1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. 6 * Copyright (c) 2004 The FreeBSD Foundation 7 * Copyright (c) 2004-2008 Robert N. M. Watson 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 35 */ 36 37 /* 38 * Comments on the socket life cycle: 39 * 40 * soalloc() sets of socket layer state for a socket, called only by 41 * socreate() and sonewconn(). Socket layer private. 42 * 43 * sodealloc() tears down socket layer state for a socket, called only by 44 * sofree() and sonewconn(). Socket layer private. 45 * 46 * pru_attach() associates protocol layer state with an allocated socket; 47 * called only once, may fail, aborting socket allocation. This is called 48 * from socreate() and sonewconn(). Socket layer private. 49 * 50 * pru_detach() disassociates protocol layer state from an attached socket, 51 * and will be called exactly once for sockets in which pru_attach() has 52 * been successfully called. If pru_attach() returned an error, 53 * pru_detach() will not be called. Socket layer private. 54 * 55 * pru_abort() and pru_close() notify the protocol layer that the last 56 * consumer of a socket is starting to tear down the socket, and that the 57 * protocol should terminate the connection. Historically, pru_abort() also 58 * detached protocol state from the socket state, but this is no longer the 59 * case. 60 * 61 * socreate() creates a socket and attaches protocol state. This is a public 62 * interface that may be used by socket layer consumers to create new 63 * sockets. 64 * 65 * sonewconn() creates a socket and attaches protocol state. This is a 66 * public interface that may be used by protocols to create new sockets when 67 * a new connection is received and will be available for accept() on a 68 * listen socket. 69 * 70 * soclose() destroys a socket after possibly waiting for it to disconnect. 71 * This is a public interface that socket consumers should use to close and 72 * release a socket when done with it. 73 * 74 * soabort() destroys a socket without waiting for it to disconnect (used 75 * only for incoming connections that are already partially or fully 76 * connected). This is used internally by the socket layer when clearing 77 * listen socket queues (due to overflow or close on the listen socket), but 78 * is also a public interface protocols may use to abort connections in 79 * their incomplete listen queues should they no longer be required. Sockets 80 * placed in completed connection listen queues should not be aborted for 81 * reasons described in the comment above the soclose() implementation. This 82 * is not a general purpose close routine, and except in the specific 83 * circumstances described here, should not be used. 84 * 85 * sofree() will free a socket and its protocol state if all references on 86 * the socket have been released, and is the public interface to attempt to 87 * free a socket when a reference is removed. This is a socket layer private 88 * interface. 89 * 90 * NOTE: In addition to socreate() and soclose(), which provide a single 91 * socket reference to the consumer to be managed as required, there are two 92 * calls to explicitly manage socket references, soref(), and sorele(). 93 * Currently, these are generally required only when transitioning a socket 94 * from a listen queue to a file descriptor, in order to prevent garbage 95 * collection of the socket at an untimely moment. For a number of reasons, 96 * these interfaces are not preferred, and should be avoided. 97 * 98 * NOTE: With regard to VNETs the general rule is that callers do not set 99 * curvnet. Exceptions to this rule include soabort(), sodisconnect(), 100 * sofree() (and with that sorele(), sotryfree()), as well as sonewconn() 101 * and sorflush(), which are usually called from a pre-set VNET context. 102 * sopoll() currently does not need a VNET context to be set. 103 */ 104 105 #include <sys/cdefs.h> 106 __FBSDID("$FreeBSD$"); 107 108 #include "opt_inet.h" 109 #include "opt_inet6.h" 110 #include "opt_kern_tls.h" 111 #include "opt_sctp.h" 112 113 #include <sys/param.h> 114 #include <sys/systm.h> 115 #include <sys/capsicum.h> 116 #include <sys/fcntl.h> 117 #include <sys/limits.h> 118 #include <sys/lock.h> 119 #include <sys/mac.h> 120 #include <sys/malloc.h> 121 #include <sys/mbuf.h> 122 #include <sys/mutex.h> 123 #include <sys/domain.h> 124 #include <sys/file.h> /* for struct knote */ 125 #include <sys/hhook.h> 126 #include <sys/kernel.h> 127 #include <sys/khelp.h> 128 #include <sys/ktls.h> 129 #include <sys/event.h> 130 #include <sys/eventhandler.h> 131 #include <sys/poll.h> 132 #include <sys/proc.h> 133 #include <sys/protosw.h> 134 #include <sys/sbuf.h> 135 #include <sys/socket.h> 136 #include <sys/socketvar.h> 137 #include <sys/resourcevar.h> 138 #include <net/route.h> 139 #include <sys/signalvar.h> 140 #include <sys/stat.h> 141 #include <sys/sx.h> 142 #include <sys/sysctl.h> 143 #include <sys/taskqueue.h> 144 #include <sys/uio.h> 145 #include <sys/un.h> 146 #include <sys/unpcb.h> 147 #include <sys/jail.h> 148 #include <sys/syslog.h> 149 #include <netinet/in.h> 150 #include <netinet/in_pcb.h> 151 #include <netinet/tcp.h> 152 153 #include <net/vnet.h> 154 155 #include <security/mac/mac_framework.h> 156 157 #include <vm/uma.h> 158 159 #ifdef COMPAT_FREEBSD32 160 #include <sys/mount.h> 161 #include <sys/sysent.h> 162 #include <compat/freebsd32/freebsd32.h> 163 #endif 164 165 static int soreceive_rcvoob(struct socket *so, struct uio *uio, 166 int flags); 167 static void so_rdknl_lock(void *); 168 static void so_rdknl_unlock(void *); 169 static void so_rdknl_assert_lock(void *, int); 170 static void so_wrknl_lock(void *); 171 static void so_wrknl_unlock(void *); 172 static void so_wrknl_assert_lock(void *, int); 173 174 static void filt_sordetach(struct knote *kn); 175 static int filt_soread(struct knote *kn, long hint); 176 static void filt_sowdetach(struct knote *kn); 177 static int filt_sowrite(struct knote *kn, long hint); 178 static int filt_soempty(struct knote *kn, long hint); 179 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id); 180 fo_kqfilter_t soo_kqfilter; 181 182 static struct filterops soread_filtops = { 183 .f_isfd = 1, 184 .f_detach = filt_sordetach, 185 .f_event = filt_soread, 186 }; 187 static struct filterops sowrite_filtops = { 188 .f_isfd = 1, 189 .f_detach = filt_sowdetach, 190 .f_event = filt_sowrite, 191 }; 192 static struct filterops soempty_filtops = { 193 .f_isfd = 1, 194 .f_detach = filt_sowdetach, 195 .f_event = filt_soempty, 196 }; 197 198 so_gen_t so_gencnt; /* generation count for sockets */ 199 200 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 201 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 202 203 #define VNET_SO_ASSERT(so) \ 204 VNET_ASSERT(curvnet != NULL, \ 205 ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so))); 206 207 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]); 208 #define V_socket_hhh VNET(socket_hhh) 209 210 /* 211 * Limit on the number of connections in the listen queue waiting 212 * for accept(2). 213 * NB: The original sysctl somaxconn is still available but hidden 214 * to prevent confusion about the actual purpose of this number. 215 */ 216 static u_int somaxconn = SOMAXCONN; 217 218 static int 219 sysctl_somaxconn(SYSCTL_HANDLER_ARGS) 220 { 221 int error; 222 int val; 223 224 val = somaxconn; 225 error = sysctl_handle_int(oidp, &val, 0, req); 226 if (error || !req->newptr ) 227 return (error); 228 229 /* 230 * The purpose of the UINT_MAX / 3 limit, is so that the formula 231 * 3 * so_qlimit / 2 232 * below, will not overflow. 233 */ 234 235 if (val < 1 || val > UINT_MAX / 3) 236 return (EINVAL); 237 238 somaxconn = val; 239 return (0); 240 } 241 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue, 242 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 0, sizeof(int), 243 sysctl_somaxconn, "I", 244 "Maximum listen socket pending connection accept queue size"); 245 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, 246 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_NEEDGIANT, 0, 247 sizeof(int), sysctl_somaxconn, "I", 248 "Maximum listen socket pending connection accept queue size (compat)"); 249 250 static int numopensockets; 251 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, 252 &numopensockets, 0, "Number of open sockets"); 253 254 /* 255 * accept_mtx locks down per-socket fields relating to accept queues. See 256 * socketvar.h for an annotation of the protected fields of struct socket. 257 */ 258 struct mtx accept_mtx; 259 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF); 260 261 /* 262 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket 263 * so_gencnt field. 264 */ 265 static struct mtx so_global_mtx; 266 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); 267 268 /* 269 * General IPC sysctl name space, used by sockets and a variety of other IPC 270 * types. 271 */ 272 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 273 "IPC"); 274 275 /* 276 * Initialize the socket subsystem and set up the socket 277 * memory allocator. 278 */ 279 static uma_zone_t socket_zone; 280 int maxsockets; 281 282 static void 283 socket_zone_change(void *tag) 284 { 285 286 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 287 } 288 289 static void 290 socket_hhook_register(int subtype) 291 { 292 293 if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype, 294 &V_socket_hhh[subtype], 295 HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 296 printf("%s: WARNING: unable to register hook\n", __func__); 297 } 298 299 static void 300 socket_hhook_deregister(int subtype) 301 { 302 303 if (hhook_head_deregister(V_socket_hhh[subtype]) != 0) 304 printf("%s: WARNING: unable to deregister hook\n", __func__); 305 } 306 307 static void 308 socket_init(void *tag) 309 { 310 311 socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL, 312 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 313 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 314 uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached"); 315 EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL, 316 EVENTHANDLER_PRI_FIRST); 317 } 318 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL); 319 320 static void 321 socket_vnet_init(const void *unused __unused) 322 { 323 int i; 324 325 /* We expect a contiguous range */ 326 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 327 socket_hhook_register(i); 328 } 329 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 330 socket_vnet_init, NULL); 331 332 static void 333 socket_vnet_uninit(const void *unused __unused) 334 { 335 int i; 336 337 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 338 socket_hhook_deregister(i); 339 } 340 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 341 socket_vnet_uninit, NULL); 342 343 /* 344 * Initialise maxsockets. This SYSINIT must be run after 345 * tunable_mbinit(). 346 */ 347 static void 348 init_maxsockets(void *ignored) 349 { 350 351 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 352 maxsockets = imax(maxsockets, maxfiles); 353 } 354 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 355 356 /* 357 * Sysctl to get and set the maximum global sockets limit. Notify protocols 358 * of the change so that they can update their dependent limits as required. 359 */ 360 static int 361 sysctl_maxsockets(SYSCTL_HANDLER_ARGS) 362 { 363 int error, newmaxsockets; 364 365 newmaxsockets = maxsockets; 366 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req); 367 if (error == 0 && req->newptr) { 368 if (newmaxsockets > maxsockets && 369 newmaxsockets <= maxfiles) { 370 maxsockets = newmaxsockets; 371 EVENTHANDLER_INVOKE(maxsockets_change); 372 } else 373 error = EINVAL; 374 } 375 return (error); 376 } 377 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, 378 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &maxsockets, 0, 379 sysctl_maxsockets, "IU", 380 "Maximum number of sockets available"); 381 382 /* 383 * Socket operation routines. These routines are called by the routines in 384 * sys_socket.c or from a system process, and implement the semantics of 385 * socket operations by switching out to the protocol specific routines. 386 */ 387 388 /* 389 * Get a socket structure from our zone, and initialize it. Note that it 390 * would probably be better to allocate socket and PCB at the same time, but 391 * I'm not convinced that all the protocols can be easily modified to do 392 * this. 393 * 394 * soalloc() returns a socket with a ref count of 0. 395 */ 396 static struct socket * 397 soalloc(struct vnet *vnet) 398 { 399 struct socket *so; 400 401 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO); 402 if (so == NULL) 403 return (NULL); 404 #ifdef MAC 405 if (mac_socket_init(so, M_NOWAIT) != 0) { 406 uma_zfree(socket_zone, so); 407 return (NULL); 408 } 409 #endif 410 if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) { 411 uma_zfree(socket_zone, so); 412 return (NULL); 413 } 414 415 /* 416 * The socket locking protocol allows to lock 2 sockets at a time, 417 * however, the first one must be a listening socket. WITNESS lacks 418 * a feature to change class of an existing lock, so we use DUPOK. 419 */ 420 mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK); 421 SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd"); 422 SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv"); 423 so->so_rcv.sb_sel = &so->so_rdsel; 424 so->so_snd.sb_sel = &so->so_wrsel; 425 sx_init(&so->so_snd.sb_sx, "so_snd_sx"); 426 sx_init(&so->so_rcv.sb_sx, "so_rcv_sx"); 427 TAILQ_INIT(&so->so_snd.sb_aiojobq); 428 TAILQ_INIT(&so->so_rcv.sb_aiojobq); 429 TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so); 430 TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so); 431 #ifdef VIMAGE 432 VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p", 433 __func__, __LINE__, so)); 434 so->so_vnet = vnet; 435 #endif 436 /* We shouldn't need the so_global_mtx */ 437 if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) { 438 /* Do we need more comprehensive error returns? */ 439 uma_zfree(socket_zone, so); 440 return (NULL); 441 } 442 mtx_lock(&so_global_mtx); 443 so->so_gencnt = ++so_gencnt; 444 ++numopensockets; 445 #ifdef VIMAGE 446 vnet->vnet_sockcnt++; 447 #endif 448 mtx_unlock(&so_global_mtx); 449 450 return (so); 451 } 452 453 /* 454 * Free the storage associated with a socket at the socket layer, tear down 455 * locks, labels, etc. All protocol state is assumed already to have been 456 * torn down (and possibly never set up) by the caller. 457 */ 458 static void 459 sodealloc(struct socket *so) 460 { 461 462 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); 463 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL")); 464 465 mtx_lock(&so_global_mtx); 466 so->so_gencnt = ++so_gencnt; 467 --numopensockets; /* Could be below, but faster here. */ 468 #ifdef VIMAGE 469 VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p", 470 __func__, __LINE__, so)); 471 so->so_vnet->vnet_sockcnt--; 472 #endif 473 mtx_unlock(&so_global_mtx); 474 #ifdef MAC 475 mac_socket_destroy(so); 476 #endif 477 hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE); 478 479 khelp_destroy_osd(&so->osd); 480 if (SOLISTENING(so)) { 481 if (so->sol_accept_filter != NULL) 482 accept_filt_setopt(so, NULL); 483 } else { 484 if (so->so_rcv.sb_hiwat) 485 (void)chgsbsize(so->so_cred->cr_uidinfo, 486 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 487 if (so->so_snd.sb_hiwat) 488 (void)chgsbsize(so->so_cred->cr_uidinfo, 489 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 490 sx_destroy(&so->so_snd.sb_sx); 491 sx_destroy(&so->so_rcv.sb_sx); 492 SOCKBUF_LOCK_DESTROY(&so->so_snd); 493 SOCKBUF_LOCK_DESTROY(&so->so_rcv); 494 } 495 crfree(so->so_cred); 496 mtx_destroy(&so->so_lock); 497 uma_zfree(socket_zone, so); 498 } 499 500 /* 501 * socreate returns a socket with a ref count of 1. The socket should be 502 * closed with soclose(). 503 */ 504 int 505 socreate(int dom, struct socket **aso, int type, int proto, 506 struct ucred *cred, struct thread *td) 507 { 508 struct protosw *prp; 509 struct socket *so; 510 int error; 511 512 if (proto) 513 prp = pffindproto(dom, proto, type); 514 else 515 prp = pffindtype(dom, type); 516 517 if (prp == NULL) { 518 /* No support for domain. */ 519 if (pffinddomain(dom) == NULL) 520 return (EAFNOSUPPORT); 521 /* No support for socket type. */ 522 if (proto == 0 && type != 0) 523 return (EPROTOTYPE); 524 return (EPROTONOSUPPORT); 525 } 526 if (prp->pr_usrreqs->pru_attach == NULL || 527 prp->pr_usrreqs->pru_attach == pru_attach_notsupp) 528 return (EPROTONOSUPPORT); 529 530 if (IN_CAPABILITY_MODE(td) && (prp->pr_flags & PR_CAPATTACH) == 0) 531 return (ECAPMODE); 532 533 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0) 534 return (EPROTONOSUPPORT); 535 536 if (prp->pr_type != type) 537 return (EPROTOTYPE); 538 so = soalloc(CRED_TO_VNET(cred)); 539 if (so == NULL) 540 return (ENOBUFS); 541 542 so->so_type = type; 543 so->so_cred = crhold(cred); 544 if ((prp->pr_domain->dom_family == PF_INET) || 545 (prp->pr_domain->dom_family == PF_INET6) || 546 (prp->pr_domain->dom_family == PF_ROUTE)) 547 so->so_fibnum = td->td_proc->p_fibnum; 548 else 549 so->so_fibnum = 0; 550 so->so_proto = prp; 551 #ifdef MAC 552 mac_socket_create(cred, so); 553 #endif 554 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 555 so_rdknl_assert_lock); 556 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 557 so_wrknl_assert_lock); 558 /* 559 * Auto-sizing of socket buffers is managed by the protocols and 560 * the appropriate flags must be set in the pru_attach function. 561 */ 562 CURVNET_SET(so->so_vnet); 563 error = (*prp->pr_usrreqs->pru_attach)(so, proto, td); 564 CURVNET_RESTORE(); 565 if (error) { 566 sodealloc(so); 567 return (error); 568 } 569 soref(so); 570 *aso = so; 571 return (0); 572 } 573 574 #ifdef REGRESSION 575 static int regression_sonewconn_earlytest = 1; 576 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW, 577 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test"); 578 #endif 579 580 static struct timeval overinterval = { 60, 0 }; 581 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW, 582 &overinterval, 583 "Delay in seconds between warnings for listen socket overflows"); 584 585 /* 586 * When an attempt at a new connection is noted on a socket which accepts 587 * connections, sonewconn is called. If the connection is possible (subject 588 * to space constraints, etc.) then we allocate a new structure, properly 589 * linked into the data structure of the original socket, and return this. 590 * Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED. 591 * 592 * Note: the ref count on the socket is 0 on return. 593 */ 594 struct socket * 595 sonewconn(struct socket *head, int connstatus) 596 { 597 struct sbuf descrsb; 598 struct socket *so; 599 int len, overcount; 600 u_int qlen; 601 const char localprefix[] = "local:"; 602 char descrbuf[SUNPATHLEN + sizeof(localprefix)]; 603 #if defined(INET6) 604 char addrbuf[INET6_ADDRSTRLEN]; 605 #elif defined(INET) 606 char addrbuf[INET_ADDRSTRLEN]; 607 #endif 608 bool dolog, over; 609 610 SOLISTEN_LOCK(head); 611 over = (head->sol_qlen > 3 * head->sol_qlimit / 2); 612 #ifdef REGRESSION 613 if (regression_sonewconn_earlytest && over) { 614 #else 615 if (over) { 616 #endif 617 head->sol_overcount++; 618 dolog = !!ratecheck(&head->sol_lastover, &overinterval); 619 620 /* 621 * If we're going to log, copy the overflow count and queue 622 * length from the listen socket before dropping the lock. 623 * Also, reset the overflow count. 624 */ 625 if (dolog) { 626 overcount = head->sol_overcount; 627 head->sol_overcount = 0; 628 qlen = head->sol_qlen; 629 } 630 SOLISTEN_UNLOCK(head); 631 632 if (dolog) { 633 /* 634 * Try to print something descriptive about the 635 * socket for the error message. 636 */ 637 sbuf_new(&descrsb, descrbuf, sizeof(descrbuf), 638 SBUF_FIXEDLEN); 639 switch (head->so_proto->pr_domain->dom_family) { 640 #if defined(INET) || defined(INET6) 641 #ifdef INET 642 case AF_INET: 643 #endif 644 #ifdef INET6 645 case AF_INET6: 646 if (head->so_proto->pr_domain->dom_family == 647 AF_INET6 || 648 (sotoinpcb(head)->inp_inc.inc_flags & 649 INC_ISIPV6)) { 650 ip6_sprintf(addrbuf, 651 &sotoinpcb(head)->inp_inc.inc6_laddr); 652 sbuf_printf(&descrsb, "[%s]", addrbuf); 653 } else 654 #endif 655 { 656 #ifdef INET 657 inet_ntoa_r( 658 sotoinpcb(head)->inp_inc.inc_laddr, 659 addrbuf); 660 sbuf_cat(&descrsb, addrbuf); 661 #endif 662 } 663 sbuf_printf(&descrsb, ":%hu (proto %u)", 664 ntohs(sotoinpcb(head)->inp_inc.inc_lport), 665 head->so_proto->pr_protocol); 666 break; 667 #endif /* INET || INET6 */ 668 case AF_UNIX: 669 sbuf_cat(&descrsb, localprefix); 670 if (sotounpcb(head)->unp_addr != NULL) 671 len = 672 sotounpcb(head)->unp_addr->sun_len - 673 offsetof(struct sockaddr_un, 674 sun_path); 675 else 676 len = 0; 677 if (len > 0) 678 sbuf_bcat(&descrsb, 679 sotounpcb(head)->unp_addr->sun_path, 680 len); 681 else 682 sbuf_cat(&descrsb, "(unknown)"); 683 break; 684 } 685 686 /* 687 * If we can't print something more specific, at least 688 * print the domain name. 689 */ 690 if (sbuf_finish(&descrsb) != 0 || 691 sbuf_len(&descrsb) <= 0) { 692 sbuf_clear(&descrsb); 693 sbuf_cat(&descrsb, 694 head->so_proto->pr_domain->dom_name ?: 695 "unknown"); 696 sbuf_finish(&descrsb); 697 } 698 KASSERT(sbuf_len(&descrsb) > 0, 699 ("%s: sbuf creation failed", __func__)); 700 log(LOG_DEBUG, 701 "%s: pcb %p (%s): Listen queue overflow: " 702 "%i already in queue awaiting acceptance " 703 "(%d occurrences)\n", 704 __func__, head->so_pcb, sbuf_data(&descrsb), 705 qlen, overcount); 706 sbuf_delete(&descrsb); 707 708 overcount = 0; 709 } 710 711 return (NULL); 712 } 713 SOLISTEN_UNLOCK(head); 714 VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL", 715 __func__, head)); 716 so = soalloc(head->so_vnet); 717 if (so == NULL) { 718 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 719 "limit reached or out of memory\n", 720 __func__, head->so_pcb); 721 return (NULL); 722 } 723 so->so_listen = head; 724 so->so_type = head->so_type; 725 so->so_options = head->so_options & ~SO_ACCEPTCONN; 726 so->so_linger = head->so_linger; 727 so->so_state = head->so_state | SS_NOFDREF; 728 so->so_fibnum = head->so_fibnum; 729 so->so_proto = head->so_proto; 730 so->so_cred = crhold(head->so_cred); 731 #ifdef MAC 732 mac_socket_newconn(head, so); 733 #endif 734 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 735 so_rdknl_assert_lock); 736 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 737 so_wrknl_assert_lock); 738 VNET_SO_ASSERT(head); 739 if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) { 740 sodealloc(so); 741 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 742 __func__, head->so_pcb); 743 return (NULL); 744 } 745 if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 746 sodealloc(so); 747 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", 748 __func__, head->so_pcb); 749 return (NULL); 750 } 751 so->so_rcv.sb_lowat = head->sol_sbrcv_lowat; 752 so->so_snd.sb_lowat = head->sol_sbsnd_lowat; 753 so->so_rcv.sb_timeo = head->sol_sbrcv_timeo; 754 so->so_snd.sb_timeo = head->sol_sbsnd_timeo; 755 so->so_rcv.sb_flags |= head->sol_sbrcv_flags & SB_AUTOSIZE; 756 so->so_snd.sb_flags |= head->sol_sbsnd_flags & SB_AUTOSIZE; 757 758 SOLISTEN_LOCK(head); 759 if (head->sol_accept_filter != NULL) 760 connstatus = 0; 761 so->so_state |= connstatus; 762 soref(head); /* A socket on (in)complete queue refs head. */ 763 if (connstatus) { 764 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 765 so->so_qstate = SQ_COMP; 766 head->sol_qlen++; 767 solisten_wakeup(head); /* unlocks */ 768 } else { 769 /* 770 * Keep removing sockets from the head until there's room for 771 * us to insert on the tail. In pre-locking revisions, this 772 * was a simple if(), but as we could be racing with other 773 * threads and soabort() requires dropping locks, we must 774 * loop waiting for the condition to be true. 775 */ 776 while (head->sol_incqlen > head->sol_qlimit) { 777 struct socket *sp; 778 779 sp = TAILQ_FIRST(&head->sol_incomp); 780 TAILQ_REMOVE(&head->sol_incomp, sp, so_list); 781 head->sol_incqlen--; 782 SOCK_LOCK(sp); 783 sp->so_qstate = SQ_NONE; 784 sp->so_listen = NULL; 785 SOCK_UNLOCK(sp); 786 sorele(head); /* does SOLISTEN_UNLOCK, head stays */ 787 soabort(sp); 788 SOLISTEN_LOCK(head); 789 } 790 TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list); 791 so->so_qstate = SQ_INCOMP; 792 head->sol_incqlen++; 793 SOLISTEN_UNLOCK(head); 794 } 795 return (so); 796 } 797 798 #if defined(SCTP) || defined(SCTP_SUPPORT) 799 /* 800 * Socket part of sctp_peeloff(). Detach a new socket from an 801 * association. The new socket is returned with a reference. 802 */ 803 struct socket * 804 sopeeloff(struct socket *head) 805 { 806 struct socket *so; 807 808 VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p", 809 __func__, __LINE__, head)); 810 so = soalloc(head->so_vnet); 811 if (so == NULL) { 812 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 813 "limit reached or out of memory\n", 814 __func__, head->so_pcb); 815 return (NULL); 816 } 817 so->so_type = head->so_type; 818 so->so_options = head->so_options; 819 so->so_linger = head->so_linger; 820 so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED; 821 so->so_fibnum = head->so_fibnum; 822 so->so_proto = head->so_proto; 823 so->so_cred = crhold(head->so_cred); 824 #ifdef MAC 825 mac_socket_newconn(head, so); 826 #endif 827 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 828 so_rdknl_assert_lock); 829 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 830 so_wrknl_assert_lock); 831 VNET_SO_ASSERT(head); 832 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) { 833 sodealloc(so); 834 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 835 __func__, head->so_pcb); 836 return (NULL); 837 } 838 if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 839 sodealloc(so); 840 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", 841 __func__, head->so_pcb); 842 return (NULL); 843 } 844 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; 845 so->so_snd.sb_lowat = head->so_snd.sb_lowat; 846 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; 847 so->so_snd.sb_timeo = head->so_snd.sb_timeo; 848 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE; 849 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE; 850 851 soref(so); 852 853 return (so); 854 } 855 #endif /* SCTP */ 856 857 int 858 sobind(struct socket *so, struct sockaddr *nam, struct thread *td) 859 { 860 int error; 861 862 CURVNET_SET(so->so_vnet); 863 error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td); 864 CURVNET_RESTORE(); 865 return (error); 866 } 867 868 int 869 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 870 { 871 int error; 872 873 CURVNET_SET(so->so_vnet); 874 error = (*so->so_proto->pr_usrreqs->pru_bindat)(fd, so, nam, td); 875 CURVNET_RESTORE(); 876 return (error); 877 } 878 879 /* 880 * solisten() transitions a socket from a non-listening state to a listening 881 * state, but can also be used to update the listen queue depth on an 882 * existing listen socket. The protocol will call back into the sockets 883 * layer using solisten_proto_check() and solisten_proto() to check and set 884 * socket-layer listen state. Call backs are used so that the protocol can 885 * acquire both protocol and socket layer locks in whatever order is required 886 * by the protocol. 887 * 888 * Protocol implementors are advised to hold the socket lock across the 889 * socket-layer test and set to avoid races at the socket layer. 890 */ 891 int 892 solisten(struct socket *so, int backlog, struct thread *td) 893 { 894 int error; 895 896 CURVNET_SET(so->so_vnet); 897 error = (*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td); 898 CURVNET_RESTORE(); 899 return (error); 900 } 901 902 int 903 solisten_proto_check(struct socket *so) 904 { 905 906 SOCK_LOCK_ASSERT(so); 907 908 if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 909 SS_ISDISCONNECTING)) 910 return (EINVAL); 911 return (0); 912 } 913 914 void 915 solisten_proto(struct socket *so, int backlog) 916 { 917 int sbrcv_lowat, sbsnd_lowat; 918 u_int sbrcv_hiwat, sbsnd_hiwat; 919 short sbrcv_flags, sbsnd_flags; 920 sbintime_t sbrcv_timeo, sbsnd_timeo; 921 922 SOCK_LOCK_ASSERT(so); 923 924 if (SOLISTENING(so)) 925 goto listening; 926 927 /* 928 * Change this socket to listening state. 929 */ 930 sbrcv_lowat = so->so_rcv.sb_lowat; 931 sbsnd_lowat = so->so_snd.sb_lowat; 932 sbrcv_hiwat = so->so_rcv.sb_hiwat; 933 sbsnd_hiwat = so->so_snd.sb_hiwat; 934 sbrcv_flags = so->so_rcv.sb_flags; 935 sbsnd_flags = so->so_snd.sb_flags; 936 sbrcv_timeo = so->so_rcv.sb_timeo; 937 sbsnd_timeo = so->so_snd.sb_timeo; 938 939 sbdestroy(&so->so_snd, so); 940 sbdestroy(&so->so_rcv, so); 941 sx_destroy(&so->so_snd.sb_sx); 942 sx_destroy(&so->so_rcv.sb_sx); 943 SOCKBUF_LOCK_DESTROY(&so->so_snd); 944 SOCKBUF_LOCK_DESTROY(&so->so_rcv); 945 946 #ifdef INVARIANTS 947 bzero(&so->so_rcv, 948 sizeof(struct socket) - offsetof(struct socket, so_rcv)); 949 #endif 950 951 so->sol_sbrcv_lowat = sbrcv_lowat; 952 so->sol_sbsnd_lowat = sbsnd_lowat; 953 so->sol_sbrcv_hiwat = sbrcv_hiwat; 954 so->sol_sbsnd_hiwat = sbsnd_hiwat; 955 so->sol_sbrcv_flags = sbrcv_flags; 956 so->sol_sbsnd_flags = sbsnd_flags; 957 so->sol_sbrcv_timeo = sbrcv_timeo; 958 so->sol_sbsnd_timeo = sbsnd_timeo; 959 960 so->sol_qlen = so->sol_incqlen = 0; 961 TAILQ_INIT(&so->sol_incomp); 962 TAILQ_INIT(&so->sol_comp); 963 964 so->sol_accept_filter = NULL; 965 so->sol_accept_filter_arg = NULL; 966 so->sol_accept_filter_str = NULL; 967 968 so->sol_upcall = NULL; 969 so->sol_upcallarg = NULL; 970 971 so->so_options |= SO_ACCEPTCONN; 972 973 listening: 974 if (backlog < 0 || backlog > somaxconn) 975 backlog = somaxconn; 976 so->sol_qlimit = backlog; 977 } 978 979 /* 980 * Wakeup listeners/subsystems once we have a complete connection. 981 * Enters with lock, returns unlocked. 982 */ 983 void 984 solisten_wakeup(struct socket *sol) 985 { 986 987 if (sol->sol_upcall != NULL) 988 (void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT); 989 else { 990 selwakeuppri(&sol->so_rdsel, PSOCK); 991 KNOTE_LOCKED(&sol->so_rdsel.si_note, 0); 992 } 993 SOLISTEN_UNLOCK(sol); 994 wakeup_one(&sol->sol_comp); 995 if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL) 996 pgsigio(&sol->so_sigio, SIGIO, 0); 997 } 998 999 /* 1000 * Return single connection off a listening socket queue. Main consumer of 1001 * the function is kern_accept4(). Some modules, that do their own accept 1002 * management also use the function. 1003 * 1004 * Listening socket must be locked on entry and is returned unlocked on 1005 * return. 1006 * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT. 1007 */ 1008 int 1009 solisten_dequeue(struct socket *head, struct socket **ret, int flags) 1010 { 1011 struct socket *so; 1012 int error; 1013 1014 SOLISTEN_LOCK_ASSERT(head); 1015 1016 while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) && 1017 head->so_error == 0) { 1018 error = msleep(&head->sol_comp, SOCK_MTX(head), PSOCK | PCATCH, 1019 "accept", 0); 1020 if (error != 0) { 1021 SOLISTEN_UNLOCK(head); 1022 return (error); 1023 } 1024 } 1025 if (head->so_error) { 1026 error = head->so_error; 1027 head->so_error = 0; 1028 } else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp)) 1029 error = EWOULDBLOCK; 1030 else 1031 error = 0; 1032 if (error) { 1033 SOLISTEN_UNLOCK(head); 1034 return (error); 1035 } 1036 so = TAILQ_FIRST(&head->sol_comp); 1037 SOCK_LOCK(so); 1038 KASSERT(so->so_qstate == SQ_COMP, 1039 ("%s: so %p not SQ_COMP", __func__, so)); 1040 soref(so); 1041 head->sol_qlen--; 1042 so->so_qstate = SQ_NONE; 1043 so->so_listen = NULL; 1044 TAILQ_REMOVE(&head->sol_comp, so, so_list); 1045 if (flags & ACCEPT4_INHERIT) 1046 so->so_state |= (head->so_state & SS_NBIO); 1047 else 1048 so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0; 1049 SOCK_UNLOCK(so); 1050 sorele(head); 1051 1052 *ret = so; 1053 return (0); 1054 } 1055 1056 /* 1057 * Evaluate the reference count and named references on a socket; if no 1058 * references remain, free it. This should be called whenever a reference is 1059 * released, such as in sorele(), but also when named reference flags are 1060 * cleared in socket or protocol code. 1061 * 1062 * sofree() will free the socket if: 1063 * 1064 * - There are no outstanding file descriptor references or related consumers 1065 * (so_count == 0). 1066 * 1067 * - The socket has been closed by user space, if ever open (SS_NOFDREF). 1068 * 1069 * - The protocol does not have an outstanding strong reference on the socket 1070 * (SS_PROTOREF). 1071 * 1072 * - The socket is not in a completed connection queue, so a process has been 1073 * notified that it is present. If it is removed, the user process may 1074 * block in accept() despite select() saying the socket was ready. 1075 */ 1076 void 1077 sofree(struct socket *so) 1078 { 1079 struct protosw *pr = so->so_proto; 1080 1081 SOCK_LOCK_ASSERT(so); 1082 1083 if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 || 1084 (so->so_state & SS_PROTOREF) || (so->so_qstate == SQ_COMP)) { 1085 SOCK_UNLOCK(so); 1086 return; 1087 } 1088 1089 if (!SOLISTENING(so) && so->so_qstate == SQ_INCOMP) { 1090 struct socket *sol; 1091 1092 sol = so->so_listen; 1093 KASSERT(sol, ("%s: so %p on incomp of NULL", __func__, so)); 1094 1095 /* 1096 * To solve race between close of a listening socket and 1097 * a socket on its incomplete queue, we need to lock both. 1098 * The order is first listening socket, then regular. 1099 * Since we don't have SS_NOFDREF neither SS_PROTOREF, this 1100 * function and the listening socket are the only pointers 1101 * to so. To preserve so and sol, we reference both and then 1102 * relock. 1103 * After relock the socket may not move to so_comp since it 1104 * doesn't have PCB already, but it may be removed from 1105 * so_incomp. If that happens, we share responsiblity on 1106 * freeing the socket, but soclose() has already removed 1107 * it from queue. 1108 */ 1109 soref(sol); 1110 soref(so); 1111 SOCK_UNLOCK(so); 1112 SOLISTEN_LOCK(sol); 1113 SOCK_LOCK(so); 1114 if (so->so_qstate == SQ_INCOMP) { 1115 KASSERT(so->so_listen == sol, 1116 ("%s: so %p migrated out of sol %p", 1117 __func__, so, sol)); 1118 TAILQ_REMOVE(&sol->sol_incomp, so, so_list); 1119 sol->sol_incqlen--; 1120 /* This is guarenteed not to be the last. */ 1121 refcount_release(&sol->so_count); 1122 so->so_qstate = SQ_NONE; 1123 so->so_listen = NULL; 1124 } else 1125 KASSERT(so->so_listen == NULL, 1126 ("%s: so %p not on (in)comp with so_listen", 1127 __func__, so)); 1128 sorele(sol); 1129 KASSERT(so->so_count == 1, 1130 ("%s: so %p count %u", __func__, so, so->so_count)); 1131 so->so_count = 0; 1132 } 1133 if (SOLISTENING(so)) 1134 so->so_error = ECONNABORTED; 1135 SOCK_UNLOCK(so); 1136 1137 if (so->so_dtor != NULL) 1138 so->so_dtor(so); 1139 1140 VNET_SO_ASSERT(so); 1141 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 1142 (*pr->pr_domain->dom_dispose)(so); 1143 if (pr->pr_usrreqs->pru_detach != NULL) 1144 (*pr->pr_usrreqs->pru_detach)(so); 1145 1146 /* 1147 * From this point on, we assume that no other references to this 1148 * socket exist anywhere else in the stack. Therefore, no locks need 1149 * to be acquired or held. 1150 * 1151 * We used to do a lot of socket buffer and socket locking here, as 1152 * well as invoke sorflush() and perform wakeups. The direct call to 1153 * dom_dispose() and sbdestroy() are an inlining of what was 1154 * necessary from sorflush(). 1155 * 1156 * Notice that the socket buffer and kqueue state are torn down 1157 * before calling pru_detach. This means that protocols shold not 1158 * assume they can perform socket wakeups, etc, in their detach code. 1159 */ 1160 if (!SOLISTENING(so)) { 1161 sbdestroy(&so->so_snd, so); 1162 sbdestroy(&so->so_rcv, so); 1163 } 1164 seldrain(&so->so_rdsel); 1165 seldrain(&so->so_wrsel); 1166 knlist_destroy(&so->so_rdsel.si_note); 1167 knlist_destroy(&so->so_wrsel.si_note); 1168 sodealloc(so); 1169 } 1170 1171 /* 1172 * Close a socket on last file table reference removal. Initiate disconnect 1173 * if connected. Free socket when disconnect complete. 1174 * 1175 * This function will sorele() the socket. Note that soclose() may be called 1176 * prior to the ref count reaching zero. The actual socket structure will 1177 * not be freed until the ref count reaches zero. 1178 */ 1179 int 1180 soclose(struct socket *so) 1181 { 1182 struct accept_queue lqueue; 1183 int error = 0; 1184 1185 KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter")); 1186 1187 CURVNET_SET(so->so_vnet); 1188 funsetown(&so->so_sigio); 1189 if (so->so_state & SS_ISCONNECTED) { 1190 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 1191 error = sodisconnect(so); 1192 if (error) { 1193 if (error == ENOTCONN) 1194 error = 0; 1195 goto drop; 1196 } 1197 } 1198 1199 if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) { 1200 if ((so->so_state & SS_ISDISCONNECTING) && 1201 (so->so_state & SS_NBIO)) 1202 goto drop; 1203 while (so->so_state & SS_ISCONNECTED) { 1204 error = tsleep(&so->so_timeo, 1205 PSOCK | PCATCH, "soclos", 1206 so->so_linger * hz); 1207 if (error) 1208 break; 1209 } 1210 } 1211 } 1212 1213 drop: 1214 if (so->so_proto->pr_usrreqs->pru_close != NULL) 1215 (*so->so_proto->pr_usrreqs->pru_close)(so); 1216 1217 SOCK_LOCK(so); 1218 if (SOLISTENING(so)) { 1219 struct socket *sp; 1220 1221 TAILQ_INIT(&lqueue); 1222 TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list); 1223 TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list); 1224 1225 so->sol_qlen = so->sol_incqlen = 0; 1226 1227 TAILQ_FOREACH(sp, &lqueue, so_list) { 1228 SOCK_LOCK(sp); 1229 sp->so_qstate = SQ_NONE; 1230 sp->so_listen = NULL; 1231 SOCK_UNLOCK(sp); 1232 /* Guaranteed not to be the last. */ 1233 refcount_release(&so->so_count); 1234 } 1235 } 1236 KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF")); 1237 so->so_state |= SS_NOFDREF; 1238 sorele(so); 1239 if (SOLISTENING(so)) { 1240 struct socket *sp, *tsp; 1241 1242 TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp) { 1243 SOCK_LOCK(sp); 1244 if (sp->so_count == 0) { 1245 SOCK_UNLOCK(sp); 1246 soabort(sp); 1247 } else 1248 /* sp is now in sofree() */ 1249 SOCK_UNLOCK(sp); 1250 } 1251 } 1252 CURVNET_RESTORE(); 1253 return (error); 1254 } 1255 1256 /* 1257 * soabort() is used to abruptly tear down a connection, such as when a 1258 * resource limit is reached (listen queue depth exceeded), or if a listen 1259 * socket is closed while there are sockets waiting to be accepted. 1260 * 1261 * This interface is tricky, because it is called on an unreferenced socket, 1262 * and must be called only by a thread that has actually removed the socket 1263 * from the listen queue it was on, or races with other threads are risked. 1264 * 1265 * This interface will call into the protocol code, so must not be called 1266 * with any socket locks held. Protocols do call it while holding their own 1267 * recursible protocol mutexes, but this is something that should be subject 1268 * to review in the future. 1269 */ 1270 void 1271 soabort(struct socket *so) 1272 { 1273 1274 /* 1275 * In as much as is possible, assert that no references to this 1276 * socket are held. This is not quite the same as asserting that the 1277 * current thread is responsible for arranging for no references, but 1278 * is as close as we can get for now. 1279 */ 1280 KASSERT(so->so_count == 0, ("soabort: so_count")); 1281 KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF")); 1282 KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF")); 1283 VNET_SO_ASSERT(so); 1284 1285 if (so->so_proto->pr_usrreqs->pru_abort != NULL) 1286 (*so->so_proto->pr_usrreqs->pru_abort)(so); 1287 SOCK_LOCK(so); 1288 sofree(so); 1289 } 1290 1291 int 1292 soaccept(struct socket *so, struct sockaddr **nam) 1293 { 1294 int error; 1295 1296 SOCK_LOCK(so); 1297 KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF")); 1298 so->so_state &= ~SS_NOFDREF; 1299 SOCK_UNLOCK(so); 1300 1301 CURVNET_SET(so->so_vnet); 1302 error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam); 1303 CURVNET_RESTORE(); 1304 return (error); 1305 } 1306 1307 int 1308 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td) 1309 { 1310 1311 return (soconnectat(AT_FDCWD, so, nam, td)); 1312 } 1313 1314 int 1315 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 1316 { 1317 int error; 1318 1319 /* XXXMJ racy */ 1320 if (SOLISTENING(so)) 1321 return (EOPNOTSUPP); 1322 1323 CURVNET_SET(so->so_vnet); 1324 /* 1325 * If protocol is connection-based, can only connect once. 1326 * Otherwise, if connected, try to disconnect first. This allows 1327 * user to disconnect by connecting to, e.g., a null address. 1328 */ 1329 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 1330 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 1331 (error = sodisconnect(so)))) { 1332 error = EISCONN; 1333 } else { 1334 /* 1335 * Prevent accumulated error from previous connection from 1336 * biting us. 1337 */ 1338 so->so_error = 0; 1339 if (fd == AT_FDCWD) { 1340 error = (*so->so_proto->pr_usrreqs->pru_connect)(so, 1341 nam, td); 1342 } else { 1343 error = (*so->so_proto->pr_usrreqs->pru_connectat)(fd, 1344 so, nam, td); 1345 } 1346 } 1347 CURVNET_RESTORE(); 1348 1349 return (error); 1350 } 1351 1352 int 1353 soconnect2(struct socket *so1, struct socket *so2) 1354 { 1355 int error; 1356 1357 CURVNET_SET(so1->so_vnet); 1358 error = (*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2); 1359 CURVNET_RESTORE(); 1360 return (error); 1361 } 1362 1363 int 1364 sodisconnect(struct socket *so) 1365 { 1366 int error; 1367 1368 if ((so->so_state & SS_ISCONNECTED) == 0) 1369 return (ENOTCONN); 1370 if (so->so_state & SS_ISDISCONNECTING) 1371 return (EALREADY); 1372 VNET_SO_ASSERT(so); 1373 error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so); 1374 return (error); 1375 } 1376 1377 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT) 1378 1379 int 1380 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, 1381 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1382 { 1383 long space; 1384 ssize_t resid; 1385 int clen = 0, error, dontroute; 1386 1387 KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM")); 1388 KASSERT(so->so_proto->pr_flags & PR_ATOMIC, 1389 ("sosend_dgram: !PR_ATOMIC")); 1390 1391 if (uio != NULL) 1392 resid = uio->uio_resid; 1393 else 1394 resid = top->m_pkthdr.len; 1395 /* 1396 * In theory resid should be unsigned. However, space must be 1397 * signed, as it might be less than 0 if we over-committed, and we 1398 * must use a signed comparison of space and resid. On the other 1399 * hand, a negative resid causes us to loop sending 0-length 1400 * segments to the protocol. 1401 */ 1402 if (resid < 0) { 1403 error = EINVAL; 1404 goto out; 1405 } 1406 1407 dontroute = 1408 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0; 1409 if (td != NULL) 1410 td->td_ru.ru_msgsnd++; 1411 if (control != NULL) 1412 clen = control->m_len; 1413 1414 SOCKBUF_LOCK(&so->so_snd); 1415 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1416 SOCKBUF_UNLOCK(&so->so_snd); 1417 error = EPIPE; 1418 goto out; 1419 } 1420 if (so->so_error) { 1421 error = so->so_error; 1422 so->so_error = 0; 1423 SOCKBUF_UNLOCK(&so->so_snd); 1424 goto out; 1425 } 1426 if ((so->so_state & SS_ISCONNECTED) == 0) { 1427 /* 1428 * `sendto' and `sendmsg' is allowed on a connection-based 1429 * socket if it supports implied connect. Return ENOTCONN if 1430 * not connected and no address is supplied. 1431 */ 1432 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1433 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1434 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1435 !(resid == 0 && clen != 0)) { 1436 SOCKBUF_UNLOCK(&so->so_snd); 1437 error = ENOTCONN; 1438 goto out; 1439 } 1440 } else if (addr == NULL) { 1441 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1442 error = ENOTCONN; 1443 else 1444 error = EDESTADDRREQ; 1445 SOCKBUF_UNLOCK(&so->so_snd); 1446 goto out; 1447 } 1448 } 1449 1450 /* 1451 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a 1452 * problem and need fixing. 1453 */ 1454 space = sbspace(&so->so_snd); 1455 if (flags & MSG_OOB) 1456 space += 1024; 1457 space -= clen; 1458 SOCKBUF_UNLOCK(&so->so_snd); 1459 if (resid > space) { 1460 error = EMSGSIZE; 1461 goto out; 1462 } 1463 if (uio == NULL) { 1464 resid = 0; 1465 if (flags & MSG_EOR) 1466 top->m_flags |= M_EOR; 1467 } else { 1468 /* 1469 * Copy the data from userland into a mbuf chain. 1470 * If no data is to be copied in, a single empty mbuf 1471 * is returned. 1472 */ 1473 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr, 1474 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0))); 1475 if (top == NULL) { 1476 error = EFAULT; /* only possible error */ 1477 goto out; 1478 } 1479 space -= resid - uio->uio_resid; 1480 resid = uio->uio_resid; 1481 } 1482 KASSERT(resid == 0, ("sosend_dgram: resid != 0")); 1483 /* 1484 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock 1485 * than with. 1486 */ 1487 if (dontroute) { 1488 SOCK_LOCK(so); 1489 so->so_options |= SO_DONTROUTE; 1490 SOCK_UNLOCK(so); 1491 } 1492 /* 1493 * XXX all the SBS_CANTSENDMORE checks previously done could be out 1494 * of date. We could have received a reset packet in an interrupt or 1495 * maybe we slept while doing page faults in uiomove() etc. We could 1496 * probably recheck again inside the locking protection here, but 1497 * there are probably other places that this also happens. We must 1498 * rethink this. 1499 */ 1500 VNET_SO_ASSERT(so); 1501 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1502 (flags & MSG_OOB) ? PRUS_OOB : 1503 /* 1504 * If the user set MSG_EOF, the protocol understands this flag and 1505 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND. 1506 */ 1507 ((flags & MSG_EOF) && 1508 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1509 (resid <= 0)) ? 1510 PRUS_EOF : 1511 /* If there is more to send set PRUS_MORETOCOME */ 1512 (flags & MSG_MORETOCOME) || 1513 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1514 top, addr, control, td); 1515 if (dontroute) { 1516 SOCK_LOCK(so); 1517 so->so_options &= ~SO_DONTROUTE; 1518 SOCK_UNLOCK(so); 1519 } 1520 clen = 0; 1521 control = NULL; 1522 top = NULL; 1523 out: 1524 if (top != NULL) 1525 m_freem(top); 1526 if (control != NULL) 1527 m_freem(control); 1528 return (error); 1529 } 1530 1531 /* 1532 * Send on a socket. If send must go all at once and message is larger than 1533 * send buffering, then hard error. Lock against other senders. If must go 1534 * all at once and not enough room now, then inform user that this would 1535 * block and do nothing. Otherwise, if nonblocking, send as much as 1536 * possible. The data to be sent is described by "uio" if nonzero, otherwise 1537 * by the mbuf chain "top" (which must be null if uio is not). Data provided 1538 * in mbuf chain must be small enough to send all at once. 1539 * 1540 * Returns nonzero on error, timeout or signal; callers must check for short 1541 * counts if EINTR/ERESTART are returned. Data and control buffers are freed 1542 * on return. 1543 */ 1544 int 1545 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio, 1546 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1547 { 1548 long space; 1549 ssize_t resid; 1550 int clen = 0, error, dontroute; 1551 int atomic = sosendallatonce(so) || top; 1552 int pru_flag; 1553 #ifdef KERN_TLS 1554 struct ktls_session *tls; 1555 int tls_enq_cnt, tls_pruflag; 1556 uint8_t tls_rtype; 1557 1558 tls = NULL; 1559 tls_rtype = TLS_RLTYPE_APP; 1560 #endif 1561 if (uio != NULL) 1562 resid = uio->uio_resid; 1563 else if ((top->m_flags & M_PKTHDR) != 0) 1564 resid = top->m_pkthdr.len; 1565 else 1566 resid = m_length(top, NULL); 1567 /* 1568 * In theory resid should be unsigned. However, space must be 1569 * signed, as it might be less than 0 if we over-committed, and we 1570 * must use a signed comparison of space and resid. On the other 1571 * hand, a negative resid causes us to loop sending 0-length 1572 * segments to the protocol. 1573 * 1574 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 1575 * type sockets since that's an error. 1576 */ 1577 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 1578 error = EINVAL; 1579 goto out; 1580 } 1581 1582 dontroute = 1583 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 1584 (so->so_proto->pr_flags & PR_ATOMIC); 1585 if (td != NULL) 1586 td->td_ru.ru_msgsnd++; 1587 if (control != NULL) 1588 clen = control->m_len; 1589 1590 error = sblock(&so->so_snd, SBLOCKWAIT(flags)); 1591 if (error) 1592 goto out; 1593 1594 #ifdef KERN_TLS 1595 tls_pruflag = 0; 1596 tls = ktls_hold(so->so_snd.sb_tls_info); 1597 if (tls != NULL) { 1598 if (tls->mode == TCP_TLS_MODE_SW) 1599 tls_pruflag = PRUS_NOTREADY; 1600 1601 if (control != NULL) { 1602 struct cmsghdr *cm = mtod(control, struct cmsghdr *); 1603 1604 if (clen >= sizeof(*cm) && 1605 cm->cmsg_type == TLS_SET_RECORD_TYPE) { 1606 tls_rtype = *((uint8_t *)CMSG_DATA(cm)); 1607 clen = 0; 1608 m_freem(control); 1609 control = NULL; 1610 atomic = 1; 1611 } 1612 } 1613 } 1614 #endif 1615 1616 restart: 1617 do { 1618 SOCKBUF_LOCK(&so->so_snd); 1619 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1620 SOCKBUF_UNLOCK(&so->so_snd); 1621 error = EPIPE; 1622 goto release; 1623 } 1624 if (so->so_error) { 1625 error = so->so_error; 1626 so->so_error = 0; 1627 SOCKBUF_UNLOCK(&so->so_snd); 1628 goto release; 1629 } 1630 if ((so->so_state & SS_ISCONNECTED) == 0) { 1631 /* 1632 * `sendto' and `sendmsg' is allowed on a connection- 1633 * based socket if it supports implied connect. 1634 * Return ENOTCONN if not connected and no address is 1635 * supplied. 1636 */ 1637 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1638 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1639 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1640 !(resid == 0 && clen != 0)) { 1641 SOCKBUF_UNLOCK(&so->so_snd); 1642 error = ENOTCONN; 1643 goto release; 1644 } 1645 } else if (addr == NULL) { 1646 SOCKBUF_UNLOCK(&so->so_snd); 1647 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1648 error = ENOTCONN; 1649 else 1650 error = EDESTADDRREQ; 1651 goto release; 1652 } 1653 } 1654 space = sbspace(&so->so_snd); 1655 if (flags & MSG_OOB) 1656 space += 1024; 1657 if ((atomic && resid > so->so_snd.sb_hiwat) || 1658 clen > so->so_snd.sb_hiwat) { 1659 SOCKBUF_UNLOCK(&so->so_snd); 1660 error = EMSGSIZE; 1661 goto release; 1662 } 1663 if (space < resid + clen && 1664 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 1665 if ((so->so_state & SS_NBIO) || 1666 (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) { 1667 SOCKBUF_UNLOCK(&so->so_snd); 1668 error = EWOULDBLOCK; 1669 goto release; 1670 } 1671 error = sbwait(&so->so_snd); 1672 SOCKBUF_UNLOCK(&so->so_snd); 1673 if (error) 1674 goto release; 1675 goto restart; 1676 } 1677 SOCKBUF_UNLOCK(&so->so_snd); 1678 space -= clen; 1679 do { 1680 if (uio == NULL) { 1681 resid = 0; 1682 if (flags & MSG_EOR) 1683 top->m_flags |= M_EOR; 1684 #ifdef KERN_TLS 1685 if (tls != NULL) { 1686 ktls_frame(top, tls, &tls_enq_cnt, 1687 tls_rtype); 1688 tls_rtype = TLS_RLTYPE_APP; 1689 } 1690 #endif 1691 } else { 1692 /* 1693 * Copy the data from userland into a mbuf 1694 * chain. If resid is 0, which can happen 1695 * only if we have control to send, then 1696 * a single empty mbuf is returned. This 1697 * is a workaround to prevent protocol send 1698 * methods to panic. 1699 */ 1700 #ifdef KERN_TLS 1701 if (tls != NULL) { 1702 top = m_uiotombuf(uio, M_WAITOK, space, 1703 tls->params.max_frame_len, 1704 M_EXTPG | 1705 ((flags & MSG_EOR) ? M_EOR : 0)); 1706 if (top != NULL) { 1707 ktls_frame(top, tls, 1708 &tls_enq_cnt, tls_rtype); 1709 } 1710 tls_rtype = TLS_RLTYPE_APP; 1711 } else 1712 #endif 1713 top = m_uiotombuf(uio, M_WAITOK, space, 1714 (atomic ? max_hdr : 0), 1715 (atomic ? M_PKTHDR : 0) | 1716 ((flags & MSG_EOR) ? M_EOR : 0)); 1717 if (top == NULL) { 1718 error = EFAULT; /* only possible error */ 1719 goto release; 1720 } 1721 space -= resid - uio->uio_resid; 1722 resid = uio->uio_resid; 1723 } 1724 if (dontroute) { 1725 SOCK_LOCK(so); 1726 so->so_options |= SO_DONTROUTE; 1727 SOCK_UNLOCK(so); 1728 } 1729 /* 1730 * XXX all the SBS_CANTSENDMORE checks previously 1731 * done could be out of date. We could have received 1732 * a reset packet in an interrupt or maybe we slept 1733 * while doing page faults in uiomove() etc. We 1734 * could probably recheck again inside the locking 1735 * protection here, but there are probably other 1736 * places that this also happens. We must rethink 1737 * this. 1738 */ 1739 VNET_SO_ASSERT(so); 1740 1741 pru_flag = (flags & MSG_OOB) ? PRUS_OOB : 1742 /* 1743 * If the user set MSG_EOF, the protocol understands 1744 * this flag and nothing left to send then use 1745 * PRU_SEND_EOF instead of PRU_SEND. 1746 */ 1747 ((flags & MSG_EOF) && 1748 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1749 (resid <= 0)) ? 1750 PRUS_EOF : 1751 /* If there is more to send set PRUS_MORETOCOME. */ 1752 (flags & MSG_MORETOCOME) || 1753 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0; 1754 1755 #ifdef KERN_TLS 1756 pru_flag |= tls_pruflag; 1757 #endif 1758 1759 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1760 pru_flag, top, addr, control, td); 1761 1762 if (dontroute) { 1763 SOCK_LOCK(so); 1764 so->so_options &= ~SO_DONTROUTE; 1765 SOCK_UNLOCK(so); 1766 } 1767 1768 #ifdef KERN_TLS 1769 if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) { 1770 if (error != 0) { 1771 m_freem(top); 1772 top = NULL; 1773 } else { 1774 soref(so); 1775 ktls_enqueue(top, so, tls_enq_cnt); 1776 } 1777 } 1778 #endif 1779 clen = 0; 1780 control = NULL; 1781 top = NULL; 1782 if (error) 1783 goto release; 1784 } while (resid && space > 0); 1785 } while (resid); 1786 1787 release: 1788 sbunlock(&so->so_snd); 1789 out: 1790 #ifdef KERN_TLS 1791 if (tls != NULL) 1792 ktls_free(tls); 1793 #endif 1794 if (top != NULL) 1795 m_freem(top); 1796 if (control != NULL) 1797 m_freem(control); 1798 return (error); 1799 } 1800 1801 int 1802 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, 1803 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1804 { 1805 int error; 1806 1807 CURVNET_SET(so->so_vnet); 1808 if (!SOLISTENING(so)) 1809 error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, 1810 top, control, flags, td); 1811 else { 1812 m_freem(top); 1813 m_freem(control); 1814 error = ENOTCONN; 1815 } 1816 CURVNET_RESTORE(); 1817 return (error); 1818 } 1819 1820 /* 1821 * The part of soreceive() that implements reading non-inline out-of-band 1822 * data from a socket. For more complete comments, see soreceive(), from 1823 * which this code originated. 1824 * 1825 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is 1826 * unable to return an mbuf chain to the caller. 1827 */ 1828 static int 1829 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags) 1830 { 1831 struct protosw *pr = so->so_proto; 1832 struct mbuf *m; 1833 int error; 1834 1835 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); 1836 VNET_SO_ASSERT(so); 1837 1838 m = m_get(M_WAITOK, MT_DATA); 1839 error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK); 1840 if (error) 1841 goto bad; 1842 do { 1843 error = uiomove(mtod(m, void *), 1844 (int) min(uio->uio_resid, m->m_len), uio); 1845 m = m_free(m); 1846 } while (uio->uio_resid && error == 0 && m); 1847 bad: 1848 if (m != NULL) 1849 m_freem(m); 1850 return (error); 1851 } 1852 1853 /* 1854 * Following replacement or removal of the first mbuf on the first mbuf chain 1855 * of a socket buffer, push necessary state changes back into the socket 1856 * buffer so that other consumers see the values consistently. 'nextrecord' 1857 * is the callers locally stored value of the original value of 1858 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. 1859 * NOTE: 'nextrecord' may be NULL. 1860 */ 1861 static __inline void 1862 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) 1863 { 1864 1865 SOCKBUF_LOCK_ASSERT(sb); 1866 /* 1867 * First, update for the new value of nextrecord. If necessary, make 1868 * it the first record. 1869 */ 1870 if (sb->sb_mb != NULL) 1871 sb->sb_mb->m_nextpkt = nextrecord; 1872 else 1873 sb->sb_mb = nextrecord; 1874 1875 /* 1876 * Now update any dependent socket buffer fields to reflect the new 1877 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the 1878 * addition of a second clause that takes care of the case where 1879 * sb_mb has been updated, but remains the last record. 1880 */ 1881 if (sb->sb_mb == NULL) { 1882 sb->sb_mbtail = NULL; 1883 sb->sb_lastrecord = NULL; 1884 } else if (sb->sb_mb->m_nextpkt == NULL) 1885 sb->sb_lastrecord = sb->sb_mb; 1886 } 1887 1888 /* 1889 * Implement receive operations on a socket. We depend on the way that 1890 * records are added to the sockbuf by sbappend. In particular, each record 1891 * (mbufs linked through m_next) must begin with an address if the protocol 1892 * so specifies, followed by an optional mbuf or mbufs containing ancillary 1893 * data, and then zero or more mbufs of data. In order to allow parallelism 1894 * between network receive and copying to user space, as well as avoid 1895 * sleeping with a mutex held, we release the socket buffer mutex during the 1896 * user space copy. Although the sockbuf is locked, new data may still be 1897 * appended, and thus we must maintain consistency of the sockbuf during that 1898 * time. 1899 * 1900 * The caller may receive the data as a single mbuf chain by supplying an 1901 * mbuf **mp0 for use in returning the chain. The uio is then used only for 1902 * the count in uio_resid. 1903 */ 1904 int 1905 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio, 1906 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1907 { 1908 struct mbuf *m, **mp; 1909 int flags, error, offset; 1910 ssize_t len; 1911 struct protosw *pr = so->so_proto; 1912 struct mbuf *nextrecord; 1913 int moff, type = 0; 1914 ssize_t orig_resid = uio->uio_resid; 1915 1916 mp = mp0; 1917 if (psa != NULL) 1918 *psa = NULL; 1919 if (controlp != NULL) 1920 *controlp = NULL; 1921 if (flagsp != NULL) 1922 flags = *flagsp &~ MSG_EOR; 1923 else 1924 flags = 0; 1925 if (flags & MSG_OOB) 1926 return (soreceive_rcvoob(so, uio, flags)); 1927 if (mp != NULL) 1928 *mp = NULL; 1929 if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING) 1930 && uio->uio_resid) { 1931 VNET_SO_ASSERT(so); 1932 (*pr->pr_usrreqs->pru_rcvd)(so, 0); 1933 } 1934 1935 error = sblock(&so->so_rcv, SBLOCKWAIT(flags)); 1936 if (error) 1937 return (error); 1938 1939 restart: 1940 SOCKBUF_LOCK(&so->so_rcv); 1941 m = so->so_rcv.sb_mb; 1942 /* 1943 * If we have less data than requested, block awaiting more (subject 1944 * to any timeout) if: 1945 * 1. the current count is less than the low water mark, or 1946 * 2. MSG_DONTWAIT is not set 1947 */ 1948 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 1949 sbavail(&so->so_rcv) < uio->uio_resid) && 1950 sbavail(&so->so_rcv) < so->so_rcv.sb_lowat && 1951 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 1952 KASSERT(m != NULL || !sbavail(&so->so_rcv), 1953 ("receive: m == %p sbavail == %u", 1954 m, sbavail(&so->so_rcv))); 1955 if (so->so_error || so->so_rerror) { 1956 if (m != NULL) 1957 goto dontblock; 1958 if (so->so_error) 1959 error = so->so_error; 1960 else 1961 error = so->so_rerror; 1962 if ((flags & MSG_PEEK) == 0) { 1963 if (so->so_error) 1964 so->so_error = 0; 1965 else 1966 so->so_rerror = 0; 1967 } 1968 SOCKBUF_UNLOCK(&so->so_rcv); 1969 goto release; 1970 } 1971 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1972 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 1973 if (m != NULL) 1974 goto dontblock; 1975 #ifdef KERN_TLS 1976 else if (so->so_rcv.sb_tlsdcc == 0 && 1977 so->so_rcv.sb_tlscc == 0) { 1978 #else 1979 else { 1980 #endif 1981 SOCKBUF_UNLOCK(&so->so_rcv); 1982 goto release; 1983 } 1984 } 1985 for (; m != NULL; m = m->m_next) 1986 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 1987 m = so->so_rcv.sb_mb; 1988 goto dontblock; 1989 } 1990 if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED | 1991 SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 && 1992 (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) { 1993 SOCKBUF_UNLOCK(&so->so_rcv); 1994 error = ENOTCONN; 1995 goto release; 1996 } 1997 if (uio->uio_resid == 0) { 1998 SOCKBUF_UNLOCK(&so->so_rcv); 1999 goto release; 2000 } 2001 if ((so->so_state & SS_NBIO) || 2002 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2003 SOCKBUF_UNLOCK(&so->so_rcv); 2004 error = EWOULDBLOCK; 2005 goto release; 2006 } 2007 SBLASTRECORDCHK(&so->so_rcv); 2008 SBLASTMBUFCHK(&so->so_rcv); 2009 error = sbwait(&so->so_rcv); 2010 SOCKBUF_UNLOCK(&so->so_rcv); 2011 if (error) 2012 goto release; 2013 goto restart; 2014 } 2015 dontblock: 2016 /* 2017 * From this point onward, we maintain 'nextrecord' as a cache of the 2018 * pointer to the next record in the socket buffer. We must keep the 2019 * various socket buffer pointers and local stack versions of the 2020 * pointers in sync, pushing out modifications before dropping the 2021 * socket buffer mutex, and re-reading them when picking it up. 2022 * 2023 * Otherwise, we will race with the network stack appending new data 2024 * or records onto the socket buffer by using inconsistent/stale 2025 * versions of the field, possibly resulting in socket buffer 2026 * corruption. 2027 * 2028 * By holding the high-level sblock(), we prevent simultaneous 2029 * readers from pulling off the front of the socket buffer. 2030 */ 2031 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2032 if (uio->uio_td) 2033 uio->uio_td->td_ru.ru_msgrcv++; 2034 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); 2035 SBLASTRECORDCHK(&so->so_rcv); 2036 SBLASTMBUFCHK(&so->so_rcv); 2037 nextrecord = m->m_nextpkt; 2038 if (pr->pr_flags & PR_ADDR) { 2039 KASSERT(m->m_type == MT_SONAME, 2040 ("m->m_type == %d", m->m_type)); 2041 orig_resid = 0; 2042 if (psa != NULL) 2043 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2044 M_NOWAIT); 2045 if (flags & MSG_PEEK) { 2046 m = m->m_next; 2047 } else { 2048 sbfree(&so->so_rcv, m); 2049 so->so_rcv.sb_mb = m_free(m); 2050 m = so->so_rcv.sb_mb; 2051 sockbuf_pushsync(&so->so_rcv, nextrecord); 2052 } 2053 } 2054 2055 /* 2056 * Process one or more MT_CONTROL mbufs present before any data mbufs 2057 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 2058 * just copy the data; if !MSG_PEEK, we call into the protocol to 2059 * perform externalization (or freeing if controlp == NULL). 2060 */ 2061 if (m != NULL && m->m_type == MT_CONTROL) { 2062 struct mbuf *cm = NULL, *cmn; 2063 struct mbuf **cme = &cm; 2064 #ifdef KERN_TLS 2065 struct cmsghdr *cmsg; 2066 struct tls_get_record tgr; 2067 2068 /* 2069 * For MSG_TLSAPPDATA, check for a non-application data 2070 * record. If found, return ENXIO without removing 2071 * it from the receive queue. This allows a subsequent 2072 * call without MSG_TLSAPPDATA to receive it. 2073 * Note that, for TLS, there should only be a single 2074 * control mbuf with the TLS_GET_RECORD message in it. 2075 */ 2076 if (flags & MSG_TLSAPPDATA) { 2077 cmsg = mtod(m, struct cmsghdr *); 2078 if (cmsg->cmsg_type == TLS_GET_RECORD && 2079 cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) { 2080 memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr)); 2081 /* This will need to change for TLS 1.3. */ 2082 if (tgr.tls_type != TLS_RLTYPE_APP) { 2083 SOCKBUF_UNLOCK(&so->so_rcv); 2084 error = ENXIO; 2085 goto release; 2086 } 2087 } 2088 } 2089 #endif 2090 2091 do { 2092 if (flags & MSG_PEEK) { 2093 if (controlp != NULL) { 2094 *controlp = m_copym(m, 0, m->m_len, 2095 M_NOWAIT); 2096 controlp = &(*controlp)->m_next; 2097 } 2098 m = m->m_next; 2099 } else { 2100 sbfree(&so->so_rcv, m); 2101 so->so_rcv.sb_mb = m->m_next; 2102 m->m_next = NULL; 2103 *cme = m; 2104 cme = &(*cme)->m_next; 2105 m = so->so_rcv.sb_mb; 2106 } 2107 } while (m != NULL && m->m_type == MT_CONTROL); 2108 if ((flags & MSG_PEEK) == 0) 2109 sockbuf_pushsync(&so->so_rcv, nextrecord); 2110 while (cm != NULL) { 2111 cmn = cm->m_next; 2112 cm->m_next = NULL; 2113 if (pr->pr_domain->dom_externalize != NULL) { 2114 SOCKBUF_UNLOCK(&so->so_rcv); 2115 VNET_SO_ASSERT(so); 2116 error = (*pr->pr_domain->dom_externalize) 2117 (cm, controlp, flags); 2118 SOCKBUF_LOCK(&so->so_rcv); 2119 } else if (controlp != NULL) 2120 *controlp = cm; 2121 else 2122 m_freem(cm); 2123 if (controlp != NULL) { 2124 orig_resid = 0; 2125 while (*controlp != NULL) 2126 controlp = &(*controlp)->m_next; 2127 } 2128 cm = cmn; 2129 } 2130 if (m != NULL) 2131 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 2132 else 2133 nextrecord = so->so_rcv.sb_mb; 2134 orig_resid = 0; 2135 } 2136 if (m != NULL) { 2137 if ((flags & MSG_PEEK) == 0) { 2138 KASSERT(m->m_nextpkt == nextrecord, 2139 ("soreceive: post-control, nextrecord !sync")); 2140 if (nextrecord == NULL) { 2141 KASSERT(so->so_rcv.sb_mb == m, 2142 ("soreceive: post-control, sb_mb!=m")); 2143 KASSERT(so->so_rcv.sb_lastrecord == m, 2144 ("soreceive: post-control, lastrecord!=m")); 2145 } 2146 } 2147 type = m->m_type; 2148 if (type == MT_OOBDATA) 2149 flags |= MSG_OOB; 2150 } else { 2151 if ((flags & MSG_PEEK) == 0) { 2152 KASSERT(so->so_rcv.sb_mb == nextrecord, 2153 ("soreceive: sb_mb != nextrecord")); 2154 if (so->so_rcv.sb_mb == NULL) { 2155 KASSERT(so->so_rcv.sb_lastrecord == NULL, 2156 ("soreceive: sb_lastercord != NULL")); 2157 } 2158 } 2159 } 2160 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2161 SBLASTRECORDCHK(&so->so_rcv); 2162 SBLASTMBUFCHK(&so->so_rcv); 2163 2164 /* 2165 * Now continue to read any data mbufs off of the head of the socket 2166 * buffer until the read request is satisfied. Note that 'type' is 2167 * used to store the type of any mbuf reads that have happened so far 2168 * such that soreceive() can stop reading if the type changes, which 2169 * causes soreceive() to return only one of regular data and inline 2170 * out-of-band data in a single socket receive operation. 2171 */ 2172 moff = 0; 2173 offset = 0; 2174 while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0 2175 && error == 0) { 2176 /* 2177 * If the type of mbuf has changed since the last mbuf 2178 * examined ('type'), end the receive operation. 2179 */ 2180 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2181 if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) { 2182 if (type != m->m_type) 2183 break; 2184 } else if (type == MT_OOBDATA) 2185 break; 2186 else 2187 KASSERT(m->m_type == MT_DATA, 2188 ("m->m_type == %d", m->m_type)); 2189 so->so_rcv.sb_state &= ~SBS_RCVATMARK; 2190 len = uio->uio_resid; 2191 if (so->so_oobmark && len > so->so_oobmark - offset) 2192 len = so->so_oobmark - offset; 2193 if (len > m->m_len - moff) 2194 len = m->m_len - moff; 2195 /* 2196 * If mp is set, just pass back the mbufs. Otherwise copy 2197 * them out via the uio, then free. Sockbuf must be 2198 * consistent here (points to current mbuf, it points to next 2199 * record) when we drop priority; we must note any additions 2200 * to the sockbuf when we block interrupts again. 2201 */ 2202 if (mp == NULL) { 2203 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2204 SBLASTRECORDCHK(&so->so_rcv); 2205 SBLASTMBUFCHK(&so->so_rcv); 2206 SOCKBUF_UNLOCK(&so->so_rcv); 2207 if ((m->m_flags & M_EXTPG) != 0) 2208 error = m_unmapped_uiomove(m, moff, uio, 2209 (int)len); 2210 else 2211 error = uiomove(mtod(m, char *) + moff, 2212 (int)len, uio); 2213 SOCKBUF_LOCK(&so->so_rcv); 2214 if (error) { 2215 /* 2216 * The MT_SONAME mbuf has already been removed 2217 * from the record, so it is necessary to 2218 * remove the data mbufs, if any, to preserve 2219 * the invariant in the case of PR_ADDR that 2220 * requires MT_SONAME mbufs at the head of 2221 * each record. 2222 */ 2223 if (pr->pr_flags & PR_ATOMIC && 2224 ((flags & MSG_PEEK) == 0)) 2225 (void)sbdroprecord_locked(&so->so_rcv); 2226 SOCKBUF_UNLOCK(&so->so_rcv); 2227 goto release; 2228 } 2229 } else 2230 uio->uio_resid -= len; 2231 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2232 if (len == m->m_len - moff) { 2233 if (m->m_flags & M_EOR) 2234 flags |= MSG_EOR; 2235 if (flags & MSG_PEEK) { 2236 m = m->m_next; 2237 moff = 0; 2238 } else { 2239 nextrecord = m->m_nextpkt; 2240 sbfree(&so->so_rcv, m); 2241 if (mp != NULL) { 2242 m->m_nextpkt = NULL; 2243 *mp = m; 2244 mp = &m->m_next; 2245 so->so_rcv.sb_mb = m = m->m_next; 2246 *mp = NULL; 2247 } else { 2248 so->so_rcv.sb_mb = m_free(m); 2249 m = so->so_rcv.sb_mb; 2250 } 2251 sockbuf_pushsync(&so->so_rcv, nextrecord); 2252 SBLASTRECORDCHK(&so->so_rcv); 2253 SBLASTMBUFCHK(&so->so_rcv); 2254 } 2255 } else { 2256 if (flags & MSG_PEEK) 2257 moff += len; 2258 else { 2259 if (mp != NULL) { 2260 if (flags & MSG_DONTWAIT) { 2261 *mp = m_copym(m, 0, len, 2262 M_NOWAIT); 2263 if (*mp == NULL) { 2264 /* 2265 * m_copym() couldn't 2266 * allocate an mbuf. 2267 * Adjust uio_resid back 2268 * (it was adjusted 2269 * down by len bytes, 2270 * which we didn't end 2271 * up "copying" over). 2272 */ 2273 uio->uio_resid += len; 2274 break; 2275 } 2276 } else { 2277 SOCKBUF_UNLOCK(&so->so_rcv); 2278 *mp = m_copym(m, 0, len, 2279 M_WAITOK); 2280 SOCKBUF_LOCK(&so->so_rcv); 2281 } 2282 } 2283 sbcut_locked(&so->so_rcv, len); 2284 } 2285 } 2286 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2287 if (so->so_oobmark) { 2288 if ((flags & MSG_PEEK) == 0) { 2289 so->so_oobmark -= len; 2290 if (so->so_oobmark == 0) { 2291 so->so_rcv.sb_state |= SBS_RCVATMARK; 2292 break; 2293 } 2294 } else { 2295 offset += len; 2296 if (offset == so->so_oobmark) 2297 break; 2298 } 2299 } 2300 if (flags & MSG_EOR) 2301 break; 2302 /* 2303 * If the MSG_WAITALL flag is set (for non-atomic socket), we 2304 * must not quit until "uio->uio_resid == 0" or an error 2305 * termination. If a signal/timeout occurs, return with a 2306 * short count but without error. Keep sockbuf locked 2307 * against other readers. 2308 */ 2309 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 2310 !sosendallatonce(so) && nextrecord == NULL) { 2311 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2312 if (so->so_error || so->so_rerror || 2313 so->so_rcv.sb_state & SBS_CANTRCVMORE) 2314 break; 2315 /* 2316 * Notify the protocol that some data has been 2317 * drained before blocking. 2318 */ 2319 if (pr->pr_flags & PR_WANTRCVD) { 2320 SOCKBUF_UNLOCK(&so->so_rcv); 2321 VNET_SO_ASSERT(so); 2322 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 2323 SOCKBUF_LOCK(&so->so_rcv); 2324 } 2325 SBLASTRECORDCHK(&so->so_rcv); 2326 SBLASTMBUFCHK(&so->so_rcv); 2327 /* 2328 * We could receive some data while was notifying 2329 * the protocol. Skip blocking in this case. 2330 */ 2331 if (so->so_rcv.sb_mb == NULL) { 2332 error = sbwait(&so->so_rcv); 2333 if (error) { 2334 SOCKBUF_UNLOCK(&so->so_rcv); 2335 goto release; 2336 } 2337 } 2338 m = so->so_rcv.sb_mb; 2339 if (m != NULL) 2340 nextrecord = m->m_nextpkt; 2341 } 2342 } 2343 2344 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2345 if (m != NULL && pr->pr_flags & PR_ATOMIC) { 2346 flags |= MSG_TRUNC; 2347 if ((flags & MSG_PEEK) == 0) 2348 (void) sbdroprecord_locked(&so->so_rcv); 2349 } 2350 if ((flags & MSG_PEEK) == 0) { 2351 if (m == NULL) { 2352 /* 2353 * First part is an inline SB_EMPTY_FIXUP(). Second 2354 * part makes sure sb_lastrecord is up-to-date if 2355 * there is still data in the socket buffer. 2356 */ 2357 so->so_rcv.sb_mb = nextrecord; 2358 if (so->so_rcv.sb_mb == NULL) { 2359 so->so_rcv.sb_mbtail = NULL; 2360 so->so_rcv.sb_lastrecord = NULL; 2361 } else if (nextrecord->m_nextpkt == NULL) 2362 so->so_rcv.sb_lastrecord = nextrecord; 2363 } 2364 SBLASTRECORDCHK(&so->so_rcv); 2365 SBLASTMBUFCHK(&so->so_rcv); 2366 /* 2367 * If soreceive() is being done from the socket callback, 2368 * then don't need to generate ACK to peer to update window, 2369 * since ACK will be generated on return to TCP. 2370 */ 2371 if (!(flags & MSG_SOCALLBCK) && 2372 (pr->pr_flags & PR_WANTRCVD)) { 2373 SOCKBUF_UNLOCK(&so->so_rcv); 2374 VNET_SO_ASSERT(so); 2375 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 2376 SOCKBUF_LOCK(&so->so_rcv); 2377 } 2378 } 2379 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2380 if (orig_resid == uio->uio_resid && orig_resid && 2381 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { 2382 SOCKBUF_UNLOCK(&so->so_rcv); 2383 goto restart; 2384 } 2385 SOCKBUF_UNLOCK(&so->so_rcv); 2386 2387 if (flagsp != NULL) 2388 *flagsp |= flags; 2389 release: 2390 sbunlock(&so->so_rcv); 2391 return (error); 2392 } 2393 2394 /* 2395 * Optimized version of soreceive() for stream (TCP) sockets. 2396 */ 2397 int 2398 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio, 2399 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2400 { 2401 int len = 0, error = 0, flags, oresid; 2402 struct sockbuf *sb; 2403 struct mbuf *m, *n = NULL; 2404 2405 /* We only do stream sockets. */ 2406 if (so->so_type != SOCK_STREAM) 2407 return (EINVAL); 2408 if (psa != NULL) 2409 *psa = NULL; 2410 if (flagsp != NULL) 2411 flags = *flagsp &~ MSG_EOR; 2412 else 2413 flags = 0; 2414 if (controlp != NULL) 2415 *controlp = NULL; 2416 if (flags & MSG_OOB) 2417 return (soreceive_rcvoob(so, uio, flags)); 2418 if (mp0 != NULL) 2419 *mp0 = NULL; 2420 2421 sb = &so->so_rcv; 2422 2423 #ifdef KERN_TLS 2424 /* 2425 * KTLS store TLS records as records with a control message to 2426 * describe the framing. 2427 * 2428 * We check once here before acquiring locks to optimize the 2429 * common case. 2430 */ 2431 if (sb->sb_tls_info != NULL) 2432 return (soreceive_generic(so, psa, uio, mp0, controlp, 2433 flagsp)); 2434 #endif 2435 2436 /* Prevent other readers from entering the socket. */ 2437 error = sblock(sb, SBLOCKWAIT(flags)); 2438 if (error) 2439 return (error); 2440 SOCKBUF_LOCK(sb); 2441 2442 #ifdef KERN_TLS 2443 if (sb->sb_tls_info != NULL) { 2444 SOCKBUF_UNLOCK(sb); 2445 sbunlock(sb); 2446 return (soreceive_generic(so, psa, uio, mp0, controlp, 2447 flagsp)); 2448 } 2449 #endif 2450 2451 /* Easy one, no space to copyout anything. */ 2452 if (uio->uio_resid == 0) { 2453 error = EINVAL; 2454 goto out; 2455 } 2456 oresid = uio->uio_resid; 2457 2458 /* We will never ever get anything unless we are or were connected. */ 2459 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 2460 error = ENOTCONN; 2461 goto out; 2462 } 2463 2464 restart: 2465 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2466 2467 /* Abort if socket has reported problems. */ 2468 if (so->so_error) { 2469 if (sbavail(sb) > 0) 2470 goto deliver; 2471 if (oresid > uio->uio_resid) 2472 goto out; 2473 error = so->so_error; 2474 if (!(flags & MSG_PEEK)) 2475 so->so_error = 0; 2476 goto out; 2477 } 2478 2479 /* Door is closed. Deliver what is left, if any. */ 2480 if (sb->sb_state & SBS_CANTRCVMORE) { 2481 if (sbavail(sb) > 0) 2482 goto deliver; 2483 else 2484 goto out; 2485 } 2486 2487 /* Socket buffer is empty and we shall not block. */ 2488 if (sbavail(sb) == 0 && 2489 ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) { 2490 error = EAGAIN; 2491 goto out; 2492 } 2493 2494 /* Socket buffer got some data that we shall deliver now. */ 2495 if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) && 2496 ((so->so_state & SS_NBIO) || 2497 (flags & (MSG_DONTWAIT|MSG_NBIO)) || 2498 sbavail(sb) >= sb->sb_lowat || 2499 sbavail(sb) >= uio->uio_resid || 2500 sbavail(sb) >= sb->sb_hiwat) ) { 2501 goto deliver; 2502 } 2503 2504 /* On MSG_WAITALL we must wait until all data or error arrives. */ 2505 if ((flags & MSG_WAITALL) && 2506 (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat)) 2507 goto deliver; 2508 2509 /* 2510 * Wait and block until (more) data comes in. 2511 * NB: Drops the sockbuf lock during wait. 2512 */ 2513 error = sbwait(sb); 2514 if (error) 2515 goto out; 2516 goto restart; 2517 2518 deliver: 2519 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2520 KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__)); 2521 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__)); 2522 2523 /* Statistics. */ 2524 if (uio->uio_td) 2525 uio->uio_td->td_ru.ru_msgrcv++; 2526 2527 /* Fill uio until full or current end of socket buffer is reached. */ 2528 len = min(uio->uio_resid, sbavail(sb)); 2529 if (mp0 != NULL) { 2530 /* Dequeue as many mbufs as possible. */ 2531 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) { 2532 if (*mp0 == NULL) 2533 *mp0 = sb->sb_mb; 2534 else 2535 m_cat(*mp0, sb->sb_mb); 2536 for (m = sb->sb_mb; 2537 m != NULL && m->m_len <= len; 2538 m = m->m_next) { 2539 KASSERT(!(m->m_flags & M_NOTAVAIL), 2540 ("%s: m %p not available", __func__, m)); 2541 len -= m->m_len; 2542 uio->uio_resid -= m->m_len; 2543 sbfree(sb, m); 2544 n = m; 2545 } 2546 n->m_next = NULL; 2547 sb->sb_mb = m; 2548 sb->sb_lastrecord = sb->sb_mb; 2549 if (sb->sb_mb == NULL) 2550 SB_EMPTY_FIXUP(sb); 2551 } 2552 /* Copy the remainder. */ 2553 if (len > 0) { 2554 KASSERT(sb->sb_mb != NULL, 2555 ("%s: len > 0 && sb->sb_mb empty", __func__)); 2556 2557 m = m_copym(sb->sb_mb, 0, len, M_NOWAIT); 2558 if (m == NULL) 2559 len = 0; /* Don't flush data from sockbuf. */ 2560 else 2561 uio->uio_resid -= len; 2562 if (*mp0 != NULL) 2563 m_cat(*mp0, m); 2564 else 2565 *mp0 = m; 2566 if (*mp0 == NULL) { 2567 error = ENOBUFS; 2568 goto out; 2569 } 2570 } 2571 } else { 2572 /* NB: Must unlock socket buffer as uiomove may sleep. */ 2573 SOCKBUF_UNLOCK(sb); 2574 error = m_mbuftouio(uio, sb->sb_mb, len); 2575 SOCKBUF_LOCK(sb); 2576 if (error) 2577 goto out; 2578 } 2579 SBLASTRECORDCHK(sb); 2580 SBLASTMBUFCHK(sb); 2581 2582 /* 2583 * Remove the delivered data from the socket buffer unless we 2584 * were only peeking. 2585 */ 2586 if (!(flags & MSG_PEEK)) { 2587 if (len > 0) 2588 sbdrop_locked(sb, len); 2589 2590 /* Notify protocol that we drained some data. */ 2591 if ((so->so_proto->pr_flags & PR_WANTRCVD) && 2592 (((flags & MSG_WAITALL) && uio->uio_resid > 0) || 2593 !(flags & MSG_SOCALLBCK))) { 2594 SOCKBUF_UNLOCK(sb); 2595 VNET_SO_ASSERT(so); 2596 (*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags); 2597 SOCKBUF_LOCK(sb); 2598 } 2599 } 2600 2601 /* 2602 * For MSG_WAITALL we may have to loop again and wait for 2603 * more data to come in. 2604 */ 2605 if ((flags & MSG_WAITALL) && uio->uio_resid > 0) 2606 goto restart; 2607 out: 2608 SOCKBUF_LOCK_ASSERT(sb); 2609 SBLASTRECORDCHK(sb); 2610 SBLASTMBUFCHK(sb); 2611 SOCKBUF_UNLOCK(sb); 2612 sbunlock(sb); 2613 return (error); 2614 } 2615 2616 /* 2617 * Optimized version of soreceive() for simple datagram cases from userspace. 2618 * Unlike in the stream case, we're able to drop a datagram if copyout() 2619 * fails, and because we handle datagrams atomically, we don't need to use a 2620 * sleep lock to prevent I/O interlacing. 2621 */ 2622 int 2623 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio, 2624 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2625 { 2626 struct mbuf *m, *m2; 2627 int flags, error; 2628 ssize_t len; 2629 struct protosw *pr = so->so_proto; 2630 struct mbuf *nextrecord; 2631 2632 if (psa != NULL) 2633 *psa = NULL; 2634 if (controlp != NULL) 2635 *controlp = NULL; 2636 if (flagsp != NULL) 2637 flags = *flagsp &~ MSG_EOR; 2638 else 2639 flags = 0; 2640 2641 /* 2642 * For any complicated cases, fall back to the full 2643 * soreceive_generic(). 2644 */ 2645 if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB)) 2646 return (soreceive_generic(so, psa, uio, mp0, controlp, 2647 flagsp)); 2648 2649 /* 2650 * Enforce restrictions on use. 2651 */ 2652 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0, 2653 ("soreceive_dgram: wantrcvd")); 2654 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic")); 2655 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0, 2656 ("soreceive_dgram: SBS_RCVATMARK")); 2657 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0, 2658 ("soreceive_dgram: P_CONNREQUIRED")); 2659 2660 /* 2661 * Loop blocking while waiting for a datagram. 2662 */ 2663 SOCKBUF_LOCK(&so->so_rcv); 2664 while ((m = so->so_rcv.sb_mb) == NULL) { 2665 KASSERT(sbavail(&so->so_rcv) == 0, 2666 ("soreceive_dgram: sb_mb NULL but sbavail %u", 2667 sbavail(&so->so_rcv))); 2668 if (so->so_error) { 2669 error = so->so_error; 2670 so->so_error = 0; 2671 SOCKBUF_UNLOCK(&so->so_rcv); 2672 return (error); 2673 } 2674 if (so->so_rcv.sb_state & SBS_CANTRCVMORE || 2675 uio->uio_resid == 0) { 2676 SOCKBUF_UNLOCK(&so->so_rcv); 2677 return (0); 2678 } 2679 if ((so->so_state & SS_NBIO) || 2680 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2681 SOCKBUF_UNLOCK(&so->so_rcv); 2682 return (EWOULDBLOCK); 2683 } 2684 SBLASTRECORDCHK(&so->so_rcv); 2685 SBLASTMBUFCHK(&so->so_rcv); 2686 error = sbwait(&so->so_rcv); 2687 if (error) { 2688 SOCKBUF_UNLOCK(&so->so_rcv); 2689 return (error); 2690 } 2691 } 2692 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2693 2694 if (uio->uio_td) 2695 uio->uio_td->td_ru.ru_msgrcv++; 2696 SBLASTRECORDCHK(&so->so_rcv); 2697 SBLASTMBUFCHK(&so->so_rcv); 2698 nextrecord = m->m_nextpkt; 2699 if (nextrecord == NULL) { 2700 KASSERT(so->so_rcv.sb_lastrecord == m, 2701 ("soreceive_dgram: lastrecord != m")); 2702 } 2703 2704 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord, 2705 ("soreceive_dgram: m_nextpkt != nextrecord")); 2706 2707 /* 2708 * Pull 'm' and its chain off the front of the packet queue. 2709 */ 2710 so->so_rcv.sb_mb = NULL; 2711 sockbuf_pushsync(&so->so_rcv, nextrecord); 2712 2713 /* 2714 * Walk 'm's chain and free that many bytes from the socket buffer. 2715 */ 2716 for (m2 = m; m2 != NULL; m2 = m2->m_next) 2717 sbfree(&so->so_rcv, m2); 2718 2719 /* 2720 * Do a few last checks before we let go of the lock. 2721 */ 2722 SBLASTRECORDCHK(&so->so_rcv); 2723 SBLASTMBUFCHK(&so->so_rcv); 2724 SOCKBUF_UNLOCK(&so->so_rcv); 2725 2726 if (pr->pr_flags & PR_ADDR) { 2727 KASSERT(m->m_type == MT_SONAME, 2728 ("m->m_type == %d", m->m_type)); 2729 if (psa != NULL) 2730 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2731 M_NOWAIT); 2732 m = m_free(m); 2733 } 2734 if (m == NULL) { 2735 /* XXXRW: Can this happen? */ 2736 return (0); 2737 } 2738 2739 /* 2740 * Packet to copyout() is now in 'm' and it is disconnected from the 2741 * queue. 2742 * 2743 * Process one or more MT_CONTROL mbufs present before any data mbufs 2744 * in the first mbuf chain on the socket buffer. We call into the 2745 * protocol to perform externalization (or freeing if controlp == 2746 * NULL). In some cases there can be only MT_CONTROL mbufs without 2747 * MT_DATA mbufs. 2748 */ 2749 if (m->m_type == MT_CONTROL) { 2750 struct mbuf *cm = NULL, *cmn; 2751 struct mbuf **cme = &cm; 2752 2753 do { 2754 m2 = m->m_next; 2755 m->m_next = NULL; 2756 *cme = m; 2757 cme = &(*cme)->m_next; 2758 m = m2; 2759 } while (m != NULL && m->m_type == MT_CONTROL); 2760 while (cm != NULL) { 2761 cmn = cm->m_next; 2762 cm->m_next = NULL; 2763 if (pr->pr_domain->dom_externalize != NULL) { 2764 error = (*pr->pr_domain->dom_externalize) 2765 (cm, controlp, flags); 2766 } else if (controlp != NULL) 2767 *controlp = cm; 2768 else 2769 m_freem(cm); 2770 if (controlp != NULL) { 2771 while (*controlp != NULL) 2772 controlp = &(*controlp)->m_next; 2773 } 2774 cm = cmn; 2775 } 2776 } 2777 KASSERT(m == NULL || m->m_type == MT_DATA, 2778 ("soreceive_dgram: !data")); 2779 while (m != NULL && uio->uio_resid > 0) { 2780 len = uio->uio_resid; 2781 if (len > m->m_len) 2782 len = m->m_len; 2783 error = uiomove(mtod(m, char *), (int)len, uio); 2784 if (error) { 2785 m_freem(m); 2786 return (error); 2787 } 2788 if (len == m->m_len) 2789 m = m_free(m); 2790 else { 2791 m->m_data += len; 2792 m->m_len -= len; 2793 } 2794 } 2795 if (m != NULL) { 2796 flags |= MSG_TRUNC; 2797 m_freem(m); 2798 } 2799 if (flagsp != NULL) 2800 *flagsp |= flags; 2801 return (0); 2802 } 2803 2804 int 2805 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, 2806 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2807 { 2808 int error; 2809 2810 CURVNET_SET(so->so_vnet); 2811 if (!SOLISTENING(so)) 2812 error = (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, 2813 mp0, controlp, flagsp)); 2814 else 2815 error = ENOTCONN; 2816 CURVNET_RESTORE(); 2817 return (error); 2818 } 2819 2820 int 2821 soshutdown(struct socket *so, int how) 2822 { 2823 struct protosw *pr = so->so_proto; 2824 int error, soerror_enotconn; 2825 2826 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 2827 return (EINVAL); 2828 2829 soerror_enotconn = 0; 2830 if ((so->so_state & 2831 (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) { 2832 /* 2833 * POSIX mandates us to return ENOTCONN when shutdown(2) is 2834 * invoked on a datagram sockets, however historically we would 2835 * actually tear socket down. This is known to be leveraged by 2836 * some applications to unblock process waiting in recvXXX(2) 2837 * by other process that it shares that socket with. Try to meet 2838 * both backward-compatibility and POSIX requirements by forcing 2839 * ENOTCONN but still asking protocol to perform pru_shutdown(). 2840 */ 2841 if (so->so_type != SOCK_DGRAM && !SOLISTENING(so)) 2842 return (ENOTCONN); 2843 soerror_enotconn = 1; 2844 } 2845 2846 if (SOLISTENING(so)) { 2847 if (how != SHUT_WR) { 2848 SOLISTEN_LOCK(so); 2849 so->so_error = ECONNABORTED; 2850 solisten_wakeup(so); /* unlocks so */ 2851 } 2852 goto done; 2853 } 2854 2855 CURVNET_SET(so->so_vnet); 2856 if (pr->pr_usrreqs->pru_flush != NULL) 2857 (*pr->pr_usrreqs->pru_flush)(so, how); 2858 if (how != SHUT_WR) 2859 sorflush(so); 2860 if (how != SHUT_RD) { 2861 error = (*pr->pr_usrreqs->pru_shutdown)(so); 2862 wakeup(&so->so_timeo); 2863 CURVNET_RESTORE(); 2864 return ((error == 0 && soerror_enotconn) ? ENOTCONN : error); 2865 } 2866 wakeup(&so->so_timeo); 2867 CURVNET_RESTORE(); 2868 2869 done: 2870 return (soerror_enotconn ? ENOTCONN : 0); 2871 } 2872 2873 void 2874 sorflush(struct socket *so) 2875 { 2876 struct sockbuf *sb = &so->so_rcv; 2877 struct protosw *pr = so->so_proto; 2878 struct socket aso; 2879 2880 VNET_SO_ASSERT(so); 2881 2882 /* 2883 * In order to avoid calling dom_dispose with the socket buffer mutex 2884 * held, and in order to generally avoid holding the lock for a long 2885 * time, we make a copy of the socket buffer and clear the original 2886 * (except locks, state). The new socket buffer copy won't have 2887 * initialized locks so we can only call routines that won't use or 2888 * assert those locks. 2889 * 2890 * Dislodge threads currently blocked in receive and wait to acquire 2891 * a lock against other simultaneous readers before clearing the 2892 * socket buffer. Don't let our acquire be interrupted by a signal 2893 * despite any existing socket disposition on interruptable waiting. 2894 */ 2895 socantrcvmore(so); 2896 (void) sblock(sb, SBL_WAIT | SBL_NOINTR); 2897 2898 /* 2899 * Invalidate/clear most of the sockbuf structure, but leave selinfo 2900 * and mutex data unchanged. 2901 */ 2902 SOCKBUF_LOCK(sb); 2903 bzero(&aso, sizeof(aso)); 2904 aso.so_pcb = so->so_pcb; 2905 bcopy(&sb->sb_startzero, &aso.so_rcv.sb_startzero, 2906 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 2907 bzero(&sb->sb_startzero, 2908 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 2909 SOCKBUF_UNLOCK(sb); 2910 sbunlock(sb); 2911 2912 /* 2913 * Dispose of special rights and flush the copied socket. Don't call 2914 * any unsafe routines (that rely on locks being initialized) on aso. 2915 */ 2916 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 2917 (*pr->pr_domain->dom_dispose)(&aso); 2918 sbrelease_internal(&aso.so_rcv, so); 2919 } 2920 2921 /* 2922 * Wrapper for Socket established helper hook. 2923 * Parameters: socket, context of the hook point, hook id. 2924 */ 2925 static int inline 2926 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id) 2927 { 2928 struct socket_hhook_data hhook_data = { 2929 .so = so, 2930 .hctx = hctx, 2931 .m = NULL, 2932 .status = 0 2933 }; 2934 2935 CURVNET_SET(so->so_vnet); 2936 HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd); 2937 CURVNET_RESTORE(); 2938 2939 /* Ugly but needed, since hhooks return void for now */ 2940 return (hhook_data.status); 2941 } 2942 2943 /* 2944 * Perhaps this routine, and sooptcopyout(), below, ought to come in an 2945 * additional variant to handle the case where the option value needs to be 2946 * some kind of integer, but not a specific size. In addition to their use 2947 * here, these functions are also called by the protocol-level pr_ctloutput() 2948 * routines. 2949 */ 2950 int 2951 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen) 2952 { 2953 size_t valsize; 2954 2955 /* 2956 * If the user gives us more than we wanted, we ignore it, but if we 2957 * don't get the minimum length the caller wants, we return EINVAL. 2958 * On success, sopt->sopt_valsize is set to however much we actually 2959 * retrieved. 2960 */ 2961 if ((valsize = sopt->sopt_valsize) < minlen) 2962 return EINVAL; 2963 if (valsize > len) 2964 sopt->sopt_valsize = valsize = len; 2965 2966 if (sopt->sopt_td != NULL) 2967 return (copyin(sopt->sopt_val, buf, valsize)); 2968 2969 bcopy(sopt->sopt_val, buf, valsize); 2970 return (0); 2971 } 2972 2973 /* 2974 * Kernel version of setsockopt(2). 2975 * 2976 * XXX: optlen is size_t, not socklen_t 2977 */ 2978 int 2979 so_setsockopt(struct socket *so, int level, int optname, void *optval, 2980 size_t optlen) 2981 { 2982 struct sockopt sopt; 2983 2984 sopt.sopt_level = level; 2985 sopt.sopt_name = optname; 2986 sopt.sopt_dir = SOPT_SET; 2987 sopt.sopt_val = optval; 2988 sopt.sopt_valsize = optlen; 2989 sopt.sopt_td = NULL; 2990 return (sosetopt(so, &sopt)); 2991 } 2992 2993 int 2994 sosetopt(struct socket *so, struct sockopt *sopt) 2995 { 2996 int error, optval; 2997 struct linger l; 2998 struct timeval tv; 2999 sbintime_t val; 3000 uint32_t val32; 3001 #ifdef MAC 3002 struct mac extmac; 3003 #endif 3004 3005 CURVNET_SET(so->so_vnet); 3006 error = 0; 3007 if (sopt->sopt_level != SOL_SOCKET) { 3008 if (so->so_proto->pr_ctloutput != NULL) 3009 error = (*so->so_proto->pr_ctloutput)(so, sopt); 3010 else 3011 error = ENOPROTOOPT; 3012 } else { 3013 switch (sopt->sopt_name) { 3014 case SO_ACCEPTFILTER: 3015 error = accept_filt_setopt(so, sopt); 3016 if (error) 3017 goto bad; 3018 break; 3019 3020 case SO_LINGER: 3021 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 3022 if (error) 3023 goto bad; 3024 if (l.l_linger < 0 || 3025 l.l_linger > USHRT_MAX || 3026 l.l_linger > (INT_MAX / hz)) { 3027 error = EDOM; 3028 goto bad; 3029 } 3030 SOCK_LOCK(so); 3031 so->so_linger = l.l_linger; 3032 if (l.l_onoff) 3033 so->so_options |= SO_LINGER; 3034 else 3035 so->so_options &= ~SO_LINGER; 3036 SOCK_UNLOCK(so); 3037 break; 3038 3039 case SO_DEBUG: 3040 case SO_KEEPALIVE: 3041 case SO_DONTROUTE: 3042 case SO_USELOOPBACK: 3043 case SO_BROADCAST: 3044 case SO_REUSEADDR: 3045 case SO_REUSEPORT: 3046 case SO_REUSEPORT_LB: 3047 case SO_OOBINLINE: 3048 case SO_TIMESTAMP: 3049 case SO_BINTIME: 3050 case SO_NOSIGPIPE: 3051 case SO_NO_DDP: 3052 case SO_NO_OFFLOAD: 3053 case SO_RERROR: 3054 error = sooptcopyin(sopt, &optval, sizeof optval, 3055 sizeof optval); 3056 if (error) 3057 goto bad; 3058 SOCK_LOCK(so); 3059 if (optval) 3060 so->so_options |= sopt->sopt_name; 3061 else 3062 so->so_options &= ~sopt->sopt_name; 3063 SOCK_UNLOCK(so); 3064 break; 3065 3066 case SO_SETFIB: 3067 error = sooptcopyin(sopt, &optval, sizeof optval, 3068 sizeof optval); 3069 if (error) 3070 goto bad; 3071 3072 if (optval < 0 || optval >= rt_numfibs) { 3073 error = EINVAL; 3074 goto bad; 3075 } 3076 if (((so->so_proto->pr_domain->dom_family == PF_INET) || 3077 (so->so_proto->pr_domain->dom_family == PF_INET6) || 3078 (so->so_proto->pr_domain->dom_family == PF_ROUTE))) 3079 so->so_fibnum = optval; 3080 else 3081 so->so_fibnum = 0; 3082 break; 3083 3084 case SO_USER_COOKIE: 3085 error = sooptcopyin(sopt, &val32, sizeof val32, 3086 sizeof val32); 3087 if (error) 3088 goto bad; 3089 so->so_user_cookie = val32; 3090 break; 3091 3092 case SO_SNDBUF: 3093 case SO_RCVBUF: 3094 case SO_SNDLOWAT: 3095 case SO_RCVLOWAT: 3096 error = sooptcopyin(sopt, &optval, sizeof optval, 3097 sizeof optval); 3098 if (error) 3099 goto bad; 3100 3101 /* 3102 * Values < 1 make no sense for any of these options, 3103 * so disallow them. 3104 */ 3105 if (optval < 1) { 3106 error = EINVAL; 3107 goto bad; 3108 } 3109 3110 error = sbsetopt(so, sopt->sopt_name, optval); 3111 break; 3112 3113 case SO_SNDTIMEO: 3114 case SO_RCVTIMEO: 3115 #ifdef COMPAT_FREEBSD32 3116 if (SV_CURPROC_FLAG(SV_ILP32)) { 3117 struct timeval32 tv32; 3118 3119 error = sooptcopyin(sopt, &tv32, sizeof tv32, 3120 sizeof tv32); 3121 CP(tv32, tv, tv_sec); 3122 CP(tv32, tv, tv_usec); 3123 } else 3124 #endif 3125 error = sooptcopyin(sopt, &tv, sizeof tv, 3126 sizeof tv); 3127 if (error) 3128 goto bad; 3129 if (tv.tv_sec < 0 || tv.tv_usec < 0 || 3130 tv.tv_usec >= 1000000) { 3131 error = EDOM; 3132 goto bad; 3133 } 3134 if (tv.tv_sec > INT32_MAX) 3135 val = SBT_MAX; 3136 else 3137 val = tvtosbt(tv); 3138 switch (sopt->sopt_name) { 3139 case SO_SNDTIMEO: 3140 so->so_snd.sb_timeo = val; 3141 break; 3142 case SO_RCVTIMEO: 3143 so->so_rcv.sb_timeo = val; 3144 break; 3145 } 3146 break; 3147 3148 case SO_LABEL: 3149 #ifdef MAC 3150 error = sooptcopyin(sopt, &extmac, sizeof extmac, 3151 sizeof extmac); 3152 if (error) 3153 goto bad; 3154 error = mac_setsockopt_label(sopt->sopt_td->td_ucred, 3155 so, &extmac); 3156 #else 3157 error = EOPNOTSUPP; 3158 #endif 3159 break; 3160 3161 case SO_TS_CLOCK: 3162 error = sooptcopyin(sopt, &optval, sizeof optval, 3163 sizeof optval); 3164 if (error) 3165 goto bad; 3166 if (optval < 0 || optval > SO_TS_CLOCK_MAX) { 3167 error = EINVAL; 3168 goto bad; 3169 } 3170 so->so_ts_clock = optval; 3171 break; 3172 3173 case SO_MAX_PACING_RATE: 3174 error = sooptcopyin(sopt, &val32, sizeof(val32), 3175 sizeof(val32)); 3176 if (error) 3177 goto bad; 3178 so->so_max_pacing_rate = val32; 3179 break; 3180 3181 default: 3182 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 3183 error = hhook_run_socket(so, sopt, 3184 HHOOK_SOCKET_OPT); 3185 else 3186 error = ENOPROTOOPT; 3187 break; 3188 } 3189 if (error == 0 && so->so_proto->pr_ctloutput != NULL) 3190 (void)(*so->so_proto->pr_ctloutput)(so, sopt); 3191 } 3192 bad: 3193 CURVNET_RESTORE(); 3194 return (error); 3195 } 3196 3197 /* 3198 * Helper routine for getsockopt. 3199 */ 3200 int 3201 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 3202 { 3203 int error; 3204 size_t valsize; 3205 3206 error = 0; 3207 3208 /* 3209 * Documented get behavior is that we always return a value, possibly 3210 * truncated to fit in the user's buffer. Traditional behavior is 3211 * that we always tell the user precisely how much we copied, rather 3212 * than something useful like the total amount we had available for 3213 * her. Note that this interface is not idempotent; the entire 3214 * answer must be generated ahead of time. 3215 */ 3216 valsize = min(len, sopt->sopt_valsize); 3217 sopt->sopt_valsize = valsize; 3218 if (sopt->sopt_val != NULL) { 3219 if (sopt->sopt_td != NULL) 3220 error = copyout(buf, sopt->sopt_val, valsize); 3221 else 3222 bcopy(buf, sopt->sopt_val, valsize); 3223 } 3224 return (error); 3225 } 3226 3227 int 3228 sogetopt(struct socket *so, struct sockopt *sopt) 3229 { 3230 int error, optval; 3231 struct linger l; 3232 struct timeval tv; 3233 #ifdef MAC 3234 struct mac extmac; 3235 #endif 3236 3237 CURVNET_SET(so->so_vnet); 3238 error = 0; 3239 if (sopt->sopt_level != SOL_SOCKET) { 3240 if (so->so_proto->pr_ctloutput != NULL) 3241 error = (*so->so_proto->pr_ctloutput)(so, sopt); 3242 else 3243 error = ENOPROTOOPT; 3244 CURVNET_RESTORE(); 3245 return (error); 3246 } else { 3247 switch (sopt->sopt_name) { 3248 case SO_ACCEPTFILTER: 3249 error = accept_filt_getopt(so, sopt); 3250 break; 3251 3252 case SO_LINGER: 3253 SOCK_LOCK(so); 3254 l.l_onoff = so->so_options & SO_LINGER; 3255 l.l_linger = so->so_linger; 3256 SOCK_UNLOCK(so); 3257 error = sooptcopyout(sopt, &l, sizeof l); 3258 break; 3259 3260 case SO_USELOOPBACK: 3261 case SO_DONTROUTE: 3262 case SO_DEBUG: 3263 case SO_KEEPALIVE: 3264 case SO_REUSEADDR: 3265 case SO_REUSEPORT: 3266 case SO_REUSEPORT_LB: 3267 case SO_BROADCAST: 3268 case SO_OOBINLINE: 3269 case SO_ACCEPTCONN: 3270 case SO_TIMESTAMP: 3271 case SO_BINTIME: 3272 case SO_NOSIGPIPE: 3273 case SO_NO_DDP: 3274 case SO_NO_OFFLOAD: 3275 case SO_RERROR: 3276 optval = so->so_options & sopt->sopt_name; 3277 integer: 3278 error = sooptcopyout(sopt, &optval, sizeof optval); 3279 break; 3280 3281 case SO_DOMAIN: 3282 optval = so->so_proto->pr_domain->dom_family; 3283 goto integer; 3284 3285 case SO_TYPE: 3286 optval = so->so_type; 3287 goto integer; 3288 3289 case SO_PROTOCOL: 3290 optval = so->so_proto->pr_protocol; 3291 goto integer; 3292 3293 case SO_ERROR: 3294 SOCK_LOCK(so); 3295 if (so->so_error) { 3296 optval = so->so_error; 3297 so->so_error = 0; 3298 } else { 3299 optval = so->so_rerror; 3300 so->so_rerror = 0; 3301 } 3302 SOCK_UNLOCK(so); 3303 goto integer; 3304 3305 case SO_SNDBUF: 3306 optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat : 3307 so->so_snd.sb_hiwat; 3308 goto integer; 3309 3310 case SO_RCVBUF: 3311 optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat : 3312 so->so_rcv.sb_hiwat; 3313 goto integer; 3314 3315 case SO_SNDLOWAT: 3316 optval = SOLISTENING(so) ? so->sol_sbsnd_lowat : 3317 so->so_snd.sb_lowat; 3318 goto integer; 3319 3320 case SO_RCVLOWAT: 3321 optval = SOLISTENING(so) ? so->sol_sbrcv_lowat : 3322 so->so_rcv.sb_lowat; 3323 goto integer; 3324 3325 case SO_SNDTIMEO: 3326 case SO_RCVTIMEO: 3327 tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ? 3328 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 3329 #ifdef COMPAT_FREEBSD32 3330 if (SV_CURPROC_FLAG(SV_ILP32)) { 3331 struct timeval32 tv32; 3332 3333 CP(tv, tv32, tv_sec); 3334 CP(tv, tv32, tv_usec); 3335 error = sooptcopyout(sopt, &tv32, sizeof tv32); 3336 } else 3337 #endif 3338 error = sooptcopyout(sopt, &tv, sizeof tv); 3339 break; 3340 3341 case SO_LABEL: 3342 #ifdef MAC 3343 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 3344 sizeof(extmac)); 3345 if (error) 3346 goto bad; 3347 error = mac_getsockopt_label(sopt->sopt_td->td_ucred, 3348 so, &extmac); 3349 if (error) 3350 goto bad; 3351 error = sooptcopyout(sopt, &extmac, sizeof extmac); 3352 #else 3353 error = EOPNOTSUPP; 3354 #endif 3355 break; 3356 3357 case SO_PEERLABEL: 3358 #ifdef MAC 3359 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 3360 sizeof(extmac)); 3361 if (error) 3362 goto bad; 3363 error = mac_getsockopt_peerlabel( 3364 sopt->sopt_td->td_ucred, so, &extmac); 3365 if (error) 3366 goto bad; 3367 error = sooptcopyout(sopt, &extmac, sizeof extmac); 3368 #else 3369 error = EOPNOTSUPP; 3370 #endif 3371 break; 3372 3373 case SO_LISTENQLIMIT: 3374 optval = SOLISTENING(so) ? so->sol_qlimit : 0; 3375 goto integer; 3376 3377 case SO_LISTENQLEN: 3378 optval = SOLISTENING(so) ? so->sol_qlen : 0; 3379 goto integer; 3380 3381 case SO_LISTENINCQLEN: 3382 optval = SOLISTENING(so) ? so->sol_incqlen : 0; 3383 goto integer; 3384 3385 case SO_TS_CLOCK: 3386 optval = so->so_ts_clock; 3387 goto integer; 3388 3389 case SO_MAX_PACING_RATE: 3390 optval = so->so_max_pacing_rate; 3391 goto integer; 3392 3393 default: 3394 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 3395 error = hhook_run_socket(so, sopt, 3396 HHOOK_SOCKET_OPT); 3397 else 3398 error = ENOPROTOOPT; 3399 break; 3400 } 3401 } 3402 #ifdef MAC 3403 bad: 3404 #endif 3405 CURVNET_RESTORE(); 3406 return (error); 3407 } 3408 3409 int 3410 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 3411 { 3412 struct mbuf *m, *m_prev; 3413 int sopt_size = sopt->sopt_valsize; 3414 3415 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 3416 if (m == NULL) 3417 return ENOBUFS; 3418 if (sopt_size > MLEN) { 3419 MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT); 3420 if ((m->m_flags & M_EXT) == 0) { 3421 m_free(m); 3422 return ENOBUFS; 3423 } 3424 m->m_len = min(MCLBYTES, sopt_size); 3425 } else { 3426 m->m_len = min(MLEN, sopt_size); 3427 } 3428 sopt_size -= m->m_len; 3429 *mp = m; 3430 m_prev = m; 3431 3432 while (sopt_size) { 3433 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 3434 if (m == NULL) { 3435 m_freem(*mp); 3436 return ENOBUFS; 3437 } 3438 if (sopt_size > MLEN) { 3439 MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK : 3440 M_NOWAIT); 3441 if ((m->m_flags & M_EXT) == 0) { 3442 m_freem(m); 3443 m_freem(*mp); 3444 return ENOBUFS; 3445 } 3446 m->m_len = min(MCLBYTES, sopt_size); 3447 } else { 3448 m->m_len = min(MLEN, sopt_size); 3449 } 3450 sopt_size -= m->m_len; 3451 m_prev->m_next = m; 3452 m_prev = m; 3453 } 3454 return (0); 3455 } 3456 3457 int 3458 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 3459 { 3460 struct mbuf *m0 = m; 3461 3462 if (sopt->sopt_val == NULL) 3463 return (0); 3464 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 3465 if (sopt->sopt_td != NULL) { 3466 int error; 3467 3468 error = copyin(sopt->sopt_val, mtod(m, char *), 3469 m->m_len); 3470 if (error != 0) { 3471 m_freem(m0); 3472 return(error); 3473 } 3474 } else 3475 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 3476 sopt->sopt_valsize -= m->m_len; 3477 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 3478 m = m->m_next; 3479 } 3480 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 3481 panic("ip6_sooptmcopyin"); 3482 return (0); 3483 } 3484 3485 int 3486 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 3487 { 3488 struct mbuf *m0 = m; 3489 size_t valsize = 0; 3490 3491 if (sopt->sopt_val == NULL) 3492 return (0); 3493 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 3494 if (sopt->sopt_td != NULL) { 3495 int error; 3496 3497 error = copyout(mtod(m, char *), sopt->sopt_val, 3498 m->m_len); 3499 if (error != 0) { 3500 m_freem(m0); 3501 return(error); 3502 } 3503 } else 3504 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 3505 sopt->sopt_valsize -= m->m_len; 3506 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 3507 valsize += m->m_len; 3508 m = m->m_next; 3509 } 3510 if (m != NULL) { 3511 /* enough soopt buffer should be given from user-land */ 3512 m_freem(m0); 3513 return(EINVAL); 3514 } 3515 sopt->sopt_valsize = valsize; 3516 return (0); 3517 } 3518 3519 /* 3520 * sohasoutofband(): protocol notifies socket layer of the arrival of new 3521 * out-of-band data, which will then notify socket consumers. 3522 */ 3523 void 3524 sohasoutofband(struct socket *so) 3525 { 3526 3527 if (so->so_sigio != NULL) 3528 pgsigio(&so->so_sigio, SIGURG, 0); 3529 selwakeuppri(&so->so_rdsel, PSOCK); 3530 } 3531 3532 int 3533 sopoll(struct socket *so, int events, struct ucred *active_cred, 3534 struct thread *td) 3535 { 3536 3537 /* 3538 * We do not need to set or assert curvnet as long as everyone uses 3539 * sopoll_generic(). 3540 */ 3541 return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred, 3542 td)); 3543 } 3544 3545 int 3546 sopoll_generic(struct socket *so, int events, struct ucred *active_cred, 3547 struct thread *td) 3548 { 3549 int revents; 3550 3551 SOCK_LOCK(so); 3552 if (SOLISTENING(so)) { 3553 if (!(events & (POLLIN | POLLRDNORM))) 3554 revents = 0; 3555 else if (!TAILQ_EMPTY(&so->sol_comp)) 3556 revents = events & (POLLIN | POLLRDNORM); 3557 else if ((events & POLLINIGNEOF) == 0 && so->so_error) 3558 revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP; 3559 else { 3560 selrecord(td, &so->so_rdsel); 3561 revents = 0; 3562 } 3563 } else { 3564 revents = 0; 3565 SOCKBUF_LOCK(&so->so_snd); 3566 SOCKBUF_LOCK(&so->so_rcv); 3567 if (events & (POLLIN | POLLRDNORM)) 3568 if (soreadabledata(so)) 3569 revents |= events & (POLLIN | POLLRDNORM); 3570 if (events & (POLLOUT | POLLWRNORM)) 3571 if (sowriteable(so)) 3572 revents |= events & (POLLOUT | POLLWRNORM); 3573 if (events & (POLLPRI | POLLRDBAND)) 3574 if (so->so_oobmark || 3575 (so->so_rcv.sb_state & SBS_RCVATMARK)) 3576 revents |= events & (POLLPRI | POLLRDBAND); 3577 if ((events & POLLINIGNEOF) == 0) { 3578 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3579 revents |= events & (POLLIN | POLLRDNORM); 3580 if (so->so_snd.sb_state & SBS_CANTSENDMORE) 3581 revents |= POLLHUP; 3582 } 3583 } 3584 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) 3585 revents |= events & POLLRDHUP; 3586 if (revents == 0) { 3587 if (events & 3588 (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND | POLLRDHUP)) { 3589 selrecord(td, &so->so_rdsel); 3590 so->so_rcv.sb_flags |= SB_SEL; 3591 } 3592 if (events & (POLLOUT | POLLWRNORM)) { 3593 selrecord(td, &so->so_wrsel); 3594 so->so_snd.sb_flags |= SB_SEL; 3595 } 3596 } 3597 SOCKBUF_UNLOCK(&so->so_rcv); 3598 SOCKBUF_UNLOCK(&so->so_snd); 3599 } 3600 SOCK_UNLOCK(so); 3601 return (revents); 3602 } 3603 3604 int 3605 soo_kqfilter(struct file *fp, struct knote *kn) 3606 { 3607 struct socket *so = kn->kn_fp->f_data; 3608 struct sockbuf *sb; 3609 struct knlist *knl; 3610 3611 switch (kn->kn_filter) { 3612 case EVFILT_READ: 3613 kn->kn_fop = &soread_filtops; 3614 knl = &so->so_rdsel.si_note; 3615 sb = &so->so_rcv; 3616 break; 3617 case EVFILT_WRITE: 3618 kn->kn_fop = &sowrite_filtops; 3619 knl = &so->so_wrsel.si_note; 3620 sb = &so->so_snd; 3621 break; 3622 case EVFILT_EMPTY: 3623 kn->kn_fop = &soempty_filtops; 3624 knl = &so->so_wrsel.si_note; 3625 sb = &so->so_snd; 3626 break; 3627 default: 3628 return (EINVAL); 3629 } 3630 3631 SOCK_LOCK(so); 3632 if (SOLISTENING(so)) { 3633 knlist_add(knl, kn, 1); 3634 } else { 3635 SOCKBUF_LOCK(sb); 3636 knlist_add(knl, kn, 1); 3637 sb->sb_flags |= SB_KNOTE; 3638 SOCKBUF_UNLOCK(sb); 3639 } 3640 SOCK_UNLOCK(so); 3641 return (0); 3642 } 3643 3644 /* 3645 * Some routines that return EOPNOTSUPP for entry points that are not 3646 * supported by a protocol. Fill in as needed. 3647 */ 3648 int 3649 pru_accept_notsupp(struct socket *so, struct sockaddr **nam) 3650 { 3651 3652 return EOPNOTSUPP; 3653 } 3654 3655 int 3656 pru_aio_queue_notsupp(struct socket *so, struct kaiocb *job) 3657 { 3658 3659 return EOPNOTSUPP; 3660 } 3661 3662 int 3663 pru_attach_notsupp(struct socket *so, int proto, struct thread *td) 3664 { 3665 3666 return EOPNOTSUPP; 3667 } 3668 3669 int 3670 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 3671 { 3672 3673 return EOPNOTSUPP; 3674 } 3675 3676 int 3677 pru_bindat_notsupp(int fd, struct socket *so, struct sockaddr *nam, 3678 struct thread *td) 3679 { 3680 3681 return EOPNOTSUPP; 3682 } 3683 3684 int 3685 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 3686 { 3687 3688 return EOPNOTSUPP; 3689 } 3690 3691 int 3692 pru_connectat_notsupp(int fd, struct socket *so, struct sockaddr *nam, 3693 struct thread *td) 3694 { 3695 3696 return EOPNOTSUPP; 3697 } 3698 3699 int 3700 pru_connect2_notsupp(struct socket *so1, struct socket *so2) 3701 { 3702 3703 return EOPNOTSUPP; 3704 } 3705 3706 int 3707 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, 3708 struct ifnet *ifp, struct thread *td) 3709 { 3710 3711 return EOPNOTSUPP; 3712 } 3713 3714 int 3715 pru_disconnect_notsupp(struct socket *so) 3716 { 3717 3718 return EOPNOTSUPP; 3719 } 3720 3721 int 3722 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td) 3723 { 3724 3725 return EOPNOTSUPP; 3726 } 3727 3728 int 3729 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam) 3730 { 3731 3732 return EOPNOTSUPP; 3733 } 3734 3735 int 3736 pru_rcvd_notsupp(struct socket *so, int flags) 3737 { 3738 3739 return EOPNOTSUPP; 3740 } 3741 3742 int 3743 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) 3744 { 3745 3746 return EOPNOTSUPP; 3747 } 3748 3749 int 3750 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m, 3751 struct sockaddr *addr, struct mbuf *control, struct thread *td) 3752 { 3753 3754 if (control != NULL) 3755 m_freem(control); 3756 if ((flags & PRUS_NOTREADY) == 0) 3757 m_freem(m); 3758 return (EOPNOTSUPP); 3759 } 3760 3761 int 3762 pru_ready_notsupp(struct socket *so, struct mbuf *m, int count) 3763 { 3764 3765 return (EOPNOTSUPP); 3766 } 3767 3768 /* 3769 * This isn't really a ``null'' operation, but it's the default one and 3770 * doesn't do anything destructive. 3771 */ 3772 int 3773 pru_sense_null(struct socket *so, struct stat *sb) 3774 { 3775 3776 sb->st_blksize = so->so_snd.sb_hiwat; 3777 return 0; 3778 } 3779 3780 int 3781 pru_shutdown_notsupp(struct socket *so) 3782 { 3783 3784 return EOPNOTSUPP; 3785 } 3786 3787 int 3788 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam) 3789 { 3790 3791 return EOPNOTSUPP; 3792 } 3793 3794 int 3795 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio, 3796 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 3797 { 3798 3799 return EOPNOTSUPP; 3800 } 3801 3802 int 3803 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr, 3804 struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 3805 { 3806 3807 return EOPNOTSUPP; 3808 } 3809 3810 int 3811 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred, 3812 struct thread *td) 3813 { 3814 3815 return EOPNOTSUPP; 3816 } 3817 3818 static void 3819 filt_sordetach(struct knote *kn) 3820 { 3821 struct socket *so = kn->kn_fp->f_data; 3822 3823 so_rdknl_lock(so); 3824 knlist_remove(&so->so_rdsel.si_note, kn, 1); 3825 if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note)) 3826 so->so_rcv.sb_flags &= ~SB_KNOTE; 3827 so_rdknl_unlock(so); 3828 } 3829 3830 /*ARGSUSED*/ 3831 static int 3832 filt_soread(struct knote *kn, long hint) 3833 { 3834 struct socket *so; 3835 3836 so = kn->kn_fp->f_data; 3837 3838 if (SOLISTENING(so)) { 3839 SOCK_LOCK_ASSERT(so); 3840 kn->kn_data = so->sol_qlen; 3841 if (so->so_error) { 3842 kn->kn_flags |= EV_EOF; 3843 kn->kn_fflags = so->so_error; 3844 return (1); 3845 } 3846 return (!TAILQ_EMPTY(&so->sol_comp)); 3847 } 3848 3849 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 3850 3851 kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl; 3852 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3853 kn->kn_flags |= EV_EOF; 3854 kn->kn_fflags = so->so_error; 3855 return (1); 3856 } else if (so->so_error || so->so_rerror) 3857 return (1); 3858 3859 if (kn->kn_sfflags & NOTE_LOWAT) { 3860 if (kn->kn_data >= kn->kn_sdata) 3861 return (1); 3862 } else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat) 3863 return (1); 3864 3865 /* This hook returning non-zero indicates an event, not error */ 3866 return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD)); 3867 } 3868 3869 static void 3870 filt_sowdetach(struct knote *kn) 3871 { 3872 struct socket *so = kn->kn_fp->f_data; 3873 3874 so_wrknl_lock(so); 3875 knlist_remove(&so->so_wrsel.si_note, kn, 1); 3876 if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note)) 3877 so->so_snd.sb_flags &= ~SB_KNOTE; 3878 so_wrknl_unlock(so); 3879 } 3880 3881 /*ARGSUSED*/ 3882 static int 3883 filt_sowrite(struct knote *kn, long hint) 3884 { 3885 struct socket *so; 3886 3887 so = kn->kn_fp->f_data; 3888 3889 if (SOLISTENING(so)) 3890 return (0); 3891 3892 SOCKBUF_LOCK_ASSERT(&so->so_snd); 3893 kn->kn_data = sbspace(&so->so_snd); 3894 3895 hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE); 3896 3897 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 3898 kn->kn_flags |= EV_EOF; 3899 kn->kn_fflags = so->so_error; 3900 return (1); 3901 } else if (so->so_error) /* temporary udp error */ 3902 return (1); 3903 else if (((so->so_state & SS_ISCONNECTED) == 0) && 3904 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 3905 return (0); 3906 else if (kn->kn_sfflags & NOTE_LOWAT) 3907 return (kn->kn_data >= kn->kn_sdata); 3908 else 3909 return (kn->kn_data >= so->so_snd.sb_lowat); 3910 } 3911 3912 static int 3913 filt_soempty(struct knote *kn, long hint) 3914 { 3915 struct socket *so; 3916 3917 so = kn->kn_fp->f_data; 3918 3919 if (SOLISTENING(so)) 3920 return (1); 3921 3922 SOCKBUF_LOCK_ASSERT(&so->so_snd); 3923 kn->kn_data = sbused(&so->so_snd); 3924 3925 if (kn->kn_data == 0) 3926 return (1); 3927 else 3928 return (0); 3929 } 3930 3931 int 3932 socheckuid(struct socket *so, uid_t uid) 3933 { 3934 3935 if (so == NULL) 3936 return (EPERM); 3937 if (so->so_cred->cr_uid != uid) 3938 return (EPERM); 3939 return (0); 3940 } 3941 3942 /* 3943 * These functions are used by protocols to notify the socket layer (and its 3944 * consumers) of state changes in the sockets driven by protocol-side events. 3945 */ 3946 3947 /* 3948 * Procedures to manipulate state flags of socket and do appropriate wakeups. 3949 * 3950 * Normal sequence from the active (originating) side is that 3951 * soisconnecting() is called during processing of connect() call, resulting 3952 * in an eventual call to soisconnected() if/when the connection is 3953 * established. When the connection is torn down soisdisconnecting() is 3954 * called during processing of disconnect() call, and soisdisconnected() is 3955 * called when the connection to the peer is totally severed. The semantics 3956 * of these routines are such that connectionless protocols can call 3957 * soisconnected() and soisdisconnected() only, bypassing the in-progress 3958 * calls when setting up a ``connection'' takes no time. 3959 * 3960 * From the passive side, a socket is created with two queues of sockets: 3961 * so_incomp for connections in progress and so_comp for connections already 3962 * made and awaiting user acceptance. As a protocol is preparing incoming 3963 * connections, it creates a socket structure queued on so_incomp by calling 3964 * sonewconn(). When the connection is established, soisconnected() is 3965 * called, and transfers the socket structure to so_comp, making it available 3966 * to accept(). 3967 * 3968 * If a socket is closed with sockets on either so_incomp or so_comp, these 3969 * sockets are dropped. 3970 * 3971 * If higher-level protocols are implemented in the kernel, the wakeups done 3972 * here will sometimes cause software-interrupt process scheduling. 3973 */ 3974 void 3975 soisconnecting(struct socket *so) 3976 { 3977 3978 SOCK_LOCK(so); 3979 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 3980 so->so_state |= SS_ISCONNECTING; 3981 SOCK_UNLOCK(so); 3982 } 3983 3984 void 3985 soisconnected(struct socket *so) 3986 { 3987 3988 SOCK_LOCK(so); 3989 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 3990 so->so_state |= SS_ISCONNECTED; 3991 3992 if (so->so_qstate == SQ_INCOMP) { 3993 struct socket *head = so->so_listen; 3994 int ret; 3995 3996 KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so)); 3997 /* 3998 * Promoting a socket from incomplete queue to complete, we 3999 * need to go through reverse order of locking. We first do 4000 * trylock, and if that doesn't succeed, we go the hard way 4001 * leaving a reference and rechecking consistency after proper 4002 * locking. 4003 */ 4004 if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) { 4005 soref(head); 4006 SOCK_UNLOCK(so); 4007 SOLISTEN_LOCK(head); 4008 SOCK_LOCK(so); 4009 if (__predict_false(head != so->so_listen)) { 4010 /* 4011 * The socket went off the listen queue, 4012 * should be lost race to close(2) of sol. 4013 * The socket is about to soabort(). 4014 */ 4015 SOCK_UNLOCK(so); 4016 sorele(head); 4017 return; 4018 } 4019 /* Not the last one, as so holds a ref. */ 4020 refcount_release(&head->so_count); 4021 } 4022 again: 4023 if ((so->so_options & SO_ACCEPTFILTER) == 0) { 4024 TAILQ_REMOVE(&head->sol_incomp, so, so_list); 4025 head->sol_incqlen--; 4026 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 4027 head->sol_qlen++; 4028 so->so_qstate = SQ_COMP; 4029 SOCK_UNLOCK(so); 4030 solisten_wakeup(head); /* unlocks */ 4031 } else { 4032 SOCKBUF_LOCK(&so->so_rcv); 4033 soupcall_set(so, SO_RCV, 4034 head->sol_accept_filter->accf_callback, 4035 head->sol_accept_filter_arg); 4036 so->so_options &= ~SO_ACCEPTFILTER; 4037 ret = head->sol_accept_filter->accf_callback(so, 4038 head->sol_accept_filter_arg, M_NOWAIT); 4039 if (ret == SU_ISCONNECTED) { 4040 soupcall_clear(so, SO_RCV); 4041 SOCKBUF_UNLOCK(&so->so_rcv); 4042 goto again; 4043 } 4044 SOCKBUF_UNLOCK(&so->so_rcv); 4045 SOCK_UNLOCK(so); 4046 SOLISTEN_UNLOCK(head); 4047 } 4048 return; 4049 } 4050 SOCK_UNLOCK(so); 4051 wakeup(&so->so_timeo); 4052 sorwakeup(so); 4053 sowwakeup(so); 4054 } 4055 4056 void 4057 soisdisconnecting(struct socket *so) 4058 { 4059 4060 SOCK_LOCK(so); 4061 so->so_state &= ~SS_ISCONNECTING; 4062 so->so_state |= SS_ISDISCONNECTING; 4063 4064 if (!SOLISTENING(so)) { 4065 SOCKBUF_LOCK(&so->so_rcv); 4066 socantrcvmore_locked(so); 4067 SOCKBUF_LOCK(&so->so_snd); 4068 socantsendmore_locked(so); 4069 } 4070 SOCK_UNLOCK(so); 4071 wakeup(&so->so_timeo); 4072 } 4073 4074 void 4075 soisdisconnected(struct socket *so) 4076 { 4077 4078 SOCK_LOCK(so); 4079 4080 /* 4081 * There is at least one reader of so_state that does not 4082 * acquire socket lock, namely soreceive_generic(). Ensure 4083 * that it never sees all flags that track connection status 4084 * cleared, by ordering the update with a barrier semantic of 4085 * our release thread fence. 4086 */ 4087 so->so_state |= SS_ISDISCONNECTED; 4088 atomic_thread_fence_rel(); 4089 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 4090 4091 if (!SOLISTENING(so)) { 4092 SOCK_UNLOCK(so); 4093 SOCKBUF_LOCK(&so->so_rcv); 4094 socantrcvmore_locked(so); 4095 SOCKBUF_LOCK(&so->so_snd); 4096 sbdrop_locked(&so->so_snd, sbused(&so->so_snd)); 4097 socantsendmore_locked(so); 4098 } else 4099 SOCK_UNLOCK(so); 4100 wakeup(&so->so_timeo); 4101 } 4102 4103 /* 4104 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 4105 */ 4106 struct sockaddr * 4107 sodupsockaddr(const struct sockaddr *sa, int mflags) 4108 { 4109 struct sockaddr *sa2; 4110 4111 sa2 = malloc(sa->sa_len, M_SONAME, mflags); 4112 if (sa2) 4113 bcopy(sa, sa2, sa->sa_len); 4114 return sa2; 4115 } 4116 4117 /* 4118 * Register per-socket destructor. 4119 */ 4120 void 4121 sodtor_set(struct socket *so, so_dtor_t *func) 4122 { 4123 4124 SOCK_LOCK_ASSERT(so); 4125 so->so_dtor = func; 4126 } 4127 4128 /* 4129 * Register per-socket buffer upcalls. 4130 */ 4131 void 4132 soupcall_set(struct socket *so, int which, so_upcall_t func, void *arg) 4133 { 4134 struct sockbuf *sb; 4135 4136 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 4137 4138 switch (which) { 4139 case SO_RCV: 4140 sb = &so->so_rcv; 4141 break; 4142 case SO_SND: 4143 sb = &so->so_snd; 4144 break; 4145 default: 4146 panic("soupcall_set: bad which"); 4147 } 4148 SOCKBUF_LOCK_ASSERT(sb); 4149 sb->sb_upcall = func; 4150 sb->sb_upcallarg = arg; 4151 sb->sb_flags |= SB_UPCALL; 4152 } 4153 4154 void 4155 soupcall_clear(struct socket *so, int which) 4156 { 4157 struct sockbuf *sb; 4158 4159 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 4160 4161 switch (which) { 4162 case SO_RCV: 4163 sb = &so->so_rcv; 4164 break; 4165 case SO_SND: 4166 sb = &so->so_snd; 4167 break; 4168 default: 4169 panic("soupcall_clear: bad which"); 4170 } 4171 SOCKBUF_LOCK_ASSERT(sb); 4172 KASSERT(sb->sb_upcall != NULL, 4173 ("%s: so %p no upcall to clear", __func__, so)); 4174 sb->sb_upcall = NULL; 4175 sb->sb_upcallarg = NULL; 4176 sb->sb_flags &= ~SB_UPCALL; 4177 } 4178 4179 void 4180 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg) 4181 { 4182 4183 SOLISTEN_LOCK_ASSERT(so); 4184 so->sol_upcall = func; 4185 so->sol_upcallarg = arg; 4186 } 4187 4188 static void 4189 so_rdknl_lock(void *arg) 4190 { 4191 struct socket *so = arg; 4192 4193 if (SOLISTENING(so)) 4194 SOCK_LOCK(so); 4195 else 4196 SOCKBUF_LOCK(&so->so_rcv); 4197 } 4198 4199 static void 4200 so_rdknl_unlock(void *arg) 4201 { 4202 struct socket *so = arg; 4203 4204 if (SOLISTENING(so)) 4205 SOCK_UNLOCK(so); 4206 else 4207 SOCKBUF_UNLOCK(&so->so_rcv); 4208 } 4209 4210 static void 4211 so_rdknl_assert_lock(void *arg, int what) 4212 { 4213 struct socket *so = arg; 4214 4215 if (what == LA_LOCKED) { 4216 if (SOLISTENING(so)) 4217 SOCK_LOCK_ASSERT(so); 4218 else 4219 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 4220 } else { 4221 if (SOLISTENING(so)) 4222 SOCK_UNLOCK_ASSERT(so); 4223 else 4224 SOCKBUF_UNLOCK_ASSERT(&so->so_rcv); 4225 } 4226 } 4227 4228 static void 4229 so_wrknl_lock(void *arg) 4230 { 4231 struct socket *so = arg; 4232 4233 if (SOLISTENING(so)) 4234 SOCK_LOCK(so); 4235 else 4236 SOCKBUF_LOCK(&so->so_snd); 4237 } 4238 4239 static void 4240 so_wrknl_unlock(void *arg) 4241 { 4242 struct socket *so = arg; 4243 4244 if (SOLISTENING(so)) 4245 SOCK_UNLOCK(so); 4246 else 4247 SOCKBUF_UNLOCK(&so->so_snd); 4248 } 4249 4250 static void 4251 so_wrknl_assert_lock(void *arg, int what) 4252 { 4253 struct socket *so = arg; 4254 4255 if (what == LA_LOCKED) { 4256 if (SOLISTENING(so)) 4257 SOCK_LOCK_ASSERT(so); 4258 else 4259 SOCKBUF_LOCK_ASSERT(&so->so_snd); 4260 } else { 4261 if (SOLISTENING(so)) 4262 SOCK_UNLOCK_ASSERT(so); 4263 else 4264 SOCKBUF_UNLOCK_ASSERT(&so->so_snd); 4265 } 4266 } 4267 4268 /* 4269 * Create an external-format (``xsocket'') structure using the information in 4270 * the kernel-format socket structure pointed to by so. This is done to 4271 * reduce the spew of irrelevant information over this interface, to isolate 4272 * user code from changes in the kernel structure, and potentially to provide 4273 * information-hiding if we decide that some of this information should be 4274 * hidden from users. 4275 */ 4276 void 4277 sotoxsocket(struct socket *so, struct xsocket *xso) 4278 { 4279 4280 bzero(xso, sizeof(*xso)); 4281 xso->xso_len = sizeof *xso; 4282 xso->xso_so = (uintptr_t)so; 4283 xso->so_type = so->so_type; 4284 xso->so_options = so->so_options; 4285 xso->so_linger = so->so_linger; 4286 xso->so_state = so->so_state; 4287 xso->so_pcb = (uintptr_t)so->so_pcb; 4288 xso->xso_protocol = so->so_proto->pr_protocol; 4289 xso->xso_family = so->so_proto->pr_domain->dom_family; 4290 xso->so_timeo = so->so_timeo; 4291 xso->so_error = so->so_error; 4292 xso->so_uid = so->so_cred->cr_uid; 4293 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 4294 if (SOLISTENING(so)) { 4295 xso->so_qlen = so->sol_qlen; 4296 xso->so_incqlen = so->sol_incqlen; 4297 xso->so_qlimit = so->sol_qlimit; 4298 xso->so_oobmark = 0; 4299 } else { 4300 xso->so_state |= so->so_qstate; 4301 xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0; 4302 xso->so_oobmark = so->so_oobmark; 4303 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 4304 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 4305 } 4306 } 4307 4308 struct sockbuf * 4309 so_sockbuf_rcv(struct socket *so) 4310 { 4311 4312 return (&so->so_rcv); 4313 } 4314 4315 struct sockbuf * 4316 so_sockbuf_snd(struct socket *so) 4317 { 4318 4319 return (&so->so_snd); 4320 } 4321 4322 int 4323 so_state_get(const struct socket *so) 4324 { 4325 4326 return (so->so_state); 4327 } 4328 4329 void 4330 so_state_set(struct socket *so, int val) 4331 { 4332 4333 so->so_state = val; 4334 } 4335 4336 int 4337 so_options_get(const struct socket *so) 4338 { 4339 4340 return (so->so_options); 4341 } 4342 4343 void 4344 so_options_set(struct socket *so, int val) 4345 { 4346 4347 so->so_options = val; 4348 } 4349 4350 int 4351 so_error_get(const struct socket *so) 4352 { 4353 4354 return (so->so_error); 4355 } 4356 4357 void 4358 so_error_set(struct socket *so, int val) 4359 { 4360 4361 so->so_error = val; 4362 } 4363 4364 int 4365 so_linger_get(const struct socket *so) 4366 { 4367 4368 return (so->so_linger); 4369 } 4370 4371 void 4372 so_linger_set(struct socket *so, int val) 4373 { 4374 4375 KASSERT(val >= 0 && val <= USHRT_MAX && val <= (INT_MAX / hz), 4376 ("%s: val %d out of range", __func__, val)); 4377 4378 so->so_linger = val; 4379 } 4380 4381 struct protosw * 4382 so_protosw_get(const struct socket *so) 4383 { 4384 4385 return (so->so_proto); 4386 } 4387 4388 void 4389 so_protosw_set(struct socket *so, struct protosw *val) 4390 { 4391 4392 so->so_proto = val; 4393 } 4394 4395 void 4396 so_sorwakeup(struct socket *so) 4397 { 4398 4399 sorwakeup(so); 4400 } 4401 4402 void 4403 so_sowwakeup(struct socket *so) 4404 { 4405 4406 sowwakeup(so); 4407 } 4408 4409 void 4410 so_sorwakeup_locked(struct socket *so) 4411 { 4412 4413 sorwakeup_locked(so); 4414 } 4415 4416 void 4417 so_sowwakeup_locked(struct socket *so) 4418 { 4419 4420 sowwakeup_locked(so); 4421 } 4422 4423 void 4424 so_lock(struct socket *so) 4425 { 4426 4427 SOCK_LOCK(so); 4428 } 4429 4430 void 4431 so_unlock(struct socket *so) 4432 { 4433 4434 SOCK_UNLOCK(so); 4435 } 4436