->so_rcv); 2115 goto release; 2116 } 2117 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2118 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 2119 if (m != NULL) 2120 goto dontblock; 2121 #ifdef KERN_TLS 2122 else if (so->so_rcv.sb_tlsdcc == 0 && 2123 so->so_rcv.sb_tlscc == 0) { 2124 #else 2125 else { 2126 #endif 2127 SOCKBUF_UNLOCK(&so->so_rcv); 2128 goto release; 2129 } 2130 } 2131 for (; m != NULL; m = m->m_next) 2132 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 2133 m = so->so_rcv.sb_mb; 2134 goto dontblock; 2135 } 2136 if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED | 2137 SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 && 2138 (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) { 2139 SOCKBUF_UNLOCK(&so->so_rcv); 2140 error = ENOTCONN; 2141 goto release; 2142 } 2143 if (uio->uio_resid == 0 && !report_real_len) { 2144 SOCKBUF_UNLOCK(&so->so_rcv); 2145 goto release; 2146 } 2147 if ((so->so_state & SS_NBIO) || 2148 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2149 SOCKBUF_UNLOCK(&so->so_rcv); 2150 error = EWOULDBLOCK; 2151 goto release; 2152 } 2153 SBLASTRECORDCHK(&so->so_rcv); 2154 SBLASTMBUFCHK(&so->so_rcv); 2155 error = sbwait(so, SO_RCV); 2156 SOCKBUF_UNLOCK(&so->so_rcv); 2157 if (error) 2158 goto release; 2159 goto restart; 2160 } 2161 dontblock: 2162 /* 2163 * From this point onward, we maintain 'nextrecord' as a cache of the 2164 * pointer to the next record in the socket buffer. We must keep the 2165 * various socket buffer pointers and local stack versions of the 2166 * pointers in sync, pushing out modifications before dropping the 2167 * socket buffer mutex, and re-reading them when picking it up. 2168 * 2169 * Otherwise, we will race with the network stack appending new data 2170 * or records onto the socket buffer by using inconsistent/stale 2171 * versions of the field, possibly resulting in socket buffer 2172 * corruption. 2173 * 2174 * By holding the high-level sblock(), we prevent simultaneous 2175 * readers from pulling off the front of the socket buffer. 2176 */ 2177 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2178 if (uio->uio_td) 2179 uio->uio_td->td_ru.ru_msgrcv++; 2180 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); 2181 SBLASTRECORDCHK(&so->so_rcv); 2182 SBLASTMBUFCHK(&so->so_rcv); 2183 nextrecord = m->m_nextpkt; 2184 if (pr->pr_flags & PR_ADDR) { 2185 KASSERT(m->m_type == MT_SONAME, 2186 ("m->m_type == %d", m->m_type)); 2187 orig_resid = 0; 2188 if (psa != NULL) 2189 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2190 M_NOWAIT); 2191 if (flags & MSG_PEEK) { 2192 m = m->m_next; 2193 } else { 2194 sbfree(&so->so_rcv, m); 2195 so->so_rcv.sb_mb = m_free(m); 2196 m = so->so_rcv.sb_mb; 2197 sockbuf_pushsync(&so->so_rcv, nextrecord); 2198 } 2199 } 2200 2201 /* 2202 * Process one or more MT_CONTROL mbufs present before any data mbufs 2203 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 2204 * just copy the data; if !MSG_PEEK, we call into the protocol to 2205 * perform externalization (or freeing if controlp == NULL). 2206 */ 2207 if (m != NULL && m->m_type == MT_CONTROL) { 2208 struct mbuf *cm = NULL, *cmn; 2209 struct mbuf **cme = &cm; 2210 #ifdef KERN_TLS 2211 struct cmsghdr *cmsg; 2212 struct tls_get_record tgr; 2213 2214 /* 2215 * For MSG_TLSAPPDATA, check for an alert record. 2216 * If found, return ENXIO without removing 2217 * it from the receive queue. This allows a subsequent 2218 * call without MSG_TLSAPPDATA to receive it. 2219 * Note that, for TLS, there should only be a single 2220 * control mbuf with the TLS_GET_RECORD message in it. 2221 */ 2222 if (flags & MSG_TLSAPPDATA) { 2223 cmsg = mtod(m, struct cmsghdr *); 2224 if (cmsg->cmsg_type == TLS_GET_RECORD && 2225 cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) { 2226 memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr)); 2227 if (__predict_false(tgr.tls_type == 2228 TLS_RLTYPE_ALERT)) { 2229 SOCKBUF_UNLOCK(&so->so_rcv); 2230 error = ENXIO; 2231 goto release; 2232 } 2233 } 2234 } 2235 #endif 2236 2237 do { 2238 if (flags & MSG_PEEK) { 2239 if (controlp != NULL) { 2240 *controlp = m_copym(m, 0, m->m_len, 2241 M_NOWAIT); 2242 controlp = &(*controlp)->m_next; 2243 } 2244 m = m->m_next; 2245 } else { 2246 sbfree(&so->so_rcv, m); 2247 so->so_rcv.sb_mb = m->m_next; 2248 m->m_next = NULL; 2249 *cme = m; 2250 cme = &(*cme)->m_next; 2251 m = so->so_rcv.sb_mb; 2252 } 2253 } while (m != NULL && m->m_type == MT_CONTROL); 2254 if ((flags & MSG_PEEK) == 0) 2255 sockbuf_pushsync(&so->so_rcv, nextrecord); 2256 while (cm != NULL) { 2257 cmn = cm->m_next; 2258 cm->m_next = NULL; 2259 if (pr->pr_domain->dom_externalize != NULL) { 2260 SOCKBUF_UNLOCK(&so->so_rcv); 2261 VNET_SO_ASSERT(so); 2262 error = (*pr->pr_domain->dom_externalize) 2263 (cm, controlp, flags); 2264 SOCKBUF_LOCK(&so->so_rcv); 2265 } else if (controlp != NULL) 2266 *controlp = cm; 2267 else 2268 m_freem(cm); 2269 if (controlp != NULL) { 2270 while (*controlp != NULL) 2271 controlp = &(*controlp)->m_next; 2272 } 2273 cm = cmn; 2274 } 2275 if (m != NULL) 2276 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 2277 else 2278 nextrecord = so->so_rcv.sb_mb; 2279 orig_resid = 0; 2280 } 2281 if (m != NULL) { 2282 if ((flags & MSG_PEEK) == 0) { 2283 KASSERT(m->m_nextpkt == nextrecord, 2284 ("soreceive: post-control, nextrecord !sync")); 2285 if (nextrecord == NULL) { 2286 KASSERT(so->so_rcv.sb_mb == m, 2287 ("soreceive: post-control, sb_mb!=m")); 2288 KASSERT(so->so_rcv.sb_lastrecord == m, 2289 ("soreceive: post-control, lastrecord!=m")); 2290 } 2291 } 2292 type = m->m_type; 2293 if (type == MT_OOBDATA) 2294 flags |= MSG_OOB; 2295 } else { 2296 if ((flags & MSG_PEEK) == 0) { 2297 KASSERT(so->so_rcv.sb_mb == nextrecord, 2298 ("soreceive: sb_mb != nextrecord")); 2299 if (so->so_rcv.sb_mb == NULL) { 2300 KASSERT(so->so_rcv.sb_lastrecord == NULL, 2301 ("soreceive: sb_lastercord != NULL")); 2302 } 2303 } 2304 } 2305 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2306 SBLASTRECORDCHK(&so->so_rcv); 2307 SBLASTMBUFCHK(&so->so_rcv); 2308 2309 /* 2310 * Now continue to read any data mbufs off of the head of the socket 2311 * buffer until the read request is satisfied. Note that 'type' is 2312 * used to store the type of any mbuf reads that have happened so far 2313 * such that soreceive() can stop reading if the type changes, which 2314 * causes soreceive() to return only one of regular data and inline 2315 * out-of-band data in a single socket receive operation. 2316 */ 2317 moff = 0; 2318 offset = 0; 2319 while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0 2320 && error == 0) { 2321 /* 2322 * If the type of mbuf has changed since the last mbuf 2323 * examined ('type'), end the receive operation. 2324 */ 2325 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2326 if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) { 2327 if (type != m->m_type) 2328 break; 2329 } else if (type == MT_OOBDATA) 2330 break; 2331 else 2332 KASSERT(m->m_type == MT_DATA, 2333 ("m->m_type == %d", m->m_type)); 2334 so->so_rcv.sb_state &= ~SBS_RCVATMARK; 2335 len = uio->uio_resid; 2336 if (so->so_oobmark && len > so->so_oobmark - offset) 2337 len = so->so_oobmark - offset; 2338 if (len > m->m_len - moff) 2339 len = m->m_len - moff; 2340 /* 2341 * If mp is set, just pass back the mbufs. Otherwise copy 2342 * them out via the uio, then free. Sockbuf must be 2343 * consistent here (points to current mbuf, it points to next 2344 * record) when we drop priority; we must note any additions 2345 * to the sockbuf when we block interrupts again. 2346 */ 2347 if (mp == NULL) { 2348 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2349 SBLASTRECORDCHK(&so->so_rcv); 2350 SBLASTMBUFCHK(&so->so_rcv); 2351 SOCKBUF_UNLOCK(&so->so_rcv); 2352 if ((m->m_flags & M_EXTPG) != 0) 2353 error = m_unmapped_uiomove(m, moff, uio, 2354 (int)len); 2355 else 2356 error = uiomove(mtod(m, char *) + moff, 2357 (int)len, uio); 2358 SOCKBUF_LOCK(&so->so_rcv); 2359 if (error) { 2360 /* 2361 * The MT_SONAME mbuf has already been removed 2362 * from the record, so it is necessary to 2363 * remove the data mbufs, if any, to preserve 2364 * the invariant in the case of PR_ADDR that 2365 * requires MT_SONAME mbufs at the head of 2366 * each record. 2367 */ 2368 if (pr->pr_flags & PR_ATOMIC && 2369 ((flags & MSG_PEEK) == 0)) 2370 (void)sbdroprecord_locked(&so->so_rcv); 2371 SOCKBUF_UNLOCK(&so->so_rcv); 2372 goto release; 2373 } 2374 } else 2375 uio->uio_resid -= len; 2376 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2377 if (len == m->m_len - moff) { 2378 if (m->m_flags & M_EOR) 2379 flags |= MSG_EOR; 2380 if (flags & MSG_PEEK) { 2381 m = m->m_next; 2382 moff = 0; 2383 } else { 2384 nextrecord = m->m_nextpkt; 2385 sbfree(&so->so_rcv, m); 2386 if (mp != NULL) { 2387 m->m_nextpkt = NULL; 2388 *mp = m; 2389 mp = &m->m_next; 2390 so->so_rcv.sb_mb = m = m->m_next; 2391 *mp = NULL; 2392 } else { 2393 so->so_rcv.sb_mb = m_free(m); 2394 m = so->so_rcv.sb_mb; 2395 } 2396 sockbuf_pushsync(&so->so_rcv, nextrecord); 2397 SBLASTRECORDCHK(&so->so_rcv); 2398 SBLASTMBUFCHK(&so->so_rcv); 2399 } 2400 } else { 2401 if (flags & MSG_PEEK) 2402 moff += len; 2403 else { 2404 if (mp != NULL) { 2405 if (flags & MSG_DONTWAIT) { 2406 *mp = m_copym(m, 0, len, 2407 M_NOWAIT); 2408 if (*mp == NULL) { 2409 /* 2410 * m_copym() couldn't 2411 * allocate an mbuf. 2412 * Adjust uio_resid back 2413 * (it was adjusted 2414 * down by len bytes, 2415 * which we didn't end 2416 * up "copying" over). 2417 */ 2418 uio->uio_resid += len; 2419 break; 2420 } 2421 } else { 2422 SOCKBUF_UNLOCK(&so->so_rcv); 2423 *mp = m_copym(m, 0, len, 2424 M_WAITOK); 2425 SOCKBUF_LOCK(&so->so_rcv); 2426 } 2427 } 2428 sbcut_locked(&so->so_rcv, len); 2429 } 2430 } 2431 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2432 if (so->so_oobmark) { 2433 if ((flags & MSG_PEEK) == 0) { 2434 so->so_oobmark -= len; 2435 if (so->so_oobmark == 0) { 2436 so->so_rcv.sb_state |= SBS_RCVATMARK; 2437 break; 2438 } 2439 } else { 2440 offset += len; 2441 if (offset == so->so_oobmark) 2442 break; 2443 } 2444 } 2445 if (flags & MSG_EOR) 2446 break; 2447 /* 2448 * If the MSG_WAITALL flag is set (for non-atomic socket), we 2449 * must not quit until "uio->uio_resid == 0" or an error 2450 * termination. If a signal/timeout occurs, return with a 2451 * short count but without error. Keep sockbuf locked 2452 * against other readers. 2453 */ 2454 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 2455 !sosendallatonce(so) && nextrecord == NULL) { 2456 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2457 if (so->so_error || so->so_rerror || 2458 so->so_rcv.sb_state & SBS_CANTRCVMORE) 2459 break; 2460 /* 2461 * Notify the protocol that some data has been 2462 * drained before blocking. 2463 */ 2464 if (pr->pr_flags & PR_WANTRCVD) { 2465 SOCKBUF_UNLOCK(&so->so_rcv); 2466 VNET_SO_ASSERT(so); 2467 pr->pr_rcvd(so, flags); 2468 SOCKBUF_LOCK(&so->so_rcv); 2469 if (__predict_false(so->so_rcv.sb_mb == NULL && 2470 (so->so_error || so->so_rerror || 2471 so->so_rcv.sb_state & SBS_CANTRCVMORE))) 2472 break; 2473 } 2474 SBLASTRECORDCHK(&so->so_rcv); 2475 SBLASTMBUFCHK(&so->so_rcv); 2476 /* 2477 * We could receive some data while was notifying 2478 * the protocol. Skip blocking in this case. 2479 */ 2480 if (so->so_rcv.sb_mb == NULL) { 2481 error = sbwait(so, SO_RCV); 2482 if (error) { 2483 SOCKBUF_UNLOCK(&so->so_rcv); 2484 goto release; 2485 } 2486 } 2487 m = so->so_rcv.sb_mb; 2488 if (m != NULL) 2489 nextrecord = m->m_nextpkt; 2490 } 2491 } 2492 2493 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2494 if (m != NULL && pr->pr_flags & PR_ATOMIC) { 2495 if (report_real_len) 2496 uio->uio_resid -= m_length(m, NULL) - moff; 2497 flags |= MSG_TRUNC; 2498 if ((flags & MSG_PEEK) == 0) 2499 (void) sbdroprecord_locked(&so->so_rcv); 2500 } 2501 if ((flags & MSG_PEEK) == 0) { 2502 if (m == NULL) { 2503 /* 2504 * First part is an inline SB_EMPTY_FIXUP(). Second 2505 * part makes sure sb_lastrecord is up-to-date if 2506 * there is still data in the socket buffer. 2507 */ 2508 so->so_rcv.sb_mb = nextrecord; 2509 if (so->so_rcv.sb_mb == NULL) { 2510 so->so_rcv.sb_mbtail = NULL; 2511 so->so_rcv.sb_lastrecord = NULL; 2512 } else if (nextrecord->m_nextpkt == NULL) 2513 so->so_rcv.sb_lastrecord = nextrecord; 2514 } 2515 SBLASTRECORDCHK(&so->so_rcv); 2516 SBLASTMBUFCHK(&so->so_rcv); 2517 /* 2518 * If soreceive() is being done from the socket callback, 2519 * then don't need to generate ACK to peer to update window, 2520 * since ACK will be generated on return to TCP. 2521 */ 2522 if (!(flags & MSG_SOCALLBCK) && 2523 (pr->pr_flags & PR_WANTRCVD)) { 2524 SOCKBUF_UNLOCK(&so->so_rcv); 2525 VNET_SO_ASSERT(so); 2526 pr->pr_rcvd(so, flags); 2527 SOCKBUF_LOCK(&so->so_rcv); 2528 } 2529 } 2530 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2531 if (orig_resid == uio->uio_resid && orig_resid && 2532 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { 2533 SOCKBUF_UNLOCK(&so->so_rcv); 2534 goto restart; 2535 } 2536 SOCKBUF_UNLOCK(&so->so_rcv); 2537 2538 if (flagsp != NULL) 2539 *flagsp |= flags; 2540 release: 2541 SOCK_IO_RECV_UNLOCK(so); 2542 return (error); 2543 } 2544 2545 /* 2546 * Optimized version of soreceive() for stream (TCP) sockets. 2547 */ 2548 int 2549 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio, 2550 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2551 { 2552 int len = 0, error = 0, flags, oresid; 2553 struct sockbuf *sb; 2554 struct mbuf *m, *n = NULL; 2555 2556 /* We only do stream sockets. */ 2557 if (so->so_type != SOCK_STREAM) 2558 return (EINVAL); 2559 if (psa != NULL) 2560 *psa = NULL; 2561 if (flagsp != NULL) 2562 flags = *flagsp &~ MSG_EOR; 2563 else 2564 flags = 0; 2565 if (controlp != NULL) 2566 *controlp = NULL; 2567 if (flags & MSG_OOB) 2568 return (soreceive_rcvoob(so, uio, flags)); 2569 if (mp0 != NULL) 2570 *mp0 = NULL; 2571 2572 sb = &so->so_rcv; 2573 2574 #ifdef KERN_TLS 2575 /* 2576 * KTLS store TLS records as records with a control message to 2577 * describe the framing. 2578 * 2579 * We check once here before acquiring locks to optimize the 2580 * common case. 2581 */ 2582 if (sb->sb_tls_info != NULL) 2583 return (soreceive_generic(so, psa, uio, mp0, controlp, 2584 flagsp)); 2585 #endif 2586 2587 /* Prevent other readers from entering the socket. */ 2588 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags)); 2589 if (error) 2590 return (error); 2591 SOCKBUF_LOCK(sb); 2592 2593 #ifdef KERN_TLS 2594 if (sb->sb_tls_info != NULL) { 2595 SOCKBUF_UNLOCK(sb); 2596 SOCK_IO_RECV_UNLOCK(so); 2597 return (soreceive_generic(so, psa, uio, mp0, controlp, 2598 flagsp)); 2599 } 2600 #endif 2601 2602 /* Easy one, no space to copyout anything. */ 2603 if (uio->uio_resid == 0) { 2604 error = EINVAL; 2605 goto out; 2606 } 2607 oresid = uio->uio_resid; 2608 2609 /* We will never ever get anything unless we are or were connected. */ 2610 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 2611 error = ENOTCONN; 2612 goto out; 2613 } 2614 2615 restart: 2616 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2617 2618 /* Abort if socket has reported problems. */ 2619 if (so->so_error) { 2620 if (sbavail(sb) > 0) 2621 goto deliver; 2622 if (oresid > uio->uio_resid) 2623 goto out; 2624 error = so->so_error; 2625 if (!(flags & MSG_PEEK)) 2626 so->so_error = 0; 2627 goto out; 2628 } 2629 2630 /* Door is closed. Deliver what is left, if any. */ 2631 if (sb->sb_state & SBS_CANTRCVMORE) { 2632 if (sbavail(sb) > 0) 2633 goto deliver; 2634 else 2635 goto out; 2636 } 2637 2638 /* Socket buffer is empty and we shall not block. */ 2639 if (sbavail(sb) == 0 && 2640 ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) { 2641 error = EAGAIN; 2642 goto out; 2643 } 2644 2645 /* Socket buffer got some data that we shall deliver now. */ 2646 if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) && 2647 ((so->so_state & SS_NBIO) || 2648 (flags & (MSG_DONTWAIT|MSG_NBIO)) || 2649 sbavail(sb) >= sb->sb_lowat || 2650 sbavail(sb) >= uio->uio_resid || 2651 sbavail(sb) >= sb->sb_hiwat) ) { 2652 goto deliver; 2653 } 2654 2655 /* On MSG_WAITALL we must wait until all data or error arrives. */ 2656 if ((flags & MSG_WAITALL) && 2657 (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat)) 2658 goto deliver; 2659 2660 /* 2661 * Wait and block until (more) data comes in. 2662 * NB: Drops the sockbuf lock during wait. 2663 */ 2664 error = sbwait(so, SO_RCV); 2665 if (error) 2666 goto out; 2667 goto restart; 2668 2669 deliver: 2670 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2671 KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__)); 2672 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__)); 2673 2674 /* Statistics. */ 2675 if (uio->uio_td) 2676 uio->uio_td->td_ru.ru_msgrcv++; 2677 2678 /* Fill uio until full or current end of socket buffer is reached. */ 2679 len = min(uio->uio_resid, sbavail(sb)); 2680 if (mp0 != NULL) { 2681 /* Dequeue as many mbufs as possible. */ 2682 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) { 2683 if (*mp0 == NULL) 2684 *mp0 = sb->sb_mb; 2685 else 2686 m_cat(*mp0, sb->sb_mb); 2687 for (m = sb->sb_mb; 2688 m != NULL && m->m_len <= len; 2689 m = m->m_next) { 2690 KASSERT(!(m->m_flags & M_NOTAVAIL), 2691 ("%s: m %p not available", __func__, m)); 2692 len -= m->m_len; 2693 uio->uio_resid -= m->m_len; 2694 sbfree(sb, m); 2695 n = m; 2696 } 2697 n->m_next = NULL; 2698 sb->sb_mb = m; 2699 sb->sb_lastrecord = sb->sb_mb; 2700 if (sb->sb_mb == NULL) 2701 SB_EMPTY_FIXUP(sb); 2702 } 2703 /* Copy the remainder. */ 2704 if (len > 0) { 2705 KASSERT(sb->sb_mb != NULL, 2706 ("%s: len > 0 && sb->sb_mb empty", __func__)); 2707 2708 m = m_copym(sb->sb_mb, 0, len, M_NOWAIT); 2709 if (m == NULL) 2710 len = 0; /* Don't flush data from sockbuf. */ 2711 else 2712 uio->uio_resid -= len; 2713 if (*mp0 != NULL) 2714 m_cat(*mp0, m); 2715 else 2716 *mp0 = m; 2717 if (*mp0 == NULL) { 2718 error = ENOBUFS; 2719 goto out; 2720 } 2721 } 2722 } else { 2723 /* NB: Must unlock socket buffer as uiomove may sleep. */ 2724 SOCKBUF_UNLOCK(sb); 2725 error = m_mbuftouio(uio, sb->sb_mb, len); 2726 SOCKBUF_LOCK(sb); 2727 if (error) 2728 goto out; 2729 } 2730 SBLASTRECORDCHK(sb); 2731 SBLASTMBUFCHK(sb); 2732 2733 /* 2734 * Remove the delivered data from the socket buffer unless we 2735 * were only peeking. 2736 */ 2737 if (!(flags & MSG_PEEK)) { 2738 if (len > 0) 2739 sbdrop_locked(sb, len); 2740 2741 /* Notify protocol that we drained some data. */ 2742 if ((so->so_proto->pr_flags & PR_WANTRCVD) && 2743 (((flags & MSG_WAITALL) && uio->uio_resid > 0) || 2744 !(flags & MSG_SOCALLBCK))) { 2745 SOCKBUF_UNLOCK(sb); 2746 VNET_SO_ASSERT(so); 2747 so->so_proto->pr_rcvd(so, flags); 2748 SOCKBUF_LOCK(sb); 2749 } 2750 } 2751 2752 /* 2753 * For MSG_WAITALL we may have to loop again and wait for 2754 * more data to come in. 2755 */ 2756 if ((flags & MSG_WAITALL) && uio->uio_resid > 0) 2757 goto restart; 2758 out: 2759 SBLASTRECORDCHK(sb); 2760 SBLASTMBUFCHK(sb); 2761 SOCKBUF_UNLOCK(sb); 2762 SOCK_IO_RECV_UNLOCK(so); 2763 return (error); 2764 } 2765 2766 /* 2767 * Optimized version of soreceive() for simple datagram cases from userspace. 2768 * Unlike in the stream case, we're able to drop a datagram if copyout() 2769 * fails, and because we handle datagrams atomically, we don't need to use a 2770 * sleep lock to prevent I/O interlacing. 2771 */ 2772 int 2773 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio, 2774 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2775 { 2776 struct mbuf *m, *m2; 2777 int flags, error; 2778 ssize_t len; 2779 struct protosw *pr = so->so_proto; 2780 struct mbuf *nextrecord; 2781 2782 if (psa != NULL) 2783 *psa = NULL; 2784 if (controlp != NULL) 2785 *controlp = NULL; 2786 if (flagsp != NULL) 2787 flags = *flagsp &~ MSG_EOR; 2788 else 2789 flags = 0; 2790 2791 /* 2792 * For any complicated cases, fall back to the full 2793 * soreceive_generic(). 2794 */ 2795 if (mp0 != NULL || (flags & (MSG_PEEK | MSG_OOB | MSG_TRUNC))) 2796 return (soreceive_generic(so, psa, uio, mp0, controlp, 2797 flagsp)); 2798 2799 /* 2800 * Enforce restrictions on use. 2801 */ 2802 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0, 2803 ("soreceive_dgram: wantrcvd")); 2804 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic")); 2805 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0, 2806 ("soreceive_dgram: SBS_RCVATMARK")); 2807 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0, 2808 ("soreceive_dgram: P_CONNREQUIRED")); 2809 2810 /* 2811 * Loop blocking while waiting for a datagram. 2812 */ 2813 SOCKBUF_LOCK(&so->so_rcv); 2814 while ((m = so->so_rcv.sb_mb) == NULL) { 2815 KASSERT(sbavail(&so->so_rcv) == 0, 2816 ("soreceive_dgram: sb_mb NULL but sbavail %u", 2817 sbavail(&so->so_rcv))); 2818 if (so->so_error) { 2819 error = so->so_error; 2820 so->so_error = 0; 2821 SOCKBUF_UNLOCK(&so->so_rcv); 2822 return (error); 2823 } 2824 if (so->so_rcv.sb_state & SBS_CANTRCVMORE || 2825 uio->uio_resid == 0) { 2826 SOCKBUF_UNLOCK(&so->so_rcv); 2827 return (0); 2828 } 2829 if ((so->so_state & SS_NBIO) || 2830 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2831 SOCKBUF_UNLOCK(&so->so_rcv); 2832 return (EWOULDBLOCK); 2833 } 2834 SBLASTRECORDCHK(&so->so_rcv); 2835 SBLASTMBUFCHK(&so->so_rcv); 2836 error = sbwait(so, SO_RCV); 2837 if (error) { 2838 SOCKBUF_UNLOCK(&so->so_rcv); 2839 return (error); 2840 } 2841 } 2842 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2843 2844 if (uio->uio_td) 2845 uio->uio_td->td_ru.ru_msgrcv++; 2846 SBLASTRECORDCHK(&so->so_rcv); 2847 SBLASTMBUFCHK(&so->so_rcv); 2848 nextrecord = m->m_nextpkt; 2849 if (nextrecord == NULL) { 2850 KASSERT(so->so_rcv.sb_lastrecord == m, 2851 ("soreceive_dgram: lastrecord != m")); 2852 } 2853 2854 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord, 2855 ("soreceive_dgram: m_nextpkt != nextrecord")); 2856 2857 /* 2858 * Pull 'm' and its chain off the front of the packet queue. 2859 */ 2860 so->so_rcv.sb_mb = NULL; 2861 sockbuf_pushsync(&so->so_rcv, nextrecord); 2862 2863 /* 2864 * Walk 'm's chain and free that many bytes from the socket buffer. 2865 */ 2866 for (m2 = m; m2 != NULL; m2 = m2->m_next) 2867 sbfree(&so->so_rcv, m2); 2868 2869 /* 2870 * Do a few last checks before we let go of the lock. 2871 */ 2872 SBLASTRECORDCHK(&so->so_rcv); 2873 SBLASTMBUFCHK(&so->so_rcv); 2874 SOCKBUF_UNLOCK(&so->so_rcv); 2875 2876 if (pr->pr_flags & PR_ADDR) { 2877 KASSERT(m->m_type == MT_SONAME, 2878 ("m->m_type == %d", m->m_type)); 2879 if (psa != NULL) 2880 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2881 M_NOWAIT); 2882 m = m_free(m); 2883 } 2884 if (m == NULL) { 2885 /* XXXRW: Can this happen? */ 2886 return (0); 2887 } 2888 2889 /* 2890 * Packet to copyout() is now in 'm' and it is disconnected from the 2891 * queue. 2892 * 2893 * Process one or more MT_CONTROL mbufs present before any data mbufs 2894 * in the first mbuf chain on the socket buffer. We call into the 2895 * protocol to perform externalization (or freeing if controlp == 2896 * NULL). In some cases there can be only MT_CONTROL mbufs without 2897 * MT_DATA mbufs. 2898 */ 2899 if (m->m_type == MT_CONTROL) { 2900 struct mbuf *cm = NULL, *cmn; 2901 struct mbuf **cme = &cm; 2902 2903 do { 2904 m2 = m->m_next; 2905 m->m_next = NULL; 2906 *cme = m; 2907 cme = &(*cme)->m_next; 2908 m = m2; 2909 } while (m != NULL && m->m_type == MT_CONTROL); 2910 while (cm != NULL) { 2911 cmn = cm->m_next; 2912 cm->m_next = NULL; 2913 if (pr->pr_domain->dom_externalize != NULL) { 2914 error = (*pr->pr_domain->dom_externalize) 2915 (cm, controlp, flags); 2916 } else if (controlp != NULL) 2917 *controlp = cm; 2918 else 2919 m_freem(cm); 2920 if (controlp != NULL) { 2921 while (*controlp != NULL) 2922 controlp = &(*controlp)->m_next; 2923 } 2924 cm = cmn; 2925 } 2926 } 2927 KASSERT(m == NULL || m->m_type == MT_DATA, 2928 ("soreceive_dgram: !data")); 2929 while (m != NULL && uio->uio_resid > 0) { 2930 len = uio->uio_resid; 2931 if (len > m->m_len) 2932 len = m->m_len; 2933 error = uiomove(mtod(m, char *), (int)len, uio); 2934 if (error) { 2935 m_freem(m); 2936 return (error); 2937 } 2938 if (len == m->m_len) 2939 m = m_free(m); 2940 else { 2941 m->m_data += len; 2942 m->m_len -= len; 2943 } 2944 } 2945 if (m != NULL) { 2946 flags |= MSG_TRUNC; 2947 m_freem(m); 2948 } 2949 if (flagsp != NULL) 2950 *flagsp |= flags; 2951 return (0); 2952 } 2953 2954 int 2955 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, 2956 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2957 { 2958 int error; 2959 2960 CURVNET_SET(so->so_vnet); 2961 error = so->so_proto->pr_soreceive(so, psa, uio, mp0, controlp, flagsp); 2962 CURVNET_RESTORE(); 2963 return (error); 2964 } 2965 2966 int 2967 soshutdown(struct socket *so, int how) 2968 { 2969 struct protosw *pr; 2970 int error, soerror_enotconn; 2971 2972 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 2973 return (EINVAL); 2974 2975 soerror_enotconn = 0; 2976 SOCK_LOCK(so); 2977 if ((so->so_state & 2978 (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) { 2979 /* 2980 * POSIX mandates us to return ENOTCONN when shutdown(2) is 2981 * invoked on a datagram sockets, however historically we would 2982 * actually tear socket down. This is known to be leveraged by 2983 * some applications to unblock process waiting in recvXXX(2) 2984 * by other process that it shares that socket with. Try to meet 2985 * both backward-compatibility and POSIX requirements by forcing 2986 * ENOTCONN but still asking protocol to perform pru_shutdown(). 2987 */ 2988 if (so->so_type != SOCK_DGRAM && !SOLISTENING(so)) { 2989 SOCK_UNLOCK(so); 2990 return (ENOTCONN); 2991 } 2992 soerror_enotconn = 1; 2993 } 2994 2995 if (SOLISTENING(so)) { 2996 if (how != SHUT_WR) { 2997 so->so_error = ECONNABORTED; 2998 solisten_wakeup(so); /* unlocks so */ 2999 } else { 3000 SOCK_UNLOCK(so); 3001 } 3002 goto done; 3003 } 3004 SOCK_UNLOCK(so); 3005 3006 CURVNET_SET(so->so_vnet); 3007 pr = so->so_proto; 3008 if (pr->pr_flush != NULL) 3009 pr->pr_flush(so, how); 3010 if (how != SHUT_WR) 3011 sorflush(so); 3012 if (how != SHUT_RD) { 3013 error = pr->pr_shutdown(so); 3014 wakeup(&so->so_timeo); 3015 CURVNET_RESTORE(); 3016 return ((error == 0 && soerror_enotconn) ? ENOTCONN : error); 3017 } 3018 wakeup(&so->so_timeo); 3019 CURVNET_RESTORE(); 3020 3021 done: 3022 return (soerror_enotconn ? ENOTCONN : 0); 3023 } 3024 3025 void 3026 sorflush(struct socket *so) 3027 { 3028 struct protosw *pr; 3029 int error; 3030 3031 VNET_SO_ASSERT(so); 3032 3033 /* 3034 * Dislodge threads currently blocked in receive and wait to acquire 3035 * a lock against other simultaneous readers before clearing the 3036 * socket buffer. Don't let our acquire be interrupted by a signal 3037 * despite any existing socket disposition on interruptable waiting. 3038 */ 3039 socantrcvmore(so); 3040 3041 error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR); 3042 if (error != 0) { 3043 KASSERT(SOLISTENING(so), 3044 ("%s: soiolock(%p) failed", __func__, so)); 3045 return; 3046 } 3047 3048 pr = so->so_proto; 3049 if (pr->pr_flags & PR_RIGHTS) { 3050 MPASS(pr->pr_domain->dom_dispose != NULL); 3051 (*pr->pr_domain->dom_dispose)(so); 3052 } else { 3053 sbrelease(so, SO_RCV); 3054 SOCK_IO_RECV_UNLOCK(so); 3055 } 3056 3057 } 3058 3059 /* 3060 * Wrapper for Socket established helper hook. 3061 * Parameters: socket, context of the hook point, hook id. 3062 */ 3063 static int inline 3064 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id) 3065 { 3066 struct socket_hhook_data hhook_data = { 3067 .so = so, 3068 .hctx = hctx, 3069 .m = NULL, 3070 .status = 0 3071 }; 3072 3073 CURVNET_SET(so->so_vnet); 3074 HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd); 3075 CURVNET_RESTORE(); 3076 3077 /* Ugly but needed, since hhooks return void for now */ 3078 return (hhook_data.status); 3079 } 3080 3081 /* 3082 * Perhaps this routine, and sooptcopyout(), below, ought to come in an 3083 * additional variant to handle the case where the option value needs to be 3084 * some kind of integer, but not a specific size. In addition to their use 3085 * here, these functions are also called by the protocol-level pr_ctloutput() 3086 * routines. 3087 */ 3088 int 3089 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen) 3090 { 3091 size_t valsize; 3092 3093 /* 3094 * If the user gives us more than we wanted, we ignore it, but if we 3095 * don't get the minimum length the caller wants, we return EINVAL. 3096 * On success, sopt->sopt_valsize is set to however much we actually 3097 * retrieved. 3098 */ 3099 if ((valsize = sopt->sopt_valsize) < minlen) 3100 return EINVAL; 3101 if (valsize > len) 3102 sopt->sopt_valsize = valsize = len; 3103 3104 if (sopt->sopt_td != NULL) 3105 return (copyin(sopt->sopt_val, buf, valsize)); 3106 3107 bcopy(sopt->sopt_val, buf, valsize); 3108 return (0); 3109 } 3110 3111 /* 3112 * Kernel version of setsockopt(2). 3113 * 3114 * XXX: optlen is size_t, not socklen_t 3115 */ 3116 int 3117 so_setsockopt(struct socket *so, int level, int optname, void *optval, 3118 size_t optlen) 3119 { 3120 struct sockopt sopt; 3121 3122 sopt.sopt_level = level; 3123 sopt.sopt_name = optname; 3124 sopt.sopt_dir = SOPT_SET; 3125 sopt.sopt_val = optval; 3126 sopt.sopt_valsize = optlen; 3127 sopt.sopt_td = NULL; 3128 return (sosetopt(so, &sopt)); 3129 } 3130 3131 int 3132 sosetopt(struct socket *so, struct sockopt *sopt) 3133 { 3134 int error, optval; 3135 struct linger l; 3136 struct timeval tv; 3137 sbintime_t val, *valp; 3138 uint32_t val32; 3139 #ifdef MAC 3140 struct mac extmac; 3141 #endif 3142 3143 CURVNET_SET(so->so_vnet); 3144 error = 0; 3145 if (sopt->sopt_level != SOL_SOCKET) { 3146 if (so->so_proto->pr_ctloutput != NULL) 3147 error = (*so->so_proto->pr_ctloutput)(so, sopt); 3148 else 3149 error = ENOPROTOOPT; 3150 } else { 3151 switch (sopt->sopt_name) { 3152 case SO_ACCEPTFILTER: 3153 error = accept_filt_setopt(so, sopt); 3154 if (error) 3155 goto bad; 3156 break; 3157 3158 case SO_LINGER: 3159 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 3160 if (error) 3161 goto bad; 3162 if (l.l_linger < 0 || 3163 l.l_linger > USHRT_MAX || 3164 l.l_linger > (INT_MAX / hz)) { 3165 error = EDOM; 3166 goto bad; 3167 } 3168 SOCK_LOCK(so); 3169 so->so_linger = l.l_linger; 3170 if (l.l_onoff) 3171 so->so_options |= SO_LINGER; 3172 else 3173 so->so_options &= ~SO_LINGER; 3174 SOCK_UNLOCK(so); 3175 break; 3176 3177 case SO_DEBUG: 3178 case SO_KEEPALIVE: 3179 case SO_DONTROUTE: 3180 case SO_USELOOPBACK: 3181 case SO_BROADCAST: 3182 case SO_REUSEADDR: 3183 case SO_REUSEPORT: 3184 case SO_REUSEPORT_LB: 3185 case SO_OOBINLINE: 3186 case SO_TIMESTAMP: 3187 case SO_BINTIME: 3188 case SO_NOSIGPIPE: 3189 case SO_NO_DDP: 3190 case SO_NO_OFFLOAD: 3191 case SO_RERROR: 3192 error = sooptcopyin(sopt, &optval, sizeof optval, 3193 sizeof optval); 3194 if (error) 3195 goto bad; 3196 SOCK_LOCK(so); 3197 if (optval) 3198 so->so_options |= sopt->sopt_name; 3199 else 3200 so->so_options &= ~sopt->sopt_name; 3201 SOCK_UNLOCK(so); 3202 break; 3203 3204 case SO_SETFIB: 3205 error = sooptcopyin(sopt, &optval, sizeof optval, 3206 sizeof optval); 3207 if (error) 3208 goto bad; 3209 3210 if (optval < 0 || optval >= rt_numfibs) { 3211 error = EINVAL; 3212 goto bad; 3213 } 3214 if (((so->so_proto->pr_domain->dom_family == PF_INET) || 3215 (so->so_proto->pr_domain->dom_family == PF_INET6) || 3216 (so->so_proto->pr_domain->dom_family == PF_ROUTE))) 3217 so->so_fibnum = optval; 3218 else 3219 so->so_fibnum = 0; 3220 break; 3221 3222 case SO_USER_COOKIE: 3223 error = sooptcopyin(sopt, &val32, sizeof val32, 3224 sizeof val32); 3225 if (error) 3226 goto bad; 3227 so->so_user_cookie = val32; 3228 break; 3229 3230 case SO_SNDBUF: 3231 case SO_RCVBUF: 3232 case SO_SNDLOWAT: 3233 case SO_RCVLOWAT: 3234 error = so->so_proto->pr_setsbopt(so, sopt); 3235 if (error) 3236 goto bad; 3237 break; 3238 3239 case SO_SNDTIMEO: 3240 case SO_RCVTIMEO: 3241 #ifdef COMPAT_FREEBSD32 3242 if (SV_CURPROC_FLAG(SV_ILP32)) { 3243 struct timeval32 tv32; 3244 3245 error = sooptcopyin(sopt, &tv32, sizeof tv32, 3246 sizeof tv32); 3247 CP(tv32, tv, tv_sec); 3248 CP(tv32, tv, tv_usec); 3249 } else 3250 #endif 3251 error = sooptcopyin(sopt, &tv, sizeof tv, 3252 sizeof tv); 3253 if (error) 3254 goto bad; 3255 if (tv.tv_sec < 0 || tv.tv_usec < 0 || 3256 tv.tv_usec >= 1000000) { 3257 error = EDOM; 3258 goto bad; 3259 } 3260 if (tv.tv_sec > INT32_MAX) 3261 val = SBT_MAX; 3262 else 3263 val = tvtosbt(tv); 3264 SOCK_LOCK(so); 3265 valp = sopt->sopt_name == SO_SNDTIMEO ? 3266 (SOLISTENING(so) ? &so->sol_sbsnd_timeo : 3267 &so->so_snd.sb_timeo) : 3268 (SOLISTENING(so) ? &so->sol_sbrcv_timeo : 3269 &so->so_rcv.sb_timeo); 3270 *valp = val; 3271 SOCK_UNLOCK(so); 3272 break; 3273 3274 case SO_LABEL: 3275 #ifdef MAC 3276 error = sooptcopyin(sopt, &extmac, sizeof extmac, 3277 sizeof extmac); 3278 if (error) 3279 goto bad; 3280 error = mac_setsockopt_label(sopt->sopt_td->td_ucred, 3281 so, &extmac); 3282 #else 3283 error = EOPNOTSUPP; 3284 #endif 3285 break; 3286 3287 case SO_TS_CLOCK: 3288 error = sooptcopyin(sopt, &optval, sizeof optval, 3289 sizeof optval); 3290 if (error) 3291 goto bad; 3292 if (optval < 0 || optval > SO_TS_CLOCK_MAX) { 3293 error = EINVAL; 3294 goto bad; 3295 } 3296 so->so_ts_clock = optval; 3297 break; 3298 3299 case SO_MAX_PACING_RATE: 3300 error = sooptcopyin(sopt, &val32, sizeof(val32), 3301 sizeof(val32)); 3302 if (error) 3303 goto bad; 3304 so->so_max_pacing_rate = val32; 3305 break; 3306 3307 default: 3308 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 3309 error = hhook_run_socket(so, sopt, 3310 HHOOK_SOCKET_OPT); 3311 else 3312 error = ENOPROTOOPT; 3313 break; 3314 } 3315 if (error == 0 && so->so_proto->pr_ctloutput != NULL) 3316 (void)(*so->so_proto->pr_ctloutput)(so, sopt); 3317 } 3318 bad: 3319 CURVNET_RESTORE(); 3320 return (error); 3321 } 3322 3323 /* 3324 * Helper routine for getsockopt. 3325 */ 3326 int 3327 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 3328 { 3329 int error; 3330 size_t valsize; 3331 3332 error = 0; 3333 3334 /* 3335 * Documented get behavior is that we always return a value, possibly 3336 * truncated to fit in the user's buffer. Traditional behavior is 3337 * that we always tell the user precisely how much we copied, rather 3338 * than something useful like the total amount we had available for 3339 * her. Note that this interface is not idempotent; the entire 3340 * answer must be generated ahead of time. 3341 */ 3342 valsize = min(len, sopt->sopt_valsize); 3343 sopt->sopt_valsize = valsize; 3344 if (sopt->sopt_val != NULL) { 3345 if (sopt->sopt_td != NULL) 3346 error = copyout(buf, sopt->sopt_val, valsize); 3347 else 3348 bcopy(buf, sopt->sopt_val, valsize); 3349 } 3350 return (error); 3351 } 3352 3353 int 3354 sogetopt(struct socket *so, struct sockopt *sopt) 3355 { 3356 int error, optval; 3357 struct linger l; 3358 struct timeval tv; 3359 #ifdef MAC 3360 struct mac extmac; 3361 #endif 3362 3363 CURVNET_SET(so->so_vnet); 3364 error = 0; 3365 if (sopt->sopt_level != SOL_SOCKET) { 3366 if (so->so_proto->pr_ctloutput != NULL) 3367 error = (*so->so_proto->pr_ctloutput)(so, sopt); 3368 else 3369 error = ENOPROTOOPT; 3370 CURVNET_RESTORE(); 3371 return (error); 3372 } else { 3373 switch (sopt->sopt_name) { 3374 case SO_ACCEPTFILTER: 3375 error = accept_filt_getopt(so, sopt); 3376 break; 3377 3378 case SO_LINGER: 3379 SOCK_LOCK(so); 3380 l.l_onoff = so->so_options & SO_LINGER; 3381 l.l_linger = so->so_linger; 3382 SOCK_UNLOCK(so); 3383 error = sooptcopyout(sopt, &l, sizeof l); 3384 break; 3385 3386 case SO_USELOOPBACK: 3387 case SO_DONTROUTE: 3388 case SO_DEBUG: 3389 case SO_KEEPALIVE: 3390 case SO_REUSEADDR: 3391 case SO_REUSEPORT: 3392 case SO_REUSEPORT_LB: 3393 case SO_BROADCAST: 3394 case SO_OOBINLINE: 3395 case SO_ACCEPTCONN: 3396 case SO_TIMESTAMP: 3397 case SO_BINTIME: 3398 case SO_NOSIGPIPE: 3399 case SO_NO_DDP: 3400 case SO_NO_OFFLOAD: 3401 case SO_RERROR: 3402 optval = so->so_options & sopt->sopt_name; 3403 integer: 3404 error = sooptcopyout(sopt, &optval, sizeof optval); 3405 break; 3406 3407 case SO_DOMAIN: 3408 optval = so->so_proto->pr_domain->dom_family; 3409 goto integer; 3410 3411 case SO_TYPE: 3412 optval = so->so_type; 3413 goto integer; 3414 3415 case SO_PROTOCOL: 3416 optval = so->so_proto->pr_protocol; 3417 goto integer; 3418 3419 case SO_ERROR: 3420 SOCK_LOCK(so); 3421 if (so->so_error) { 3422 optval = so->so_error; 3423 so->so_error = 0; 3424 } else { 3425 optval = so->so_rerror; 3426 so->so_rerror = 0; 3427 } 3428 SOCK_UNLOCK(so); 3429 goto integer; 3430 3431 case SO_SNDBUF: 3432 optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat : 3433 so->so_snd.sb_hiwat; 3434 goto integer; 3435 3436 case SO_RCVBUF: 3437 optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat : 3438 so->so_rcv.sb_hiwat; 3439 goto integer; 3440 3441 case SO_SNDLOWAT: 3442 optval = SOLISTENING(so) ? so->sol_sbsnd_lowat : 3443 so->so_snd.sb_lowat; 3444 goto integer; 3445 3446 case SO_RCVLOWAT: 3447 optval = SOLISTENING(so) ? so->sol_sbrcv_lowat : 3448 so->so_rcv.sb_lowat; 3449 goto integer; 3450 3451 case SO_SNDTIMEO: 3452 case SO_RCVTIMEO: 3453 SOCK_LOCK(so); 3454 tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ? 3455 (SOLISTENING(so) ? so->sol_sbsnd_timeo : 3456 so->so_snd.sb_timeo) : 3457 (SOLISTENING(so) ? so->sol_sbrcv_timeo : 3458 so->so_rcv.sb_timeo)); 3459 SOCK_UNLOCK(so); 3460 #ifdef COMPAT_FREEBSD32 3461 if (SV_CURPROC_FLAG(SV_ILP32)) { 3462 struct timeval32 tv32; 3463 3464 CP(tv, tv32, tv_sec); 3465 CP(tv, tv32, tv_usec); 3466 error = sooptcopyout(sopt, &tv32, sizeof tv32); 3467 } else 3468 #endif 3469 error = sooptcopyout(sopt, &tv, sizeof tv); 3470 break; 3471 3472 case SO_LABEL: 3473 #ifdef MAC 3474 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 3475 sizeof(extmac)); 3476 if (error) 3477 goto bad; 3478 error = mac_getsockopt_label(sopt->sopt_td->td_ucred, 3479 so, &extmac); 3480 if (error) 3481 goto bad; 3482 /* Don't copy out extmac, it is unchanged. */ 3483 #else 3484 error = EOPNOTSUPP; 3485 #endif 3486 break; 3487 3488 case SO_PEERLABEL: 3489 #ifdef MAC 3490 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 3491 sizeof(extmac)); 3492 if (error) 3493 goto bad; 3494 error = mac_getsockopt_peerlabel( 3495 sopt->sopt_td->td_ucred, so, &extmac); 3496 if (error) 3497 goto bad; 3498 /* Don't copy out extmac, it is unchanged. */ 3499 #else 3500 error = EOPNOTSUPP; 3501 #endif 3502 break; 3503 3504 case SO_LISTENQLIMIT: 3505 optval = SOLISTENING(so) ? so->sol_qlimit : 0; 3506 goto integer; 3507 3508 case SO_LISTENQLEN: 3509 optval = SOLISTENING(so) ? so->sol_qlen : 0; 3510 goto integer; 3511 3512 case SO_LISTENINCQLEN: 3513 optval = SOLISTENING(so) ? so->sol_incqlen : 0; 3514 goto integer; 3515 3516 case SO_TS_CLOCK: 3517 optval = so->so_ts_clock; 3518 goto integer; 3519 3520 case SO_MAX_PACING_RATE: 3521 optval = so->so_max_pacing_rate; 3522 goto integer; 3523 3524 default: 3525 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 3526 error = hhook_run_socket(so, sopt, 3527 HHOOK_SOCKET_OPT); 3528 else 3529 error = ENOPROTOOPT; 3530 break; 3531 } 3532 } 3533 #ifdef MAC 3534 bad: 3535 #endif 3536 CURVNET_RESTORE(); 3537 return (error); 3538 } 3539 3540 int 3541 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 3542 { 3543 struct mbuf *m, *m_prev; 3544 int sopt_size = sopt->sopt_valsize; 3545 3546 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 3547 if (m == NULL) 3548 return ENOBUFS; 3549 if (sopt_size > MLEN) { 3550 MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT); 3551 if ((m->m_flags & M_EXT) == 0) { 3552 m_free(m); 3553 return ENOBUFS; 3554 } 3555 m->m_len = min(MCLBYTES, sopt_size); 3556 } else { 3557 m->m_len = min(MLEN, sopt_size); 3558 } 3559 sopt_size -= m->m_len; 3560 *mp = m; 3561 m_prev = m; 3562 3563 while (sopt_size) { 3564 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 3565 if (m == NULL) { 3566 m_freem(*mp); 3567 return ENOBUFS; 3568 } 3569 if (sopt_size > MLEN) { 3570 MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK : 3571 M_NOWAIT); 3572 if ((m->m_flags & M_EXT) == 0) { 3573 m_freem(m); 3574 m_freem(*mp); 3575 return ENOBUFS; 3576 } 3577 m->m_len = min(MCLBYTES, sopt_size); 3578 } else { 3579 m->m_len = min(MLEN, sopt_size); 3580 } 3581 sopt_size -= m->m_len; 3582 m_prev->m_next = m; 3583 m_prev = m; 3584 } 3585 return (0); 3586 } 3587 3588 int 3589 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 3590 { 3591 struct mbuf *m0 = m; 3592 3593 if (sopt->sopt_val == NULL) 3594 return (0); 3595 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 3596 if (sopt->sopt_td != NULL) { 3597 int error; 3598 3599 error = copyin(sopt->sopt_val, mtod(m, char *), 3600 m->m_len); 3601 if (error != 0) { 3602 m_freem(m0); 3603 return(error); 3604 } 3605 } else 3606 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 3607 sopt->sopt_valsize -= m->m_len; 3608 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 3609 m = m->m_next; 3610 } 3611 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 3612 panic("ip6_sooptmcopyin"); 3613 return (0); 3614 } 3615 3616 int 3617 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 3618 { 3619 struct mbuf *m0 = m; 3620 size_t valsize = 0; 3621 3622 if (sopt->sopt_val == NULL) 3623 return (0); 3624 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 3625 if (sopt->sopt_td != NULL) { 3626 int error; 3627 3628 error = copyout(mtod(m, char *), sopt->sopt_val, 3629 m->m_len); 3630 if (error != 0) { 3631 m_freem(m0); 3632 return(error); 3633 } 3634 } else 3635 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 3636 sopt->sopt_valsize -= m->m_len; 3637 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 3638 valsize += m->m_len; 3639 m = m->m_next; 3640 } 3641 if (m != NULL) { 3642 /* enough soopt buffer should be given from user-land */ 3643 m_freem(m0); 3644 return(EINVAL); 3645 } 3646 sopt->sopt_valsize = valsize; 3647 return (0); 3648 } 3649 3650 /* 3651 * sohasoutofband(): protocol notifies socket layer of the arrival of new 3652 * out-of-band data, which will then notify socket consumers. 3653 */ 3654 void 3655 sohasoutofband(struct socket *so) 3656 { 3657 3658 if (so->so_sigio != NULL) 3659 pgsigio(&so->so_sigio, SIGURG, 0); 3660 selwakeuppri(&so->so_rdsel, PSOCK); 3661 } 3662 3663 int 3664 sopoll(struct socket *so, int events, struct ucred *active_cred, 3665 struct thread *td) 3666 { 3667 3668 /* 3669 * We do not need to set or assert curvnet as long as everyone uses 3670 * sopoll_generic(). 3671 */ 3672 return (so->so_proto->pr_sopoll(so, events, active_cred, td)); 3673 } 3674 3675 int 3676 sopoll_generic(struct socket *so, int events, struct ucred *active_cred, 3677 struct thread *td) 3678 { 3679 int revents; 3680 3681 SOCK_LOCK(so); 3682 if (SOLISTENING(so)) { 3683 if (!(events & (POLLIN | POLLRDNORM))) 3684 revents = 0; 3685 else if (!TAILQ_EMPTY(&so->sol_comp)) 3686 revents = events & (POLLIN | POLLRDNORM); 3687 else if ((events & POLLINIGNEOF) == 0 && so->so_error) 3688 revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP; 3689 else { 3690 selrecord(td, &so->so_rdsel); 3691 revents = 0; 3692 } 3693 } else { 3694 revents = 0; 3695 SOCK_SENDBUF_LOCK(so); 3696 SOCK_RECVBUF_LOCK(so); 3697 if (events & (POLLIN | POLLRDNORM)) 3698 if (soreadabledata(so)) 3699 revents |= events & (POLLIN | POLLRDNORM); 3700 if (events & (POLLOUT | POLLWRNORM)) 3701 if (sowriteable(so)) 3702 revents |= events & (POLLOUT | POLLWRNORM); 3703 if (events & (POLLPRI | POLLRDBAND)) 3704 if (so->so_oobmark || 3705 (so->so_rcv.sb_state & SBS_RCVATMARK)) 3706 revents |= events & (POLLPRI | POLLRDBAND); 3707 if ((events & POLLINIGNEOF) == 0) { 3708 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3709 revents |= events & (POLLIN | POLLRDNORM); 3710 if (so->so_snd.sb_state & SBS_CANTSENDMORE) 3711 revents |= POLLHUP; 3712 } 3713 } 3714 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) 3715 revents |= events & POLLRDHUP; 3716 if (revents == 0) { 3717 if (events & 3718 (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND | POLLRDHUP)) { 3719 selrecord(td, &so->so_rdsel); 3720 so->so_rcv.sb_flags |= SB_SEL; 3721 } 3722 if (events & (POLLOUT | POLLWRNORM)) { 3723 selrecord(td, &so->so_wrsel); 3724 so->so_snd.sb_flags |= SB_SEL; 3725 } 3726 } 3727 SOCK_RECVBUF_UNLOCK(so); 3728 SOCK_SENDBUF_UNLOCK(so); 3729 } 3730 SOCK_UNLOCK(so); 3731 return (revents); 3732 } 3733 3734 int 3735 soo_kqfilter(struct file *fp, struct knote *kn) 3736 { 3737 struct socket *so = kn->kn_fp->f_data; 3738 struct sockbuf *sb; 3739 sb_which which; 3740 struct knlist *knl; 3741 3742 switch (kn->kn_filter) { 3743 case EVFILT_READ: 3744 kn->kn_fop = &soread_filtops; 3745 knl = &so->so_rdsel.si_note; 3746 sb = &so->so_rcv; 3747 which = SO_RCV; 3748 break; 3749 case EVFILT_WRITE: 3750 kn->kn_fop = &sowrite_filtops; 3751 knl = &so->so_wrsel.si_note; 3752 sb = &so->so_snd; 3753 which = SO_SND; 3754 break; 3755 case EVFILT_EMPTY: 3756 kn->kn_fop = &soempty_filtops; 3757 knl = &so->so_wrsel.si_note; 3758 sb = &so->so_snd; 3759 which = SO_SND; 3760 break; 3761 default: 3762 return (EINVAL); 3763 } 3764 3765 SOCK_LOCK(so); 3766 if (SOLISTENING(so)) { 3767 knlist_add(knl, kn, 1); 3768 } else { 3769 SOCK_BUF_LOCK(so, which); 3770 knlist_add(knl, kn, 1); 3771 sb->sb_flags |= SB_KNOTE; 3772 SOCK_BUF_UNLOCK(so, which); 3773 } 3774 SOCK_UNLOCK(so); 3775 return (0); 3776 } 3777 3778 static void 3779 filt_sordetach(struct knote *kn) 3780 { 3781 struct socket *so = kn->kn_fp->f_data; 3782 3783 so_rdknl_lock(so); 3784 knlist_remove(&so->so_rdsel.si_note, kn, 1); 3785 if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note)) 3786 so->so_rcv.sb_flags &= ~SB_KNOTE; 3787 so_rdknl_unlock(so); 3788 } 3789 3790 /*ARGSUSED*/ 3791 static int 3792 filt_soread(struct knote *kn, long hint) 3793 { 3794 struct socket *so; 3795 3796 so = kn->kn_fp->f_data; 3797 3798 if (SOLISTENING(so)) { 3799 SOCK_LOCK_ASSERT(so); 3800 kn->kn_data = so->sol_qlen; 3801 if (so->so_error) { 3802 kn->kn_flags |= EV_EOF; 3803 kn->kn_fflags = so->so_error; 3804 return (1); 3805 } 3806 return (!TAILQ_EMPTY(&so->sol_comp)); 3807 } 3808 3809 SOCK_RECVBUF_LOCK_ASSERT(so); 3810 3811 kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl; 3812 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3813 kn->kn_flags |= EV_EOF; 3814 kn->kn_fflags = so->so_error; 3815 return (1); 3816 } else if (so->so_error || so->so_rerror) 3817 return (1); 3818 3819 if (kn->kn_sfflags & NOTE_LOWAT) { 3820 if (kn->kn_data >= kn->kn_sdata) 3821 return (1); 3822 } else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat) 3823 return (1); 3824 3825 /* This hook returning non-zero indicates an event, not error */ 3826 return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD)); 3827 } 3828 3829 static void 3830 filt_sowdetach(struct knote *kn) 3831 { 3832 struct socket *so = kn->kn_fp->f_data; 3833 3834 so_wrknl_lock(so); 3835 knlist_remove(&so->so_wrsel.si_note, kn, 1); 3836 if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note)) 3837 so->so_snd.sb_flags &= ~SB_KNOTE; 3838 so_wrknl_unlock(so); 3839 } 3840 3841 /*ARGSUSED*/ 3842 static int 3843 filt_sowrite(struct knote *kn, long hint) 3844 { 3845 struct socket *so; 3846 3847 so = kn->kn_fp->f_data; 3848 3849 if (SOLISTENING(so)) 3850 return (0); 3851 3852 SOCK_SENDBUF_LOCK_ASSERT(so); 3853 kn->kn_data = sbspace(&so->so_snd); 3854 3855 hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE); 3856 3857 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 3858 kn->kn_flags |= EV_EOF; 3859 kn->kn_fflags = so->so_error; 3860 return (1); 3861 } else if (so->so_error) /* temporary udp error */ 3862 return (1); 3863 else if (((so->so_state & SS_ISCONNECTED) == 0) && 3864 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 3865 return (0); 3866 else if (kn->kn_sfflags & NOTE_LOWAT) 3867 return (kn->kn_data >= kn->kn_sdata); 3868 else 3869 return (kn->kn_data >= so->so_snd.sb_lowat); 3870 } 3871 3872 static int 3873 filt_soempty(struct knote *kn, long hint) 3874 { 3875 struct socket *so; 3876 3877 so = kn->kn_fp->f_data; 3878 3879 if (SOLISTENING(so)) 3880 return (1); 3881 3882 SOCK_SENDBUF_LOCK_ASSERT(so); 3883 kn->kn_data = sbused(&so->so_snd); 3884 3885 if (kn->kn_data == 0) 3886 return (1); 3887 else 3888 return (0); 3889 } 3890 3891 int 3892 socheckuid(struct socket *so, uid_t uid) 3893 { 3894 3895 if (so == NULL) 3896 return (EPERM); 3897 if (so->so_cred->cr_uid != uid) 3898 return (EPERM); 3899 return (0); 3900 } 3901 3902 /* 3903 * These functions are used by protocols to notify the socket layer (and its 3904 * consumers) of state changes in the sockets driven by protocol-side events. 3905 */ 3906 3907 /* 3908 * Procedures to manipulate state flags of socket and do appropriate wakeups. 3909 * 3910 * Normal sequence from the active (originating) side is that 3911 * soisconnecting() is called during processing of connect() call, resulting 3912 * in an eventual call to soisconnected() if/when the connection is 3913 * established. When the connection is torn down soisdisconnecting() is 3914 * called during processing of disconnect() call, and soisdisconnected() is 3915 * called when the connection to the peer is totally severed. The semantics 3916 * of these routines are such that connectionless protocols can call 3917 * soisconnected() and soisdisconnected() only, bypassing the in-progress 3918 * calls when setting up a ``connection'' takes no time. 3919 * 3920 * From the passive side, a socket is created with two queues of sockets: 3921 * so_incomp for connections in progress and so_comp for connections already 3922 * made and awaiting user acceptance. As a protocol is preparing incoming 3923 * connections, it creates a socket structure queued on so_incomp by calling 3924 * sonewconn(). When the connection is established, soisconnected() is 3925 * called, and transfers the socket structure to so_comp, making it available 3926 * to accept(). 3927 * 3928 * If a socket is closed with sockets on either so_incomp or so_comp, these 3929 * sockets are dropped. 3930 * 3931 * If higher-level protocols are implemented in the kernel, the wakeups done 3932 * here will sometimes cause software-interrupt process scheduling. 3933 */ 3934 void 3935 soisconnecting(struct socket *so) 3936 { 3937 3938 SOCK_LOCK(so); 3939 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 3940 so->so_state |= SS_ISCONNECTING; 3941 SOCK_UNLOCK(so); 3942 } 3943 3944 void 3945 soisconnected(struct socket *so) 3946 { 3947 bool last __diagused; 3948 3949 SOCK_LOCK(so); 3950 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 3951 so->so_state |= SS_ISCONNECTED; 3952 3953 if (so->so_qstate == SQ_INCOMP) { 3954 struct socket *head = so->so_listen; 3955 int ret; 3956 3957 KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so)); 3958 /* 3959 * Promoting a socket from incomplete queue to complete, we 3960 * need to go through reverse order of locking. We first do 3961 * trylock, and if that doesn't succeed, we go the hard way 3962 * leaving a reference and rechecking consistency after proper 3963 * locking. 3964 */ 3965 if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) { 3966 soref(head); 3967 SOCK_UNLOCK(so); 3968 SOLISTEN_LOCK(head); 3969 SOCK_LOCK(so); 3970 if (__predict_false(head != so->so_listen)) { 3971 /* 3972 * The socket went off the listen queue, 3973 * should be lost race to close(2) of sol. 3974 * The socket is about to soabort(). 3975 */ 3976 SOCK_UNLOCK(so); 3977 sorele_locked(head); 3978 return; 3979 } 3980 last = refcount_release(&head->so_count); 3981 KASSERT(!last, ("%s: released last reference for %p", 3982 __func__, head)); 3983 } 3984 again: 3985 if ((so->so_options & SO_ACCEPTFILTER) == 0) { 3986 TAILQ_REMOVE(&head->sol_incomp, so, so_list); 3987 head->sol_incqlen--; 3988 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 3989 head->sol_qlen++; 3990 so->so_qstate = SQ_COMP; 3991 SOCK_UNLOCK(so); 3992 solisten_wakeup(head); /* unlocks */ 3993 } else { 3994 SOCK_RECVBUF_LOCK(so); 3995 soupcall_set(so, SO_RCV, 3996 head->sol_accept_filter->accf_callback, 3997 head->sol_accept_filter_arg); 3998 so->so_options &= ~SO_ACCEPTFILTER; 3999 ret = head->sol_accept_filter->accf_callback(so, 4000 head->sol_accept_filter_arg, M_NOWAIT); 4001 if (ret == SU_ISCONNECTED) { 4002 soupcall_clear(so, SO_RCV); 4003 SOCK_RECVBUF_UNLOCK(so); 4004 goto again; 4005 } 4006 SOCK_RECVBUF_UNLOCK(so); 4007 SOCK_UNLOCK(so); 4008 SOLISTEN_UNLOCK(head); 4009 } 4010 return; 4011 } 4012 SOCK_UNLOCK(so); 4013 wakeup(&so->so_timeo); 4014 sorwakeup(so); 4015 sowwakeup(so); 4016 } 4017 4018 void 4019 soisdisconnecting(struct socket *so) 4020 { 4021 4022 SOCK_LOCK(so); 4023 so->so_state &= ~SS_ISCONNECTING; 4024 so->so_state |= SS_ISDISCONNECTING; 4025 4026 if (!SOLISTENING(so)) { 4027 SOCK_RECVBUF_LOCK(so); 4028 socantrcvmore_locked(so); 4029 SOCK_SENDBUF_LOCK(so); 4030 socantsendmore_locked(so); 4031 } 4032 SOCK_UNLOCK(so); 4033 wakeup(&so->so_timeo); 4034 } 4035 4036 void 4037 soisdisconnected(struct socket *so) 4038 { 4039 4040 SOCK_LOCK(so); 4041 4042 /* 4043 * There is at least one reader of so_state that does not 4044 * acquire socket lock, namely soreceive_generic(). Ensure 4045 * that it never sees all flags that track connection status 4046 * cleared, by ordering the update with a barrier semantic of 4047 * our release thread fence. 4048 */ 4049 so->so_state |= SS_ISDISCONNECTED; 4050 atomic_thread_fence_rel(); 4051 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 4052 4053 if (!SOLISTENING(so)) { 4054 SOCK_UNLOCK(so); 4055 SOCK_RECVBUF_LOCK(so); 4056 socantrcvmore_locked(so); 4057 SOCK_SENDBUF_LOCK(so); 4058 sbdrop_locked(&so->so_snd, sbused(&so->so_snd)); 4059 socantsendmore_locked(so); 4060 } else 4061 SOCK_UNLOCK(so); 4062 wakeup(&so->so_timeo); 4063 } 4064 4065 int 4066 soiolock(struct socket *so, struct sx *sx, int flags) 4067 { 4068 int error; 4069 4070 KASSERT((flags & SBL_VALID) == flags, 4071 ("soiolock: invalid flags %#x", flags)); 4072 4073 if ((flags & SBL_WAIT) != 0) { 4074 if ((flags & SBL_NOINTR) != 0) { 4075 sx_xlock(sx); 4076 } else { 4077 error = sx_xlock_sig(sx); 4078 if (error != 0) 4079 return (error); 4080 } 4081 } else if (!sx_try_xlock(sx)) { 4082 return (EWOULDBLOCK); 4083 } 4084 4085 if (__predict_false(SOLISTENING(so))) { 4086 sx_xunlock(sx); 4087 return (ENOTCONN); 4088 } 4089 return (0); 4090 } 4091 4092 void 4093 soiounlock(struct sx *sx) 4094 { 4095 sx_xunlock(sx); 4096 } 4097 4098 /* 4099 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 4100 */ 4101 struct sockaddr * 4102 sodupsockaddr(const struct sockaddr *sa, int mflags) 4103 { 4104 struct sockaddr *sa2; 4105 4106 sa2 = malloc(sa->sa_len, M_SONAME, mflags); 4107 if (sa2) 4108 bcopy(sa, sa2, sa->sa_len); 4109 return sa2; 4110 } 4111 4112 /* 4113 * Register per-socket destructor. 4114 */ 4115 void 4116 sodtor_set(struct socket *so, so_dtor_t *func) 4117 { 4118 4119 SOCK_LOCK_ASSERT(so); 4120 so->so_dtor = func; 4121 } 4122 4123 /* 4124 * Register per-socket buffer upcalls. 4125 */ 4126 void 4127 soupcall_set(struct socket *so, sb_which which, so_upcall_t func, void *arg) 4128 { 4129 struct sockbuf *sb; 4130 4131 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 4132 4133 switch (which) { 4134 case SO_RCV: 4135 sb = &so->so_rcv; 4136 break; 4137 case SO_SND: 4138 sb = &so->so_snd; 4139 break; 4140 } 4141 SOCK_BUF_LOCK_ASSERT(so, which); 4142 sb->sb_upcall = func; 4143 sb->sb_upcallarg = arg; 4144 sb->sb_flags |= SB_UPCALL; 4145 } 4146 4147 void 4148 soupcall_clear(struct socket *so, sb_which which) 4149 { 4150 struct sockbuf *sb; 4151 4152 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 4153 4154 switch (which) { 4155 case SO_RCV: 4156 sb = &so->so_rcv; 4157 break; 4158 case SO_SND: 4159 sb = &so->so_snd; 4160 break; 4161 } 4162 SOCK_BUF_LOCK_ASSERT(so, which); 4163 KASSERT(sb->sb_upcall != NULL, 4164 ("%s: so %p no upcall to clear", __func__, so)); 4165 sb->sb_upcall = NULL; 4166 sb->sb_upcallarg = NULL; 4167 sb->sb_flags &= ~SB_UPCALL; 4168 } 4169 4170 void 4171 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg) 4172 { 4173 4174 SOLISTEN_LOCK_ASSERT(so); 4175 so->sol_upcall = func; 4176 so->sol_upcallarg = arg; 4177 } 4178 4179 static void 4180 so_rdknl_lock(void *arg) 4181 { 4182 struct socket *so = arg; 4183 4184 retry: 4185 if (SOLISTENING(so)) { 4186 SOLISTEN_LOCK(so); 4187 } else { 4188 SOCK_RECVBUF_LOCK(so); 4189 if (__predict_false(SOLISTENING(so))) { 4190 SOCK_RECVBUF_UNLOCK(so); 4191 goto retry; 4192 } 4193 } 4194 } 4195 4196 static void 4197 so_rdknl_unlock(void *arg) 4198 { 4199 struct socket *so = arg; 4200 4201 if (SOLISTENING(so)) 4202 SOLISTEN_UNLOCK(so); 4203 else 4204 SOCK_RECVBUF_UNLOCK(so); 4205 } 4206 4207 static void 4208 so_rdknl_assert_lock(void *arg, int what) 4209 { 4210 struct socket *so = arg; 4211 4212 if (what == LA_LOCKED) { 4213 if (SOLISTENING(so)) 4214 SOLISTEN_LOCK_ASSERT(so); 4215 else 4216 SOCK_RECVBUF_LOCK_ASSERT(so); 4217 } else { 4218 if (SOLISTENING(so)) 4219 SOLISTEN_UNLOCK_ASSERT(so); 4220 else 4221 SOCK_RECVBUF_UNLOCK_ASSERT(so); 4222 } 4223 } 4224 4225 static void 4226 so_wrknl_lock(void *arg) 4227 { 4228 struct socket *so = arg; 4229 4230 retry: 4231 if (SOLISTENING(so)) { 4232 SOLISTEN_LOCK(so); 4233 } else { 4234 SOCK_SENDBUF_LOCK(so); 4235 if (__predict_false(SOLISTENING(so))) { 4236 SOCK_SENDBUF_UNLOCK(so); 4237 goto retry; 4238 } 4239 } 4240 } 4241 4242 static void 4243 so_wrknl_unlock(void *arg) 4244 { 4245 struct socket *so = arg; 4246 4247 if (SOLISTENING(so)) 4248 SOLISTEN_UNLOCK(so); 4249 else 4250 SOCK_SENDBUF_UNLOCK(so); 4251 } 4252 4253 static void 4254 so_wrknl_assert_lock(void *arg, int what) 4255 { 4256 struct socket *so = arg; 4257 4258 if (what == LA_LOCKED) { 4259 if (SOLISTENING(so)) 4260 SOLISTEN_LOCK_ASSERT(so); 4261 else 4262 SOCK_SENDBUF_LOCK_ASSERT(so); 4263 } else { 4264 if (SOLISTENING(so)) 4265 SOLISTEN_UNLOCK_ASSERT(so); 4266 else 4267 SOCK_SENDBUF_UNLOCK_ASSERT(so); 4268 } 4269 } 4270 4271 /* 4272 * Create an external-format (``xsocket'') structure using the information in 4273 * the kernel-format socket structure pointed to by so. This is done to 4274 * reduce the spew of irrelevant information over this interface, to isolate 4275 * user code from changes in the kernel structure, and potentially to provide 4276 * information-hiding if we decide that some of this information should be 4277 * hidden from users. 4278 */ 4279 void 4280 sotoxsocket(struct socket *so, struct xsocket *xso) 4281 { 4282 4283 bzero(xso, sizeof(*xso)); 4284 xso->xso_len = sizeof *xso; 4285 xso->xso_so = (uintptr_t)so; 4286 xso->so_type = so->so_type; 4287 xso->so_options = so->so_options; 4288 xso->so_linger = so->so_linger; 4289 xso->so_state = so->so_state; 4290 xso->so_pcb = (uintptr_t)so->so_pcb; 4291 xso->xso_protocol = so->so_proto->pr_protocol; 4292 xso->xso_family = so->so_proto->pr_domain->dom_family; 4293 xso->so_timeo = so->so_timeo; 4294 xso->so_error = so->so_error; 4295 xso->so_uid = so->so_cred->cr_uid; 4296 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 4297 if (SOLISTENING(so)) { 4298 xso->so_qlen = so->sol_qlen; 4299 xso->so_incqlen = so->sol_incqlen; 4300 xso->so_qlimit = so->sol_qlimit; 4301 xso->so_oobmark = 0; 4302 } else { 4303 xso->so_state |= so->so_qstate; 4304 xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0; 4305 xso->so_oobmark = so->so_oobmark; 4306 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 4307 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 4308 } 4309 } 4310 4311 struct sockbuf * 4312 so_sockbuf_rcv(struct socket *so) 4313 { 4314 4315 return (&so->so_rcv); 4316 } 4317 4318 struct sockbuf * 4319 so_sockbuf_snd(struct socket *so) 4320 { 4321 4322 return (&so->so_snd); 4323 } 4324 4325 int 4326 so_state_get(const struct socket *so) 4327 { 4328 4329 return (so->so_state); 4330 } 4331 4332 void 4333 so_state_set(struct socket *so, int val) 4334 { 4335 4336 so->so_state = val; 4337 } 4338 4339 int 4340 so_options_get(const struct socket *so) 4341 { 4342 4343 return (so->so_options); 4344 } 4345 4346 void 4347 so_options_set(struct socket *so, int val) 4348 { 4349 4350 so->so_options = val; 4351 } 4352 4353 int 4354 so_error_get(const struct socket *so) 4355 { 4356 4357 return (so->so_error); 4358 } 4359 4360 void 4361 so_error_set(struct socket *so, int val) 4362 { 4363 4364 so->so_error = val; 4365 } 4366 4367 int 4368 so_linger_get(const struct socket *so) 4369 { 4370 4371 return (so->so_linger); 4372 } 4373 4374 void 4375 so_linger_set(struct socket *so, int val) 4376 { 4377 4378 KASSERT(val >= 0 && val <= USHRT_MAX && val <= (INT_MAX / hz), 4379 ("%s: val %d out of range", __func__, val)); 4380 4381 so->so_linger = val; 4382 } 4383 4384 struct protosw * 4385 so_protosw_get(const struct socket *so) 4386 { 4387 4388 return (so->so_proto); 4389 } 4390 4391 void 4392 so_protosw_set(struct socket *so, struct protosw *val) 4393 { 4394 4395 so->so_proto = val; 4396 } 4397 4398 void 4399 so_sorwakeup(struct socket *so) 4400 { 4401 4402 sorwakeup(so); 4403 } 4404 4405 void 4406 so_sowwakeup(struct socket *so) 4407 { 4408 4409 sowwakeup(so); 4410 } 4411 4412 void 4413 so_sorwakeup_locked(struct socket *so) 4414 { 4415 4416 sorwakeup_locked(so); 4417 } 4418 4419 void 4420 so_sowwakeup_locked(struct socket *so) 4421 { 4422 4423 sowwakeup_locked(so); 4424 } 4425 4426 void 4427 so_lock(struct socket *so) 4428 { 4429 4430 SOCK_LOCK(so); 4431 } 4432 4433 void 4434 so_unlock(struct socket *so) 4435 { 4436 4437 SOCK_UNLOCK(so); 4438 } 4439