1 /*- 2 * Copyright (c) 2004 The FreeBSD Foundation 3 * Copyright (c) 2004-2005 Robert N. M. Watson 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 4. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_inet.h" 38 #include "opt_mac.h" 39 #include "opt_zero.h" 40 #include "opt_compat.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/fcntl.h> 45 #include <sys/limits.h> 46 #include <sys/lock.h> 47 #include <sys/mac.h> 48 #include <sys/malloc.h> 49 #include <sys/mbuf.h> 50 #include <sys/mutex.h> 51 #include <sys/domain.h> 52 #include <sys/file.h> /* for struct knote */ 53 #include <sys/kernel.h> 54 #include <sys/event.h> 55 #include <sys/poll.h> 56 #include <sys/proc.h> 57 #include <sys/protosw.h> 58 #include <sys/socket.h> 59 #include <sys/socketvar.h> 60 #include <sys/resourcevar.h> 61 #include <sys/signalvar.h> 62 #include <sys/sysctl.h> 63 #include <sys/uio.h> 64 #include <sys/jail.h> 65 66 #include <vm/uma.h> 67 68 #ifdef COMPAT_IA32 69 #include <sys/mount.h> 70 #include <compat/freebsd32/freebsd32.h> 71 72 extern struct sysentvec ia32_freebsd_sysvec; 73 #endif 74 75 static int soreceive_rcvoob(struct socket *so, struct uio *uio, 76 int flags); 77 78 static void filt_sordetach(struct knote *kn); 79 static int filt_soread(struct knote *kn, long hint); 80 static void filt_sowdetach(struct knote *kn); 81 static int filt_sowrite(struct knote *kn, long hint); 82 static int filt_solisten(struct knote *kn, long hint); 83 84 static struct filterops solisten_filtops = 85 { 1, NULL, filt_sordetach, filt_solisten }; 86 static struct filterops soread_filtops = 87 { 1, NULL, filt_sordetach, filt_soread }; 88 static struct filterops sowrite_filtops = 89 { 1, NULL, filt_sowdetach, filt_sowrite }; 90 91 uma_zone_t socket_zone; 92 so_gen_t so_gencnt; /* generation count for sockets */ 93 94 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 95 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 96 97 SYSCTL_DECL(_kern_ipc); 98 99 static int somaxconn = SOMAXCONN; 100 static int somaxconn_sysctl(SYSCTL_HANDLER_ARGS); 101 /* XXX: we dont have SYSCTL_USHORT */ 102 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLTYPE_UINT | CTLFLAG_RW, 103 0, sizeof(int), somaxconn_sysctl, "I", "Maximum pending socket connection " 104 "queue size"); 105 static int numopensockets; 106 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, 107 &numopensockets, 0, "Number of open sockets"); 108 #ifdef ZERO_COPY_SOCKETS 109 /* These aren't static because they're used in other files. */ 110 int so_zero_copy_send = 1; 111 int so_zero_copy_receive = 1; 112 SYSCTL_NODE(_kern_ipc, OID_AUTO, zero_copy, CTLFLAG_RD, 0, 113 "Zero copy controls"); 114 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, receive, CTLFLAG_RW, 115 &so_zero_copy_receive, 0, "Enable zero copy receive"); 116 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, send, CTLFLAG_RW, 117 &so_zero_copy_send, 0, "Enable zero copy send"); 118 #endif /* ZERO_COPY_SOCKETS */ 119 120 /* 121 * accept_mtx locks down per-socket fields relating to accept queues. See 122 * socketvar.h for an annotation of the protected fields of struct socket. 123 */ 124 struct mtx accept_mtx; 125 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF); 126 127 /* 128 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket 129 * so_gencnt field. 130 */ 131 static struct mtx so_global_mtx; 132 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); 133 134 /* 135 * Socket operation routines. 136 * These routines are called by the routines in 137 * sys_socket.c or from a system process, and 138 * implement the semantics of socket operations by 139 * switching out to the protocol specific routines. 140 */ 141 142 /* 143 * Get a socket structure from our zone, and initialize it. 144 * Note that it would probably be better to allocate socket 145 * and PCB at the same time, but I'm not convinced that all 146 * the protocols can be easily modified to do this. 147 * 148 * soalloc() returns a socket with a ref count of 0. 149 */ 150 struct socket * 151 soalloc(int mflags) 152 { 153 struct socket *so; 154 155 so = uma_zalloc(socket_zone, mflags | M_ZERO); 156 if (so != NULL) { 157 #ifdef MAC 158 if (mac_init_socket(so, mflags) != 0) { 159 uma_zfree(socket_zone, so); 160 return (NULL); 161 } 162 #endif 163 SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd"); 164 SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv"); 165 TAILQ_INIT(&so->so_aiojobq); 166 mtx_lock(&so_global_mtx); 167 so->so_gencnt = ++so_gencnt; 168 ++numopensockets; 169 mtx_unlock(&so_global_mtx); 170 } 171 return (so); 172 } 173 174 /* 175 * socreate returns a socket with a ref count of 1. The socket should be 176 * closed with soclose(). 177 */ 178 int 179 socreate(dom, aso, type, proto, cred, td) 180 int dom; 181 struct socket **aso; 182 int type; 183 int proto; 184 struct ucred *cred; 185 struct thread *td; 186 { 187 struct protosw *prp; 188 struct socket *so; 189 int error; 190 191 if (proto) 192 prp = pffindproto(dom, proto, type); 193 else 194 prp = pffindtype(dom, type); 195 196 if (prp == NULL || prp->pr_usrreqs->pru_attach == NULL || 197 prp->pr_usrreqs->pru_attach == pru_attach_notsupp) 198 return (EPROTONOSUPPORT); 199 200 if (jailed(cred) && jail_socket_unixiproute_only && 201 prp->pr_domain->dom_family != PF_LOCAL && 202 prp->pr_domain->dom_family != PF_INET && 203 prp->pr_domain->dom_family != PF_ROUTE) { 204 return (EPROTONOSUPPORT); 205 } 206 207 if (prp->pr_type != type) 208 return (EPROTOTYPE); 209 so = soalloc(M_WAITOK); 210 if (so == NULL) 211 return (ENOBUFS); 212 213 TAILQ_INIT(&so->so_incomp); 214 TAILQ_INIT(&so->so_comp); 215 so->so_type = type; 216 so->so_cred = crhold(cred); 217 so->so_proto = prp; 218 #ifdef MAC 219 mac_create_socket(cred, so); 220 #endif 221 knlist_init(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv), 222 NULL, NULL, NULL); 223 knlist_init(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd), 224 NULL, NULL, NULL); 225 so->so_count = 1; 226 error = (*prp->pr_usrreqs->pru_attach)(so, proto, td); 227 if (error) { 228 ACCEPT_LOCK(); 229 SOCK_LOCK(so); 230 so->so_state |= SS_NOFDREF; 231 sorele(so); 232 return (error); 233 } 234 *aso = so; 235 return (0); 236 } 237 238 int 239 sobind(so, nam, td) 240 struct socket *so; 241 struct sockaddr *nam; 242 struct thread *td; 243 { 244 245 return ((*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td)); 246 } 247 248 void 249 sodealloc(struct socket *so) 250 { 251 252 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); 253 mtx_lock(&so_global_mtx); 254 so->so_gencnt = ++so_gencnt; 255 mtx_unlock(&so_global_mtx); 256 if (so->so_rcv.sb_hiwat) 257 (void)chgsbsize(so->so_cred->cr_uidinfo, 258 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 259 if (so->so_snd.sb_hiwat) 260 (void)chgsbsize(so->so_cred->cr_uidinfo, 261 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 262 #ifdef INET 263 /* remove acccept filter if one is present. */ 264 if (so->so_accf != NULL) 265 do_setopt_accept_filter(so, NULL); 266 #endif 267 #ifdef MAC 268 mac_destroy_socket(so); 269 #endif 270 crfree(so->so_cred); 271 SOCKBUF_LOCK_DESTROY(&so->so_snd); 272 SOCKBUF_LOCK_DESTROY(&so->so_rcv); 273 uma_zfree(socket_zone, so); 274 mtx_lock(&so_global_mtx); 275 --numopensockets; 276 mtx_unlock(&so_global_mtx); 277 } 278 279 /* 280 * solisten() transitions a socket from a non-listening state to a listening 281 * state, but can also be used to update the listen queue depth on an 282 * existing listen socket. The protocol will call back into the sockets 283 * layer using solisten_proto_check() and solisten_proto() to check and set 284 * socket-layer listen state. Call backs are used so that the protocol can 285 * acquire both protocol and socket layer locks in whatever order is required 286 * by the protocol. 287 * 288 * Protocol implementors are advised to hold the socket lock across the 289 * socket-layer test and set to avoid races at the socket layer. 290 */ 291 int 292 solisten(so, backlog, td) 293 struct socket *so; 294 int backlog; 295 struct thread *td; 296 { 297 298 return ((*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td)); 299 } 300 301 int 302 solisten_proto_check(so) 303 struct socket *so; 304 { 305 306 SOCK_LOCK_ASSERT(so); 307 308 if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 309 SS_ISDISCONNECTING)) 310 return (EINVAL); 311 return (0); 312 } 313 314 void 315 solisten_proto(so, backlog) 316 struct socket *so; 317 int backlog; 318 { 319 320 SOCK_LOCK_ASSERT(so); 321 322 if (backlog < 0 || backlog > somaxconn) 323 backlog = somaxconn; 324 so->so_qlimit = backlog; 325 so->so_options |= SO_ACCEPTCONN; 326 } 327 328 /* 329 * Attempt to free a socket. This should really be sotryfree(). 330 * 331 * We free the socket if the protocol is no longer interested in the socket, 332 * there's no file descriptor reference, and the refcount is 0. While the 333 * calling macro sotryfree() tests the refcount, sofree() has to test it 334 * again as it's possible to race with an accept()ing thread if the socket is 335 * in an listen queue of a listen socket, as being in the listen queue 336 * doesn't elevate the reference count. sofree() acquires the accept mutex 337 * early for this test in order to avoid that race. 338 */ 339 void 340 sofree(so) 341 struct socket *so; 342 { 343 struct socket *head; 344 345 ACCEPT_LOCK_ASSERT(); 346 SOCK_LOCK_ASSERT(so); 347 348 if (so->so_pcb != NULL || (so->so_state & SS_NOFDREF) == 0 || 349 so->so_count != 0) { 350 SOCK_UNLOCK(so); 351 ACCEPT_UNLOCK(); 352 return; 353 } 354 355 head = so->so_head; 356 if (head != NULL) { 357 KASSERT((so->so_qstate & SQ_COMP) != 0 || 358 (so->so_qstate & SQ_INCOMP) != 0, 359 ("sofree: so_head != NULL, but neither SQ_COMP nor " 360 "SQ_INCOMP")); 361 KASSERT((so->so_qstate & SQ_COMP) == 0 || 362 (so->so_qstate & SQ_INCOMP) == 0, 363 ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP")); 364 /* 365 * accept(2) is responsible draining the completed 366 * connection queue and freeing those sockets, so 367 * we just return here if this socket is currently 368 * on the completed connection queue. Otherwise, 369 * accept(2) may hang after select(2) has indicating 370 * that a listening socket was ready. If it's an 371 * incomplete connection, we remove it from the queue 372 * and free it; otherwise, it won't be released until 373 * the listening socket is closed. 374 */ 375 if ((so->so_qstate & SQ_COMP) != 0) { 376 SOCK_UNLOCK(so); 377 ACCEPT_UNLOCK(); 378 return; 379 } 380 TAILQ_REMOVE(&head->so_incomp, so, so_list); 381 head->so_incqlen--; 382 so->so_qstate &= ~SQ_INCOMP; 383 so->so_head = NULL; 384 } 385 KASSERT((so->so_qstate & SQ_COMP) == 0 && 386 (so->so_qstate & SQ_INCOMP) == 0, 387 ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)", 388 so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP)); 389 SOCK_UNLOCK(so); 390 ACCEPT_UNLOCK(); 391 SOCKBUF_LOCK(&so->so_snd); 392 so->so_snd.sb_flags |= SB_NOINTR; 393 (void)sblock(&so->so_snd, M_WAITOK); 394 /* 395 * socantsendmore_locked() drops the socket buffer mutex so that it 396 * can safely perform wakeups. Re-acquire the mutex before 397 * continuing. 398 */ 399 socantsendmore_locked(so); 400 SOCKBUF_LOCK(&so->so_snd); 401 sbunlock(&so->so_snd); 402 sbrelease_locked(&so->so_snd, so); 403 SOCKBUF_UNLOCK(&so->so_snd); 404 sorflush(so); 405 knlist_destroy(&so->so_rcv.sb_sel.si_note); 406 knlist_destroy(&so->so_snd.sb_sel.si_note); 407 sodealloc(so); 408 } 409 410 /* 411 * Close a socket on last file table reference removal. 412 * Initiate disconnect if connected. 413 * Free socket when disconnect complete. 414 * 415 * This function will sorele() the socket. Note that soclose() may be 416 * called prior to the ref count reaching zero. The actual socket 417 * structure will not be freed until the ref count reaches zero. 418 */ 419 int 420 soclose(so) 421 struct socket *so; 422 { 423 int error = 0; 424 425 KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter")); 426 427 funsetown(&so->so_sigio); 428 if (so->so_options & SO_ACCEPTCONN) { 429 struct socket *sp; 430 ACCEPT_LOCK(); 431 while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) { 432 TAILQ_REMOVE(&so->so_incomp, sp, so_list); 433 so->so_incqlen--; 434 sp->so_qstate &= ~SQ_INCOMP; 435 sp->so_head = NULL; 436 ACCEPT_UNLOCK(); 437 (void) soabort(sp); 438 ACCEPT_LOCK(); 439 } 440 while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) { 441 TAILQ_REMOVE(&so->so_comp, sp, so_list); 442 so->so_qlen--; 443 sp->so_qstate &= ~SQ_COMP; 444 sp->so_head = NULL; 445 ACCEPT_UNLOCK(); 446 (void) soabort(sp); 447 ACCEPT_LOCK(); 448 } 449 ACCEPT_UNLOCK(); 450 } 451 if (so->so_pcb == NULL) 452 goto discard; 453 if (so->so_state & SS_ISCONNECTED) { 454 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 455 error = sodisconnect(so); 456 if (error) 457 goto drop; 458 } 459 if (so->so_options & SO_LINGER) { 460 if ((so->so_state & SS_ISDISCONNECTING) && 461 (so->so_state & SS_NBIO)) 462 goto drop; 463 while (so->so_state & SS_ISCONNECTED) { 464 error = tsleep(&so->so_timeo, 465 PSOCK | PCATCH, "soclos", so->so_linger * hz); 466 if (error) 467 break; 468 } 469 } 470 } 471 drop: 472 if (so->so_pcb != NULL) { 473 int error2 = (*so->so_proto->pr_usrreqs->pru_detach)(so); 474 if (error == 0) 475 error = error2; 476 } 477 discard: 478 ACCEPT_LOCK(); 479 SOCK_LOCK(so); 480 KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF")); 481 so->so_state |= SS_NOFDREF; 482 sorele(so); 483 return (error); 484 } 485 486 /* 487 * soabort() must not be called with any socket locks held, as it calls 488 * into the protocol, which will call back into the socket code causing 489 * it to acquire additional socket locks that may cause recursion or lock 490 * order reversals. 491 */ 492 int 493 soabort(so) 494 struct socket *so; 495 { 496 int error; 497 498 error = (*so->so_proto->pr_usrreqs->pru_abort)(so); 499 if (error) { 500 ACCEPT_LOCK(); 501 SOCK_LOCK(so); 502 sotryfree(so); /* note: does not decrement the ref count */ 503 return error; 504 } 505 return (0); 506 } 507 508 int 509 soaccept(so, nam) 510 struct socket *so; 511 struct sockaddr **nam; 512 { 513 int error; 514 515 SOCK_LOCK(so); 516 KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF")); 517 so->so_state &= ~SS_NOFDREF; 518 SOCK_UNLOCK(so); 519 error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam); 520 return (error); 521 } 522 523 int 524 soconnect(so, nam, td) 525 struct socket *so; 526 struct sockaddr *nam; 527 struct thread *td; 528 { 529 int error; 530 531 if (so->so_options & SO_ACCEPTCONN) 532 return (EOPNOTSUPP); 533 /* 534 * If protocol is connection-based, can only connect once. 535 * Otherwise, if connected, try to disconnect first. 536 * This allows user to disconnect by connecting to, e.g., 537 * a null address. 538 */ 539 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 540 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 541 (error = sodisconnect(so)))) { 542 error = EISCONN; 543 } else { 544 /* 545 * Prevent accumulated error from previous connection 546 * from biting us. 547 */ 548 so->so_error = 0; 549 error = (*so->so_proto->pr_usrreqs->pru_connect)(so, nam, td); 550 } 551 552 return (error); 553 } 554 555 int 556 soconnect2(so1, so2) 557 struct socket *so1; 558 struct socket *so2; 559 { 560 561 return ((*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2)); 562 } 563 564 int 565 sodisconnect(so) 566 struct socket *so; 567 { 568 int error; 569 570 if ((so->so_state & SS_ISCONNECTED) == 0) 571 return (ENOTCONN); 572 if (so->so_state & SS_ISDISCONNECTING) 573 return (EALREADY); 574 error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so); 575 return (error); 576 } 577 578 #ifdef ZERO_COPY_SOCKETS 579 struct so_zerocopy_stats{ 580 int size_ok; 581 int align_ok; 582 int found_ifp; 583 }; 584 struct so_zerocopy_stats so_zerocp_stats = {0,0,0}; 585 #include <netinet/in.h> 586 #include <net/route.h> 587 #include <netinet/in_pcb.h> 588 #include <vm/vm.h> 589 #include <vm/vm_page.h> 590 #include <vm/vm_object.h> 591 #endif /*ZERO_COPY_SOCKETS*/ 592 593 /* 594 * sosend_copyin() accepts a uio and prepares an mbuf chain holding part or 595 * all of the data referenced by the uio. If desired, it uses zero-copy. 596 * *space will be updated to reflect data copied in. 597 * 598 * NB: If atomic I/O is requested, the caller must already have checked that 599 * space can hold resid bytes. 600 * 601 * NB: In the event of an error, the caller may need to free the partial 602 * chain pointed to by *mpp. The contents of both *uio and *space may be 603 * modified even in the case of an error. 604 */ 605 static int 606 sosend_copyin(struct uio *uio, struct mbuf **retmp, int atomic, long *space, 607 int flags) 608 { 609 struct mbuf *m, **mp, *top; 610 long len, resid; 611 int error; 612 #ifdef ZERO_COPY_SOCKETS 613 int cow_send; 614 #endif 615 616 *retmp = top = NULL; 617 mp = ⊤ 618 len = 0; 619 resid = uio->uio_resid; 620 error = 0; 621 do { 622 #ifdef ZERO_COPY_SOCKETS 623 cow_send = 0; 624 #endif /* ZERO_COPY_SOCKETS */ 625 if (resid >= MINCLSIZE) { 626 #ifdef ZERO_COPY_SOCKETS 627 if (top == NULL) { 628 MGETHDR(m, M_TRYWAIT, MT_DATA); 629 if (m == NULL) { 630 error = ENOBUFS; 631 goto out; 632 } 633 m->m_pkthdr.len = 0; 634 m->m_pkthdr.rcvif = NULL; 635 } else { 636 MGET(m, M_TRYWAIT, MT_DATA); 637 if (m == NULL) { 638 error = ENOBUFS; 639 goto out; 640 } 641 } 642 if (so_zero_copy_send && 643 resid>=PAGE_SIZE && 644 *space>=PAGE_SIZE && 645 uio->uio_iov->iov_len>=PAGE_SIZE) { 646 so_zerocp_stats.size_ok++; 647 so_zerocp_stats.align_ok++; 648 cow_send = socow_setup(m, uio); 649 len = cow_send; 650 } 651 if (!cow_send) { 652 MCLGET(m, M_TRYWAIT); 653 if ((m->m_flags & M_EXT) == 0) { 654 m_free(m); 655 m = NULL; 656 } else { 657 len = min(min(MCLBYTES, resid), 658 *space); 659 } 660 } 661 #else /* ZERO_COPY_SOCKETS */ 662 if (top == NULL) { 663 m = m_getcl(M_TRYWAIT, MT_DATA, M_PKTHDR); 664 m->m_pkthdr.len = 0; 665 m->m_pkthdr.rcvif = NULL; 666 } else 667 m = m_getcl(M_TRYWAIT, MT_DATA, 0); 668 len = min(min(MCLBYTES, resid), *space); 669 #endif /* ZERO_COPY_SOCKETS */ 670 } else { 671 if (top == NULL) { 672 m = m_gethdr(M_TRYWAIT, MT_DATA); 673 m->m_pkthdr.len = 0; 674 m->m_pkthdr.rcvif = NULL; 675 676 len = min(min(MHLEN, resid), *space); 677 /* 678 * For datagram protocols, leave room 679 * for protocol headers in first mbuf. 680 */ 681 if (atomic && m && len < MHLEN) 682 MH_ALIGN(m, len); 683 } else { 684 m = m_get(M_TRYWAIT, MT_DATA); 685 len = min(min(MLEN, resid), *space); 686 } 687 } 688 if (m == NULL) { 689 error = ENOBUFS; 690 goto out; 691 } 692 693 *space -= len; 694 #ifdef ZERO_COPY_SOCKETS 695 if (cow_send) 696 error = 0; 697 else 698 #endif /* ZERO_COPY_SOCKETS */ 699 error = uiomove(mtod(m, void *), (int)len, uio); 700 resid = uio->uio_resid; 701 m->m_len = len; 702 *mp = m; 703 top->m_pkthdr.len += len; 704 if (error) 705 goto out; 706 mp = &m->m_next; 707 if (resid <= 0) { 708 if (flags & MSG_EOR) 709 top->m_flags |= M_EOR; 710 break; 711 } 712 } while (*space > 0 && atomic); 713 out: 714 *retmp = top; 715 return (error); 716 } 717 718 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK) 719 #define snderr(errno) { error = (errno); goto release; } 720 721 /* 722 * Send on a socket. 723 * If send must go all at once and message is larger than 724 * send buffering, then hard error. 725 * Lock against other senders. 726 * If must go all at once and not enough room now, then 727 * inform user that this would block and do nothing. 728 * Otherwise, if nonblocking, send as much as possible. 729 * The data to be sent is described by "uio" if nonzero, 730 * otherwise by the mbuf chain "top" (which must be null 731 * if uio is not). Data provided in mbuf chain must be small 732 * enough to send all at once. 733 * 734 * Returns nonzero on error, timeout or signal; callers 735 * must check for short counts if EINTR/ERESTART are returned. 736 * Data and control buffers are freed on return. 737 */ 738 739 int 740 sosend(so, addr, uio, top, control, flags, td) 741 struct socket *so; 742 struct sockaddr *addr; 743 struct uio *uio; 744 struct mbuf *top; 745 struct mbuf *control; 746 int flags; 747 struct thread *td; 748 { 749 long space, resid; 750 int clen = 0, error, dontroute; 751 int atomic = sosendallatonce(so) || top; 752 753 if (uio != NULL) 754 resid = uio->uio_resid; 755 else 756 resid = top->m_pkthdr.len; 757 /* 758 * In theory resid should be unsigned. 759 * However, space must be signed, as it might be less than 0 760 * if we over-committed, and we must use a signed comparison 761 * of space and resid. On the other hand, a negative resid 762 * causes us to loop sending 0-length segments to the protocol. 763 * 764 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 765 * type sockets since that's an error. 766 */ 767 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 768 error = EINVAL; 769 goto out; 770 } 771 772 dontroute = 773 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 774 (so->so_proto->pr_flags & PR_ATOMIC); 775 if (td != NULL) 776 td->td_proc->p_stats->p_ru.ru_msgsnd++; 777 if (control != NULL) 778 clen = control->m_len; 779 780 SOCKBUF_LOCK(&so->so_snd); 781 restart: 782 SOCKBUF_LOCK_ASSERT(&so->so_snd); 783 error = sblock(&so->so_snd, SBLOCKWAIT(flags)); 784 if (error) 785 goto out_locked; 786 do { 787 SOCKBUF_LOCK_ASSERT(&so->so_snd); 788 if (so->so_snd.sb_state & SBS_CANTSENDMORE) 789 snderr(EPIPE); 790 if (so->so_error) { 791 error = so->so_error; 792 so->so_error = 0; 793 goto release; 794 } 795 if ((so->so_state & SS_ISCONNECTED) == 0) { 796 /* 797 * `sendto' and `sendmsg' is allowed on a connection- 798 * based socket if it supports implied connect. 799 * Return ENOTCONN if not connected and no address is 800 * supplied. 801 */ 802 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 803 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 804 if ((so->so_state & SS_ISCONFIRMING) == 0 && 805 !(resid == 0 && clen != 0)) 806 snderr(ENOTCONN); 807 } else if (addr == NULL) 808 snderr(so->so_proto->pr_flags & PR_CONNREQUIRED ? 809 ENOTCONN : EDESTADDRREQ); 810 } 811 space = sbspace(&so->so_snd); 812 if (flags & MSG_OOB) 813 space += 1024; 814 if ((atomic && resid > so->so_snd.sb_hiwat) || 815 clen > so->so_snd.sb_hiwat) 816 snderr(EMSGSIZE); 817 if (space < resid + clen && 818 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 819 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) 820 snderr(EWOULDBLOCK); 821 sbunlock(&so->so_snd); 822 error = sbwait(&so->so_snd); 823 if (error) 824 goto out_locked; 825 goto restart; 826 } 827 SOCKBUF_UNLOCK(&so->so_snd); 828 space -= clen; 829 do { 830 if (uio == NULL) { 831 resid = 0; 832 if (flags & MSG_EOR) 833 top->m_flags |= M_EOR; 834 } else { 835 error = sosend_copyin(uio, &top, atomic, 836 &space, flags); 837 if (error != 0) { 838 SOCKBUF_LOCK(&so->so_snd); 839 goto release; 840 } 841 resid = uio->uio_resid; 842 } 843 if (dontroute) { 844 SOCK_LOCK(so); 845 so->so_options |= SO_DONTROUTE; 846 SOCK_UNLOCK(so); 847 } 848 /* 849 * XXX all the SBS_CANTSENDMORE checks previously 850 * done could be out of date. We could have recieved 851 * a reset packet in an interrupt or maybe we slept 852 * while doing page faults in uiomove() etc. We could 853 * probably recheck again inside the locking protection 854 * here, but there are probably other places that this 855 * also happens. We must rethink this. 856 */ 857 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 858 (flags & MSG_OOB) ? PRUS_OOB : 859 /* 860 * If the user set MSG_EOF, the protocol 861 * understands this flag and nothing left to 862 * send then use PRU_SEND_EOF instead of PRU_SEND. 863 */ 864 ((flags & MSG_EOF) && 865 (so->so_proto->pr_flags & PR_IMPLOPCL) && 866 (resid <= 0)) ? 867 PRUS_EOF : 868 /* If there is more to send set PRUS_MORETOCOME */ 869 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 870 top, addr, control, td); 871 if (dontroute) { 872 SOCK_LOCK(so); 873 so->so_options &= ~SO_DONTROUTE; 874 SOCK_UNLOCK(so); 875 } 876 clen = 0; 877 control = NULL; 878 top = NULL; 879 if (error) { 880 SOCKBUF_LOCK(&so->so_snd); 881 goto release; 882 } 883 } while (resid && space > 0); 884 SOCKBUF_LOCK(&so->so_snd); 885 } while (resid); 886 887 release: 888 SOCKBUF_LOCK_ASSERT(&so->so_snd); 889 sbunlock(&so->so_snd); 890 out_locked: 891 SOCKBUF_LOCK_ASSERT(&so->so_snd); 892 SOCKBUF_UNLOCK(&so->so_snd); 893 out: 894 if (top != NULL) 895 m_freem(top); 896 if (control != NULL) 897 m_freem(control); 898 return (error); 899 } 900 901 /* 902 * The part of soreceive() that implements reading non-inline out-of-band 903 * data from a socket. For more complete comments, see soreceive(), from 904 * which this code originated. 905 * 906 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is 907 * unable to return an mbuf chain to the caller. 908 */ 909 static int 910 soreceive_rcvoob(so, uio, flags) 911 struct socket *so; 912 struct uio *uio; 913 int flags; 914 { 915 struct protosw *pr = so->so_proto; 916 struct mbuf *m; 917 int error; 918 919 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); 920 921 m = m_get(M_TRYWAIT, MT_DATA); 922 if (m == NULL) 923 return (ENOBUFS); 924 error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK); 925 if (error) 926 goto bad; 927 do { 928 #ifdef ZERO_COPY_SOCKETS 929 if (so_zero_copy_receive) { 930 int disposable; 931 932 if ((m->m_flags & M_EXT) 933 && (m->m_ext.ext_type == EXT_DISPOSABLE)) 934 disposable = 1; 935 else 936 disposable = 0; 937 938 error = uiomoveco(mtod(m, void *), 939 min(uio->uio_resid, m->m_len), 940 uio, disposable); 941 } else 942 #endif /* ZERO_COPY_SOCKETS */ 943 error = uiomove(mtod(m, void *), 944 (int) min(uio->uio_resid, m->m_len), uio); 945 m = m_free(m); 946 } while (uio->uio_resid && error == 0 && m); 947 bad: 948 if (m != NULL) 949 m_freem(m); 950 return (error); 951 } 952 953 /* 954 * Following replacement or removal of the first mbuf on the first mbuf chain 955 * of a socket buffer, push necessary state changes back into the socket 956 * buffer so that other consumers see the values consistently. 'nextrecord' 957 * is the callers locally stored value of the original value of 958 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. 959 * NOTE: 'nextrecord' may be NULL. 960 */ 961 static __inline void 962 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) 963 { 964 965 SOCKBUF_LOCK_ASSERT(sb); 966 /* 967 * First, update for the new value of nextrecord. If necessary, make 968 * it the first record. 969 */ 970 if (sb->sb_mb != NULL) 971 sb->sb_mb->m_nextpkt = nextrecord; 972 else 973 sb->sb_mb = nextrecord; 974 975 /* 976 * Now update any dependent socket buffer fields to reflect the new 977 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the 978 * addition of a second clause that takes care of the case where 979 * sb_mb has been updated, but remains the last record. 980 */ 981 if (sb->sb_mb == NULL) { 982 sb->sb_mbtail = NULL; 983 sb->sb_lastrecord = NULL; 984 } else if (sb->sb_mb->m_nextpkt == NULL) 985 sb->sb_lastrecord = sb->sb_mb; 986 } 987 988 989 /* 990 * Implement receive operations on a socket. 991 * We depend on the way that records are added to the sockbuf 992 * by sbappend*. In particular, each record (mbufs linked through m_next) 993 * must begin with an address if the protocol so specifies, 994 * followed by an optional mbuf or mbufs containing ancillary data, 995 * and then zero or more mbufs of data. 996 * In order to avoid blocking network interrupts for the entire time here, 997 * we splx() while doing the actual copy to user space. 998 * Although the sockbuf is locked, new data may still be appended, 999 * and thus we must maintain consistency of the sockbuf during that time. 1000 * 1001 * The caller may receive the data as a single mbuf chain by supplying 1002 * an mbuf **mp0 for use in returning the chain. The uio is then used 1003 * only for the count in uio_resid. 1004 */ 1005 int 1006 soreceive(so, psa, uio, mp0, controlp, flagsp) 1007 struct socket *so; 1008 struct sockaddr **psa; 1009 struct uio *uio; 1010 struct mbuf **mp0; 1011 struct mbuf **controlp; 1012 int *flagsp; 1013 { 1014 struct mbuf *m, **mp; 1015 int flags, len, error, offset; 1016 struct protosw *pr = so->so_proto; 1017 struct mbuf *nextrecord; 1018 int moff, type = 0; 1019 int orig_resid = uio->uio_resid; 1020 1021 mp = mp0; 1022 if (psa != NULL) 1023 *psa = NULL; 1024 if (controlp != NULL) 1025 *controlp = NULL; 1026 if (flagsp != NULL) 1027 flags = *flagsp &~ MSG_EOR; 1028 else 1029 flags = 0; 1030 if (flags & MSG_OOB) 1031 return (soreceive_rcvoob(so, uio, flags)); 1032 if (mp != NULL) 1033 *mp = NULL; 1034 if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING) 1035 && uio->uio_resid) 1036 (*pr->pr_usrreqs->pru_rcvd)(so, 0); 1037 1038 SOCKBUF_LOCK(&so->so_rcv); 1039 restart: 1040 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1041 error = sblock(&so->so_rcv, SBLOCKWAIT(flags)); 1042 if (error) 1043 goto out; 1044 1045 m = so->so_rcv.sb_mb; 1046 /* 1047 * If we have less data than requested, block awaiting more 1048 * (subject to any timeout) if: 1049 * 1. the current count is less than the low water mark, or 1050 * 2. MSG_WAITALL is set, and it is possible to do the entire 1051 * receive operation at once if we block (resid <= hiwat). 1052 * 3. MSG_DONTWAIT is not set 1053 * If MSG_WAITALL is set but resid is larger than the receive buffer, 1054 * we have to do the receive in sections, and thus risk returning 1055 * a short count if a timeout or signal occurs after we start. 1056 */ 1057 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 1058 so->so_rcv.sb_cc < uio->uio_resid) && 1059 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat || 1060 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) && 1061 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 1062 KASSERT(m != NULL || !so->so_rcv.sb_cc, 1063 ("receive: m == %p so->so_rcv.sb_cc == %u", 1064 m, so->so_rcv.sb_cc)); 1065 if (so->so_error) { 1066 if (m != NULL) 1067 goto dontblock; 1068 error = so->so_error; 1069 if ((flags & MSG_PEEK) == 0) 1070 so->so_error = 0; 1071 goto release; 1072 } 1073 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1074 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 1075 if (m) 1076 goto dontblock; 1077 else 1078 goto release; 1079 } 1080 for (; m != NULL; m = m->m_next) 1081 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 1082 m = so->so_rcv.sb_mb; 1083 goto dontblock; 1084 } 1085 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 1086 (so->so_proto->pr_flags & PR_CONNREQUIRED)) { 1087 error = ENOTCONN; 1088 goto release; 1089 } 1090 if (uio->uio_resid == 0) 1091 goto release; 1092 if ((so->so_state & SS_NBIO) || 1093 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 1094 error = EWOULDBLOCK; 1095 goto release; 1096 } 1097 SBLASTRECORDCHK(&so->so_rcv); 1098 SBLASTMBUFCHK(&so->so_rcv); 1099 sbunlock(&so->so_rcv); 1100 error = sbwait(&so->so_rcv); 1101 if (error) 1102 goto out; 1103 goto restart; 1104 } 1105 dontblock: 1106 /* 1107 * From this point onward, we maintain 'nextrecord' as a cache of the 1108 * pointer to the next record in the socket buffer. We must keep the 1109 * various socket buffer pointers and local stack versions of the 1110 * pointers in sync, pushing out modifications before dropping the 1111 * socket buffer mutex, and re-reading them when picking it up. 1112 * 1113 * Otherwise, we will race with the network stack appending new data 1114 * or records onto the socket buffer by using inconsistent/stale 1115 * versions of the field, possibly resulting in socket buffer 1116 * corruption. 1117 * 1118 * By holding the high-level sblock(), we prevent simultaneous 1119 * readers from pulling off the front of the socket buffer. 1120 */ 1121 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1122 if (uio->uio_td) 1123 uio->uio_td->td_proc->p_stats->p_ru.ru_msgrcv++; 1124 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); 1125 SBLASTRECORDCHK(&so->so_rcv); 1126 SBLASTMBUFCHK(&so->so_rcv); 1127 nextrecord = m->m_nextpkt; 1128 if (pr->pr_flags & PR_ADDR) { 1129 KASSERT(m->m_type == MT_SONAME, 1130 ("m->m_type == %d", m->m_type)); 1131 orig_resid = 0; 1132 if (psa != NULL) 1133 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 1134 M_NOWAIT); 1135 if (flags & MSG_PEEK) { 1136 m = m->m_next; 1137 } else { 1138 sbfree(&so->so_rcv, m); 1139 so->so_rcv.sb_mb = m_free(m); 1140 m = so->so_rcv.sb_mb; 1141 sockbuf_pushsync(&so->so_rcv, nextrecord); 1142 } 1143 } 1144 1145 /* 1146 * Process one or more MT_CONTROL mbufs present before any data mbufs 1147 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 1148 * just copy the data; if !MSG_PEEK, we call into the protocol to 1149 * perform externalization (or freeing if controlp == NULL). 1150 */ 1151 if (m != NULL && m->m_type == MT_CONTROL) { 1152 struct mbuf *cm = NULL, *cmn; 1153 struct mbuf **cme = &cm; 1154 1155 do { 1156 if (flags & MSG_PEEK) { 1157 if (controlp != NULL) { 1158 *controlp = m_copy(m, 0, m->m_len); 1159 controlp = &(*controlp)->m_next; 1160 } 1161 m = m->m_next; 1162 } else { 1163 sbfree(&so->so_rcv, m); 1164 so->so_rcv.sb_mb = m->m_next; 1165 m->m_next = NULL; 1166 *cme = m; 1167 cme = &(*cme)->m_next; 1168 m = so->so_rcv.sb_mb; 1169 } 1170 } while (m != NULL && m->m_type == MT_CONTROL); 1171 if ((flags & MSG_PEEK) == 0) 1172 sockbuf_pushsync(&so->so_rcv, nextrecord); 1173 while (cm != NULL) { 1174 cmn = cm->m_next; 1175 cm->m_next = NULL; 1176 if (pr->pr_domain->dom_externalize != NULL) { 1177 SOCKBUF_UNLOCK(&so->so_rcv); 1178 error = (*pr->pr_domain->dom_externalize) 1179 (cm, controlp); 1180 SOCKBUF_LOCK(&so->so_rcv); 1181 } else if (controlp != NULL) 1182 *controlp = cm; 1183 else 1184 m_freem(cm); 1185 if (controlp != NULL) { 1186 orig_resid = 0; 1187 while (*controlp != NULL) 1188 controlp = &(*controlp)->m_next; 1189 } 1190 cm = cmn; 1191 } 1192 if (so->so_rcv.sb_mb) 1193 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 1194 else 1195 nextrecord = NULL; 1196 orig_resid = 0; 1197 } 1198 if (m != NULL) { 1199 if ((flags & MSG_PEEK) == 0) { 1200 KASSERT(m->m_nextpkt == nextrecord, 1201 ("soreceive: post-control, nextrecord !sync")); 1202 if (nextrecord == NULL) { 1203 KASSERT(so->so_rcv.sb_mb == m, 1204 ("soreceive: post-control, sb_mb!=m")); 1205 KASSERT(so->so_rcv.sb_lastrecord == m, 1206 ("soreceive: post-control, lastrecord!=m")); 1207 } 1208 } 1209 type = m->m_type; 1210 if (type == MT_OOBDATA) 1211 flags |= MSG_OOB; 1212 } else { 1213 if ((flags & MSG_PEEK) == 0) { 1214 KASSERT(so->so_rcv.sb_mb == nextrecord, 1215 ("soreceive: sb_mb != nextrecord")); 1216 if (so->so_rcv.sb_mb == NULL) { 1217 KASSERT(so->so_rcv.sb_lastrecord == NULL, 1218 ("soreceive: sb_lastercord != NULL")); 1219 } 1220 } 1221 } 1222 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1223 SBLASTRECORDCHK(&so->so_rcv); 1224 SBLASTMBUFCHK(&so->so_rcv); 1225 1226 /* 1227 * Now continue to read any data mbufs off of the head of the socket 1228 * buffer until the read request is satisfied. Note that 'type' is 1229 * used to store the type of any mbuf reads that have happened so far 1230 * such that soreceive() can stop reading if the type changes, which 1231 * causes soreceive() to return only one of regular data and inline 1232 * out-of-band data in a single socket receive operation. 1233 */ 1234 moff = 0; 1235 offset = 0; 1236 while (m != NULL && uio->uio_resid > 0 && error == 0) { 1237 /* 1238 * If the type of mbuf has changed since the last mbuf 1239 * examined ('type'), end the receive operation. 1240 */ 1241 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1242 if (m->m_type == MT_OOBDATA) { 1243 if (type != MT_OOBDATA) 1244 break; 1245 } else if (type == MT_OOBDATA) 1246 break; 1247 else 1248 KASSERT(m->m_type == MT_DATA, 1249 ("m->m_type == %d", m->m_type)); 1250 so->so_rcv.sb_state &= ~SBS_RCVATMARK; 1251 len = uio->uio_resid; 1252 if (so->so_oobmark && len > so->so_oobmark - offset) 1253 len = so->so_oobmark - offset; 1254 if (len > m->m_len - moff) 1255 len = m->m_len - moff; 1256 /* 1257 * If mp is set, just pass back the mbufs. 1258 * Otherwise copy them out via the uio, then free. 1259 * Sockbuf must be consistent here (points to current mbuf, 1260 * it points to next record) when we drop priority; 1261 * we must note any additions to the sockbuf when we 1262 * block interrupts again. 1263 */ 1264 if (mp == NULL) { 1265 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1266 SBLASTRECORDCHK(&so->so_rcv); 1267 SBLASTMBUFCHK(&so->so_rcv); 1268 SOCKBUF_UNLOCK(&so->so_rcv); 1269 #ifdef ZERO_COPY_SOCKETS 1270 if (so_zero_copy_receive) { 1271 int disposable; 1272 1273 if ((m->m_flags & M_EXT) 1274 && (m->m_ext.ext_type == EXT_DISPOSABLE)) 1275 disposable = 1; 1276 else 1277 disposable = 0; 1278 1279 error = uiomoveco(mtod(m, char *) + moff, 1280 (int)len, uio, 1281 disposable); 1282 } else 1283 #endif /* ZERO_COPY_SOCKETS */ 1284 error = uiomove(mtod(m, char *) + moff, (int)len, uio); 1285 SOCKBUF_LOCK(&so->so_rcv); 1286 if (error) 1287 goto release; 1288 } else 1289 uio->uio_resid -= len; 1290 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1291 if (len == m->m_len - moff) { 1292 if (m->m_flags & M_EOR) 1293 flags |= MSG_EOR; 1294 if (flags & MSG_PEEK) { 1295 m = m->m_next; 1296 moff = 0; 1297 } else { 1298 nextrecord = m->m_nextpkt; 1299 sbfree(&so->so_rcv, m); 1300 if (mp != NULL) { 1301 *mp = m; 1302 mp = &m->m_next; 1303 so->so_rcv.sb_mb = m = m->m_next; 1304 *mp = NULL; 1305 } else { 1306 so->so_rcv.sb_mb = m_free(m); 1307 m = so->so_rcv.sb_mb; 1308 } 1309 sockbuf_pushsync(&so->so_rcv, nextrecord); 1310 SBLASTRECORDCHK(&so->so_rcv); 1311 SBLASTMBUFCHK(&so->so_rcv); 1312 } 1313 } else { 1314 if (flags & MSG_PEEK) 1315 moff += len; 1316 else { 1317 if (mp != NULL) { 1318 int copy_flag; 1319 1320 if (flags & MSG_DONTWAIT) 1321 copy_flag = M_DONTWAIT; 1322 else 1323 copy_flag = M_TRYWAIT; 1324 if (copy_flag == M_TRYWAIT) 1325 SOCKBUF_UNLOCK(&so->so_rcv); 1326 *mp = m_copym(m, 0, len, copy_flag); 1327 if (copy_flag == M_TRYWAIT) 1328 SOCKBUF_LOCK(&so->so_rcv); 1329 if (*mp == NULL) { 1330 /* 1331 * m_copym() couldn't allocate an mbuf. 1332 * Adjust uio_resid back (it was adjusted 1333 * down by len bytes, which we didn't end 1334 * up "copying" over). 1335 */ 1336 uio->uio_resid += len; 1337 break; 1338 } 1339 } 1340 m->m_data += len; 1341 m->m_len -= len; 1342 so->so_rcv.sb_cc -= len; 1343 } 1344 } 1345 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1346 if (so->so_oobmark) { 1347 if ((flags & MSG_PEEK) == 0) { 1348 so->so_oobmark -= len; 1349 if (so->so_oobmark == 0) { 1350 so->so_rcv.sb_state |= SBS_RCVATMARK; 1351 break; 1352 } 1353 } else { 1354 offset += len; 1355 if (offset == so->so_oobmark) 1356 break; 1357 } 1358 } 1359 if (flags & MSG_EOR) 1360 break; 1361 /* 1362 * If the MSG_WAITALL flag is set (for non-atomic socket), 1363 * we must not quit until "uio->uio_resid == 0" or an error 1364 * termination. If a signal/timeout occurs, return 1365 * with a short count but without error. 1366 * Keep sockbuf locked against other readers. 1367 */ 1368 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 1369 !sosendallatonce(so) && nextrecord == NULL) { 1370 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1371 if (so->so_error || so->so_rcv.sb_state & SBS_CANTRCVMORE) 1372 break; 1373 /* 1374 * Notify the protocol that some data has been 1375 * drained before blocking. 1376 */ 1377 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb != NULL) { 1378 SOCKBUF_UNLOCK(&so->so_rcv); 1379 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 1380 SOCKBUF_LOCK(&so->so_rcv); 1381 } 1382 SBLASTRECORDCHK(&so->so_rcv); 1383 SBLASTMBUFCHK(&so->so_rcv); 1384 error = sbwait(&so->so_rcv); 1385 if (error) 1386 goto release; 1387 m = so->so_rcv.sb_mb; 1388 if (m != NULL) 1389 nextrecord = m->m_nextpkt; 1390 } 1391 } 1392 1393 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1394 if (m != NULL && pr->pr_flags & PR_ATOMIC) { 1395 flags |= MSG_TRUNC; 1396 if ((flags & MSG_PEEK) == 0) 1397 (void) sbdroprecord_locked(&so->so_rcv); 1398 } 1399 if ((flags & MSG_PEEK) == 0) { 1400 if (m == NULL) { 1401 /* 1402 * First part is an inline SB_EMPTY_FIXUP(). Second 1403 * part makes sure sb_lastrecord is up-to-date if 1404 * there is still data in the socket buffer. 1405 */ 1406 so->so_rcv.sb_mb = nextrecord; 1407 if (so->so_rcv.sb_mb == NULL) { 1408 so->so_rcv.sb_mbtail = NULL; 1409 so->so_rcv.sb_lastrecord = NULL; 1410 } else if (nextrecord->m_nextpkt == NULL) 1411 so->so_rcv.sb_lastrecord = nextrecord; 1412 } 1413 SBLASTRECORDCHK(&so->so_rcv); 1414 SBLASTMBUFCHK(&so->so_rcv); 1415 /* 1416 * If soreceive() is being done from the socket callback, then 1417 * don't need to generate ACK to peer to update window, since 1418 * ACK will be generated on return to TCP. 1419 */ 1420 if (!(flags & MSG_SOCALLBCK) && 1421 (pr->pr_flags & PR_WANTRCVD) && so->so_pcb) { 1422 SOCKBUF_UNLOCK(&so->so_rcv); 1423 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 1424 SOCKBUF_LOCK(&so->so_rcv); 1425 } 1426 } 1427 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1428 if (orig_resid == uio->uio_resid && orig_resid && 1429 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { 1430 sbunlock(&so->so_rcv); 1431 goto restart; 1432 } 1433 1434 if (flagsp != NULL) 1435 *flagsp |= flags; 1436 release: 1437 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1438 sbunlock(&so->so_rcv); 1439 out: 1440 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1441 SOCKBUF_UNLOCK(&so->so_rcv); 1442 return (error); 1443 } 1444 1445 int 1446 soshutdown(so, how) 1447 struct socket *so; 1448 int how; 1449 { 1450 struct protosw *pr = so->so_proto; 1451 1452 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 1453 return (EINVAL); 1454 1455 if (how != SHUT_WR) 1456 sorflush(so); 1457 if (how != SHUT_RD) 1458 return ((*pr->pr_usrreqs->pru_shutdown)(so)); 1459 return (0); 1460 } 1461 1462 void 1463 sorflush(so) 1464 struct socket *so; 1465 { 1466 struct sockbuf *sb = &so->so_rcv; 1467 struct protosw *pr = so->so_proto; 1468 struct sockbuf asb; 1469 1470 /* 1471 * XXXRW: This is quite ugly. Previously, this code made a copy of 1472 * the socket buffer, then zero'd the original to clear the buffer 1473 * fields. However, with mutexes in the socket buffer, this causes 1474 * problems. We only clear the zeroable bits of the original; 1475 * however, we have to initialize and destroy the mutex in the copy 1476 * so that dom_dispose() and sbrelease() can lock t as needed. 1477 */ 1478 SOCKBUF_LOCK(sb); 1479 sb->sb_flags |= SB_NOINTR; 1480 (void) sblock(sb, M_WAITOK); 1481 /* 1482 * socantrcvmore_locked() drops the socket buffer mutex so that it 1483 * can safely perform wakeups. Re-acquire the mutex before 1484 * continuing. 1485 */ 1486 socantrcvmore_locked(so); 1487 SOCKBUF_LOCK(sb); 1488 sbunlock(sb); 1489 /* 1490 * Invalidate/clear most of the sockbuf structure, but leave 1491 * selinfo and mutex data unchanged. 1492 */ 1493 bzero(&asb, offsetof(struct sockbuf, sb_startzero)); 1494 bcopy(&sb->sb_startzero, &asb.sb_startzero, 1495 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 1496 bzero(&sb->sb_startzero, 1497 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 1498 SOCKBUF_UNLOCK(sb); 1499 1500 SOCKBUF_LOCK_INIT(&asb, "so_rcv"); 1501 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 1502 (*pr->pr_domain->dom_dispose)(asb.sb_mb); 1503 sbrelease(&asb, so); 1504 SOCKBUF_LOCK_DESTROY(&asb); 1505 } 1506 1507 /* 1508 * Perhaps this routine, and sooptcopyout(), below, ought to come in 1509 * an additional variant to handle the case where the option value needs 1510 * to be some kind of integer, but not a specific size. 1511 * In addition to their use here, these functions are also called by the 1512 * protocol-level pr_ctloutput() routines. 1513 */ 1514 int 1515 sooptcopyin(sopt, buf, len, minlen) 1516 struct sockopt *sopt; 1517 void *buf; 1518 size_t len; 1519 size_t minlen; 1520 { 1521 size_t valsize; 1522 1523 /* 1524 * If the user gives us more than we wanted, we ignore it, 1525 * but if we don't get the minimum length the caller 1526 * wants, we return EINVAL. On success, sopt->sopt_valsize 1527 * is set to however much we actually retrieved. 1528 */ 1529 if ((valsize = sopt->sopt_valsize) < minlen) 1530 return EINVAL; 1531 if (valsize > len) 1532 sopt->sopt_valsize = valsize = len; 1533 1534 if (sopt->sopt_td != NULL) 1535 return (copyin(sopt->sopt_val, buf, valsize)); 1536 1537 bcopy(sopt->sopt_val, buf, valsize); 1538 return 0; 1539 } 1540 1541 /* 1542 * Kernel version of setsockopt(2)/ 1543 * XXX: optlen is size_t, not socklen_t 1544 */ 1545 int 1546 so_setsockopt(struct socket *so, int level, int optname, void *optval, 1547 size_t optlen) 1548 { 1549 struct sockopt sopt; 1550 1551 sopt.sopt_level = level; 1552 sopt.sopt_name = optname; 1553 sopt.sopt_dir = SOPT_SET; 1554 sopt.sopt_val = optval; 1555 sopt.sopt_valsize = optlen; 1556 sopt.sopt_td = NULL; 1557 return (sosetopt(so, &sopt)); 1558 } 1559 1560 int 1561 sosetopt(so, sopt) 1562 struct socket *so; 1563 struct sockopt *sopt; 1564 { 1565 int error, optval; 1566 struct linger l; 1567 struct timeval tv; 1568 u_long val; 1569 #ifdef MAC 1570 struct mac extmac; 1571 #endif 1572 1573 error = 0; 1574 if (sopt->sopt_level != SOL_SOCKET) { 1575 if (so->so_proto && so->so_proto->pr_ctloutput) 1576 return ((*so->so_proto->pr_ctloutput) 1577 (so, sopt)); 1578 error = ENOPROTOOPT; 1579 } else { 1580 switch (sopt->sopt_name) { 1581 #ifdef INET 1582 case SO_ACCEPTFILTER: 1583 error = do_setopt_accept_filter(so, sopt); 1584 if (error) 1585 goto bad; 1586 break; 1587 #endif 1588 case SO_LINGER: 1589 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 1590 if (error) 1591 goto bad; 1592 1593 SOCK_LOCK(so); 1594 so->so_linger = l.l_linger; 1595 if (l.l_onoff) 1596 so->so_options |= SO_LINGER; 1597 else 1598 so->so_options &= ~SO_LINGER; 1599 SOCK_UNLOCK(so); 1600 break; 1601 1602 case SO_DEBUG: 1603 case SO_KEEPALIVE: 1604 case SO_DONTROUTE: 1605 case SO_USELOOPBACK: 1606 case SO_BROADCAST: 1607 case SO_REUSEADDR: 1608 case SO_REUSEPORT: 1609 case SO_OOBINLINE: 1610 case SO_TIMESTAMP: 1611 case SO_BINTIME: 1612 case SO_NOSIGPIPE: 1613 error = sooptcopyin(sopt, &optval, sizeof optval, 1614 sizeof optval); 1615 if (error) 1616 goto bad; 1617 SOCK_LOCK(so); 1618 if (optval) 1619 so->so_options |= sopt->sopt_name; 1620 else 1621 so->so_options &= ~sopt->sopt_name; 1622 SOCK_UNLOCK(so); 1623 break; 1624 1625 case SO_SNDBUF: 1626 case SO_RCVBUF: 1627 case SO_SNDLOWAT: 1628 case SO_RCVLOWAT: 1629 error = sooptcopyin(sopt, &optval, sizeof optval, 1630 sizeof optval); 1631 if (error) 1632 goto bad; 1633 1634 /* 1635 * Values < 1 make no sense for any of these 1636 * options, so disallow them. 1637 */ 1638 if (optval < 1) { 1639 error = EINVAL; 1640 goto bad; 1641 } 1642 1643 switch (sopt->sopt_name) { 1644 case SO_SNDBUF: 1645 case SO_RCVBUF: 1646 if (sbreserve(sopt->sopt_name == SO_SNDBUF ? 1647 &so->so_snd : &so->so_rcv, (u_long)optval, 1648 so, curthread) == 0) { 1649 error = ENOBUFS; 1650 goto bad; 1651 } 1652 break; 1653 1654 /* 1655 * Make sure the low-water is never greater than 1656 * the high-water. 1657 */ 1658 case SO_SNDLOWAT: 1659 SOCKBUF_LOCK(&so->so_snd); 1660 so->so_snd.sb_lowat = 1661 (optval > so->so_snd.sb_hiwat) ? 1662 so->so_snd.sb_hiwat : optval; 1663 SOCKBUF_UNLOCK(&so->so_snd); 1664 break; 1665 case SO_RCVLOWAT: 1666 SOCKBUF_LOCK(&so->so_rcv); 1667 so->so_rcv.sb_lowat = 1668 (optval > so->so_rcv.sb_hiwat) ? 1669 so->so_rcv.sb_hiwat : optval; 1670 SOCKBUF_UNLOCK(&so->so_rcv); 1671 break; 1672 } 1673 break; 1674 1675 case SO_SNDTIMEO: 1676 case SO_RCVTIMEO: 1677 #ifdef COMPAT_IA32 1678 if (curthread->td_proc->p_sysent == &ia32_freebsd_sysvec) { 1679 struct timeval32 tv32; 1680 1681 error = sooptcopyin(sopt, &tv32, sizeof tv32, 1682 sizeof tv32); 1683 CP(tv32, tv, tv_sec); 1684 CP(tv32, tv, tv_usec); 1685 } else 1686 #endif 1687 error = sooptcopyin(sopt, &tv, sizeof tv, 1688 sizeof tv); 1689 if (error) 1690 goto bad; 1691 1692 /* assert(hz > 0); */ 1693 if (tv.tv_sec < 0 || tv.tv_sec > INT_MAX / hz || 1694 tv.tv_usec < 0 || tv.tv_usec >= 1000000) { 1695 error = EDOM; 1696 goto bad; 1697 } 1698 /* assert(tick > 0); */ 1699 /* assert(ULONG_MAX - INT_MAX >= 1000000); */ 1700 val = (u_long)(tv.tv_sec * hz) + tv.tv_usec / tick; 1701 if (val > INT_MAX) { 1702 error = EDOM; 1703 goto bad; 1704 } 1705 if (val == 0 && tv.tv_usec != 0) 1706 val = 1; 1707 1708 switch (sopt->sopt_name) { 1709 case SO_SNDTIMEO: 1710 so->so_snd.sb_timeo = val; 1711 break; 1712 case SO_RCVTIMEO: 1713 so->so_rcv.sb_timeo = val; 1714 break; 1715 } 1716 break; 1717 1718 case SO_LABEL: 1719 #ifdef MAC 1720 error = sooptcopyin(sopt, &extmac, sizeof extmac, 1721 sizeof extmac); 1722 if (error) 1723 goto bad; 1724 error = mac_setsockopt_label(sopt->sopt_td->td_ucred, 1725 so, &extmac); 1726 #else 1727 error = EOPNOTSUPP; 1728 #endif 1729 break; 1730 1731 default: 1732 error = ENOPROTOOPT; 1733 break; 1734 } 1735 if (error == 0 && so->so_proto != NULL && 1736 so->so_proto->pr_ctloutput != NULL) { 1737 (void) ((*so->so_proto->pr_ctloutput) 1738 (so, sopt)); 1739 } 1740 } 1741 bad: 1742 return (error); 1743 } 1744 1745 /* Helper routine for getsockopt */ 1746 int 1747 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 1748 { 1749 int error; 1750 size_t valsize; 1751 1752 error = 0; 1753 1754 /* 1755 * Documented get behavior is that we always return a value, 1756 * possibly truncated to fit in the user's buffer. 1757 * Traditional behavior is that we always tell the user 1758 * precisely how much we copied, rather than something useful 1759 * like the total amount we had available for her. 1760 * Note that this interface is not idempotent; the entire answer must 1761 * generated ahead of time. 1762 */ 1763 valsize = min(len, sopt->sopt_valsize); 1764 sopt->sopt_valsize = valsize; 1765 if (sopt->sopt_val != NULL) { 1766 if (sopt->sopt_td != NULL) 1767 error = copyout(buf, sopt->sopt_val, valsize); 1768 else 1769 bcopy(buf, sopt->sopt_val, valsize); 1770 } 1771 return error; 1772 } 1773 1774 int 1775 sogetopt(so, sopt) 1776 struct socket *so; 1777 struct sockopt *sopt; 1778 { 1779 int error, optval; 1780 struct linger l; 1781 struct timeval tv; 1782 #ifdef MAC 1783 struct mac extmac; 1784 #endif 1785 1786 error = 0; 1787 if (sopt->sopt_level != SOL_SOCKET) { 1788 if (so->so_proto && so->so_proto->pr_ctloutput) { 1789 return ((*so->so_proto->pr_ctloutput) 1790 (so, sopt)); 1791 } else 1792 return (ENOPROTOOPT); 1793 } else { 1794 switch (sopt->sopt_name) { 1795 #ifdef INET 1796 case SO_ACCEPTFILTER: 1797 error = do_getopt_accept_filter(so, sopt); 1798 break; 1799 #endif 1800 case SO_LINGER: 1801 SOCK_LOCK(so); 1802 l.l_onoff = so->so_options & SO_LINGER; 1803 l.l_linger = so->so_linger; 1804 SOCK_UNLOCK(so); 1805 error = sooptcopyout(sopt, &l, sizeof l); 1806 break; 1807 1808 case SO_USELOOPBACK: 1809 case SO_DONTROUTE: 1810 case SO_DEBUG: 1811 case SO_KEEPALIVE: 1812 case SO_REUSEADDR: 1813 case SO_REUSEPORT: 1814 case SO_BROADCAST: 1815 case SO_OOBINLINE: 1816 case SO_ACCEPTCONN: 1817 case SO_TIMESTAMP: 1818 case SO_BINTIME: 1819 case SO_NOSIGPIPE: 1820 optval = so->so_options & sopt->sopt_name; 1821 integer: 1822 error = sooptcopyout(sopt, &optval, sizeof optval); 1823 break; 1824 1825 case SO_TYPE: 1826 optval = so->so_type; 1827 goto integer; 1828 1829 case SO_ERROR: 1830 optval = so->so_error; 1831 so->so_error = 0; 1832 goto integer; 1833 1834 case SO_SNDBUF: 1835 optval = so->so_snd.sb_hiwat; 1836 goto integer; 1837 1838 case SO_RCVBUF: 1839 optval = so->so_rcv.sb_hiwat; 1840 goto integer; 1841 1842 case SO_SNDLOWAT: 1843 optval = so->so_snd.sb_lowat; 1844 goto integer; 1845 1846 case SO_RCVLOWAT: 1847 optval = so->so_rcv.sb_lowat; 1848 goto integer; 1849 1850 case SO_SNDTIMEO: 1851 case SO_RCVTIMEO: 1852 optval = (sopt->sopt_name == SO_SNDTIMEO ? 1853 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 1854 1855 tv.tv_sec = optval / hz; 1856 tv.tv_usec = (optval % hz) * tick; 1857 #ifdef COMPAT_IA32 1858 if (curthread->td_proc->p_sysent == &ia32_freebsd_sysvec) { 1859 struct timeval32 tv32; 1860 1861 CP(tv, tv32, tv_sec); 1862 CP(tv, tv32, tv_usec); 1863 error = sooptcopyout(sopt, &tv32, sizeof tv32); 1864 } else 1865 #endif 1866 error = sooptcopyout(sopt, &tv, sizeof tv); 1867 break; 1868 1869 case SO_LABEL: 1870 #ifdef MAC 1871 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 1872 sizeof(extmac)); 1873 if (error) 1874 return (error); 1875 error = mac_getsockopt_label(sopt->sopt_td->td_ucred, 1876 so, &extmac); 1877 if (error) 1878 return (error); 1879 error = sooptcopyout(sopt, &extmac, sizeof extmac); 1880 #else 1881 error = EOPNOTSUPP; 1882 #endif 1883 break; 1884 1885 case SO_PEERLABEL: 1886 #ifdef MAC 1887 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 1888 sizeof(extmac)); 1889 if (error) 1890 return (error); 1891 error = mac_getsockopt_peerlabel( 1892 sopt->sopt_td->td_ucred, so, &extmac); 1893 if (error) 1894 return (error); 1895 error = sooptcopyout(sopt, &extmac, sizeof extmac); 1896 #else 1897 error = EOPNOTSUPP; 1898 #endif 1899 break; 1900 1901 case SO_LISTENQLIMIT: 1902 optval = so->so_qlimit; 1903 goto integer; 1904 1905 case SO_LISTENQLEN: 1906 optval = so->so_qlen; 1907 goto integer; 1908 1909 case SO_LISTENINCQLEN: 1910 optval = so->so_incqlen; 1911 goto integer; 1912 1913 default: 1914 error = ENOPROTOOPT; 1915 break; 1916 } 1917 return (error); 1918 } 1919 } 1920 1921 /* XXX; prepare mbuf for (__FreeBSD__ < 3) routines. */ 1922 int 1923 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 1924 { 1925 struct mbuf *m, *m_prev; 1926 int sopt_size = sopt->sopt_valsize; 1927 1928 MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA); 1929 if (m == NULL) 1930 return ENOBUFS; 1931 if (sopt_size > MLEN) { 1932 MCLGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT); 1933 if ((m->m_flags & M_EXT) == 0) { 1934 m_free(m); 1935 return ENOBUFS; 1936 } 1937 m->m_len = min(MCLBYTES, sopt_size); 1938 } else { 1939 m->m_len = min(MLEN, sopt_size); 1940 } 1941 sopt_size -= m->m_len; 1942 *mp = m; 1943 m_prev = m; 1944 1945 while (sopt_size) { 1946 MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA); 1947 if (m == NULL) { 1948 m_freem(*mp); 1949 return ENOBUFS; 1950 } 1951 if (sopt_size > MLEN) { 1952 MCLGET(m, sopt->sopt_td != NULL ? M_TRYWAIT : 1953 M_DONTWAIT); 1954 if ((m->m_flags & M_EXT) == 0) { 1955 m_freem(m); 1956 m_freem(*mp); 1957 return ENOBUFS; 1958 } 1959 m->m_len = min(MCLBYTES, sopt_size); 1960 } else { 1961 m->m_len = min(MLEN, sopt_size); 1962 } 1963 sopt_size -= m->m_len; 1964 m_prev->m_next = m; 1965 m_prev = m; 1966 } 1967 return 0; 1968 } 1969 1970 /* XXX; copyin sopt data into mbuf chain for (__FreeBSD__ < 3) routines. */ 1971 int 1972 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 1973 { 1974 struct mbuf *m0 = m; 1975 1976 if (sopt->sopt_val == NULL) 1977 return 0; 1978 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 1979 if (sopt->sopt_td != NULL) { 1980 int error; 1981 1982 error = copyin(sopt->sopt_val, mtod(m, char *), 1983 m->m_len); 1984 if (error != 0) { 1985 m_freem(m0); 1986 return(error); 1987 } 1988 } else 1989 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 1990 sopt->sopt_valsize -= m->m_len; 1991 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 1992 m = m->m_next; 1993 } 1994 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 1995 panic("ip6_sooptmcopyin"); 1996 return 0; 1997 } 1998 1999 /* XXX; copyout mbuf chain data into soopt for (__FreeBSD__ < 3) routines. */ 2000 int 2001 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 2002 { 2003 struct mbuf *m0 = m; 2004 size_t valsize = 0; 2005 2006 if (sopt->sopt_val == NULL) 2007 return 0; 2008 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 2009 if (sopt->sopt_td != NULL) { 2010 int error; 2011 2012 error = copyout(mtod(m, char *), sopt->sopt_val, 2013 m->m_len); 2014 if (error != 0) { 2015 m_freem(m0); 2016 return(error); 2017 } 2018 } else 2019 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 2020 sopt->sopt_valsize -= m->m_len; 2021 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 2022 valsize += m->m_len; 2023 m = m->m_next; 2024 } 2025 if (m != NULL) { 2026 /* enough soopt buffer should be given from user-land */ 2027 m_freem(m0); 2028 return(EINVAL); 2029 } 2030 sopt->sopt_valsize = valsize; 2031 return 0; 2032 } 2033 2034 void 2035 sohasoutofband(so) 2036 struct socket *so; 2037 { 2038 if (so->so_sigio != NULL) 2039 pgsigio(&so->so_sigio, SIGURG, 0); 2040 selwakeuppri(&so->so_rcv.sb_sel, PSOCK); 2041 } 2042 2043 int 2044 sopoll(struct socket *so, int events, struct ucred *active_cred, 2045 struct thread *td) 2046 { 2047 int revents = 0; 2048 2049 SOCKBUF_LOCK(&so->so_snd); 2050 SOCKBUF_LOCK(&so->so_rcv); 2051 if (events & (POLLIN | POLLRDNORM)) 2052 if (soreadable(so)) 2053 revents |= events & (POLLIN | POLLRDNORM); 2054 2055 if (events & POLLINIGNEOF) 2056 if (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat || 2057 !TAILQ_EMPTY(&so->so_comp) || so->so_error) 2058 revents |= POLLINIGNEOF; 2059 2060 if (events & (POLLOUT | POLLWRNORM)) 2061 if (sowriteable(so)) 2062 revents |= events & (POLLOUT | POLLWRNORM); 2063 2064 if (events & (POLLPRI | POLLRDBAND)) 2065 if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK)) 2066 revents |= events & (POLLPRI | POLLRDBAND); 2067 2068 if (revents == 0) { 2069 if (events & 2070 (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | 2071 POLLRDBAND)) { 2072 selrecord(td, &so->so_rcv.sb_sel); 2073 so->so_rcv.sb_flags |= SB_SEL; 2074 } 2075 2076 if (events & (POLLOUT | POLLWRNORM)) { 2077 selrecord(td, &so->so_snd.sb_sel); 2078 so->so_snd.sb_flags |= SB_SEL; 2079 } 2080 } 2081 2082 SOCKBUF_UNLOCK(&so->so_rcv); 2083 SOCKBUF_UNLOCK(&so->so_snd); 2084 return (revents); 2085 } 2086 2087 int 2088 soo_kqfilter(struct file *fp, struct knote *kn) 2089 { 2090 struct socket *so = kn->kn_fp->f_data; 2091 struct sockbuf *sb; 2092 2093 switch (kn->kn_filter) { 2094 case EVFILT_READ: 2095 if (so->so_options & SO_ACCEPTCONN) 2096 kn->kn_fop = &solisten_filtops; 2097 else 2098 kn->kn_fop = &soread_filtops; 2099 sb = &so->so_rcv; 2100 break; 2101 case EVFILT_WRITE: 2102 kn->kn_fop = &sowrite_filtops; 2103 sb = &so->so_snd; 2104 break; 2105 default: 2106 return (EINVAL); 2107 } 2108 2109 SOCKBUF_LOCK(sb); 2110 knlist_add(&sb->sb_sel.si_note, kn, 1); 2111 sb->sb_flags |= SB_KNOTE; 2112 SOCKBUF_UNLOCK(sb); 2113 return (0); 2114 } 2115 2116 static void 2117 filt_sordetach(struct knote *kn) 2118 { 2119 struct socket *so = kn->kn_fp->f_data; 2120 2121 SOCKBUF_LOCK(&so->so_rcv); 2122 knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1); 2123 if (knlist_empty(&so->so_rcv.sb_sel.si_note)) 2124 so->so_rcv.sb_flags &= ~SB_KNOTE; 2125 SOCKBUF_UNLOCK(&so->so_rcv); 2126 } 2127 2128 /*ARGSUSED*/ 2129 static int 2130 filt_soread(struct knote *kn, long hint) 2131 { 2132 struct socket *so; 2133 2134 so = kn->kn_fp->f_data; 2135 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2136 2137 kn->kn_data = so->so_rcv.sb_cc - so->so_rcv.sb_ctl; 2138 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 2139 kn->kn_flags |= EV_EOF; 2140 kn->kn_fflags = so->so_error; 2141 return (1); 2142 } else if (so->so_error) /* temporary udp error */ 2143 return (1); 2144 else if (kn->kn_sfflags & NOTE_LOWAT) 2145 return (kn->kn_data >= kn->kn_sdata); 2146 else 2147 return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat); 2148 } 2149 2150 static void 2151 filt_sowdetach(struct knote *kn) 2152 { 2153 struct socket *so = kn->kn_fp->f_data; 2154 2155 SOCKBUF_LOCK(&so->so_snd); 2156 knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1); 2157 if (knlist_empty(&so->so_snd.sb_sel.si_note)) 2158 so->so_snd.sb_flags &= ~SB_KNOTE; 2159 SOCKBUF_UNLOCK(&so->so_snd); 2160 } 2161 2162 /*ARGSUSED*/ 2163 static int 2164 filt_sowrite(struct knote *kn, long hint) 2165 { 2166 struct socket *so; 2167 2168 so = kn->kn_fp->f_data; 2169 SOCKBUF_LOCK_ASSERT(&so->so_snd); 2170 kn->kn_data = sbspace(&so->so_snd); 2171 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 2172 kn->kn_flags |= EV_EOF; 2173 kn->kn_fflags = so->so_error; 2174 return (1); 2175 } else if (so->so_error) /* temporary udp error */ 2176 return (1); 2177 else if (((so->so_state & SS_ISCONNECTED) == 0) && 2178 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 2179 return (0); 2180 else if (kn->kn_sfflags & NOTE_LOWAT) 2181 return (kn->kn_data >= kn->kn_sdata); 2182 else 2183 return (kn->kn_data >= so->so_snd.sb_lowat); 2184 } 2185 2186 /*ARGSUSED*/ 2187 static int 2188 filt_solisten(struct knote *kn, long hint) 2189 { 2190 struct socket *so = kn->kn_fp->f_data; 2191 2192 kn->kn_data = so->so_qlen; 2193 return (! TAILQ_EMPTY(&so->so_comp)); 2194 } 2195 2196 int 2197 socheckuid(struct socket *so, uid_t uid) 2198 { 2199 2200 if (so == NULL) 2201 return (EPERM); 2202 if (so->so_cred->cr_uid != uid) 2203 return (EPERM); 2204 return (0); 2205 } 2206 2207 static int 2208 somaxconn_sysctl(SYSCTL_HANDLER_ARGS) 2209 { 2210 int error; 2211 int val; 2212 2213 val = somaxconn; 2214 error = sysctl_handle_int(oidp, &val, sizeof(int), req); 2215 if (error || !req->newptr ) 2216 return (error); 2217 2218 if (val < 1 || val > USHRT_MAX) 2219 return (EINVAL); 2220 2221 somaxconn = val; 2222 return (0); 2223 } 2224