xref: /freebsd/sys/kern/uipc_socket.c (revision 1f88aa09417f1cfb3929fd37531b1ab51213c2d6)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
5  *	The Regents of the University of California.
6  * Copyright (c) 2004 The FreeBSD Foundation
7  * Copyright (c) 2004-2008 Robert N. M. Watson
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)uipc_socket.c	8.3 (Berkeley) 4/15/94
35  */
36 
37 /*
38  * Comments on the socket life cycle:
39  *
40  * soalloc() sets of socket layer state for a socket, called only by
41  * socreate() and sonewconn().  Socket layer private.
42  *
43  * sodealloc() tears down socket layer state for a socket, called only by
44  * sofree() and sonewconn().  Socket layer private.
45  *
46  * pru_attach() associates protocol layer state with an allocated socket;
47  * called only once, may fail, aborting socket allocation.  This is called
48  * from socreate() and sonewconn().  Socket layer private.
49  *
50  * pru_detach() disassociates protocol layer state from an attached socket,
51  * and will be called exactly once for sockets in which pru_attach() has
52  * been successfully called.  If pru_attach() returned an error,
53  * pru_detach() will not be called.  Socket layer private.
54  *
55  * pru_abort() and pru_close() notify the protocol layer that the last
56  * consumer of a socket is starting to tear down the socket, and that the
57  * protocol should terminate the connection.  Historically, pru_abort() also
58  * detached protocol state from the socket state, but this is no longer the
59  * case.
60  *
61  * socreate() creates a socket and attaches protocol state.  This is a public
62  * interface that may be used by socket layer consumers to create new
63  * sockets.
64  *
65  * sonewconn() creates a socket and attaches protocol state.  This is a
66  * public interface  that may be used by protocols to create new sockets when
67  * a new connection is received and will be available for accept() on a
68  * listen socket.
69  *
70  * soclose() destroys a socket after possibly waiting for it to disconnect.
71  * This is a public interface that socket consumers should use to close and
72  * release a socket when done with it.
73  *
74  * soabort() destroys a socket without waiting for it to disconnect (used
75  * only for incoming connections that are already partially or fully
76  * connected).  This is used internally by the socket layer when clearing
77  * listen socket queues (due to overflow or close on the listen socket), but
78  * is also a public interface protocols may use to abort connections in
79  * their incomplete listen queues should they no longer be required.  Sockets
80  * placed in completed connection listen queues should not be aborted for
81  * reasons described in the comment above the soclose() implementation.  This
82  * is not a general purpose close routine, and except in the specific
83  * circumstances described here, should not be used.
84  *
85  * sofree() will free a socket and its protocol state if all references on
86  * the socket have been released, and is the public interface to attempt to
87  * free a socket when a reference is removed.  This is a socket layer private
88  * interface.
89  *
90  * NOTE: In addition to socreate() and soclose(), which provide a single
91  * socket reference to the consumer to be managed as required, there are two
92  * calls to explicitly manage socket references, soref(), and sorele().
93  * Currently, these are generally required only when transitioning a socket
94  * from a listen queue to a file descriptor, in order to prevent garbage
95  * collection of the socket at an untimely moment.  For a number of reasons,
96  * these interfaces are not preferred, and should be avoided.
97  *
98  * NOTE: With regard to VNETs the general rule is that callers do not set
99  * curvnet. Exceptions to this rule include soabort(), sodisconnect(),
100  * sofree() (and with that sorele(), sotryfree()), as well as sonewconn()
101  * and sorflush(), which are usually called from a pre-set VNET context.
102  * sopoll() currently does not need a VNET context to be set.
103  */
104 
105 #include <sys/cdefs.h>
106 __FBSDID("$FreeBSD$");
107 
108 #include "opt_inet.h"
109 #include "opt_inet6.h"
110 #include "opt_kern_tls.h"
111 #include "opt_sctp.h"
112 
113 #include <sys/param.h>
114 #include <sys/systm.h>
115 #include <sys/capsicum.h>
116 #include <sys/fcntl.h>
117 #include <sys/limits.h>
118 #include <sys/lock.h>
119 #include <sys/mac.h>
120 #include <sys/malloc.h>
121 #include <sys/mbuf.h>
122 #include <sys/mutex.h>
123 #include <sys/domain.h>
124 #include <sys/file.h>			/* for struct knote */
125 #include <sys/hhook.h>
126 #include <sys/kernel.h>
127 #include <sys/khelp.h>
128 #include <sys/ktls.h>
129 #include <sys/event.h>
130 #include <sys/eventhandler.h>
131 #include <sys/poll.h>
132 #include <sys/proc.h>
133 #include <sys/protosw.h>
134 #include <sys/sbuf.h>
135 #include <sys/socket.h>
136 #include <sys/socketvar.h>
137 #include <sys/resourcevar.h>
138 #include <net/route.h>
139 #include <sys/signalvar.h>
140 #include <sys/stat.h>
141 #include <sys/sx.h>
142 #include <sys/sysctl.h>
143 #include <sys/taskqueue.h>
144 #include <sys/uio.h>
145 #include <sys/un.h>
146 #include <sys/unpcb.h>
147 #include <sys/jail.h>
148 #include <sys/syslog.h>
149 #include <netinet/in.h>
150 #include <netinet/in_pcb.h>
151 #include <netinet/tcp.h>
152 
153 #include <net/vnet.h>
154 
155 #include <security/mac/mac_framework.h>
156 
157 #include <vm/uma.h>
158 
159 #ifdef COMPAT_FREEBSD32
160 #include <sys/mount.h>
161 #include <sys/sysent.h>
162 #include <compat/freebsd32/freebsd32.h>
163 #endif
164 
165 static int	soreceive_rcvoob(struct socket *so, struct uio *uio,
166 		    int flags);
167 static void	so_rdknl_lock(void *);
168 static void	so_rdknl_unlock(void *);
169 static void	so_rdknl_assert_lock(void *, int);
170 static void	so_wrknl_lock(void *);
171 static void	so_wrknl_unlock(void *);
172 static void	so_wrknl_assert_lock(void *, int);
173 
174 static void	filt_sordetach(struct knote *kn);
175 static int	filt_soread(struct knote *kn, long hint);
176 static void	filt_sowdetach(struct knote *kn);
177 static int	filt_sowrite(struct knote *kn, long hint);
178 static int	filt_soempty(struct knote *kn, long hint);
179 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id);
180 fo_kqfilter_t	soo_kqfilter;
181 
182 static struct filterops soread_filtops = {
183 	.f_isfd = 1,
184 	.f_detach = filt_sordetach,
185 	.f_event = filt_soread,
186 };
187 static struct filterops sowrite_filtops = {
188 	.f_isfd = 1,
189 	.f_detach = filt_sowdetach,
190 	.f_event = filt_sowrite,
191 };
192 static struct filterops soempty_filtops = {
193 	.f_isfd = 1,
194 	.f_detach = filt_sowdetach,
195 	.f_event = filt_soempty,
196 };
197 
198 so_gen_t	so_gencnt;	/* generation count for sockets */
199 
200 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
201 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
202 
203 #define	VNET_SO_ASSERT(so)						\
204 	VNET_ASSERT(curvnet != NULL,					\
205 	    ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so)));
206 
207 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]);
208 #define	V_socket_hhh		VNET(socket_hhh)
209 
210 /*
211  * Limit on the number of connections in the listen queue waiting
212  * for accept(2).
213  * NB: The original sysctl somaxconn is still available but hidden
214  * to prevent confusion about the actual purpose of this number.
215  */
216 static u_int somaxconn = SOMAXCONN;
217 
218 static int
219 sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
220 {
221 	int error;
222 	int val;
223 
224 	val = somaxconn;
225 	error = sysctl_handle_int(oidp, &val, 0, req);
226 	if (error || !req->newptr )
227 		return (error);
228 
229 	/*
230 	 * The purpose of the UINT_MAX / 3 limit, is so that the formula
231 	 *   3 * so_qlimit / 2
232 	 * below, will not overflow.
233          */
234 
235 	if (val < 1 || val > UINT_MAX / 3)
236 		return (EINVAL);
237 
238 	somaxconn = val;
239 	return (0);
240 }
241 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue,
242     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 0, sizeof(int),
243     sysctl_somaxconn, "I",
244     "Maximum listen socket pending connection accept queue size");
245 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn,
246     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_NEEDGIANT, 0,
247     sizeof(int), sysctl_somaxconn, "I",
248     "Maximum listen socket pending connection accept queue size (compat)");
249 
250 static int numopensockets;
251 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,
252     &numopensockets, 0, "Number of open sockets");
253 
254 /*
255  * accept_mtx locks down per-socket fields relating to accept queues.  See
256  * socketvar.h for an annotation of the protected fields of struct socket.
257  */
258 struct mtx accept_mtx;
259 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF);
260 
261 /*
262  * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
263  * so_gencnt field.
264  */
265 static struct mtx so_global_mtx;
266 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
267 
268 /*
269  * General IPC sysctl name space, used by sockets and a variety of other IPC
270  * types.
271  */
272 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
273     "IPC");
274 
275 /*
276  * Initialize the socket subsystem and set up the socket
277  * memory allocator.
278  */
279 static uma_zone_t socket_zone;
280 int	maxsockets;
281 
282 static void
283 socket_zone_change(void *tag)
284 {
285 
286 	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
287 }
288 
289 static void
290 socket_hhook_register(int subtype)
291 {
292 
293 	if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype,
294 	    &V_socket_hhh[subtype],
295 	    HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
296 		printf("%s: WARNING: unable to register hook\n", __func__);
297 }
298 
299 static void
300 socket_hhook_deregister(int subtype)
301 {
302 
303 	if (hhook_head_deregister(V_socket_hhh[subtype]) != 0)
304 		printf("%s: WARNING: unable to deregister hook\n", __func__);
305 }
306 
307 static void
308 socket_init(void *tag)
309 {
310 
311 	socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL,
312 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
313 	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
314 	uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached");
315 	EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL,
316 	    EVENTHANDLER_PRI_FIRST);
317 }
318 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL);
319 
320 static void
321 socket_vnet_init(const void *unused __unused)
322 {
323 	int i;
324 
325 	/* We expect a contiguous range */
326 	for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
327 		socket_hhook_register(i);
328 }
329 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
330     socket_vnet_init, NULL);
331 
332 static void
333 socket_vnet_uninit(const void *unused __unused)
334 {
335 	int i;
336 
337 	for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
338 		socket_hhook_deregister(i);
339 }
340 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
341     socket_vnet_uninit, NULL);
342 
343 /*
344  * Initialise maxsockets.  This SYSINIT must be run after
345  * tunable_mbinit().
346  */
347 static void
348 init_maxsockets(void *ignored)
349 {
350 
351 	TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
352 	maxsockets = imax(maxsockets, maxfiles);
353 }
354 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
355 
356 /*
357  * Sysctl to get and set the maximum global sockets limit.  Notify protocols
358  * of the change so that they can update their dependent limits as required.
359  */
360 static int
361 sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
362 {
363 	int error, newmaxsockets;
364 
365 	newmaxsockets = maxsockets;
366 	error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
367 	if (error == 0 && req->newptr) {
368 		if (newmaxsockets > maxsockets &&
369 		    newmaxsockets <= maxfiles) {
370 			maxsockets = newmaxsockets;
371 			EVENTHANDLER_INVOKE(maxsockets_change);
372 		} else
373 			error = EINVAL;
374 	}
375 	return (error);
376 }
377 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets,
378     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &maxsockets, 0,
379     sysctl_maxsockets, "IU",
380     "Maximum number of sockets available");
381 
382 /*
383  * Socket operation routines.  These routines are called by the routines in
384  * sys_socket.c or from a system process, and implement the semantics of
385  * socket operations by switching out to the protocol specific routines.
386  */
387 
388 /*
389  * Get a socket structure from our zone, and initialize it.  Note that it
390  * would probably be better to allocate socket and PCB at the same time, but
391  * I'm not convinced that all the protocols can be easily modified to do
392  * this.
393  *
394  * soalloc() returns a socket with a ref count of 0.
395  */
396 static struct socket *
397 soalloc(struct vnet *vnet)
398 {
399 	struct socket *so;
400 
401 	so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
402 	if (so == NULL)
403 		return (NULL);
404 #ifdef MAC
405 	if (mac_socket_init(so, M_NOWAIT) != 0) {
406 		uma_zfree(socket_zone, so);
407 		return (NULL);
408 	}
409 #endif
410 	if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) {
411 		uma_zfree(socket_zone, so);
412 		return (NULL);
413 	}
414 
415 	/*
416 	 * The socket locking protocol allows to lock 2 sockets at a time,
417 	 * however, the first one must be a listening socket.  WITNESS lacks
418 	 * a feature to change class of an existing lock, so we use DUPOK.
419 	 */
420 	mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK);
421 	SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd");
422 	SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv");
423 	so->so_rcv.sb_sel = &so->so_rdsel;
424 	so->so_snd.sb_sel = &so->so_wrsel;
425 	sx_init(&so->so_snd.sb_sx, "so_snd_sx");
426 	sx_init(&so->so_rcv.sb_sx, "so_rcv_sx");
427 	TAILQ_INIT(&so->so_snd.sb_aiojobq);
428 	TAILQ_INIT(&so->so_rcv.sb_aiojobq);
429 	TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so);
430 	TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so);
431 #ifdef VIMAGE
432 	VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p",
433 	    __func__, __LINE__, so));
434 	so->so_vnet = vnet;
435 #endif
436 	/* We shouldn't need the so_global_mtx */
437 	if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) {
438 		/* Do we need more comprehensive error returns? */
439 		uma_zfree(socket_zone, so);
440 		return (NULL);
441 	}
442 	mtx_lock(&so_global_mtx);
443 	so->so_gencnt = ++so_gencnt;
444 	++numopensockets;
445 #ifdef VIMAGE
446 	vnet->vnet_sockcnt++;
447 #endif
448 	mtx_unlock(&so_global_mtx);
449 
450 	return (so);
451 }
452 
453 /*
454  * Free the storage associated with a socket at the socket layer, tear down
455  * locks, labels, etc.  All protocol state is assumed already to have been
456  * torn down (and possibly never set up) by the caller.
457  */
458 static void
459 sodealloc(struct socket *so)
460 {
461 
462 	KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
463 	KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
464 
465 	mtx_lock(&so_global_mtx);
466 	so->so_gencnt = ++so_gencnt;
467 	--numopensockets;	/* Could be below, but faster here. */
468 #ifdef VIMAGE
469 	VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p",
470 	    __func__, __LINE__, so));
471 	so->so_vnet->vnet_sockcnt--;
472 #endif
473 	mtx_unlock(&so_global_mtx);
474 #ifdef MAC
475 	mac_socket_destroy(so);
476 #endif
477 	hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE);
478 
479 	khelp_destroy_osd(&so->osd);
480 	if (SOLISTENING(so)) {
481 		if (so->sol_accept_filter != NULL)
482 			accept_filt_setopt(so, NULL);
483 	} else {
484 		if (so->so_rcv.sb_hiwat)
485 			(void)chgsbsize(so->so_cred->cr_uidinfo,
486 			    &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
487 		if (so->so_snd.sb_hiwat)
488 			(void)chgsbsize(so->so_cred->cr_uidinfo,
489 			    &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
490 		sx_destroy(&so->so_snd.sb_sx);
491 		sx_destroy(&so->so_rcv.sb_sx);
492 		SOCKBUF_LOCK_DESTROY(&so->so_snd);
493 		SOCKBUF_LOCK_DESTROY(&so->so_rcv);
494 	}
495 	crfree(so->so_cred);
496 	mtx_destroy(&so->so_lock);
497 	uma_zfree(socket_zone, so);
498 }
499 
500 /*
501  * socreate returns a socket with a ref count of 1.  The socket should be
502  * closed with soclose().
503  */
504 int
505 socreate(int dom, struct socket **aso, int type, int proto,
506     struct ucred *cred, struct thread *td)
507 {
508 	struct protosw *prp;
509 	struct socket *so;
510 	int error;
511 
512 	if (proto)
513 		prp = pffindproto(dom, proto, type);
514 	else
515 		prp = pffindtype(dom, type);
516 
517 	if (prp == NULL) {
518 		/* No support for domain. */
519 		if (pffinddomain(dom) == NULL)
520 			return (EAFNOSUPPORT);
521 		/* No support for socket type. */
522 		if (proto == 0 && type != 0)
523 			return (EPROTOTYPE);
524 		return (EPROTONOSUPPORT);
525 	}
526 	if (prp->pr_usrreqs->pru_attach == NULL ||
527 	    prp->pr_usrreqs->pru_attach == pru_attach_notsupp)
528 		return (EPROTONOSUPPORT);
529 
530 	if (IN_CAPABILITY_MODE(td) && (prp->pr_flags & PR_CAPATTACH) == 0)
531 		return (ECAPMODE);
532 
533 	if (prison_check_af(cred, prp->pr_domain->dom_family) != 0)
534 		return (EPROTONOSUPPORT);
535 
536 	if (prp->pr_type != type)
537 		return (EPROTOTYPE);
538 	so = soalloc(CRED_TO_VNET(cred));
539 	if (so == NULL)
540 		return (ENOBUFS);
541 
542 	so->so_type = type;
543 	so->so_cred = crhold(cred);
544 	if ((prp->pr_domain->dom_family == PF_INET) ||
545 	    (prp->pr_domain->dom_family == PF_INET6) ||
546 	    (prp->pr_domain->dom_family == PF_ROUTE))
547 		so->so_fibnum = td->td_proc->p_fibnum;
548 	else
549 		so->so_fibnum = 0;
550 	so->so_proto = prp;
551 #ifdef MAC
552 	mac_socket_create(cred, so);
553 #endif
554 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
555 	    so_rdknl_assert_lock);
556 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
557 	    so_wrknl_assert_lock);
558 	/*
559 	 * Auto-sizing of socket buffers is managed by the protocols and
560 	 * the appropriate flags must be set in the pru_attach function.
561 	 */
562 	CURVNET_SET(so->so_vnet);
563 	error = (*prp->pr_usrreqs->pru_attach)(so, proto, td);
564 	CURVNET_RESTORE();
565 	if (error) {
566 		sodealloc(so);
567 		return (error);
568 	}
569 	soref(so);
570 	*aso = so;
571 	return (0);
572 }
573 
574 #ifdef REGRESSION
575 static int regression_sonewconn_earlytest = 1;
576 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
577     &regression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
578 #endif
579 
580 static struct timeval overinterval = { 60, 0 };
581 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW,
582     &overinterval,
583     "Delay in seconds between warnings for listen socket overflows");
584 
585 /*
586  * When an attempt at a new connection is noted on a socket which accepts
587  * connections, sonewconn is called.  If the connection is possible (subject
588  * to space constraints, etc.) then we allocate a new structure, properly
589  * linked into the data structure of the original socket, and return this.
590  * Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED.
591  *
592  * Note: the ref count on the socket is 0 on return.
593  */
594 struct socket *
595 sonewconn(struct socket *head, int connstatus)
596 {
597 	struct sbuf descrsb;
598 	struct socket *so;
599 	int len, overcount;
600 	u_int qlen;
601 	const char localprefix[] = "local:";
602 	char descrbuf[SUNPATHLEN + sizeof(localprefix)];
603 #if defined(INET6)
604 	char addrbuf[INET6_ADDRSTRLEN];
605 #elif defined(INET)
606 	char addrbuf[INET_ADDRSTRLEN];
607 #endif
608 	bool dolog, over;
609 
610 	SOLISTEN_LOCK(head);
611 	over = (head->sol_qlen > 3 * head->sol_qlimit / 2);
612 #ifdef REGRESSION
613 	if (regression_sonewconn_earlytest && over) {
614 #else
615 	if (over) {
616 #endif
617 		head->sol_overcount++;
618 		dolog = !!ratecheck(&head->sol_lastover, &overinterval);
619 
620 		/*
621 		 * If we're going to log, copy the overflow count and queue
622 		 * length from the listen socket before dropping the lock.
623 		 * Also, reset the overflow count.
624 		 */
625 		if (dolog) {
626 			overcount = head->sol_overcount;
627 			head->sol_overcount = 0;
628 			qlen = head->sol_qlen;
629 		}
630 		SOLISTEN_UNLOCK(head);
631 
632 		if (dolog) {
633 			/*
634 			 * Try to print something descriptive about the
635 			 * socket for the error message.
636 			 */
637 			sbuf_new(&descrsb, descrbuf, sizeof(descrbuf),
638 			    SBUF_FIXEDLEN);
639 			switch (head->so_proto->pr_domain->dom_family) {
640 #if defined(INET) || defined(INET6)
641 #ifdef INET
642 			case AF_INET:
643 #endif
644 #ifdef INET6
645 			case AF_INET6:
646 				if (head->so_proto->pr_domain->dom_family ==
647 				    AF_INET6 ||
648 				    (sotoinpcb(head)->inp_inc.inc_flags &
649 				    INC_ISIPV6)) {
650 					ip6_sprintf(addrbuf,
651 					    &sotoinpcb(head)->inp_inc.inc6_laddr);
652 					sbuf_printf(&descrsb, "[%s]", addrbuf);
653 				} else
654 #endif
655 				{
656 #ifdef INET
657 					inet_ntoa_r(
658 					    sotoinpcb(head)->inp_inc.inc_laddr,
659 					    addrbuf);
660 					sbuf_cat(&descrsb, addrbuf);
661 #endif
662 				}
663 				sbuf_printf(&descrsb, ":%hu (proto %u)",
664 				    ntohs(sotoinpcb(head)->inp_inc.inc_lport),
665 				    head->so_proto->pr_protocol);
666 				break;
667 #endif /* INET || INET6 */
668 			case AF_UNIX:
669 				sbuf_cat(&descrsb, localprefix);
670 				if (sotounpcb(head)->unp_addr != NULL)
671 					len =
672 					    sotounpcb(head)->unp_addr->sun_len -
673 					    offsetof(struct sockaddr_un,
674 					    sun_path);
675 				else
676 					len = 0;
677 				if (len > 0)
678 					sbuf_bcat(&descrsb,
679 					    sotounpcb(head)->unp_addr->sun_path,
680 					    len);
681 				else
682 					sbuf_cat(&descrsb, "(unknown)");
683 				break;
684 			}
685 
686 			/*
687 			 * If we can't print something more specific, at least
688 			 * print the domain name.
689 			 */
690 			if (sbuf_finish(&descrsb) != 0 ||
691 			    sbuf_len(&descrsb) <= 0) {
692 				sbuf_clear(&descrsb);
693 				sbuf_cat(&descrsb,
694 				    head->so_proto->pr_domain->dom_name ?:
695 				    "unknown");
696 				sbuf_finish(&descrsb);
697 			}
698 			KASSERT(sbuf_len(&descrsb) > 0,
699 			    ("%s: sbuf creation failed", __func__));
700 			log(LOG_DEBUG,
701 			    "%s: pcb %p (%s): Listen queue overflow: "
702 			    "%i already in queue awaiting acceptance "
703 			    "(%d occurrences)\n",
704 			    __func__, head->so_pcb, sbuf_data(&descrsb),
705 			    qlen, overcount);
706 			sbuf_delete(&descrsb);
707 
708 			overcount = 0;
709 		}
710 
711 		return (NULL);
712 	}
713 	SOLISTEN_UNLOCK(head);
714 	VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL",
715 	    __func__, head));
716 	so = soalloc(head->so_vnet);
717 	if (so == NULL) {
718 		log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
719 		    "limit reached or out of memory\n",
720 		    __func__, head->so_pcb);
721 		return (NULL);
722 	}
723 	so->so_listen = head;
724 	so->so_type = head->so_type;
725 	so->so_options = head->so_options & ~SO_ACCEPTCONN;
726 	so->so_linger = head->so_linger;
727 	so->so_state = head->so_state | SS_NOFDREF;
728 	so->so_fibnum = head->so_fibnum;
729 	so->so_proto = head->so_proto;
730 	so->so_cred = crhold(head->so_cred);
731 #ifdef MAC
732 	mac_socket_newconn(head, so);
733 #endif
734 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
735 	    so_rdknl_assert_lock);
736 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
737 	    so_wrknl_assert_lock);
738 	VNET_SO_ASSERT(head);
739 	if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) {
740 		sodealloc(so);
741 		log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
742 		    __func__, head->so_pcb);
743 		return (NULL);
744 	}
745 	if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
746 		sodealloc(so);
747 		log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n",
748 		    __func__, head->so_pcb);
749 		return (NULL);
750 	}
751 	so->so_rcv.sb_lowat = head->sol_sbrcv_lowat;
752 	so->so_snd.sb_lowat = head->sol_sbsnd_lowat;
753 	so->so_rcv.sb_timeo = head->sol_sbrcv_timeo;
754 	so->so_snd.sb_timeo = head->sol_sbsnd_timeo;
755 	so->so_rcv.sb_flags |= head->sol_sbrcv_flags & SB_AUTOSIZE;
756 	so->so_snd.sb_flags |= head->sol_sbsnd_flags & SB_AUTOSIZE;
757 
758 	SOLISTEN_LOCK(head);
759 	if (head->sol_accept_filter != NULL)
760 		connstatus = 0;
761 	so->so_state |= connstatus;
762 	soref(head); /* A socket on (in)complete queue refs head. */
763 	if (connstatus) {
764 		TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
765 		so->so_qstate = SQ_COMP;
766 		head->sol_qlen++;
767 		solisten_wakeup(head);	/* unlocks */
768 	} else {
769 		/*
770 		 * Keep removing sockets from the head until there's room for
771 		 * us to insert on the tail.  In pre-locking revisions, this
772 		 * was a simple if(), but as we could be racing with other
773 		 * threads and soabort() requires dropping locks, we must
774 		 * loop waiting for the condition to be true.
775 		 */
776 		while (head->sol_incqlen > head->sol_qlimit) {
777 			struct socket *sp;
778 
779 			sp = TAILQ_FIRST(&head->sol_incomp);
780 			TAILQ_REMOVE(&head->sol_incomp, sp, so_list);
781 			head->sol_incqlen--;
782 			SOCK_LOCK(sp);
783 			sp->so_qstate = SQ_NONE;
784 			sp->so_listen = NULL;
785 			SOCK_UNLOCK(sp);
786 			sorele(head);	/* does SOLISTEN_UNLOCK, head stays */
787 			soabort(sp);
788 			SOLISTEN_LOCK(head);
789 		}
790 		TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list);
791 		so->so_qstate = SQ_INCOMP;
792 		head->sol_incqlen++;
793 		SOLISTEN_UNLOCK(head);
794 	}
795 	return (so);
796 }
797 
798 #if defined(SCTP) || defined(SCTP_SUPPORT)
799 /*
800  * Socket part of sctp_peeloff().  Detach a new socket from an
801  * association.  The new socket is returned with a reference.
802  */
803 struct socket *
804 sopeeloff(struct socket *head)
805 {
806 	struct socket *so;
807 
808 	VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p",
809 	    __func__, __LINE__, head));
810 	so = soalloc(head->so_vnet);
811 	if (so == NULL) {
812 		log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
813 		    "limit reached or out of memory\n",
814 		    __func__, head->so_pcb);
815 		return (NULL);
816 	}
817 	so->so_type = head->so_type;
818 	so->so_options = head->so_options;
819 	so->so_linger = head->so_linger;
820 	so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED;
821 	so->so_fibnum = head->so_fibnum;
822 	so->so_proto = head->so_proto;
823 	so->so_cred = crhold(head->so_cred);
824 #ifdef MAC
825 	mac_socket_newconn(head, so);
826 #endif
827 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
828 	    so_rdknl_assert_lock);
829 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
830 	    so_wrknl_assert_lock);
831 	VNET_SO_ASSERT(head);
832 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
833 		sodealloc(so);
834 		log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
835 		    __func__, head->so_pcb);
836 		return (NULL);
837 	}
838 	if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
839 		sodealloc(so);
840 		log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n",
841 		    __func__, head->so_pcb);
842 		return (NULL);
843 	}
844 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
845 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
846 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
847 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
848 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
849 	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
850 
851 	soref(so);
852 
853 	return (so);
854 }
855 #endif	/* SCTP */
856 
857 int
858 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
859 {
860 	int error;
861 
862 	CURVNET_SET(so->so_vnet);
863 	error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td);
864 	CURVNET_RESTORE();
865 	return (error);
866 }
867 
868 int
869 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
870 {
871 	int error;
872 
873 	CURVNET_SET(so->so_vnet);
874 	error = (*so->so_proto->pr_usrreqs->pru_bindat)(fd, so, nam, td);
875 	CURVNET_RESTORE();
876 	return (error);
877 }
878 
879 /*
880  * solisten() transitions a socket from a non-listening state to a listening
881  * state, but can also be used to update the listen queue depth on an
882  * existing listen socket.  The protocol will call back into the sockets
883  * layer using solisten_proto_check() and solisten_proto() to check and set
884  * socket-layer listen state.  Call backs are used so that the protocol can
885  * acquire both protocol and socket layer locks in whatever order is required
886  * by the protocol.
887  *
888  * Protocol implementors are advised to hold the socket lock across the
889  * socket-layer test and set to avoid races at the socket layer.
890  */
891 int
892 solisten(struct socket *so, int backlog, struct thread *td)
893 {
894 	int error;
895 
896 	CURVNET_SET(so->so_vnet);
897 	error = (*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td);
898 	CURVNET_RESTORE();
899 	return (error);
900 }
901 
902 int
903 solisten_proto_check(struct socket *so)
904 {
905 
906 	SOCK_LOCK_ASSERT(so);
907 
908 	if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
909 	    SS_ISDISCONNECTING))
910 		return (EINVAL);
911 	return (0);
912 }
913 
914 void
915 solisten_proto(struct socket *so, int backlog)
916 {
917 	int sbrcv_lowat, sbsnd_lowat;
918 	u_int sbrcv_hiwat, sbsnd_hiwat;
919 	short sbrcv_flags, sbsnd_flags;
920 	sbintime_t sbrcv_timeo, sbsnd_timeo;
921 
922 	SOCK_LOCK_ASSERT(so);
923 
924 	if (SOLISTENING(so))
925 		goto listening;
926 
927 	/*
928 	 * Change this socket to listening state.
929 	 */
930 	sbrcv_lowat = so->so_rcv.sb_lowat;
931 	sbsnd_lowat = so->so_snd.sb_lowat;
932 	sbrcv_hiwat = so->so_rcv.sb_hiwat;
933 	sbsnd_hiwat = so->so_snd.sb_hiwat;
934 	sbrcv_flags = so->so_rcv.sb_flags;
935 	sbsnd_flags = so->so_snd.sb_flags;
936 	sbrcv_timeo = so->so_rcv.sb_timeo;
937 	sbsnd_timeo = so->so_snd.sb_timeo;
938 
939 	sbdestroy(&so->so_snd, so);
940 	sbdestroy(&so->so_rcv, so);
941 	sx_destroy(&so->so_snd.sb_sx);
942 	sx_destroy(&so->so_rcv.sb_sx);
943 	SOCKBUF_LOCK_DESTROY(&so->so_snd);
944 	SOCKBUF_LOCK_DESTROY(&so->so_rcv);
945 
946 #ifdef INVARIANTS
947 	bzero(&so->so_rcv,
948 	    sizeof(struct socket) - offsetof(struct socket, so_rcv));
949 #endif
950 
951 	so->sol_sbrcv_lowat = sbrcv_lowat;
952 	so->sol_sbsnd_lowat = sbsnd_lowat;
953 	so->sol_sbrcv_hiwat = sbrcv_hiwat;
954 	so->sol_sbsnd_hiwat = sbsnd_hiwat;
955 	so->sol_sbrcv_flags = sbrcv_flags;
956 	so->sol_sbsnd_flags = sbsnd_flags;
957 	so->sol_sbrcv_timeo = sbrcv_timeo;
958 	so->sol_sbsnd_timeo = sbsnd_timeo;
959 
960 	so->sol_qlen = so->sol_incqlen = 0;
961 	TAILQ_INIT(&so->sol_incomp);
962 	TAILQ_INIT(&so->sol_comp);
963 
964 	so->sol_accept_filter = NULL;
965 	so->sol_accept_filter_arg = NULL;
966 	so->sol_accept_filter_str = NULL;
967 
968 	so->sol_upcall = NULL;
969 	so->sol_upcallarg = NULL;
970 
971 	so->so_options |= SO_ACCEPTCONN;
972 
973 listening:
974 	if (backlog < 0 || backlog > somaxconn)
975 		backlog = somaxconn;
976 	so->sol_qlimit = backlog;
977 }
978 
979 /*
980  * Wakeup listeners/subsystems once we have a complete connection.
981  * Enters with lock, returns unlocked.
982  */
983 void
984 solisten_wakeup(struct socket *sol)
985 {
986 
987 	if (sol->sol_upcall != NULL)
988 		(void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT);
989 	else {
990 		selwakeuppri(&sol->so_rdsel, PSOCK);
991 		KNOTE_LOCKED(&sol->so_rdsel.si_note, 0);
992 	}
993 	SOLISTEN_UNLOCK(sol);
994 	wakeup_one(&sol->sol_comp);
995 	if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL)
996 		pgsigio(&sol->so_sigio, SIGIO, 0);
997 }
998 
999 /*
1000  * Return single connection off a listening socket queue.  Main consumer of
1001  * the function is kern_accept4().  Some modules, that do their own accept
1002  * management also use the function.
1003  *
1004  * Listening socket must be locked on entry and is returned unlocked on
1005  * return.
1006  * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT.
1007  */
1008 int
1009 solisten_dequeue(struct socket *head, struct socket **ret, int flags)
1010 {
1011 	struct socket *so;
1012 	int error;
1013 
1014 	SOLISTEN_LOCK_ASSERT(head);
1015 
1016 	while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) &&
1017 	    head->so_error == 0) {
1018 		error = msleep(&head->sol_comp, SOCK_MTX(head), PSOCK | PCATCH,
1019 		    "accept", 0);
1020 		if (error != 0) {
1021 			SOLISTEN_UNLOCK(head);
1022 			return (error);
1023 		}
1024 	}
1025 	if (head->so_error) {
1026 		error = head->so_error;
1027 		head->so_error = 0;
1028 	} else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp))
1029 		error = EWOULDBLOCK;
1030 	else
1031 		error = 0;
1032 	if (error) {
1033 		SOLISTEN_UNLOCK(head);
1034 		return (error);
1035 	}
1036 	so = TAILQ_FIRST(&head->sol_comp);
1037 	SOCK_LOCK(so);
1038 	KASSERT(so->so_qstate == SQ_COMP,
1039 	    ("%s: so %p not SQ_COMP", __func__, so));
1040 	soref(so);
1041 	head->sol_qlen--;
1042 	so->so_qstate = SQ_NONE;
1043 	so->so_listen = NULL;
1044 	TAILQ_REMOVE(&head->sol_comp, so, so_list);
1045 	if (flags & ACCEPT4_INHERIT)
1046 		so->so_state |= (head->so_state & SS_NBIO);
1047 	else
1048 		so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0;
1049 	SOCK_UNLOCK(so);
1050 	sorele(head);
1051 
1052 	*ret = so;
1053 	return (0);
1054 }
1055 
1056 /*
1057  * Evaluate the reference count and named references on a socket; if no
1058  * references remain, free it.  This should be called whenever a reference is
1059  * released, such as in sorele(), but also when named reference flags are
1060  * cleared in socket or protocol code.
1061  *
1062  * sofree() will free the socket if:
1063  *
1064  * - There are no outstanding file descriptor references or related consumers
1065  *   (so_count == 0).
1066  *
1067  * - The socket has been closed by user space, if ever open (SS_NOFDREF).
1068  *
1069  * - The protocol does not have an outstanding strong reference on the socket
1070  *   (SS_PROTOREF).
1071  *
1072  * - The socket is not in a completed connection queue, so a process has been
1073  *   notified that it is present.  If it is removed, the user process may
1074  *   block in accept() despite select() saying the socket was ready.
1075  */
1076 void
1077 sofree(struct socket *so)
1078 {
1079 	struct protosw *pr = so->so_proto;
1080 
1081 	SOCK_LOCK_ASSERT(so);
1082 
1083 	if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 ||
1084 	    (so->so_state & SS_PROTOREF) || (so->so_qstate == SQ_COMP)) {
1085 		SOCK_UNLOCK(so);
1086 		return;
1087 	}
1088 
1089 	if (!SOLISTENING(so) && so->so_qstate == SQ_INCOMP) {
1090 		struct socket *sol;
1091 
1092 		sol = so->so_listen;
1093 		KASSERT(sol, ("%s: so %p on incomp of NULL", __func__, so));
1094 
1095 		/*
1096 		 * To solve race between close of a listening socket and
1097 		 * a socket on its incomplete queue, we need to lock both.
1098 		 * The order is first listening socket, then regular.
1099 		 * Since we don't have SS_NOFDREF neither SS_PROTOREF, this
1100 		 * function and the listening socket are the only pointers
1101 		 * to so.  To preserve so and sol, we reference both and then
1102 		 * relock.
1103 		 * After relock the socket may not move to so_comp since it
1104 		 * doesn't have PCB already, but it may be removed from
1105 		 * so_incomp. If that happens, we share responsiblity on
1106 		 * freeing the socket, but soclose() has already removed
1107 		 * it from queue.
1108 		 */
1109 		soref(sol);
1110 		soref(so);
1111 		SOCK_UNLOCK(so);
1112 		SOLISTEN_LOCK(sol);
1113 		SOCK_LOCK(so);
1114 		if (so->so_qstate == SQ_INCOMP) {
1115 			KASSERT(so->so_listen == sol,
1116 			    ("%s: so %p migrated out of sol %p",
1117 			    __func__, so, sol));
1118 			TAILQ_REMOVE(&sol->sol_incomp, so, so_list);
1119 			sol->sol_incqlen--;
1120 			/* This is guarenteed not to be the last. */
1121 			refcount_release(&sol->so_count);
1122 			so->so_qstate = SQ_NONE;
1123 			so->so_listen = NULL;
1124 		} else
1125 			KASSERT(so->so_listen == NULL,
1126 			    ("%s: so %p not on (in)comp with so_listen",
1127 			    __func__, so));
1128 		sorele(sol);
1129 		KASSERT(so->so_count == 1,
1130 		    ("%s: so %p count %u", __func__, so, so->so_count));
1131 		so->so_count = 0;
1132 	}
1133 	if (SOLISTENING(so))
1134 		so->so_error = ECONNABORTED;
1135 	SOCK_UNLOCK(so);
1136 
1137 	if (so->so_dtor != NULL)
1138 		so->so_dtor(so);
1139 
1140 	VNET_SO_ASSERT(so);
1141 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
1142 		(*pr->pr_domain->dom_dispose)(so);
1143 	if (pr->pr_usrreqs->pru_detach != NULL)
1144 		(*pr->pr_usrreqs->pru_detach)(so);
1145 
1146 	/*
1147 	 * From this point on, we assume that no other references to this
1148 	 * socket exist anywhere else in the stack.  Therefore, no locks need
1149 	 * to be acquired or held.
1150 	 *
1151 	 * We used to do a lot of socket buffer and socket locking here, as
1152 	 * well as invoke sorflush() and perform wakeups.  The direct call to
1153 	 * dom_dispose() and sbdestroy() are an inlining of what was
1154 	 * necessary from sorflush().
1155 	 *
1156 	 * Notice that the socket buffer and kqueue state are torn down
1157 	 * before calling pru_detach.  This means that protocols shold not
1158 	 * assume they can perform socket wakeups, etc, in their detach code.
1159 	 */
1160 	if (!SOLISTENING(so)) {
1161 		sbdestroy(&so->so_snd, so);
1162 		sbdestroy(&so->so_rcv, so);
1163 	}
1164 	seldrain(&so->so_rdsel);
1165 	seldrain(&so->so_wrsel);
1166 	knlist_destroy(&so->so_rdsel.si_note);
1167 	knlist_destroy(&so->so_wrsel.si_note);
1168 	sodealloc(so);
1169 }
1170 
1171 /*
1172  * Close a socket on last file table reference removal.  Initiate disconnect
1173  * if connected.  Free socket when disconnect complete.
1174  *
1175  * This function will sorele() the socket.  Note that soclose() may be called
1176  * prior to the ref count reaching zero.  The actual socket structure will
1177  * not be freed until the ref count reaches zero.
1178  */
1179 int
1180 soclose(struct socket *so)
1181 {
1182 	struct accept_queue lqueue;
1183 	int error = 0;
1184 
1185 	KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter"));
1186 
1187 	CURVNET_SET(so->so_vnet);
1188 	funsetown(&so->so_sigio);
1189 	if (so->so_state & SS_ISCONNECTED) {
1190 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
1191 			error = sodisconnect(so);
1192 			if (error) {
1193 				if (error == ENOTCONN)
1194 					error = 0;
1195 				goto drop;
1196 			}
1197 		}
1198 
1199 		if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) {
1200 			if ((so->so_state & SS_ISDISCONNECTING) &&
1201 			    (so->so_state & SS_NBIO))
1202 				goto drop;
1203 			while (so->so_state & SS_ISCONNECTED) {
1204 				error = tsleep(&so->so_timeo,
1205 				    PSOCK | PCATCH, "soclos",
1206 				    so->so_linger * hz);
1207 				if (error)
1208 					break;
1209 			}
1210 		}
1211 	}
1212 
1213 drop:
1214 	if (so->so_proto->pr_usrreqs->pru_close != NULL)
1215 		(*so->so_proto->pr_usrreqs->pru_close)(so);
1216 
1217 	SOCK_LOCK(so);
1218 	if (SOLISTENING(so)) {
1219 		struct socket *sp;
1220 
1221 		TAILQ_INIT(&lqueue);
1222 		TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list);
1223 		TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list);
1224 
1225 		so->sol_qlen = so->sol_incqlen = 0;
1226 
1227 		TAILQ_FOREACH(sp, &lqueue, so_list) {
1228 			SOCK_LOCK(sp);
1229 			sp->so_qstate = SQ_NONE;
1230 			sp->so_listen = NULL;
1231 			SOCK_UNLOCK(sp);
1232 			/* Guaranteed not to be the last. */
1233 			refcount_release(&so->so_count);
1234 		}
1235 	}
1236 	KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF"));
1237 	so->so_state |= SS_NOFDREF;
1238 	sorele(so);
1239 	if (SOLISTENING(so)) {
1240 		struct socket *sp, *tsp;
1241 
1242 		TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp) {
1243 			SOCK_LOCK(sp);
1244 			if (sp->so_count == 0) {
1245 				SOCK_UNLOCK(sp);
1246 				soabort(sp);
1247 			} else
1248 				/* sp is now in sofree() */
1249 				SOCK_UNLOCK(sp);
1250 		}
1251 	}
1252 	CURVNET_RESTORE();
1253 	return (error);
1254 }
1255 
1256 /*
1257  * soabort() is used to abruptly tear down a connection, such as when a
1258  * resource limit is reached (listen queue depth exceeded), or if a listen
1259  * socket is closed while there are sockets waiting to be accepted.
1260  *
1261  * This interface is tricky, because it is called on an unreferenced socket,
1262  * and must be called only by a thread that has actually removed the socket
1263  * from the listen queue it was on, or races with other threads are risked.
1264  *
1265  * This interface will call into the protocol code, so must not be called
1266  * with any socket locks held.  Protocols do call it while holding their own
1267  * recursible protocol mutexes, but this is something that should be subject
1268  * to review in the future.
1269  */
1270 void
1271 soabort(struct socket *so)
1272 {
1273 
1274 	/*
1275 	 * In as much as is possible, assert that no references to this
1276 	 * socket are held.  This is not quite the same as asserting that the
1277 	 * current thread is responsible for arranging for no references, but
1278 	 * is as close as we can get for now.
1279 	 */
1280 	KASSERT(so->so_count == 0, ("soabort: so_count"));
1281 	KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF"));
1282 	KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF"));
1283 	VNET_SO_ASSERT(so);
1284 
1285 	if (so->so_proto->pr_usrreqs->pru_abort != NULL)
1286 		(*so->so_proto->pr_usrreqs->pru_abort)(so);
1287 	SOCK_LOCK(so);
1288 	sofree(so);
1289 }
1290 
1291 int
1292 soaccept(struct socket *so, struct sockaddr **nam)
1293 {
1294 	int error;
1295 
1296 	SOCK_LOCK(so);
1297 	KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF"));
1298 	so->so_state &= ~SS_NOFDREF;
1299 	SOCK_UNLOCK(so);
1300 
1301 	CURVNET_SET(so->so_vnet);
1302 	error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam);
1303 	CURVNET_RESTORE();
1304 	return (error);
1305 }
1306 
1307 int
1308 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
1309 {
1310 
1311 	return (soconnectat(AT_FDCWD, so, nam, td));
1312 }
1313 
1314 int
1315 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
1316 {
1317 	int error;
1318 
1319 	/* XXXMJ racy */
1320 	if (SOLISTENING(so))
1321 		return (EOPNOTSUPP);
1322 
1323 	CURVNET_SET(so->so_vnet);
1324 	/*
1325 	 * If protocol is connection-based, can only connect once.
1326 	 * Otherwise, if connected, try to disconnect first.  This allows
1327 	 * user to disconnect by connecting to, e.g., a null address.
1328 	 */
1329 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
1330 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
1331 	    (error = sodisconnect(so)))) {
1332 		error = EISCONN;
1333 	} else {
1334 		/*
1335 		 * Prevent accumulated error from previous connection from
1336 		 * biting us.
1337 		 */
1338 		so->so_error = 0;
1339 		if (fd == AT_FDCWD) {
1340 			error = (*so->so_proto->pr_usrreqs->pru_connect)(so,
1341 			    nam, td);
1342 		} else {
1343 			error = (*so->so_proto->pr_usrreqs->pru_connectat)(fd,
1344 			    so, nam, td);
1345 		}
1346 	}
1347 	CURVNET_RESTORE();
1348 
1349 	return (error);
1350 }
1351 
1352 int
1353 soconnect2(struct socket *so1, struct socket *so2)
1354 {
1355 	int error;
1356 
1357 	CURVNET_SET(so1->so_vnet);
1358 	error = (*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2);
1359 	CURVNET_RESTORE();
1360 	return (error);
1361 }
1362 
1363 int
1364 sodisconnect(struct socket *so)
1365 {
1366 	int error;
1367 
1368 	if ((so->so_state & SS_ISCONNECTED) == 0)
1369 		return (ENOTCONN);
1370 	if (so->so_state & SS_ISDISCONNECTING)
1371 		return (EALREADY);
1372 	VNET_SO_ASSERT(so);
1373 	error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so);
1374 	return (error);
1375 }
1376 
1377 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT)
1378 
1379 int
1380 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
1381     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1382 {
1383 	long space;
1384 	ssize_t resid;
1385 	int clen = 0, error, dontroute;
1386 
1387 	KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM"));
1388 	KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
1389 	    ("sosend_dgram: !PR_ATOMIC"));
1390 
1391 	if (uio != NULL)
1392 		resid = uio->uio_resid;
1393 	else
1394 		resid = top->m_pkthdr.len;
1395 	/*
1396 	 * In theory resid should be unsigned.  However, space must be
1397 	 * signed, as it might be less than 0 if we over-committed, and we
1398 	 * must use a signed comparison of space and resid.  On the other
1399 	 * hand, a negative resid causes us to loop sending 0-length
1400 	 * segments to the protocol.
1401 	 */
1402 	if (resid < 0) {
1403 		error = EINVAL;
1404 		goto out;
1405 	}
1406 
1407 	dontroute =
1408 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
1409 	if (td != NULL)
1410 		td->td_ru.ru_msgsnd++;
1411 	if (control != NULL)
1412 		clen = control->m_len;
1413 
1414 	SOCKBUF_LOCK(&so->so_snd);
1415 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1416 		SOCKBUF_UNLOCK(&so->so_snd);
1417 		error = EPIPE;
1418 		goto out;
1419 	}
1420 	if (so->so_error) {
1421 		error = so->so_error;
1422 		so->so_error = 0;
1423 		SOCKBUF_UNLOCK(&so->so_snd);
1424 		goto out;
1425 	}
1426 	if ((so->so_state & SS_ISCONNECTED) == 0) {
1427 		/*
1428 		 * `sendto' and `sendmsg' is allowed on a connection-based
1429 		 * socket if it supports implied connect.  Return ENOTCONN if
1430 		 * not connected and no address is supplied.
1431 		 */
1432 		if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1433 		    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1434 			if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1435 			    !(resid == 0 && clen != 0)) {
1436 				SOCKBUF_UNLOCK(&so->so_snd);
1437 				error = ENOTCONN;
1438 				goto out;
1439 			}
1440 		} else if (addr == NULL) {
1441 			if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1442 				error = ENOTCONN;
1443 			else
1444 				error = EDESTADDRREQ;
1445 			SOCKBUF_UNLOCK(&so->so_snd);
1446 			goto out;
1447 		}
1448 	}
1449 
1450 	/*
1451 	 * Do we need MSG_OOB support in SOCK_DGRAM?  Signs here may be a
1452 	 * problem and need fixing.
1453 	 */
1454 	space = sbspace(&so->so_snd);
1455 	if (flags & MSG_OOB)
1456 		space += 1024;
1457 	space -= clen;
1458 	SOCKBUF_UNLOCK(&so->so_snd);
1459 	if (resid > space) {
1460 		error = EMSGSIZE;
1461 		goto out;
1462 	}
1463 	if (uio == NULL) {
1464 		resid = 0;
1465 		if (flags & MSG_EOR)
1466 			top->m_flags |= M_EOR;
1467 	} else {
1468 		/*
1469 		 * Copy the data from userland into a mbuf chain.
1470 		 * If no data is to be copied in, a single empty mbuf
1471 		 * is returned.
1472 		 */
1473 		top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
1474 		    (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
1475 		if (top == NULL) {
1476 			error = EFAULT;	/* only possible error */
1477 			goto out;
1478 		}
1479 		space -= resid - uio->uio_resid;
1480 		resid = uio->uio_resid;
1481 	}
1482 	KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
1483 	/*
1484 	 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
1485 	 * than with.
1486 	 */
1487 	if (dontroute) {
1488 		SOCK_LOCK(so);
1489 		so->so_options |= SO_DONTROUTE;
1490 		SOCK_UNLOCK(so);
1491 	}
1492 	/*
1493 	 * XXX all the SBS_CANTSENDMORE checks previously done could be out
1494 	 * of date.  We could have received a reset packet in an interrupt or
1495 	 * maybe we slept while doing page faults in uiomove() etc.  We could
1496 	 * probably recheck again inside the locking protection here, but
1497 	 * there are probably other places that this also happens.  We must
1498 	 * rethink this.
1499 	 */
1500 	VNET_SO_ASSERT(so);
1501 	error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1502 	    (flags & MSG_OOB) ? PRUS_OOB :
1503 	/*
1504 	 * If the user set MSG_EOF, the protocol understands this flag and
1505 	 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
1506 	 */
1507 	    ((flags & MSG_EOF) &&
1508 	     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1509 	     (resid <= 0)) ?
1510 		PRUS_EOF :
1511 		/* If there is more to send set PRUS_MORETOCOME */
1512 		(flags & MSG_MORETOCOME) ||
1513 		(resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1514 		top, addr, control, td);
1515 	if (dontroute) {
1516 		SOCK_LOCK(so);
1517 		so->so_options &= ~SO_DONTROUTE;
1518 		SOCK_UNLOCK(so);
1519 	}
1520 	clen = 0;
1521 	control = NULL;
1522 	top = NULL;
1523 out:
1524 	if (top != NULL)
1525 		m_freem(top);
1526 	if (control != NULL)
1527 		m_freem(control);
1528 	return (error);
1529 }
1530 
1531 /*
1532  * Send on a socket.  If send must go all at once and message is larger than
1533  * send buffering, then hard error.  Lock against other senders.  If must go
1534  * all at once and not enough room now, then inform user that this would
1535  * block and do nothing.  Otherwise, if nonblocking, send as much as
1536  * possible.  The data to be sent is described by "uio" if nonzero, otherwise
1537  * by the mbuf chain "top" (which must be null if uio is not).  Data provided
1538  * in mbuf chain must be small enough to send all at once.
1539  *
1540  * Returns nonzero on error, timeout or signal; callers must check for short
1541  * counts if EINTR/ERESTART are returned.  Data and control buffers are freed
1542  * on return.
1543  */
1544 int
1545 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
1546     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1547 {
1548 	long space;
1549 	ssize_t resid;
1550 	int clen = 0, error, dontroute;
1551 	int atomic = sosendallatonce(so) || top;
1552 	int pru_flag;
1553 #ifdef KERN_TLS
1554 	struct ktls_session *tls;
1555 	int tls_enq_cnt, tls_pruflag;
1556 	uint8_t tls_rtype;
1557 
1558 	tls = NULL;
1559 	tls_rtype = TLS_RLTYPE_APP;
1560 #endif
1561 	if (uio != NULL)
1562 		resid = uio->uio_resid;
1563 	else if ((top->m_flags & M_PKTHDR) != 0)
1564 		resid = top->m_pkthdr.len;
1565 	else
1566 		resid = m_length(top, NULL);
1567 	/*
1568 	 * In theory resid should be unsigned.  However, space must be
1569 	 * signed, as it might be less than 0 if we over-committed, and we
1570 	 * must use a signed comparison of space and resid.  On the other
1571 	 * hand, a negative resid causes us to loop sending 0-length
1572 	 * segments to the protocol.
1573 	 *
1574 	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
1575 	 * type sockets since that's an error.
1576 	 */
1577 	if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
1578 		error = EINVAL;
1579 		goto out;
1580 	}
1581 
1582 	dontroute =
1583 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
1584 	    (so->so_proto->pr_flags & PR_ATOMIC);
1585 	if (td != NULL)
1586 		td->td_ru.ru_msgsnd++;
1587 	if (control != NULL)
1588 		clen = control->m_len;
1589 
1590 	error = sblock(&so->so_snd, SBLOCKWAIT(flags));
1591 	if (error)
1592 		goto out;
1593 
1594 #ifdef KERN_TLS
1595 	tls_pruflag = 0;
1596 	tls = ktls_hold(so->so_snd.sb_tls_info);
1597 	if (tls != NULL) {
1598 		if (tls->mode == TCP_TLS_MODE_SW)
1599 			tls_pruflag = PRUS_NOTREADY;
1600 
1601 		if (control != NULL) {
1602 			struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1603 
1604 			if (clen >= sizeof(*cm) &&
1605 			    cm->cmsg_type == TLS_SET_RECORD_TYPE) {
1606 				tls_rtype = *((uint8_t *)CMSG_DATA(cm));
1607 				clen = 0;
1608 				m_freem(control);
1609 				control = NULL;
1610 				atomic = 1;
1611 			}
1612 		}
1613 	}
1614 #endif
1615 
1616 restart:
1617 	do {
1618 		SOCKBUF_LOCK(&so->so_snd);
1619 		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1620 			SOCKBUF_UNLOCK(&so->so_snd);
1621 			error = EPIPE;
1622 			goto release;
1623 		}
1624 		if (so->so_error) {
1625 			error = so->so_error;
1626 			so->so_error = 0;
1627 			SOCKBUF_UNLOCK(&so->so_snd);
1628 			goto release;
1629 		}
1630 		if ((so->so_state & SS_ISCONNECTED) == 0) {
1631 			/*
1632 			 * `sendto' and `sendmsg' is allowed on a connection-
1633 			 * based socket if it supports implied connect.
1634 			 * Return ENOTCONN if not connected and no address is
1635 			 * supplied.
1636 			 */
1637 			if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1638 			    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1639 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1640 				    !(resid == 0 && clen != 0)) {
1641 					SOCKBUF_UNLOCK(&so->so_snd);
1642 					error = ENOTCONN;
1643 					goto release;
1644 				}
1645 			} else if (addr == NULL) {
1646 				SOCKBUF_UNLOCK(&so->so_snd);
1647 				if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1648 					error = ENOTCONN;
1649 				else
1650 					error = EDESTADDRREQ;
1651 				goto release;
1652 			}
1653 		}
1654 		space = sbspace(&so->so_snd);
1655 		if (flags & MSG_OOB)
1656 			space += 1024;
1657 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
1658 		    clen > so->so_snd.sb_hiwat) {
1659 			SOCKBUF_UNLOCK(&so->so_snd);
1660 			error = EMSGSIZE;
1661 			goto release;
1662 		}
1663 		if (space < resid + clen &&
1664 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
1665 			if ((so->so_state & SS_NBIO) ||
1666 			    (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) {
1667 				SOCKBUF_UNLOCK(&so->so_snd);
1668 				error = EWOULDBLOCK;
1669 				goto release;
1670 			}
1671 			error = sbwait(&so->so_snd);
1672 			SOCKBUF_UNLOCK(&so->so_snd);
1673 			if (error)
1674 				goto release;
1675 			goto restart;
1676 		}
1677 		SOCKBUF_UNLOCK(&so->so_snd);
1678 		space -= clen;
1679 		do {
1680 			if (uio == NULL) {
1681 				resid = 0;
1682 				if (flags & MSG_EOR)
1683 					top->m_flags |= M_EOR;
1684 #ifdef KERN_TLS
1685 				if (tls != NULL) {
1686 					ktls_frame(top, tls, &tls_enq_cnt,
1687 					    tls_rtype);
1688 					tls_rtype = TLS_RLTYPE_APP;
1689 				}
1690 #endif
1691 			} else {
1692 				/*
1693 				 * Copy the data from userland into a mbuf
1694 				 * chain.  If resid is 0, which can happen
1695 				 * only if we have control to send, then
1696 				 * a single empty mbuf is returned.  This
1697 				 * is a workaround to prevent protocol send
1698 				 * methods to panic.
1699 				 */
1700 #ifdef KERN_TLS
1701 				if (tls != NULL) {
1702 					top = m_uiotombuf(uio, M_WAITOK, space,
1703 					    tls->params.max_frame_len,
1704 					    M_EXTPG |
1705 					    ((flags & MSG_EOR) ? M_EOR : 0));
1706 					if (top != NULL) {
1707 						ktls_frame(top, tls,
1708 						    &tls_enq_cnt, tls_rtype);
1709 					}
1710 					tls_rtype = TLS_RLTYPE_APP;
1711 				} else
1712 #endif
1713 					top = m_uiotombuf(uio, M_WAITOK, space,
1714 					    (atomic ? max_hdr : 0),
1715 					    (atomic ? M_PKTHDR : 0) |
1716 					    ((flags & MSG_EOR) ? M_EOR : 0));
1717 				if (top == NULL) {
1718 					error = EFAULT; /* only possible error */
1719 					goto release;
1720 				}
1721 				space -= resid - uio->uio_resid;
1722 				resid = uio->uio_resid;
1723 			}
1724 			if (dontroute) {
1725 				SOCK_LOCK(so);
1726 				so->so_options |= SO_DONTROUTE;
1727 				SOCK_UNLOCK(so);
1728 			}
1729 			/*
1730 			 * XXX all the SBS_CANTSENDMORE checks previously
1731 			 * done could be out of date.  We could have received
1732 			 * a reset packet in an interrupt or maybe we slept
1733 			 * while doing page faults in uiomove() etc.  We
1734 			 * could probably recheck again inside the locking
1735 			 * protection here, but there are probably other
1736 			 * places that this also happens.  We must rethink
1737 			 * this.
1738 			 */
1739 			VNET_SO_ASSERT(so);
1740 
1741 			pru_flag = (flags & MSG_OOB) ? PRUS_OOB :
1742 			/*
1743 			 * If the user set MSG_EOF, the protocol understands
1744 			 * this flag and nothing left to send then use
1745 			 * PRU_SEND_EOF instead of PRU_SEND.
1746 			 */
1747 			    ((flags & MSG_EOF) &&
1748 			     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1749 			     (resid <= 0)) ?
1750 				PRUS_EOF :
1751 			/* If there is more to send set PRUS_MORETOCOME. */
1752 			    (flags & MSG_MORETOCOME) ||
1753 			    (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0;
1754 
1755 #ifdef KERN_TLS
1756 			pru_flag |= tls_pruflag;
1757 #endif
1758 
1759 			error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1760 			    pru_flag, top, addr, control, td);
1761 
1762 			if (dontroute) {
1763 				SOCK_LOCK(so);
1764 				so->so_options &= ~SO_DONTROUTE;
1765 				SOCK_UNLOCK(so);
1766 			}
1767 
1768 #ifdef KERN_TLS
1769 			if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) {
1770 				if (error != 0) {
1771 					m_freem(top);
1772 					top = NULL;
1773 				} else {
1774 					soref(so);
1775 					ktls_enqueue(top, so, tls_enq_cnt);
1776 				}
1777 			}
1778 #endif
1779 			clen = 0;
1780 			control = NULL;
1781 			top = NULL;
1782 			if (error)
1783 				goto release;
1784 		} while (resid && space > 0);
1785 	} while (resid);
1786 
1787 release:
1788 	sbunlock(&so->so_snd);
1789 out:
1790 #ifdef KERN_TLS
1791 	if (tls != NULL)
1792 		ktls_free(tls);
1793 #endif
1794 	if (top != NULL)
1795 		m_freem(top);
1796 	if (control != NULL)
1797 		m_freem(control);
1798 	return (error);
1799 }
1800 
1801 int
1802 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
1803     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1804 {
1805 	int error;
1806 
1807 	CURVNET_SET(so->so_vnet);
1808 	if (!SOLISTENING(so))
1809 		error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio,
1810 		    top, control, flags, td);
1811 	else {
1812 		m_freem(top);
1813 		m_freem(control);
1814 		error = ENOTCONN;
1815 	}
1816 	CURVNET_RESTORE();
1817 	return (error);
1818 }
1819 
1820 /*
1821  * The part of soreceive() that implements reading non-inline out-of-band
1822  * data from a socket.  For more complete comments, see soreceive(), from
1823  * which this code originated.
1824  *
1825  * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
1826  * unable to return an mbuf chain to the caller.
1827  */
1828 static int
1829 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
1830 {
1831 	struct protosw *pr = so->so_proto;
1832 	struct mbuf *m;
1833 	int error;
1834 
1835 	KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
1836 	VNET_SO_ASSERT(so);
1837 
1838 	m = m_get(M_WAITOK, MT_DATA);
1839 	error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK);
1840 	if (error)
1841 		goto bad;
1842 	do {
1843 		error = uiomove(mtod(m, void *),
1844 		    (int) min(uio->uio_resid, m->m_len), uio);
1845 		m = m_free(m);
1846 	} while (uio->uio_resid && error == 0 && m);
1847 bad:
1848 	if (m != NULL)
1849 		m_freem(m);
1850 	return (error);
1851 }
1852 
1853 /*
1854  * Following replacement or removal of the first mbuf on the first mbuf chain
1855  * of a socket buffer, push necessary state changes back into the socket
1856  * buffer so that other consumers see the values consistently.  'nextrecord'
1857  * is the callers locally stored value of the original value of
1858  * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
1859  * NOTE: 'nextrecord' may be NULL.
1860  */
1861 static __inline void
1862 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
1863 {
1864 
1865 	SOCKBUF_LOCK_ASSERT(sb);
1866 	/*
1867 	 * First, update for the new value of nextrecord.  If necessary, make
1868 	 * it the first record.
1869 	 */
1870 	if (sb->sb_mb != NULL)
1871 		sb->sb_mb->m_nextpkt = nextrecord;
1872 	else
1873 		sb->sb_mb = nextrecord;
1874 
1875 	/*
1876 	 * Now update any dependent socket buffer fields to reflect the new
1877 	 * state.  This is an expanded inline of SB_EMPTY_FIXUP(), with the
1878 	 * addition of a second clause that takes care of the case where
1879 	 * sb_mb has been updated, but remains the last record.
1880 	 */
1881 	if (sb->sb_mb == NULL) {
1882 		sb->sb_mbtail = NULL;
1883 		sb->sb_lastrecord = NULL;
1884 	} else if (sb->sb_mb->m_nextpkt == NULL)
1885 		sb->sb_lastrecord = sb->sb_mb;
1886 }
1887 
1888 /*
1889  * Implement receive operations on a socket.  We depend on the way that
1890  * records are added to the sockbuf by sbappend.  In particular, each record
1891  * (mbufs linked through m_next) must begin with an address if the protocol
1892  * so specifies, followed by an optional mbuf or mbufs containing ancillary
1893  * data, and then zero or more mbufs of data.  In order to allow parallelism
1894  * between network receive and copying to user space, as well as avoid
1895  * sleeping with a mutex held, we release the socket buffer mutex during the
1896  * user space copy.  Although the sockbuf is locked, new data may still be
1897  * appended, and thus we must maintain consistency of the sockbuf during that
1898  * time.
1899  *
1900  * The caller may receive the data as a single mbuf chain by supplying an
1901  * mbuf **mp0 for use in returning the chain.  The uio is then used only for
1902  * the count in uio_resid.
1903  */
1904 int
1905 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
1906     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1907 {
1908 	struct mbuf *m, **mp;
1909 	int flags, error, offset;
1910 	ssize_t len;
1911 	struct protosw *pr = so->so_proto;
1912 	struct mbuf *nextrecord;
1913 	int moff, type = 0;
1914 	ssize_t orig_resid = uio->uio_resid;
1915 
1916 	mp = mp0;
1917 	if (psa != NULL)
1918 		*psa = NULL;
1919 	if (controlp != NULL)
1920 		*controlp = NULL;
1921 	if (flagsp != NULL)
1922 		flags = *flagsp &~ MSG_EOR;
1923 	else
1924 		flags = 0;
1925 	if (flags & MSG_OOB)
1926 		return (soreceive_rcvoob(so, uio, flags));
1927 	if (mp != NULL)
1928 		*mp = NULL;
1929 	if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING)
1930 	    && uio->uio_resid) {
1931 		VNET_SO_ASSERT(so);
1932 		(*pr->pr_usrreqs->pru_rcvd)(so, 0);
1933 	}
1934 
1935 	error = sblock(&so->so_rcv, SBLOCKWAIT(flags));
1936 	if (error)
1937 		return (error);
1938 
1939 restart:
1940 	SOCKBUF_LOCK(&so->so_rcv);
1941 	m = so->so_rcv.sb_mb;
1942 	/*
1943 	 * If we have less data than requested, block awaiting more (subject
1944 	 * to any timeout) if:
1945 	 *   1. the current count is less than the low water mark, or
1946 	 *   2. MSG_DONTWAIT is not set
1947 	 */
1948 	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
1949 	    sbavail(&so->so_rcv) < uio->uio_resid) &&
1950 	    sbavail(&so->so_rcv) < so->so_rcv.sb_lowat &&
1951 	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
1952 		KASSERT(m != NULL || !sbavail(&so->so_rcv),
1953 		    ("receive: m == %p sbavail == %u",
1954 		    m, sbavail(&so->so_rcv)));
1955 		if (so->so_error || so->so_rerror) {
1956 			if (m != NULL)
1957 				goto dontblock;
1958 			if (so->so_error)
1959 				error = so->so_error;
1960 			else
1961 				error = so->so_rerror;
1962 			if ((flags & MSG_PEEK) == 0) {
1963 				if (so->so_error)
1964 					so->so_error = 0;
1965 				else
1966 					so->so_rerror = 0;
1967 			}
1968 			SOCKBUF_UNLOCK(&so->so_rcv);
1969 			goto release;
1970 		}
1971 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1972 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1973 			if (m != NULL)
1974 				goto dontblock;
1975 #ifdef KERN_TLS
1976 			else if (so->so_rcv.sb_tlsdcc == 0 &&
1977 			    so->so_rcv.sb_tlscc == 0) {
1978 #else
1979 			else {
1980 #endif
1981 				SOCKBUF_UNLOCK(&so->so_rcv);
1982 				goto release;
1983 			}
1984 		}
1985 		for (; m != NULL; m = m->m_next)
1986 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
1987 				m = so->so_rcv.sb_mb;
1988 				goto dontblock;
1989 			}
1990 		if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED |
1991 		    SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 &&
1992 		    (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
1993 			SOCKBUF_UNLOCK(&so->so_rcv);
1994 			error = ENOTCONN;
1995 			goto release;
1996 		}
1997 		if (uio->uio_resid == 0) {
1998 			SOCKBUF_UNLOCK(&so->so_rcv);
1999 			goto release;
2000 		}
2001 		if ((so->so_state & SS_NBIO) ||
2002 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
2003 			SOCKBUF_UNLOCK(&so->so_rcv);
2004 			error = EWOULDBLOCK;
2005 			goto release;
2006 		}
2007 		SBLASTRECORDCHK(&so->so_rcv);
2008 		SBLASTMBUFCHK(&so->so_rcv);
2009 		error = sbwait(&so->so_rcv);
2010 		SOCKBUF_UNLOCK(&so->so_rcv);
2011 		if (error)
2012 			goto release;
2013 		goto restart;
2014 	}
2015 dontblock:
2016 	/*
2017 	 * From this point onward, we maintain 'nextrecord' as a cache of the
2018 	 * pointer to the next record in the socket buffer.  We must keep the
2019 	 * various socket buffer pointers and local stack versions of the
2020 	 * pointers in sync, pushing out modifications before dropping the
2021 	 * socket buffer mutex, and re-reading them when picking it up.
2022 	 *
2023 	 * Otherwise, we will race with the network stack appending new data
2024 	 * or records onto the socket buffer by using inconsistent/stale
2025 	 * versions of the field, possibly resulting in socket buffer
2026 	 * corruption.
2027 	 *
2028 	 * By holding the high-level sblock(), we prevent simultaneous
2029 	 * readers from pulling off the front of the socket buffer.
2030 	 */
2031 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2032 	if (uio->uio_td)
2033 		uio->uio_td->td_ru.ru_msgrcv++;
2034 	KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
2035 	SBLASTRECORDCHK(&so->so_rcv);
2036 	SBLASTMBUFCHK(&so->so_rcv);
2037 	nextrecord = m->m_nextpkt;
2038 	if (pr->pr_flags & PR_ADDR) {
2039 		KASSERT(m->m_type == MT_SONAME,
2040 		    ("m->m_type == %d", m->m_type));
2041 		orig_resid = 0;
2042 		if (psa != NULL)
2043 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
2044 			    M_NOWAIT);
2045 		if (flags & MSG_PEEK) {
2046 			m = m->m_next;
2047 		} else {
2048 			sbfree(&so->so_rcv, m);
2049 			so->so_rcv.sb_mb = m_free(m);
2050 			m = so->so_rcv.sb_mb;
2051 			sockbuf_pushsync(&so->so_rcv, nextrecord);
2052 		}
2053 	}
2054 
2055 	/*
2056 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
2057 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
2058 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
2059 	 * perform externalization (or freeing if controlp == NULL).
2060 	 */
2061 	if (m != NULL && m->m_type == MT_CONTROL) {
2062 		struct mbuf *cm = NULL, *cmn;
2063 		struct mbuf **cme = &cm;
2064 #ifdef KERN_TLS
2065 		struct cmsghdr *cmsg;
2066 		struct tls_get_record tgr;
2067 
2068 		/*
2069 		 * For MSG_TLSAPPDATA, check for a non-application data
2070 		 * record.  If found, return ENXIO without removing
2071 		 * it from the receive queue.  This allows a subsequent
2072 		 * call without MSG_TLSAPPDATA to receive it.
2073 		 * Note that, for TLS, there should only be a single
2074 		 * control mbuf with the TLS_GET_RECORD message in it.
2075 		 */
2076 		if (flags & MSG_TLSAPPDATA) {
2077 			cmsg = mtod(m, struct cmsghdr *);
2078 			if (cmsg->cmsg_type == TLS_GET_RECORD &&
2079 			    cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) {
2080 				memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr));
2081 				/* This will need to change for TLS 1.3. */
2082 				if (tgr.tls_type != TLS_RLTYPE_APP) {
2083 					SOCKBUF_UNLOCK(&so->so_rcv);
2084 					error = ENXIO;
2085 					goto release;
2086 				}
2087 			}
2088 		}
2089 #endif
2090 
2091 		do {
2092 			if (flags & MSG_PEEK) {
2093 				if (controlp != NULL) {
2094 					*controlp = m_copym(m, 0, m->m_len,
2095 					    M_NOWAIT);
2096 					controlp = &(*controlp)->m_next;
2097 				}
2098 				m = m->m_next;
2099 			} else {
2100 				sbfree(&so->so_rcv, m);
2101 				so->so_rcv.sb_mb = m->m_next;
2102 				m->m_next = NULL;
2103 				*cme = m;
2104 				cme = &(*cme)->m_next;
2105 				m = so->so_rcv.sb_mb;
2106 			}
2107 		} while (m != NULL && m->m_type == MT_CONTROL);
2108 		if ((flags & MSG_PEEK) == 0)
2109 			sockbuf_pushsync(&so->so_rcv, nextrecord);
2110 		while (cm != NULL) {
2111 			cmn = cm->m_next;
2112 			cm->m_next = NULL;
2113 			if (pr->pr_domain->dom_externalize != NULL) {
2114 				SOCKBUF_UNLOCK(&so->so_rcv);
2115 				VNET_SO_ASSERT(so);
2116 				error = (*pr->pr_domain->dom_externalize)
2117 				    (cm, controlp, flags);
2118 				SOCKBUF_LOCK(&so->so_rcv);
2119 			} else if (controlp != NULL)
2120 				*controlp = cm;
2121 			else
2122 				m_freem(cm);
2123 			if (controlp != NULL) {
2124 				orig_resid = 0;
2125 				while (*controlp != NULL)
2126 					controlp = &(*controlp)->m_next;
2127 			}
2128 			cm = cmn;
2129 		}
2130 		if (m != NULL)
2131 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
2132 		else
2133 			nextrecord = so->so_rcv.sb_mb;
2134 		orig_resid = 0;
2135 	}
2136 	if (m != NULL) {
2137 		if ((flags & MSG_PEEK) == 0) {
2138 			KASSERT(m->m_nextpkt == nextrecord,
2139 			    ("soreceive: post-control, nextrecord !sync"));
2140 			if (nextrecord == NULL) {
2141 				KASSERT(so->so_rcv.sb_mb == m,
2142 				    ("soreceive: post-control, sb_mb!=m"));
2143 				KASSERT(so->so_rcv.sb_lastrecord == m,
2144 				    ("soreceive: post-control, lastrecord!=m"));
2145 			}
2146 		}
2147 		type = m->m_type;
2148 		if (type == MT_OOBDATA)
2149 			flags |= MSG_OOB;
2150 	} else {
2151 		if ((flags & MSG_PEEK) == 0) {
2152 			KASSERT(so->so_rcv.sb_mb == nextrecord,
2153 			    ("soreceive: sb_mb != nextrecord"));
2154 			if (so->so_rcv.sb_mb == NULL) {
2155 				KASSERT(so->so_rcv.sb_lastrecord == NULL,
2156 				    ("soreceive: sb_lastercord != NULL"));
2157 			}
2158 		}
2159 	}
2160 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2161 	SBLASTRECORDCHK(&so->so_rcv);
2162 	SBLASTMBUFCHK(&so->so_rcv);
2163 
2164 	/*
2165 	 * Now continue to read any data mbufs off of the head of the socket
2166 	 * buffer until the read request is satisfied.  Note that 'type' is
2167 	 * used to store the type of any mbuf reads that have happened so far
2168 	 * such that soreceive() can stop reading if the type changes, which
2169 	 * causes soreceive() to return only one of regular data and inline
2170 	 * out-of-band data in a single socket receive operation.
2171 	 */
2172 	moff = 0;
2173 	offset = 0;
2174 	while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0
2175 	    && error == 0) {
2176 		/*
2177 		 * If the type of mbuf has changed since the last mbuf
2178 		 * examined ('type'), end the receive operation.
2179 		 */
2180 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2181 		if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) {
2182 			if (type != m->m_type)
2183 				break;
2184 		} else if (type == MT_OOBDATA)
2185 			break;
2186 		else
2187 		    KASSERT(m->m_type == MT_DATA,
2188 			("m->m_type == %d", m->m_type));
2189 		so->so_rcv.sb_state &= ~SBS_RCVATMARK;
2190 		len = uio->uio_resid;
2191 		if (so->so_oobmark && len > so->so_oobmark - offset)
2192 			len = so->so_oobmark - offset;
2193 		if (len > m->m_len - moff)
2194 			len = m->m_len - moff;
2195 		/*
2196 		 * If mp is set, just pass back the mbufs.  Otherwise copy
2197 		 * them out via the uio, then free.  Sockbuf must be
2198 		 * consistent here (points to current mbuf, it points to next
2199 		 * record) when we drop priority; we must note any additions
2200 		 * to the sockbuf when we block interrupts again.
2201 		 */
2202 		if (mp == NULL) {
2203 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2204 			SBLASTRECORDCHK(&so->so_rcv);
2205 			SBLASTMBUFCHK(&so->so_rcv);
2206 			SOCKBUF_UNLOCK(&so->so_rcv);
2207 			if ((m->m_flags & M_EXTPG) != 0)
2208 				error = m_unmapped_uiomove(m, moff, uio,
2209 				    (int)len);
2210 			else
2211 				error = uiomove(mtod(m, char *) + moff,
2212 				    (int)len, uio);
2213 			SOCKBUF_LOCK(&so->so_rcv);
2214 			if (error) {
2215 				/*
2216 				 * The MT_SONAME mbuf has already been removed
2217 				 * from the record, so it is necessary to
2218 				 * remove the data mbufs, if any, to preserve
2219 				 * the invariant in the case of PR_ADDR that
2220 				 * requires MT_SONAME mbufs at the head of
2221 				 * each record.
2222 				 */
2223 				if (pr->pr_flags & PR_ATOMIC &&
2224 				    ((flags & MSG_PEEK) == 0))
2225 					(void)sbdroprecord_locked(&so->so_rcv);
2226 				SOCKBUF_UNLOCK(&so->so_rcv);
2227 				goto release;
2228 			}
2229 		} else
2230 			uio->uio_resid -= len;
2231 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2232 		if (len == m->m_len - moff) {
2233 			if (m->m_flags & M_EOR)
2234 				flags |= MSG_EOR;
2235 			if (flags & MSG_PEEK) {
2236 				m = m->m_next;
2237 				moff = 0;
2238 			} else {
2239 				nextrecord = m->m_nextpkt;
2240 				sbfree(&so->so_rcv, m);
2241 				if (mp != NULL) {
2242 					m->m_nextpkt = NULL;
2243 					*mp = m;
2244 					mp = &m->m_next;
2245 					so->so_rcv.sb_mb = m = m->m_next;
2246 					*mp = NULL;
2247 				} else {
2248 					so->so_rcv.sb_mb = m_free(m);
2249 					m = so->so_rcv.sb_mb;
2250 				}
2251 				sockbuf_pushsync(&so->so_rcv, nextrecord);
2252 				SBLASTRECORDCHK(&so->so_rcv);
2253 				SBLASTMBUFCHK(&so->so_rcv);
2254 			}
2255 		} else {
2256 			if (flags & MSG_PEEK)
2257 				moff += len;
2258 			else {
2259 				if (mp != NULL) {
2260 					if (flags & MSG_DONTWAIT) {
2261 						*mp = m_copym(m, 0, len,
2262 						    M_NOWAIT);
2263 						if (*mp == NULL) {
2264 							/*
2265 							 * m_copym() couldn't
2266 							 * allocate an mbuf.
2267 							 * Adjust uio_resid back
2268 							 * (it was adjusted
2269 							 * down by len bytes,
2270 							 * which we didn't end
2271 							 * up "copying" over).
2272 							 */
2273 							uio->uio_resid += len;
2274 							break;
2275 						}
2276 					} else {
2277 						SOCKBUF_UNLOCK(&so->so_rcv);
2278 						*mp = m_copym(m, 0, len,
2279 						    M_WAITOK);
2280 						SOCKBUF_LOCK(&so->so_rcv);
2281 					}
2282 				}
2283 				sbcut_locked(&so->so_rcv, len);
2284 			}
2285 		}
2286 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2287 		if (so->so_oobmark) {
2288 			if ((flags & MSG_PEEK) == 0) {
2289 				so->so_oobmark -= len;
2290 				if (so->so_oobmark == 0) {
2291 					so->so_rcv.sb_state |= SBS_RCVATMARK;
2292 					break;
2293 				}
2294 			} else {
2295 				offset += len;
2296 				if (offset == so->so_oobmark)
2297 					break;
2298 			}
2299 		}
2300 		if (flags & MSG_EOR)
2301 			break;
2302 		/*
2303 		 * If the MSG_WAITALL flag is set (for non-atomic socket), we
2304 		 * must not quit until "uio->uio_resid == 0" or an error
2305 		 * termination.  If a signal/timeout occurs, return with a
2306 		 * short count but without error.  Keep sockbuf locked
2307 		 * against other readers.
2308 		 */
2309 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
2310 		    !sosendallatonce(so) && nextrecord == NULL) {
2311 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2312 			if (so->so_error || so->so_rerror ||
2313 			    so->so_rcv.sb_state & SBS_CANTRCVMORE)
2314 				break;
2315 			/*
2316 			 * Notify the protocol that some data has been
2317 			 * drained before blocking.
2318 			 */
2319 			if (pr->pr_flags & PR_WANTRCVD) {
2320 				SOCKBUF_UNLOCK(&so->so_rcv);
2321 				VNET_SO_ASSERT(so);
2322 				(*pr->pr_usrreqs->pru_rcvd)(so, flags);
2323 				SOCKBUF_LOCK(&so->so_rcv);
2324 			}
2325 			SBLASTRECORDCHK(&so->so_rcv);
2326 			SBLASTMBUFCHK(&so->so_rcv);
2327 			/*
2328 			 * We could receive some data while was notifying
2329 			 * the protocol. Skip blocking in this case.
2330 			 */
2331 			if (so->so_rcv.sb_mb == NULL) {
2332 				error = sbwait(&so->so_rcv);
2333 				if (error) {
2334 					SOCKBUF_UNLOCK(&so->so_rcv);
2335 					goto release;
2336 				}
2337 			}
2338 			m = so->so_rcv.sb_mb;
2339 			if (m != NULL)
2340 				nextrecord = m->m_nextpkt;
2341 		}
2342 	}
2343 
2344 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2345 	if (m != NULL && pr->pr_flags & PR_ATOMIC) {
2346 		flags |= MSG_TRUNC;
2347 		if ((flags & MSG_PEEK) == 0)
2348 			(void) sbdroprecord_locked(&so->so_rcv);
2349 	}
2350 	if ((flags & MSG_PEEK) == 0) {
2351 		if (m == NULL) {
2352 			/*
2353 			 * First part is an inline SB_EMPTY_FIXUP().  Second
2354 			 * part makes sure sb_lastrecord is up-to-date if
2355 			 * there is still data in the socket buffer.
2356 			 */
2357 			so->so_rcv.sb_mb = nextrecord;
2358 			if (so->so_rcv.sb_mb == NULL) {
2359 				so->so_rcv.sb_mbtail = NULL;
2360 				so->so_rcv.sb_lastrecord = NULL;
2361 			} else if (nextrecord->m_nextpkt == NULL)
2362 				so->so_rcv.sb_lastrecord = nextrecord;
2363 		}
2364 		SBLASTRECORDCHK(&so->so_rcv);
2365 		SBLASTMBUFCHK(&so->so_rcv);
2366 		/*
2367 		 * If soreceive() is being done from the socket callback,
2368 		 * then don't need to generate ACK to peer to update window,
2369 		 * since ACK will be generated on return to TCP.
2370 		 */
2371 		if (!(flags & MSG_SOCALLBCK) &&
2372 		    (pr->pr_flags & PR_WANTRCVD)) {
2373 			SOCKBUF_UNLOCK(&so->so_rcv);
2374 			VNET_SO_ASSERT(so);
2375 			(*pr->pr_usrreqs->pru_rcvd)(so, flags);
2376 			SOCKBUF_LOCK(&so->so_rcv);
2377 		}
2378 	}
2379 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2380 	if (orig_resid == uio->uio_resid && orig_resid &&
2381 	    (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
2382 		SOCKBUF_UNLOCK(&so->so_rcv);
2383 		goto restart;
2384 	}
2385 	SOCKBUF_UNLOCK(&so->so_rcv);
2386 
2387 	if (flagsp != NULL)
2388 		*flagsp |= flags;
2389 release:
2390 	sbunlock(&so->so_rcv);
2391 	return (error);
2392 }
2393 
2394 /*
2395  * Optimized version of soreceive() for stream (TCP) sockets.
2396  */
2397 int
2398 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio,
2399     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2400 {
2401 	int len = 0, error = 0, flags, oresid;
2402 	struct sockbuf *sb;
2403 	struct mbuf *m, *n = NULL;
2404 
2405 	/* We only do stream sockets. */
2406 	if (so->so_type != SOCK_STREAM)
2407 		return (EINVAL);
2408 	if (psa != NULL)
2409 		*psa = NULL;
2410 	if (flagsp != NULL)
2411 		flags = *flagsp &~ MSG_EOR;
2412 	else
2413 		flags = 0;
2414 	if (controlp != NULL)
2415 		*controlp = NULL;
2416 	if (flags & MSG_OOB)
2417 		return (soreceive_rcvoob(so, uio, flags));
2418 	if (mp0 != NULL)
2419 		*mp0 = NULL;
2420 
2421 	sb = &so->so_rcv;
2422 
2423 #ifdef KERN_TLS
2424 	/*
2425 	 * KTLS store TLS records as records with a control message to
2426 	 * describe the framing.
2427 	 *
2428 	 * We check once here before acquiring locks to optimize the
2429 	 * common case.
2430 	 */
2431 	if (sb->sb_tls_info != NULL)
2432 		return (soreceive_generic(so, psa, uio, mp0, controlp,
2433 		    flagsp));
2434 #endif
2435 
2436 	/* Prevent other readers from entering the socket. */
2437 	error = sblock(sb, SBLOCKWAIT(flags));
2438 	if (error)
2439 		return (error);
2440 	SOCKBUF_LOCK(sb);
2441 
2442 #ifdef KERN_TLS
2443 	if (sb->sb_tls_info != NULL) {
2444 		SOCKBUF_UNLOCK(sb);
2445 		sbunlock(sb);
2446 		return (soreceive_generic(so, psa, uio, mp0, controlp,
2447 		    flagsp));
2448 	}
2449 #endif
2450 
2451 	/* Easy one, no space to copyout anything. */
2452 	if (uio->uio_resid == 0) {
2453 		error = EINVAL;
2454 		goto out;
2455 	}
2456 	oresid = uio->uio_resid;
2457 
2458 	/* We will never ever get anything unless we are or were connected. */
2459 	if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
2460 		error = ENOTCONN;
2461 		goto out;
2462 	}
2463 
2464 restart:
2465 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2466 
2467 	/* Abort if socket has reported problems. */
2468 	if (so->so_error) {
2469 		if (sbavail(sb) > 0)
2470 			goto deliver;
2471 		if (oresid > uio->uio_resid)
2472 			goto out;
2473 		error = so->so_error;
2474 		if (!(flags & MSG_PEEK))
2475 			so->so_error = 0;
2476 		goto out;
2477 	}
2478 
2479 	/* Door is closed.  Deliver what is left, if any. */
2480 	if (sb->sb_state & SBS_CANTRCVMORE) {
2481 		if (sbavail(sb) > 0)
2482 			goto deliver;
2483 		else
2484 			goto out;
2485 	}
2486 
2487 	/* Socket buffer is empty and we shall not block. */
2488 	if (sbavail(sb) == 0 &&
2489 	    ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) {
2490 		error = EAGAIN;
2491 		goto out;
2492 	}
2493 
2494 	/* Socket buffer got some data that we shall deliver now. */
2495 	if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) &&
2496 	    ((so->so_state & SS_NBIO) ||
2497 	     (flags & (MSG_DONTWAIT|MSG_NBIO)) ||
2498 	     sbavail(sb) >= sb->sb_lowat ||
2499 	     sbavail(sb) >= uio->uio_resid ||
2500 	     sbavail(sb) >= sb->sb_hiwat) ) {
2501 		goto deliver;
2502 	}
2503 
2504 	/* On MSG_WAITALL we must wait until all data or error arrives. */
2505 	if ((flags & MSG_WAITALL) &&
2506 	    (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat))
2507 		goto deliver;
2508 
2509 	/*
2510 	 * Wait and block until (more) data comes in.
2511 	 * NB: Drops the sockbuf lock during wait.
2512 	 */
2513 	error = sbwait(sb);
2514 	if (error)
2515 		goto out;
2516 	goto restart;
2517 
2518 deliver:
2519 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2520 	KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__));
2521 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__));
2522 
2523 	/* Statistics. */
2524 	if (uio->uio_td)
2525 		uio->uio_td->td_ru.ru_msgrcv++;
2526 
2527 	/* Fill uio until full or current end of socket buffer is reached. */
2528 	len = min(uio->uio_resid, sbavail(sb));
2529 	if (mp0 != NULL) {
2530 		/* Dequeue as many mbufs as possible. */
2531 		if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) {
2532 			if (*mp0 == NULL)
2533 				*mp0 = sb->sb_mb;
2534 			else
2535 				m_cat(*mp0, sb->sb_mb);
2536 			for (m = sb->sb_mb;
2537 			     m != NULL && m->m_len <= len;
2538 			     m = m->m_next) {
2539 				KASSERT(!(m->m_flags & M_NOTAVAIL),
2540 				    ("%s: m %p not available", __func__, m));
2541 				len -= m->m_len;
2542 				uio->uio_resid -= m->m_len;
2543 				sbfree(sb, m);
2544 				n = m;
2545 			}
2546 			n->m_next = NULL;
2547 			sb->sb_mb = m;
2548 			sb->sb_lastrecord = sb->sb_mb;
2549 			if (sb->sb_mb == NULL)
2550 				SB_EMPTY_FIXUP(sb);
2551 		}
2552 		/* Copy the remainder. */
2553 		if (len > 0) {
2554 			KASSERT(sb->sb_mb != NULL,
2555 			    ("%s: len > 0 && sb->sb_mb empty", __func__));
2556 
2557 			m = m_copym(sb->sb_mb, 0, len, M_NOWAIT);
2558 			if (m == NULL)
2559 				len = 0;	/* Don't flush data from sockbuf. */
2560 			else
2561 				uio->uio_resid -= len;
2562 			if (*mp0 != NULL)
2563 				m_cat(*mp0, m);
2564 			else
2565 				*mp0 = m;
2566 			if (*mp0 == NULL) {
2567 				error = ENOBUFS;
2568 				goto out;
2569 			}
2570 		}
2571 	} else {
2572 		/* NB: Must unlock socket buffer as uiomove may sleep. */
2573 		SOCKBUF_UNLOCK(sb);
2574 		error = m_mbuftouio(uio, sb->sb_mb, len);
2575 		SOCKBUF_LOCK(sb);
2576 		if (error)
2577 			goto out;
2578 	}
2579 	SBLASTRECORDCHK(sb);
2580 	SBLASTMBUFCHK(sb);
2581 
2582 	/*
2583 	 * Remove the delivered data from the socket buffer unless we
2584 	 * were only peeking.
2585 	 */
2586 	if (!(flags & MSG_PEEK)) {
2587 		if (len > 0)
2588 			sbdrop_locked(sb, len);
2589 
2590 		/* Notify protocol that we drained some data. */
2591 		if ((so->so_proto->pr_flags & PR_WANTRCVD) &&
2592 		    (((flags & MSG_WAITALL) && uio->uio_resid > 0) ||
2593 		     !(flags & MSG_SOCALLBCK))) {
2594 			SOCKBUF_UNLOCK(sb);
2595 			VNET_SO_ASSERT(so);
2596 			(*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags);
2597 			SOCKBUF_LOCK(sb);
2598 		}
2599 	}
2600 
2601 	/*
2602 	 * For MSG_WAITALL we may have to loop again and wait for
2603 	 * more data to come in.
2604 	 */
2605 	if ((flags & MSG_WAITALL) && uio->uio_resid > 0)
2606 		goto restart;
2607 out:
2608 	SOCKBUF_LOCK_ASSERT(sb);
2609 	SBLASTRECORDCHK(sb);
2610 	SBLASTMBUFCHK(sb);
2611 	SOCKBUF_UNLOCK(sb);
2612 	sbunlock(sb);
2613 	return (error);
2614 }
2615 
2616 /*
2617  * Optimized version of soreceive() for simple datagram cases from userspace.
2618  * Unlike in the stream case, we're able to drop a datagram if copyout()
2619  * fails, and because we handle datagrams atomically, we don't need to use a
2620  * sleep lock to prevent I/O interlacing.
2621  */
2622 int
2623 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
2624     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2625 {
2626 	struct mbuf *m, *m2;
2627 	int flags, error;
2628 	ssize_t len;
2629 	struct protosw *pr = so->so_proto;
2630 	struct mbuf *nextrecord;
2631 
2632 	if (psa != NULL)
2633 		*psa = NULL;
2634 	if (controlp != NULL)
2635 		*controlp = NULL;
2636 	if (flagsp != NULL)
2637 		flags = *flagsp &~ MSG_EOR;
2638 	else
2639 		flags = 0;
2640 
2641 	/*
2642 	 * For any complicated cases, fall back to the full
2643 	 * soreceive_generic().
2644 	 */
2645 	if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB))
2646 		return (soreceive_generic(so, psa, uio, mp0, controlp,
2647 		    flagsp));
2648 
2649 	/*
2650 	 * Enforce restrictions on use.
2651 	 */
2652 	KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
2653 	    ("soreceive_dgram: wantrcvd"));
2654 	KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
2655 	KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
2656 	    ("soreceive_dgram: SBS_RCVATMARK"));
2657 	KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
2658 	    ("soreceive_dgram: P_CONNREQUIRED"));
2659 
2660 	/*
2661 	 * Loop blocking while waiting for a datagram.
2662 	 */
2663 	SOCKBUF_LOCK(&so->so_rcv);
2664 	while ((m = so->so_rcv.sb_mb) == NULL) {
2665 		KASSERT(sbavail(&so->so_rcv) == 0,
2666 		    ("soreceive_dgram: sb_mb NULL but sbavail %u",
2667 		    sbavail(&so->so_rcv)));
2668 		if (so->so_error) {
2669 			error = so->so_error;
2670 			so->so_error = 0;
2671 			SOCKBUF_UNLOCK(&so->so_rcv);
2672 			return (error);
2673 		}
2674 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
2675 		    uio->uio_resid == 0) {
2676 			SOCKBUF_UNLOCK(&so->so_rcv);
2677 			return (0);
2678 		}
2679 		if ((so->so_state & SS_NBIO) ||
2680 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
2681 			SOCKBUF_UNLOCK(&so->so_rcv);
2682 			return (EWOULDBLOCK);
2683 		}
2684 		SBLASTRECORDCHK(&so->so_rcv);
2685 		SBLASTMBUFCHK(&so->so_rcv);
2686 		error = sbwait(&so->so_rcv);
2687 		if (error) {
2688 			SOCKBUF_UNLOCK(&so->so_rcv);
2689 			return (error);
2690 		}
2691 	}
2692 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2693 
2694 	if (uio->uio_td)
2695 		uio->uio_td->td_ru.ru_msgrcv++;
2696 	SBLASTRECORDCHK(&so->so_rcv);
2697 	SBLASTMBUFCHK(&so->so_rcv);
2698 	nextrecord = m->m_nextpkt;
2699 	if (nextrecord == NULL) {
2700 		KASSERT(so->so_rcv.sb_lastrecord == m,
2701 		    ("soreceive_dgram: lastrecord != m"));
2702 	}
2703 
2704 	KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
2705 	    ("soreceive_dgram: m_nextpkt != nextrecord"));
2706 
2707 	/*
2708 	 * Pull 'm' and its chain off the front of the packet queue.
2709 	 */
2710 	so->so_rcv.sb_mb = NULL;
2711 	sockbuf_pushsync(&so->so_rcv, nextrecord);
2712 
2713 	/*
2714 	 * Walk 'm's chain and free that many bytes from the socket buffer.
2715 	 */
2716 	for (m2 = m; m2 != NULL; m2 = m2->m_next)
2717 		sbfree(&so->so_rcv, m2);
2718 
2719 	/*
2720 	 * Do a few last checks before we let go of the lock.
2721 	 */
2722 	SBLASTRECORDCHK(&so->so_rcv);
2723 	SBLASTMBUFCHK(&so->so_rcv);
2724 	SOCKBUF_UNLOCK(&so->so_rcv);
2725 
2726 	if (pr->pr_flags & PR_ADDR) {
2727 		KASSERT(m->m_type == MT_SONAME,
2728 		    ("m->m_type == %d", m->m_type));
2729 		if (psa != NULL)
2730 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
2731 			    M_NOWAIT);
2732 		m = m_free(m);
2733 	}
2734 	if (m == NULL) {
2735 		/* XXXRW: Can this happen? */
2736 		return (0);
2737 	}
2738 
2739 	/*
2740 	 * Packet to copyout() is now in 'm' and it is disconnected from the
2741 	 * queue.
2742 	 *
2743 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
2744 	 * in the first mbuf chain on the socket buffer.  We call into the
2745 	 * protocol to perform externalization (or freeing if controlp ==
2746 	 * NULL). In some cases there can be only MT_CONTROL mbufs without
2747 	 * MT_DATA mbufs.
2748 	 */
2749 	if (m->m_type == MT_CONTROL) {
2750 		struct mbuf *cm = NULL, *cmn;
2751 		struct mbuf **cme = &cm;
2752 
2753 		do {
2754 			m2 = m->m_next;
2755 			m->m_next = NULL;
2756 			*cme = m;
2757 			cme = &(*cme)->m_next;
2758 			m = m2;
2759 		} while (m != NULL && m->m_type == MT_CONTROL);
2760 		while (cm != NULL) {
2761 			cmn = cm->m_next;
2762 			cm->m_next = NULL;
2763 			if (pr->pr_domain->dom_externalize != NULL) {
2764 				error = (*pr->pr_domain->dom_externalize)
2765 				    (cm, controlp, flags);
2766 			} else if (controlp != NULL)
2767 				*controlp = cm;
2768 			else
2769 				m_freem(cm);
2770 			if (controlp != NULL) {
2771 				while (*controlp != NULL)
2772 					controlp = &(*controlp)->m_next;
2773 			}
2774 			cm = cmn;
2775 		}
2776 	}
2777 	KASSERT(m == NULL || m->m_type == MT_DATA,
2778 	    ("soreceive_dgram: !data"));
2779 	while (m != NULL && uio->uio_resid > 0) {
2780 		len = uio->uio_resid;
2781 		if (len > m->m_len)
2782 			len = m->m_len;
2783 		error = uiomove(mtod(m, char *), (int)len, uio);
2784 		if (error) {
2785 			m_freem(m);
2786 			return (error);
2787 		}
2788 		if (len == m->m_len)
2789 			m = m_free(m);
2790 		else {
2791 			m->m_data += len;
2792 			m->m_len -= len;
2793 		}
2794 	}
2795 	if (m != NULL) {
2796 		flags |= MSG_TRUNC;
2797 		m_freem(m);
2798 	}
2799 	if (flagsp != NULL)
2800 		*flagsp |= flags;
2801 	return (0);
2802 }
2803 
2804 int
2805 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
2806     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2807 {
2808 	int error;
2809 
2810 	CURVNET_SET(so->so_vnet);
2811 	if (!SOLISTENING(so))
2812 		error = (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio,
2813 		    mp0, controlp, flagsp));
2814 	else
2815 		error = ENOTCONN;
2816 	CURVNET_RESTORE();
2817 	return (error);
2818 }
2819 
2820 int
2821 soshutdown(struct socket *so, int how)
2822 {
2823 	struct protosw *pr = so->so_proto;
2824 	int error, soerror_enotconn;
2825 
2826 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
2827 		return (EINVAL);
2828 
2829 	soerror_enotconn = 0;
2830 	if ((so->so_state &
2831 	    (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) {
2832 		/*
2833 		 * POSIX mandates us to return ENOTCONN when shutdown(2) is
2834 		 * invoked on a datagram sockets, however historically we would
2835 		 * actually tear socket down. This is known to be leveraged by
2836 		 * some applications to unblock process waiting in recvXXX(2)
2837 		 * by other process that it shares that socket with. Try to meet
2838 		 * both backward-compatibility and POSIX requirements by forcing
2839 		 * ENOTCONN but still asking protocol to perform pru_shutdown().
2840 		 */
2841 		if (so->so_type != SOCK_DGRAM && !SOLISTENING(so))
2842 			return (ENOTCONN);
2843 		soerror_enotconn = 1;
2844 	}
2845 
2846 	if (SOLISTENING(so)) {
2847 		if (how != SHUT_WR) {
2848 			SOLISTEN_LOCK(so);
2849 			so->so_error = ECONNABORTED;
2850 			solisten_wakeup(so);	/* unlocks so */
2851 		}
2852 		goto done;
2853 	}
2854 
2855 	CURVNET_SET(so->so_vnet);
2856 	if (pr->pr_usrreqs->pru_flush != NULL)
2857 		(*pr->pr_usrreqs->pru_flush)(so, how);
2858 	if (how != SHUT_WR)
2859 		sorflush(so);
2860 	if (how != SHUT_RD) {
2861 		error = (*pr->pr_usrreqs->pru_shutdown)(so);
2862 		wakeup(&so->so_timeo);
2863 		CURVNET_RESTORE();
2864 		return ((error == 0 && soerror_enotconn) ? ENOTCONN : error);
2865 	}
2866 	wakeup(&so->so_timeo);
2867 	CURVNET_RESTORE();
2868 
2869 done:
2870 	return (soerror_enotconn ? ENOTCONN : 0);
2871 }
2872 
2873 void
2874 sorflush(struct socket *so)
2875 {
2876 	struct sockbuf *sb = &so->so_rcv;
2877 	struct protosw *pr = so->so_proto;
2878 	struct socket aso;
2879 
2880 	VNET_SO_ASSERT(so);
2881 
2882 	/*
2883 	 * In order to avoid calling dom_dispose with the socket buffer mutex
2884 	 * held, and in order to generally avoid holding the lock for a long
2885 	 * time, we make a copy of the socket buffer and clear the original
2886 	 * (except locks, state).  The new socket buffer copy won't have
2887 	 * initialized locks so we can only call routines that won't use or
2888 	 * assert those locks.
2889 	 *
2890 	 * Dislodge threads currently blocked in receive and wait to acquire
2891 	 * a lock against other simultaneous readers before clearing the
2892 	 * socket buffer.  Don't let our acquire be interrupted by a signal
2893 	 * despite any existing socket disposition on interruptable waiting.
2894 	 */
2895 	socantrcvmore(so);
2896 	(void) sblock(sb, SBL_WAIT | SBL_NOINTR);
2897 
2898 	/*
2899 	 * Invalidate/clear most of the sockbuf structure, but leave selinfo
2900 	 * and mutex data unchanged.
2901 	 */
2902 	SOCKBUF_LOCK(sb);
2903 	bzero(&aso, sizeof(aso));
2904 	aso.so_pcb = so->so_pcb;
2905 	bcopy(&sb->sb_startzero, &aso.so_rcv.sb_startzero,
2906 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
2907 	bzero(&sb->sb_startzero,
2908 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
2909 	SOCKBUF_UNLOCK(sb);
2910 	sbunlock(sb);
2911 
2912 	/*
2913 	 * Dispose of special rights and flush the copied socket.  Don't call
2914 	 * any unsafe routines (that rely on locks being initialized) on aso.
2915 	 */
2916 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
2917 		(*pr->pr_domain->dom_dispose)(&aso);
2918 	sbrelease_internal(&aso.so_rcv, so);
2919 }
2920 
2921 /*
2922  * Wrapper for Socket established helper hook.
2923  * Parameters: socket, context of the hook point, hook id.
2924  */
2925 static int inline
2926 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id)
2927 {
2928 	struct socket_hhook_data hhook_data = {
2929 		.so = so,
2930 		.hctx = hctx,
2931 		.m = NULL,
2932 		.status = 0
2933 	};
2934 
2935 	CURVNET_SET(so->so_vnet);
2936 	HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd);
2937 	CURVNET_RESTORE();
2938 
2939 	/* Ugly but needed, since hhooks return void for now */
2940 	return (hhook_data.status);
2941 }
2942 
2943 /*
2944  * Perhaps this routine, and sooptcopyout(), below, ought to come in an
2945  * additional variant to handle the case where the option value needs to be
2946  * some kind of integer, but not a specific size.  In addition to their use
2947  * here, these functions are also called by the protocol-level pr_ctloutput()
2948  * routines.
2949  */
2950 int
2951 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
2952 {
2953 	size_t	valsize;
2954 
2955 	/*
2956 	 * If the user gives us more than we wanted, we ignore it, but if we
2957 	 * don't get the minimum length the caller wants, we return EINVAL.
2958 	 * On success, sopt->sopt_valsize is set to however much we actually
2959 	 * retrieved.
2960 	 */
2961 	if ((valsize = sopt->sopt_valsize) < minlen)
2962 		return EINVAL;
2963 	if (valsize > len)
2964 		sopt->sopt_valsize = valsize = len;
2965 
2966 	if (sopt->sopt_td != NULL)
2967 		return (copyin(sopt->sopt_val, buf, valsize));
2968 
2969 	bcopy(sopt->sopt_val, buf, valsize);
2970 	return (0);
2971 }
2972 
2973 /*
2974  * Kernel version of setsockopt(2).
2975  *
2976  * XXX: optlen is size_t, not socklen_t
2977  */
2978 int
2979 so_setsockopt(struct socket *so, int level, int optname, void *optval,
2980     size_t optlen)
2981 {
2982 	struct sockopt sopt;
2983 
2984 	sopt.sopt_level = level;
2985 	sopt.sopt_name = optname;
2986 	sopt.sopt_dir = SOPT_SET;
2987 	sopt.sopt_val = optval;
2988 	sopt.sopt_valsize = optlen;
2989 	sopt.sopt_td = NULL;
2990 	return (sosetopt(so, &sopt));
2991 }
2992 
2993 int
2994 sosetopt(struct socket *so, struct sockopt *sopt)
2995 {
2996 	int	error, optval;
2997 	struct	linger l;
2998 	struct	timeval tv;
2999 	sbintime_t val;
3000 	uint32_t val32;
3001 #ifdef MAC
3002 	struct mac extmac;
3003 #endif
3004 
3005 	CURVNET_SET(so->so_vnet);
3006 	error = 0;
3007 	if (sopt->sopt_level != SOL_SOCKET) {
3008 		if (so->so_proto->pr_ctloutput != NULL)
3009 			error = (*so->so_proto->pr_ctloutput)(so, sopt);
3010 		else
3011 			error = ENOPROTOOPT;
3012 	} else {
3013 		switch (sopt->sopt_name) {
3014 		case SO_ACCEPTFILTER:
3015 			error = accept_filt_setopt(so, sopt);
3016 			if (error)
3017 				goto bad;
3018 			break;
3019 
3020 		case SO_LINGER:
3021 			error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
3022 			if (error)
3023 				goto bad;
3024 			if (l.l_linger < 0 ||
3025 			    l.l_linger > USHRT_MAX ||
3026 			    l.l_linger > (INT_MAX / hz)) {
3027 				error = EDOM;
3028 				goto bad;
3029 			}
3030 			SOCK_LOCK(so);
3031 			so->so_linger = l.l_linger;
3032 			if (l.l_onoff)
3033 				so->so_options |= SO_LINGER;
3034 			else
3035 				so->so_options &= ~SO_LINGER;
3036 			SOCK_UNLOCK(so);
3037 			break;
3038 
3039 		case SO_DEBUG:
3040 		case SO_KEEPALIVE:
3041 		case SO_DONTROUTE:
3042 		case SO_USELOOPBACK:
3043 		case SO_BROADCAST:
3044 		case SO_REUSEADDR:
3045 		case SO_REUSEPORT:
3046 		case SO_REUSEPORT_LB:
3047 		case SO_OOBINLINE:
3048 		case SO_TIMESTAMP:
3049 		case SO_BINTIME:
3050 		case SO_NOSIGPIPE:
3051 		case SO_NO_DDP:
3052 		case SO_NO_OFFLOAD:
3053 		case SO_RERROR:
3054 			error = sooptcopyin(sopt, &optval, sizeof optval,
3055 			    sizeof optval);
3056 			if (error)
3057 				goto bad;
3058 			SOCK_LOCK(so);
3059 			if (optval)
3060 				so->so_options |= sopt->sopt_name;
3061 			else
3062 				so->so_options &= ~sopt->sopt_name;
3063 			SOCK_UNLOCK(so);
3064 			break;
3065 
3066 		case SO_SETFIB:
3067 			error = sooptcopyin(sopt, &optval, sizeof optval,
3068 			    sizeof optval);
3069 			if (error)
3070 				goto bad;
3071 
3072 			if (optval < 0 || optval >= rt_numfibs) {
3073 				error = EINVAL;
3074 				goto bad;
3075 			}
3076 			if (((so->so_proto->pr_domain->dom_family == PF_INET) ||
3077 			   (so->so_proto->pr_domain->dom_family == PF_INET6) ||
3078 			   (so->so_proto->pr_domain->dom_family == PF_ROUTE)))
3079 				so->so_fibnum = optval;
3080 			else
3081 				so->so_fibnum = 0;
3082 			break;
3083 
3084 		case SO_USER_COOKIE:
3085 			error = sooptcopyin(sopt, &val32, sizeof val32,
3086 			    sizeof val32);
3087 			if (error)
3088 				goto bad;
3089 			so->so_user_cookie = val32;
3090 			break;
3091 
3092 		case SO_SNDBUF:
3093 		case SO_RCVBUF:
3094 		case SO_SNDLOWAT:
3095 		case SO_RCVLOWAT:
3096 			error = sooptcopyin(sopt, &optval, sizeof optval,
3097 			    sizeof optval);
3098 			if (error)
3099 				goto bad;
3100 
3101 			/*
3102 			 * Values < 1 make no sense for any of these options,
3103 			 * so disallow them.
3104 			 */
3105 			if (optval < 1) {
3106 				error = EINVAL;
3107 				goto bad;
3108 			}
3109 
3110 			error = sbsetopt(so, sopt->sopt_name, optval);
3111 			break;
3112 
3113 		case SO_SNDTIMEO:
3114 		case SO_RCVTIMEO:
3115 #ifdef COMPAT_FREEBSD32
3116 			if (SV_CURPROC_FLAG(SV_ILP32)) {
3117 				struct timeval32 tv32;
3118 
3119 				error = sooptcopyin(sopt, &tv32, sizeof tv32,
3120 				    sizeof tv32);
3121 				CP(tv32, tv, tv_sec);
3122 				CP(tv32, tv, tv_usec);
3123 			} else
3124 #endif
3125 				error = sooptcopyin(sopt, &tv, sizeof tv,
3126 				    sizeof tv);
3127 			if (error)
3128 				goto bad;
3129 			if (tv.tv_sec < 0 || tv.tv_usec < 0 ||
3130 			    tv.tv_usec >= 1000000) {
3131 				error = EDOM;
3132 				goto bad;
3133 			}
3134 			if (tv.tv_sec > INT32_MAX)
3135 				val = SBT_MAX;
3136 			else
3137 				val = tvtosbt(tv);
3138 			switch (sopt->sopt_name) {
3139 			case SO_SNDTIMEO:
3140 				so->so_snd.sb_timeo = val;
3141 				break;
3142 			case SO_RCVTIMEO:
3143 				so->so_rcv.sb_timeo = val;
3144 				break;
3145 			}
3146 			break;
3147 
3148 		case SO_LABEL:
3149 #ifdef MAC
3150 			error = sooptcopyin(sopt, &extmac, sizeof extmac,
3151 			    sizeof extmac);
3152 			if (error)
3153 				goto bad;
3154 			error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
3155 			    so, &extmac);
3156 #else
3157 			error = EOPNOTSUPP;
3158 #endif
3159 			break;
3160 
3161 		case SO_TS_CLOCK:
3162 			error = sooptcopyin(sopt, &optval, sizeof optval,
3163 			    sizeof optval);
3164 			if (error)
3165 				goto bad;
3166 			if (optval < 0 || optval > SO_TS_CLOCK_MAX) {
3167 				error = EINVAL;
3168 				goto bad;
3169 			}
3170 			so->so_ts_clock = optval;
3171 			break;
3172 
3173 		case SO_MAX_PACING_RATE:
3174 			error = sooptcopyin(sopt, &val32, sizeof(val32),
3175 			    sizeof(val32));
3176 			if (error)
3177 				goto bad;
3178 			so->so_max_pacing_rate = val32;
3179 			break;
3180 
3181 		default:
3182 			if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
3183 				error = hhook_run_socket(so, sopt,
3184 				    HHOOK_SOCKET_OPT);
3185 			else
3186 				error = ENOPROTOOPT;
3187 			break;
3188 		}
3189 		if (error == 0 && so->so_proto->pr_ctloutput != NULL)
3190 			(void)(*so->so_proto->pr_ctloutput)(so, sopt);
3191 	}
3192 bad:
3193 	CURVNET_RESTORE();
3194 	return (error);
3195 }
3196 
3197 /*
3198  * Helper routine for getsockopt.
3199  */
3200 int
3201 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
3202 {
3203 	int	error;
3204 	size_t	valsize;
3205 
3206 	error = 0;
3207 
3208 	/*
3209 	 * Documented get behavior is that we always return a value, possibly
3210 	 * truncated to fit in the user's buffer.  Traditional behavior is
3211 	 * that we always tell the user precisely how much we copied, rather
3212 	 * than something useful like the total amount we had available for
3213 	 * her.  Note that this interface is not idempotent; the entire
3214 	 * answer must be generated ahead of time.
3215 	 */
3216 	valsize = min(len, sopt->sopt_valsize);
3217 	sopt->sopt_valsize = valsize;
3218 	if (sopt->sopt_val != NULL) {
3219 		if (sopt->sopt_td != NULL)
3220 			error = copyout(buf, sopt->sopt_val, valsize);
3221 		else
3222 			bcopy(buf, sopt->sopt_val, valsize);
3223 	}
3224 	return (error);
3225 }
3226 
3227 int
3228 sogetopt(struct socket *so, struct sockopt *sopt)
3229 {
3230 	int	error, optval;
3231 	struct	linger l;
3232 	struct	timeval tv;
3233 #ifdef MAC
3234 	struct mac extmac;
3235 #endif
3236 
3237 	CURVNET_SET(so->so_vnet);
3238 	error = 0;
3239 	if (sopt->sopt_level != SOL_SOCKET) {
3240 		if (so->so_proto->pr_ctloutput != NULL)
3241 			error = (*so->so_proto->pr_ctloutput)(so, sopt);
3242 		else
3243 			error = ENOPROTOOPT;
3244 		CURVNET_RESTORE();
3245 		return (error);
3246 	} else {
3247 		switch (sopt->sopt_name) {
3248 		case SO_ACCEPTFILTER:
3249 			error = accept_filt_getopt(so, sopt);
3250 			break;
3251 
3252 		case SO_LINGER:
3253 			SOCK_LOCK(so);
3254 			l.l_onoff = so->so_options & SO_LINGER;
3255 			l.l_linger = so->so_linger;
3256 			SOCK_UNLOCK(so);
3257 			error = sooptcopyout(sopt, &l, sizeof l);
3258 			break;
3259 
3260 		case SO_USELOOPBACK:
3261 		case SO_DONTROUTE:
3262 		case SO_DEBUG:
3263 		case SO_KEEPALIVE:
3264 		case SO_REUSEADDR:
3265 		case SO_REUSEPORT:
3266 		case SO_REUSEPORT_LB:
3267 		case SO_BROADCAST:
3268 		case SO_OOBINLINE:
3269 		case SO_ACCEPTCONN:
3270 		case SO_TIMESTAMP:
3271 		case SO_BINTIME:
3272 		case SO_NOSIGPIPE:
3273 		case SO_NO_DDP:
3274 		case SO_NO_OFFLOAD:
3275 		case SO_RERROR:
3276 			optval = so->so_options & sopt->sopt_name;
3277 integer:
3278 			error = sooptcopyout(sopt, &optval, sizeof optval);
3279 			break;
3280 
3281 		case SO_DOMAIN:
3282 			optval = so->so_proto->pr_domain->dom_family;
3283 			goto integer;
3284 
3285 		case SO_TYPE:
3286 			optval = so->so_type;
3287 			goto integer;
3288 
3289 		case SO_PROTOCOL:
3290 			optval = so->so_proto->pr_protocol;
3291 			goto integer;
3292 
3293 		case SO_ERROR:
3294 			SOCK_LOCK(so);
3295 			if (so->so_error) {
3296 				optval = so->so_error;
3297 				so->so_error = 0;
3298 			} else {
3299 				optval = so->so_rerror;
3300 				so->so_rerror = 0;
3301 			}
3302 			SOCK_UNLOCK(so);
3303 			goto integer;
3304 
3305 		case SO_SNDBUF:
3306 			optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat :
3307 			    so->so_snd.sb_hiwat;
3308 			goto integer;
3309 
3310 		case SO_RCVBUF:
3311 			optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat :
3312 			    so->so_rcv.sb_hiwat;
3313 			goto integer;
3314 
3315 		case SO_SNDLOWAT:
3316 			optval = SOLISTENING(so) ? so->sol_sbsnd_lowat :
3317 			    so->so_snd.sb_lowat;
3318 			goto integer;
3319 
3320 		case SO_RCVLOWAT:
3321 			optval = SOLISTENING(so) ? so->sol_sbrcv_lowat :
3322 			    so->so_rcv.sb_lowat;
3323 			goto integer;
3324 
3325 		case SO_SNDTIMEO:
3326 		case SO_RCVTIMEO:
3327 			tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ?
3328 			    so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
3329 #ifdef COMPAT_FREEBSD32
3330 			if (SV_CURPROC_FLAG(SV_ILP32)) {
3331 				struct timeval32 tv32;
3332 
3333 				CP(tv, tv32, tv_sec);
3334 				CP(tv, tv32, tv_usec);
3335 				error = sooptcopyout(sopt, &tv32, sizeof tv32);
3336 			} else
3337 #endif
3338 				error = sooptcopyout(sopt, &tv, sizeof tv);
3339 			break;
3340 
3341 		case SO_LABEL:
3342 #ifdef MAC
3343 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
3344 			    sizeof(extmac));
3345 			if (error)
3346 				goto bad;
3347 			error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
3348 			    so, &extmac);
3349 			if (error)
3350 				goto bad;
3351 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
3352 #else
3353 			error = EOPNOTSUPP;
3354 #endif
3355 			break;
3356 
3357 		case SO_PEERLABEL:
3358 #ifdef MAC
3359 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
3360 			    sizeof(extmac));
3361 			if (error)
3362 				goto bad;
3363 			error = mac_getsockopt_peerlabel(
3364 			    sopt->sopt_td->td_ucred, so, &extmac);
3365 			if (error)
3366 				goto bad;
3367 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
3368 #else
3369 			error = EOPNOTSUPP;
3370 #endif
3371 			break;
3372 
3373 		case SO_LISTENQLIMIT:
3374 			optval = SOLISTENING(so) ? so->sol_qlimit : 0;
3375 			goto integer;
3376 
3377 		case SO_LISTENQLEN:
3378 			optval = SOLISTENING(so) ? so->sol_qlen : 0;
3379 			goto integer;
3380 
3381 		case SO_LISTENINCQLEN:
3382 			optval = SOLISTENING(so) ? so->sol_incqlen : 0;
3383 			goto integer;
3384 
3385 		case SO_TS_CLOCK:
3386 			optval = so->so_ts_clock;
3387 			goto integer;
3388 
3389 		case SO_MAX_PACING_RATE:
3390 			optval = so->so_max_pacing_rate;
3391 			goto integer;
3392 
3393 		default:
3394 			if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
3395 				error = hhook_run_socket(so, sopt,
3396 				    HHOOK_SOCKET_OPT);
3397 			else
3398 				error = ENOPROTOOPT;
3399 			break;
3400 		}
3401 	}
3402 #ifdef MAC
3403 bad:
3404 #endif
3405 	CURVNET_RESTORE();
3406 	return (error);
3407 }
3408 
3409 int
3410 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
3411 {
3412 	struct mbuf *m, *m_prev;
3413 	int sopt_size = sopt->sopt_valsize;
3414 
3415 	MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
3416 	if (m == NULL)
3417 		return ENOBUFS;
3418 	if (sopt_size > MLEN) {
3419 		MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT);
3420 		if ((m->m_flags & M_EXT) == 0) {
3421 			m_free(m);
3422 			return ENOBUFS;
3423 		}
3424 		m->m_len = min(MCLBYTES, sopt_size);
3425 	} else {
3426 		m->m_len = min(MLEN, sopt_size);
3427 	}
3428 	sopt_size -= m->m_len;
3429 	*mp = m;
3430 	m_prev = m;
3431 
3432 	while (sopt_size) {
3433 		MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
3434 		if (m == NULL) {
3435 			m_freem(*mp);
3436 			return ENOBUFS;
3437 		}
3438 		if (sopt_size > MLEN) {
3439 			MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK :
3440 			    M_NOWAIT);
3441 			if ((m->m_flags & M_EXT) == 0) {
3442 				m_freem(m);
3443 				m_freem(*mp);
3444 				return ENOBUFS;
3445 			}
3446 			m->m_len = min(MCLBYTES, sopt_size);
3447 		} else {
3448 			m->m_len = min(MLEN, sopt_size);
3449 		}
3450 		sopt_size -= m->m_len;
3451 		m_prev->m_next = m;
3452 		m_prev = m;
3453 	}
3454 	return (0);
3455 }
3456 
3457 int
3458 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
3459 {
3460 	struct mbuf *m0 = m;
3461 
3462 	if (sopt->sopt_val == NULL)
3463 		return (0);
3464 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
3465 		if (sopt->sopt_td != NULL) {
3466 			int error;
3467 
3468 			error = copyin(sopt->sopt_val, mtod(m, char *),
3469 			    m->m_len);
3470 			if (error != 0) {
3471 				m_freem(m0);
3472 				return(error);
3473 			}
3474 		} else
3475 			bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
3476 		sopt->sopt_valsize -= m->m_len;
3477 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
3478 		m = m->m_next;
3479 	}
3480 	if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
3481 		panic("ip6_sooptmcopyin");
3482 	return (0);
3483 }
3484 
3485 int
3486 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
3487 {
3488 	struct mbuf *m0 = m;
3489 	size_t valsize = 0;
3490 
3491 	if (sopt->sopt_val == NULL)
3492 		return (0);
3493 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
3494 		if (sopt->sopt_td != NULL) {
3495 			int error;
3496 
3497 			error = copyout(mtod(m, char *), sopt->sopt_val,
3498 			    m->m_len);
3499 			if (error != 0) {
3500 				m_freem(m0);
3501 				return(error);
3502 			}
3503 		} else
3504 			bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
3505 		sopt->sopt_valsize -= m->m_len;
3506 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
3507 		valsize += m->m_len;
3508 		m = m->m_next;
3509 	}
3510 	if (m != NULL) {
3511 		/* enough soopt buffer should be given from user-land */
3512 		m_freem(m0);
3513 		return(EINVAL);
3514 	}
3515 	sopt->sopt_valsize = valsize;
3516 	return (0);
3517 }
3518 
3519 /*
3520  * sohasoutofband(): protocol notifies socket layer of the arrival of new
3521  * out-of-band data, which will then notify socket consumers.
3522  */
3523 void
3524 sohasoutofband(struct socket *so)
3525 {
3526 
3527 	if (so->so_sigio != NULL)
3528 		pgsigio(&so->so_sigio, SIGURG, 0);
3529 	selwakeuppri(&so->so_rdsel, PSOCK);
3530 }
3531 
3532 int
3533 sopoll(struct socket *so, int events, struct ucred *active_cred,
3534     struct thread *td)
3535 {
3536 
3537 	/*
3538 	 * We do not need to set or assert curvnet as long as everyone uses
3539 	 * sopoll_generic().
3540 	 */
3541 	return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred,
3542 	    td));
3543 }
3544 
3545 int
3546 sopoll_generic(struct socket *so, int events, struct ucred *active_cred,
3547     struct thread *td)
3548 {
3549 	int revents;
3550 
3551 	SOCK_LOCK(so);
3552 	if (SOLISTENING(so)) {
3553 		if (!(events & (POLLIN | POLLRDNORM)))
3554 			revents = 0;
3555 		else if (!TAILQ_EMPTY(&so->sol_comp))
3556 			revents = events & (POLLIN | POLLRDNORM);
3557 		else if ((events & POLLINIGNEOF) == 0 && so->so_error)
3558 			revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP;
3559 		else {
3560 			selrecord(td, &so->so_rdsel);
3561 			revents = 0;
3562 		}
3563 	} else {
3564 		revents = 0;
3565 		SOCKBUF_LOCK(&so->so_snd);
3566 		SOCKBUF_LOCK(&so->so_rcv);
3567 		if (events & (POLLIN | POLLRDNORM))
3568 			if (soreadabledata(so))
3569 				revents |= events & (POLLIN | POLLRDNORM);
3570 		if (events & (POLLOUT | POLLWRNORM))
3571 			if (sowriteable(so))
3572 				revents |= events & (POLLOUT | POLLWRNORM);
3573 		if (events & (POLLPRI | POLLRDBAND))
3574 			if (so->so_oobmark ||
3575 			    (so->so_rcv.sb_state & SBS_RCVATMARK))
3576 				revents |= events & (POLLPRI | POLLRDBAND);
3577 		if ((events & POLLINIGNEOF) == 0) {
3578 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3579 				revents |= events & (POLLIN | POLLRDNORM);
3580 				if (so->so_snd.sb_state & SBS_CANTSENDMORE)
3581 					revents |= POLLHUP;
3582 			}
3583 		}
3584 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
3585 			revents |= events & POLLRDHUP;
3586 		if (revents == 0) {
3587 			if (events &
3588 			    (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND | POLLRDHUP)) {
3589 				selrecord(td, &so->so_rdsel);
3590 				so->so_rcv.sb_flags |= SB_SEL;
3591 			}
3592 			if (events & (POLLOUT | POLLWRNORM)) {
3593 				selrecord(td, &so->so_wrsel);
3594 				so->so_snd.sb_flags |= SB_SEL;
3595 			}
3596 		}
3597 		SOCKBUF_UNLOCK(&so->so_rcv);
3598 		SOCKBUF_UNLOCK(&so->so_snd);
3599 	}
3600 	SOCK_UNLOCK(so);
3601 	return (revents);
3602 }
3603 
3604 int
3605 soo_kqfilter(struct file *fp, struct knote *kn)
3606 {
3607 	struct socket *so = kn->kn_fp->f_data;
3608 	struct sockbuf *sb;
3609 	struct knlist *knl;
3610 
3611 	switch (kn->kn_filter) {
3612 	case EVFILT_READ:
3613 		kn->kn_fop = &soread_filtops;
3614 		knl = &so->so_rdsel.si_note;
3615 		sb = &so->so_rcv;
3616 		break;
3617 	case EVFILT_WRITE:
3618 		kn->kn_fop = &sowrite_filtops;
3619 		knl = &so->so_wrsel.si_note;
3620 		sb = &so->so_snd;
3621 		break;
3622 	case EVFILT_EMPTY:
3623 		kn->kn_fop = &soempty_filtops;
3624 		knl = &so->so_wrsel.si_note;
3625 		sb = &so->so_snd;
3626 		break;
3627 	default:
3628 		return (EINVAL);
3629 	}
3630 
3631 	SOCK_LOCK(so);
3632 	if (SOLISTENING(so)) {
3633 		knlist_add(knl, kn, 1);
3634 	} else {
3635 		SOCKBUF_LOCK(sb);
3636 		knlist_add(knl, kn, 1);
3637 		sb->sb_flags |= SB_KNOTE;
3638 		SOCKBUF_UNLOCK(sb);
3639 	}
3640 	SOCK_UNLOCK(so);
3641 	return (0);
3642 }
3643 
3644 /*
3645  * Some routines that return EOPNOTSUPP for entry points that are not
3646  * supported by a protocol.  Fill in as needed.
3647  */
3648 int
3649 pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
3650 {
3651 
3652 	return EOPNOTSUPP;
3653 }
3654 
3655 int
3656 pru_aio_queue_notsupp(struct socket *so, struct kaiocb *job)
3657 {
3658 
3659 	return EOPNOTSUPP;
3660 }
3661 
3662 int
3663 pru_attach_notsupp(struct socket *so, int proto, struct thread *td)
3664 {
3665 
3666 	return EOPNOTSUPP;
3667 }
3668 
3669 int
3670 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
3671 {
3672 
3673 	return EOPNOTSUPP;
3674 }
3675 
3676 int
3677 pru_bindat_notsupp(int fd, struct socket *so, struct sockaddr *nam,
3678     struct thread *td)
3679 {
3680 
3681 	return EOPNOTSUPP;
3682 }
3683 
3684 int
3685 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
3686 {
3687 
3688 	return EOPNOTSUPP;
3689 }
3690 
3691 int
3692 pru_connectat_notsupp(int fd, struct socket *so, struct sockaddr *nam,
3693     struct thread *td)
3694 {
3695 
3696 	return EOPNOTSUPP;
3697 }
3698 
3699 int
3700 pru_connect2_notsupp(struct socket *so1, struct socket *so2)
3701 {
3702 
3703 	return EOPNOTSUPP;
3704 }
3705 
3706 int
3707 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
3708     struct ifnet *ifp, struct thread *td)
3709 {
3710 
3711 	return EOPNOTSUPP;
3712 }
3713 
3714 int
3715 pru_disconnect_notsupp(struct socket *so)
3716 {
3717 
3718 	return EOPNOTSUPP;
3719 }
3720 
3721 int
3722 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td)
3723 {
3724 
3725 	return EOPNOTSUPP;
3726 }
3727 
3728 int
3729 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam)
3730 {
3731 
3732 	return EOPNOTSUPP;
3733 }
3734 
3735 int
3736 pru_rcvd_notsupp(struct socket *so, int flags)
3737 {
3738 
3739 	return EOPNOTSUPP;
3740 }
3741 
3742 int
3743 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
3744 {
3745 
3746 	return EOPNOTSUPP;
3747 }
3748 
3749 int
3750 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m,
3751     struct sockaddr *addr, struct mbuf *control, struct thread *td)
3752 {
3753 
3754 	if (control != NULL)
3755 		m_freem(control);
3756 	if ((flags & PRUS_NOTREADY) == 0)
3757 		m_freem(m);
3758 	return (EOPNOTSUPP);
3759 }
3760 
3761 int
3762 pru_ready_notsupp(struct socket *so, struct mbuf *m, int count)
3763 {
3764 
3765 	return (EOPNOTSUPP);
3766 }
3767 
3768 /*
3769  * This isn't really a ``null'' operation, but it's the default one and
3770  * doesn't do anything destructive.
3771  */
3772 int
3773 pru_sense_null(struct socket *so, struct stat *sb)
3774 {
3775 
3776 	sb->st_blksize = so->so_snd.sb_hiwat;
3777 	return 0;
3778 }
3779 
3780 int
3781 pru_shutdown_notsupp(struct socket *so)
3782 {
3783 
3784 	return EOPNOTSUPP;
3785 }
3786 
3787 int
3788 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam)
3789 {
3790 
3791 	return EOPNOTSUPP;
3792 }
3793 
3794 int
3795 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio,
3796     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
3797 {
3798 
3799 	return EOPNOTSUPP;
3800 }
3801 
3802 int
3803 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr,
3804     struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3805 {
3806 
3807 	return EOPNOTSUPP;
3808 }
3809 
3810 int
3811 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred,
3812     struct thread *td)
3813 {
3814 
3815 	return EOPNOTSUPP;
3816 }
3817 
3818 static void
3819 filt_sordetach(struct knote *kn)
3820 {
3821 	struct socket *so = kn->kn_fp->f_data;
3822 
3823 	so_rdknl_lock(so);
3824 	knlist_remove(&so->so_rdsel.si_note, kn, 1);
3825 	if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note))
3826 		so->so_rcv.sb_flags &= ~SB_KNOTE;
3827 	so_rdknl_unlock(so);
3828 }
3829 
3830 /*ARGSUSED*/
3831 static int
3832 filt_soread(struct knote *kn, long hint)
3833 {
3834 	struct socket *so;
3835 
3836 	so = kn->kn_fp->f_data;
3837 
3838 	if (SOLISTENING(so)) {
3839 		SOCK_LOCK_ASSERT(so);
3840 		kn->kn_data = so->sol_qlen;
3841 		if (so->so_error) {
3842 			kn->kn_flags |= EV_EOF;
3843 			kn->kn_fflags = so->so_error;
3844 			return (1);
3845 		}
3846 		return (!TAILQ_EMPTY(&so->sol_comp));
3847 	}
3848 
3849 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3850 
3851 	kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl;
3852 	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3853 		kn->kn_flags |= EV_EOF;
3854 		kn->kn_fflags = so->so_error;
3855 		return (1);
3856 	} else if (so->so_error || so->so_rerror)
3857 		return (1);
3858 
3859 	if (kn->kn_sfflags & NOTE_LOWAT) {
3860 		if (kn->kn_data >= kn->kn_sdata)
3861 			return (1);
3862 	} else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat)
3863 		return (1);
3864 
3865 	/* This hook returning non-zero indicates an event, not error */
3866 	return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD));
3867 }
3868 
3869 static void
3870 filt_sowdetach(struct knote *kn)
3871 {
3872 	struct socket *so = kn->kn_fp->f_data;
3873 
3874 	so_wrknl_lock(so);
3875 	knlist_remove(&so->so_wrsel.si_note, kn, 1);
3876 	if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note))
3877 		so->so_snd.sb_flags &= ~SB_KNOTE;
3878 	so_wrknl_unlock(so);
3879 }
3880 
3881 /*ARGSUSED*/
3882 static int
3883 filt_sowrite(struct knote *kn, long hint)
3884 {
3885 	struct socket *so;
3886 
3887 	so = kn->kn_fp->f_data;
3888 
3889 	if (SOLISTENING(so))
3890 		return (0);
3891 
3892 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
3893 	kn->kn_data = sbspace(&so->so_snd);
3894 
3895 	hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE);
3896 
3897 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
3898 		kn->kn_flags |= EV_EOF;
3899 		kn->kn_fflags = so->so_error;
3900 		return (1);
3901 	} else if (so->so_error)	/* temporary udp error */
3902 		return (1);
3903 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
3904 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
3905 		return (0);
3906 	else if (kn->kn_sfflags & NOTE_LOWAT)
3907 		return (kn->kn_data >= kn->kn_sdata);
3908 	else
3909 		return (kn->kn_data >= so->so_snd.sb_lowat);
3910 }
3911 
3912 static int
3913 filt_soempty(struct knote *kn, long hint)
3914 {
3915 	struct socket *so;
3916 
3917 	so = kn->kn_fp->f_data;
3918 
3919 	if (SOLISTENING(so))
3920 		return (1);
3921 
3922 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
3923 	kn->kn_data = sbused(&so->so_snd);
3924 
3925 	if (kn->kn_data == 0)
3926 		return (1);
3927 	else
3928 		return (0);
3929 }
3930 
3931 int
3932 socheckuid(struct socket *so, uid_t uid)
3933 {
3934 
3935 	if (so == NULL)
3936 		return (EPERM);
3937 	if (so->so_cred->cr_uid != uid)
3938 		return (EPERM);
3939 	return (0);
3940 }
3941 
3942 /*
3943  * These functions are used by protocols to notify the socket layer (and its
3944  * consumers) of state changes in the sockets driven by protocol-side events.
3945  */
3946 
3947 /*
3948  * Procedures to manipulate state flags of socket and do appropriate wakeups.
3949  *
3950  * Normal sequence from the active (originating) side is that
3951  * soisconnecting() is called during processing of connect() call, resulting
3952  * in an eventual call to soisconnected() if/when the connection is
3953  * established.  When the connection is torn down soisdisconnecting() is
3954  * called during processing of disconnect() call, and soisdisconnected() is
3955  * called when the connection to the peer is totally severed.  The semantics
3956  * of these routines are such that connectionless protocols can call
3957  * soisconnected() and soisdisconnected() only, bypassing the in-progress
3958  * calls when setting up a ``connection'' takes no time.
3959  *
3960  * From the passive side, a socket is created with two queues of sockets:
3961  * so_incomp for connections in progress and so_comp for connections already
3962  * made and awaiting user acceptance.  As a protocol is preparing incoming
3963  * connections, it creates a socket structure queued on so_incomp by calling
3964  * sonewconn().  When the connection is established, soisconnected() is
3965  * called, and transfers the socket structure to so_comp, making it available
3966  * to accept().
3967  *
3968  * If a socket is closed with sockets on either so_incomp or so_comp, these
3969  * sockets are dropped.
3970  *
3971  * If higher-level protocols are implemented in the kernel, the wakeups done
3972  * here will sometimes cause software-interrupt process scheduling.
3973  */
3974 void
3975 soisconnecting(struct socket *so)
3976 {
3977 
3978 	SOCK_LOCK(so);
3979 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
3980 	so->so_state |= SS_ISCONNECTING;
3981 	SOCK_UNLOCK(so);
3982 }
3983 
3984 void
3985 soisconnected(struct socket *so)
3986 {
3987 
3988 	SOCK_LOCK(so);
3989 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
3990 	so->so_state |= SS_ISCONNECTED;
3991 
3992 	if (so->so_qstate == SQ_INCOMP) {
3993 		struct socket *head = so->so_listen;
3994 		int ret;
3995 
3996 		KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so));
3997 		/*
3998 		 * Promoting a socket from incomplete queue to complete, we
3999 		 * need to go through reverse order of locking.  We first do
4000 		 * trylock, and if that doesn't succeed, we go the hard way
4001 		 * leaving a reference and rechecking consistency after proper
4002 		 * locking.
4003 		 */
4004 		if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) {
4005 			soref(head);
4006 			SOCK_UNLOCK(so);
4007 			SOLISTEN_LOCK(head);
4008 			SOCK_LOCK(so);
4009 			if (__predict_false(head != so->so_listen)) {
4010 				/*
4011 				 * The socket went off the listen queue,
4012 				 * should be lost race to close(2) of sol.
4013 				 * The socket is about to soabort().
4014 				 */
4015 				SOCK_UNLOCK(so);
4016 				sorele(head);
4017 				return;
4018 			}
4019 			/* Not the last one, as so holds a ref. */
4020 			refcount_release(&head->so_count);
4021 		}
4022 again:
4023 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
4024 			TAILQ_REMOVE(&head->sol_incomp, so, so_list);
4025 			head->sol_incqlen--;
4026 			TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
4027 			head->sol_qlen++;
4028 			so->so_qstate = SQ_COMP;
4029 			SOCK_UNLOCK(so);
4030 			solisten_wakeup(head);	/* unlocks */
4031 		} else {
4032 			SOCKBUF_LOCK(&so->so_rcv);
4033 			soupcall_set(so, SO_RCV,
4034 			    head->sol_accept_filter->accf_callback,
4035 			    head->sol_accept_filter_arg);
4036 			so->so_options &= ~SO_ACCEPTFILTER;
4037 			ret = head->sol_accept_filter->accf_callback(so,
4038 			    head->sol_accept_filter_arg, M_NOWAIT);
4039 			if (ret == SU_ISCONNECTED) {
4040 				soupcall_clear(so, SO_RCV);
4041 				SOCKBUF_UNLOCK(&so->so_rcv);
4042 				goto again;
4043 			}
4044 			SOCKBUF_UNLOCK(&so->so_rcv);
4045 			SOCK_UNLOCK(so);
4046 			SOLISTEN_UNLOCK(head);
4047 		}
4048 		return;
4049 	}
4050 	SOCK_UNLOCK(so);
4051 	wakeup(&so->so_timeo);
4052 	sorwakeup(so);
4053 	sowwakeup(so);
4054 }
4055 
4056 void
4057 soisdisconnecting(struct socket *so)
4058 {
4059 
4060 	SOCK_LOCK(so);
4061 	so->so_state &= ~SS_ISCONNECTING;
4062 	so->so_state |= SS_ISDISCONNECTING;
4063 
4064 	if (!SOLISTENING(so)) {
4065 		SOCKBUF_LOCK(&so->so_rcv);
4066 		socantrcvmore_locked(so);
4067 		SOCKBUF_LOCK(&so->so_snd);
4068 		socantsendmore_locked(so);
4069 	}
4070 	SOCK_UNLOCK(so);
4071 	wakeup(&so->so_timeo);
4072 }
4073 
4074 void
4075 soisdisconnected(struct socket *so)
4076 {
4077 
4078 	SOCK_LOCK(so);
4079 
4080 	/*
4081 	 * There is at least one reader of so_state that does not
4082 	 * acquire socket lock, namely soreceive_generic().  Ensure
4083 	 * that it never sees all flags that track connection status
4084 	 * cleared, by ordering the update with a barrier semantic of
4085 	 * our release thread fence.
4086 	 */
4087 	so->so_state |= SS_ISDISCONNECTED;
4088 	atomic_thread_fence_rel();
4089 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
4090 
4091 	if (!SOLISTENING(so)) {
4092 		SOCK_UNLOCK(so);
4093 		SOCKBUF_LOCK(&so->so_rcv);
4094 		socantrcvmore_locked(so);
4095 		SOCKBUF_LOCK(&so->so_snd);
4096 		sbdrop_locked(&so->so_snd, sbused(&so->so_snd));
4097 		socantsendmore_locked(so);
4098 	} else
4099 		SOCK_UNLOCK(so);
4100 	wakeup(&so->so_timeo);
4101 }
4102 
4103 /*
4104  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
4105  */
4106 struct sockaddr *
4107 sodupsockaddr(const struct sockaddr *sa, int mflags)
4108 {
4109 	struct sockaddr *sa2;
4110 
4111 	sa2 = malloc(sa->sa_len, M_SONAME, mflags);
4112 	if (sa2)
4113 		bcopy(sa, sa2, sa->sa_len);
4114 	return sa2;
4115 }
4116 
4117 /*
4118  * Register per-socket destructor.
4119  */
4120 void
4121 sodtor_set(struct socket *so, so_dtor_t *func)
4122 {
4123 
4124 	SOCK_LOCK_ASSERT(so);
4125 	so->so_dtor = func;
4126 }
4127 
4128 /*
4129  * Register per-socket buffer upcalls.
4130  */
4131 void
4132 soupcall_set(struct socket *so, int which, so_upcall_t func, void *arg)
4133 {
4134 	struct sockbuf *sb;
4135 
4136 	KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4137 
4138 	switch (which) {
4139 	case SO_RCV:
4140 		sb = &so->so_rcv;
4141 		break;
4142 	case SO_SND:
4143 		sb = &so->so_snd;
4144 		break;
4145 	default:
4146 		panic("soupcall_set: bad which");
4147 	}
4148 	SOCKBUF_LOCK_ASSERT(sb);
4149 	sb->sb_upcall = func;
4150 	sb->sb_upcallarg = arg;
4151 	sb->sb_flags |= SB_UPCALL;
4152 }
4153 
4154 void
4155 soupcall_clear(struct socket *so, int which)
4156 {
4157 	struct sockbuf *sb;
4158 
4159 	KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4160 
4161 	switch (which) {
4162 	case SO_RCV:
4163 		sb = &so->so_rcv;
4164 		break;
4165 	case SO_SND:
4166 		sb = &so->so_snd;
4167 		break;
4168 	default:
4169 		panic("soupcall_clear: bad which");
4170 	}
4171 	SOCKBUF_LOCK_ASSERT(sb);
4172 	KASSERT(sb->sb_upcall != NULL,
4173 	    ("%s: so %p no upcall to clear", __func__, so));
4174 	sb->sb_upcall = NULL;
4175 	sb->sb_upcallarg = NULL;
4176 	sb->sb_flags &= ~SB_UPCALL;
4177 }
4178 
4179 void
4180 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg)
4181 {
4182 
4183 	SOLISTEN_LOCK_ASSERT(so);
4184 	so->sol_upcall = func;
4185 	so->sol_upcallarg = arg;
4186 }
4187 
4188 static void
4189 so_rdknl_lock(void *arg)
4190 {
4191 	struct socket *so = arg;
4192 
4193 	if (SOLISTENING(so))
4194 		SOCK_LOCK(so);
4195 	else
4196 		SOCKBUF_LOCK(&so->so_rcv);
4197 }
4198 
4199 static void
4200 so_rdknl_unlock(void *arg)
4201 {
4202 	struct socket *so = arg;
4203 
4204 	if (SOLISTENING(so))
4205 		SOCK_UNLOCK(so);
4206 	else
4207 		SOCKBUF_UNLOCK(&so->so_rcv);
4208 }
4209 
4210 static void
4211 so_rdknl_assert_lock(void *arg, int what)
4212 {
4213 	struct socket *so = arg;
4214 
4215 	if (what == LA_LOCKED) {
4216 		if (SOLISTENING(so))
4217 			SOCK_LOCK_ASSERT(so);
4218 		else
4219 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
4220 	} else {
4221 		if (SOLISTENING(so))
4222 			SOCK_UNLOCK_ASSERT(so);
4223 		else
4224 			SOCKBUF_UNLOCK_ASSERT(&so->so_rcv);
4225 	}
4226 }
4227 
4228 static void
4229 so_wrknl_lock(void *arg)
4230 {
4231 	struct socket *so = arg;
4232 
4233 	if (SOLISTENING(so))
4234 		SOCK_LOCK(so);
4235 	else
4236 		SOCKBUF_LOCK(&so->so_snd);
4237 }
4238 
4239 static void
4240 so_wrknl_unlock(void *arg)
4241 {
4242 	struct socket *so = arg;
4243 
4244 	if (SOLISTENING(so))
4245 		SOCK_UNLOCK(so);
4246 	else
4247 		SOCKBUF_UNLOCK(&so->so_snd);
4248 }
4249 
4250 static void
4251 so_wrknl_assert_lock(void *arg, int what)
4252 {
4253 	struct socket *so = arg;
4254 
4255 	if (what == LA_LOCKED) {
4256 		if (SOLISTENING(so))
4257 			SOCK_LOCK_ASSERT(so);
4258 		else
4259 			SOCKBUF_LOCK_ASSERT(&so->so_snd);
4260 	} else {
4261 		if (SOLISTENING(so))
4262 			SOCK_UNLOCK_ASSERT(so);
4263 		else
4264 			SOCKBUF_UNLOCK_ASSERT(&so->so_snd);
4265 	}
4266 }
4267 
4268 /*
4269  * Create an external-format (``xsocket'') structure using the information in
4270  * the kernel-format socket structure pointed to by so.  This is done to
4271  * reduce the spew of irrelevant information over this interface, to isolate
4272  * user code from changes in the kernel structure, and potentially to provide
4273  * information-hiding if we decide that some of this information should be
4274  * hidden from users.
4275  */
4276 void
4277 sotoxsocket(struct socket *so, struct xsocket *xso)
4278 {
4279 
4280 	bzero(xso, sizeof(*xso));
4281 	xso->xso_len = sizeof *xso;
4282 	xso->xso_so = (uintptr_t)so;
4283 	xso->so_type = so->so_type;
4284 	xso->so_options = so->so_options;
4285 	xso->so_linger = so->so_linger;
4286 	xso->so_state = so->so_state;
4287 	xso->so_pcb = (uintptr_t)so->so_pcb;
4288 	xso->xso_protocol = so->so_proto->pr_protocol;
4289 	xso->xso_family = so->so_proto->pr_domain->dom_family;
4290 	xso->so_timeo = so->so_timeo;
4291 	xso->so_error = so->so_error;
4292 	xso->so_uid = so->so_cred->cr_uid;
4293 	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
4294 	if (SOLISTENING(so)) {
4295 		xso->so_qlen = so->sol_qlen;
4296 		xso->so_incqlen = so->sol_incqlen;
4297 		xso->so_qlimit = so->sol_qlimit;
4298 		xso->so_oobmark = 0;
4299 	} else {
4300 		xso->so_state |= so->so_qstate;
4301 		xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0;
4302 		xso->so_oobmark = so->so_oobmark;
4303 		sbtoxsockbuf(&so->so_snd, &xso->so_snd);
4304 		sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
4305 	}
4306 }
4307 
4308 struct sockbuf *
4309 so_sockbuf_rcv(struct socket *so)
4310 {
4311 
4312 	return (&so->so_rcv);
4313 }
4314 
4315 struct sockbuf *
4316 so_sockbuf_snd(struct socket *so)
4317 {
4318 
4319 	return (&so->so_snd);
4320 }
4321 
4322 int
4323 so_state_get(const struct socket *so)
4324 {
4325 
4326 	return (so->so_state);
4327 }
4328 
4329 void
4330 so_state_set(struct socket *so, int val)
4331 {
4332 
4333 	so->so_state = val;
4334 }
4335 
4336 int
4337 so_options_get(const struct socket *so)
4338 {
4339 
4340 	return (so->so_options);
4341 }
4342 
4343 void
4344 so_options_set(struct socket *so, int val)
4345 {
4346 
4347 	so->so_options = val;
4348 }
4349 
4350 int
4351 so_error_get(const struct socket *so)
4352 {
4353 
4354 	return (so->so_error);
4355 }
4356 
4357 void
4358 so_error_set(struct socket *so, int val)
4359 {
4360 
4361 	so->so_error = val;
4362 }
4363 
4364 int
4365 so_linger_get(const struct socket *so)
4366 {
4367 
4368 	return (so->so_linger);
4369 }
4370 
4371 void
4372 so_linger_set(struct socket *so, int val)
4373 {
4374 
4375 	KASSERT(val >= 0 && val <= USHRT_MAX && val <= (INT_MAX / hz),
4376 	    ("%s: val %d out of range", __func__, val));
4377 
4378 	so->so_linger = val;
4379 }
4380 
4381 struct protosw *
4382 so_protosw_get(const struct socket *so)
4383 {
4384 
4385 	return (so->so_proto);
4386 }
4387 
4388 void
4389 so_protosw_set(struct socket *so, struct protosw *val)
4390 {
4391 
4392 	so->so_proto = val;
4393 }
4394 
4395 void
4396 so_sorwakeup(struct socket *so)
4397 {
4398 
4399 	sorwakeup(so);
4400 }
4401 
4402 void
4403 so_sowwakeup(struct socket *so)
4404 {
4405 
4406 	sowwakeup(so);
4407 }
4408 
4409 void
4410 so_sorwakeup_locked(struct socket *so)
4411 {
4412 
4413 	sorwakeup_locked(so);
4414 }
4415 
4416 void
4417 so_sowwakeup_locked(struct socket *so)
4418 {
4419 
4420 	sowwakeup_locked(so);
4421 }
4422 
4423 void
4424 so_lock(struct socket *so)
4425 {
4426 
4427 	SOCK_LOCK(so);
4428 }
4429 
4430 void
4431 so_unlock(struct socket *so)
4432 {
4433 
4434 	SOCK_UNLOCK(so);
4435 }
4436