xref: /freebsd/sys/kern/uipc_socket.c (revision 262e143bd46171a6415a5b28af260a5efa2a3db8)
1 /*-
2  * Copyright (c) 2004 The FreeBSD Foundation
3  * Copyright (c) 2004-2005 Robert N. M. Watson
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 4. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)uipc_socket.c	8.3 (Berkeley) 4/15/94
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_inet.h"
38 #include "opt_mac.h"
39 #include "opt_zero.h"
40 #include "opt_compat.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/fcntl.h>
45 #include <sys/limits.h>
46 #include <sys/lock.h>
47 #include <sys/mac.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #include <sys/mutex.h>
51 #include <sys/domain.h>
52 #include <sys/file.h>			/* for struct knote */
53 #include <sys/kernel.h>
54 #include <sys/event.h>
55 #include <sys/poll.h>
56 #include <sys/proc.h>
57 #include <sys/protosw.h>
58 #include <sys/socket.h>
59 #include <sys/socketvar.h>
60 #include <sys/resourcevar.h>
61 #include <sys/signalvar.h>
62 #include <sys/sysctl.h>
63 #include <sys/uio.h>
64 #include <sys/jail.h>
65 
66 #include <vm/uma.h>
67 
68 #ifdef COMPAT_IA32
69 #include <sys/mount.h>
70 #include <compat/freebsd32/freebsd32.h>
71 
72 extern struct sysentvec ia32_freebsd_sysvec;
73 #endif
74 
75 static int	soreceive_rcvoob(struct socket *so, struct uio *uio,
76 		    int flags);
77 
78 static void	filt_sordetach(struct knote *kn);
79 static int	filt_soread(struct knote *kn, long hint);
80 static void	filt_sowdetach(struct knote *kn);
81 static int	filt_sowrite(struct knote *kn, long hint);
82 static int	filt_solisten(struct knote *kn, long hint);
83 
84 static struct filterops solisten_filtops =
85 	{ 1, NULL, filt_sordetach, filt_solisten };
86 static struct filterops soread_filtops =
87 	{ 1, NULL, filt_sordetach, filt_soread };
88 static struct filterops sowrite_filtops =
89 	{ 1, NULL, filt_sowdetach, filt_sowrite };
90 
91 uma_zone_t socket_zone;
92 so_gen_t	so_gencnt;	/* generation count for sockets */
93 
94 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
95 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
96 
97 SYSCTL_DECL(_kern_ipc);
98 
99 static int somaxconn = SOMAXCONN;
100 static int somaxconn_sysctl(SYSCTL_HANDLER_ARGS);
101 /* XXX: we dont have SYSCTL_USHORT */
102 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLTYPE_UINT | CTLFLAG_RW,
103     0, sizeof(int), somaxconn_sysctl, "I", "Maximum pending socket connection "
104     "queue size");
105 static int numopensockets;
106 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,
107     &numopensockets, 0, "Number of open sockets");
108 #ifdef ZERO_COPY_SOCKETS
109 /* These aren't static because they're used in other files. */
110 int so_zero_copy_send = 1;
111 int so_zero_copy_receive = 1;
112 SYSCTL_NODE(_kern_ipc, OID_AUTO, zero_copy, CTLFLAG_RD, 0,
113     "Zero copy controls");
114 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, receive, CTLFLAG_RW,
115     &so_zero_copy_receive, 0, "Enable zero copy receive");
116 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, send, CTLFLAG_RW,
117     &so_zero_copy_send, 0, "Enable zero copy send");
118 #endif /* ZERO_COPY_SOCKETS */
119 
120 /*
121  * accept_mtx locks down per-socket fields relating to accept queues.  See
122  * socketvar.h for an annotation of the protected fields of struct socket.
123  */
124 struct mtx accept_mtx;
125 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF);
126 
127 /*
128  * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
129  * so_gencnt field.
130  */
131 static struct mtx so_global_mtx;
132 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
133 
134 /*
135  * Socket operation routines.
136  * These routines are called by the routines in
137  * sys_socket.c or from a system process, and
138  * implement the semantics of socket operations by
139  * switching out to the protocol specific routines.
140  */
141 
142 /*
143  * Get a socket structure from our zone, and initialize it.
144  * Note that it would probably be better to allocate socket
145  * and PCB at the same time, but I'm not convinced that all
146  * the protocols can be easily modified to do this.
147  *
148  * soalloc() returns a socket with a ref count of 0.
149  */
150 struct socket *
151 soalloc(int mflags)
152 {
153 	struct socket *so;
154 
155 	so = uma_zalloc(socket_zone, mflags | M_ZERO);
156 	if (so != NULL) {
157 #ifdef MAC
158 		if (mac_init_socket(so, mflags) != 0) {
159 			uma_zfree(socket_zone, so);
160 			return (NULL);
161 		}
162 #endif
163 		SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd");
164 		SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv");
165 		TAILQ_INIT(&so->so_aiojobq);
166 		mtx_lock(&so_global_mtx);
167 		so->so_gencnt = ++so_gencnt;
168 		++numopensockets;
169 		mtx_unlock(&so_global_mtx);
170 	}
171 	return (so);
172 }
173 
174 /*
175  * socreate returns a socket with a ref count of 1.  The socket should be
176  * closed with soclose().
177  */
178 int
179 socreate(dom, aso, type, proto, cred, td)
180 	int dom;
181 	struct socket **aso;
182 	int type;
183 	int proto;
184 	struct ucred *cred;
185 	struct thread *td;
186 {
187 	struct protosw *prp;
188 	struct socket *so;
189 	int error;
190 
191 	if (proto)
192 		prp = pffindproto(dom, proto, type);
193 	else
194 		prp = pffindtype(dom, type);
195 
196 	if (prp == NULL || prp->pr_usrreqs->pru_attach == NULL ||
197 	    prp->pr_usrreqs->pru_attach == pru_attach_notsupp)
198 		return (EPROTONOSUPPORT);
199 
200 	if (jailed(cred) && jail_socket_unixiproute_only &&
201 	    prp->pr_domain->dom_family != PF_LOCAL &&
202 	    prp->pr_domain->dom_family != PF_INET &&
203 	    prp->pr_domain->dom_family != PF_ROUTE) {
204 		return (EPROTONOSUPPORT);
205 	}
206 
207 	if (prp->pr_type != type)
208 		return (EPROTOTYPE);
209 	so = soalloc(M_WAITOK);
210 	if (so == NULL)
211 		return (ENOBUFS);
212 
213 	TAILQ_INIT(&so->so_incomp);
214 	TAILQ_INIT(&so->so_comp);
215 	so->so_type = type;
216 	so->so_cred = crhold(cred);
217 	so->so_proto = prp;
218 #ifdef MAC
219 	mac_create_socket(cred, so);
220 #endif
221 	knlist_init(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv),
222 	    NULL, NULL, NULL);
223 	knlist_init(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd),
224 	    NULL, NULL, NULL);
225 	so->so_count = 1;
226 	error = (*prp->pr_usrreqs->pru_attach)(so, proto, td);
227 	if (error) {
228 		ACCEPT_LOCK();
229 		SOCK_LOCK(so);
230 		so->so_state |= SS_NOFDREF;
231 		sorele(so);
232 		return (error);
233 	}
234 	*aso = so;
235 	return (0);
236 }
237 
238 int
239 sobind(so, nam, td)
240 	struct socket *so;
241 	struct sockaddr *nam;
242 	struct thread *td;
243 {
244 
245 	return ((*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td));
246 }
247 
248 void
249 sodealloc(struct socket *so)
250 {
251 
252 	KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
253 	mtx_lock(&so_global_mtx);
254 	so->so_gencnt = ++so_gencnt;
255 	mtx_unlock(&so_global_mtx);
256 	if (so->so_rcv.sb_hiwat)
257 		(void)chgsbsize(so->so_cred->cr_uidinfo,
258 		    &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
259 	if (so->so_snd.sb_hiwat)
260 		(void)chgsbsize(so->so_cred->cr_uidinfo,
261 		    &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
262 #ifdef INET
263 	/* remove acccept filter if one is present. */
264 	if (so->so_accf != NULL)
265 		do_setopt_accept_filter(so, NULL);
266 #endif
267 #ifdef MAC
268 	mac_destroy_socket(so);
269 #endif
270 	crfree(so->so_cred);
271 	SOCKBUF_LOCK_DESTROY(&so->so_snd);
272 	SOCKBUF_LOCK_DESTROY(&so->so_rcv);
273 	uma_zfree(socket_zone, so);
274 	mtx_lock(&so_global_mtx);
275 	--numopensockets;
276 	mtx_unlock(&so_global_mtx);
277 }
278 
279 /*
280  * solisten() transitions a socket from a non-listening state to a listening
281  * state, but can also be used to update the listen queue depth on an
282  * existing listen socket.  The protocol will call back into the sockets
283  * layer using solisten_proto_check() and solisten_proto() to check and set
284  * socket-layer listen state.  Call backs are used so that the protocol can
285  * acquire both protocol and socket layer locks in whatever order is required
286  * by the protocol.
287  *
288  * Protocol implementors are advised to hold the socket lock across the
289  * socket-layer test and set to avoid races at the socket layer.
290  */
291 int
292 solisten(so, backlog, td)
293 	struct socket *so;
294 	int backlog;
295 	struct thread *td;
296 {
297 
298 	return ((*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td));
299 }
300 
301 int
302 solisten_proto_check(so)
303 	struct socket *so;
304 {
305 
306 	SOCK_LOCK_ASSERT(so);
307 
308 	if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
309 	    SS_ISDISCONNECTING))
310 		return (EINVAL);
311 	return (0);
312 }
313 
314 void
315 solisten_proto(so, backlog)
316 	struct socket *so;
317 	int backlog;
318 {
319 
320 	SOCK_LOCK_ASSERT(so);
321 
322 	if (backlog < 0 || backlog > somaxconn)
323 		backlog = somaxconn;
324 	so->so_qlimit = backlog;
325 	so->so_options |= SO_ACCEPTCONN;
326 }
327 
328 /*
329  * Attempt to free a socket.  This should really be sotryfree().
330  *
331  * We free the socket if the protocol is no longer interested in the socket,
332  * there's no file descriptor reference, and the refcount is 0.  While the
333  * calling macro sotryfree() tests the refcount, sofree() has to test it
334  * again as it's possible to race with an accept()ing thread if the socket is
335  * in an listen queue of a listen socket, as being in the listen queue
336  * doesn't elevate the reference count.  sofree() acquires the accept mutex
337  * early for this test in order to avoid that race.
338  */
339 void
340 sofree(so)
341 	struct socket *so;
342 {
343 	struct socket *head;
344 
345 	ACCEPT_LOCK_ASSERT();
346 	SOCK_LOCK_ASSERT(so);
347 
348 	if (so->so_pcb != NULL || (so->so_state & SS_NOFDREF) == 0 ||
349 	    so->so_count != 0) {
350 		SOCK_UNLOCK(so);
351 		ACCEPT_UNLOCK();
352 		return;
353 	}
354 
355 	head = so->so_head;
356 	if (head != NULL) {
357 		KASSERT((so->so_qstate & SQ_COMP) != 0 ||
358 		    (so->so_qstate & SQ_INCOMP) != 0,
359 		    ("sofree: so_head != NULL, but neither SQ_COMP nor "
360 		    "SQ_INCOMP"));
361 		KASSERT((so->so_qstate & SQ_COMP) == 0 ||
362 		    (so->so_qstate & SQ_INCOMP) == 0,
363 		    ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP"));
364 		/*
365 		 * accept(2) is responsible draining the completed
366 		 * connection queue and freeing those sockets, so
367 		 * we just return here if this socket is currently
368 		 * on the completed connection queue.  Otherwise,
369 		 * accept(2) may hang after select(2) has indicating
370 		 * that a listening socket was ready.  If it's an
371 		 * incomplete connection, we remove it from the queue
372 		 * and free it; otherwise, it won't be released until
373 		 * the listening socket is closed.
374 		 */
375 		if ((so->so_qstate & SQ_COMP) != 0) {
376 			SOCK_UNLOCK(so);
377 			ACCEPT_UNLOCK();
378 			return;
379 		}
380 		TAILQ_REMOVE(&head->so_incomp, so, so_list);
381 		head->so_incqlen--;
382 		so->so_qstate &= ~SQ_INCOMP;
383 		so->so_head = NULL;
384 	}
385 	KASSERT((so->so_qstate & SQ_COMP) == 0 &&
386 	    (so->so_qstate & SQ_INCOMP) == 0,
387 	    ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)",
388 	    so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP));
389 	SOCK_UNLOCK(so);
390 	ACCEPT_UNLOCK();
391 	SOCKBUF_LOCK(&so->so_snd);
392 	so->so_snd.sb_flags |= SB_NOINTR;
393 	(void)sblock(&so->so_snd, M_WAITOK);
394 	/*
395 	 * socantsendmore_locked() drops the socket buffer mutex so that it
396 	 * can safely perform wakeups.  Re-acquire the mutex before
397 	 * continuing.
398 	 */
399 	socantsendmore_locked(so);
400 	SOCKBUF_LOCK(&so->so_snd);
401 	sbunlock(&so->so_snd);
402 	sbrelease_locked(&so->so_snd, so);
403 	SOCKBUF_UNLOCK(&so->so_snd);
404 	sorflush(so);
405 	knlist_destroy(&so->so_rcv.sb_sel.si_note);
406 	knlist_destroy(&so->so_snd.sb_sel.si_note);
407 	sodealloc(so);
408 }
409 
410 /*
411  * Close a socket on last file table reference removal.
412  * Initiate disconnect if connected.
413  * Free socket when disconnect complete.
414  *
415  * This function will sorele() the socket.  Note that soclose() may be
416  * called prior to the ref count reaching zero.  The actual socket
417  * structure will not be freed until the ref count reaches zero.
418  */
419 int
420 soclose(so)
421 	struct socket *so;
422 {
423 	int error = 0;
424 
425 	KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter"));
426 
427 	funsetown(&so->so_sigio);
428 	if (so->so_options & SO_ACCEPTCONN) {
429 		struct socket *sp;
430 		ACCEPT_LOCK();
431 		while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) {
432 			TAILQ_REMOVE(&so->so_incomp, sp, so_list);
433 			so->so_incqlen--;
434 			sp->so_qstate &= ~SQ_INCOMP;
435 			sp->so_head = NULL;
436 			ACCEPT_UNLOCK();
437 			(void) soabort(sp);
438 			ACCEPT_LOCK();
439 		}
440 		while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) {
441 			TAILQ_REMOVE(&so->so_comp, sp, so_list);
442 			so->so_qlen--;
443 			sp->so_qstate &= ~SQ_COMP;
444 			sp->so_head = NULL;
445 			ACCEPT_UNLOCK();
446 			(void) soabort(sp);
447 			ACCEPT_LOCK();
448 		}
449 		ACCEPT_UNLOCK();
450 	}
451 	if (so->so_pcb == NULL)
452 		goto discard;
453 	if (so->so_state & SS_ISCONNECTED) {
454 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
455 			error = sodisconnect(so);
456 			if (error)
457 				goto drop;
458 		}
459 		if (so->so_options & SO_LINGER) {
460 			if ((so->so_state & SS_ISDISCONNECTING) &&
461 			    (so->so_state & SS_NBIO))
462 				goto drop;
463 			while (so->so_state & SS_ISCONNECTED) {
464 				error = tsleep(&so->so_timeo,
465 				    PSOCK | PCATCH, "soclos", so->so_linger * hz);
466 				if (error)
467 					break;
468 			}
469 		}
470 	}
471 drop:
472 	if (so->so_pcb != NULL) {
473 		int error2 = (*so->so_proto->pr_usrreqs->pru_detach)(so);
474 		if (error == 0)
475 			error = error2;
476 	}
477 discard:
478 	ACCEPT_LOCK();
479 	SOCK_LOCK(so);
480 	KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF"));
481 	so->so_state |= SS_NOFDREF;
482 	sorele(so);
483 	return (error);
484 }
485 
486 /*
487  * soabort() must not be called with any socket locks held, as it calls
488  * into the protocol, which will call back into the socket code causing
489  * it to acquire additional socket locks that may cause recursion or lock
490  * order reversals.
491  */
492 int
493 soabort(so)
494 	struct socket *so;
495 {
496 	int error;
497 
498 	error = (*so->so_proto->pr_usrreqs->pru_abort)(so);
499 	if (error) {
500 		ACCEPT_LOCK();
501 		SOCK_LOCK(so);
502 		sotryfree(so);	/* note: does not decrement the ref count */
503 		return error;
504 	}
505 	return (0);
506 }
507 
508 int
509 soaccept(so, nam)
510 	struct socket *so;
511 	struct sockaddr **nam;
512 {
513 	int error;
514 
515 	SOCK_LOCK(so);
516 	KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF"));
517 	so->so_state &= ~SS_NOFDREF;
518 	SOCK_UNLOCK(so);
519 	error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam);
520 	return (error);
521 }
522 
523 int
524 soconnect(so, nam, td)
525 	struct socket *so;
526 	struct sockaddr *nam;
527 	struct thread *td;
528 {
529 	int error;
530 
531 	if (so->so_options & SO_ACCEPTCONN)
532 		return (EOPNOTSUPP);
533 	/*
534 	 * If protocol is connection-based, can only connect once.
535 	 * Otherwise, if connected, try to disconnect first.
536 	 * This allows user to disconnect by connecting to, e.g.,
537 	 * a null address.
538 	 */
539 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
540 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
541 	    (error = sodisconnect(so)))) {
542 		error = EISCONN;
543 	} else {
544 		/*
545 		 * Prevent accumulated error from previous connection
546 		 * from biting us.
547 		 */
548 		so->so_error = 0;
549 		error = (*so->so_proto->pr_usrreqs->pru_connect)(so, nam, td);
550 	}
551 
552 	return (error);
553 }
554 
555 int
556 soconnect2(so1, so2)
557 	struct socket *so1;
558 	struct socket *so2;
559 {
560 
561 	return ((*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2));
562 }
563 
564 int
565 sodisconnect(so)
566 	struct socket *so;
567 {
568 	int error;
569 
570 	if ((so->so_state & SS_ISCONNECTED) == 0)
571 		return (ENOTCONN);
572 	if (so->so_state & SS_ISDISCONNECTING)
573 		return (EALREADY);
574 	error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so);
575 	return (error);
576 }
577 
578 #ifdef ZERO_COPY_SOCKETS
579 struct so_zerocopy_stats{
580 	int size_ok;
581 	int align_ok;
582 	int found_ifp;
583 };
584 struct so_zerocopy_stats so_zerocp_stats = {0,0,0};
585 #include <netinet/in.h>
586 #include <net/route.h>
587 #include <netinet/in_pcb.h>
588 #include <vm/vm.h>
589 #include <vm/vm_page.h>
590 #include <vm/vm_object.h>
591 #endif /*ZERO_COPY_SOCKETS*/
592 
593 /*
594  * sosend_copyin() accepts a uio and prepares an mbuf chain holding part or
595  * all of the data referenced by the uio.  If desired, it uses zero-copy.
596  * *space will be updated to reflect data copied in.
597  *
598  * NB: If atomic I/O is requested, the caller must already have checked that
599  * space can hold resid bytes.
600  *
601  * NB: In the event of an error, the caller may need to free the partial
602  * chain pointed to by *mpp.  The contents of both *uio and *space may be
603  * modified even in the case of an error.
604  */
605 static int
606 sosend_copyin(struct uio *uio, struct mbuf **retmp, int atomic, long *space,
607     int flags)
608 {
609 	struct mbuf *m, **mp, *top;
610 	long len, resid;
611 	int error;
612 #ifdef ZERO_COPY_SOCKETS
613 	int cow_send;
614 #endif
615 
616 	*retmp = top = NULL;
617 	mp = &top;
618 	len = 0;
619 	resid = uio->uio_resid;
620 	error = 0;
621 	do {
622 #ifdef ZERO_COPY_SOCKETS
623 		cow_send = 0;
624 #endif /* ZERO_COPY_SOCKETS */
625 		if (resid >= MINCLSIZE) {
626 #ifdef ZERO_COPY_SOCKETS
627 			if (top == NULL) {
628 				MGETHDR(m, M_TRYWAIT, MT_DATA);
629 				if (m == NULL) {
630 					error = ENOBUFS;
631 					goto out;
632 				}
633 				m->m_pkthdr.len = 0;
634 				m->m_pkthdr.rcvif = NULL;
635 			} else {
636 				MGET(m, M_TRYWAIT, MT_DATA);
637 				if (m == NULL) {
638 					error = ENOBUFS;
639 					goto out;
640 				}
641 			}
642 			if (so_zero_copy_send &&
643 			    resid>=PAGE_SIZE &&
644 			    *space>=PAGE_SIZE &&
645 			    uio->uio_iov->iov_len>=PAGE_SIZE) {
646 				so_zerocp_stats.size_ok++;
647 				so_zerocp_stats.align_ok++;
648 				cow_send = socow_setup(m, uio);
649 				len = cow_send;
650 			}
651 			if (!cow_send) {
652 				MCLGET(m, M_TRYWAIT);
653 				if ((m->m_flags & M_EXT) == 0) {
654 					m_free(m);
655 					m = NULL;
656 				} else {
657 					len = min(min(MCLBYTES, resid),
658 					    *space);
659 				}
660 			}
661 #else /* ZERO_COPY_SOCKETS */
662 			if (top == NULL) {
663 				m = m_getcl(M_TRYWAIT, MT_DATA, M_PKTHDR);
664 				m->m_pkthdr.len = 0;
665 				m->m_pkthdr.rcvif = NULL;
666 			} else
667 				m = m_getcl(M_TRYWAIT, MT_DATA, 0);
668 			len = min(min(MCLBYTES, resid), *space);
669 #endif /* ZERO_COPY_SOCKETS */
670 		} else {
671 			if (top == NULL) {
672 				m = m_gethdr(M_TRYWAIT, MT_DATA);
673 				m->m_pkthdr.len = 0;
674 				m->m_pkthdr.rcvif = NULL;
675 
676 				len = min(min(MHLEN, resid), *space);
677 				/*
678 				 * For datagram protocols, leave room
679 				 * for protocol headers in first mbuf.
680 				 */
681 				if (atomic && m && len < MHLEN)
682 					MH_ALIGN(m, len);
683 			} else {
684 				m = m_get(M_TRYWAIT, MT_DATA);
685 				len = min(min(MLEN, resid), *space);
686 			}
687 		}
688 		if (m == NULL) {
689 			error = ENOBUFS;
690 			goto out;
691 		}
692 
693 		*space -= len;
694 #ifdef ZERO_COPY_SOCKETS
695 		if (cow_send)
696 			error = 0;
697 		else
698 #endif /* ZERO_COPY_SOCKETS */
699 		error = uiomove(mtod(m, void *), (int)len, uio);
700 		resid = uio->uio_resid;
701 		m->m_len = len;
702 		*mp = m;
703 		top->m_pkthdr.len += len;
704 		if (error)
705 			goto out;
706 		mp = &m->m_next;
707 		if (resid <= 0) {
708 			if (flags & MSG_EOR)
709 				top->m_flags |= M_EOR;
710 			break;
711 		}
712 	} while (*space > 0 && atomic);
713 out:
714 	*retmp = top;
715 	return (error);
716 }
717 
718 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
719 #define	snderr(errno)	{ error = (errno); goto release; }
720 
721 /*
722  * Send on a socket.
723  * If send must go all at once and message is larger than
724  * send buffering, then hard error.
725  * Lock against other senders.
726  * If must go all at once and not enough room now, then
727  * inform user that this would block and do nothing.
728  * Otherwise, if nonblocking, send as much as possible.
729  * The data to be sent is described by "uio" if nonzero,
730  * otherwise by the mbuf chain "top" (which must be null
731  * if uio is not).  Data provided in mbuf chain must be small
732  * enough to send all at once.
733  *
734  * Returns nonzero on error, timeout or signal; callers
735  * must check for short counts if EINTR/ERESTART are returned.
736  * Data and control buffers are freed on return.
737  */
738 
739 int
740 sosend(so, addr, uio, top, control, flags, td)
741 	struct socket *so;
742 	struct sockaddr *addr;
743 	struct uio *uio;
744 	struct mbuf *top;
745 	struct mbuf *control;
746 	int flags;
747 	struct thread *td;
748 {
749 	long space, resid;
750 	int clen = 0, error, dontroute;
751 	int atomic = sosendallatonce(so) || top;
752 
753 	if (uio != NULL)
754 		resid = uio->uio_resid;
755 	else
756 		resid = top->m_pkthdr.len;
757 	/*
758 	 * In theory resid should be unsigned.
759 	 * However, space must be signed, as it might be less than 0
760 	 * if we over-committed, and we must use a signed comparison
761 	 * of space and resid.  On the other hand, a negative resid
762 	 * causes us to loop sending 0-length segments to the protocol.
763 	 *
764 	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
765 	 * type sockets since that's an error.
766 	 */
767 	if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
768 		error = EINVAL;
769 		goto out;
770 	}
771 
772 	dontroute =
773 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
774 	    (so->so_proto->pr_flags & PR_ATOMIC);
775 	if (td != NULL)
776 		td->td_proc->p_stats->p_ru.ru_msgsnd++;
777 	if (control != NULL)
778 		clen = control->m_len;
779 
780 	SOCKBUF_LOCK(&so->so_snd);
781 restart:
782 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
783 	error = sblock(&so->so_snd, SBLOCKWAIT(flags));
784 	if (error)
785 		goto out_locked;
786 	do {
787 		SOCKBUF_LOCK_ASSERT(&so->so_snd);
788 		if (so->so_snd.sb_state & SBS_CANTSENDMORE)
789 			snderr(EPIPE);
790 		if (so->so_error) {
791 			error = so->so_error;
792 			so->so_error = 0;
793 			goto release;
794 		}
795 		if ((so->so_state & SS_ISCONNECTED) == 0) {
796 			/*
797 			 * `sendto' and `sendmsg' is allowed on a connection-
798 			 * based socket if it supports implied connect.
799 			 * Return ENOTCONN if not connected and no address is
800 			 * supplied.
801 			 */
802 			if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
803 			    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
804 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
805 				    !(resid == 0 && clen != 0))
806 					snderr(ENOTCONN);
807 			} else if (addr == NULL)
808 			    snderr(so->so_proto->pr_flags & PR_CONNREQUIRED ?
809 				   ENOTCONN : EDESTADDRREQ);
810 		}
811 		space = sbspace(&so->so_snd);
812 		if (flags & MSG_OOB)
813 			space += 1024;
814 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
815 		    clen > so->so_snd.sb_hiwat)
816 			snderr(EMSGSIZE);
817 		if (space < resid + clen &&
818 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
819 			if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO))
820 				snderr(EWOULDBLOCK);
821 			sbunlock(&so->so_snd);
822 			error = sbwait(&so->so_snd);
823 			if (error)
824 				goto out_locked;
825 			goto restart;
826 		}
827 		SOCKBUF_UNLOCK(&so->so_snd);
828 		space -= clen;
829 		do {
830 			if (uio == NULL) {
831 				resid = 0;
832 				if (flags & MSG_EOR)
833 					top->m_flags |= M_EOR;
834 			} else {
835 				error = sosend_copyin(uio, &top, atomic,
836 				    &space, flags);
837 				if (error != 0) {
838 					SOCKBUF_LOCK(&so->so_snd);
839 					goto release;
840 				}
841 				resid = uio->uio_resid;
842 			}
843 			if (dontroute) {
844 				SOCK_LOCK(so);
845 				so->so_options |= SO_DONTROUTE;
846 				SOCK_UNLOCK(so);
847 			}
848 			/*
849 			 * XXX all the SBS_CANTSENDMORE checks previously
850 			 * done could be out of date.  We could have recieved
851 			 * a reset packet in an interrupt or maybe we slept
852 			 * while doing page faults in uiomove() etc. We could
853 			 * probably recheck again inside the locking protection
854 			 * here, but there are probably other places that this
855 			 * also happens.  We must rethink this.
856 			 */
857 			error = (*so->so_proto->pr_usrreqs->pru_send)(so,
858 			    (flags & MSG_OOB) ? PRUS_OOB :
859 			/*
860 			 * If the user set MSG_EOF, the protocol
861 			 * understands this flag and nothing left to
862 			 * send then use PRU_SEND_EOF instead of PRU_SEND.
863 			 */
864 			    ((flags & MSG_EOF) &&
865 			     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
866 			     (resid <= 0)) ?
867 				PRUS_EOF :
868 			/* If there is more to send set PRUS_MORETOCOME */
869 			    (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
870 			    top, addr, control, td);
871 			if (dontroute) {
872 				SOCK_LOCK(so);
873 				so->so_options &= ~SO_DONTROUTE;
874 				SOCK_UNLOCK(so);
875 			}
876 			clen = 0;
877 			control = NULL;
878 			top = NULL;
879 			if (error) {
880 				SOCKBUF_LOCK(&so->so_snd);
881 				goto release;
882 			}
883 		} while (resid && space > 0);
884 		SOCKBUF_LOCK(&so->so_snd);
885 	} while (resid);
886 
887 release:
888 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
889 	sbunlock(&so->so_snd);
890 out_locked:
891 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
892 	SOCKBUF_UNLOCK(&so->so_snd);
893 out:
894 	if (top != NULL)
895 		m_freem(top);
896 	if (control != NULL)
897 		m_freem(control);
898 	return (error);
899 }
900 
901 /*
902  * The part of soreceive() that implements reading non-inline out-of-band
903  * data from a socket.  For more complete comments, see soreceive(), from
904  * which this code originated.
905  *
906  * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
907  * unable to return an mbuf chain to the caller.
908  */
909 static int
910 soreceive_rcvoob(so, uio, flags)
911 	struct socket *so;
912 	struct uio *uio;
913 	int flags;
914 {
915 	struct protosw *pr = so->so_proto;
916 	struct mbuf *m;
917 	int error;
918 
919 	KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
920 
921 	m = m_get(M_TRYWAIT, MT_DATA);
922 	if (m == NULL)
923 		return (ENOBUFS);
924 	error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK);
925 	if (error)
926 		goto bad;
927 	do {
928 #ifdef ZERO_COPY_SOCKETS
929 		if (so_zero_copy_receive) {
930 			int disposable;
931 
932 			if ((m->m_flags & M_EXT)
933 			 && (m->m_ext.ext_type == EXT_DISPOSABLE))
934 				disposable = 1;
935 			else
936 				disposable = 0;
937 
938 			error = uiomoveco(mtod(m, void *),
939 					  min(uio->uio_resid, m->m_len),
940 					  uio, disposable);
941 		} else
942 #endif /* ZERO_COPY_SOCKETS */
943 		error = uiomove(mtod(m, void *),
944 		    (int) min(uio->uio_resid, m->m_len), uio);
945 		m = m_free(m);
946 	} while (uio->uio_resid && error == 0 && m);
947 bad:
948 	if (m != NULL)
949 		m_freem(m);
950 	return (error);
951 }
952 
953 /*
954  * Following replacement or removal of the first mbuf on the first mbuf chain
955  * of a socket buffer, push necessary state changes back into the socket
956  * buffer so that other consumers see the values consistently.  'nextrecord'
957  * is the callers locally stored value of the original value of
958  * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
959  * NOTE: 'nextrecord' may be NULL.
960  */
961 static __inline void
962 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
963 {
964 
965 	SOCKBUF_LOCK_ASSERT(sb);
966 	/*
967 	 * First, update for the new value of nextrecord.  If necessary, make
968 	 * it the first record.
969 	 */
970 	if (sb->sb_mb != NULL)
971 		sb->sb_mb->m_nextpkt = nextrecord;
972 	else
973 		sb->sb_mb = nextrecord;
974 
975         /*
976          * Now update any dependent socket buffer fields to reflect the new
977          * state.  This is an expanded inline of SB_EMPTY_FIXUP(), with the
978 	 * addition of a second clause that takes care of the case where
979 	 * sb_mb has been updated, but remains the last record.
980          */
981         if (sb->sb_mb == NULL) {
982                 sb->sb_mbtail = NULL;
983                 sb->sb_lastrecord = NULL;
984         } else if (sb->sb_mb->m_nextpkt == NULL)
985                 sb->sb_lastrecord = sb->sb_mb;
986 }
987 
988 
989 /*
990  * Implement receive operations on a socket.
991  * We depend on the way that records are added to the sockbuf
992  * by sbappend*.  In particular, each record (mbufs linked through m_next)
993  * must begin with an address if the protocol so specifies,
994  * followed by an optional mbuf or mbufs containing ancillary data,
995  * and then zero or more mbufs of data.
996  * In order to avoid blocking network interrupts for the entire time here,
997  * we splx() while doing the actual copy to user space.
998  * Although the sockbuf is locked, new data may still be appended,
999  * and thus we must maintain consistency of the sockbuf during that time.
1000  *
1001  * The caller may receive the data as a single mbuf chain by supplying
1002  * an mbuf **mp0 for use in returning the chain.  The uio is then used
1003  * only for the count in uio_resid.
1004  */
1005 int
1006 soreceive(so, psa, uio, mp0, controlp, flagsp)
1007 	struct socket *so;
1008 	struct sockaddr **psa;
1009 	struct uio *uio;
1010 	struct mbuf **mp0;
1011 	struct mbuf **controlp;
1012 	int *flagsp;
1013 {
1014 	struct mbuf *m, **mp;
1015 	int flags, len, error, offset;
1016 	struct protosw *pr = so->so_proto;
1017 	struct mbuf *nextrecord;
1018 	int moff, type = 0;
1019 	int orig_resid = uio->uio_resid;
1020 
1021 	mp = mp0;
1022 	if (psa != NULL)
1023 		*psa = NULL;
1024 	if (controlp != NULL)
1025 		*controlp = NULL;
1026 	if (flagsp != NULL)
1027 		flags = *flagsp &~ MSG_EOR;
1028 	else
1029 		flags = 0;
1030 	if (flags & MSG_OOB)
1031 		return (soreceive_rcvoob(so, uio, flags));
1032 	if (mp != NULL)
1033 		*mp = NULL;
1034 	if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING)
1035 	    && uio->uio_resid)
1036 		(*pr->pr_usrreqs->pru_rcvd)(so, 0);
1037 
1038 	SOCKBUF_LOCK(&so->so_rcv);
1039 restart:
1040 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1041 	error = sblock(&so->so_rcv, SBLOCKWAIT(flags));
1042 	if (error)
1043 		goto out;
1044 
1045 	m = so->so_rcv.sb_mb;
1046 	/*
1047 	 * If we have less data than requested, block awaiting more
1048 	 * (subject to any timeout) if:
1049 	 *   1. the current count is less than the low water mark, or
1050 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
1051 	 *	receive operation at once if we block (resid <= hiwat).
1052 	 *   3. MSG_DONTWAIT is not set
1053 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1054 	 * we have to do the receive in sections, and thus risk returning
1055 	 * a short count if a timeout or signal occurs after we start.
1056 	 */
1057 	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
1058 	    so->so_rcv.sb_cc < uio->uio_resid) &&
1059 	    (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1060 	    ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1061 	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
1062 		KASSERT(m != NULL || !so->so_rcv.sb_cc,
1063 		    ("receive: m == %p so->so_rcv.sb_cc == %u",
1064 		    m, so->so_rcv.sb_cc));
1065 		if (so->so_error) {
1066 			if (m != NULL)
1067 				goto dontblock;
1068 			error = so->so_error;
1069 			if ((flags & MSG_PEEK) == 0)
1070 				so->so_error = 0;
1071 			goto release;
1072 		}
1073 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1074 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1075 			if (m)
1076 				goto dontblock;
1077 			else
1078 				goto release;
1079 		}
1080 		for (; m != NULL; m = m->m_next)
1081 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
1082 				m = so->so_rcv.sb_mb;
1083 				goto dontblock;
1084 			}
1085 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1086 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1087 			error = ENOTCONN;
1088 			goto release;
1089 		}
1090 		if (uio->uio_resid == 0)
1091 			goto release;
1092 		if ((so->so_state & SS_NBIO) ||
1093 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1094 			error = EWOULDBLOCK;
1095 			goto release;
1096 		}
1097 		SBLASTRECORDCHK(&so->so_rcv);
1098 		SBLASTMBUFCHK(&so->so_rcv);
1099 		sbunlock(&so->so_rcv);
1100 		error = sbwait(&so->so_rcv);
1101 		if (error)
1102 			goto out;
1103 		goto restart;
1104 	}
1105 dontblock:
1106 	/*
1107 	 * From this point onward, we maintain 'nextrecord' as a cache of the
1108 	 * pointer to the next record in the socket buffer.  We must keep the
1109 	 * various socket buffer pointers and local stack versions of the
1110 	 * pointers in sync, pushing out modifications before dropping the
1111 	 * socket buffer mutex, and re-reading them when picking it up.
1112 	 *
1113 	 * Otherwise, we will race with the network stack appending new data
1114 	 * or records onto the socket buffer by using inconsistent/stale
1115 	 * versions of the field, possibly resulting in socket buffer
1116 	 * corruption.
1117 	 *
1118 	 * By holding the high-level sblock(), we prevent simultaneous
1119 	 * readers from pulling off the front of the socket buffer.
1120 	 */
1121 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1122 	if (uio->uio_td)
1123 		uio->uio_td->td_proc->p_stats->p_ru.ru_msgrcv++;
1124 	KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
1125 	SBLASTRECORDCHK(&so->so_rcv);
1126 	SBLASTMBUFCHK(&so->so_rcv);
1127 	nextrecord = m->m_nextpkt;
1128 	if (pr->pr_flags & PR_ADDR) {
1129 		KASSERT(m->m_type == MT_SONAME,
1130 		    ("m->m_type == %d", m->m_type));
1131 		orig_resid = 0;
1132 		if (psa != NULL)
1133 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
1134 			    M_NOWAIT);
1135 		if (flags & MSG_PEEK) {
1136 			m = m->m_next;
1137 		} else {
1138 			sbfree(&so->so_rcv, m);
1139 			so->so_rcv.sb_mb = m_free(m);
1140 			m = so->so_rcv.sb_mb;
1141 			sockbuf_pushsync(&so->so_rcv, nextrecord);
1142 		}
1143 	}
1144 
1145 	/*
1146 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
1147 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
1148 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
1149 	 * perform externalization (or freeing if controlp == NULL).
1150 	 */
1151 	if (m != NULL && m->m_type == MT_CONTROL) {
1152 		struct mbuf *cm = NULL, *cmn;
1153 		struct mbuf **cme = &cm;
1154 
1155 		do {
1156 			if (flags & MSG_PEEK) {
1157 				if (controlp != NULL) {
1158 					*controlp = m_copy(m, 0, m->m_len);
1159 					controlp = &(*controlp)->m_next;
1160 				}
1161 				m = m->m_next;
1162 			} else {
1163 				sbfree(&so->so_rcv, m);
1164 				so->so_rcv.sb_mb = m->m_next;
1165 				m->m_next = NULL;
1166 				*cme = m;
1167 				cme = &(*cme)->m_next;
1168 				m = so->so_rcv.sb_mb;
1169 			}
1170 		} while (m != NULL && m->m_type == MT_CONTROL);
1171 		if ((flags & MSG_PEEK) == 0)
1172 			sockbuf_pushsync(&so->so_rcv, nextrecord);
1173 		while (cm != NULL) {
1174 			cmn = cm->m_next;
1175 			cm->m_next = NULL;
1176 			if (pr->pr_domain->dom_externalize != NULL) {
1177 				SOCKBUF_UNLOCK(&so->so_rcv);
1178 				error = (*pr->pr_domain->dom_externalize)
1179 				    (cm, controlp);
1180 				SOCKBUF_LOCK(&so->so_rcv);
1181 			} else if (controlp != NULL)
1182 				*controlp = cm;
1183 			else
1184 				m_freem(cm);
1185 			if (controlp != NULL) {
1186 				orig_resid = 0;
1187 				while (*controlp != NULL)
1188 					controlp = &(*controlp)->m_next;
1189 			}
1190 			cm = cmn;
1191 		}
1192 		if (so->so_rcv.sb_mb)
1193 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1194 		else
1195 			nextrecord = NULL;
1196 		orig_resid = 0;
1197 	}
1198 	if (m != NULL) {
1199 		if ((flags & MSG_PEEK) == 0) {
1200 			KASSERT(m->m_nextpkt == nextrecord,
1201 			    ("soreceive: post-control, nextrecord !sync"));
1202 			if (nextrecord == NULL) {
1203 				KASSERT(so->so_rcv.sb_mb == m,
1204 				    ("soreceive: post-control, sb_mb!=m"));
1205 				KASSERT(so->so_rcv.sb_lastrecord == m,
1206 				    ("soreceive: post-control, lastrecord!=m"));
1207 			}
1208 		}
1209 		type = m->m_type;
1210 		if (type == MT_OOBDATA)
1211 			flags |= MSG_OOB;
1212 	} else {
1213 		if ((flags & MSG_PEEK) == 0) {
1214 			KASSERT(so->so_rcv.sb_mb == nextrecord,
1215 			    ("soreceive: sb_mb != nextrecord"));
1216 			if (so->so_rcv.sb_mb == NULL) {
1217 				KASSERT(so->so_rcv.sb_lastrecord == NULL,
1218 				    ("soreceive: sb_lastercord != NULL"));
1219 			}
1220 		}
1221 	}
1222 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1223 	SBLASTRECORDCHK(&so->so_rcv);
1224 	SBLASTMBUFCHK(&so->so_rcv);
1225 
1226 	/*
1227 	 * Now continue to read any data mbufs off of the head of the socket
1228 	 * buffer until the read request is satisfied.  Note that 'type' is
1229 	 * used to store the type of any mbuf reads that have happened so far
1230 	 * such that soreceive() can stop reading if the type changes, which
1231 	 * causes soreceive() to return only one of regular data and inline
1232 	 * out-of-band data in a single socket receive operation.
1233 	 */
1234 	moff = 0;
1235 	offset = 0;
1236 	while (m != NULL && uio->uio_resid > 0 && error == 0) {
1237 		/*
1238 		 * If the type of mbuf has changed since the last mbuf
1239 		 * examined ('type'), end the receive operation.
1240 	 	 */
1241 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1242 		if (m->m_type == MT_OOBDATA) {
1243 			if (type != MT_OOBDATA)
1244 				break;
1245 		} else if (type == MT_OOBDATA)
1246 			break;
1247 		else
1248 		    KASSERT(m->m_type == MT_DATA,
1249 			("m->m_type == %d", m->m_type));
1250 		so->so_rcv.sb_state &= ~SBS_RCVATMARK;
1251 		len = uio->uio_resid;
1252 		if (so->so_oobmark && len > so->so_oobmark - offset)
1253 			len = so->so_oobmark - offset;
1254 		if (len > m->m_len - moff)
1255 			len = m->m_len - moff;
1256 		/*
1257 		 * If mp is set, just pass back the mbufs.
1258 		 * Otherwise copy them out via the uio, then free.
1259 		 * Sockbuf must be consistent here (points to current mbuf,
1260 		 * it points to next record) when we drop priority;
1261 		 * we must note any additions to the sockbuf when we
1262 		 * block interrupts again.
1263 		 */
1264 		if (mp == NULL) {
1265 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1266 			SBLASTRECORDCHK(&so->so_rcv);
1267 			SBLASTMBUFCHK(&so->so_rcv);
1268 			SOCKBUF_UNLOCK(&so->so_rcv);
1269 #ifdef ZERO_COPY_SOCKETS
1270 			if (so_zero_copy_receive) {
1271 				int disposable;
1272 
1273 				if ((m->m_flags & M_EXT)
1274 				 && (m->m_ext.ext_type == EXT_DISPOSABLE))
1275 					disposable = 1;
1276 				else
1277 					disposable = 0;
1278 
1279 				error = uiomoveco(mtod(m, char *) + moff,
1280 						  (int)len, uio,
1281 						  disposable);
1282 			} else
1283 #endif /* ZERO_COPY_SOCKETS */
1284 			error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1285 			SOCKBUF_LOCK(&so->so_rcv);
1286 			if (error)
1287 				goto release;
1288 		} else
1289 			uio->uio_resid -= len;
1290 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1291 		if (len == m->m_len - moff) {
1292 			if (m->m_flags & M_EOR)
1293 				flags |= MSG_EOR;
1294 			if (flags & MSG_PEEK) {
1295 				m = m->m_next;
1296 				moff = 0;
1297 			} else {
1298 				nextrecord = m->m_nextpkt;
1299 				sbfree(&so->so_rcv, m);
1300 				if (mp != NULL) {
1301 					*mp = m;
1302 					mp = &m->m_next;
1303 					so->so_rcv.sb_mb = m = m->m_next;
1304 					*mp = NULL;
1305 				} else {
1306 					so->so_rcv.sb_mb = m_free(m);
1307 					m = so->so_rcv.sb_mb;
1308 				}
1309 				sockbuf_pushsync(&so->so_rcv, nextrecord);
1310 				SBLASTRECORDCHK(&so->so_rcv);
1311 				SBLASTMBUFCHK(&so->so_rcv);
1312 			}
1313 		} else {
1314 			if (flags & MSG_PEEK)
1315 				moff += len;
1316 			else {
1317 				if (mp != NULL) {
1318 					int copy_flag;
1319 
1320 					if (flags & MSG_DONTWAIT)
1321 						copy_flag = M_DONTWAIT;
1322 					else
1323 						copy_flag = M_TRYWAIT;
1324 					if (copy_flag == M_TRYWAIT)
1325 						SOCKBUF_UNLOCK(&so->so_rcv);
1326 					*mp = m_copym(m, 0, len, copy_flag);
1327 					if (copy_flag == M_TRYWAIT)
1328 						SOCKBUF_LOCK(&so->so_rcv);
1329  					if (*mp == NULL) {
1330  						/*
1331  						 * m_copym() couldn't allocate an mbuf.
1332 						 * Adjust uio_resid back (it was adjusted
1333 						 * down by len bytes, which we didn't end
1334 						 * up "copying" over).
1335  						 */
1336  						uio->uio_resid += len;
1337  						break;
1338  					}
1339 				}
1340 				m->m_data += len;
1341 				m->m_len -= len;
1342 				so->so_rcv.sb_cc -= len;
1343 			}
1344 		}
1345 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1346 		if (so->so_oobmark) {
1347 			if ((flags & MSG_PEEK) == 0) {
1348 				so->so_oobmark -= len;
1349 				if (so->so_oobmark == 0) {
1350 					so->so_rcv.sb_state |= SBS_RCVATMARK;
1351 					break;
1352 				}
1353 			} else {
1354 				offset += len;
1355 				if (offset == so->so_oobmark)
1356 					break;
1357 			}
1358 		}
1359 		if (flags & MSG_EOR)
1360 			break;
1361 		/*
1362 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
1363 		 * we must not quit until "uio->uio_resid == 0" or an error
1364 		 * termination.  If a signal/timeout occurs, return
1365 		 * with a short count but without error.
1366 		 * Keep sockbuf locked against other readers.
1367 		 */
1368 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1369 		    !sosendallatonce(so) && nextrecord == NULL) {
1370 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1371 			if (so->so_error || so->so_rcv.sb_state & SBS_CANTRCVMORE)
1372 				break;
1373 			/*
1374 			 * Notify the protocol that some data has been
1375 			 * drained before blocking.
1376 			 */
1377 			if (pr->pr_flags & PR_WANTRCVD && so->so_pcb != NULL) {
1378 				SOCKBUF_UNLOCK(&so->so_rcv);
1379 				(*pr->pr_usrreqs->pru_rcvd)(so, flags);
1380 				SOCKBUF_LOCK(&so->so_rcv);
1381 			}
1382 			SBLASTRECORDCHK(&so->so_rcv);
1383 			SBLASTMBUFCHK(&so->so_rcv);
1384 			error = sbwait(&so->so_rcv);
1385 			if (error)
1386 				goto release;
1387 			m = so->so_rcv.sb_mb;
1388 			if (m != NULL)
1389 				nextrecord = m->m_nextpkt;
1390 		}
1391 	}
1392 
1393 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1394 	if (m != NULL && pr->pr_flags & PR_ATOMIC) {
1395 		flags |= MSG_TRUNC;
1396 		if ((flags & MSG_PEEK) == 0)
1397 			(void) sbdroprecord_locked(&so->so_rcv);
1398 	}
1399 	if ((flags & MSG_PEEK) == 0) {
1400 		if (m == NULL) {
1401 			/*
1402 			 * First part is an inline SB_EMPTY_FIXUP().  Second
1403 			 * part makes sure sb_lastrecord is up-to-date if
1404 			 * there is still data in the socket buffer.
1405 			 */
1406 			so->so_rcv.sb_mb = nextrecord;
1407 			if (so->so_rcv.sb_mb == NULL) {
1408 				so->so_rcv.sb_mbtail = NULL;
1409 				so->so_rcv.sb_lastrecord = NULL;
1410 			} else if (nextrecord->m_nextpkt == NULL)
1411 				so->so_rcv.sb_lastrecord = nextrecord;
1412 		}
1413 		SBLASTRECORDCHK(&so->so_rcv);
1414 		SBLASTMBUFCHK(&so->so_rcv);
1415 		/*
1416 		 * If soreceive() is being done from the socket callback, then
1417 		 * don't need to generate ACK to peer to update window, since
1418 		 * ACK will be generated on return to TCP.
1419 		 */
1420 		if (!(flags & MSG_SOCALLBCK) &&
1421 		    (pr->pr_flags & PR_WANTRCVD) && so->so_pcb) {
1422 			SOCKBUF_UNLOCK(&so->so_rcv);
1423 			(*pr->pr_usrreqs->pru_rcvd)(so, flags);
1424 			SOCKBUF_LOCK(&so->so_rcv);
1425 		}
1426 	}
1427 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1428 	if (orig_resid == uio->uio_resid && orig_resid &&
1429 	    (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
1430 		sbunlock(&so->so_rcv);
1431 		goto restart;
1432 	}
1433 
1434 	if (flagsp != NULL)
1435 		*flagsp |= flags;
1436 release:
1437 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1438 	sbunlock(&so->so_rcv);
1439 out:
1440 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1441 	SOCKBUF_UNLOCK(&so->so_rcv);
1442 	return (error);
1443 }
1444 
1445 int
1446 soshutdown(so, how)
1447 	struct socket *so;
1448 	int how;
1449 {
1450 	struct protosw *pr = so->so_proto;
1451 
1452 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1453 		return (EINVAL);
1454 
1455 	if (how != SHUT_WR)
1456 		sorflush(so);
1457 	if (how != SHUT_RD)
1458 		return ((*pr->pr_usrreqs->pru_shutdown)(so));
1459 	return (0);
1460 }
1461 
1462 void
1463 sorflush(so)
1464 	struct socket *so;
1465 {
1466 	struct sockbuf *sb = &so->so_rcv;
1467 	struct protosw *pr = so->so_proto;
1468 	struct sockbuf asb;
1469 
1470 	/*
1471 	 * XXXRW: This is quite ugly.  Previously, this code made a copy of
1472 	 * the socket buffer, then zero'd the original to clear the buffer
1473 	 * fields.  However, with mutexes in the socket buffer, this causes
1474 	 * problems.  We only clear the zeroable bits of the original;
1475 	 * however, we have to initialize and destroy the mutex in the copy
1476 	 * so that dom_dispose() and sbrelease() can lock t as needed.
1477 	 */
1478 	SOCKBUF_LOCK(sb);
1479 	sb->sb_flags |= SB_NOINTR;
1480 	(void) sblock(sb, M_WAITOK);
1481 	/*
1482 	 * socantrcvmore_locked() drops the socket buffer mutex so that it
1483 	 * can safely perform wakeups.  Re-acquire the mutex before
1484 	 * continuing.
1485 	 */
1486 	socantrcvmore_locked(so);
1487 	SOCKBUF_LOCK(sb);
1488 	sbunlock(sb);
1489 	/*
1490 	 * Invalidate/clear most of the sockbuf structure, but leave
1491 	 * selinfo and mutex data unchanged.
1492 	 */
1493 	bzero(&asb, offsetof(struct sockbuf, sb_startzero));
1494 	bcopy(&sb->sb_startzero, &asb.sb_startzero,
1495 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1496 	bzero(&sb->sb_startzero,
1497 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1498 	SOCKBUF_UNLOCK(sb);
1499 
1500 	SOCKBUF_LOCK_INIT(&asb, "so_rcv");
1501 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
1502 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
1503 	sbrelease(&asb, so);
1504 	SOCKBUF_LOCK_DESTROY(&asb);
1505 }
1506 
1507 /*
1508  * Perhaps this routine, and sooptcopyout(), below, ought to come in
1509  * an additional variant to handle the case where the option value needs
1510  * to be some kind of integer, but not a specific size.
1511  * In addition to their use here, these functions are also called by the
1512  * protocol-level pr_ctloutput() routines.
1513  */
1514 int
1515 sooptcopyin(sopt, buf, len, minlen)
1516 	struct	sockopt *sopt;
1517 	void	*buf;
1518 	size_t	len;
1519 	size_t	minlen;
1520 {
1521 	size_t	valsize;
1522 
1523 	/*
1524 	 * If the user gives us more than we wanted, we ignore it,
1525 	 * but if we don't get the minimum length the caller
1526 	 * wants, we return EINVAL.  On success, sopt->sopt_valsize
1527 	 * is set to however much we actually retrieved.
1528 	 */
1529 	if ((valsize = sopt->sopt_valsize) < minlen)
1530 		return EINVAL;
1531 	if (valsize > len)
1532 		sopt->sopt_valsize = valsize = len;
1533 
1534 	if (sopt->sopt_td != NULL)
1535 		return (copyin(sopt->sopt_val, buf, valsize));
1536 
1537 	bcopy(sopt->sopt_val, buf, valsize);
1538 	return 0;
1539 }
1540 
1541 /*
1542  * Kernel version of setsockopt(2)/
1543  * XXX: optlen is size_t, not socklen_t
1544  */
1545 int
1546 so_setsockopt(struct socket *so, int level, int optname, void *optval,
1547     size_t optlen)
1548 {
1549 	struct sockopt sopt;
1550 
1551 	sopt.sopt_level = level;
1552 	sopt.sopt_name = optname;
1553 	sopt.sopt_dir = SOPT_SET;
1554 	sopt.sopt_val = optval;
1555 	sopt.sopt_valsize = optlen;
1556 	sopt.sopt_td = NULL;
1557 	return (sosetopt(so, &sopt));
1558 }
1559 
1560 int
1561 sosetopt(so, sopt)
1562 	struct socket *so;
1563 	struct sockopt *sopt;
1564 {
1565 	int	error, optval;
1566 	struct	linger l;
1567 	struct	timeval tv;
1568 	u_long  val;
1569 #ifdef MAC
1570 	struct mac extmac;
1571 #endif
1572 
1573 	error = 0;
1574 	if (sopt->sopt_level != SOL_SOCKET) {
1575 		if (so->so_proto && so->so_proto->pr_ctloutput)
1576 			return ((*so->so_proto->pr_ctloutput)
1577 				  (so, sopt));
1578 		error = ENOPROTOOPT;
1579 	} else {
1580 		switch (sopt->sopt_name) {
1581 #ifdef INET
1582 		case SO_ACCEPTFILTER:
1583 			error = do_setopt_accept_filter(so, sopt);
1584 			if (error)
1585 				goto bad;
1586 			break;
1587 #endif
1588 		case SO_LINGER:
1589 			error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
1590 			if (error)
1591 				goto bad;
1592 
1593 			SOCK_LOCK(so);
1594 			so->so_linger = l.l_linger;
1595 			if (l.l_onoff)
1596 				so->so_options |= SO_LINGER;
1597 			else
1598 				so->so_options &= ~SO_LINGER;
1599 			SOCK_UNLOCK(so);
1600 			break;
1601 
1602 		case SO_DEBUG:
1603 		case SO_KEEPALIVE:
1604 		case SO_DONTROUTE:
1605 		case SO_USELOOPBACK:
1606 		case SO_BROADCAST:
1607 		case SO_REUSEADDR:
1608 		case SO_REUSEPORT:
1609 		case SO_OOBINLINE:
1610 		case SO_TIMESTAMP:
1611 		case SO_BINTIME:
1612 		case SO_NOSIGPIPE:
1613 			error = sooptcopyin(sopt, &optval, sizeof optval,
1614 					    sizeof optval);
1615 			if (error)
1616 				goto bad;
1617 			SOCK_LOCK(so);
1618 			if (optval)
1619 				so->so_options |= sopt->sopt_name;
1620 			else
1621 				so->so_options &= ~sopt->sopt_name;
1622 			SOCK_UNLOCK(so);
1623 			break;
1624 
1625 		case SO_SNDBUF:
1626 		case SO_RCVBUF:
1627 		case SO_SNDLOWAT:
1628 		case SO_RCVLOWAT:
1629 			error = sooptcopyin(sopt, &optval, sizeof optval,
1630 					    sizeof optval);
1631 			if (error)
1632 				goto bad;
1633 
1634 			/*
1635 			 * Values < 1 make no sense for any of these
1636 			 * options, so disallow them.
1637 			 */
1638 			if (optval < 1) {
1639 				error = EINVAL;
1640 				goto bad;
1641 			}
1642 
1643 			switch (sopt->sopt_name) {
1644 			case SO_SNDBUF:
1645 			case SO_RCVBUF:
1646 				if (sbreserve(sopt->sopt_name == SO_SNDBUF ?
1647 				    &so->so_snd : &so->so_rcv, (u_long)optval,
1648 				    so, curthread) == 0) {
1649 					error = ENOBUFS;
1650 					goto bad;
1651 				}
1652 				break;
1653 
1654 			/*
1655 			 * Make sure the low-water is never greater than
1656 			 * the high-water.
1657 			 */
1658 			case SO_SNDLOWAT:
1659 				SOCKBUF_LOCK(&so->so_snd);
1660 				so->so_snd.sb_lowat =
1661 				    (optval > so->so_snd.sb_hiwat) ?
1662 				    so->so_snd.sb_hiwat : optval;
1663 				SOCKBUF_UNLOCK(&so->so_snd);
1664 				break;
1665 			case SO_RCVLOWAT:
1666 				SOCKBUF_LOCK(&so->so_rcv);
1667 				so->so_rcv.sb_lowat =
1668 				    (optval > so->so_rcv.sb_hiwat) ?
1669 				    so->so_rcv.sb_hiwat : optval;
1670 				SOCKBUF_UNLOCK(&so->so_rcv);
1671 				break;
1672 			}
1673 			break;
1674 
1675 		case SO_SNDTIMEO:
1676 		case SO_RCVTIMEO:
1677 #ifdef COMPAT_IA32
1678 			if (curthread->td_proc->p_sysent == &ia32_freebsd_sysvec) {
1679 				struct timeval32 tv32;
1680 
1681 				error = sooptcopyin(sopt, &tv32, sizeof tv32,
1682 				    sizeof tv32);
1683 				CP(tv32, tv, tv_sec);
1684 				CP(tv32, tv, tv_usec);
1685 			} else
1686 #endif
1687 				error = sooptcopyin(sopt, &tv, sizeof tv,
1688 				    sizeof tv);
1689 			if (error)
1690 				goto bad;
1691 
1692 			/* assert(hz > 0); */
1693 			if (tv.tv_sec < 0 || tv.tv_sec > INT_MAX / hz ||
1694 			    tv.tv_usec < 0 || tv.tv_usec >= 1000000) {
1695 				error = EDOM;
1696 				goto bad;
1697 			}
1698 			/* assert(tick > 0); */
1699 			/* assert(ULONG_MAX - INT_MAX >= 1000000); */
1700 			val = (u_long)(tv.tv_sec * hz) + tv.tv_usec / tick;
1701 			if (val > INT_MAX) {
1702 				error = EDOM;
1703 				goto bad;
1704 			}
1705 			if (val == 0 && tv.tv_usec != 0)
1706 				val = 1;
1707 
1708 			switch (sopt->sopt_name) {
1709 			case SO_SNDTIMEO:
1710 				so->so_snd.sb_timeo = val;
1711 				break;
1712 			case SO_RCVTIMEO:
1713 				so->so_rcv.sb_timeo = val;
1714 				break;
1715 			}
1716 			break;
1717 
1718 		case SO_LABEL:
1719 #ifdef MAC
1720 			error = sooptcopyin(sopt, &extmac, sizeof extmac,
1721 			    sizeof extmac);
1722 			if (error)
1723 				goto bad;
1724 			error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
1725 			    so, &extmac);
1726 #else
1727 			error = EOPNOTSUPP;
1728 #endif
1729 			break;
1730 
1731 		default:
1732 			error = ENOPROTOOPT;
1733 			break;
1734 		}
1735 		if (error == 0 && so->so_proto != NULL &&
1736 		    so->so_proto->pr_ctloutput != NULL) {
1737 			(void) ((*so->so_proto->pr_ctloutput)
1738 				  (so, sopt));
1739 		}
1740 	}
1741 bad:
1742 	return (error);
1743 }
1744 
1745 /* Helper routine for getsockopt */
1746 int
1747 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
1748 {
1749 	int	error;
1750 	size_t	valsize;
1751 
1752 	error = 0;
1753 
1754 	/*
1755 	 * Documented get behavior is that we always return a value,
1756 	 * possibly truncated to fit in the user's buffer.
1757 	 * Traditional behavior is that we always tell the user
1758 	 * precisely how much we copied, rather than something useful
1759 	 * like the total amount we had available for her.
1760 	 * Note that this interface is not idempotent; the entire answer must
1761 	 * generated ahead of time.
1762 	 */
1763 	valsize = min(len, sopt->sopt_valsize);
1764 	sopt->sopt_valsize = valsize;
1765 	if (sopt->sopt_val != NULL) {
1766 		if (sopt->sopt_td != NULL)
1767 			error = copyout(buf, sopt->sopt_val, valsize);
1768 		else
1769 			bcopy(buf, sopt->sopt_val, valsize);
1770 	}
1771 	return error;
1772 }
1773 
1774 int
1775 sogetopt(so, sopt)
1776 	struct socket *so;
1777 	struct sockopt *sopt;
1778 {
1779 	int	error, optval;
1780 	struct	linger l;
1781 	struct	timeval tv;
1782 #ifdef MAC
1783 	struct mac extmac;
1784 #endif
1785 
1786 	error = 0;
1787 	if (sopt->sopt_level != SOL_SOCKET) {
1788 		if (so->so_proto && so->so_proto->pr_ctloutput) {
1789 			return ((*so->so_proto->pr_ctloutput)
1790 				  (so, sopt));
1791 		} else
1792 			return (ENOPROTOOPT);
1793 	} else {
1794 		switch (sopt->sopt_name) {
1795 #ifdef INET
1796 		case SO_ACCEPTFILTER:
1797 			error = do_getopt_accept_filter(so, sopt);
1798 			break;
1799 #endif
1800 		case SO_LINGER:
1801 			SOCK_LOCK(so);
1802 			l.l_onoff = so->so_options & SO_LINGER;
1803 			l.l_linger = so->so_linger;
1804 			SOCK_UNLOCK(so);
1805 			error = sooptcopyout(sopt, &l, sizeof l);
1806 			break;
1807 
1808 		case SO_USELOOPBACK:
1809 		case SO_DONTROUTE:
1810 		case SO_DEBUG:
1811 		case SO_KEEPALIVE:
1812 		case SO_REUSEADDR:
1813 		case SO_REUSEPORT:
1814 		case SO_BROADCAST:
1815 		case SO_OOBINLINE:
1816 		case SO_ACCEPTCONN:
1817 		case SO_TIMESTAMP:
1818 		case SO_BINTIME:
1819 		case SO_NOSIGPIPE:
1820 			optval = so->so_options & sopt->sopt_name;
1821 integer:
1822 			error = sooptcopyout(sopt, &optval, sizeof optval);
1823 			break;
1824 
1825 		case SO_TYPE:
1826 			optval = so->so_type;
1827 			goto integer;
1828 
1829 		case SO_ERROR:
1830 			optval = so->so_error;
1831 			so->so_error = 0;
1832 			goto integer;
1833 
1834 		case SO_SNDBUF:
1835 			optval = so->so_snd.sb_hiwat;
1836 			goto integer;
1837 
1838 		case SO_RCVBUF:
1839 			optval = so->so_rcv.sb_hiwat;
1840 			goto integer;
1841 
1842 		case SO_SNDLOWAT:
1843 			optval = so->so_snd.sb_lowat;
1844 			goto integer;
1845 
1846 		case SO_RCVLOWAT:
1847 			optval = so->so_rcv.sb_lowat;
1848 			goto integer;
1849 
1850 		case SO_SNDTIMEO:
1851 		case SO_RCVTIMEO:
1852 			optval = (sopt->sopt_name == SO_SNDTIMEO ?
1853 				  so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1854 
1855 			tv.tv_sec = optval / hz;
1856 			tv.tv_usec = (optval % hz) * tick;
1857 #ifdef COMPAT_IA32
1858 			if (curthread->td_proc->p_sysent == &ia32_freebsd_sysvec) {
1859 				struct timeval32 tv32;
1860 
1861 				CP(tv, tv32, tv_sec);
1862 				CP(tv, tv32, tv_usec);
1863 				error = sooptcopyout(sopt, &tv32, sizeof tv32);
1864 			} else
1865 #endif
1866 				error = sooptcopyout(sopt, &tv, sizeof tv);
1867 			break;
1868 
1869 		case SO_LABEL:
1870 #ifdef MAC
1871 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
1872 			    sizeof(extmac));
1873 			if (error)
1874 				return (error);
1875 			error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
1876 			    so, &extmac);
1877 			if (error)
1878 				return (error);
1879 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
1880 #else
1881 			error = EOPNOTSUPP;
1882 #endif
1883 			break;
1884 
1885 		case SO_PEERLABEL:
1886 #ifdef MAC
1887 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
1888 			    sizeof(extmac));
1889 			if (error)
1890 				return (error);
1891 			error = mac_getsockopt_peerlabel(
1892 			    sopt->sopt_td->td_ucred, so, &extmac);
1893 			if (error)
1894 				return (error);
1895 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
1896 #else
1897 			error = EOPNOTSUPP;
1898 #endif
1899 			break;
1900 
1901 		case SO_LISTENQLIMIT:
1902 			optval = so->so_qlimit;
1903 			goto integer;
1904 
1905 		case SO_LISTENQLEN:
1906 			optval = so->so_qlen;
1907 			goto integer;
1908 
1909 		case SO_LISTENINCQLEN:
1910 			optval = so->so_incqlen;
1911 			goto integer;
1912 
1913 		default:
1914 			error = ENOPROTOOPT;
1915 			break;
1916 		}
1917 		return (error);
1918 	}
1919 }
1920 
1921 /* XXX; prepare mbuf for (__FreeBSD__ < 3) routines. */
1922 int
1923 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
1924 {
1925 	struct mbuf *m, *m_prev;
1926 	int sopt_size = sopt->sopt_valsize;
1927 
1928 	MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA);
1929 	if (m == NULL)
1930 		return ENOBUFS;
1931 	if (sopt_size > MLEN) {
1932 		MCLGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT);
1933 		if ((m->m_flags & M_EXT) == 0) {
1934 			m_free(m);
1935 			return ENOBUFS;
1936 		}
1937 		m->m_len = min(MCLBYTES, sopt_size);
1938 	} else {
1939 		m->m_len = min(MLEN, sopt_size);
1940 	}
1941 	sopt_size -= m->m_len;
1942 	*mp = m;
1943 	m_prev = m;
1944 
1945 	while (sopt_size) {
1946 		MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA);
1947 		if (m == NULL) {
1948 			m_freem(*mp);
1949 			return ENOBUFS;
1950 		}
1951 		if (sopt_size > MLEN) {
1952 			MCLGET(m, sopt->sopt_td != NULL ? M_TRYWAIT :
1953 			    M_DONTWAIT);
1954 			if ((m->m_flags & M_EXT) == 0) {
1955 				m_freem(m);
1956 				m_freem(*mp);
1957 				return ENOBUFS;
1958 			}
1959 			m->m_len = min(MCLBYTES, sopt_size);
1960 		} else {
1961 			m->m_len = min(MLEN, sopt_size);
1962 		}
1963 		sopt_size -= m->m_len;
1964 		m_prev->m_next = m;
1965 		m_prev = m;
1966 	}
1967 	return 0;
1968 }
1969 
1970 /* XXX; copyin sopt data into mbuf chain for (__FreeBSD__ < 3) routines. */
1971 int
1972 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
1973 {
1974 	struct mbuf *m0 = m;
1975 
1976 	if (sopt->sopt_val == NULL)
1977 		return 0;
1978 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
1979 		if (sopt->sopt_td != NULL) {
1980 			int error;
1981 
1982 			error = copyin(sopt->sopt_val, mtod(m, char *),
1983 				       m->m_len);
1984 			if (error != 0) {
1985 				m_freem(m0);
1986 				return(error);
1987 			}
1988 		} else
1989 			bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
1990 		sopt->sopt_valsize -= m->m_len;
1991 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
1992 		m = m->m_next;
1993 	}
1994 	if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
1995 		panic("ip6_sooptmcopyin");
1996 	return 0;
1997 }
1998 
1999 /* XXX; copyout mbuf chain data into soopt for (__FreeBSD__ < 3) routines. */
2000 int
2001 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
2002 {
2003 	struct mbuf *m0 = m;
2004 	size_t valsize = 0;
2005 
2006 	if (sopt->sopt_val == NULL)
2007 		return 0;
2008 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
2009 		if (sopt->sopt_td != NULL) {
2010 			int error;
2011 
2012 			error = copyout(mtod(m, char *), sopt->sopt_val,
2013 				       m->m_len);
2014 			if (error != 0) {
2015 				m_freem(m0);
2016 				return(error);
2017 			}
2018 		} else
2019 			bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
2020 	       sopt->sopt_valsize -= m->m_len;
2021 	       sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
2022 	       valsize += m->m_len;
2023 	       m = m->m_next;
2024 	}
2025 	if (m != NULL) {
2026 		/* enough soopt buffer should be given from user-land */
2027 		m_freem(m0);
2028 		return(EINVAL);
2029 	}
2030 	sopt->sopt_valsize = valsize;
2031 	return 0;
2032 }
2033 
2034 void
2035 sohasoutofband(so)
2036 	struct socket *so;
2037 {
2038 	if (so->so_sigio != NULL)
2039 		pgsigio(&so->so_sigio, SIGURG, 0);
2040 	selwakeuppri(&so->so_rcv.sb_sel, PSOCK);
2041 }
2042 
2043 int
2044 sopoll(struct socket *so, int events, struct ucred *active_cred,
2045     struct thread *td)
2046 {
2047 	int revents = 0;
2048 
2049 	SOCKBUF_LOCK(&so->so_snd);
2050 	SOCKBUF_LOCK(&so->so_rcv);
2051 	if (events & (POLLIN | POLLRDNORM))
2052 		if (soreadable(so))
2053 			revents |= events & (POLLIN | POLLRDNORM);
2054 
2055 	if (events & POLLINIGNEOF)
2056 		if (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat ||
2057 		    !TAILQ_EMPTY(&so->so_comp) || so->so_error)
2058 			revents |= POLLINIGNEOF;
2059 
2060 	if (events & (POLLOUT | POLLWRNORM))
2061 		if (sowriteable(so))
2062 			revents |= events & (POLLOUT | POLLWRNORM);
2063 
2064 	if (events & (POLLPRI | POLLRDBAND))
2065 		if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK))
2066 			revents |= events & (POLLPRI | POLLRDBAND);
2067 
2068 	if (revents == 0) {
2069 		if (events &
2070 		    (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM |
2071 		     POLLRDBAND)) {
2072 			selrecord(td, &so->so_rcv.sb_sel);
2073 			so->so_rcv.sb_flags |= SB_SEL;
2074 		}
2075 
2076 		if (events & (POLLOUT | POLLWRNORM)) {
2077 			selrecord(td, &so->so_snd.sb_sel);
2078 			so->so_snd.sb_flags |= SB_SEL;
2079 		}
2080 	}
2081 
2082 	SOCKBUF_UNLOCK(&so->so_rcv);
2083 	SOCKBUF_UNLOCK(&so->so_snd);
2084 	return (revents);
2085 }
2086 
2087 int
2088 soo_kqfilter(struct file *fp, struct knote *kn)
2089 {
2090 	struct socket *so = kn->kn_fp->f_data;
2091 	struct sockbuf *sb;
2092 
2093 	switch (kn->kn_filter) {
2094 	case EVFILT_READ:
2095 		if (so->so_options & SO_ACCEPTCONN)
2096 			kn->kn_fop = &solisten_filtops;
2097 		else
2098 			kn->kn_fop = &soread_filtops;
2099 		sb = &so->so_rcv;
2100 		break;
2101 	case EVFILT_WRITE:
2102 		kn->kn_fop = &sowrite_filtops;
2103 		sb = &so->so_snd;
2104 		break;
2105 	default:
2106 		return (EINVAL);
2107 	}
2108 
2109 	SOCKBUF_LOCK(sb);
2110 	knlist_add(&sb->sb_sel.si_note, kn, 1);
2111 	sb->sb_flags |= SB_KNOTE;
2112 	SOCKBUF_UNLOCK(sb);
2113 	return (0);
2114 }
2115 
2116 static void
2117 filt_sordetach(struct knote *kn)
2118 {
2119 	struct socket *so = kn->kn_fp->f_data;
2120 
2121 	SOCKBUF_LOCK(&so->so_rcv);
2122 	knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1);
2123 	if (knlist_empty(&so->so_rcv.sb_sel.si_note))
2124 		so->so_rcv.sb_flags &= ~SB_KNOTE;
2125 	SOCKBUF_UNLOCK(&so->so_rcv);
2126 }
2127 
2128 /*ARGSUSED*/
2129 static int
2130 filt_soread(struct knote *kn, long hint)
2131 {
2132 	struct socket *so;
2133 
2134 	so = kn->kn_fp->f_data;
2135 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2136 
2137 	kn->kn_data = so->so_rcv.sb_cc - so->so_rcv.sb_ctl;
2138 	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2139 		kn->kn_flags |= EV_EOF;
2140 		kn->kn_fflags = so->so_error;
2141 		return (1);
2142 	} else if (so->so_error)	/* temporary udp error */
2143 		return (1);
2144 	else if (kn->kn_sfflags & NOTE_LOWAT)
2145 		return (kn->kn_data >= kn->kn_sdata);
2146 	else
2147 		return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat);
2148 }
2149 
2150 static void
2151 filt_sowdetach(struct knote *kn)
2152 {
2153 	struct socket *so = kn->kn_fp->f_data;
2154 
2155 	SOCKBUF_LOCK(&so->so_snd);
2156 	knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1);
2157 	if (knlist_empty(&so->so_snd.sb_sel.si_note))
2158 		so->so_snd.sb_flags &= ~SB_KNOTE;
2159 	SOCKBUF_UNLOCK(&so->so_snd);
2160 }
2161 
2162 /*ARGSUSED*/
2163 static int
2164 filt_sowrite(struct knote *kn, long hint)
2165 {
2166 	struct socket *so;
2167 
2168 	so = kn->kn_fp->f_data;
2169 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
2170 	kn->kn_data = sbspace(&so->so_snd);
2171 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2172 		kn->kn_flags |= EV_EOF;
2173 		kn->kn_fflags = so->so_error;
2174 		return (1);
2175 	} else if (so->so_error)	/* temporary udp error */
2176 		return (1);
2177 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2178 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
2179 		return (0);
2180 	else if (kn->kn_sfflags & NOTE_LOWAT)
2181 		return (kn->kn_data >= kn->kn_sdata);
2182 	else
2183 		return (kn->kn_data >= so->so_snd.sb_lowat);
2184 }
2185 
2186 /*ARGSUSED*/
2187 static int
2188 filt_solisten(struct knote *kn, long hint)
2189 {
2190 	struct socket *so = kn->kn_fp->f_data;
2191 
2192 	kn->kn_data = so->so_qlen;
2193 	return (! TAILQ_EMPTY(&so->so_comp));
2194 }
2195 
2196 int
2197 socheckuid(struct socket *so, uid_t uid)
2198 {
2199 
2200 	if (so == NULL)
2201 		return (EPERM);
2202 	if (so->so_cred->cr_uid != uid)
2203 		return (EPERM);
2204 	return (0);
2205 }
2206 
2207 static int
2208 somaxconn_sysctl(SYSCTL_HANDLER_ARGS)
2209 {
2210 	int error;
2211 	int val;
2212 
2213 	val = somaxconn;
2214 	error = sysctl_handle_int(oidp, &val, sizeof(int), req);
2215 	if (error || !req->newptr )
2216 		return (error);
2217 
2218 	if (val < 1 || val > USHRT_MAX)
2219 		return (EINVAL);
2220 
2221 	somaxconn = val;
2222 	return (0);
2223 }
2224