1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. 6 * Copyright (c) 2004 The FreeBSD Foundation 7 * Copyright (c) 2004-2008 Robert N. M. Watson 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 35 */ 36 37 /* 38 * Comments on the socket life cycle: 39 * 40 * soalloc() sets of socket layer state for a socket, called only by 41 * socreate() and sonewconn(). Socket layer private. 42 * 43 * sodealloc() tears down socket layer state for a socket, called only by 44 * sofree() and sonewconn(). Socket layer private. 45 * 46 * pru_attach() associates protocol layer state with an allocated socket; 47 * called only once, may fail, aborting socket allocation. This is called 48 * from socreate() and sonewconn(). Socket layer private. 49 * 50 * pru_detach() disassociates protocol layer state from an attached socket, 51 * and will be called exactly once for sockets in which pru_attach() has 52 * been successfully called. If pru_attach() returned an error, 53 * pru_detach() will not be called. Socket layer private. 54 * 55 * pru_abort() and pru_close() notify the protocol layer that the last 56 * consumer of a socket is starting to tear down the socket, and that the 57 * protocol should terminate the connection. Historically, pru_abort() also 58 * detached protocol state from the socket state, but this is no longer the 59 * case. 60 * 61 * socreate() creates a socket and attaches protocol state. This is a public 62 * interface that may be used by socket layer consumers to create new 63 * sockets. 64 * 65 * sonewconn() creates a socket and attaches protocol state. This is a 66 * public interface that may be used by protocols to create new sockets when 67 * a new connection is received and will be available for accept() on a 68 * listen socket. 69 * 70 * soclose() destroys a socket after possibly waiting for it to disconnect. 71 * This is a public interface that socket consumers should use to close and 72 * release a socket when done with it. 73 * 74 * soabort() destroys a socket without waiting for it to disconnect (used 75 * only for incoming connections that are already partially or fully 76 * connected). This is used internally by the socket layer when clearing 77 * listen socket queues (due to overflow or close on the listen socket), but 78 * is also a public interface protocols may use to abort connections in 79 * their incomplete listen queues should they no longer be required. Sockets 80 * placed in completed connection listen queues should not be aborted for 81 * reasons described in the comment above the soclose() implementation. This 82 * is not a general purpose close routine, and except in the specific 83 * circumstances described here, should not be used. 84 * 85 * sofree() will free a socket and its protocol state if all references on 86 * the socket have been released, and is the public interface to attempt to 87 * free a socket when a reference is removed. This is a socket layer private 88 * interface. 89 * 90 * NOTE: In addition to socreate() and soclose(), which provide a single 91 * socket reference to the consumer to be managed as required, there are two 92 * calls to explicitly manage socket references, soref(), and sorele(). 93 * Currently, these are generally required only when transitioning a socket 94 * from a listen queue to a file descriptor, in order to prevent garbage 95 * collection of the socket at an untimely moment. For a number of reasons, 96 * these interfaces are not preferred, and should be avoided. 97 * 98 * NOTE: With regard to VNETs the general rule is that callers do not set 99 * curvnet. Exceptions to this rule include soabort(), sodisconnect(), 100 * sofree() (and with that sorele(), sotryfree()), as well as sonewconn() 101 * and sorflush(), which are usually called from a pre-set VNET context. 102 * sopoll() currently does not need a VNET context to be set. 103 */ 104 105 #include <sys/cdefs.h> 106 __FBSDID("$FreeBSD$"); 107 108 #include "opt_inet.h" 109 #include "opt_inet6.h" 110 #include "opt_kern_tls.h" 111 #include "opt_sctp.h" 112 113 #include <sys/param.h> 114 #include <sys/systm.h> 115 #include <sys/capsicum.h> 116 #include <sys/fcntl.h> 117 #include <sys/limits.h> 118 #include <sys/lock.h> 119 #include <sys/mac.h> 120 #include <sys/malloc.h> 121 #include <sys/mbuf.h> 122 #include <sys/mutex.h> 123 #include <sys/domain.h> 124 #include <sys/file.h> /* for struct knote */ 125 #include <sys/hhook.h> 126 #include <sys/kernel.h> 127 #include <sys/khelp.h> 128 #include <sys/ktls.h> 129 #include <sys/event.h> 130 #include <sys/eventhandler.h> 131 #include <sys/poll.h> 132 #include <sys/proc.h> 133 #include <sys/protosw.h> 134 #include <sys/sbuf.h> 135 #include <sys/socket.h> 136 #include <sys/socketvar.h> 137 #include <sys/resourcevar.h> 138 #include <net/route.h> 139 #include <sys/signalvar.h> 140 #include <sys/stat.h> 141 #include <sys/sx.h> 142 #include <sys/sysctl.h> 143 #include <sys/taskqueue.h> 144 #include <sys/uio.h> 145 #include <sys/un.h> 146 #include <sys/unpcb.h> 147 #include <sys/jail.h> 148 #include <sys/syslog.h> 149 #include <netinet/in.h> 150 #include <netinet/in_pcb.h> 151 #include <netinet/tcp.h> 152 153 #include <net/vnet.h> 154 155 #include <security/mac/mac_framework.h> 156 157 #include <vm/uma.h> 158 159 #ifdef COMPAT_FREEBSD32 160 #include <sys/mount.h> 161 #include <sys/sysent.h> 162 #include <compat/freebsd32/freebsd32.h> 163 #endif 164 165 static int soreceive_rcvoob(struct socket *so, struct uio *uio, 166 int flags); 167 static void so_rdknl_lock(void *); 168 static void so_rdknl_unlock(void *); 169 static void so_rdknl_assert_lock(void *, int); 170 static void so_wrknl_lock(void *); 171 static void so_wrknl_unlock(void *); 172 static void so_wrknl_assert_lock(void *, int); 173 174 static void filt_sordetach(struct knote *kn); 175 static int filt_soread(struct knote *kn, long hint); 176 static void filt_sowdetach(struct knote *kn); 177 static int filt_sowrite(struct knote *kn, long hint); 178 static int filt_soempty(struct knote *kn, long hint); 179 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id); 180 fo_kqfilter_t soo_kqfilter; 181 182 static struct filterops soread_filtops = { 183 .f_isfd = 1, 184 .f_detach = filt_sordetach, 185 .f_event = filt_soread, 186 }; 187 static struct filterops sowrite_filtops = { 188 .f_isfd = 1, 189 .f_detach = filt_sowdetach, 190 .f_event = filt_sowrite, 191 }; 192 static struct filterops soempty_filtops = { 193 .f_isfd = 1, 194 .f_detach = filt_sowdetach, 195 .f_event = filt_soempty, 196 }; 197 198 so_gen_t so_gencnt; /* generation count for sockets */ 199 200 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 201 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 202 203 #define VNET_SO_ASSERT(so) \ 204 VNET_ASSERT(curvnet != NULL, \ 205 ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so))); 206 207 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]); 208 #define V_socket_hhh VNET(socket_hhh) 209 210 /* 211 * Limit on the number of connections in the listen queue waiting 212 * for accept(2). 213 * NB: The original sysctl somaxconn is still available but hidden 214 * to prevent confusion about the actual purpose of this number. 215 */ 216 static u_int somaxconn = SOMAXCONN; 217 218 static int 219 sysctl_somaxconn(SYSCTL_HANDLER_ARGS) 220 { 221 int error; 222 int val; 223 224 val = somaxconn; 225 error = sysctl_handle_int(oidp, &val, 0, req); 226 if (error || !req->newptr ) 227 return (error); 228 229 /* 230 * The purpose of the UINT_MAX / 3 limit, is so that the formula 231 * 3 * so_qlimit / 2 232 * below, will not overflow. 233 */ 234 235 if (val < 1 || val > UINT_MAX / 3) 236 return (EINVAL); 237 238 somaxconn = val; 239 return (0); 240 } 241 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue, 242 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, sizeof(int), 243 sysctl_somaxconn, "I", 244 "Maximum listen socket pending connection accept queue size"); 245 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, 246 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE, 0, 247 sizeof(int), sysctl_somaxconn, "I", 248 "Maximum listen socket pending connection accept queue size (compat)"); 249 250 static int numopensockets; 251 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, 252 &numopensockets, 0, "Number of open sockets"); 253 254 /* 255 * accept_mtx locks down per-socket fields relating to accept queues. See 256 * socketvar.h for an annotation of the protected fields of struct socket. 257 */ 258 struct mtx accept_mtx; 259 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF); 260 261 /* 262 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket 263 * so_gencnt field. 264 */ 265 static struct mtx so_global_mtx; 266 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); 267 268 /* 269 * General IPC sysctl name space, used by sockets and a variety of other IPC 270 * types. 271 */ 272 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 273 "IPC"); 274 275 /* 276 * Initialize the socket subsystem and set up the socket 277 * memory allocator. 278 */ 279 static uma_zone_t socket_zone; 280 int maxsockets; 281 282 static void 283 socket_zone_change(void *tag) 284 { 285 286 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 287 } 288 289 static void 290 socket_hhook_register(int subtype) 291 { 292 293 if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype, 294 &V_socket_hhh[subtype], 295 HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 296 printf("%s: WARNING: unable to register hook\n", __func__); 297 } 298 299 static void 300 socket_hhook_deregister(int subtype) 301 { 302 303 if (hhook_head_deregister(V_socket_hhh[subtype]) != 0) 304 printf("%s: WARNING: unable to deregister hook\n", __func__); 305 } 306 307 static void 308 socket_init(void *tag) 309 { 310 311 socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL, 312 NULL, NULL, UMA_ALIGN_PTR, 0); 313 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 314 uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached"); 315 EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL, 316 EVENTHANDLER_PRI_FIRST); 317 } 318 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL); 319 320 static void 321 socket_vnet_init(const void *unused __unused) 322 { 323 int i; 324 325 /* We expect a contiguous range */ 326 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 327 socket_hhook_register(i); 328 } 329 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 330 socket_vnet_init, NULL); 331 332 static void 333 socket_vnet_uninit(const void *unused __unused) 334 { 335 int i; 336 337 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 338 socket_hhook_deregister(i); 339 } 340 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 341 socket_vnet_uninit, NULL); 342 343 /* 344 * Initialise maxsockets. This SYSINIT must be run after 345 * tunable_mbinit(). 346 */ 347 static void 348 init_maxsockets(void *ignored) 349 { 350 351 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 352 maxsockets = imax(maxsockets, maxfiles); 353 } 354 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 355 356 /* 357 * Sysctl to get and set the maximum global sockets limit. Notify protocols 358 * of the change so that they can update their dependent limits as required. 359 */ 360 static int 361 sysctl_maxsockets(SYSCTL_HANDLER_ARGS) 362 { 363 int error, newmaxsockets; 364 365 newmaxsockets = maxsockets; 366 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req); 367 if (error == 0 && req->newptr && newmaxsockets != maxsockets) { 368 if (newmaxsockets > maxsockets && 369 newmaxsockets <= maxfiles) { 370 maxsockets = newmaxsockets; 371 EVENTHANDLER_INVOKE(maxsockets_change); 372 } else 373 error = EINVAL; 374 } 375 return (error); 376 } 377 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, 378 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, &maxsockets, 0, 379 sysctl_maxsockets, "IU", 380 "Maximum number of sockets available"); 381 382 /* 383 * Socket operation routines. These routines are called by the routines in 384 * sys_socket.c or from a system process, and implement the semantics of 385 * socket operations by switching out to the protocol specific routines. 386 */ 387 388 /* 389 * Get a socket structure from our zone, and initialize it. Note that it 390 * would probably be better to allocate socket and PCB at the same time, but 391 * I'm not convinced that all the protocols can be easily modified to do 392 * this. 393 * 394 * soalloc() returns a socket with a ref count of 0. 395 */ 396 static struct socket * 397 soalloc(struct vnet *vnet) 398 { 399 struct socket *so; 400 401 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO); 402 if (so == NULL) 403 return (NULL); 404 #ifdef MAC 405 if (mac_socket_init(so, M_NOWAIT) != 0) { 406 uma_zfree(socket_zone, so); 407 return (NULL); 408 } 409 #endif 410 if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) { 411 uma_zfree(socket_zone, so); 412 return (NULL); 413 } 414 415 /* 416 * The socket locking protocol allows to lock 2 sockets at a time, 417 * however, the first one must be a listening socket. WITNESS lacks 418 * a feature to change class of an existing lock, so we use DUPOK. 419 */ 420 mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK); 421 mtx_init(&so->so_snd_mtx, "so_snd", NULL, MTX_DEF); 422 mtx_init(&so->so_rcv_mtx, "so_rcv", NULL, MTX_DEF); 423 so->so_rcv.sb_sel = &so->so_rdsel; 424 so->so_snd.sb_sel = &so->so_wrsel; 425 sx_init(&so->so_snd_sx, "so_snd_sx"); 426 sx_init(&so->so_rcv_sx, "so_rcv_sx"); 427 TAILQ_INIT(&so->so_snd.sb_aiojobq); 428 TAILQ_INIT(&so->so_rcv.sb_aiojobq); 429 TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so); 430 TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so); 431 #ifdef VIMAGE 432 VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p", 433 __func__, __LINE__, so)); 434 so->so_vnet = vnet; 435 #endif 436 /* We shouldn't need the so_global_mtx */ 437 if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) { 438 /* Do we need more comprehensive error returns? */ 439 uma_zfree(socket_zone, so); 440 return (NULL); 441 } 442 mtx_lock(&so_global_mtx); 443 so->so_gencnt = ++so_gencnt; 444 ++numopensockets; 445 #ifdef VIMAGE 446 vnet->vnet_sockcnt++; 447 #endif 448 mtx_unlock(&so_global_mtx); 449 450 return (so); 451 } 452 453 /* 454 * Free the storage associated with a socket at the socket layer, tear down 455 * locks, labels, etc. All protocol state is assumed already to have been 456 * torn down (and possibly never set up) by the caller. 457 */ 458 void 459 sodealloc(struct socket *so) 460 { 461 462 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); 463 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL")); 464 465 mtx_lock(&so_global_mtx); 466 so->so_gencnt = ++so_gencnt; 467 --numopensockets; /* Could be below, but faster here. */ 468 #ifdef VIMAGE 469 VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p", 470 __func__, __LINE__, so)); 471 so->so_vnet->vnet_sockcnt--; 472 #endif 473 mtx_unlock(&so_global_mtx); 474 #ifdef MAC 475 mac_socket_destroy(so); 476 #endif 477 hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE); 478 479 khelp_destroy_osd(&so->osd); 480 if (SOLISTENING(so)) { 481 if (so->sol_accept_filter != NULL) 482 accept_filt_setopt(so, NULL); 483 } else { 484 if (so->so_rcv.sb_hiwat) 485 (void)chgsbsize(so->so_cred->cr_uidinfo, 486 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 487 if (so->so_snd.sb_hiwat) 488 (void)chgsbsize(so->so_cred->cr_uidinfo, 489 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 490 sx_destroy(&so->so_snd_sx); 491 sx_destroy(&so->so_rcv_sx); 492 mtx_destroy(&so->so_snd_mtx); 493 mtx_destroy(&so->so_rcv_mtx); 494 } 495 crfree(so->so_cred); 496 mtx_destroy(&so->so_lock); 497 uma_zfree(socket_zone, so); 498 } 499 500 /* 501 * socreate returns a socket with a ref count of 1 and a file descriptor 502 * reference. The socket should be closed with soclose(). 503 */ 504 int 505 socreate(int dom, struct socket **aso, int type, int proto, 506 struct ucred *cred, struct thread *td) 507 { 508 struct protosw *prp; 509 struct socket *so; 510 int error; 511 512 /* 513 * XXX: divert(4) historically abused PF_INET. Keep this compatibility 514 * shim until all applications have been updated. 515 */ 516 if (__predict_false(dom == PF_INET && type == SOCK_RAW && 517 proto == IPPROTO_DIVERT)) { 518 dom = PF_DIVERT; 519 printf("%s uses obsolete way to create divert(4) socket\n", 520 td->td_proc->p_comm); 521 } 522 523 prp = pffindtype(dom, type); 524 if (prp == NULL) { 525 /* No support for domain. */ 526 if (pffinddomain(dom) == NULL) 527 return (EAFNOSUPPORT); 528 /* No support for socket type. */ 529 if (proto == 0 && type != 0) 530 return (EPROTOTYPE); 531 return (EPROTONOSUPPORT); 532 } 533 if (prp->pr_protocol != 0 && proto != 0 && prp->pr_protocol != proto) 534 return (EPROTONOSUPPORT); 535 536 MPASS(prp->pr_attach); 537 538 if (IN_CAPABILITY_MODE(td) && (prp->pr_flags & PR_CAPATTACH) == 0) 539 return (ECAPMODE); 540 541 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0) 542 return (EPROTONOSUPPORT); 543 544 so = soalloc(CRED_TO_VNET(cred)); 545 if (so == NULL) 546 return (ENOBUFS); 547 548 so->so_type = type; 549 so->so_cred = crhold(cred); 550 if ((prp->pr_domain->dom_family == PF_INET) || 551 (prp->pr_domain->dom_family == PF_INET6) || 552 (prp->pr_domain->dom_family == PF_ROUTE)) 553 so->so_fibnum = td->td_proc->p_fibnum; 554 else 555 so->so_fibnum = 0; 556 so->so_proto = prp; 557 #ifdef MAC 558 mac_socket_create(cred, so); 559 #endif 560 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 561 so_rdknl_assert_lock); 562 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 563 so_wrknl_assert_lock); 564 if ((prp->pr_flags & PR_SOCKBUF) == 0) { 565 so->so_snd.sb_mtx = &so->so_snd_mtx; 566 so->so_rcv.sb_mtx = &so->so_rcv_mtx; 567 } 568 /* 569 * Auto-sizing of socket buffers is managed by the protocols and 570 * the appropriate flags must be set in the pru_attach function. 571 */ 572 CURVNET_SET(so->so_vnet); 573 error = prp->pr_attach(so, proto, td); 574 CURVNET_RESTORE(); 575 if (error) { 576 sodealloc(so); 577 return (error); 578 } 579 soref(so); 580 *aso = so; 581 return (0); 582 } 583 584 #ifdef REGRESSION 585 static int regression_sonewconn_earlytest = 1; 586 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW, 587 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test"); 588 #endif 589 590 static struct timeval overinterval = { 60, 0 }; 591 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW, 592 &overinterval, 593 "Delay in seconds between warnings for listen socket overflows"); 594 595 /* 596 * When an attempt at a new connection is noted on a socket which supports 597 * accept(2), the protocol has two options: 598 * 1) Call legacy sonewconn() function, which would call protocol attach 599 * method, same as used for socket(2). 600 * 2) Call solisten_clone(), do attach that is specific to a cloned connection, 601 * and then call solisten_enqueue(). 602 * 603 * Note: the ref count on the socket is 0 on return. 604 */ 605 struct socket * 606 solisten_clone(struct socket *head) 607 { 608 struct sbuf descrsb; 609 struct socket *so; 610 int len, overcount; 611 u_int qlen; 612 const char localprefix[] = "local:"; 613 char descrbuf[SUNPATHLEN + sizeof(localprefix)]; 614 #if defined(INET6) 615 char addrbuf[INET6_ADDRSTRLEN]; 616 #elif defined(INET) 617 char addrbuf[INET_ADDRSTRLEN]; 618 #endif 619 bool dolog, over; 620 621 SOLISTEN_LOCK(head); 622 over = (head->sol_qlen > 3 * head->sol_qlimit / 2); 623 #ifdef REGRESSION 624 if (regression_sonewconn_earlytest && over) { 625 #else 626 if (over) { 627 #endif 628 head->sol_overcount++; 629 dolog = !!ratecheck(&head->sol_lastover, &overinterval); 630 631 /* 632 * If we're going to log, copy the overflow count and queue 633 * length from the listen socket before dropping the lock. 634 * Also, reset the overflow count. 635 */ 636 if (dolog) { 637 overcount = head->sol_overcount; 638 head->sol_overcount = 0; 639 qlen = head->sol_qlen; 640 } 641 SOLISTEN_UNLOCK(head); 642 643 if (dolog) { 644 /* 645 * Try to print something descriptive about the 646 * socket for the error message. 647 */ 648 sbuf_new(&descrsb, descrbuf, sizeof(descrbuf), 649 SBUF_FIXEDLEN); 650 switch (head->so_proto->pr_domain->dom_family) { 651 #if defined(INET) || defined(INET6) 652 #ifdef INET 653 case AF_INET: 654 #endif 655 #ifdef INET6 656 case AF_INET6: 657 if (head->so_proto->pr_domain->dom_family == 658 AF_INET6 || 659 (sotoinpcb(head)->inp_inc.inc_flags & 660 INC_ISIPV6)) { 661 ip6_sprintf(addrbuf, 662 &sotoinpcb(head)->inp_inc.inc6_laddr); 663 sbuf_printf(&descrsb, "[%s]", addrbuf); 664 } else 665 #endif 666 { 667 #ifdef INET 668 inet_ntoa_r( 669 sotoinpcb(head)->inp_inc.inc_laddr, 670 addrbuf); 671 sbuf_cat(&descrsb, addrbuf); 672 #endif 673 } 674 sbuf_printf(&descrsb, ":%hu (proto %u)", 675 ntohs(sotoinpcb(head)->inp_inc.inc_lport), 676 head->so_proto->pr_protocol); 677 break; 678 #endif /* INET || INET6 */ 679 case AF_UNIX: 680 sbuf_cat(&descrsb, localprefix); 681 if (sotounpcb(head)->unp_addr != NULL) 682 len = 683 sotounpcb(head)->unp_addr->sun_len - 684 offsetof(struct sockaddr_un, 685 sun_path); 686 else 687 len = 0; 688 if (len > 0) 689 sbuf_bcat(&descrsb, 690 sotounpcb(head)->unp_addr->sun_path, 691 len); 692 else 693 sbuf_cat(&descrsb, "(unknown)"); 694 break; 695 } 696 697 /* 698 * If we can't print something more specific, at least 699 * print the domain name. 700 */ 701 if (sbuf_finish(&descrsb) != 0 || 702 sbuf_len(&descrsb) <= 0) { 703 sbuf_clear(&descrsb); 704 sbuf_cat(&descrsb, 705 head->so_proto->pr_domain->dom_name ?: 706 "unknown"); 707 sbuf_finish(&descrsb); 708 } 709 KASSERT(sbuf_len(&descrsb) > 0, 710 ("%s: sbuf creation failed", __func__)); 711 /* 712 * Preserve the historic listen queue overflow log 713 * message, that starts with "sonewconn:". It has 714 * been known to sysadmins for years and also test 715 * sys/kern/sonewconn_overflow checks for it. 716 */ 717 if (head->so_cred == 0) { 718 log(LOG_DEBUG, "sonewconn: pcb %p (%s): " 719 "Listen queue overflow: %i already in " 720 "queue awaiting acceptance (%d " 721 "occurrences)\n", head->so_pcb, 722 sbuf_data(&descrsb), 723 qlen, overcount); 724 } else { 725 log(LOG_DEBUG, "sonewconn: pcb %p (%s): " 726 "Listen queue overflow: " 727 "%i already in queue awaiting acceptance " 728 "(%d occurrences), euid %d, rgid %d, jail %s\n", 729 head->so_pcb, sbuf_data(&descrsb), qlen, 730 overcount, head->so_cred->cr_uid, 731 head->so_cred->cr_rgid, 732 head->so_cred->cr_prison ? 733 head->so_cred->cr_prison->pr_name : 734 "not_jailed"); 735 } 736 sbuf_delete(&descrsb); 737 738 overcount = 0; 739 } 740 741 return (NULL); 742 } 743 SOLISTEN_UNLOCK(head); 744 VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL", 745 __func__, head)); 746 so = soalloc(head->so_vnet); 747 if (so == NULL) { 748 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 749 "limit reached or out of memory\n", 750 __func__, head->so_pcb); 751 return (NULL); 752 } 753 so->so_listen = head; 754 so->so_type = head->so_type; 755 so->so_options = head->so_options & ~SO_ACCEPTCONN; 756 so->so_linger = head->so_linger; 757 so->so_state = head->so_state; 758 so->so_fibnum = head->so_fibnum; 759 so->so_proto = head->so_proto; 760 so->so_cred = crhold(head->so_cred); 761 #ifdef MAC 762 mac_socket_newconn(head, so); 763 #endif 764 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 765 so_rdknl_assert_lock); 766 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 767 so_wrknl_assert_lock); 768 VNET_SO_ASSERT(head); 769 if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) { 770 sodealloc(so); 771 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 772 __func__, head->so_pcb); 773 return (NULL); 774 } 775 so->so_rcv.sb_lowat = head->sol_sbrcv_lowat; 776 so->so_snd.sb_lowat = head->sol_sbsnd_lowat; 777 so->so_rcv.sb_timeo = head->sol_sbrcv_timeo; 778 so->so_snd.sb_timeo = head->sol_sbsnd_timeo; 779 so->so_rcv.sb_flags = head->sol_sbrcv_flags & SB_AUTOSIZE; 780 so->so_snd.sb_flags = head->sol_sbsnd_flags & SB_AUTOSIZE; 781 if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) { 782 so->so_snd.sb_mtx = &so->so_snd_mtx; 783 so->so_rcv.sb_mtx = &so->so_rcv_mtx; 784 } 785 786 return (so); 787 } 788 789 /* Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED. */ 790 struct socket * 791 sonewconn(struct socket *head, int connstatus) 792 { 793 struct socket *so; 794 795 if ((so = solisten_clone(head)) == NULL) 796 return (NULL); 797 798 if (so->so_proto->pr_attach(so, 0, NULL) != 0) { 799 sodealloc(so); 800 log(LOG_DEBUG, "%s: pcb %p: pr_attach() failed\n", 801 __func__, head->so_pcb); 802 return (NULL); 803 } 804 805 solisten_enqueue(so, connstatus); 806 807 return (so); 808 } 809 810 /* 811 * Enqueue socket cloned by solisten_clone() to the listen queue of the 812 * listener it has been cloned from. 813 */ 814 void 815 solisten_enqueue(struct socket *so, int connstatus) 816 { 817 struct socket *head = so->so_listen; 818 819 MPASS(refcount_load(&so->so_count) == 0); 820 refcount_init(&so->so_count, 1); 821 822 SOLISTEN_LOCK(head); 823 if (head->sol_accept_filter != NULL) 824 connstatus = 0; 825 so->so_state |= connstatus; 826 soref(head); /* A socket on (in)complete queue refs head. */ 827 if (connstatus) { 828 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 829 so->so_qstate = SQ_COMP; 830 head->sol_qlen++; 831 solisten_wakeup(head); /* unlocks */ 832 } else { 833 /* 834 * Keep removing sockets from the head until there's room for 835 * us to insert on the tail. In pre-locking revisions, this 836 * was a simple if(), but as we could be racing with other 837 * threads and soabort() requires dropping locks, we must 838 * loop waiting for the condition to be true. 839 */ 840 while (head->sol_incqlen > head->sol_qlimit) { 841 struct socket *sp; 842 843 sp = TAILQ_FIRST(&head->sol_incomp); 844 TAILQ_REMOVE(&head->sol_incomp, sp, so_list); 845 head->sol_incqlen--; 846 SOCK_LOCK(sp); 847 sp->so_qstate = SQ_NONE; 848 sp->so_listen = NULL; 849 SOCK_UNLOCK(sp); 850 sorele_locked(head); /* does SOLISTEN_UNLOCK, head stays */ 851 soabort(sp); 852 SOLISTEN_LOCK(head); 853 } 854 TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list); 855 so->so_qstate = SQ_INCOMP; 856 head->sol_incqlen++; 857 SOLISTEN_UNLOCK(head); 858 } 859 } 860 861 #if defined(SCTP) || defined(SCTP_SUPPORT) 862 /* 863 * Socket part of sctp_peeloff(). Detach a new socket from an 864 * association. The new socket is returned with a reference. 865 * 866 * XXXGL: reduce copy-paste with solisten_clone(). 867 */ 868 struct socket * 869 sopeeloff(struct socket *head) 870 { 871 struct socket *so; 872 873 VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p", 874 __func__, __LINE__, head)); 875 so = soalloc(head->so_vnet); 876 if (so == NULL) { 877 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 878 "limit reached or out of memory\n", 879 __func__, head->so_pcb); 880 return (NULL); 881 } 882 so->so_type = head->so_type; 883 so->so_options = head->so_options; 884 so->so_linger = head->so_linger; 885 so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED; 886 so->so_fibnum = head->so_fibnum; 887 so->so_proto = head->so_proto; 888 so->so_cred = crhold(head->so_cred); 889 #ifdef MAC 890 mac_socket_newconn(head, so); 891 #endif 892 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 893 so_rdknl_assert_lock); 894 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 895 so_wrknl_assert_lock); 896 VNET_SO_ASSERT(head); 897 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) { 898 sodealloc(so); 899 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 900 __func__, head->so_pcb); 901 return (NULL); 902 } 903 if ((*so->so_proto->pr_attach)(so, 0, NULL)) { 904 sodealloc(so); 905 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", 906 __func__, head->so_pcb); 907 return (NULL); 908 } 909 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; 910 so->so_snd.sb_lowat = head->so_snd.sb_lowat; 911 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; 912 so->so_snd.sb_timeo = head->so_snd.sb_timeo; 913 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE; 914 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE; 915 916 soref(so); 917 918 return (so); 919 } 920 #endif /* SCTP */ 921 922 int 923 sobind(struct socket *so, struct sockaddr *nam, struct thread *td) 924 { 925 int error; 926 927 CURVNET_SET(so->so_vnet); 928 error = so->so_proto->pr_bind(so, nam, td); 929 CURVNET_RESTORE(); 930 return (error); 931 } 932 933 int 934 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 935 { 936 int error; 937 938 CURVNET_SET(so->so_vnet); 939 error = so->so_proto->pr_bindat(fd, so, nam, td); 940 CURVNET_RESTORE(); 941 return (error); 942 } 943 944 /* 945 * solisten() transitions a socket from a non-listening state to a listening 946 * state, but can also be used to update the listen queue depth on an 947 * existing listen socket. The protocol will call back into the sockets 948 * layer using solisten_proto_check() and solisten_proto() to check and set 949 * socket-layer listen state. Call backs are used so that the protocol can 950 * acquire both protocol and socket layer locks in whatever order is required 951 * by the protocol. 952 * 953 * Protocol implementors are advised to hold the socket lock across the 954 * socket-layer test and set to avoid races at the socket layer. 955 */ 956 int 957 solisten(struct socket *so, int backlog, struct thread *td) 958 { 959 int error; 960 961 CURVNET_SET(so->so_vnet); 962 error = so->so_proto->pr_listen(so, backlog, td); 963 CURVNET_RESTORE(); 964 return (error); 965 } 966 967 /* 968 * Prepare for a call to solisten_proto(). Acquire all socket buffer locks in 969 * order to interlock with socket I/O. 970 */ 971 int 972 solisten_proto_check(struct socket *so) 973 { 974 SOCK_LOCK_ASSERT(so); 975 976 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 977 SS_ISDISCONNECTING)) != 0) 978 return (EINVAL); 979 980 /* 981 * Sleeping is not permitted here, so simply fail if userspace is 982 * attempting to transmit or receive on the socket. This kind of 983 * transient failure is not ideal, but it should occur only if userspace 984 * is misusing the socket interfaces. 985 */ 986 if (!sx_try_xlock(&so->so_snd_sx)) 987 return (EAGAIN); 988 if (!sx_try_xlock(&so->so_rcv_sx)) { 989 sx_xunlock(&so->so_snd_sx); 990 return (EAGAIN); 991 } 992 mtx_lock(&so->so_snd_mtx); 993 mtx_lock(&so->so_rcv_mtx); 994 995 /* Interlock with soo_aio_queue(). */ 996 if (!SOLISTENING(so) && 997 ((so->so_snd.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0 || 998 (so->so_rcv.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0)) { 999 solisten_proto_abort(so); 1000 return (EINVAL); 1001 } 1002 return (0); 1003 } 1004 1005 /* 1006 * Undo the setup done by solisten_proto_check(). 1007 */ 1008 void 1009 solisten_proto_abort(struct socket *so) 1010 { 1011 mtx_unlock(&so->so_snd_mtx); 1012 mtx_unlock(&so->so_rcv_mtx); 1013 sx_xunlock(&so->so_snd_sx); 1014 sx_xunlock(&so->so_rcv_sx); 1015 } 1016 1017 void 1018 solisten_proto(struct socket *so, int backlog) 1019 { 1020 int sbrcv_lowat, sbsnd_lowat; 1021 u_int sbrcv_hiwat, sbsnd_hiwat; 1022 short sbrcv_flags, sbsnd_flags; 1023 sbintime_t sbrcv_timeo, sbsnd_timeo; 1024 1025 SOCK_LOCK_ASSERT(so); 1026 KASSERT((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 1027 SS_ISDISCONNECTING)) == 0, 1028 ("%s: bad socket state %p", __func__, so)); 1029 1030 if (SOLISTENING(so)) 1031 goto listening; 1032 1033 /* 1034 * Change this socket to listening state. 1035 */ 1036 sbrcv_lowat = so->so_rcv.sb_lowat; 1037 sbsnd_lowat = so->so_snd.sb_lowat; 1038 sbrcv_hiwat = so->so_rcv.sb_hiwat; 1039 sbsnd_hiwat = so->so_snd.sb_hiwat; 1040 sbrcv_flags = so->so_rcv.sb_flags; 1041 sbsnd_flags = so->so_snd.sb_flags; 1042 sbrcv_timeo = so->so_rcv.sb_timeo; 1043 sbsnd_timeo = so->so_snd.sb_timeo; 1044 1045 sbdestroy(so, SO_SND); 1046 sbdestroy(so, SO_RCV); 1047 1048 #ifdef INVARIANTS 1049 bzero(&so->so_rcv, 1050 sizeof(struct socket) - offsetof(struct socket, so_rcv)); 1051 #endif 1052 1053 so->sol_sbrcv_lowat = sbrcv_lowat; 1054 so->sol_sbsnd_lowat = sbsnd_lowat; 1055 so->sol_sbrcv_hiwat = sbrcv_hiwat; 1056 so->sol_sbsnd_hiwat = sbsnd_hiwat; 1057 so->sol_sbrcv_flags = sbrcv_flags; 1058 so->sol_sbsnd_flags = sbsnd_flags; 1059 so->sol_sbrcv_timeo = sbrcv_timeo; 1060 so->sol_sbsnd_timeo = sbsnd_timeo; 1061 1062 so->sol_qlen = so->sol_incqlen = 0; 1063 TAILQ_INIT(&so->sol_incomp); 1064 TAILQ_INIT(&so->sol_comp); 1065 1066 so->sol_accept_filter = NULL; 1067 so->sol_accept_filter_arg = NULL; 1068 so->sol_accept_filter_str = NULL; 1069 1070 so->sol_upcall = NULL; 1071 so->sol_upcallarg = NULL; 1072 1073 so->so_options |= SO_ACCEPTCONN; 1074 1075 listening: 1076 if (backlog < 0 || backlog > somaxconn) 1077 backlog = somaxconn; 1078 so->sol_qlimit = backlog; 1079 1080 mtx_unlock(&so->so_snd_mtx); 1081 mtx_unlock(&so->so_rcv_mtx); 1082 sx_xunlock(&so->so_snd_sx); 1083 sx_xunlock(&so->so_rcv_sx); 1084 } 1085 1086 /* 1087 * Wakeup listeners/subsystems once we have a complete connection. 1088 * Enters with lock, returns unlocked. 1089 */ 1090 void 1091 solisten_wakeup(struct socket *sol) 1092 { 1093 1094 if (sol->sol_upcall != NULL) 1095 (void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT); 1096 else { 1097 selwakeuppri(&sol->so_rdsel, PSOCK); 1098 KNOTE_LOCKED(&sol->so_rdsel.si_note, 0); 1099 } 1100 SOLISTEN_UNLOCK(sol); 1101 wakeup_one(&sol->sol_comp); 1102 if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL) 1103 pgsigio(&sol->so_sigio, SIGIO, 0); 1104 } 1105 1106 /* 1107 * Return single connection off a listening socket queue. Main consumer of 1108 * the function is kern_accept4(). Some modules, that do their own accept 1109 * management also use the function. The socket reference held by the 1110 * listen queue is handed to the caller. 1111 * 1112 * Listening socket must be locked on entry and is returned unlocked on 1113 * return. 1114 * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT. 1115 */ 1116 int 1117 solisten_dequeue(struct socket *head, struct socket **ret, int flags) 1118 { 1119 struct socket *so; 1120 int error; 1121 1122 SOLISTEN_LOCK_ASSERT(head); 1123 1124 while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) && 1125 head->so_error == 0) { 1126 error = msleep(&head->sol_comp, SOCK_MTX(head), PSOCK | PCATCH, 1127 "accept", 0); 1128 if (error != 0) { 1129 SOLISTEN_UNLOCK(head); 1130 return (error); 1131 } 1132 } 1133 if (head->so_error) { 1134 error = head->so_error; 1135 head->so_error = 0; 1136 } else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp)) 1137 error = EWOULDBLOCK; 1138 else 1139 error = 0; 1140 if (error) { 1141 SOLISTEN_UNLOCK(head); 1142 return (error); 1143 } 1144 so = TAILQ_FIRST(&head->sol_comp); 1145 SOCK_LOCK(so); 1146 KASSERT(so->so_qstate == SQ_COMP, 1147 ("%s: so %p not SQ_COMP", __func__, so)); 1148 head->sol_qlen--; 1149 so->so_qstate = SQ_NONE; 1150 so->so_listen = NULL; 1151 TAILQ_REMOVE(&head->sol_comp, so, so_list); 1152 if (flags & ACCEPT4_INHERIT) 1153 so->so_state |= (head->so_state & SS_NBIO); 1154 else 1155 so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0; 1156 SOCK_UNLOCK(so); 1157 sorele_locked(head); 1158 1159 *ret = so; 1160 return (0); 1161 } 1162 1163 /* 1164 * Free socket upon release of the very last reference. 1165 */ 1166 static void 1167 sofree(struct socket *so) 1168 { 1169 struct protosw *pr = so->so_proto; 1170 1171 SOCK_LOCK_ASSERT(so); 1172 KASSERT(refcount_load(&so->so_count) == 0, 1173 ("%s: so %p has references", __func__, so)); 1174 KASSERT(SOLISTENING(so) || so->so_qstate == SQ_NONE, 1175 ("%s: so %p is on listen queue", __func__, so)); 1176 1177 SOCK_UNLOCK(so); 1178 1179 if (so->so_dtor != NULL) 1180 so->so_dtor(so); 1181 1182 VNET_SO_ASSERT(so); 1183 if ((pr->pr_flags & PR_RIGHTS) && !SOLISTENING(so)) { 1184 MPASS(pr->pr_domain->dom_dispose != NULL); 1185 (*pr->pr_domain->dom_dispose)(so); 1186 } 1187 if (pr->pr_detach != NULL) 1188 pr->pr_detach(so); 1189 1190 /* 1191 * From this point on, we assume that no other references to this 1192 * socket exist anywhere else in the stack. Therefore, no locks need 1193 * to be acquired or held. 1194 */ 1195 if (!(pr->pr_flags & PR_SOCKBUF) && !SOLISTENING(so)) { 1196 sbdestroy(so, SO_SND); 1197 sbdestroy(so, SO_RCV); 1198 } 1199 seldrain(&so->so_rdsel); 1200 seldrain(&so->so_wrsel); 1201 knlist_destroy(&so->so_rdsel.si_note); 1202 knlist_destroy(&so->so_wrsel.si_note); 1203 sodealloc(so); 1204 } 1205 1206 /* 1207 * Release a reference on a socket while holding the socket lock. 1208 * Unlocks the socket lock before returning. 1209 */ 1210 void 1211 sorele_locked(struct socket *so) 1212 { 1213 SOCK_LOCK_ASSERT(so); 1214 if (refcount_release(&so->so_count)) 1215 sofree(so); 1216 else 1217 SOCK_UNLOCK(so); 1218 } 1219 1220 /* 1221 * Close a socket on last file table reference removal. Initiate disconnect 1222 * if connected. Free socket when disconnect complete. 1223 * 1224 * This function will sorele() the socket. Note that soclose() may be called 1225 * prior to the ref count reaching zero. The actual socket structure will 1226 * not be freed until the ref count reaches zero. 1227 */ 1228 int 1229 soclose(struct socket *so) 1230 { 1231 struct accept_queue lqueue; 1232 int error = 0; 1233 bool listening, last __diagused; 1234 1235 CURVNET_SET(so->so_vnet); 1236 funsetown(&so->so_sigio); 1237 if (so->so_state & SS_ISCONNECTED) { 1238 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 1239 error = sodisconnect(so); 1240 if (error) { 1241 if (error == ENOTCONN) 1242 error = 0; 1243 goto drop; 1244 } 1245 } 1246 1247 if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) { 1248 if ((so->so_state & SS_ISDISCONNECTING) && 1249 (so->so_state & SS_NBIO)) 1250 goto drop; 1251 while (so->so_state & SS_ISCONNECTED) { 1252 error = tsleep(&so->so_timeo, 1253 PSOCK | PCATCH, "soclos", 1254 so->so_linger * hz); 1255 if (error) 1256 break; 1257 } 1258 } 1259 } 1260 1261 drop: 1262 if (so->so_proto->pr_close != NULL) 1263 so->so_proto->pr_close(so); 1264 1265 SOCK_LOCK(so); 1266 if ((listening = SOLISTENING(so))) { 1267 struct socket *sp; 1268 1269 TAILQ_INIT(&lqueue); 1270 TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list); 1271 TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list); 1272 1273 so->sol_qlen = so->sol_incqlen = 0; 1274 1275 TAILQ_FOREACH(sp, &lqueue, so_list) { 1276 SOCK_LOCK(sp); 1277 sp->so_qstate = SQ_NONE; 1278 sp->so_listen = NULL; 1279 SOCK_UNLOCK(sp); 1280 last = refcount_release(&so->so_count); 1281 KASSERT(!last, ("%s: released last reference for %p", 1282 __func__, so)); 1283 } 1284 } 1285 sorele_locked(so); 1286 if (listening) { 1287 struct socket *sp, *tsp; 1288 1289 TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp) 1290 soabort(sp); 1291 } 1292 CURVNET_RESTORE(); 1293 return (error); 1294 } 1295 1296 /* 1297 * soabort() is used to abruptly tear down a connection, such as when a 1298 * resource limit is reached (listen queue depth exceeded), or if a listen 1299 * socket is closed while there are sockets waiting to be accepted. 1300 * 1301 * This interface is tricky, because it is called on an unreferenced socket, 1302 * and must be called only by a thread that has actually removed the socket 1303 * from the listen queue it was on. Likely this thread holds the last 1304 * reference on the socket and soabort() will proceed with sofree(). But 1305 * it might be not the last, as the sockets on the listen queues are seen 1306 * from the protocol side. 1307 * 1308 * This interface will call into the protocol code, so must not be called 1309 * with any socket locks held. Protocols do call it while holding their own 1310 * recursible protocol mutexes, but this is something that should be subject 1311 * to review in the future. 1312 * 1313 * Usually socket should have a single reference left, but this is not a 1314 * requirement. In the past, when we have had named references for file 1315 * descriptor and protocol, we asserted that none of them are being held. 1316 */ 1317 void 1318 soabort(struct socket *so) 1319 { 1320 1321 VNET_SO_ASSERT(so); 1322 1323 if (so->so_proto->pr_abort != NULL) 1324 so->so_proto->pr_abort(so); 1325 SOCK_LOCK(so); 1326 sorele_locked(so); 1327 } 1328 1329 int 1330 soaccept(struct socket *so, struct sockaddr **nam) 1331 { 1332 int error; 1333 1334 CURVNET_SET(so->so_vnet); 1335 error = so->so_proto->pr_accept(so, nam); 1336 CURVNET_RESTORE(); 1337 return (error); 1338 } 1339 1340 int 1341 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td) 1342 { 1343 1344 return (soconnectat(AT_FDCWD, so, nam, td)); 1345 } 1346 1347 int 1348 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 1349 { 1350 int error; 1351 1352 CURVNET_SET(so->so_vnet); 1353 /* 1354 * If protocol is connection-based, can only connect once. 1355 * Otherwise, if connected, try to disconnect first. This allows 1356 * user to disconnect by connecting to, e.g., a null address. 1357 */ 1358 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 1359 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 1360 (error = sodisconnect(so)))) { 1361 error = EISCONN; 1362 } else { 1363 /* 1364 * Prevent accumulated error from previous connection from 1365 * biting us. 1366 */ 1367 so->so_error = 0; 1368 if (fd == AT_FDCWD) { 1369 error = so->so_proto->pr_connect(so, nam, td); 1370 } else { 1371 error = so->so_proto->pr_connectat(fd, so, nam, td); 1372 } 1373 } 1374 CURVNET_RESTORE(); 1375 1376 return (error); 1377 } 1378 1379 int 1380 soconnect2(struct socket *so1, struct socket *so2) 1381 { 1382 int error; 1383 1384 CURVNET_SET(so1->so_vnet); 1385 error = so1->so_proto->pr_connect2(so1, so2); 1386 CURVNET_RESTORE(); 1387 return (error); 1388 } 1389 1390 int 1391 sodisconnect(struct socket *so) 1392 { 1393 int error; 1394 1395 if ((so->so_state & SS_ISCONNECTED) == 0) 1396 return (ENOTCONN); 1397 if (so->so_state & SS_ISDISCONNECTING) 1398 return (EALREADY); 1399 VNET_SO_ASSERT(so); 1400 error = so->so_proto->pr_disconnect(so); 1401 return (error); 1402 } 1403 1404 int 1405 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, 1406 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1407 { 1408 long space; 1409 ssize_t resid; 1410 int clen = 0, error, dontroute; 1411 1412 KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM")); 1413 KASSERT(so->so_proto->pr_flags & PR_ATOMIC, 1414 ("sosend_dgram: !PR_ATOMIC")); 1415 1416 if (uio != NULL) 1417 resid = uio->uio_resid; 1418 else 1419 resid = top->m_pkthdr.len; 1420 /* 1421 * In theory resid should be unsigned. However, space must be 1422 * signed, as it might be less than 0 if we over-committed, and we 1423 * must use a signed comparison of space and resid. On the other 1424 * hand, a negative resid causes us to loop sending 0-length 1425 * segments to the protocol. 1426 */ 1427 if (resid < 0) { 1428 error = EINVAL; 1429 goto out; 1430 } 1431 1432 dontroute = 1433 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0; 1434 if (td != NULL) 1435 td->td_ru.ru_msgsnd++; 1436 if (control != NULL) 1437 clen = control->m_len; 1438 1439 SOCKBUF_LOCK(&so->so_snd); 1440 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1441 SOCKBUF_UNLOCK(&so->so_snd); 1442 error = EPIPE; 1443 goto out; 1444 } 1445 if (so->so_error) { 1446 error = so->so_error; 1447 so->so_error = 0; 1448 SOCKBUF_UNLOCK(&so->so_snd); 1449 goto out; 1450 } 1451 if ((so->so_state & SS_ISCONNECTED) == 0) { 1452 /* 1453 * `sendto' and `sendmsg' is allowed on a connection-based 1454 * socket if it supports implied connect. Return ENOTCONN if 1455 * not connected and no address is supplied. 1456 */ 1457 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1458 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1459 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1460 !(resid == 0 && clen != 0)) { 1461 SOCKBUF_UNLOCK(&so->so_snd); 1462 error = ENOTCONN; 1463 goto out; 1464 } 1465 } else if (addr == NULL) { 1466 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1467 error = ENOTCONN; 1468 else 1469 error = EDESTADDRREQ; 1470 SOCKBUF_UNLOCK(&so->so_snd); 1471 goto out; 1472 } 1473 } 1474 1475 /* 1476 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a 1477 * problem and need fixing. 1478 */ 1479 space = sbspace(&so->so_snd); 1480 if (flags & MSG_OOB) 1481 space += 1024; 1482 space -= clen; 1483 SOCKBUF_UNLOCK(&so->so_snd); 1484 if (resid > space) { 1485 error = EMSGSIZE; 1486 goto out; 1487 } 1488 if (uio == NULL) { 1489 resid = 0; 1490 if (flags & MSG_EOR) 1491 top->m_flags |= M_EOR; 1492 } else { 1493 /* 1494 * Copy the data from userland into a mbuf chain. 1495 * If no data is to be copied in, a single empty mbuf 1496 * is returned. 1497 */ 1498 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr, 1499 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0))); 1500 if (top == NULL) { 1501 error = EFAULT; /* only possible error */ 1502 goto out; 1503 } 1504 space -= resid - uio->uio_resid; 1505 resid = uio->uio_resid; 1506 } 1507 KASSERT(resid == 0, ("sosend_dgram: resid != 0")); 1508 /* 1509 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock 1510 * than with. 1511 */ 1512 if (dontroute) { 1513 SOCK_LOCK(so); 1514 so->so_options |= SO_DONTROUTE; 1515 SOCK_UNLOCK(so); 1516 } 1517 /* 1518 * XXX all the SBS_CANTSENDMORE checks previously done could be out 1519 * of date. We could have received a reset packet in an interrupt or 1520 * maybe we slept while doing page faults in uiomove() etc. We could 1521 * probably recheck again inside the locking protection here, but 1522 * there are probably other places that this also happens. We must 1523 * rethink this. 1524 */ 1525 VNET_SO_ASSERT(so); 1526 error = so->so_proto->pr_send(so, (flags & MSG_OOB) ? PRUS_OOB : 1527 /* 1528 * If the user set MSG_EOF, the protocol understands this flag and 1529 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND. 1530 */ 1531 ((flags & MSG_EOF) && 1532 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1533 (resid <= 0)) ? 1534 PRUS_EOF : 1535 /* If there is more to send set PRUS_MORETOCOME */ 1536 (flags & MSG_MORETOCOME) || 1537 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1538 top, addr, control, td); 1539 if (dontroute) { 1540 SOCK_LOCK(so); 1541 so->so_options &= ~SO_DONTROUTE; 1542 SOCK_UNLOCK(so); 1543 } 1544 clen = 0; 1545 control = NULL; 1546 top = NULL; 1547 out: 1548 if (top != NULL) 1549 m_freem(top); 1550 if (control != NULL) 1551 m_freem(control); 1552 return (error); 1553 } 1554 1555 /* 1556 * Send on a socket. If send must go all at once and message is larger than 1557 * send buffering, then hard error. Lock against other senders. If must go 1558 * all at once and not enough room now, then inform user that this would 1559 * block and do nothing. Otherwise, if nonblocking, send as much as 1560 * possible. The data to be sent is described by "uio" if nonzero, otherwise 1561 * by the mbuf chain "top" (which must be null if uio is not). Data provided 1562 * in mbuf chain must be small enough to send all at once. 1563 * 1564 * Returns nonzero on error, timeout or signal; callers must check for short 1565 * counts if EINTR/ERESTART are returned. Data and control buffers are freed 1566 * on return. 1567 */ 1568 int 1569 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio, 1570 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1571 { 1572 long space; 1573 ssize_t resid; 1574 int clen = 0, error, dontroute; 1575 int atomic = sosendallatonce(so) || top; 1576 int pr_send_flag; 1577 #ifdef KERN_TLS 1578 struct ktls_session *tls; 1579 int tls_enq_cnt, tls_send_flag; 1580 uint8_t tls_rtype; 1581 1582 tls = NULL; 1583 tls_rtype = TLS_RLTYPE_APP; 1584 #endif 1585 if (uio != NULL) 1586 resid = uio->uio_resid; 1587 else if ((top->m_flags & M_PKTHDR) != 0) 1588 resid = top->m_pkthdr.len; 1589 else 1590 resid = m_length(top, NULL); 1591 /* 1592 * In theory resid should be unsigned. However, space must be 1593 * signed, as it might be less than 0 if we over-committed, and we 1594 * must use a signed comparison of space and resid. On the other 1595 * hand, a negative resid causes us to loop sending 0-length 1596 * segments to the protocol. 1597 * 1598 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 1599 * type sockets since that's an error. 1600 */ 1601 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 1602 error = EINVAL; 1603 goto out; 1604 } 1605 1606 dontroute = 1607 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 1608 (so->so_proto->pr_flags & PR_ATOMIC); 1609 if (td != NULL) 1610 td->td_ru.ru_msgsnd++; 1611 if (control != NULL) 1612 clen = control->m_len; 1613 1614 error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags)); 1615 if (error) 1616 goto out; 1617 1618 #ifdef KERN_TLS 1619 tls_send_flag = 0; 1620 tls = ktls_hold(so->so_snd.sb_tls_info); 1621 if (tls != NULL) { 1622 if (tls->mode == TCP_TLS_MODE_SW) 1623 tls_send_flag = PRUS_NOTREADY; 1624 1625 if (control != NULL) { 1626 struct cmsghdr *cm = mtod(control, struct cmsghdr *); 1627 1628 if (clen >= sizeof(*cm) && 1629 cm->cmsg_type == TLS_SET_RECORD_TYPE) { 1630 tls_rtype = *((uint8_t *)CMSG_DATA(cm)); 1631 clen = 0; 1632 m_freem(control); 1633 control = NULL; 1634 atomic = 1; 1635 } 1636 } 1637 1638 if (resid == 0 && !ktls_permit_empty_frames(tls)) { 1639 error = EINVAL; 1640 goto release; 1641 } 1642 } 1643 #endif 1644 1645 restart: 1646 do { 1647 SOCKBUF_LOCK(&so->so_snd); 1648 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1649 SOCKBUF_UNLOCK(&so->so_snd); 1650 error = EPIPE; 1651 goto release; 1652 } 1653 if (so->so_error) { 1654 error = so->so_error; 1655 so->so_error = 0; 1656 SOCKBUF_UNLOCK(&so->so_snd); 1657 goto release; 1658 } 1659 if ((so->so_state & SS_ISCONNECTED) == 0) { 1660 /* 1661 * `sendto' and `sendmsg' is allowed on a connection- 1662 * based socket if it supports implied connect. 1663 * Return ENOTCONN if not connected and no address is 1664 * supplied. 1665 */ 1666 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1667 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1668 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1669 !(resid == 0 && clen != 0)) { 1670 SOCKBUF_UNLOCK(&so->so_snd); 1671 error = ENOTCONN; 1672 goto release; 1673 } 1674 } else if (addr == NULL) { 1675 SOCKBUF_UNLOCK(&so->so_snd); 1676 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1677 error = ENOTCONN; 1678 else 1679 error = EDESTADDRREQ; 1680 goto release; 1681 } 1682 } 1683 space = sbspace(&so->so_snd); 1684 if (flags & MSG_OOB) 1685 space += 1024; 1686 if ((atomic && resid > so->so_snd.sb_hiwat) || 1687 clen > so->so_snd.sb_hiwat) { 1688 SOCKBUF_UNLOCK(&so->so_snd); 1689 error = EMSGSIZE; 1690 goto release; 1691 } 1692 if (space < resid + clen && 1693 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 1694 if ((so->so_state & SS_NBIO) || 1695 (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) { 1696 SOCKBUF_UNLOCK(&so->so_snd); 1697 error = EWOULDBLOCK; 1698 goto release; 1699 } 1700 error = sbwait(so, SO_SND); 1701 SOCKBUF_UNLOCK(&so->so_snd); 1702 if (error) 1703 goto release; 1704 goto restart; 1705 } 1706 SOCKBUF_UNLOCK(&so->so_snd); 1707 space -= clen; 1708 do { 1709 if (uio == NULL) { 1710 resid = 0; 1711 if (flags & MSG_EOR) 1712 top->m_flags |= M_EOR; 1713 #ifdef KERN_TLS 1714 if (tls != NULL) { 1715 ktls_frame(top, tls, &tls_enq_cnt, 1716 tls_rtype); 1717 tls_rtype = TLS_RLTYPE_APP; 1718 } 1719 #endif 1720 } else { 1721 /* 1722 * Copy the data from userland into a mbuf 1723 * chain. If resid is 0, which can happen 1724 * only if we have control to send, then 1725 * a single empty mbuf is returned. This 1726 * is a workaround to prevent protocol send 1727 * methods to panic. 1728 */ 1729 #ifdef KERN_TLS 1730 if (tls != NULL) { 1731 top = m_uiotombuf(uio, M_WAITOK, space, 1732 tls->params.max_frame_len, 1733 M_EXTPG | 1734 ((flags & MSG_EOR) ? M_EOR : 0)); 1735 if (top != NULL) { 1736 ktls_frame(top, tls, 1737 &tls_enq_cnt, tls_rtype); 1738 } 1739 tls_rtype = TLS_RLTYPE_APP; 1740 } else 1741 #endif 1742 top = m_uiotombuf(uio, M_WAITOK, space, 1743 (atomic ? max_hdr : 0), 1744 (atomic ? M_PKTHDR : 0) | 1745 ((flags & MSG_EOR) ? M_EOR : 0)); 1746 if (top == NULL) { 1747 error = EFAULT; /* only possible error */ 1748 goto release; 1749 } 1750 space -= resid - uio->uio_resid; 1751 resid = uio->uio_resid; 1752 } 1753 if (dontroute) { 1754 SOCK_LOCK(so); 1755 so->so_options |= SO_DONTROUTE; 1756 SOCK_UNLOCK(so); 1757 } 1758 /* 1759 * XXX all the SBS_CANTSENDMORE checks previously 1760 * done could be out of date. We could have received 1761 * a reset packet in an interrupt or maybe we slept 1762 * while doing page faults in uiomove() etc. We 1763 * could probably recheck again inside the locking 1764 * protection here, but there are probably other 1765 * places that this also happens. We must rethink 1766 * this. 1767 */ 1768 VNET_SO_ASSERT(so); 1769 1770 pr_send_flag = (flags & MSG_OOB) ? PRUS_OOB : 1771 /* 1772 * If the user set MSG_EOF, the protocol understands 1773 * this flag and nothing left to send then use 1774 * PRU_SEND_EOF instead of PRU_SEND. 1775 */ 1776 ((flags & MSG_EOF) && 1777 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1778 (resid <= 0)) ? 1779 PRUS_EOF : 1780 /* If there is more to send set PRUS_MORETOCOME. */ 1781 (flags & MSG_MORETOCOME) || 1782 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0; 1783 1784 #ifdef KERN_TLS 1785 pr_send_flag |= tls_send_flag; 1786 #endif 1787 1788 error = so->so_proto->pr_send(so, pr_send_flag, top, 1789 addr, control, td); 1790 1791 if (dontroute) { 1792 SOCK_LOCK(so); 1793 so->so_options &= ~SO_DONTROUTE; 1794 SOCK_UNLOCK(so); 1795 } 1796 1797 #ifdef KERN_TLS 1798 if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) { 1799 if (error != 0) { 1800 m_freem(top); 1801 top = NULL; 1802 } else { 1803 soref(so); 1804 ktls_enqueue(top, so, tls_enq_cnt); 1805 } 1806 } 1807 #endif 1808 clen = 0; 1809 control = NULL; 1810 top = NULL; 1811 if (error) 1812 goto release; 1813 } while (resid && space > 0); 1814 } while (resid); 1815 1816 release: 1817 SOCK_IO_SEND_UNLOCK(so); 1818 out: 1819 #ifdef KERN_TLS 1820 if (tls != NULL) 1821 ktls_free(tls); 1822 #endif 1823 if (top != NULL) 1824 m_freem(top); 1825 if (control != NULL) 1826 m_freem(control); 1827 return (error); 1828 } 1829 1830 int 1831 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, 1832 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1833 { 1834 int error; 1835 1836 CURVNET_SET(so->so_vnet); 1837 error = so->so_proto->pr_sosend(so, addr, uio, 1838 top, control, flags, td); 1839 CURVNET_RESTORE(); 1840 return (error); 1841 } 1842 1843 /* 1844 * The part of soreceive() that implements reading non-inline out-of-band 1845 * data from a socket. For more complete comments, see soreceive(), from 1846 * which this code originated. 1847 * 1848 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is 1849 * unable to return an mbuf chain to the caller. 1850 */ 1851 static int 1852 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags) 1853 { 1854 struct protosw *pr = so->so_proto; 1855 struct mbuf *m; 1856 int error; 1857 1858 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); 1859 VNET_SO_ASSERT(so); 1860 1861 m = m_get(M_WAITOK, MT_DATA); 1862 error = pr->pr_rcvoob(so, m, flags & MSG_PEEK); 1863 if (error) 1864 goto bad; 1865 do { 1866 error = uiomove(mtod(m, void *), 1867 (int) min(uio->uio_resid, m->m_len), uio); 1868 m = m_free(m); 1869 } while (uio->uio_resid && error == 0 && m); 1870 bad: 1871 if (m != NULL) 1872 m_freem(m); 1873 return (error); 1874 } 1875 1876 /* 1877 * Following replacement or removal of the first mbuf on the first mbuf chain 1878 * of a socket buffer, push necessary state changes back into the socket 1879 * buffer so that other consumers see the values consistently. 'nextrecord' 1880 * is the callers locally stored value of the original value of 1881 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. 1882 * NOTE: 'nextrecord' may be NULL. 1883 */ 1884 static __inline void 1885 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) 1886 { 1887 1888 SOCKBUF_LOCK_ASSERT(sb); 1889 /* 1890 * First, update for the new value of nextrecord. If necessary, make 1891 * it the first record. 1892 */ 1893 if (sb->sb_mb != NULL) 1894 sb->sb_mb->m_nextpkt = nextrecord; 1895 else 1896 sb->sb_mb = nextrecord; 1897 1898 /* 1899 * Now update any dependent socket buffer fields to reflect the new 1900 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the 1901 * addition of a second clause that takes care of the case where 1902 * sb_mb has been updated, but remains the last record. 1903 */ 1904 if (sb->sb_mb == NULL) { 1905 sb->sb_mbtail = NULL; 1906 sb->sb_lastrecord = NULL; 1907 } else if (sb->sb_mb->m_nextpkt == NULL) 1908 sb->sb_lastrecord = sb->sb_mb; 1909 } 1910 1911 /* 1912 * Implement receive operations on a socket. We depend on the way that 1913 * records are added to the sockbuf by sbappend. In particular, each record 1914 * (mbufs linked through m_next) must begin with an address if the protocol 1915 * so specifies, followed by an optional mbuf or mbufs containing ancillary 1916 * data, and then zero or more mbufs of data. In order to allow parallelism 1917 * between network receive and copying to user space, as well as avoid 1918 * sleeping with a mutex held, we release the socket buffer mutex during the 1919 * user space copy. Although the sockbuf is locked, new data may still be 1920 * appended, and thus we must maintain consistency of the sockbuf during that 1921 * time. 1922 * 1923 * The caller may receive the data as a single mbuf chain by supplying an 1924 * mbuf **mp0 for use in returning the chain. The uio is then used only for 1925 * the count in uio_resid. 1926 */ 1927 int 1928 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio, 1929 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1930 { 1931 struct mbuf *m, **mp; 1932 int flags, error, offset; 1933 ssize_t len; 1934 struct protosw *pr = so->so_proto; 1935 struct mbuf *nextrecord; 1936 int moff, type = 0; 1937 ssize_t orig_resid = uio->uio_resid; 1938 bool report_real_len = false; 1939 1940 mp = mp0; 1941 if (psa != NULL) 1942 *psa = NULL; 1943 if (controlp != NULL) 1944 *controlp = NULL; 1945 if (flagsp != NULL) { 1946 report_real_len = *flagsp & MSG_TRUNC; 1947 *flagsp &= ~MSG_TRUNC; 1948 flags = *flagsp &~ MSG_EOR; 1949 } else 1950 flags = 0; 1951 if (flags & MSG_OOB) 1952 return (soreceive_rcvoob(so, uio, flags)); 1953 if (mp != NULL) 1954 *mp = NULL; 1955 if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING) 1956 && uio->uio_resid) { 1957 VNET_SO_ASSERT(so); 1958 pr->pr_rcvd(so, 0); 1959 } 1960 1961 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags)); 1962 if (error) 1963 return (error); 1964 1965 restart: 1966 SOCKBUF_LOCK(&so->so_rcv); 1967 m = so->so_rcv.sb_mb; 1968 /* 1969 * If we have less data than requested, block awaiting more (subject 1970 * to any timeout) if: 1971 * 1. the current count is less than the low water mark, or 1972 * 2. MSG_DONTWAIT is not set 1973 */ 1974 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 1975 sbavail(&so->so_rcv) < uio->uio_resid) && 1976 sbavail(&so->so_rcv) < so->so_rcv.sb_lowat && 1977 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 1978 KASSERT(m != NULL || !sbavail(&so->so_rcv), 1979 ("receive: m == %p sbavail == %u", 1980 m, sbavail(&so->so_rcv))); 1981 if (so->so_error || so->so_rerror) { 1982 if (m != NULL) 1983 goto dontblock; 1984 if (so->so_error) 1985 error = so->so_error; 1986 else 1987 error = so->so_rerror; 1988 if ((flags & MSG_PEEK) == 0) { 1989 if (so->so_error) 1990 so->so_error = 0; 1991 else 1992 so->so_rerror = 0; 1993 } 1994 SOCKBUF_UNLOCK(&so->so_rcv); 1995 goto release; 1996 } 1997 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1998 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 1999 if (m != NULL) 2000 goto dontblock; 2001 #ifdef KERN_TLS 2002 else if (so->so_rcv.sb_tlsdcc == 0 && 2003 so->so_rcv.sb_tlscc == 0) { 2004 #else 2005 else { 2006 #endif 2007 SOCKBUF_UNLOCK(&so->so_rcv); 2008 goto release; 2009 } 2010 } 2011 for (; m != NULL; m = m->m_next) 2012 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 2013 m = so->so_rcv.sb_mb; 2014 goto dontblock; 2015 } 2016 if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED | 2017 SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 && 2018 (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) { 2019 SOCKBUF_UNLOCK(&so->so_rcv); 2020 error = ENOTCONN; 2021 goto release; 2022 } 2023 if (uio->uio_resid == 0 && !report_real_len) { 2024 SOCKBUF_UNLOCK(&so->so_rcv); 2025 goto release; 2026 } 2027 if ((so->so_state & SS_NBIO) || 2028 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2029 SOCKBUF_UNLOCK(&so->so_rcv); 2030 error = EWOULDBLOCK; 2031 goto release; 2032 } 2033 SBLASTRECORDCHK(&so->so_rcv); 2034 SBLASTMBUFCHK(&so->so_rcv); 2035 error = sbwait(so, SO_RCV); 2036 SOCKBUF_UNLOCK(&so->so_rcv); 2037 if (error) 2038 goto release; 2039 goto restart; 2040 } 2041 dontblock: 2042 /* 2043 * From this point onward, we maintain 'nextrecord' as a cache of the 2044 * pointer to the next record in the socket buffer. We must keep the 2045 * various socket buffer pointers and local stack versions of the 2046 * pointers in sync, pushing out modifications before dropping the 2047 * socket buffer mutex, and re-reading them when picking it up. 2048 * 2049 * Otherwise, we will race with the network stack appending new data 2050 * or records onto the socket buffer by using inconsistent/stale 2051 * versions of the field, possibly resulting in socket buffer 2052 * corruption. 2053 * 2054 * By holding the high-level sblock(), we prevent simultaneous 2055 * readers from pulling off the front of the socket buffer. 2056 */ 2057 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2058 if (uio->uio_td) 2059 uio->uio_td->td_ru.ru_msgrcv++; 2060 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); 2061 SBLASTRECORDCHK(&so->so_rcv); 2062 SBLASTMBUFCHK(&so->so_rcv); 2063 nextrecord = m->m_nextpkt; 2064 if (pr->pr_flags & PR_ADDR) { 2065 KASSERT(m->m_type == MT_SONAME, 2066 ("m->m_type == %d", m->m_type)); 2067 orig_resid = 0; 2068 if (psa != NULL) 2069 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2070 M_NOWAIT); 2071 if (flags & MSG_PEEK) { 2072 m = m->m_next; 2073 } else { 2074 sbfree(&so->so_rcv, m); 2075 so->so_rcv.sb_mb = m_free(m); 2076 m = so->so_rcv.sb_mb; 2077 sockbuf_pushsync(&so->so_rcv, nextrecord); 2078 } 2079 } 2080 2081 /* 2082 * Process one or more MT_CONTROL mbufs present before any data mbufs 2083 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 2084 * just copy the data; if !MSG_PEEK, we call into the protocol to 2085 * perform externalization (or freeing if controlp == NULL). 2086 */ 2087 if (m != NULL && m->m_type == MT_CONTROL) { 2088 struct mbuf *cm = NULL, *cmn; 2089 struct mbuf **cme = &cm; 2090 #ifdef KERN_TLS 2091 struct cmsghdr *cmsg; 2092 struct tls_get_record tgr; 2093 2094 /* 2095 * For MSG_TLSAPPDATA, check for an alert record. 2096 * If found, return ENXIO without removing 2097 * it from the receive queue. This allows a subsequent 2098 * call without MSG_TLSAPPDATA to receive it. 2099 * Note that, for TLS, there should only be a single 2100 * control mbuf with the TLS_GET_RECORD message in it. 2101 */ 2102 if (flags & MSG_TLSAPPDATA) { 2103 cmsg = mtod(m, struct cmsghdr *); 2104 if (cmsg->cmsg_type == TLS_GET_RECORD && 2105 cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) { 2106 memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr)); 2107 if (__predict_false(tgr.tls_type == 2108 TLS_RLTYPE_ALERT)) { 2109 SOCKBUF_UNLOCK(&so->so_rcv); 2110 error = ENXIO; 2111 goto release; 2112 } 2113 } 2114 } 2115 #endif 2116 2117 do { 2118 if (flags & MSG_PEEK) { 2119 if (controlp != NULL) { 2120 *controlp = m_copym(m, 0, m->m_len, 2121 M_NOWAIT); 2122 controlp = &(*controlp)->m_next; 2123 } 2124 m = m->m_next; 2125 } else { 2126 sbfree(&so->so_rcv, m); 2127 so->so_rcv.sb_mb = m->m_next; 2128 m->m_next = NULL; 2129 *cme = m; 2130 cme = &(*cme)->m_next; 2131 m = so->so_rcv.sb_mb; 2132 } 2133 } while (m != NULL && m->m_type == MT_CONTROL); 2134 if ((flags & MSG_PEEK) == 0) 2135 sockbuf_pushsync(&so->so_rcv, nextrecord); 2136 while (cm != NULL) { 2137 cmn = cm->m_next; 2138 cm->m_next = NULL; 2139 if (pr->pr_domain->dom_externalize != NULL) { 2140 SOCKBUF_UNLOCK(&so->so_rcv); 2141 VNET_SO_ASSERT(so); 2142 error = (*pr->pr_domain->dom_externalize) 2143 (cm, controlp, flags); 2144 SOCKBUF_LOCK(&so->so_rcv); 2145 } else if (controlp != NULL) 2146 *controlp = cm; 2147 else 2148 m_freem(cm); 2149 if (controlp != NULL) { 2150 while (*controlp != NULL) 2151 controlp = &(*controlp)->m_next; 2152 } 2153 cm = cmn; 2154 } 2155 if (m != NULL) 2156 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 2157 else 2158 nextrecord = so->so_rcv.sb_mb; 2159 orig_resid = 0; 2160 } 2161 if (m != NULL) { 2162 if ((flags & MSG_PEEK) == 0) { 2163 KASSERT(m->m_nextpkt == nextrecord, 2164 ("soreceive: post-control, nextrecord !sync")); 2165 if (nextrecord == NULL) { 2166 KASSERT(so->so_rcv.sb_mb == m, 2167 ("soreceive: post-control, sb_mb!=m")); 2168 KASSERT(so->so_rcv.sb_lastrecord == m, 2169 ("soreceive: post-control, lastrecord!=m")); 2170 } 2171 } 2172 type = m->m_type; 2173 if (type == MT_OOBDATA) 2174 flags |= MSG_OOB; 2175 } else { 2176 if ((flags & MSG_PEEK) == 0) { 2177 KASSERT(so->so_rcv.sb_mb == nextrecord, 2178 ("soreceive: sb_mb != nextrecord")); 2179 if (so->so_rcv.sb_mb == NULL) { 2180 KASSERT(so->so_rcv.sb_lastrecord == NULL, 2181 ("soreceive: sb_lastercord != NULL")); 2182 } 2183 } 2184 } 2185 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2186 SBLASTRECORDCHK(&so->so_rcv); 2187 SBLASTMBUFCHK(&so->so_rcv); 2188 2189 /* 2190 * Now continue to read any data mbufs off of the head of the socket 2191 * buffer until the read request is satisfied. Note that 'type' is 2192 * used to store the type of any mbuf reads that have happened so far 2193 * such that soreceive() can stop reading if the type changes, which 2194 * causes soreceive() to return only one of regular data and inline 2195 * out-of-band data in a single socket receive operation. 2196 */ 2197 moff = 0; 2198 offset = 0; 2199 while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0 2200 && error == 0) { 2201 /* 2202 * If the type of mbuf has changed since the last mbuf 2203 * examined ('type'), end the receive operation. 2204 */ 2205 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2206 if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) { 2207 if (type != m->m_type) 2208 break; 2209 } else if (type == MT_OOBDATA) 2210 break; 2211 else 2212 KASSERT(m->m_type == MT_DATA, 2213 ("m->m_type == %d", m->m_type)); 2214 so->so_rcv.sb_state &= ~SBS_RCVATMARK; 2215 len = uio->uio_resid; 2216 if (so->so_oobmark && len > so->so_oobmark - offset) 2217 len = so->so_oobmark - offset; 2218 if (len > m->m_len - moff) 2219 len = m->m_len - moff; 2220 /* 2221 * If mp is set, just pass back the mbufs. Otherwise copy 2222 * them out via the uio, then free. Sockbuf must be 2223 * consistent here (points to current mbuf, it points to next 2224 * record) when we drop priority; we must note any additions 2225 * to the sockbuf when we block interrupts again. 2226 */ 2227 if (mp == NULL) { 2228 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2229 SBLASTRECORDCHK(&so->so_rcv); 2230 SBLASTMBUFCHK(&so->so_rcv); 2231 SOCKBUF_UNLOCK(&so->so_rcv); 2232 if ((m->m_flags & M_EXTPG) != 0) 2233 error = m_unmapped_uiomove(m, moff, uio, 2234 (int)len); 2235 else 2236 error = uiomove(mtod(m, char *) + moff, 2237 (int)len, uio); 2238 SOCKBUF_LOCK(&so->so_rcv); 2239 if (error) { 2240 /* 2241 * The MT_SONAME mbuf has already been removed 2242 * from the record, so it is necessary to 2243 * remove the data mbufs, if any, to preserve 2244 * the invariant in the case of PR_ADDR that 2245 * requires MT_SONAME mbufs at the head of 2246 * each record. 2247 */ 2248 if (pr->pr_flags & PR_ATOMIC && 2249 ((flags & MSG_PEEK) == 0)) 2250 (void)sbdroprecord_locked(&so->so_rcv); 2251 SOCKBUF_UNLOCK(&so->so_rcv); 2252 goto release; 2253 } 2254 } else 2255 uio->uio_resid -= len; 2256 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2257 if (len == m->m_len - moff) { 2258 if (m->m_flags & M_EOR) 2259 flags |= MSG_EOR; 2260 if (flags & MSG_PEEK) { 2261 m = m->m_next; 2262 moff = 0; 2263 } else { 2264 nextrecord = m->m_nextpkt; 2265 sbfree(&so->so_rcv, m); 2266 if (mp != NULL) { 2267 m->m_nextpkt = NULL; 2268 *mp = m; 2269 mp = &m->m_next; 2270 so->so_rcv.sb_mb = m = m->m_next; 2271 *mp = NULL; 2272 } else { 2273 so->so_rcv.sb_mb = m_free(m); 2274 m = so->so_rcv.sb_mb; 2275 } 2276 sockbuf_pushsync(&so->so_rcv, nextrecord); 2277 SBLASTRECORDCHK(&so->so_rcv); 2278 SBLASTMBUFCHK(&so->so_rcv); 2279 } 2280 } else { 2281 if (flags & MSG_PEEK) 2282 moff += len; 2283 else { 2284 if (mp != NULL) { 2285 if (flags & MSG_DONTWAIT) { 2286 *mp = m_copym(m, 0, len, 2287 M_NOWAIT); 2288 if (*mp == NULL) { 2289 /* 2290 * m_copym() couldn't 2291 * allocate an mbuf. 2292 * Adjust uio_resid back 2293 * (it was adjusted 2294 * down by len bytes, 2295 * which we didn't end 2296 * up "copying" over). 2297 */ 2298 uio->uio_resid += len; 2299 break; 2300 } 2301 } else { 2302 SOCKBUF_UNLOCK(&so->so_rcv); 2303 *mp = m_copym(m, 0, len, 2304 M_WAITOK); 2305 SOCKBUF_LOCK(&so->so_rcv); 2306 } 2307 } 2308 sbcut_locked(&so->so_rcv, len); 2309 } 2310 } 2311 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2312 if (so->so_oobmark) { 2313 if ((flags & MSG_PEEK) == 0) { 2314 so->so_oobmark -= len; 2315 if (so->so_oobmark == 0) { 2316 so->so_rcv.sb_state |= SBS_RCVATMARK; 2317 break; 2318 } 2319 } else { 2320 offset += len; 2321 if (offset == so->so_oobmark) 2322 break; 2323 } 2324 } 2325 if (flags & MSG_EOR) 2326 break; 2327 /* 2328 * If the MSG_WAITALL flag is set (for non-atomic socket), we 2329 * must not quit until "uio->uio_resid == 0" or an error 2330 * termination. If a signal/timeout occurs, return with a 2331 * short count but without error. Keep sockbuf locked 2332 * against other readers. 2333 */ 2334 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 2335 !sosendallatonce(so) && nextrecord == NULL) { 2336 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2337 if (so->so_error || so->so_rerror || 2338 so->so_rcv.sb_state & SBS_CANTRCVMORE) 2339 break; 2340 /* 2341 * Notify the protocol that some data has been 2342 * drained before blocking. 2343 */ 2344 if (pr->pr_flags & PR_WANTRCVD) { 2345 SOCKBUF_UNLOCK(&so->so_rcv); 2346 VNET_SO_ASSERT(so); 2347 pr->pr_rcvd(so, flags); 2348 SOCKBUF_LOCK(&so->so_rcv); 2349 } 2350 SBLASTRECORDCHK(&so->so_rcv); 2351 SBLASTMBUFCHK(&so->so_rcv); 2352 /* 2353 * We could receive some data while was notifying 2354 * the protocol. Skip blocking in this case. 2355 */ 2356 if (so->so_rcv.sb_mb == NULL) { 2357 error = sbwait(so, SO_RCV); 2358 if (error) { 2359 SOCKBUF_UNLOCK(&so->so_rcv); 2360 goto release; 2361 } 2362 } 2363 m = so->so_rcv.sb_mb; 2364 if (m != NULL) 2365 nextrecord = m->m_nextpkt; 2366 } 2367 } 2368 2369 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2370 if (m != NULL && pr->pr_flags & PR_ATOMIC) { 2371 if (report_real_len) 2372 uio->uio_resid -= m_length(m, NULL) - moff; 2373 flags |= MSG_TRUNC; 2374 if ((flags & MSG_PEEK) == 0) 2375 (void) sbdroprecord_locked(&so->so_rcv); 2376 } 2377 if ((flags & MSG_PEEK) == 0) { 2378 if (m == NULL) { 2379 /* 2380 * First part is an inline SB_EMPTY_FIXUP(). Second 2381 * part makes sure sb_lastrecord is up-to-date if 2382 * there is still data in the socket buffer. 2383 */ 2384 so->so_rcv.sb_mb = nextrecord; 2385 if (so->so_rcv.sb_mb == NULL) { 2386 so->so_rcv.sb_mbtail = NULL; 2387 so->so_rcv.sb_lastrecord = NULL; 2388 } else if (nextrecord->m_nextpkt == NULL) 2389 so->so_rcv.sb_lastrecord = nextrecord; 2390 } 2391 SBLASTRECORDCHK(&so->so_rcv); 2392 SBLASTMBUFCHK(&so->so_rcv); 2393 /* 2394 * If soreceive() is being done from the socket callback, 2395 * then don't need to generate ACK to peer to update window, 2396 * since ACK will be generated on return to TCP. 2397 */ 2398 if (!(flags & MSG_SOCALLBCK) && 2399 (pr->pr_flags & PR_WANTRCVD)) { 2400 SOCKBUF_UNLOCK(&so->so_rcv); 2401 VNET_SO_ASSERT(so); 2402 pr->pr_rcvd(so, flags); 2403 SOCKBUF_LOCK(&so->so_rcv); 2404 } 2405 } 2406 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2407 if (orig_resid == uio->uio_resid && orig_resid && 2408 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { 2409 SOCKBUF_UNLOCK(&so->so_rcv); 2410 goto restart; 2411 } 2412 SOCKBUF_UNLOCK(&so->so_rcv); 2413 2414 if (flagsp != NULL) 2415 *flagsp |= flags; 2416 release: 2417 SOCK_IO_RECV_UNLOCK(so); 2418 return (error); 2419 } 2420 2421 /* 2422 * Optimized version of soreceive() for stream (TCP) sockets. 2423 */ 2424 int 2425 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio, 2426 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2427 { 2428 int len = 0, error = 0, flags, oresid; 2429 struct sockbuf *sb; 2430 struct mbuf *m, *n = NULL; 2431 2432 /* We only do stream sockets. */ 2433 if (so->so_type != SOCK_STREAM) 2434 return (EINVAL); 2435 if (psa != NULL) 2436 *psa = NULL; 2437 if (flagsp != NULL) 2438 flags = *flagsp &~ MSG_EOR; 2439 else 2440 flags = 0; 2441 if (controlp != NULL) 2442 *controlp = NULL; 2443 if (flags & MSG_OOB) 2444 return (soreceive_rcvoob(so, uio, flags)); 2445 if (mp0 != NULL) 2446 *mp0 = NULL; 2447 2448 sb = &so->so_rcv; 2449 2450 #ifdef KERN_TLS 2451 /* 2452 * KTLS store TLS records as records with a control message to 2453 * describe the framing. 2454 * 2455 * We check once here before acquiring locks to optimize the 2456 * common case. 2457 */ 2458 if (sb->sb_tls_info != NULL) 2459 return (soreceive_generic(so, psa, uio, mp0, controlp, 2460 flagsp)); 2461 #endif 2462 2463 /* Prevent other readers from entering the socket. */ 2464 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags)); 2465 if (error) 2466 return (error); 2467 SOCKBUF_LOCK(sb); 2468 2469 #ifdef KERN_TLS 2470 if (sb->sb_tls_info != NULL) { 2471 SOCKBUF_UNLOCK(sb); 2472 SOCK_IO_RECV_UNLOCK(so); 2473 return (soreceive_generic(so, psa, uio, mp0, controlp, 2474 flagsp)); 2475 } 2476 #endif 2477 2478 /* Easy one, no space to copyout anything. */ 2479 if (uio->uio_resid == 0) { 2480 error = EINVAL; 2481 goto out; 2482 } 2483 oresid = uio->uio_resid; 2484 2485 /* We will never ever get anything unless we are or were connected. */ 2486 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 2487 error = ENOTCONN; 2488 goto out; 2489 } 2490 2491 restart: 2492 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2493 2494 /* Abort if socket has reported problems. */ 2495 if (so->so_error) { 2496 if (sbavail(sb) > 0) 2497 goto deliver; 2498 if (oresid > uio->uio_resid) 2499 goto out; 2500 error = so->so_error; 2501 if (!(flags & MSG_PEEK)) 2502 so->so_error = 0; 2503 goto out; 2504 } 2505 2506 /* Door is closed. Deliver what is left, if any. */ 2507 if (sb->sb_state & SBS_CANTRCVMORE) { 2508 if (sbavail(sb) > 0) 2509 goto deliver; 2510 else 2511 goto out; 2512 } 2513 2514 /* Socket buffer is empty and we shall not block. */ 2515 if (sbavail(sb) == 0 && 2516 ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) { 2517 error = EAGAIN; 2518 goto out; 2519 } 2520 2521 /* Socket buffer got some data that we shall deliver now. */ 2522 if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) && 2523 ((so->so_state & SS_NBIO) || 2524 (flags & (MSG_DONTWAIT|MSG_NBIO)) || 2525 sbavail(sb) >= sb->sb_lowat || 2526 sbavail(sb) >= uio->uio_resid || 2527 sbavail(sb) >= sb->sb_hiwat) ) { 2528 goto deliver; 2529 } 2530 2531 /* On MSG_WAITALL we must wait until all data or error arrives. */ 2532 if ((flags & MSG_WAITALL) && 2533 (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat)) 2534 goto deliver; 2535 2536 /* 2537 * Wait and block until (more) data comes in. 2538 * NB: Drops the sockbuf lock during wait. 2539 */ 2540 error = sbwait(so, SO_RCV); 2541 if (error) 2542 goto out; 2543 goto restart; 2544 2545 deliver: 2546 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2547 KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__)); 2548 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__)); 2549 2550 /* Statistics. */ 2551 if (uio->uio_td) 2552 uio->uio_td->td_ru.ru_msgrcv++; 2553 2554 /* Fill uio until full or current end of socket buffer is reached. */ 2555 len = min(uio->uio_resid, sbavail(sb)); 2556 if (mp0 != NULL) { 2557 /* Dequeue as many mbufs as possible. */ 2558 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) { 2559 if (*mp0 == NULL) 2560 *mp0 = sb->sb_mb; 2561 else 2562 m_cat(*mp0, sb->sb_mb); 2563 for (m = sb->sb_mb; 2564 m != NULL && m->m_len <= len; 2565 m = m->m_next) { 2566 KASSERT(!(m->m_flags & M_NOTAVAIL), 2567 ("%s: m %p not available", __func__, m)); 2568 len -= m->m_len; 2569 uio->uio_resid -= m->m_len; 2570 sbfree(sb, m); 2571 n = m; 2572 } 2573 n->m_next = NULL; 2574 sb->sb_mb = m; 2575 sb->sb_lastrecord = sb->sb_mb; 2576 if (sb->sb_mb == NULL) 2577 SB_EMPTY_FIXUP(sb); 2578 } 2579 /* Copy the remainder. */ 2580 if (len > 0) { 2581 KASSERT(sb->sb_mb != NULL, 2582 ("%s: len > 0 && sb->sb_mb empty", __func__)); 2583 2584 m = m_copym(sb->sb_mb, 0, len, M_NOWAIT); 2585 if (m == NULL) 2586 len = 0; /* Don't flush data from sockbuf. */ 2587 else 2588 uio->uio_resid -= len; 2589 if (*mp0 != NULL) 2590 m_cat(*mp0, m); 2591 else 2592 *mp0 = m; 2593 if (*mp0 == NULL) { 2594 error = ENOBUFS; 2595 goto out; 2596 } 2597 } 2598 } else { 2599 /* NB: Must unlock socket buffer as uiomove may sleep. */ 2600 SOCKBUF_UNLOCK(sb); 2601 error = m_mbuftouio(uio, sb->sb_mb, len); 2602 SOCKBUF_LOCK(sb); 2603 if (error) 2604 goto out; 2605 } 2606 SBLASTRECORDCHK(sb); 2607 SBLASTMBUFCHK(sb); 2608 2609 /* 2610 * Remove the delivered data from the socket buffer unless we 2611 * were only peeking. 2612 */ 2613 if (!(flags & MSG_PEEK)) { 2614 if (len > 0) 2615 sbdrop_locked(sb, len); 2616 2617 /* Notify protocol that we drained some data. */ 2618 if ((so->so_proto->pr_flags & PR_WANTRCVD) && 2619 (((flags & MSG_WAITALL) && uio->uio_resid > 0) || 2620 !(flags & MSG_SOCALLBCK))) { 2621 SOCKBUF_UNLOCK(sb); 2622 VNET_SO_ASSERT(so); 2623 so->so_proto->pr_rcvd(so, flags); 2624 SOCKBUF_LOCK(sb); 2625 } 2626 } 2627 2628 /* 2629 * For MSG_WAITALL we may have to loop again and wait for 2630 * more data to come in. 2631 */ 2632 if ((flags & MSG_WAITALL) && uio->uio_resid > 0) 2633 goto restart; 2634 out: 2635 SBLASTRECORDCHK(sb); 2636 SBLASTMBUFCHK(sb); 2637 SOCKBUF_UNLOCK(sb); 2638 SOCK_IO_RECV_UNLOCK(so); 2639 return (error); 2640 } 2641 2642 /* 2643 * Optimized version of soreceive() for simple datagram cases from userspace. 2644 * Unlike in the stream case, we're able to drop a datagram if copyout() 2645 * fails, and because we handle datagrams atomically, we don't need to use a 2646 * sleep lock to prevent I/O interlacing. 2647 */ 2648 int 2649 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio, 2650 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2651 { 2652 struct mbuf *m, *m2; 2653 int flags, error; 2654 ssize_t len; 2655 struct protosw *pr = so->so_proto; 2656 struct mbuf *nextrecord; 2657 2658 if (psa != NULL) 2659 *psa = NULL; 2660 if (controlp != NULL) 2661 *controlp = NULL; 2662 if (flagsp != NULL) 2663 flags = *flagsp &~ MSG_EOR; 2664 else 2665 flags = 0; 2666 2667 /* 2668 * For any complicated cases, fall back to the full 2669 * soreceive_generic(). 2670 */ 2671 if (mp0 != NULL || (flags & (MSG_PEEK | MSG_OOB | MSG_TRUNC))) 2672 return (soreceive_generic(so, psa, uio, mp0, controlp, 2673 flagsp)); 2674 2675 /* 2676 * Enforce restrictions on use. 2677 */ 2678 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0, 2679 ("soreceive_dgram: wantrcvd")); 2680 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic")); 2681 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0, 2682 ("soreceive_dgram: SBS_RCVATMARK")); 2683 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0, 2684 ("soreceive_dgram: P_CONNREQUIRED")); 2685 2686 /* 2687 * Loop blocking while waiting for a datagram. 2688 */ 2689 SOCKBUF_LOCK(&so->so_rcv); 2690 while ((m = so->so_rcv.sb_mb) == NULL) { 2691 KASSERT(sbavail(&so->so_rcv) == 0, 2692 ("soreceive_dgram: sb_mb NULL but sbavail %u", 2693 sbavail(&so->so_rcv))); 2694 if (so->so_error) { 2695 error = so->so_error; 2696 so->so_error = 0; 2697 SOCKBUF_UNLOCK(&so->so_rcv); 2698 return (error); 2699 } 2700 if (so->so_rcv.sb_state & SBS_CANTRCVMORE || 2701 uio->uio_resid == 0) { 2702 SOCKBUF_UNLOCK(&so->so_rcv); 2703 return (0); 2704 } 2705 if ((so->so_state & SS_NBIO) || 2706 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2707 SOCKBUF_UNLOCK(&so->so_rcv); 2708 return (EWOULDBLOCK); 2709 } 2710 SBLASTRECORDCHK(&so->so_rcv); 2711 SBLASTMBUFCHK(&so->so_rcv); 2712 error = sbwait(so, SO_RCV); 2713 if (error) { 2714 SOCKBUF_UNLOCK(&so->so_rcv); 2715 return (error); 2716 } 2717 } 2718 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2719 2720 if (uio->uio_td) 2721 uio->uio_td->td_ru.ru_msgrcv++; 2722 SBLASTRECORDCHK(&so->so_rcv); 2723 SBLASTMBUFCHK(&so->so_rcv); 2724 nextrecord = m->m_nextpkt; 2725 if (nextrecord == NULL) { 2726 KASSERT(so->so_rcv.sb_lastrecord == m, 2727 ("soreceive_dgram: lastrecord != m")); 2728 } 2729 2730 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord, 2731 ("soreceive_dgram: m_nextpkt != nextrecord")); 2732 2733 /* 2734 * Pull 'm' and its chain off the front of the packet queue. 2735 */ 2736 so->so_rcv.sb_mb = NULL; 2737 sockbuf_pushsync(&so->so_rcv, nextrecord); 2738 2739 /* 2740 * Walk 'm's chain and free that many bytes from the socket buffer. 2741 */ 2742 for (m2 = m; m2 != NULL; m2 = m2->m_next) 2743 sbfree(&so->so_rcv, m2); 2744 2745 /* 2746 * Do a few last checks before we let go of the lock. 2747 */ 2748 SBLASTRECORDCHK(&so->so_rcv); 2749 SBLASTMBUFCHK(&so->so_rcv); 2750 SOCKBUF_UNLOCK(&so->so_rcv); 2751 2752 if (pr->pr_flags & PR_ADDR) { 2753 KASSERT(m->m_type == MT_SONAME, 2754 ("m->m_type == %d", m->m_type)); 2755 if (psa != NULL) 2756 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2757 M_NOWAIT); 2758 m = m_free(m); 2759 } 2760 if (m == NULL) { 2761 /* XXXRW: Can this happen? */ 2762 return (0); 2763 } 2764 2765 /* 2766 * Packet to copyout() is now in 'm' and it is disconnected from the 2767 * queue. 2768 * 2769 * Process one or more MT_CONTROL mbufs present before any data mbufs 2770 * in the first mbuf chain on the socket buffer. We call into the 2771 * protocol to perform externalization (or freeing if controlp == 2772 * NULL). In some cases there can be only MT_CONTROL mbufs without 2773 * MT_DATA mbufs. 2774 */ 2775 if (m->m_type == MT_CONTROL) { 2776 struct mbuf *cm = NULL, *cmn; 2777 struct mbuf **cme = &cm; 2778 2779 do { 2780 m2 = m->m_next; 2781 m->m_next = NULL; 2782 *cme = m; 2783 cme = &(*cme)->m_next; 2784 m = m2; 2785 } while (m != NULL && m->m_type == MT_CONTROL); 2786 while (cm != NULL) { 2787 cmn = cm->m_next; 2788 cm->m_next = NULL; 2789 if (pr->pr_domain->dom_externalize != NULL) { 2790 error = (*pr->pr_domain->dom_externalize) 2791 (cm, controlp, flags); 2792 } else if (controlp != NULL) 2793 *controlp = cm; 2794 else 2795 m_freem(cm); 2796 if (controlp != NULL) { 2797 while (*controlp != NULL) 2798 controlp = &(*controlp)->m_next; 2799 } 2800 cm = cmn; 2801 } 2802 } 2803 KASSERT(m == NULL || m->m_type == MT_DATA, 2804 ("soreceive_dgram: !data")); 2805 while (m != NULL && uio->uio_resid > 0) { 2806 len = uio->uio_resid; 2807 if (len > m->m_len) 2808 len = m->m_len; 2809 error = uiomove(mtod(m, char *), (int)len, uio); 2810 if (error) { 2811 m_freem(m); 2812 return (error); 2813 } 2814 if (len == m->m_len) 2815 m = m_free(m); 2816 else { 2817 m->m_data += len; 2818 m->m_len -= len; 2819 } 2820 } 2821 if (m != NULL) { 2822 flags |= MSG_TRUNC; 2823 m_freem(m); 2824 } 2825 if (flagsp != NULL) 2826 *flagsp |= flags; 2827 return (0); 2828 } 2829 2830 int 2831 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, 2832 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2833 { 2834 int error; 2835 2836 CURVNET_SET(so->so_vnet); 2837 error = so->so_proto->pr_soreceive(so, psa, uio, mp0, controlp, flagsp); 2838 CURVNET_RESTORE(); 2839 return (error); 2840 } 2841 2842 int 2843 soshutdown(struct socket *so, int how) 2844 { 2845 struct protosw *pr; 2846 int error, soerror_enotconn; 2847 2848 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 2849 return (EINVAL); 2850 2851 soerror_enotconn = 0; 2852 SOCK_LOCK(so); 2853 if ((so->so_state & 2854 (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) { 2855 /* 2856 * POSIX mandates us to return ENOTCONN when shutdown(2) is 2857 * invoked on a datagram sockets, however historically we would 2858 * actually tear socket down. This is known to be leveraged by 2859 * some applications to unblock process waiting in recvXXX(2) 2860 * by other process that it shares that socket with. Try to meet 2861 * both backward-compatibility and POSIX requirements by forcing 2862 * ENOTCONN but still asking protocol to perform pru_shutdown(). 2863 */ 2864 if (so->so_type != SOCK_DGRAM && !SOLISTENING(so)) { 2865 SOCK_UNLOCK(so); 2866 return (ENOTCONN); 2867 } 2868 soerror_enotconn = 1; 2869 } 2870 2871 if (SOLISTENING(so)) { 2872 if (how != SHUT_WR) { 2873 so->so_error = ECONNABORTED; 2874 solisten_wakeup(so); /* unlocks so */ 2875 } else { 2876 SOCK_UNLOCK(so); 2877 } 2878 goto done; 2879 } 2880 SOCK_UNLOCK(so); 2881 2882 CURVNET_SET(so->so_vnet); 2883 pr = so->so_proto; 2884 if (pr->pr_flush != NULL) 2885 pr->pr_flush(so, how); 2886 if (how != SHUT_WR) 2887 sorflush(so); 2888 if (how != SHUT_RD) { 2889 error = pr->pr_shutdown(so); 2890 wakeup(&so->so_timeo); 2891 CURVNET_RESTORE(); 2892 return ((error == 0 && soerror_enotconn) ? ENOTCONN : error); 2893 } 2894 wakeup(&so->so_timeo); 2895 CURVNET_RESTORE(); 2896 2897 done: 2898 return (soerror_enotconn ? ENOTCONN : 0); 2899 } 2900 2901 void 2902 sorflush(struct socket *so) 2903 { 2904 struct protosw *pr; 2905 int error; 2906 2907 VNET_SO_ASSERT(so); 2908 2909 /* 2910 * Dislodge threads currently blocked in receive and wait to acquire 2911 * a lock against other simultaneous readers before clearing the 2912 * socket buffer. Don't let our acquire be interrupted by a signal 2913 * despite any existing socket disposition on interruptable waiting. 2914 */ 2915 socantrcvmore(so); 2916 2917 error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR); 2918 if (error != 0) { 2919 KASSERT(SOLISTENING(so), 2920 ("%s: soiolock(%p) failed", __func__, so)); 2921 return; 2922 } 2923 2924 pr = so->so_proto; 2925 if (pr->pr_flags & PR_RIGHTS) { 2926 MPASS(pr->pr_domain->dom_dispose != NULL); 2927 (*pr->pr_domain->dom_dispose)(so); 2928 } else { 2929 sbrelease(so, SO_RCV); 2930 SOCK_IO_RECV_UNLOCK(so); 2931 } 2932 2933 } 2934 2935 /* 2936 * Wrapper for Socket established helper hook. 2937 * Parameters: socket, context of the hook point, hook id. 2938 */ 2939 static int inline 2940 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id) 2941 { 2942 struct socket_hhook_data hhook_data = { 2943 .so = so, 2944 .hctx = hctx, 2945 .m = NULL, 2946 .status = 0 2947 }; 2948 2949 CURVNET_SET(so->so_vnet); 2950 HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd); 2951 CURVNET_RESTORE(); 2952 2953 /* Ugly but needed, since hhooks return void for now */ 2954 return (hhook_data.status); 2955 } 2956 2957 /* 2958 * Perhaps this routine, and sooptcopyout(), below, ought to come in an 2959 * additional variant to handle the case where the option value needs to be 2960 * some kind of integer, but not a specific size. In addition to their use 2961 * here, these functions are also called by the protocol-level pr_ctloutput() 2962 * routines. 2963 */ 2964 int 2965 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen) 2966 { 2967 size_t valsize; 2968 2969 /* 2970 * If the user gives us more than we wanted, we ignore it, but if we 2971 * don't get the minimum length the caller wants, we return EINVAL. 2972 * On success, sopt->sopt_valsize is set to however much we actually 2973 * retrieved. 2974 */ 2975 if ((valsize = sopt->sopt_valsize) < minlen) 2976 return EINVAL; 2977 if (valsize > len) 2978 sopt->sopt_valsize = valsize = len; 2979 2980 if (sopt->sopt_td != NULL) 2981 return (copyin(sopt->sopt_val, buf, valsize)); 2982 2983 bcopy(sopt->sopt_val, buf, valsize); 2984 return (0); 2985 } 2986 2987 /* 2988 * Kernel version of setsockopt(2). 2989 * 2990 * XXX: optlen is size_t, not socklen_t 2991 */ 2992 int 2993 so_setsockopt(struct socket *so, int level, int optname, void *optval, 2994 size_t optlen) 2995 { 2996 struct sockopt sopt; 2997 2998 sopt.sopt_level = level; 2999 sopt.sopt_name = optname; 3000 sopt.sopt_dir = SOPT_SET; 3001 sopt.sopt_val = optval; 3002 sopt.sopt_valsize = optlen; 3003 sopt.sopt_td = NULL; 3004 return (sosetopt(so, &sopt)); 3005 } 3006 3007 int 3008 sosetopt(struct socket *so, struct sockopt *sopt) 3009 { 3010 int error, optval; 3011 struct linger l; 3012 struct timeval tv; 3013 sbintime_t val, *valp; 3014 uint32_t val32; 3015 #ifdef MAC 3016 struct mac extmac; 3017 #endif 3018 3019 CURVNET_SET(so->so_vnet); 3020 error = 0; 3021 if (sopt->sopt_level != SOL_SOCKET) { 3022 if (so->so_proto->pr_ctloutput != NULL) 3023 error = (*so->so_proto->pr_ctloutput)(so, sopt); 3024 else 3025 error = ENOPROTOOPT; 3026 } else { 3027 switch (sopt->sopt_name) { 3028 case SO_ACCEPTFILTER: 3029 error = accept_filt_setopt(so, sopt); 3030 if (error) 3031 goto bad; 3032 break; 3033 3034 case SO_LINGER: 3035 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 3036 if (error) 3037 goto bad; 3038 if (l.l_linger < 0 || 3039 l.l_linger > USHRT_MAX || 3040 l.l_linger > (INT_MAX / hz)) { 3041 error = EDOM; 3042 goto bad; 3043 } 3044 SOCK_LOCK(so); 3045 so->so_linger = l.l_linger; 3046 if (l.l_onoff) 3047 so->so_options |= SO_LINGER; 3048 else 3049 so->so_options &= ~SO_LINGER; 3050 SOCK_UNLOCK(so); 3051 break; 3052 3053 case SO_DEBUG: 3054 case SO_KEEPALIVE: 3055 case SO_DONTROUTE: 3056 case SO_USELOOPBACK: 3057 case SO_BROADCAST: 3058 case SO_REUSEADDR: 3059 case SO_REUSEPORT: 3060 case SO_REUSEPORT_LB: 3061 case SO_OOBINLINE: 3062 case SO_TIMESTAMP: 3063 case SO_BINTIME: 3064 case SO_NOSIGPIPE: 3065 case SO_NO_DDP: 3066 case SO_NO_OFFLOAD: 3067 case SO_RERROR: 3068 error = sooptcopyin(sopt, &optval, sizeof optval, 3069 sizeof optval); 3070 if (error) 3071 goto bad; 3072 SOCK_LOCK(so); 3073 if (optval) 3074 so->so_options |= sopt->sopt_name; 3075 else 3076 so->so_options &= ~sopt->sopt_name; 3077 SOCK_UNLOCK(so); 3078 break; 3079 3080 case SO_SETFIB: 3081 error = sooptcopyin(sopt, &optval, sizeof optval, 3082 sizeof optval); 3083 if (error) 3084 goto bad; 3085 3086 if (optval < 0 || optval >= rt_numfibs) { 3087 error = EINVAL; 3088 goto bad; 3089 } 3090 if (((so->so_proto->pr_domain->dom_family == PF_INET) || 3091 (so->so_proto->pr_domain->dom_family == PF_INET6) || 3092 (so->so_proto->pr_domain->dom_family == PF_ROUTE))) 3093 so->so_fibnum = optval; 3094 else 3095 so->so_fibnum = 0; 3096 break; 3097 3098 case SO_USER_COOKIE: 3099 error = sooptcopyin(sopt, &val32, sizeof val32, 3100 sizeof val32); 3101 if (error) 3102 goto bad; 3103 so->so_user_cookie = val32; 3104 break; 3105 3106 case SO_SNDBUF: 3107 case SO_RCVBUF: 3108 case SO_SNDLOWAT: 3109 case SO_RCVLOWAT: 3110 error = sooptcopyin(sopt, &optval, sizeof optval, 3111 sizeof optval); 3112 if (error) 3113 goto bad; 3114 3115 /* 3116 * Values < 1 make no sense for any of these options, 3117 * so disallow them. 3118 */ 3119 if (optval < 1) { 3120 error = EINVAL; 3121 goto bad; 3122 } 3123 3124 error = sbsetopt(so, sopt->sopt_name, optval); 3125 break; 3126 3127 case SO_SNDTIMEO: 3128 case SO_RCVTIMEO: 3129 #ifdef COMPAT_FREEBSD32 3130 if (SV_CURPROC_FLAG(SV_ILP32)) { 3131 struct timeval32 tv32; 3132 3133 error = sooptcopyin(sopt, &tv32, sizeof tv32, 3134 sizeof tv32); 3135 CP(tv32, tv, tv_sec); 3136 CP(tv32, tv, tv_usec); 3137 } else 3138 #endif 3139 error = sooptcopyin(sopt, &tv, sizeof tv, 3140 sizeof tv); 3141 if (error) 3142 goto bad; 3143 if (tv.tv_sec < 0 || tv.tv_usec < 0 || 3144 tv.tv_usec >= 1000000) { 3145 error = EDOM; 3146 goto bad; 3147 } 3148 if (tv.tv_sec > INT32_MAX) 3149 val = SBT_MAX; 3150 else 3151 val = tvtosbt(tv); 3152 SOCK_LOCK(so); 3153 valp = sopt->sopt_name == SO_SNDTIMEO ? 3154 (SOLISTENING(so) ? &so->sol_sbsnd_timeo : 3155 &so->so_snd.sb_timeo) : 3156 (SOLISTENING(so) ? &so->sol_sbrcv_timeo : 3157 &so->so_rcv.sb_timeo); 3158 *valp = val; 3159 SOCK_UNLOCK(so); 3160 break; 3161 3162 case SO_LABEL: 3163 #ifdef MAC 3164 error = sooptcopyin(sopt, &extmac, sizeof extmac, 3165 sizeof extmac); 3166 if (error) 3167 goto bad; 3168 error = mac_setsockopt_label(sopt->sopt_td->td_ucred, 3169 so, &extmac); 3170 #else 3171 error = EOPNOTSUPP; 3172 #endif 3173 break; 3174 3175 case SO_TS_CLOCK: 3176 error = sooptcopyin(sopt, &optval, sizeof optval, 3177 sizeof optval); 3178 if (error) 3179 goto bad; 3180 if (optval < 0 || optval > SO_TS_CLOCK_MAX) { 3181 error = EINVAL; 3182 goto bad; 3183 } 3184 so->so_ts_clock = optval; 3185 break; 3186 3187 case SO_MAX_PACING_RATE: 3188 error = sooptcopyin(sopt, &val32, sizeof(val32), 3189 sizeof(val32)); 3190 if (error) 3191 goto bad; 3192 so->so_max_pacing_rate = val32; 3193 break; 3194 3195 default: 3196 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 3197 error = hhook_run_socket(so, sopt, 3198 HHOOK_SOCKET_OPT); 3199 else 3200 error = ENOPROTOOPT; 3201 break; 3202 } 3203 if (error == 0 && so->so_proto->pr_ctloutput != NULL) 3204 (void)(*so->so_proto->pr_ctloutput)(so, sopt); 3205 } 3206 bad: 3207 CURVNET_RESTORE(); 3208 return (error); 3209 } 3210 3211 /* 3212 * Helper routine for getsockopt. 3213 */ 3214 int 3215 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 3216 { 3217 int error; 3218 size_t valsize; 3219 3220 error = 0; 3221 3222 /* 3223 * Documented get behavior is that we always return a value, possibly 3224 * truncated to fit in the user's buffer. Traditional behavior is 3225 * that we always tell the user precisely how much we copied, rather 3226 * than something useful like the total amount we had available for 3227 * her. Note that this interface is not idempotent; the entire 3228 * answer must be generated ahead of time. 3229 */ 3230 valsize = min(len, sopt->sopt_valsize); 3231 sopt->sopt_valsize = valsize; 3232 if (sopt->sopt_val != NULL) { 3233 if (sopt->sopt_td != NULL) 3234 error = copyout(buf, sopt->sopt_val, valsize); 3235 else 3236 bcopy(buf, sopt->sopt_val, valsize); 3237 } 3238 return (error); 3239 } 3240 3241 int 3242 sogetopt(struct socket *so, struct sockopt *sopt) 3243 { 3244 int error, optval; 3245 struct linger l; 3246 struct timeval tv; 3247 #ifdef MAC 3248 struct mac extmac; 3249 #endif 3250 3251 CURVNET_SET(so->so_vnet); 3252 error = 0; 3253 if (sopt->sopt_level != SOL_SOCKET) { 3254 if (so->so_proto->pr_ctloutput != NULL) 3255 error = (*so->so_proto->pr_ctloutput)(so, sopt); 3256 else 3257 error = ENOPROTOOPT; 3258 CURVNET_RESTORE(); 3259 return (error); 3260 } else { 3261 switch (sopt->sopt_name) { 3262 case SO_ACCEPTFILTER: 3263 error = accept_filt_getopt(so, sopt); 3264 break; 3265 3266 case SO_LINGER: 3267 SOCK_LOCK(so); 3268 l.l_onoff = so->so_options & SO_LINGER; 3269 l.l_linger = so->so_linger; 3270 SOCK_UNLOCK(so); 3271 error = sooptcopyout(sopt, &l, sizeof l); 3272 break; 3273 3274 case SO_USELOOPBACK: 3275 case SO_DONTROUTE: 3276 case SO_DEBUG: 3277 case SO_KEEPALIVE: 3278 case SO_REUSEADDR: 3279 case SO_REUSEPORT: 3280 case SO_REUSEPORT_LB: 3281 case SO_BROADCAST: 3282 case SO_OOBINLINE: 3283 case SO_ACCEPTCONN: 3284 case SO_TIMESTAMP: 3285 case SO_BINTIME: 3286 case SO_NOSIGPIPE: 3287 case SO_NO_DDP: 3288 case SO_NO_OFFLOAD: 3289 case SO_RERROR: 3290 optval = so->so_options & sopt->sopt_name; 3291 integer: 3292 error = sooptcopyout(sopt, &optval, sizeof optval); 3293 break; 3294 3295 case SO_DOMAIN: 3296 optval = so->so_proto->pr_domain->dom_family; 3297 goto integer; 3298 3299 case SO_TYPE: 3300 optval = so->so_type; 3301 goto integer; 3302 3303 case SO_PROTOCOL: 3304 optval = so->so_proto->pr_protocol; 3305 goto integer; 3306 3307 case SO_ERROR: 3308 SOCK_LOCK(so); 3309 if (so->so_error) { 3310 optval = so->so_error; 3311 so->so_error = 0; 3312 } else { 3313 optval = so->so_rerror; 3314 so->so_rerror = 0; 3315 } 3316 SOCK_UNLOCK(so); 3317 goto integer; 3318 3319 case SO_SNDBUF: 3320 optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat : 3321 so->so_snd.sb_hiwat; 3322 goto integer; 3323 3324 case SO_RCVBUF: 3325 optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat : 3326 so->so_rcv.sb_hiwat; 3327 goto integer; 3328 3329 case SO_SNDLOWAT: 3330 optval = SOLISTENING(so) ? so->sol_sbsnd_lowat : 3331 so->so_snd.sb_lowat; 3332 goto integer; 3333 3334 case SO_RCVLOWAT: 3335 optval = SOLISTENING(so) ? so->sol_sbrcv_lowat : 3336 so->so_rcv.sb_lowat; 3337 goto integer; 3338 3339 case SO_SNDTIMEO: 3340 case SO_RCVTIMEO: 3341 SOCK_LOCK(so); 3342 tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ? 3343 (SOLISTENING(so) ? so->sol_sbsnd_timeo : 3344 so->so_snd.sb_timeo) : 3345 (SOLISTENING(so) ? so->sol_sbrcv_timeo : 3346 so->so_rcv.sb_timeo)); 3347 SOCK_UNLOCK(so); 3348 #ifdef COMPAT_FREEBSD32 3349 if (SV_CURPROC_FLAG(SV_ILP32)) { 3350 struct timeval32 tv32; 3351 3352 CP(tv, tv32, tv_sec); 3353 CP(tv, tv32, tv_usec); 3354 error = sooptcopyout(sopt, &tv32, sizeof tv32); 3355 } else 3356 #endif 3357 error = sooptcopyout(sopt, &tv, sizeof tv); 3358 break; 3359 3360 case SO_LABEL: 3361 #ifdef MAC 3362 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 3363 sizeof(extmac)); 3364 if (error) 3365 goto bad; 3366 error = mac_getsockopt_label(sopt->sopt_td->td_ucred, 3367 so, &extmac); 3368 if (error) 3369 goto bad; 3370 error = sooptcopyout(sopt, &extmac, sizeof extmac); 3371 #else 3372 error = EOPNOTSUPP; 3373 #endif 3374 break; 3375 3376 case SO_PEERLABEL: 3377 #ifdef MAC 3378 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 3379 sizeof(extmac)); 3380 if (error) 3381 goto bad; 3382 error = mac_getsockopt_peerlabel( 3383 sopt->sopt_td->td_ucred, so, &extmac); 3384 if (error) 3385 goto bad; 3386 error = sooptcopyout(sopt, &extmac, sizeof extmac); 3387 #else 3388 error = EOPNOTSUPP; 3389 #endif 3390 break; 3391 3392 case SO_LISTENQLIMIT: 3393 optval = SOLISTENING(so) ? so->sol_qlimit : 0; 3394 goto integer; 3395 3396 case SO_LISTENQLEN: 3397 optval = SOLISTENING(so) ? so->sol_qlen : 0; 3398 goto integer; 3399 3400 case SO_LISTENINCQLEN: 3401 optval = SOLISTENING(so) ? so->sol_incqlen : 0; 3402 goto integer; 3403 3404 case SO_TS_CLOCK: 3405 optval = so->so_ts_clock; 3406 goto integer; 3407 3408 case SO_MAX_PACING_RATE: 3409 optval = so->so_max_pacing_rate; 3410 goto integer; 3411 3412 default: 3413 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 3414 error = hhook_run_socket(so, sopt, 3415 HHOOK_SOCKET_OPT); 3416 else 3417 error = ENOPROTOOPT; 3418 break; 3419 } 3420 } 3421 #ifdef MAC 3422 bad: 3423 #endif 3424 CURVNET_RESTORE(); 3425 return (error); 3426 } 3427 3428 int 3429 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 3430 { 3431 struct mbuf *m, *m_prev; 3432 int sopt_size = sopt->sopt_valsize; 3433 3434 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 3435 if (m == NULL) 3436 return ENOBUFS; 3437 if (sopt_size > MLEN) { 3438 MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT); 3439 if ((m->m_flags & M_EXT) == 0) { 3440 m_free(m); 3441 return ENOBUFS; 3442 } 3443 m->m_len = min(MCLBYTES, sopt_size); 3444 } else { 3445 m->m_len = min(MLEN, sopt_size); 3446 } 3447 sopt_size -= m->m_len; 3448 *mp = m; 3449 m_prev = m; 3450 3451 while (sopt_size) { 3452 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 3453 if (m == NULL) { 3454 m_freem(*mp); 3455 return ENOBUFS; 3456 } 3457 if (sopt_size > MLEN) { 3458 MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK : 3459 M_NOWAIT); 3460 if ((m->m_flags & M_EXT) == 0) { 3461 m_freem(m); 3462 m_freem(*mp); 3463 return ENOBUFS; 3464 } 3465 m->m_len = min(MCLBYTES, sopt_size); 3466 } else { 3467 m->m_len = min(MLEN, sopt_size); 3468 } 3469 sopt_size -= m->m_len; 3470 m_prev->m_next = m; 3471 m_prev = m; 3472 } 3473 return (0); 3474 } 3475 3476 int 3477 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 3478 { 3479 struct mbuf *m0 = m; 3480 3481 if (sopt->sopt_val == NULL) 3482 return (0); 3483 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 3484 if (sopt->sopt_td != NULL) { 3485 int error; 3486 3487 error = copyin(sopt->sopt_val, mtod(m, char *), 3488 m->m_len); 3489 if (error != 0) { 3490 m_freem(m0); 3491 return(error); 3492 } 3493 } else 3494 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 3495 sopt->sopt_valsize -= m->m_len; 3496 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 3497 m = m->m_next; 3498 } 3499 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 3500 panic("ip6_sooptmcopyin"); 3501 return (0); 3502 } 3503 3504 int 3505 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 3506 { 3507 struct mbuf *m0 = m; 3508 size_t valsize = 0; 3509 3510 if (sopt->sopt_val == NULL) 3511 return (0); 3512 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 3513 if (sopt->sopt_td != NULL) { 3514 int error; 3515 3516 error = copyout(mtod(m, char *), sopt->sopt_val, 3517 m->m_len); 3518 if (error != 0) { 3519 m_freem(m0); 3520 return(error); 3521 } 3522 } else 3523 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 3524 sopt->sopt_valsize -= m->m_len; 3525 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 3526 valsize += m->m_len; 3527 m = m->m_next; 3528 } 3529 if (m != NULL) { 3530 /* enough soopt buffer should be given from user-land */ 3531 m_freem(m0); 3532 return(EINVAL); 3533 } 3534 sopt->sopt_valsize = valsize; 3535 return (0); 3536 } 3537 3538 /* 3539 * sohasoutofband(): protocol notifies socket layer of the arrival of new 3540 * out-of-band data, which will then notify socket consumers. 3541 */ 3542 void 3543 sohasoutofband(struct socket *so) 3544 { 3545 3546 if (so->so_sigio != NULL) 3547 pgsigio(&so->so_sigio, SIGURG, 0); 3548 selwakeuppri(&so->so_rdsel, PSOCK); 3549 } 3550 3551 int 3552 sopoll(struct socket *so, int events, struct ucred *active_cred, 3553 struct thread *td) 3554 { 3555 3556 /* 3557 * We do not need to set or assert curvnet as long as everyone uses 3558 * sopoll_generic(). 3559 */ 3560 return (so->so_proto->pr_sopoll(so, events, active_cred, td)); 3561 } 3562 3563 int 3564 sopoll_generic(struct socket *so, int events, struct ucred *active_cred, 3565 struct thread *td) 3566 { 3567 int revents; 3568 3569 SOCK_LOCK(so); 3570 if (SOLISTENING(so)) { 3571 if (!(events & (POLLIN | POLLRDNORM))) 3572 revents = 0; 3573 else if (!TAILQ_EMPTY(&so->sol_comp)) 3574 revents = events & (POLLIN | POLLRDNORM); 3575 else if ((events & POLLINIGNEOF) == 0 && so->so_error) 3576 revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP; 3577 else { 3578 selrecord(td, &so->so_rdsel); 3579 revents = 0; 3580 } 3581 } else { 3582 revents = 0; 3583 SOCK_SENDBUF_LOCK(so); 3584 SOCK_RECVBUF_LOCK(so); 3585 if (events & (POLLIN | POLLRDNORM)) 3586 if (soreadabledata(so)) 3587 revents |= events & (POLLIN | POLLRDNORM); 3588 if (events & (POLLOUT | POLLWRNORM)) 3589 if (sowriteable(so)) 3590 revents |= events & (POLLOUT | POLLWRNORM); 3591 if (events & (POLLPRI | POLLRDBAND)) 3592 if (so->so_oobmark || 3593 (so->so_rcv.sb_state & SBS_RCVATMARK)) 3594 revents |= events & (POLLPRI | POLLRDBAND); 3595 if ((events & POLLINIGNEOF) == 0) { 3596 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3597 revents |= events & (POLLIN | POLLRDNORM); 3598 if (so->so_snd.sb_state & SBS_CANTSENDMORE) 3599 revents |= POLLHUP; 3600 } 3601 } 3602 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) 3603 revents |= events & POLLRDHUP; 3604 if (revents == 0) { 3605 if (events & 3606 (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND | POLLRDHUP)) { 3607 selrecord(td, &so->so_rdsel); 3608 so->so_rcv.sb_flags |= SB_SEL; 3609 } 3610 if (events & (POLLOUT | POLLWRNORM)) { 3611 selrecord(td, &so->so_wrsel); 3612 so->so_snd.sb_flags |= SB_SEL; 3613 } 3614 } 3615 SOCK_RECVBUF_UNLOCK(so); 3616 SOCK_SENDBUF_UNLOCK(so); 3617 } 3618 SOCK_UNLOCK(so); 3619 return (revents); 3620 } 3621 3622 int 3623 soo_kqfilter(struct file *fp, struct knote *kn) 3624 { 3625 struct socket *so = kn->kn_fp->f_data; 3626 struct sockbuf *sb; 3627 sb_which which; 3628 struct knlist *knl; 3629 3630 switch (kn->kn_filter) { 3631 case EVFILT_READ: 3632 kn->kn_fop = &soread_filtops; 3633 knl = &so->so_rdsel.si_note; 3634 sb = &so->so_rcv; 3635 which = SO_RCV; 3636 break; 3637 case EVFILT_WRITE: 3638 kn->kn_fop = &sowrite_filtops; 3639 knl = &so->so_wrsel.si_note; 3640 sb = &so->so_snd; 3641 which = SO_SND; 3642 break; 3643 case EVFILT_EMPTY: 3644 kn->kn_fop = &soempty_filtops; 3645 knl = &so->so_wrsel.si_note; 3646 sb = &so->so_snd; 3647 which = SO_SND; 3648 break; 3649 default: 3650 return (EINVAL); 3651 } 3652 3653 SOCK_LOCK(so); 3654 if (SOLISTENING(so)) { 3655 knlist_add(knl, kn, 1); 3656 } else { 3657 SOCK_BUF_LOCK(so, which); 3658 knlist_add(knl, kn, 1); 3659 sb->sb_flags |= SB_KNOTE; 3660 SOCK_BUF_UNLOCK(so, which); 3661 } 3662 SOCK_UNLOCK(so); 3663 return (0); 3664 } 3665 3666 static void 3667 filt_sordetach(struct knote *kn) 3668 { 3669 struct socket *so = kn->kn_fp->f_data; 3670 3671 so_rdknl_lock(so); 3672 knlist_remove(&so->so_rdsel.si_note, kn, 1); 3673 if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note)) 3674 so->so_rcv.sb_flags &= ~SB_KNOTE; 3675 so_rdknl_unlock(so); 3676 } 3677 3678 /*ARGSUSED*/ 3679 static int 3680 filt_soread(struct knote *kn, long hint) 3681 { 3682 struct socket *so; 3683 3684 so = kn->kn_fp->f_data; 3685 3686 if (SOLISTENING(so)) { 3687 SOCK_LOCK_ASSERT(so); 3688 kn->kn_data = so->sol_qlen; 3689 if (so->so_error) { 3690 kn->kn_flags |= EV_EOF; 3691 kn->kn_fflags = so->so_error; 3692 return (1); 3693 } 3694 return (!TAILQ_EMPTY(&so->sol_comp)); 3695 } 3696 3697 SOCK_RECVBUF_LOCK_ASSERT(so); 3698 3699 kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl; 3700 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3701 kn->kn_flags |= EV_EOF; 3702 kn->kn_fflags = so->so_error; 3703 return (1); 3704 } else if (so->so_error || so->so_rerror) 3705 return (1); 3706 3707 if (kn->kn_sfflags & NOTE_LOWAT) { 3708 if (kn->kn_data >= kn->kn_sdata) 3709 return (1); 3710 } else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat) 3711 return (1); 3712 3713 /* This hook returning non-zero indicates an event, not error */ 3714 return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD)); 3715 } 3716 3717 static void 3718 filt_sowdetach(struct knote *kn) 3719 { 3720 struct socket *so = kn->kn_fp->f_data; 3721 3722 so_wrknl_lock(so); 3723 knlist_remove(&so->so_wrsel.si_note, kn, 1); 3724 if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note)) 3725 so->so_snd.sb_flags &= ~SB_KNOTE; 3726 so_wrknl_unlock(so); 3727 } 3728 3729 /*ARGSUSED*/ 3730 static int 3731 filt_sowrite(struct knote *kn, long hint) 3732 { 3733 struct socket *so; 3734 3735 so = kn->kn_fp->f_data; 3736 3737 if (SOLISTENING(so)) 3738 return (0); 3739 3740 SOCK_SENDBUF_LOCK_ASSERT(so); 3741 kn->kn_data = sbspace(&so->so_snd); 3742 3743 hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE); 3744 3745 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 3746 kn->kn_flags |= EV_EOF; 3747 kn->kn_fflags = so->so_error; 3748 return (1); 3749 } else if (so->so_error) /* temporary udp error */ 3750 return (1); 3751 else if (((so->so_state & SS_ISCONNECTED) == 0) && 3752 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 3753 return (0); 3754 else if (kn->kn_sfflags & NOTE_LOWAT) 3755 return (kn->kn_data >= kn->kn_sdata); 3756 else 3757 return (kn->kn_data >= so->so_snd.sb_lowat); 3758 } 3759 3760 static int 3761 filt_soempty(struct knote *kn, long hint) 3762 { 3763 struct socket *so; 3764 3765 so = kn->kn_fp->f_data; 3766 3767 if (SOLISTENING(so)) 3768 return (1); 3769 3770 SOCK_SENDBUF_LOCK_ASSERT(so); 3771 kn->kn_data = sbused(&so->so_snd); 3772 3773 if (kn->kn_data == 0) 3774 return (1); 3775 else 3776 return (0); 3777 } 3778 3779 int 3780 socheckuid(struct socket *so, uid_t uid) 3781 { 3782 3783 if (so == NULL) 3784 return (EPERM); 3785 if (so->so_cred->cr_uid != uid) 3786 return (EPERM); 3787 return (0); 3788 } 3789 3790 /* 3791 * These functions are used by protocols to notify the socket layer (and its 3792 * consumers) of state changes in the sockets driven by protocol-side events. 3793 */ 3794 3795 /* 3796 * Procedures to manipulate state flags of socket and do appropriate wakeups. 3797 * 3798 * Normal sequence from the active (originating) side is that 3799 * soisconnecting() is called during processing of connect() call, resulting 3800 * in an eventual call to soisconnected() if/when the connection is 3801 * established. When the connection is torn down soisdisconnecting() is 3802 * called during processing of disconnect() call, and soisdisconnected() is 3803 * called when the connection to the peer is totally severed. The semantics 3804 * of these routines are such that connectionless protocols can call 3805 * soisconnected() and soisdisconnected() only, bypassing the in-progress 3806 * calls when setting up a ``connection'' takes no time. 3807 * 3808 * From the passive side, a socket is created with two queues of sockets: 3809 * so_incomp for connections in progress and so_comp for connections already 3810 * made and awaiting user acceptance. As a protocol is preparing incoming 3811 * connections, it creates a socket structure queued on so_incomp by calling 3812 * sonewconn(). When the connection is established, soisconnected() is 3813 * called, and transfers the socket structure to so_comp, making it available 3814 * to accept(). 3815 * 3816 * If a socket is closed with sockets on either so_incomp or so_comp, these 3817 * sockets are dropped. 3818 * 3819 * If higher-level protocols are implemented in the kernel, the wakeups done 3820 * here will sometimes cause software-interrupt process scheduling. 3821 */ 3822 void 3823 soisconnecting(struct socket *so) 3824 { 3825 3826 SOCK_LOCK(so); 3827 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 3828 so->so_state |= SS_ISCONNECTING; 3829 SOCK_UNLOCK(so); 3830 } 3831 3832 void 3833 soisconnected(struct socket *so) 3834 { 3835 bool last __diagused; 3836 3837 SOCK_LOCK(so); 3838 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 3839 so->so_state |= SS_ISCONNECTED; 3840 3841 if (so->so_qstate == SQ_INCOMP) { 3842 struct socket *head = so->so_listen; 3843 int ret; 3844 3845 KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so)); 3846 /* 3847 * Promoting a socket from incomplete queue to complete, we 3848 * need to go through reverse order of locking. We first do 3849 * trylock, and if that doesn't succeed, we go the hard way 3850 * leaving a reference and rechecking consistency after proper 3851 * locking. 3852 */ 3853 if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) { 3854 soref(head); 3855 SOCK_UNLOCK(so); 3856 SOLISTEN_LOCK(head); 3857 SOCK_LOCK(so); 3858 if (__predict_false(head != so->so_listen)) { 3859 /* 3860 * The socket went off the listen queue, 3861 * should be lost race to close(2) of sol. 3862 * The socket is about to soabort(). 3863 */ 3864 SOCK_UNLOCK(so); 3865 sorele_locked(head); 3866 return; 3867 } 3868 last = refcount_release(&head->so_count); 3869 KASSERT(!last, ("%s: released last reference for %p", 3870 __func__, head)); 3871 } 3872 again: 3873 if ((so->so_options & SO_ACCEPTFILTER) == 0) { 3874 TAILQ_REMOVE(&head->sol_incomp, so, so_list); 3875 head->sol_incqlen--; 3876 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 3877 head->sol_qlen++; 3878 so->so_qstate = SQ_COMP; 3879 SOCK_UNLOCK(so); 3880 solisten_wakeup(head); /* unlocks */ 3881 } else { 3882 SOCK_RECVBUF_LOCK(so); 3883 soupcall_set(so, SO_RCV, 3884 head->sol_accept_filter->accf_callback, 3885 head->sol_accept_filter_arg); 3886 so->so_options &= ~SO_ACCEPTFILTER; 3887 ret = head->sol_accept_filter->accf_callback(so, 3888 head->sol_accept_filter_arg, M_NOWAIT); 3889 if (ret == SU_ISCONNECTED) { 3890 soupcall_clear(so, SO_RCV); 3891 SOCK_RECVBUF_UNLOCK(so); 3892 goto again; 3893 } 3894 SOCK_RECVBUF_UNLOCK(so); 3895 SOCK_UNLOCK(so); 3896 SOLISTEN_UNLOCK(head); 3897 } 3898 return; 3899 } 3900 SOCK_UNLOCK(so); 3901 wakeup(&so->so_timeo); 3902 sorwakeup(so); 3903 sowwakeup(so); 3904 } 3905 3906 void 3907 soisdisconnecting(struct socket *so) 3908 { 3909 3910 SOCK_LOCK(so); 3911 so->so_state &= ~SS_ISCONNECTING; 3912 so->so_state |= SS_ISDISCONNECTING; 3913 3914 if (!SOLISTENING(so)) { 3915 SOCK_RECVBUF_LOCK(so); 3916 socantrcvmore_locked(so); 3917 SOCK_SENDBUF_LOCK(so); 3918 socantsendmore_locked(so); 3919 } 3920 SOCK_UNLOCK(so); 3921 wakeup(&so->so_timeo); 3922 } 3923 3924 void 3925 soisdisconnected(struct socket *so) 3926 { 3927 3928 SOCK_LOCK(so); 3929 3930 /* 3931 * There is at least one reader of so_state that does not 3932 * acquire socket lock, namely soreceive_generic(). Ensure 3933 * that it never sees all flags that track connection status 3934 * cleared, by ordering the update with a barrier semantic of 3935 * our release thread fence. 3936 */ 3937 so->so_state |= SS_ISDISCONNECTED; 3938 atomic_thread_fence_rel(); 3939 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 3940 3941 if (!SOLISTENING(so)) { 3942 SOCK_UNLOCK(so); 3943 SOCK_RECVBUF_LOCK(so); 3944 socantrcvmore_locked(so); 3945 SOCK_SENDBUF_LOCK(so); 3946 sbdrop_locked(&so->so_snd, sbused(&so->so_snd)); 3947 socantsendmore_locked(so); 3948 } else 3949 SOCK_UNLOCK(so); 3950 wakeup(&so->so_timeo); 3951 } 3952 3953 int 3954 soiolock(struct socket *so, struct sx *sx, int flags) 3955 { 3956 int error; 3957 3958 KASSERT((flags & SBL_VALID) == flags, 3959 ("soiolock: invalid flags %#x", flags)); 3960 3961 if ((flags & SBL_WAIT) != 0) { 3962 if ((flags & SBL_NOINTR) != 0) { 3963 sx_xlock(sx); 3964 } else { 3965 error = sx_xlock_sig(sx); 3966 if (error != 0) 3967 return (error); 3968 } 3969 } else if (!sx_try_xlock(sx)) { 3970 return (EWOULDBLOCK); 3971 } 3972 3973 if (__predict_false(SOLISTENING(so))) { 3974 sx_xunlock(sx); 3975 return (ENOTCONN); 3976 } 3977 return (0); 3978 } 3979 3980 void 3981 soiounlock(struct sx *sx) 3982 { 3983 sx_xunlock(sx); 3984 } 3985 3986 /* 3987 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 3988 */ 3989 struct sockaddr * 3990 sodupsockaddr(const struct sockaddr *sa, int mflags) 3991 { 3992 struct sockaddr *sa2; 3993 3994 sa2 = malloc(sa->sa_len, M_SONAME, mflags); 3995 if (sa2) 3996 bcopy(sa, sa2, sa->sa_len); 3997 return sa2; 3998 } 3999 4000 /* 4001 * Register per-socket destructor. 4002 */ 4003 void 4004 sodtor_set(struct socket *so, so_dtor_t *func) 4005 { 4006 4007 SOCK_LOCK_ASSERT(so); 4008 so->so_dtor = func; 4009 } 4010 4011 /* 4012 * Register per-socket buffer upcalls. 4013 */ 4014 void 4015 soupcall_set(struct socket *so, sb_which which, so_upcall_t func, void *arg) 4016 { 4017 struct sockbuf *sb; 4018 4019 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 4020 4021 switch (which) { 4022 case SO_RCV: 4023 sb = &so->so_rcv; 4024 break; 4025 case SO_SND: 4026 sb = &so->so_snd; 4027 break; 4028 } 4029 SOCK_BUF_LOCK_ASSERT(so, which); 4030 sb->sb_upcall = func; 4031 sb->sb_upcallarg = arg; 4032 sb->sb_flags |= SB_UPCALL; 4033 } 4034 4035 void 4036 soupcall_clear(struct socket *so, sb_which which) 4037 { 4038 struct sockbuf *sb; 4039 4040 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 4041 4042 switch (which) { 4043 case SO_RCV: 4044 sb = &so->so_rcv; 4045 break; 4046 case SO_SND: 4047 sb = &so->so_snd; 4048 break; 4049 } 4050 SOCK_BUF_LOCK_ASSERT(so, which); 4051 KASSERT(sb->sb_upcall != NULL, 4052 ("%s: so %p no upcall to clear", __func__, so)); 4053 sb->sb_upcall = NULL; 4054 sb->sb_upcallarg = NULL; 4055 sb->sb_flags &= ~SB_UPCALL; 4056 } 4057 4058 void 4059 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg) 4060 { 4061 4062 SOLISTEN_LOCK_ASSERT(so); 4063 so->sol_upcall = func; 4064 so->sol_upcallarg = arg; 4065 } 4066 4067 static void 4068 so_rdknl_lock(void *arg) 4069 { 4070 struct socket *so = arg; 4071 4072 retry: 4073 if (SOLISTENING(so)) { 4074 SOLISTEN_LOCK(so); 4075 } else { 4076 SOCK_RECVBUF_LOCK(so); 4077 if (__predict_false(SOLISTENING(so))) { 4078 SOCK_RECVBUF_UNLOCK(so); 4079 goto retry; 4080 } 4081 } 4082 } 4083 4084 static void 4085 so_rdknl_unlock(void *arg) 4086 { 4087 struct socket *so = arg; 4088 4089 if (SOLISTENING(so)) 4090 SOLISTEN_UNLOCK(so); 4091 else 4092 SOCK_RECVBUF_UNLOCK(so); 4093 } 4094 4095 static void 4096 so_rdknl_assert_lock(void *arg, int what) 4097 { 4098 struct socket *so = arg; 4099 4100 if (what == LA_LOCKED) { 4101 if (SOLISTENING(so)) 4102 SOLISTEN_LOCK_ASSERT(so); 4103 else 4104 SOCK_RECVBUF_LOCK_ASSERT(so); 4105 } else { 4106 if (SOLISTENING(so)) 4107 SOLISTEN_UNLOCK_ASSERT(so); 4108 else 4109 SOCK_RECVBUF_UNLOCK_ASSERT(so); 4110 } 4111 } 4112 4113 static void 4114 so_wrknl_lock(void *arg) 4115 { 4116 struct socket *so = arg; 4117 4118 retry: 4119 if (SOLISTENING(so)) { 4120 SOLISTEN_LOCK(so); 4121 } else { 4122 SOCK_SENDBUF_LOCK(so); 4123 if (__predict_false(SOLISTENING(so))) { 4124 SOCK_SENDBUF_UNLOCK(so); 4125 goto retry; 4126 } 4127 } 4128 } 4129 4130 static void 4131 so_wrknl_unlock(void *arg) 4132 { 4133 struct socket *so = arg; 4134 4135 if (SOLISTENING(so)) 4136 SOLISTEN_UNLOCK(so); 4137 else 4138 SOCK_SENDBUF_UNLOCK(so); 4139 } 4140 4141 static void 4142 so_wrknl_assert_lock(void *arg, int what) 4143 { 4144 struct socket *so = arg; 4145 4146 if (what == LA_LOCKED) { 4147 if (SOLISTENING(so)) 4148 SOLISTEN_LOCK_ASSERT(so); 4149 else 4150 SOCK_SENDBUF_LOCK_ASSERT(so); 4151 } else { 4152 if (SOLISTENING(so)) 4153 SOLISTEN_UNLOCK_ASSERT(so); 4154 else 4155 SOCK_SENDBUF_UNLOCK_ASSERT(so); 4156 } 4157 } 4158 4159 /* 4160 * Create an external-format (``xsocket'') structure using the information in 4161 * the kernel-format socket structure pointed to by so. This is done to 4162 * reduce the spew of irrelevant information over this interface, to isolate 4163 * user code from changes in the kernel structure, and potentially to provide 4164 * information-hiding if we decide that some of this information should be 4165 * hidden from users. 4166 */ 4167 void 4168 sotoxsocket(struct socket *so, struct xsocket *xso) 4169 { 4170 4171 bzero(xso, sizeof(*xso)); 4172 xso->xso_len = sizeof *xso; 4173 xso->xso_so = (uintptr_t)so; 4174 xso->so_type = so->so_type; 4175 xso->so_options = so->so_options; 4176 xso->so_linger = so->so_linger; 4177 xso->so_state = so->so_state; 4178 xso->so_pcb = (uintptr_t)so->so_pcb; 4179 xso->xso_protocol = so->so_proto->pr_protocol; 4180 xso->xso_family = so->so_proto->pr_domain->dom_family; 4181 xso->so_timeo = so->so_timeo; 4182 xso->so_error = so->so_error; 4183 xso->so_uid = so->so_cred->cr_uid; 4184 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 4185 if (SOLISTENING(so)) { 4186 xso->so_qlen = so->sol_qlen; 4187 xso->so_incqlen = so->sol_incqlen; 4188 xso->so_qlimit = so->sol_qlimit; 4189 xso->so_oobmark = 0; 4190 } else { 4191 xso->so_state |= so->so_qstate; 4192 xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0; 4193 xso->so_oobmark = so->so_oobmark; 4194 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 4195 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 4196 } 4197 } 4198 4199 struct sockbuf * 4200 so_sockbuf_rcv(struct socket *so) 4201 { 4202 4203 return (&so->so_rcv); 4204 } 4205 4206 struct sockbuf * 4207 so_sockbuf_snd(struct socket *so) 4208 { 4209 4210 return (&so->so_snd); 4211 } 4212 4213 int 4214 so_state_get(const struct socket *so) 4215 { 4216 4217 return (so->so_state); 4218 } 4219 4220 void 4221 so_state_set(struct socket *so, int val) 4222 { 4223 4224 so->so_state = val; 4225 } 4226 4227 int 4228 so_options_get(const struct socket *so) 4229 { 4230 4231 return (so->so_options); 4232 } 4233 4234 void 4235 so_options_set(struct socket *so, int val) 4236 { 4237 4238 so->so_options = val; 4239 } 4240 4241 int 4242 so_error_get(const struct socket *so) 4243 { 4244 4245 return (so->so_error); 4246 } 4247 4248 void 4249 so_error_set(struct socket *so, int val) 4250 { 4251 4252 so->so_error = val; 4253 } 4254 4255 int 4256 so_linger_get(const struct socket *so) 4257 { 4258 4259 return (so->so_linger); 4260 } 4261 4262 void 4263 so_linger_set(struct socket *so, int val) 4264 { 4265 4266 KASSERT(val >= 0 && val <= USHRT_MAX && val <= (INT_MAX / hz), 4267 ("%s: val %d out of range", __func__, val)); 4268 4269 so->so_linger = val; 4270 } 4271 4272 struct protosw * 4273 so_protosw_get(const struct socket *so) 4274 { 4275 4276 return (so->so_proto); 4277 } 4278 4279 void 4280 so_protosw_set(struct socket *so, struct protosw *val) 4281 { 4282 4283 so->so_proto = val; 4284 } 4285 4286 void 4287 so_sorwakeup(struct socket *so) 4288 { 4289 4290 sorwakeup(so); 4291 } 4292 4293 void 4294 so_sowwakeup(struct socket *so) 4295 { 4296 4297 sowwakeup(so); 4298 } 4299 4300 void 4301 so_sorwakeup_locked(struct socket *so) 4302 { 4303 4304 sorwakeup_locked(so); 4305 } 4306 4307 void 4308 so_sowwakeup_locked(struct socket *so) 4309 { 4310 4311 sowwakeup_locked(so); 4312 } 4313 4314 void 4315 so_lock(struct socket *so) 4316 { 4317 4318 SOCK_LOCK(so); 4319 } 4320 4321 void 4322 so_unlock(struct socket *so) 4323 { 4324 4325 SOCK_UNLOCK(so); 4326 } 4327