1 /*- 2 * Copyright (c) 2004 The FreeBSD Foundation 3 * Copyright (c) 2004-2005 Robert N. M. Watson 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 4. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_inet.h" 38 #include "opt_mac.h" 39 #include "opt_zero.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/fcntl.h> 44 #include <sys/limits.h> 45 #include <sys/lock.h> 46 #include <sys/mac.h> 47 #include <sys/malloc.h> 48 #include <sys/mbuf.h> 49 #include <sys/mutex.h> 50 #include <sys/domain.h> 51 #include <sys/file.h> /* for struct knote */ 52 #include <sys/kernel.h> 53 #include <sys/event.h> 54 #include <sys/poll.h> 55 #include <sys/proc.h> 56 #include <sys/protosw.h> 57 #include <sys/socket.h> 58 #include <sys/socketvar.h> 59 #include <sys/resourcevar.h> 60 #include <sys/signalvar.h> 61 #include <sys/sysctl.h> 62 #include <sys/uio.h> 63 #include <sys/jail.h> 64 65 #include <vm/uma.h> 66 67 68 static int soreceive_rcvoob(struct socket *so, struct uio *uio, 69 int flags); 70 71 static void filt_sordetach(struct knote *kn); 72 static int filt_soread(struct knote *kn, long hint); 73 static void filt_sowdetach(struct knote *kn); 74 static int filt_sowrite(struct knote *kn, long hint); 75 static int filt_solisten(struct knote *kn, long hint); 76 77 static struct filterops solisten_filtops = 78 { 1, NULL, filt_sordetach, filt_solisten }; 79 static struct filterops soread_filtops = 80 { 1, NULL, filt_sordetach, filt_soread }; 81 static struct filterops sowrite_filtops = 82 { 1, NULL, filt_sowdetach, filt_sowrite }; 83 84 uma_zone_t socket_zone; 85 so_gen_t so_gencnt; /* generation count for sockets */ 86 87 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 88 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 89 90 SYSCTL_DECL(_kern_ipc); 91 92 static int somaxconn = SOMAXCONN; 93 static int somaxconn_sysctl(SYSCTL_HANDLER_ARGS); 94 /* XXX: we dont have SYSCTL_USHORT */ 95 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLTYPE_UINT | CTLFLAG_RW, 96 0, sizeof(int), somaxconn_sysctl, "I", "Maximum pending socket connection " 97 "queue size"); 98 static int numopensockets; 99 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, 100 &numopensockets, 0, "Number of open sockets"); 101 #ifdef ZERO_COPY_SOCKETS 102 /* These aren't static because they're used in other files. */ 103 int so_zero_copy_send = 1; 104 int so_zero_copy_receive = 1; 105 SYSCTL_NODE(_kern_ipc, OID_AUTO, zero_copy, CTLFLAG_RD, 0, 106 "Zero copy controls"); 107 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, receive, CTLFLAG_RW, 108 &so_zero_copy_receive, 0, "Enable zero copy receive"); 109 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, send, CTLFLAG_RW, 110 &so_zero_copy_send, 0, "Enable zero copy send"); 111 #endif /* ZERO_COPY_SOCKETS */ 112 113 /* 114 * accept_mtx locks down per-socket fields relating to accept queues. See 115 * socketvar.h for an annotation of the protected fields of struct socket. 116 */ 117 struct mtx accept_mtx; 118 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF); 119 120 /* 121 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket 122 * so_gencnt field. 123 */ 124 static struct mtx so_global_mtx; 125 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); 126 127 /* 128 * Socket operation routines. 129 * These routines are called by the routines in 130 * sys_socket.c or from a system process, and 131 * implement the semantics of socket operations by 132 * switching out to the protocol specific routines. 133 */ 134 135 /* 136 * Get a socket structure from our zone, and initialize it. 137 * Note that it would probably be better to allocate socket 138 * and PCB at the same time, but I'm not convinced that all 139 * the protocols can be easily modified to do this. 140 * 141 * soalloc() returns a socket with a ref count of 0. 142 */ 143 struct socket * 144 soalloc(int mflags) 145 { 146 struct socket *so; 147 148 so = uma_zalloc(socket_zone, mflags | M_ZERO); 149 if (so != NULL) { 150 #ifdef MAC 151 if (mac_init_socket(so, mflags) != 0) { 152 uma_zfree(socket_zone, so); 153 return (NULL); 154 } 155 #endif 156 SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd"); 157 SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv"); 158 TAILQ_INIT(&so->so_aiojobq); 159 mtx_lock(&so_global_mtx); 160 so->so_gencnt = ++so_gencnt; 161 ++numopensockets; 162 mtx_unlock(&so_global_mtx); 163 } 164 return (so); 165 } 166 167 /* 168 * socreate returns a socket with a ref count of 1. The socket should be 169 * closed with soclose(). 170 */ 171 int 172 socreate(dom, aso, type, proto, cred, td) 173 int dom; 174 struct socket **aso; 175 int type; 176 int proto; 177 struct ucred *cred; 178 struct thread *td; 179 { 180 struct protosw *prp; 181 struct socket *so; 182 int error; 183 184 if (proto) 185 prp = pffindproto(dom, proto, type); 186 else 187 prp = pffindtype(dom, type); 188 189 if (prp == NULL || prp->pr_usrreqs->pru_attach == NULL || 190 prp->pr_usrreqs->pru_attach == pru_attach_notsupp) 191 return (EPROTONOSUPPORT); 192 193 if (jailed(cred) && jail_socket_unixiproute_only && 194 prp->pr_domain->dom_family != PF_LOCAL && 195 prp->pr_domain->dom_family != PF_INET && 196 prp->pr_domain->dom_family != PF_ROUTE) { 197 return (EPROTONOSUPPORT); 198 } 199 200 if (prp->pr_type != type) 201 return (EPROTOTYPE); 202 so = soalloc(M_WAITOK); 203 if (so == NULL) 204 return (ENOBUFS); 205 206 TAILQ_INIT(&so->so_incomp); 207 TAILQ_INIT(&so->so_comp); 208 so->so_type = type; 209 so->so_cred = crhold(cred); 210 so->so_proto = prp; 211 #ifdef MAC 212 mac_create_socket(cred, so); 213 #endif 214 knlist_init(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv), 215 NULL, NULL, NULL); 216 knlist_init(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd), 217 NULL, NULL, NULL); 218 so->so_count = 1; 219 error = (*prp->pr_usrreqs->pru_attach)(so, proto, td); 220 if (error) { 221 ACCEPT_LOCK(); 222 SOCK_LOCK(so); 223 so->so_state |= SS_NOFDREF; 224 sorele(so); 225 return (error); 226 } 227 *aso = so; 228 return (0); 229 } 230 231 int 232 sobind(so, nam, td) 233 struct socket *so; 234 struct sockaddr *nam; 235 struct thread *td; 236 { 237 238 return ((*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td)); 239 } 240 241 void 242 sodealloc(struct socket *so) 243 { 244 245 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); 246 mtx_lock(&so_global_mtx); 247 so->so_gencnt = ++so_gencnt; 248 mtx_unlock(&so_global_mtx); 249 if (so->so_rcv.sb_hiwat) 250 (void)chgsbsize(so->so_cred->cr_uidinfo, 251 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 252 if (so->so_snd.sb_hiwat) 253 (void)chgsbsize(so->so_cred->cr_uidinfo, 254 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 255 #ifdef INET 256 /* remove acccept filter if one is present. */ 257 if (so->so_accf != NULL) 258 do_setopt_accept_filter(so, NULL); 259 #endif 260 #ifdef MAC 261 mac_destroy_socket(so); 262 #endif 263 crfree(so->so_cred); 264 SOCKBUF_LOCK_DESTROY(&so->so_snd); 265 SOCKBUF_LOCK_DESTROY(&so->so_rcv); 266 uma_zfree(socket_zone, so); 267 mtx_lock(&so_global_mtx); 268 --numopensockets; 269 mtx_unlock(&so_global_mtx); 270 } 271 272 /* 273 * solisten() transitions a socket from a non-listening state to a listening 274 * state, but can also be used to update the listen queue depth on an 275 * existing listen socket. The protocol will call back into the sockets 276 * layer using solisten_proto_check() and solisten_proto() to check and set 277 * socket-layer listen state. Call backs are used so that the protocol can 278 * acquire both protocol and socket layer locks in whatever order is required 279 * by the protocol. 280 * 281 * Protocol implementors are advised to hold the socket lock across the 282 * socket-layer test and set to avoid races at the socket layer. 283 */ 284 int 285 solisten(so, backlog, td) 286 struct socket *so; 287 int backlog; 288 struct thread *td; 289 { 290 int error; 291 292 error = (*so->so_proto->pr_usrreqs->pru_listen)(so, td); 293 if (error) 294 return (error); 295 296 /* 297 * XXXRW: The following state adjustment should occur in 298 * solisten_proto(), but we don't currently pass the backlog request 299 * to the protocol via pru_listen(). 300 */ 301 if (backlog < 0 || backlog > somaxconn) 302 backlog = somaxconn; 303 so->so_qlimit = backlog; 304 return (0); 305 } 306 307 int 308 solisten_proto_check(so) 309 struct socket *so; 310 { 311 312 SOCK_LOCK_ASSERT(so); 313 314 if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 315 SS_ISDISCONNECTING)) 316 return (EINVAL); 317 return (0); 318 } 319 320 void 321 solisten_proto(so) 322 struct socket *so; 323 { 324 325 SOCK_LOCK_ASSERT(so); 326 327 so->so_options |= SO_ACCEPTCONN; 328 } 329 330 /* 331 * Attempt to free a socket. This should really be sotryfree(). 332 * 333 * We free the socket if the protocol is no longer interested in the socket, 334 * there's no file descriptor reference, and the refcount is 0. While the 335 * calling macro sotryfree() tests the refcount, sofree() has to test it 336 * again as it's possible to race with an accept()ing thread if the socket is 337 * in an listen queue of a listen socket, as being in the listen queue 338 * doesn't elevate the reference count. sofree() acquires the accept mutex 339 * early for this test in order to avoid that race. 340 */ 341 void 342 sofree(so) 343 struct socket *so; 344 { 345 struct socket *head; 346 347 ACCEPT_LOCK_ASSERT(); 348 SOCK_LOCK_ASSERT(so); 349 350 if (so->so_pcb != NULL || (so->so_state & SS_NOFDREF) == 0 || 351 so->so_count != 0) { 352 SOCK_UNLOCK(so); 353 ACCEPT_UNLOCK(); 354 return; 355 } 356 357 head = so->so_head; 358 if (head != NULL) { 359 KASSERT((so->so_qstate & SQ_COMP) != 0 || 360 (so->so_qstate & SQ_INCOMP) != 0, 361 ("sofree: so_head != NULL, but neither SQ_COMP nor " 362 "SQ_INCOMP")); 363 KASSERT((so->so_qstate & SQ_COMP) == 0 || 364 (so->so_qstate & SQ_INCOMP) == 0, 365 ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP")); 366 /* 367 * accept(2) is responsible draining the completed 368 * connection queue and freeing those sockets, so 369 * we just return here if this socket is currently 370 * on the completed connection queue. Otherwise, 371 * accept(2) may hang after select(2) has indicating 372 * that a listening socket was ready. If it's an 373 * incomplete connection, we remove it from the queue 374 * and free it; otherwise, it won't be released until 375 * the listening socket is closed. 376 */ 377 if ((so->so_qstate & SQ_COMP) != 0) { 378 SOCK_UNLOCK(so); 379 ACCEPT_UNLOCK(); 380 return; 381 } 382 TAILQ_REMOVE(&head->so_incomp, so, so_list); 383 head->so_incqlen--; 384 so->so_qstate &= ~SQ_INCOMP; 385 so->so_head = NULL; 386 } 387 KASSERT((so->so_qstate & SQ_COMP) == 0 && 388 (so->so_qstate & SQ_INCOMP) == 0, 389 ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)", 390 so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP)); 391 SOCK_UNLOCK(so); 392 ACCEPT_UNLOCK(); 393 SOCKBUF_LOCK(&so->so_snd); 394 so->so_snd.sb_flags |= SB_NOINTR; 395 (void)sblock(&so->so_snd, M_WAITOK); 396 /* 397 * socantsendmore_locked() drops the socket buffer mutex so that it 398 * can safely perform wakeups. Re-acquire the mutex before 399 * continuing. 400 */ 401 socantsendmore_locked(so); 402 SOCKBUF_LOCK(&so->so_snd); 403 sbunlock(&so->so_snd); 404 sbrelease_locked(&so->so_snd, so); 405 SOCKBUF_UNLOCK(&so->so_snd); 406 sorflush(so); 407 knlist_destroy(&so->so_rcv.sb_sel.si_note); 408 knlist_destroy(&so->so_snd.sb_sel.si_note); 409 sodealloc(so); 410 } 411 412 /* 413 * Close a socket on last file table reference removal. 414 * Initiate disconnect if connected. 415 * Free socket when disconnect complete. 416 * 417 * This function will sorele() the socket. Note that soclose() may be 418 * called prior to the ref count reaching zero. The actual socket 419 * structure will not be freed until the ref count reaches zero. 420 */ 421 int 422 soclose(so) 423 struct socket *so; 424 { 425 int error = 0; 426 427 KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter")); 428 429 funsetown(&so->so_sigio); 430 if (so->so_options & SO_ACCEPTCONN) { 431 struct socket *sp; 432 ACCEPT_LOCK(); 433 while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) { 434 TAILQ_REMOVE(&so->so_incomp, sp, so_list); 435 so->so_incqlen--; 436 sp->so_qstate &= ~SQ_INCOMP; 437 sp->so_head = NULL; 438 ACCEPT_UNLOCK(); 439 (void) soabort(sp); 440 ACCEPT_LOCK(); 441 } 442 while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) { 443 TAILQ_REMOVE(&so->so_comp, sp, so_list); 444 so->so_qlen--; 445 sp->so_qstate &= ~SQ_COMP; 446 sp->so_head = NULL; 447 ACCEPT_UNLOCK(); 448 (void) soabort(sp); 449 ACCEPT_LOCK(); 450 } 451 ACCEPT_UNLOCK(); 452 } 453 if (so->so_pcb == NULL) 454 goto discard; 455 if (so->so_state & SS_ISCONNECTED) { 456 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 457 error = sodisconnect(so); 458 if (error) 459 goto drop; 460 } 461 if (so->so_options & SO_LINGER) { 462 if ((so->so_state & SS_ISDISCONNECTING) && 463 (so->so_state & SS_NBIO)) 464 goto drop; 465 while (so->so_state & SS_ISCONNECTED) { 466 error = tsleep(&so->so_timeo, 467 PSOCK | PCATCH, "soclos", so->so_linger * hz); 468 if (error) 469 break; 470 } 471 } 472 } 473 drop: 474 if (so->so_pcb != NULL) { 475 int error2 = (*so->so_proto->pr_usrreqs->pru_detach)(so); 476 if (error == 0) 477 error = error2; 478 } 479 discard: 480 ACCEPT_LOCK(); 481 SOCK_LOCK(so); 482 KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF")); 483 so->so_state |= SS_NOFDREF; 484 sorele(so); 485 return (error); 486 } 487 488 /* 489 * soabort() must not be called with any socket locks held, as it calls 490 * into the protocol, which will call back into the socket code causing 491 * it to acquire additional socket locks that may cause recursion or lock 492 * order reversals. 493 */ 494 int 495 soabort(so) 496 struct socket *so; 497 { 498 int error; 499 500 error = (*so->so_proto->pr_usrreqs->pru_abort)(so); 501 if (error) { 502 ACCEPT_LOCK(); 503 SOCK_LOCK(so); 504 sotryfree(so); /* note: does not decrement the ref count */ 505 return error; 506 } 507 return (0); 508 } 509 510 int 511 soaccept(so, nam) 512 struct socket *so; 513 struct sockaddr **nam; 514 { 515 int error; 516 517 SOCK_LOCK(so); 518 KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF")); 519 so->so_state &= ~SS_NOFDREF; 520 SOCK_UNLOCK(so); 521 error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam); 522 return (error); 523 } 524 525 int 526 soconnect(so, nam, td) 527 struct socket *so; 528 struct sockaddr *nam; 529 struct thread *td; 530 { 531 int error; 532 533 if (so->so_options & SO_ACCEPTCONN) 534 return (EOPNOTSUPP); 535 /* 536 * If protocol is connection-based, can only connect once. 537 * Otherwise, if connected, try to disconnect first. 538 * This allows user to disconnect by connecting to, e.g., 539 * a null address. 540 */ 541 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 542 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 543 (error = sodisconnect(so)))) { 544 error = EISCONN; 545 } else { 546 /* 547 * Prevent accumulated error from previous connection 548 * from biting us. 549 */ 550 so->so_error = 0; 551 error = (*so->so_proto->pr_usrreqs->pru_connect)(so, nam, td); 552 } 553 554 return (error); 555 } 556 557 int 558 soconnect2(so1, so2) 559 struct socket *so1; 560 struct socket *so2; 561 { 562 563 return ((*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2)); 564 } 565 566 int 567 sodisconnect(so) 568 struct socket *so; 569 { 570 int error; 571 572 if ((so->so_state & SS_ISCONNECTED) == 0) 573 return (ENOTCONN); 574 if (so->so_state & SS_ISDISCONNECTING) 575 return (EALREADY); 576 error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so); 577 return (error); 578 } 579 580 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK) 581 /* 582 * Send on a socket. 583 * If send must go all at once and message is larger than 584 * send buffering, then hard error. 585 * Lock against other senders. 586 * If must go all at once and not enough room now, then 587 * inform user that this would block and do nothing. 588 * Otherwise, if nonblocking, send as much as possible. 589 * The data to be sent is described by "uio" if nonzero, 590 * otherwise by the mbuf chain "top" (which must be null 591 * if uio is not). Data provided in mbuf chain must be small 592 * enough to send all at once. 593 * 594 * Returns nonzero on error, timeout or signal; callers 595 * must check for short counts if EINTR/ERESTART are returned. 596 * Data and control buffers are freed on return. 597 */ 598 599 #ifdef ZERO_COPY_SOCKETS 600 struct so_zerocopy_stats{ 601 int size_ok; 602 int align_ok; 603 int found_ifp; 604 }; 605 struct so_zerocopy_stats so_zerocp_stats = {0,0,0}; 606 #include <netinet/in.h> 607 #include <net/route.h> 608 #include <netinet/in_pcb.h> 609 #include <vm/vm.h> 610 #include <vm/vm_page.h> 611 #include <vm/vm_object.h> 612 #endif /*ZERO_COPY_SOCKETS*/ 613 614 int 615 sosend(so, addr, uio, top, control, flags, td) 616 struct socket *so; 617 struct sockaddr *addr; 618 struct uio *uio; 619 struct mbuf *top; 620 struct mbuf *control; 621 int flags; 622 struct thread *td; 623 { 624 struct mbuf **mp; 625 struct mbuf *m; 626 long space, len = 0, resid; 627 int clen = 0, error, dontroute; 628 int atomic = sosendallatonce(so) || top; 629 #ifdef ZERO_COPY_SOCKETS 630 int cow_send; 631 #endif /* ZERO_COPY_SOCKETS */ 632 633 if (uio != NULL) 634 resid = uio->uio_resid; 635 else 636 resid = top->m_pkthdr.len; 637 /* 638 * In theory resid should be unsigned. 639 * However, space must be signed, as it might be less than 0 640 * if we over-committed, and we must use a signed comparison 641 * of space and resid. On the other hand, a negative resid 642 * causes us to loop sending 0-length segments to the protocol. 643 * 644 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 645 * type sockets since that's an error. 646 */ 647 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 648 error = EINVAL; 649 goto out; 650 } 651 652 dontroute = 653 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 654 (so->so_proto->pr_flags & PR_ATOMIC); 655 if (td != NULL) 656 td->td_proc->p_stats->p_ru.ru_msgsnd++; 657 if (control != NULL) 658 clen = control->m_len; 659 #define snderr(errno) { error = (errno); goto release; } 660 661 SOCKBUF_LOCK(&so->so_snd); 662 restart: 663 SOCKBUF_LOCK_ASSERT(&so->so_snd); 664 error = sblock(&so->so_snd, SBLOCKWAIT(flags)); 665 if (error) 666 goto out_locked; 667 do { 668 SOCKBUF_LOCK_ASSERT(&so->so_snd); 669 if (so->so_snd.sb_state & SBS_CANTSENDMORE) 670 snderr(EPIPE); 671 if (so->so_error) { 672 error = so->so_error; 673 so->so_error = 0; 674 goto release; 675 } 676 if ((so->so_state & SS_ISCONNECTED) == 0) { 677 /* 678 * `sendto' and `sendmsg' is allowed on a connection- 679 * based socket if it supports implied connect. 680 * Return ENOTCONN if not connected and no address is 681 * supplied. 682 */ 683 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 684 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 685 if ((so->so_state & SS_ISCONFIRMING) == 0 && 686 !(resid == 0 && clen != 0)) 687 snderr(ENOTCONN); 688 } else if (addr == NULL) 689 snderr(so->so_proto->pr_flags & PR_CONNREQUIRED ? 690 ENOTCONN : EDESTADDRREQ); 691 } 692 space = sbspace(&so->so_snd); 693 if (flags & MSG_OOB) 694 space += 1024; 695 if ((atomic && resid > so->so_snd.sb_hiwat) || 696 clen > so->so_snd.sb_hiwat) 697 snderr(EMSGSIZE); 698 if (space < resid + clen && 699 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 700 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) 701 snderr(EWOULDBLOCK); 702 sbunlock(&so->so_snd); 703 error = sbwait(&so->so_snd); 704 if (error) 705 goto out_locked; 706 goto restart; 707 } 708 SOCKBUF_UNLOCK(&so->so_snd); 709 mp = ⊤ 710 space -= clen; 711 do { 712 if (uio == NULL) { 713 /* 714 * Data is prepackaged in "top". 715 */ 716 resid = 0; 717 if (flags & MSG_EOR) 718 top->m_flags |= M_EOR; 719 } else do { 720 #ifdef ZERO_COPY_SOCKETS 721 cow_send = 0; 722 #endif /* ZERO_COPY_SOCKETS */ 723 if (resid >= MINCLSIZE) { 724 #ifdef ZERO_COPY_SOCKETS 725 if (top == NULL) { 726 MGETHDR(m, M_TRYWAIT, MT_DATA); 727 if (m == NULL) { 728 error = ENOBUFS; 729 SOCKBUF_LOCK(&so->so_snd); 730 goto release; 731 } 732 m->m_pkthdr.len = 0; 733 m->m_pkthdr.rcvif = NULL; 734 } else { 735 MGET(m, M_TRYWAIT, MT_DATA); 736 if (m == NULL) { 737 error = ENOBUFS; 738 SOCKBUF_LOCK(&so->so_snd); 739 goto release; 740 } 741 } 742 if (so_zero_copy_send && 743 resid>=PAGE_SIZE && 744 space>=PAGE_SIZE && 745 uio->uio_iov->iov_len>=PAGE_SIZE) { 746 so_zerocp_stats.size_ok++; 747 so_zerocp_stats.align_ok++; 748 cow_send = socow_setup(m, uio); 749 len = cow_send; 750 } 751 if (!cow_send) { 752 MCLGET(m, M_TRYWAIT); 753 if ((m->m_flags & M_EXT) == 0) { 754 m_free(m); 755 m = NULL; 756 } else { 757 len = min(min(MCLBYTES, resid), space); 758 } 759 } 760 #else /* ZERO_COPY_SOCKETS */ 761 if (top == NULL) { 762 m = m_getcl(M_TRYWAIT, MT_DATA, M_PKTHDR); 763 m->m_pkthdr.len = 0; 764 m->m_pkthdr.rcvif = NULL; 765 } else 766 m = m_getcl(M_TRYWAIT, MT_DATA, 0); 767 len = min(min(MCLBYTES, resid), space); 768 #endif /* ZERO_COPY_SOCKETS */ 769 } else { 770 if (top == NULL) { 771 m = m_gethdr(M_TRYWAIT, MT_DATA); 772 m->m_pkthdr.len = 0; 773 m->m_pkthdr.rcvif = NULL; 774 775 len = min(min(MHLEN, resid), space); 776 /* 777 * For datagram protocols, leave room 778 * for protocol headers in first mbuf. 779 */ 780 if (atomic && m && len < MHLEN) 781 MH_ALIGN(m, len); 782 } else { 783 m = m_get(M_TRYWAIT, MT_DATA); 784 len = min(min(MLEN, resid), space); 785 } 786 } 787 if (m == NULL) { 788 error = ENOBUFS; 789 SOCKBUF_LOCK(&so->so_snd); 790 goto release; 791 } 792 793 space -= len; 794 #ifdef ZERO_COPY_SOCKETS 795 if (cow_send) 796 error = 0; 797 else 798 #endif /* ZERO_COPY_SOCKETS */ 799 error = uiomove(mtod(m, void *), (int)len, uio); 800 resid = uio->uio_resid; 801 m->m_len = len; 802 *mp = m; 803 top->m_pkthdr.len += len; 804 if (error) { 805 SOCKBUF_LOCK(&so->so_snd); 806 goto release; 807 } 808 mp = &m->m_next; 809 if (resid <= 0) { 810 if (flags & MSG_EOR) 811 top->m_flags |= M_EOR; 812 break; 813 } 814 } while (space > 0 && atomic); 815 if (dontroute) { 816 SOCK_LOCK(so); 817 so->so_options |= SO_DONTROUTE; 818 SOCK_UNLOCK(so); 819 } 820 /* 821 * XXX all the SBS_CANTSENDMORE checks previously 822 * done could be out of date. We could have recieved 823 * a reset packet in an interrupt or maybe we slept 824 * while doing page faults in uiomove() etc. We could 825 * probably recheck again inside the locking protection 826 * here, but there are probably other places that this 827 * also happens. We must rethink this. 828 */ 829 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 830 (flags & MSG_OOB) ? PRUS_OOB : 831 /* 832 * If the user set MSG_EOF, the protocol 833 * understands this flag and nothing left to 834 * send then use PRU_SEND_EOF instead of PRU_SEND. 835 */ 836 ((flags & MSG_EOF) && 837 (so->so_proto->pr_flags & PR_IMPLOPCL) && 838 (resid <= 0)) ? 839 PRUS_EOF : 840 /* If there is more to send set PRUS_MORETOCOME */ 841 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 842 top, addr, control, td); 843 if (dontroute) { 844 SOCK_LOCK(so); 845 so->so_options &= ~SO_DONTROUTE; 846 SOCK_UNLOCK(so); 847 } 848 clen = 0; 849 control = NULL; 850 top = NULL; 851 mp = ⊤ 852 if (error) { 853 SOCKBUF_LOCK(&so->so_snd); 854 goto release; 855 } 856 } while (resid && space > 0); 857 SOCKBUF_LOCK(&so->so_snd); 858 } while (resid); 859 860 release: 861 SOCKBUF_LOCK_ASSERT(&so->so_snd); 862 sbunlock(&so->so_snd); 863 out_locked: 864 SOCKBUF_LOCK_ASSERT(&so->so_snd); 865 SOCKBUF_UNLOCK(&so->so_snd); 866 out: 867 if (top != NULL) 868 m_freem(top); 869 if (control != NULL) 870 m_freem(control); 871 return (error); 872 } 873 874 /* 875 * The part of soreceive() that implements reading non-inline out-of-band 876 * data from a socket. For more complete comments, see soreceive(), from 877 * which this code originated. 878 * 879 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is 880 * unable to return an mbuf chain to the caller. 881 */ 882 static int 883 soreceive_rcvoob(so, uio, flags) 884 struct socket *so; 885 struct uio *uio; 886 int flags; 887 { 888 struct protosw *pr = so->so_proto; 889 struct mbuf *m; 890 int error; 891 892 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); 893 894 m = m_get(M_TRYWAIT, MT_DATA); 895 if (m == NULL) 896 return (ENOBUFS); 897 error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK); 898 if (error) 899 goto bad; 900 do { 901 #ifdef ZERO_COPY_SOCKETS 902 if (so_zero_copy_receive) { 903 int disposable; 904 905 if ((m->m_flags & M_EXT) 906 && (m->m_ext.ext_type == EXT_DISPOSABLE)) 907 disposable = 1; 908 else 909 disposable = 0; 910 911 error = uiomoveco(mtod(m, void *), 912 min(uio->uio_resid, m->m_len), 913 uio, disposable); 914 } else 915 #endif /* ZERO_COPY_SOCKETS */ 916 error = uiomove(mtod(m, void *), 917 (int) min(uio->uio_resid, m->m_len), uio); 918 m = m_free(m); 919 } while (uio->uio_resid && error == 0 && m); 920 bad: 921 if (m != NULL) 922 m_freem(m); 923 return (error); 924 } 925 926 /* 927 * Following replacement or removal of the first mbuf on the first mbuf chain 928 * of a socket buffer, push necessary state changes back into the socket 929 * buffer so that other consumers see the values consistently. 'nextrecord' 930 * is the callers locally stored value of the original value of 931 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. 932 * NOTE: 'nextrecord' may be NULL. 933 */ 934 static __inline void 935 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) 936 { 937 938 SOCKBUF_LOCK_ASSERT(sb); 939 /* 940 * First, update for the new value of nextrecord. If necessary, make 941 * it the first record. 942 */ 943 if (sb->sb_mb != NULL) 944 sb->sb_mb->m_nextpkt = nextrecord; 945 else 946 sb->sb_mb = nextrecord; 947 948 /* 949 * Now update any dependent socket buffer fields to reflect the new 950 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the 951 * addition of a second clause that takes care of the case where 952 * sb_mb has been updated, but remains the last record. 953 */ 954 if (sb->sb_mb == NULL) { 955 sb->sb_mbtail = NULL; 956 sb->sb_lastrecord = NULL; 957 } else if (sb->sb_mb->m_nextpkt == NULL) 958 sb->sb_lastrecord = sb->sb_mb; 959 } 960 961 962 /* 963 * Implement receive operations on a socket. 964 * We depend on the way that records are added to the sockbuf 965 * by sbappend*. In particular, each record (mbufs linked through m_next) 966 * must begin with an address if the protocol so specifies, 967 * followed by an optional mbuf or mbufs containing ancillary data, 968 * and then zero or more mbufs of data. 969 * In order to avoid blocking network interrupts for the entire time here, 970 * we splx() while doing the actual copy to user space. 971 * Although the sockbuf is locked, new data may still be appended, 972 * and thus we must maintain consistency of the sockbuf during that time. 973 * 974 * The caller may receive the data as a single mbuf chain by supplying 975 * an mbuf **mp0 for use in returning the chain. The uio is then used 976 * only for the count in uio_resid. 977 */ 978 int 979 soreceive(so, psa, uio, mp0, controlp, flagsp) 980 struct socket *so; 981 struct sockaddr **psa; 982 struct uio *uio; 983 struct mbuf **mp0; 984 struct mbuf **controlp; 985 int *flagsp; 986 { 987 struct mbuf *m, **mp; 988 int flags, len, error, offset; 989 struct protosw *pr = so->so_proto; 990 struct mbuf *nextrecord; 991 int moff, type = 0; 992 int orig_resid = uio->uio_resid; 993 994 mp = mp0; 995 if (psa != NULL) 996 *psa = NULL; 997 if (controlp != NULL) 998 *controlp = NULL; 999 if (flagsp != NULL) 1000 flags = *flagsp &~ MSG_EOR; 1001 else 1002 flags = 0; 1003 if (flags & MSG_OOB) 1004 return (soreceive_rcvoob(so, uio, flags)); 1005 if (mp != NULL) 1006 *mp = NULL; 1007 if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING) 1008 && uio->uio_resid) 1009 (*pr->pr_usrreqs->pru_rcvd)(so, 0); 1010 1011 SOCKBUF_LOCK(&so->so_rcv); 1012 restart: 1013 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1014 error = sblock(&so->so_rcv, SBLOCKWAIT(flags)); 1015 if (error) 1016 goto out; 1017 1018 m = so->so_rcv.sb_mb; 1019 /* 1020 * If we have less data than requested, block awaiting more 1021 * (subject to any timeout) if: 1022 * 1. the current count is less than the low water mark, or 1023 * 2. MSG_WAITALL is set, and it is possible to do the entire 1024 * receive operation at once if we block (resid <= hiwat). 1025 * 3. MSG_DONTWAIT is not set 1026 * If MSG_WAITALL is set but resid is larger than the receive buffer, 1027 * we have to do the receive in sections, and thus risk returning 1028 * a short count if a timeout or signal occurs after we start. 1029 */ 1030 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 1031 so->so_rcv.sb_cc < uio->uio_resid) && 1032 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat || 1033 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) && 1034 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 1035 KASSERT(m != NULL || !so->so_rcv.sb_cc, 1036 ("receive: m == %p so->so_rcv.sb_cc == %u", 1037 m, so->so_rcv.sb_cc)); 1038 if (so->so_error) { 1039 if (m != NULL) 1040 goto dontblock; 1041 error = so->so_error; 1042 if ((flags & MSG_PEEK) == 0) 1043 so->so_error = 0; 1044 goto release; 1045 } 1046 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1047 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 1048 if (m) 1049 goto dontblock; 1050 else 1051 goto release; 1052 } 1053 for (; m != NULL; m = m->m_next) 1054 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 1055 m = so->so_rcv.sb_mb; 1056 goto dontblock; 1057 } 1058 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 1059 (so->so_proto->pr_flags & PR_CONNREQUIRED)) { 1060 error = ENOTCONN; 1061 goto release; 1062 } 1063 if (uio->uio_resid == 0) 1064 goto release; 1065 if ((so->so_state & SS_NBIO) || 1066 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 1067 error = EWOULDBLOCK; 1068 goto release; 1069 } 1070 SBLASTRECORDCHK(&so->so_rcv); 1071 SBLASTMBUFCHK(&so->so_rcv); 1072 sbunlock(&so->so_rcv); 1073 error = sbwait(&so->so_rcv); 1074 if (error) 1075 goto out; 1076 goto restart; 1077 } 1078 dontblock: 1079 /* 1080 * From this point onward, we maintain 'nextrecord' as a cache of the 1081 * pointer to the next record in the socket buffer. We must keep the 1082 * various socket buffer pointers and local stack versions of the 1083 * pointers in sync, pushing out modifications before dropping the 1084 * socket buffer mutex, and re-reading them when picking it up. 1085 * 1086 * Otherwise, we will race with the network stack appending new data 1087 * or records onto the socket buffer by using inconsistent/stale 1088 * versions of the field, possibly resulting in socket buffer 1089 * corruption. 1090 * 1091 * By holding the high-level sblock(), we prevent simultaneous 1092 * readers from pulling off the front of the socket buffer. 1093 */ 1094 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1095 if (uio->uio_td) 1096 uio->uio_td->td_proc->p_stats->p_ru.ru_msgrcv++; 1097 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); 1098 SBLASTRECORDCHK(&so->so_rcv); 1099 SBLASTMBUFCHK(&so->so_rcv); 1100 nextrecord = m->m_nextpkt; 1101 if (pr->pr_flags & PR_ADDR) { 1102 KASSERT(m->m_type == MT_SONAME, 1103 ("m->m_type == %d", m->m_type)); 1104 orig_resid = 0; 1105 if (psa != NULL) 1106 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 1107 M_NOWAIT); 1108 if (flags & MSG_PEEK) { 1109 m = m->m_next; 1110 } else { 1111 sbfree(&so->so_rcv, m); 1112 so->so_rcv.sb_mb = m_free(m); 1113 m = so->so_rcv.sb_mb; 1114 sockbuf_pushsync(&so->so_rcv, nextrecord); 1115 } 1116 } 1117 1118 /* 1119 * Process one or more MT_CONTROL mbufs present before any data mbufs 1120 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 1121 * just copy the data; if !MSG_PEEK, we call into the protocol to 1122 * perform externalization (or freeing if controlp == NULL). 1123 */ 1124 if (m != NULL && m->m_type == MT_CONTROL) { 1125 struct mbuf *cm = NULL, *cmn; 1126 struct mbuf **cme = &cm; 1127 1128 do { 1129 if (flags & MSG_PEEK) { 1130 if (controlp != NULL) { 1131 *controlp = m_copy(m, 0, m->m_len); 1132 controlp = &(*controlp)->m_next; 1133 } 1134 m = m->m_next; 1135 } else { 1136 sbfree(&so->so_rcv, m); 1137 so->so_rcv.sb_mb = m->m_next; 1138 m->m_next = NULL; 1139 *cme = m; 1140 cme = &(*cme)->m_next; 1141 m = so->so_rcv.sb_mb; 1142 } 1143 } while (m != NULL && m->m_type == MT_CONTROL); 1144 if ((flags & MSG_PEEK) == 0) 1145 sockbuf_pushsync(&so->so_rcv, nextrecord); 1146 while (cm != NULL) { 1147 cmn = cm->m_next; 1148 cm->m_next = NULL; 1149 if (pr->pr_domain->dom_externalize != NULL) { 1150 SOCKBUF_UNLOCK(&so->so_rcv); 1151 error = (*pr->pr_domain->dom_externalize) 1152 (cm, controlp); 1153 SOCKBUF_LOCK(&so->so_rcv); 1154 } else if (controlp != NULL) 1155 *controlp = cm; 1156 else 1157 m_freem(cm); 1158 if (controlp != NULL) { 1159 orig_resid = 0; 1160 while (*controlp != NULL) 1161 controlp = &(*controlp)->m_next; 1162 } 1163 cm = cmn; 1164 } 1165 if (so->so_rcv.sb_mb) 1166 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 1167 else 1168 nextrecord = NULL; 1169 orig_resid = 0; 1170 } 1171 if (m != NULL) { 1172 if ((flags & MSG_PEEK) == 0) { 1173 KASSERT(m->m_nextpkt == nextrecord, 1174 ("soreceive: post-control, nextrecord !sync")); 1175 if (nextrecord == NULL) { 1176 KASSERT(so->so_rcv.sb_mb == m, 1177 ("soreceive: post-control, sb_mb!=m")); 1178 KASSERT(so->so_rcv.sb_lastrecord == m, 1179 ("soreceive: post-control, lastrecord!=m")); 1180 } 1181 } 1182 type = m->m_type; 1183 if (type == MT_OOBDATA) 1184 flags |= MSG_OOB; 1185 } else { 1186 if ((flags & MSG_PEEK) == 0) { 1187 KASSERT(so->so_rcv.sb_mb == nextrecord, 1188 ("soreceive: sb_mb != nextrecord")); 1189 if (so->so_rcv.sb_mb == NULL) { 1190 KASSERT(so->so_rcv.sb_lastrecord == NULL, 1191 ("soreceive: sb_lastercord != NULL")); 1192 } 1193 } 1194 } 1195 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1196 SBLASTRECORDCHK(&so->so_rcv); 1197 SBLASTMBUFCHK(&so->so_rcv); 1198 1199 /* 1200 * Now continue to read any data mbufs off of the head of the socket 1201 * buffer until the read request is satisfied. Note that 'type' is 1202 * used to store the type of any mbuf reads that have happened so far 1203 * such that soreceive() can stop reading if the type changes, which 1204 * causes soreceive() to return only one of regular data and inline 1205 * out-of-band data in a single socket receive operation. 1206 */ 1207 moff = 0; 1208 offset = 0; 1209 while (m != NULL && uio->uio_resid > 0 && error == 0) { 1210 /* 1211 * If the type of mbuf has changed since the last mbuf 1212 * examined ('type'), end the receive operation. 1213 */ 1214 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1215 if (m->m_type == MT_OOBDATA) { 1216 if (type != MT_OOBDATA) 1217 break; 1218 } else if (type == MT_OOBDATA) 1219 break; 1220 else 1221 KASSERT(m->m_type == MT_DATA || m->m_type == MT_HEADER, 1222 ("m->m_type == %d", m->m_type)); 1223 so->so_rcv.sb_state &= ~SBS_RCVATMARK; 1224 len = uio->uio_resid; 1225 if (so->so_oobmark && len > so->so_oobmark - offset) 1226 len = so->so_oobmark - offset; 1227 if (len > m->m_len - moff) 1228 len = m->m_len - moff; 1229 /* 1230 * If mp is set, just pass back the mbufs. 1231 * Otherwise copy them out via the uio, then free. 1232 * Sockbuf must be consistent here (points to current mbuf, 1233 * it points to next record) when we drop priority; 1234 * we must note any additions to the sockbuf when we 1235 * block interrupts again. 1236 */ 1237 if (mp == NULL) { 1238 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1239 SBLASTRECORDCHK(&so->so_rcv); 1240 SBLASTMBUFCHK(&so->so_rcv); 1241 SOCKBUF_UNLOCK(&so->so_rcv); 1242 #ifdef ZERO_COPY_SOCKETS 1243 if (so_zero_copy_receive) { 1244 int disposable; 1245 1246 if ((m->m_flags & M_EXT) 1247 && (m->m_ext.ext_type == EXT_DISPOSABLE)) 1248 disposable = 1; 1249 else 1250 disposable = 0; 1251 1252 error = uiomoveco(mtod(m, char *) + moff, 1253 (int)len, uio, 1254 disposable); 1255 } else 1256 #endif /* ZERO_COPY_SOCKETS */ 1257 error = uiomove(mtod(m, char *) + moff, (int)len, uio); 1258 SOCKBUF_LOCK(&so->so_rcv); 1259 if (error) 1260 goto release; 1261 } else 1262 uio->uio_resid -= len; 1263 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1264 if (len == m->m_len - moff) { 1265 if (m->m_flags & M_EOR) 1266 flags |= MSG_EOR; 1267 if (flags & MSG_PEEK) { 1268 m = m->m_next; 1269 moff = 0; 1270 } else { 1271 nextrecord = m->m_nextpkt; 1272 sbfree(&so->so_rcv, m); 1273 if (mp != NULL) { 1274 *mp = m; 1275 mp = &m->m_next; 1276 so->so_rcv.sb_mb = m = m->m_next; 1277 *mp = NULL; 1278 } else { 1279 so->so_rcv.sb_mb = m_free(m); 1280 m = so->so_rcv.sb_mb; 1281 } 1282 sockbuf_pushsync(&so->so_rcv, nextrecord); 1283 SBLASTRECORDCHK(&so->so_rcv); 1284 SBLASTMBUFCHK(&so->so_rcv); 1285 } 1286 } else { 1287 if (flags & MSG_PEEK) 1288 moff += len; 1289 else { 1290 if (mp != NULL) { 1291 int copy_flag; 1292 1293 if (flags & MSG_DONTWAIT) 1294 copy_flag = M_DONTWAIT; 1295 else 1296 copy_flag = M_TRYWAIT; 1297 if (copy_flag == M_TRYWAIT) 1298 SOCKBUF_UNLOCK(&so->so_rcv); 1299 *mp = m_copym(m, 0, len, copy_flag); 1300 if (copy_flag == M_TRYWAIT) 1301 SOCKBUF_LOCK(&so->so_rcv); 1302 if (*mp == NULL) { 1303 /* 1304 * m_copym() couldn't allocate an mbuf. 1305 * Adjust uio_resid back (it was adjusted 1306 * down by len bytes, which we didn't end 1307 * up "copying" over). 1308 */ 1309 uio->uio_resid += len; 1310 break; 1311 } 1312 } 1313 m->m_data += len; 1314 m->m_len -= len; 1315 so->so_rcv.sb_cc -= len; 1316 } 1317 } 1318 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1319 if (so->so_oobmark) { 1320 if ((flags & MSG_PEEK) == 0) { 1321 so->so_oobmark -= len; 1322 if (so->so_oobmark == 0) { 1323 so->so_rcv.sb_state |= SBS_RCVATMARK; 1324 break; 1325 } 1326 } else { 1327 offset += len; 1328 if (offset == so->so_oobmark) 1329 break; 1330 } 1331 } 1332 if (flags & MSG_EOR) 1333 break; 1334 /* 1335 * If the MSG_WAITALL flag is set (for non-atomic socket), 1336 * we must not quit until "uio->uio_resid == 0" or an error 1337 * termination. If a signal/timeout occurs, return 1338 * with a short count but without error. 1339 * Keep sockbuf locked against other readers. 1340 */ 1341 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 1342 !sosendallatonce(so) && nextrecord == NULL) { 1343 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1344 if (so->so_error || so->so_rcv.sb_state & SBS_CANTRCVMORE) 1345 break; 1346 /* 1347 * Notify the protocol that some data has been 1348 * drained before blocking. 1349 */ 1350 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb != NULL) { 1351 SOCKBUF_UNLOCK(&so->so_rcv); 1352 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 1353 SOCKBUF_LOCK(&so->so_rcv); 1354 } 1355 SBLASTRECORDCHK(&so->so_rcv); 1356 SBLASTMBUFCHK(&so->so_rcv); 1357 error = sbwait(&so->so_rcv); 1358 if (error) 1359 goto release; 1360 m = so->so_rcv.sb_mb; 1361 if (m != NULL) 1362 nextrecord = m->m_nextpkt; 1363 } 1364 } 1365 1366 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1367 if (m != NULL && pr->pr_flags & PR_ATOMIC) { 1368 flags |= MSG_TRUNC; 1369 if ((flags & MSG_PEEK) == 0) 1370 (void) sbdroprecord_locked(&so->so_rcv); 1371 } 1372 if ((flags & MSG_PEEK) == 0) { 1373 if (m == NULL) { 1374 /* 1375 * First part is an inline SB_EMPTY_FIXUP(). Second 1376 * part makes sure sb_lastrecord is up-to-date if 1377 * there is still data in the socket buffer. 1378 */ 1379 so->so_rcv.sb_mb = nextrecord; 1380 if (so->so_rcv.sb_mb == NULL) { 1381 so->so_rcv.sb_mbtail = NULL; 1382 so->so_rcv.sb_lastrecord = NULL; 1383 } else if (nextrecord->m_nextpkt == NULL) 1384 so->so_rcv.sb_lastrecord = nextrecord; 1385 } 1386 SBLASTRECORDCHK(&so->so_rcv); 1387 SBLASTMBUFCHK(&so->so_rcv); 1388 /* 1389 * If soreceive() is being done from the socket callback, then 1390 * don't need to generate ACK to peer to update window, since 1391 * ACK will be generated on return to TCP. 1392 */ 1393 if (!(flags & MSG_SOCALLBCK) && 1394 (pr->pr_flags & PR_WANTRCVD) && so->so_pcb) { 1395 SOCKBUF_UNLOCK(&so->so_rcv); 1396 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 1397 SOCKBUF_LOCK(&so->so_rcv); 1398 } 1399 } 1400 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1401 if (orig_resid == uio->uio_resid && orig_resid && 1402 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { 1403 sbunlock(&so->so_rcv); 1404 goto restart; 1405 } 1406 1407 if (flagsp != NULL) 1408 *flagsp |= flags; 1409 release: 1410 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1411 sbunlock(&so->so_rcv); 1412 out: 1413 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1414 SOCKBUF_UNLOCK(&so->so_rcv); 1415 return (error); 1416 } 1417 1418 int 1419 soshutdown(so, how) 1420 struct socket *so; 1421 int how; 1422 { 1423 struct protosw *pr = so->so_proto; 1424 1425 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 1426 return (EINVAL); 1427 1428 if (how != SHUT_WR) 1429 sorflush(so); 1430 if (how != SHUT_RD) 1431 return ((*pr->pr_usrreqs->pru_shutdown)(so)); 1432 return (0); 1433 } 1434 1435 void 1436 sorflush(so) 1437 struct socket *so; 1438 { 1439 struct sockbuf *sb = &so->so_rcv; 1440 struct protosw *pr = so->so_proto; 1441 struct sockbuf asb; 1442 1443 /* 1444 * XXXRW: This is quite ugly. Previously, this code made a copy of 1445 * the socket buffer, then zero'd the original to clear the buffer 1446 * fields. However, with mutexes in the socket buffer, this causes 1447 * problems. We only clear the zeroable bits of the original; 1448 * however, we have to initialize and destroy the mutex in the copy 1449 * so that dom_dispose() and sbrelease() can lock t as needed. 1450 */ 1451 SOCKBUF_LOCK(sb); 1452 sb->sb_flags |= SB_NOINTR; 1453 (void) sblock(sb, M_WAITOK); 1454 /* 1455 * socantrcvmore_locked() drops the socket buffer mutex so that it 1456 * can safely perform wakeups. Re-acquire the mutex before 1457 * continuing. 1458 */ 1459 socantrcvmore_locked(so); 1460 SOCKBUF_LOCK(sb); 1461 sbunlock(sb); 1462 /* 1463 * Invalidate/clear most of the sockbuf structure, but leave 1464 * selinfo and mutex data unchanged. 1465 */ 1466 bzero(&asb, offsetof(struct sockbuf, sb_startzero)); 1467 bcopy(&sb->sb_startzero, &asb.sb_startzero, 1468 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 1469 bzero(&sb->sb_startzero, 1470 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 1471 SOCKBUF_UNLOCK(sb); 1472 1473 SOCKBUF_LOCK_INIT(&asb, "so_rcv"); 1474 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 1475 (*pr->pr_domain->dom_dispose)(asb.sb_mb); 1476 sbrelease(&asb, so); 1477 SOCKBUF_LOCK_DESTROY(&asb); 1478 } 1479 1480 /* 1481 * Perhaps this routine, and sooptcopyout(), below, ought to come in 1482 * an additional variant to handle the case where the option value needs 1483 * to be some kind of integer, but not a specific size. 1484 * In addition to their use here, these functions are also called by the 1485 * protocol-level pr_ctloutput() routines. 1486 */ 1487 int 1488 sooptcopyin(sopt, buf, len, minlen) 1489 struct sockopt *sopt; 1490 void *buf; 1491 size_t len; 1492 size_t minlen; 1493 { 1494 size_t valsize; 1495 1496 /* 1497 * If the user gives us more than we wanted, we ignore it, 1498 * but if we don't get the minimum length the caller 1499 * wants, we return EINVAL. On success, sopt->sopt_valsize 1500 * is set to however much we actually retrieved. 1501 */ 1502 if ((valsize = sopt->sopt_valsize) < minlen) 1503 return EINVAL; 1504 if (valsize > len) 1505 sopt->sopt_valsize = valsize = len; 1506 1507 if (sopt->sopt_td != NULL) 1508 return (copyin(sopt->sopt_val, buf, valsize)); 1509 1510 bcopy(sopt->sopt_val, buf, valsize); 1511 return 0; 1512 } 1513 1514 /* 1515 * Kernel version of setsockopt(2)/ 1516 * XXX: optlen is size_t, not socklen_t 1517 */ 1518 int 1519 so_setsockopt(struct socket *so, int level, int optname, void *optval, 1520 size_t optlen) 1521 { 1522 struct sockopt sopt; 1523 1524 sopt.sopt_level = level; 1525 sopt.sopt_name = optname; 1526 sopt.sopt_dir = SOPT_SET; 1527 sopt.sopt_val = optval; 1528 sopt.sopt_valsize = optlen; 1529 sopt.sopt_td = NULL; 1530 return (sosetopt(so, &sopt)); 1531 } 1532 1533 int 1534 sosetopt(so, sopt) 1535 struct socket *so; 1536 struct sockopt *sopt; 1537 { 1538 int error, optval; 1539 struct linger l; 1540 struct timeval tv; 1541 u_long val; 1542 #ifdef MAC 1543 struct mac extmac; 1544 #endif 1545 1546 error = 0; 1547 if (sopt->sopt_level != SOL_SOCKET) { 1548 if (so->so_proto && so->so_proto->pr_ctloutput) 1549 return ((*so->so_proto->pr_ctloutput) 1550 (so, sopt)); 1551 error = ENOPROTOOPT; 1552 } else { 1553 switch (sopt->sopt_name) { 1554 #ifdef INET 1555 case SO_ACCEPTFILTER: 1556 error = do_setopt_accept_filter(so, sopt); 1557 if (error) 1558 goto bad; 1559 break; 1560 #endif 1561 case SO_LINGER: 1562 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 1563 if (error) 1564 goto bad; 1565 1566 SOCK_LOCK(so); 1567 so->so_linger = l.l_linger; 1568 if (l.l_onoff) 1569 so->so_options |= SO_LINGER; 1570 else 1571 so->so_options &= ~SO_LINGER; 1572 SOCK_UNLOCK(so); 1573 break; 1574 1575 case SO_DEBUG: 1576 case SO_KEEPALIVE: 1577 case SO_DONTROUTE: 1578 case SO_USELOOPBACK: 1579 case SO_BROADCAST: 1580 case SO_REUSEADDR: 1581 case SO_REUSEPORT: 1582 case SO_OOBINLINE: 1583 case SO_TIMESTAMP: 1584 case SO_BINTIME: 1585 case SO_NOSIGPIPE: 1586 error = sooptcopyin(sopt, &optval, sizeof optval, 1587 sizeof optval); 1588 if (error) 1589 goto bad; 1590 SOCK_LOCK(so); 1591 if (optval) 1592 so->so_options |= sopt->sopt_name; 1593 else 1594 so->so_options &= ~sopt->sopt_name; 1595 SOCK_UNLOCK(so); 1596 break; 1597 1598 case SO_SNDBUF: 1599 case SO_RCVBUF: 1600 case SO_SNDLOWAT: 1601 case SO_RCVLOWAT: 1602 error = sooptcopyin(sopt, &optval, sizeof optval, 1603 sizeof optval); 1604 if (error) 1605 goto bad; 1606 1607 /* 1608 * Values < 1 make no sense for any of these 1609 * options, so disallow them. 1610 */ 1611 if (optval < 1) { 1612 error = EINVAL; 1613 goto bad; 1614 } 1615 1616 switch (sopt->sopt_name) { 1617 case SO_SNDBUF: 1618 case SO_RCVBUF: 1619 if (sbreserve(sopt->sopt_name == SO_SNDBUF ? 1620 &so->so_snd : &so->so_rcv, (u_long)optval, 1621 so, curthread) == 0) { 1622 error = ENOBUFS; 1623 goto bad; 1624 } 1625 break; 1626 1627 /* 1628 * Make sure the low-water is never greater than 1629 * the high-water. 1630 */ 1631 case SO_SNDLOWAT: 1632 SOCKBUF_LOCK(&so->so_snd); 1633 so->so_snd.sb_lowat = 1634 (optval > so->so_snd.sb_hiwat) ? 1635 so->so_snd.sb_hiwat : optval; 1636 SOCKBUF_UNLOCK(&so->so_snd); 1637 break; 1638 case SO_RCVLOWAT: 1639 SOCKBUF_LOCK(&so->so_rcv); 1640 so->so_rcv.sb_lowat = 1641 (optval > so->so_rcv.sb_hiwat) ? 1642 so->so_rcv.sb_hiwat : optval; 1643 SOCKBUF_UNLOCK(&so->so_rcv); 1644 break; 1645 } 1646 break; 1647 1648 case SO_SNDTIMEO: 1649 case SO_RCVTIMEO: 1650 error = sooptcopyin(sopt, &tv, sizeof tv, 1651 sizeof tv); 1652 if (error) 1653 goto bad; 1654 1655 /* assert(hz > 0); */ 1656 if (tv.tv_sec < 0 || tv.tv_sec > INT_MAX / hz || 1657 tv.tv_usec < 0 || tv.tv_usec >= 1000000) { 1658 error = EDOM; 1659 goto bad; 1660 } 1661 /* assert(tick > 0); */ 1662 /* assert(ULONG_MAX - INT_MAX >= 1000000); */ 1663 val = (u_long)(tv.tv_sec * hz) + tv.tv_usec / tick; 1664 if (val > INT_MAX) { 1665 error = EDOM; 1666 goto bad; 1667 } 1668 if (val == 0 && tv.tv_usec != 0) 1669 val = 1; 1670 1671 switch (sopt->sopt_name) { 1672 case SO_SNDTIMEO: 1673 so->so_snd.sb_timeo = val; 1674 break; 1675 case SO_RCVTIMEO: 1676 so->so_rcv.sb_timeo = val; 1677 break; 1678 } 1679 break; 1680 1681 case SO_LABEL: 1682 #ifdef MAC 1683 error = sooptcopyin(sopt, &extmac, sizeof extmac, 1684 sizeof extmac); 1685 if (error) 1686 goto bad; 1687 error = mac_setsockopt_label(sopt->sopt_td->td_ucred, 1688 so, &extmac); 1689 #else 1690 error = EOPNOTSUPP; 1691 #endif 1692 break; 1693 1694 default: 1695 error = ENOPROTOOPT; 1696 break; 1697 } 1698 if (error == 0 && so->so_proto != NULL && 1699 so->so_proto->pr_ctloutput != NULL) { 1700 (void) ((*so->so_proto->pr_ctloutput) 1701 (so, sopt)); 1702 } 1703 } 1704 bad: 1705 return (error); 1706 } 1707 1708 /* Helper routine for getsockopt */ 1709 int 1710 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 1711 { 1712 int error; 1713 size_t valsize; 1714 1715 error = 0; 1716 1717 /* 1718 * Documented get behavior is that we always return a value, 1719 * possibly truncated to fit in the user's buffer. 1720 * Traditional behavior is that we always tell the user 1721 * precisely how much we copied, rather than something useful 1722 * like the total amount we had available for her. 1723 * Note that this interface is not idempotent; the entire answer must 1724 * generated ahead of time. 1725 */ 1726 valsize = min(len, sopt->sopt_valsize); 1727 sopt->sopt_valsize = valsize; 1728 if (sopt->sopt_val != NULL) { 1729 if (sopt->sopt_td != NULL) 1730 error = copyout(buf, sopt->sopt_val, valsize); 1731 else 1732 bcopy(buf, sopt->sopt_val, valsize); 1733 } 1734 return error; 1735 } 1736 1737 int 1738 sogetopt(so, sopt) 1739 struct socket *so; 1740 struct sockopt *sopt; 1741 { 1742 int error, optval; 1743 struct linger l; 1744 struct timeval tv; 1745 #ifdef MAC 1746 struct mac extmac; 1747 #endif 1748 1749 error = 0; 1750 if (sopt->sopt_level != SOL_SOCKET) { 1751 if (so->so_proto && so->so_proto->pr_ctloutput) { 1752 return ((*so->so_proto->pr_ctloutput) 1753 (so, sopt)); 1754 } else 1755 return (ENOPROTOOPT); 1756 } else { 1757 switch (sopt->sopt_name) { 1758 #ifdef INET 1759 case SO_ACCEPTFILTER: 1760 error = do_getopt_accept_filter(so, sopt); 1761 break; 1762 #endif 1763 case SO_LINGER: 1764 SOCK_LOCK(so); 1765 l.l_onoff = so->so_options & SO_LINGER; 1766 l.l_linger = so->so_linger; 1767 SOCK_UNLOCK(so); 1768 error = sooptcopyout(sopt, &l, sizeof l); 1769 break; 1770 1771 case SO_USELOOPBACK: 1772 case SO_DONTROUTE: 1773 case SO_DEBUG: 1774 case SO_KEEPALIVE: 1775 case SO_REUSEADDR: 1776 case SO_REUSEPORT: 1777 case SO_BROADCAST: 1778 case SO_OOBINLINE: 1779 case SO_ACCEPTCONN: 1780 case SO_TIMESTAMP: 1781 case SO_BINTIME: 1782 case SO_NOSIGPIPE: 1783 optval = so->so_options & sopt->sopt_name; 1784 integer: 1785 error = sooptcopyout(sopt, &optval, sizeof optval); 1786 break; 1787 1788 case SO_TYPE: 1789 optval = so->so_type; 1790 goto integer; 1791 1792 case SO_ERROR: 1793 optval = so->so_error; 1794 so->so_error = 0; 1795 goto integer; 1796 1797 case SO_SNDBUF: 1798 optval = so->so_snd.sb_hiwat; 1799 goto integer; 1800 1801 case SO_RCVBUF: 1802 optval = so->so_rcv.sb_hiwat; 1803 goto integer; 1804 1805 case SO_SNDLOWAT: 1806 optval = so->so_snd.sb_lowat; 1807 goto integer; 1808 1809 case SO_RCVLOWAT: 1810 optval = so->so_rcv.sb_lowat; 1811 goto integer; 1812 1813 case SO_SNDTIMEO: 1814 case SO_RCVTIMEO: 1815 optval = (sopt->sopt_name == SO_SNDTIMEO ? 1816 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 1817 1818 tv.tv_sec = optval / hz; 1819 tv.tv_usec = (optval % hz) * tick; 1820 error = sooptcopyout(sopt, &tv, sizeof tv); 1821 break; 1822 1823 case SO_LABEL: 1824 #ifdef MAC 1825 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 1826 sizeof(extmac)); 1827 if (error) 1828 return (error); 1829 error = mac_getsockopt_label(sopt->sopt_td->td_ucred, 1830 so, &extmac); 1831 if (error) 1832 return (error); 1833 error = sooptcopyout(sopt, &extmac, sizeof extmac); 1834 #else 1835 error = EOPNOTSUPP; 1836 #endif 1837 break; 1838 1839 case SO_PEERLABEL: 1840 #ifdef MAC 1841 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 1842 sizeof(extmac)); 1843 if (error) 1844 return (error); 1845 error = mac_getsockopt_peerlabel( 1846 sopt->sopt_td->td_ucred, so, &extmac); 1847 if (error) 1848 return (error); 1849 error = sooptcopyout(sopt, &extmac, sizeof extmac); 1850 #else 1851 error = EOPNOTSUPP; 1852 #endif 1853 break; 1854 1855 case SO_LISTENQLIMIT: 1856 optval = so->so_qlimit; 1857 goto integer; 1858 1859 case SO_LISTENQLEN: 1860 optval = so->so_qlen; 1861 goto integer; 1862 1863 case SO_LISTENINCQLEN: 1864 optval = so->so_incqlen; 1865 goto integer; 1866 1867 default: 1868 error = ENOPROTOOPT; 1869 break; 1870 } 1871 return (error); 1872 } 1873 } 1874 1875 /* XXX; prepare mbuf for (__FreeBSD__ < 3) routines. */ 1876 int 1877 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 1878 { 1879 struct mbuf *m, *m_prev; 1880 int sopt_size = sopt->sopt_valsize; 1881 1882 MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA); 1883 if (m == NULL) 1884 return ENOBUFS; 1885 if (sopt_size > MLEN) { 1886 MCLGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT); 1887 if ((m->m_flags & M_EXT) == 0) { 1888 m_free(m); 1889 return ENOBUFS; 1890 } 1891 m->m_len = min(MCLBYTES, sopt_size); 1892 } else { 1893 m->m_len = min(MLEN, sopt_size); 1894 } 1895 sopt_size -= m->m_len; 1896 *mp = m; 1897 m_prev = m; 1898 1899 while (sopt_size) { 1900 MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA); 1901 if (m == NULL) { 1902 m_freem(*mp); 1903 return ENOBUFS; 1904 } 1905 if (sopt_size > MLEN) { 1906 MCLGET(m, sopt->sopt_td != NULL ? M_TRYWAIT : 1907 M_DONTWAIT); 1908 if ((m->m_flags & M_EXT) == 0) { 1909 m_freem(m); 1910 m_freem(*mp); 1911 return ENOBUFS; 1912 } 1913 m->m_len = min(MCLBYTES, sopt_size); 1914 } else { 1915 m->m_len = min(MLEN, sopt_size); 1916 } 1917 sopt_size -= m->m_len; 1918 m_prev->m_next = m; 1919 m_prev = m; 1920 } 1921 return 0; 1922 } 1923 1924 /* XXX; copyin sopt data into mbuf chain for (__FreeBSD__ < 3) routines. */ 1925 int 1926 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 1927 { 1928 struct mbuf *m0 = m; 1929 1930 if (sopt->sopt_val == NULL) 1931 return 0; 1932 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 1933 if (sopt->sopt_td != NULL) { 1934 int error; 1935 1936 error = copyin(sopt->sopt_val, mtod(m, char *), 1937 m->m_len); 1938 if (error != 0) { 1939 m_freem(m0); 1940 return(error); 1941 } 1942 } else 1943 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 1944 sopt->sopt_valsize -= m->m_len; 1945 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 1946 m = m->m_next; 1947 } 1948 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 1949 panic("ip6_sooptmcopyin"); 1950 return 0; 1951 } 1952 1953 /* XXX; copyout mbuf chain data into soopt for (__FreeBSD__ < 3) routines. */ 1954 int 1955 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 1956 { 1957 struct mbuf *m0 = m; 1958 size_t valsize = 0; 1959 1960 if (sopt->sopt_val == NULL) 1961 return 0; 1962 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 1963 if (sopt->sopt_td != NULL) { 1964 int error; 1965 1966 error = copyout(mtod(m, char *), sopt->sopt_val, 1967 m->m_len); 1968 if (error != 0) { 1969 m_freem(m0); 1970 return(error); 1971 } 1972 } else 1973 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 1974 sopt->sopt_valsize -= m->m_len; 1975 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 1976 valsize += m->m_len; 1977 m = m->m_next; 1978 } 1979 if (m != NULL) { 1980 /* enough soopt buffer should be given from user-land */ 1981 m_freem(m0); 1982 return(EINVAL); 1983 } 1984 sopt->sopt_valsize = valsize; 1985 return 0; 1986 } 1987 1988 void 1989 sohasoutofband(so) 1990 struct socket *so; 1991 { 1992 if (so->so_sigio != NULL) 1993 pgsigio(&so->so_sigio, SIGURG, 0); 1994 selwakeuppri(&so->so_rcv.sb_sel, PSOCK); 1995 } 1996 1997 int 1998 sopoll(struct socket *so, int events, struct ucred *active_cred, 1999 struct thread *td) 2000 { 2001 int revents = 0; 2002 2003 SOCKBUF_LOCK(&so->so_snd); 2004 SOCKBUF_LOCK(&so->so_rcv); 2005 if (events & (POLLIN | POLLRDNORM)) 2006 if (soreadable(so)) 2007 revents |= events & (POLLIN | POLLRDNORM); 2008 2009 if (events & POLLINIGNEOF) 2010 if (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat || 2011 !TAILQ_EMPTY(&so->so_comp) || so->so_error) 2012 revents |= POLLINIGNEOF; 2013 2014 if (events & (POLLOUT | POLLWRNORM)) 2015 if (sowriteable(so)) 2016 revents |= events & (POLLOUT | POLLWRNORM); 2017 2018 if (events & (POLLPRI | POLLRDBAND)) 2019 if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK)) 2020 revents |= events & (POLLPRI | POLLRDBAND); 2021 2022 if (revents == 0) { 2023 if (events & 2024 (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | 2025 POLLRDBAND)) { 2026 selrecord(td, &so->so_rcv.sb_sel); 2027 so->so_rcv.sb_flags |= SB_SEL; 2028 } 2029 2030 if (events & (POLLOUT | POLLWRNORM)) { 2031 selrecord(td, &so->so_snd.sb_sel); 2032 so->so_snd.sb_flags |= SB_SEL; 2033 } 2034 } 2035 2036 SOCKBUF_UNLOCK(&so->so_rcv); 2037 SOCKBUF_UNLOCK(&so->so_snd); 2038 return (revents); 2039 } 2040 2041 int 2042 soo_kqfilter(struct file *fp, struct knote *kn) 2043 { 2044 struct socket *so = kn->kn_fp->f_data; 2045 struct sockbuf *sb; 2046 2047 switch (kn->kn_filter) { 2048 case EVFILT_READ: 2049 if (so->so_options & SO_ACCEPTCONN) 2050 kn->kn_fop = &solisten_filtops; 2051 else 2052 kn->kn_fop = &soread_filtops; 2053 sb = &so->so_rcv; 2054 break; 2055 case EVFILT_WRITE: 2056 kn->kn_fop = &sowrite_filtops; 2057 sb = &so->so_snd; 2058 break; 2059 default: 2060 return (EINVAL); 2061 } 2062 2063 SOCKBUF_LOCK(sb); 2064 knlist_add(&sb->sb_sel.si_note, kn, 1); 2065 sb->sb_flags |= SB_KNOTE; 2066 SOCKBUF_UNLOCK(sb); 2067 return (0); 2068 } 2069 2070 static void 2071 filt_sordetach(struct knote *kn) 2072 { 2073 struct socket *so = kn->kn_fp->f_data; 2074 2075 SOCKBUF_LOCK(&so->so_rcv); 2076 knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1); 2077 if (knlist_empty(&so->so_rcv.sb_sel.si_note)) 2078 so->so_rcv.sb_flags &= ~SB_KNOTE; 2079 SOCKBUF_UNLOCK(&so->so_rcv); 2080 } 2081 2082 /*ARGSUSED*/ 2083 static int 2084 filt_soread(struct knote *kn, long hint) 2085 { 2086 struct socket *so; 2087 2088 so = kn->kn_fp->f_data; 2089 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2090 2091 kn->kn_data = so->so_rcv.sb_cc - so->so_rcv.sb_ctl; 2092 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 2093 kn->kn_flags |= EV_EOF; 2094 kn->kn_fflags = so->so_error; 2095 return (1); 2096 } else if (so->so_error) /* temporary udp error */ 2097 return (1); 2098 else if (kn->kn_sfflags & NOTE_LOWAT) 2099 return (kn->kn_data >= kn->kn_sdata); 2100 else 2101 return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat); 2102 } 2103 2104 static void 2105 filt_sowdetach(struct knote *kn) 2106 { 2107 struct socket *so = kn->kn_fp->f_data; 2108 2109 SOCKBUF_LOCK(&so->so_snd); 2110 knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1); 2111 if (knlist_empty(&so->so_snd.sb_sel.si_note)) 2112 so->so_snd.sb_flags &= ~SB_KNOTE; 2113 SOCKBUF_UNLOCK(&so->so_snd); 2114 } 2115 2116 /*ARGSUSED*/ 2117 static int 2118 filt_sowrite(struct knote *kn, long hint) 2119 { 2120 struct socket *so; 2121 2122 so = kn->kn_fp->f_data; 2123 SOCKBUF_LOCK_ASSERT(&so->so_snd); 2124 kn->kn_data = sbspace(&so->so_snd); 2125 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 2126 kn->kn_flags |= EV_EOF; 2127 kn->kn_fflags = so->so_error; 2128 return (1); 2129 } else if (so->so_error) /* temporary udp error */ 2130 return (1); 2131 else if (((so->so_state & SS_ISCONNECTED) == 0) && 2132 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 2133 return (0); 2134 else if (kn->kn_sfflags & NOTE_LOWAT) 2135 return (kn->kn_data >= kn->kn_sdata); 2136 else 2137 return (kn->kn_data >= so->so_snd.sb_lowat); 2138 } 2139 2140 /*ARGSUSED*/ 2141 static int 2142 filt_solisten(struct knote *kn, long hint) 2143 { 2144 struct socket *so = kn->kn_fp->f_data; 2145 2146 kn->kn_data = so->so_qlen; 2147 return (! TAILQ_EMPTY(&so->so_comp)); 2148 } 2149 2150 int 2151 socheckuid(struct socket *so, uid_t uid) 2152 { 2153 2154 if (so == NULL) 2155 return (EPERM); 2156 if (so->so_cred->cr_uid != uid) 2157 return (EPERM); 2158 return (0); 2159 } 2160 2161 static int 2162 somaxconn_sysctl(SYSCTL_HANDLER_ARGS) 2163 { 2164 int error; 2165 int val; 2166 2167 val = somaxconn; 2168 error = sysctl_handle_int(oidp, &val, sizeof(int), req); 2169 if (error || !req->newptr ) 2170 return (error); 2171 2172 if (val < 1 || val > USHRT_MAX) 2173 return (EINVAL); 2174 2175 somaxconn = val; 2176 return (0); 2177 } 2178