1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993 3 * The Regents of the University of California. 4 * Copyright (c) 2004 The FreeBSD Foundation 5 * Copyright (c) 2004-2008 Robert N. M. Watson 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 33 */ 34 35 /* 36 * Comments on the socket life cycle: 37 * 38 * soalloc() sets of socket layer state for a socket, called only by 39 * socreate() and sonewconn(). Socket layer private. 40 * 41 * sodealloc() tears down socket layer state for a socket, called only by 42 * sofree() and sonewconn(). Socket layer private. 43 * 44 * pru_attach() associates protocol layer state with an allocated socket; 45 * called only once, may fail, aborting socket allocation. This is called 46 * from socreate() and sonewconn(). Socket layer private. 47 * 48 * pru_detach() disassociates protocol layer state from an attached socket, 49 * and will be called exactly once for sockets in which pru_attach() has 50 * been successfully called. If pru_attach() returned an error, 51 * pru_detach() will not be called. Socket layer private. 52 * 53 * pru_abort() and pru_close() notify the protocol layer that the last 54 * consumer of a socket is starting to tear down the socket, and that the 55 * protocol should terminate the connection. Historically, pru_abort() also 56 * detached protocol state from the socket state, but this is no longer the 57 * case. 58 * 59 * socreate() creates a socket and attaches protocol state. This is a public 60 * interface that may be used by socket layer consumers to create new 61 * sockets. 62 * 63 * sonewconn() creates a socket and attaches protocol state. This is a 64 * public interface that may be used by protocols to create new sockets when 65 * a new connection is received and will be available for accept() on a 66 * listen socket. 67 * 68 * soclose() destroys a socket after possibly waiting for it to disconnect. 69 * This is a public interface that socket consumers should use to close and 70 * release a socket when done with it. 71 * 72 * soabort() destroys a socket without waiting for it to disconnect (used 73 * only for incoming connections that are already partially or fully 74 * connected). This is used internally by the socket layer when clearing 75 * listen socket queues (due to overflow or close on the listen socket), but 76 * is also a public interface protocols may use to abort connections in 77 * their incomplete listen queues should they no longer be required. Sockets 78 * placed in completed connection listen queues should not be aborted for 79 * reasons described in the comment above the soclose() implementation. This 80 * is not a general purpose close routine, and except in the specific 81 * circumstances described here, should not be used. 82 * 83 * sofree() will free a socket and its protocol state if all references on 84 * the socket have been released, and is the public interface to attempt to 85 * free a socket when a reference is removed. This is a socket layer private 86 * interface. 87 * 88 * NOTE: In addition to socreate() and soclose(), which provide a single 89 * socket reference to the consumer to be managed as required, there are two 90 * calls to explicitly manage socket references, soref(), and sorele(). 91 * Currently, these are generally required only when transitioning a socket 92 * from a listen queue to a file descriptor, in order to prevent garbage 93 * collection of the socket at an untimely moment. For a number of reasons, 94 * these interfaces are not preferred, and should be avoided. 95 * 96 * NOTE: With regard to VNETs the general rule is that callers do not set 97 * curvnet. Exceptions to this rule include soabort(), sodisconnect(), 98 * sofree() (and with that sorele(), sotryfree()), as well as sonewconn() 99 * and sorflush(), which are usually called from a pre-set VNET context. 100 * sopoll() currently does not need a VNET context to be set. 101 */ 102 103 #include <sys/cdefs.h> 104 __FBSDID("$FreeBSD$"); 105 106 #include "opt_inet.h" 107 #include "opt_inet6.h" 108 #include "opt_compat.h" 109 110 #include <sys/param.h> 111 #include <sys/systm.h> 112 #include <sys/fcntl.h> 113 #include <sys/limits.h> 114 #include <sys/lock.h> 115 #include <sys/mac.h> 116 #include <sys/malloc.h> 117 #include <sys/mbuf.h> 118 #include <sys/mutex.h> 119 #include <sys/domain.h> 120 #include <sys/file.h> /* for struct knote */ 121 #include <sys/hhook.h> 122 #include <sys/kernel.h> 123 #include <sys/khelp.h> 124 #include <sys/event.h> 125 #include <sys/eventhandler.h> 126 #include <sys/poll.h> 127 #include <sys/proc.h> 128 #include <sys/protosw.h> 129 #include <sys/socket.h> 130 #include <sys/socketvar.h> 131 #include <sys/resourcevar.h> 132 #include <net/route.h> 133 #include <sys/signalvar.h> 134 #include <sys/stat.h> 135 #include <sys/sx.h> 136 #include <sys/sysctl.h> 137 #include <sys/uio.h> 138 #include <sys/jail.h> 139 #include <sys/syslog.h> 140 #include <netinet/in.h> 141 142 #include <net/vnet.h> 143 144 #include <security/mac/mac_framework.h> 145 146 #include <vm/uma.h> 147 148 #ifdef COMPAT_FREEBSD32 149 #include <sys/mount.h> 150 #include <sys/sysent.h> 151 #include <compat/freebsd32/freebsd32.h> 152 #endif 153 154 static int soreceive_rcvoob(struct socket *so, struct uio *uio, 155 int flags); 156 157 static void filt_sordetach(struct knote *kn); 158 static int filt_soread(struct knote *kn, long hint); 159 static void filt_sowdetach(struct knote *kn); 160 static int filt_sowrite(struct knote *kn, long hint); 161 static int filt_solisten(struct knote *kn, long hint); 162 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id); 163 fo_kqfilter_t soo_kqfilter; 164 165 static struct filterops solisten_filtops = { 166 .f_isfd = 1, 167 .f_detach = filt_sordetach, 168 .f_event = filt_solisten, 169 }; 170 static struct filterops soread_filtops = { 171 .f_isfd = 1, 172 .f_detach = filt_sordetach, 173 .f_event = filt_soread, 174 }; 175 static struct filterops sowrite_filtops = { 176 .f_isfd = 1, 177 .f_detach = filt_sowdetach, 178 .f_event = filt_sowrite, 179 }; 180 181 so_gen_t so_gencnt; /* generation count for sockets */ 182 183 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 184 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 185 186 #define VNET_SO_ASSERT(so) \ 187 VNET_ASSERT(curvnet != NULL, \ 188 ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so))); 189 190 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]); 191 #define V_socket_hhh VNET(socket_hhh) 192 193 /* 194 * Limit on the number of connections in the listen queue waiting 195 * for accept(2). 196 * NB: The orginal sysctl somaxconn is still available but hidden 197 * to prevent confusion about the actual purpose of this number. 198 */ 199 static u_int somaxconn = SOMAXCONN; 200 201 static int 202 sysctl_somaxconn(SYSCTL_HANDLER_ARGS) 203 { 204 int error; 205 int val; 206 207 val = somaxconn; 208 error = sysctl_handle_int(oidp, &val, 0, req); 209 if (error || !req->newptr ) 210 return (error); 211 212 /* 213 * The purpose of the UINT_MAX / 3 limit, is so that the formula 214 * 3 * so_qlimit / 2 215 * below, will not overflow. 216 */ 217 218 if (val < 1 || val > UINT_MAX / 3) 219 return (EINVAL); 220 221 somaxconn = val; 222 return (0); 223 } 224 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue, CTLTYPE_UINT | CTLFLAG_RW, 225 0, sizeof(int), sysctl_somaxconn, "I", 226 "Maximum listen socket pending connection accept queue size"); 227 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, 228 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP, 229 0, sizeof(int), sysctl_somaxconn, "I", 230 "Maximum listen socket pending connection accept queue size (compat)"); 231 232 static int numopensockets; 233 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, 234 &numopensockets, 0, "Number of open sockets"); 235 236 /* 237 * accept_mtx locks down per-socket fields relating to accept queues. See 238 * socketvar.h for an annotation of the protected fields of struct socket. 239 */ 240 struct mtx accept_mtx; 241 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF); 242 243 /* 244 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket 245 * so_gencnt field. 246 */ 247 static struct mtx so_global_mtx; 248 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); 249 250 /* 251 * General IPC sysctl name space, used by sockets and a variety of other IPC 252 * types. 253 */ 254 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC"); 255 256 /* 257 * Initialize the socket subsystem and set up the socket 258 * memory allocator. 259 */ 260 static uma_zone_t socket_zone; 261 int maxsockets; 262 263 static void 264 socket_zone_change(void *tag) 265 { 266 267 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 268 } 269 270 static void 271 socket_hhook_register(int subtype) 272 { 273 274 if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype, 275 &V_socket_hhh[subtype], 276 HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 277 printf("%s: WARNING: unable to register hook\n", __func__); 278 } 279 280 static void 281 socket_hhook_deregister(int subtype) 282 { 283 284 if (hhook_head_deregister(V_socket_hhh[subtype]) != 0) 285 printf("%s: WARNING: unable to deregister hook\n", __func__); 286 } 287 288 static void 289 socket_init(void *tag) 290 { 291 292 socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL, 293 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 294 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 295 uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached"); 296 EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL, 297 EVENTHANDLER_PRI_FIRST); 298 } 299 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL); 300 301 static void 302 socket_vnet_init(const void *unused __unused) 303 { 304 int i; 305 306 /* We expect a contiguous range */ 307 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 308 socket_hhook_register(i); 309 } 310 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 311 socket_vnet_init, NULL); 312 313 static void 314 socket_vnet_uninit(const void *unused __unused) 315 { 316 int i; 317 318 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 319 socket_hhook_deregister(i); 320 } 321 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 322 socket_vnet_uninit, NULL); 323 324 /* 325 * Initialise maxsockets. This SYSINIT must be run after 326 * tunable_mbinit(). 327 */ 328 static void 329 init_maxsockets(void *ignored) 330 { 331 332 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 333 maxsockets = imax(maxsockets, maxfiles); 334 } 335 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 336 337 /* 338 * Sysctl to get and set the maximum global sockets limit. Notify protocols 339 * of the change so that they can update their dependent limits as required. 340 */ 341 static int 342 sysctl_maxsockets(SYSCTL_HANDLER_ARGS) 343 { 344 int error, newmaxsockets; 345 346 newmaxsockets = maxsockets; 347 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req); 348 if (error == 0 && req->newptr) { 349 if (newmaxsockets > maxsockets && 350 newmaxsockets <= maxfiles) { 351 maxsockets = newmaxsockets; 352 EVENTHANDLER_INVOKE(maxsockets_change); 353 } else 354 error = EINVAL; 355 } 356 return (error); 357 } 358 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, CTLTYPE_INT|CTLFLAG_RW, 359 &maxsockets, 0, sysctl_maxsockets, "IU", 360 "Maximum number of sockets avaliable"); 361 362 /* 363 * Socket operation routines. These routines are called by the routines in 364 * sys_socket.c or from a system process, and implement the semantics of 365 * socket operations by switching out to the protocol specific routines. 366 */ 367 368 /* 369 * Get a socket structure from our zone, and initialize it. Note that it 370 * would probably be better to allocate socket and PCB at the same time, but 371 * I'm not convinced that all the protocols can be easily modified to do 372 * this. 373 * 374 * soalloc() returns a socket with a ref count of 0. 375 */ 376 static struct socket * 377 soalloc(struct vnet *vnet) 378 { 379 struct socket *so; 380 381 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO); 382 if (so == NULL) 383 return (NULL); 384 #ifdef MAC 385 if (mac_socket_init(so, M_NOWAIT) != 0) { 386 uma_zfree(socket_zone, so); 387 return (NULL); 388 } 389 #endif 390 if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) { 391 uma_zfree(socket_zone, so); 392 return (NULL); 393 } 394 395 SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd"); 396 SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv"); 397 sx_init(&so->so_snd.sb_sx, "so_snd_sx"); 398 sx_init(&so->so_rcv.sb_sx, "so_rcv_sx"); 399 TAILQ_INIT(&so->so_aiojobq); 400 #ifdef VIMAGE 401 VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p", 402 __func__, __LINE__, so)); 403 so->so_vnet = vnet; 404 #endif 405 /* We shouldn't need the so_global_mtx */ 406 if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) { 407 /* Do we need more comprehensive error returns? */ 408 uma_zfree(socket_zone, so); 409 return (NULL); 410 } 411 mtx_lock(&so_global_mtx); 412 so->so_gencnt = ++so_gencnt; 413 ++numopensockets; 414 #ifdef VIMAGE 415 vnet->vnet_sockcnt++; 416 #endif 417 mtx_unlock(&so_global_mtx); 418 419 return (so); 420 } 421 422 /* 423 * Free the storage associated with a socket at the socket layer, tear down 424 * locks, labels, etc. All protocol state is assumed already to have been 425 * torn down (and possibly never set up) by the caller. 426 */ 427 static void 428 sodealloc(struct socket *so) 429 { 430 431 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); 432 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL")); 433 434 mtx_lock(&so_global_mtx); 435 so->so_gencnt = ++so_gencnt; 436 --numopensockets; /* Could be below, but faster here. */ 437 #ifdef VIMAGE 438 VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p", 439 __func__, __LINE__, so)); 440 so->so_vnet->vnet_sockcnt--; 441 #endif 442 mtx_unlock(&so_global_mtx); 443 if (so->so_rcv.sb_hiwat) 444 (void)chgsbsize(so->so_cred->cr_uidinfo, 445 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 446 if (so->so_snd.sb_hiwat) 447 (void)chgsbsize(so->so_cred->cr_uidinfo, 448 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 449 /* remove accept filter if one is present. */ 450 if (so->so_accf != NULL) 451 do_setopt_accept_filter(so, NULL); 452 #ifdef MAC 453 mac_socket_destroy(so); 454 #endif 455 hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE); 456 457 crfree(so->so_cred); 458 khelp_destroy_osd(&so->osd); 459 sx_destroy(&so->so_snd.sb_sx); 460 sx_destroy(&so->so_rcv.sb_sx); 461 SOCKBUF_LOCK_DESTROY(&so->so_snd); 462 SOCKBUF_LOCK_DESTROY(&so->so_rcv); 463 uma_zfree(socket_zone, so); 464 } 465 466 /* 467 * socreate returns a socket with a ref count of 1. The socket should be 468 * closed with soclose(). 469 */ 470 int 471 socreate(int dom, struct socket **aso, int type, int proto, 472 struct ucred *cred, struct thread *td) 473 { 474 struct protosw *prp; 475 struct socket *so; 476 int error; 477 478 if (proto) 479 prp = pffindproto(dom, proto, type); 480 else 481 prp = pffindtype(dom, type); 482 483 if (prp == NULL) { 484 /* No support for domain. */ 485 if (pffinddomain(dom) == NULL) 486 return (EAFNOSUPPORT); 487 /* No support for socket type. */ 488 if (proto == 0 && type != 0) 489 return (EPROTOTYPE); 490 return (EPROTONOSUPPORT); 491 } 492 if (prp->pr_usrreqs->pru_attach == NULL || 493 prp->pr_usrreqs->pru_attach == pru_attach_notsupp) 494 return (EPROTONOSUPPORT); 495 496 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0) 497 return (EPROTONOSUPPORT); 498 499 if (prp->pr_type != type) 500 return (EPROTOTYPE); 501 so = soalloc(CRED_TO_VNET(cred)); 502 if (so == NULL) 503 return (ENOBUFS); 504 505 TAILQ_INIT(&so->so_incomp); 506 TAILQ_INIT(&so->so_comp); 507 so->so_type = type; 508 so->so_cred = crhold(cred); 509 if ((prp->pr_domain->dom_family == PF_INET) || 510 (prp->pr_domain->dom_family == PF_INET6) || 511 (prp->pr_domain->dom_family == PF_ROUTE)) 512 so->so_fibnum = td->td_proc->p_fibnum; 513 else 514 so->so_fibnum = 0; 515 so->so_proto = prp; 516 #ifdef MAC 517 mac_socket_create(cred, so); 518 #endif 519 knlist_init_mtx(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv)); 520 knlist_init_mtx(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd)); 521 so->so_count = 1; 522 /* 523 * Auto-sizing of socket buffers is managed by the protocols and 524 * the appropriate flags must be set in the pru_attach function. 525 */ 526 CURVNET_SET(so->so_vnet); 527 error = (*prp->pr_usrreqs->pru_attach)(so, proto, td); 528 CURVNET_RESTORE(); 529 if (error) { 530 KASSERT(so->so_count == 1, ("socreate: so_count %d", 531 so->so_count)); 532 so->so_count = 0; 533 sodealloc(so); 534 return (error); 535 } 536 *aso = so; 537 return (0); 538 } 539 540 #ifdef REGRESSION 541 static int regression_sonewconn_earlytest = 1; 542 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW, 543 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test"); 544 #endif 545 546 /* 547 * When an attempt at a new connection is noted on a socket which accepts 548 * connections, sonewconn is called. If the connection is possible (subject 549 * to space constraints, etc.) then we allocate a new structure, propoerly 550 * linked into the data structure of the original socket, and return this. 551 * Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED. 552 * 553 * Note: the ref count on the socket is 0 on return. 554 */ 555 struct socket * 556 sonewconn(struct socket *head, int connstatus) 557 { 558 static struct timeval lastover; 559 static struct timeval overinterval = { 60, 0 }; 560 static int overcount; 561 562 struct socket *so; 563 int over; 564 565 ACCEPT_LOCK(); 566 over = (head->so_qlen > 3 * head->so_qlimit / 2); 567 ACCEPT_UNLOCK(); 568 #ifdef REGRESSION 569 if (regression_sonewconn_earlytest && over) { 570 #else 571 if (over) { 572 #endif 573 overcount++; 574 575 if (ratecheck(&lastover, &overinterval)) { 576 log(LOG_DEBUG, "%s: pcb %p: Listen queue overflow: " 577 "%i already in queue awaiting acceptance " 578 "(%d occurrences)\n", 579 __func__, head->so_pcb, head->so_qlen, overcount); 580 581 overcount = 0; 582 } 583 584 return (NULL); 585 } 586 VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p", 587 __func__, __LINE__, head)); 588 so = soalloc(head->so_vnet); 589 if (so == NULL) { 590 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 591 "limit reached or out of memory\n", 592 __func__, head->so_pcb); 593 return (NULL); 594 } 595 if ((head->so_options & SO_ACCEPTFILTER) != 0) 596 connstatus = 0; 597 so->so_head = head; 598 so->so_type = head->so_type; 599 so->so_options = head->so_options &~ SO_ACCEPTCONN; 600 so->so_linger = head->so_linger; 601 so->so_state = head->so_state | SS_NOFDREF; 602 so->so_fibnum = head->so_fibnum; 603 so->so_proto = head->so_proto; 604 so->so_cred = crhold(head->so_cred); 605 #ifdef MAC 606 mac_socket_newconn(head, so); 607 #endif 608 knlist_init_mtx(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv)); 609 knlist_init_mtx(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd)); 610 VNET_SO_ASSERT(head); 611 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) { 612 sodealloc(so); 613 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 614 __func__, head->so_pcb); 615 return (NULL); 616 } 617 if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 618 sodealloc(so); 619 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", 620 __func__, head->so_pcb); 621 return (NULL); 622 } 623 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; 624 so->so_snd.sb_lowat = head->so_snd.sb_lowat; 625 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; 626 so->so_snd.sb_timeo = head->so_snd.sb_timeo; 627 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE; 628 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE; 629 so->so_state |= connstatus; 630 ACCEPT_LOCK(); 631 /* 632 * The accept socket may be tearing down but we just 633 * won a race on the ACCEPT_LOCK. 634 * However, if sctp_peeloff() is called on a 1-to-many 635 * style socket, the SO_ACCEPTCONN doesn't need to be set. 636 */ 637 if (!(head->so_options & SO_ACCEPTCONN) && 638 ((head->so_proto->pr_protocol != IPPROTO_SCTP) || 639 (head->so_type != SOCK_SEQPACKET))) { 640 SOCK_LOCK(so); 641 so->so_head = NULL; 642 sofree(so); /* NB: returns ACCEPT_UNLOCK'ed. */ 643 return (NULL); 644 } 645 if (connstatus) { 646 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 647 so->so_qstate |= SQ_COMP; 648 head->so_qlen++; 649 } else { 650 /* 651 * Keep removing sockets from the head until there's room for 652 * us to insert on the tail. In pre-locking revisions, this 653 * was a simple if(), but as we could be racing with other 654 * threads and soabort() requires dropping locks, we must 655 * loop waiting for the condition to be true. 656 */ 657 while (head->so_incqlen > head->so_qlimit) { 658 struct socket *sp; 659 sp = TAILQ_FIRST(&head->so_incomp); 660 TAILQ_REMOVE(&head->so_incomp, sp, so_list); 661 head->so_incqlen--; 662 sp->so_qstate &= ~SQ_INCOMP; 663 sp->so_head = NULL; 664 ACCEPT_UNLOCK(); 665 soabort(sp); 666 ACCEPT_LOCK(); 667 } 668 TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list); 669 so->so_qstate |= SQ_INCOMP; 670 head->so_incqlen++; 671 } 672 ACCEPT_UNLOCK(); 673 if (connstatus) { 674 sorwakeup(head); 675 wakeup_one(&head->so_timeo); 676 } 677 return (so); 678 } 679 680 int 681 sobind(struct socket *so, struct sockaddr *nam, struct thread *td) 682 { 683 int error; 684 685 CURVNET_SET(so->so_vnet); 686 error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td); 687 CURVNET_RESTORE(); 688 return (error); 689 } 690 691 int 692 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 693 { 694 int error; 695 696 CURVNET_SET(so->so_vnet); 697 error = (*so->so_proto->pr_usrreqs->pru_bindat)(fd, so, nam, td); 698 CURVNET_RESTORE(); 699 return (error); 700 } 701 702 /* 703 * solisten() transitions a socket from a non-listening state to a listening 704 * state, but can also be used to update the listen queue depth on an 705 * existing listen socket. The protocol will call back into the sockets 706 * layer using solisten_proto_check() and solisten_proto() to check and set 707 * socket-layer listen state. Call backs are used so that the protocol can 708 * acquire both protocol and socket layer locks in whatever order is required 709 * by the protocol. 710 * 711 * Protocol implementors are advised to hold the socket lock across the 712 * socket-layer test and set to avoid races at the socket layer. 713 */ 714 int 715 solisten(struct socket *so, int backlog, struct thread *td) 716 { 717 int error; 718 719 CURVNET_SET(so->so_vnet); 720 error = (*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td); 721 CURVNET_RESTORE(); 722 return (error); 723 } 724 725 int 726 solisten_proto_check(struct socket *so) 727 { 728 729 SOCK_LOCK_ASSERT(so); 730 731 if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 732 SS_ISDISCONNECTING)) 733 return (EINVAL); 734 return (0); 735 } 736 737 void 738 solisten_proto(struct socket *so, int backlog) 739 { 740 741 SOCK_LOCK_ASSERT(so); 742 743 if (backlog < 0 || backlog > somaxconn) 744 backlog = somaxconn; 745 so->so_qlimit = backlog; 746 so->so_options |= SO_ACCEPTCONN; 747 } 748 749 /* 750 * Evaluate the reference count and named references on a socket; if no 751 * references remain, free it. This should be called whenever a reference is 752 * released, such as in sorele(), but also when named reference flags are 753 * cleared in socket or protocol code. 754 * 755 * sofree() will free the socket if: 756 * 757 * - There are no outstanding file descriptor references or related consumers 758 * (so_count == 0). 759 * 760 * - The socket has been closed by user space, if ever open (SS_NOFDREF). 761 * 762 * - The protocol does not have an outstanding strong reference on the socket 763 * (SS_PROTOREF). 764 * 765 * - The socket is not in a completed connection queue, so a process has been 766 * notified that it is present. If it is removed, the user process may 767 * block in accept() despite select() saying the socket was ready. 768 */ 769 void 770 sofree(struct socket *so) 771 { 772 struct protosw *pr = so->so_proto; 773 struct socket *head; 774 775 ACCEPT_LOCK_ASSERT(); 776 SOCK_LOCK_ASSERT(so); 777 778 if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 || 779 (so->so_state & SS_PROTOREF) || (so->so_qstate & SQ_COMP)) { 780 SOCK_UNLOCK(so); 781 ACCEPT_UNLOCK(); 782 return; 783 } 784 785 head = so->so_head; 786 if (head != NULL) { 787 KASSERT((so->so_qstate & SQ_COMP) != 0 || 788 (so->so_qstate & SQ_INCOMP) != 0, 789 ("sofree: so_head != NULL, but neither SQ_COMP nor " 790 "SQ_INCOMP")); 791 KASSERT((so->so_qstate & SQ_COMP) == 0 || 792 (so->so_qstate & SQ_INCOMP) == 0, 793 ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP")); 794 TAILQ_REMOVE(&head->so_incomp, so, so_list); 795 head->so_incqlen--; 796 so->so_qstate &= ~SQ_INCOMP; 797 so->so_head = NULL; 798 } 799 KASSERT((so->so_qstate & SQ_COMP) == 0 && 800 (so->so_qstate & SQ_INCOMP) == 0, 801 ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)", 802 so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP)); 803 if (so->so_options & SO_ACCEPTCONN) { 804 KASSERT((TAILQ_EMPTY(&so->so_comp)), 805 ("sofree: so_comp populated")); 806 KASSERT((TAILQ_EMPTY(&so->so_incomp)), 807 ("sofree: so_incomp populated")); 808 } 809 SOCK_UNLOCK(so); 810 ACCEPT_UNLOCK(); 811 812 VNET_SO_ASSERT(so); 813 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 814 (*pr->pr_domain->dom_dispose)(so); 815 if (pr->pr_usrreqs->pru_detach != NULL) 816 (*pr->pr_usrreqs->pru_detach)(so); 817 818 /* 819 * From this point on, we assume that no other references to this 820 * socket exist anywhere else in the stack. Therefore, no locks need 821 * to be acquired or held. 822 * 823 * We used to do a lot of socket buffer and socket locking here, as 824 * well as invoke sorflush() and perform wakeups. The direct call to 825 * dom_dispose() and sbrelease_internal() are an inlining of what was 826 * necessary from sorflush(). 827 * 828 * Notice that the socket buffer and kqueue state are torn down 829 * before calling pru_detach. This means that protocols shold not 830 * assume they can perform socket wakeups, etc, in their detach code. 831 */ 832 sbdestroy(&so->so_snd, so); 833 sbdestroy(&so->so_rcv, so); 834 seldrain(&so->so_snd.sb_sel); 835 seldrain(&so->so_rcv.sb_sel); 836 knlist_destroy(&so->so_rcv.sb_sel.si_note); 837 knlist_destroy(&so->so_snd.sb_sel.si_note); 838 sodealloc(so); 839 } 840 841 /* 842 * Close a socket on last file table reference removal. Initiate disconnect 843 * if connected. Free socket when disconnect complete. 844 * 845 * This function will sorele() the socket. Note that soclose() may be called 846 * prior to the ref count reaching zero. The actual socket structure will 847 * not be freed until the ref count reaches zero. 848 */ 849 int 850 soclose(struct socket *so) 851 { 852 int error = 0; 853 854 KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter")); 855 856 CURVNET_SET(so->so_vnet); 857 funsetown(&so->so_sigio); 858 if (so->so_state & SS_ISCONNECTED) { 859 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 860 error = sodisconnect(so); 861 if (error) { 862 if (error == ENOTCONN) 863 error = 0; 864 goto drop; 865 } 866 } 867 if (so->so_options & SO_LINGER) { 868 if ((so->so_state & SS_ISDISCONNECTING) && 869 (so->so_state & SS_NBIO)) 870 goto drop; 871 while (so->so_state & SS_ISCONNECTED) { 872 error = tsleep(&so->so_timeo, 873 PSOCK | PCATCH, "soclos", 874 so->so_linger * hz); 875 if (error) 876 break; 877 } 878 } 879 } 880 881 drop: 882 if (so->so_proto->pr_usrreqs->pru_close != NULL) 883 (*so->so_proto->pr_usrreqs->pru_close)(so); 884 ACCEPT_LOCK(); 885 if (so->so_options & SO_ACCEPTCONN) { 886 struct socket *sp; 887 /* 888 * Prevent new additions to the accept queues due 889 * to ACCEPT_LOCK races while we are draining them. 890 */ 891 so->so_options &= ~SO_ACCEPTCONN; 892 while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) { 893 TAILQ_REMOVE(&so->so_incomp, sp, so_list); 894 so->so_incqlen--; 895 sp->so_qstate &= ~SQ_INCOMP; 896 sp->so_head = NULL; 897 ACCEPT_UNLOCK(); 898 soabort(sp); 899 ACCEPT_LOCK(); 900 } 901 while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) { 902 TAILQ_REMOVE(&so->so_comp, sp, so_list); 903 so->so_qlen--; 904 sp->so_qstate &= ~SQ_COMP; 905 sp->so_head = NULL; 906 ACCEPT_UNLOCK(); 907 soabort(sp); 908 ACCEPT_LOCK(); 909 } 910 KASSERT((TAILQ_EMPTY(&so->so_comp)), 911 ("%s: so_comp populated", __func__)); 912 KASSERT((TAILQ_EMPTY(&so->so_incomp)), 913 ("%s: so_incomp populated", __func__)); 914 } 915 SOCK_LOCK(so); 916 KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF")); 917 so->so_state |= SS_NOFDREF; 918 sorele(so); /* NB: Returns with ACCEPT_UNLOCK(). */ 919 CURVNET_RESTORE(); 920 return (error); 921 } 922 923 /* 924 * soabort() is used to abruptly tear down a connection, such as when a 925 * resource limit is reached (listen queue depth exceeded), or if a listen 926 * socket is closed while there are sockets waiting to be accepted. 927 * 928 * This interface is tricky, because it is called on an unreferenced socket, 929 * and must be called only by a thread that has actually removed the socket 930 * from the listen queue it was on, or races with other threads are risked. 931 * 932 * This interface will call into the protocol code, so must not be called 933 * with any socket locks held. Protocols do call it while holding their own 934 * recursible protocol mutexes, but this is something that should be subject 935 * to review in the future. 936 */ 937 void 938 soabort(struct socket *so) 939 { 940 941 /* 942 * In as much as is possible, assert that no references to this 943 * socket are held. This is not quite the same as asserting that the 944 * current thread is responsible for arranging for no references, but 945 * is as close as we can get for now. 946 */ 947 KASSERT(so->so_count == 0, ("soabort: so_count")); 948 KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF")); 949 KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF")); 950 KASSERT((so->so_state & SQ_COMP) == 0, ("soabort: SQ_COMP")); 951 KASSERT((so->so_state & SQ_INCOMP) == 0, ("soabort: SQ_INCOMP")); 952 VNET_SO_ASSERT(so); 953 954 if (so->so_proto->pr_usrreqs->pru_abort != NULL) 955 (*so->so_proto->pr_usrreqs->pru_abort)(so); 956 ACCEPT_LOCK(); 957 SOCK_LOCK(so); 958 sofree(so); 959 } 960 961 int 962 soaccept(struct socket *so, struct sockaddr **nam) 963 { 964 int error; 965 966 SOCK_LOCK(so); 967 KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF")); 968 so->so_state &= ~SS_NOFDREF; 969 SOCK_UNLOCK(so); 970 971 CURVNET_SET(so->so_vnet); 972 error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam); 973 CURVNET_RESTORE(); 974 return (error); 975 } 976 977 int 978 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td) 979 { 980 981 return (soconnectat(AT_FDCWD, so, nam, td)); 982 } 983 984 int 985 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 986 { 987 int error; 988 989 if (so->so_options & SO_ACCEPTCONN) 990 return (EOPNOTSUPP); 991 992 CURVNET_SET(so->so_vnet); 993 /* 994 * If protocol is connection-based, can only connect once. 995 * Otherwise, if connected, try to disconnect first. This allows 996 * user to disconnect by connecting to, e.g., a null address. 997 */ 998 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 999 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 1000 (error = sodisconnect(so)))) { 1001 error = EISCONN; 1002 } else { 1003 /* 1004 * Prevent accumulated error from previous connection from 1005 * biting us. 1006 */ 1007 so->so_error = 0; 1008 if (fd == AT_FDCWD) { 1009 error = (*so->so_proto->pr_usrreqs->pru_connect)(so, 1010 nam, td); 1011 } else { 1012 error = (*so->so_proto->pr_usrreqs->pru_connectat)(fd, 1013 so, nam, td); 1014 } 1015 } 1016 CURVNET_RESTORE(); 1017 1018 return (error); 1019 } 1020 1021 int 1022 soconnect2(struct socket *so1, struct socket *so2) 1023 { 1024 int error; 1025 1026 CURVNET_SET(so1->so_vnet); 1027 error = (*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2); 1028 CURVNET_RESTORE(); 1029 return (error); 1030 } 1031 1032 int 1033 sodisconnect(struct socket *so) 1034 { 1035 int error; 1036 1037 if ((so->so_state & SS_ISCONNECTED) == 0) 1038 return (ENOTCONN); 1039 if (so->so_state & SS_ISDISCONNECTING) 1040 return (EALREADY); 1041 VNET_SO_ASSERT(so); 1042 error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so); 1043 return (error); 1044 } 1045 1046 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT) 1047 1048 int 1049 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, 1050 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1051 { 1052 long space; 1053 ssize_t resid; 1054 int clen = 0, error, dontroute; 1055 1056 KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM")); 1057 KASSERT(so->so_proto->pr_flags & PR_ATOMIC, 1058 ("sosend_dgram: !PR_ATOMIC")); 1059 1060 if (uio != NULL) 1061 resid = uio->uio_resid; 1062 else 1063 resid = top->m_pkthdr.len; 1064 /* 1065 * In theory resid should be unsigned. However, space must be 1066 * signed, as it might be less than 0 if we over-committed, and we 1067 * must use a signed comparison of space and resid. On the other 1068 * hand, a negative resid causes us to loop sending 0-length 1069 * segments to the protocol. 1070 */ 1071 if (resid < 0) { 1072 error = EINVAL; 1073 goto out; 1074 } 1075 1076 dontroute = 1077 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0; 1078 if (td != NULL) 1079 td->td_ru.ru_msgsnd++; 1080 if (control != NULL) 1081 clen = control->m_len; 1082 1083 SOCKBUF_LOCK(&so->so_snd); 1084 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1085 SOCKBUF_UNLOCK(&so->so_snd); 1086 error = EPIPE; 1087 goto out; 1088 } 1089 if (so->so_error) { 1090 error = so->so_error; 1091 so->so_error = 0; 1092 SOCKBUF_UNLOCK(&so->so_snd); 1093 goto out; 1094 } 1095 if ((so->so_state & SS_ISCONNECTED) == 0) { 1096 /* 1097 * `sendto' and `sendmsg' is allowed on a connection-based 1098 * socket if it supports implied connect. Return ENOTCONN if 1099 * not connected and no address is supplied. 1100 */ 1101 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1102 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1103 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1104 !(resid == 0 && clen != 0)) { 1105 SOCKBUF_UNLOCK(&so->so_snd); 1106 error = ENOTCONN; 1107 goto out; 1108 } 1109 } else if (addr == NULL) { 1110 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1111 error = ENOTCONN; 1112 else 1113 error = EDESTADDRREQ; 1114 SOCKBUF_UNLOCK(&so->so_snd); 1115 goto out; 1116 } 1117 } 1118 1119 /* 1120 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a 1121 * problem and need fixing. 1122 */ 1123 space = sbspace(&so->so_snd); 1124 if (flags & MSG_OOB) 1125 space += 1024; 1126 space -= clen; 1127 SOCKBUF_UNLOCK(&so->so_snd); 1128 if (resid > space) { 1129 error = EMSGSIZE; 1130 goto out; 1131 } 1132 if (uio == NULL) { 1133 resid = 0; 1134 if (flags & MSG_EOR) 1135 top->m_flags |= M_EOR; 1136 } else { 1137 /* 1138 * Copy the data from userland into a mbuf chain. 1139 * If no data is to be copied in, a single empty mbuf 1140 * is returned. 1141 */ 1142 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr, 1143 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0))); 1144 if (top == NULL) { 1145 error = EFAULT; /* only possible error */ 1146 goto out; 1147 } 1148 space -= resid - uio->uio_resid; 1149 resid = uio->uio_resid; 1150 } 1151 KASSERT(resid == 0, ("sosend_dgram: resid != 0")); 1152 /* 1153 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock 1154 * than with. 1155 */ 1156 if (dontroute) { 1157 SOCK_LOCK(so); 1158 so->so_options |= SO_DONTROUTE; 1159 SOCK_UNLOCK(so); 1160 } 1161 /* 1162 * XXX all the SBS_CANTSENDMORE checks previously done could be out 1163 * of date. We could have recieved a reset packet in an interrupt or 1164 * maybe we slept while doing page faults in uiomove() etc. We could 1165 * probably recheck again inside the locking protection here, but 1166 * there are probably other places that this also happens. We must 1167 * rethink this. 1168 */ 1169 VNET_SO_ASSERT(so); 1170 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1171 (flags & MSG_OOB) ? PRUS_OOB : 1172 /* 1173 * If the user set MSG_EOF, the protocol understands this flag and 1174 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND. 1175 */ 1176 ((flags & MSG_EOF) && 1177 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1178 (resid <= 0)) ? 1179 PRUS_EOF : 1180 /* If there is more to send set PRUS_MORETOCOME */ 1181 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1182 top, addr, control, td); 1183 if (dontroute) { 1184 SOCK_LOCK(so); 1185 so->so_options &= ~SO_DONTROUTE; 1186 SOCK_UNLOCK(so); 1187 } 1188 clen = 0; 1189 control = NULL; 1190 top = NULL; 1191 out: 1192 if (top != NULL) 1193 m_freem(top); 1194 if (control != NULL) 1195 m_freem(control); 1196 return (error); 1197 } 1198 1199 /* 1200 * Send on a socket. If send must go all at once and message is larger than 1201 * send buffering, then hard error. Lock against other senders. If must go 1202 * all at once and not enough room now, then inform user that this would 1203 * block and do nothing. Otherwise, if nonblocking, send as much as 1204 * possible. The data to be sent is described by "uio" if nonzero, otherwise 1205 * by the mbuf chain "top" (which must be null if uio is not). Data provided 1206 * in mbuf chain must be small enough to send all at once. 1207 * 1208 * Returns nonzero on error, timeout or signal; callers must check for short 1209 * counts if EINTR/ERESTART are returned. Data and control buffers are freed 1210 * on return. 1211 */ 1212 int 1213 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio, 1214 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1215 { 1216 long space; 1217 ssize_t resid; 1218 int clen = 0, error, dontroute; 1219 int atomic = sosendallatonce(so) || top; 1220 1221 if (uio != NULL) 1222 resid = uio->uio_resid; 1223 else 1224 resid = top->m_pkthdr.len; 1225 /* 1226 * In theory resid should be unsigned. However, space must be 1227 * signed, as it might be less than 0 if we over-committed, and we 1228 * must use a signed comparison of space and resid. On the other 1229 * hand, a negative resid causes us to loop sending 0-length 1230 * segments to the protocol. 1231 * 1232 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 1233 * type sockets since that's an error. 1234 */ 1235 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 1236 error = EINVAL; 1237 goto out; 1238 } 1239 1240 dontroute = 1241 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 1242 (so->so_proto->pr_flags & PR_ATOMIC); 1243 if (td != NULL) 1244 td->td_ru.ru_msgsnd++; 1245 if (control != NULL) 1246 clen = control->m_len; 1247 1248 error = sblock(&so->so_snd, SBLOCKWAIT(flags)); 1249 if (error) 1250 goto out; 1251 1252 restart: 1253 do { 1254 SOCKBUF_LOCK(&so->so_snd); 1255 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1256 SOCKBUF_UNLOCK(&so->so_snd); 1257 error = EPIPE; 1258 goto release; 1259 } 1260 if (so->so_error) { 1261 error = so->so_error; 1262 so->so_error = 0; 1263 SOCKBUF_UNLOCK(&so->so_snd); 1264 goto release; 1265 } 1266 if ((so->so_state & SS_ISCONNECTED) == 0) { 1267 /* 1268 * `sendto' and `sendmsg' is allowed on a connection- 1269 * based socket if it supports implied connect. 1270 * Return ENOTCONN if not connected and no address is 1271 * supplied. 1272 */ 1273 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1274 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1275 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1276 !(resid == 0 && clen != 0)) { 1277 SOCKBUF_UNLOCK(&so->so_snd); 1278 error = ENOTCONN; 1279 goto release; 1280 } 1281 } else if (addr == NULL) { 1282 SOCKBUF_UNLOCK(&so->so_snd); 1283 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1284 error = ENOTCONN; 1285 else 1286 error = EDESTADDRREQ; 1287 goto release; 1288 } 1289 } 1290 space = sbspace(&so->so_snd); 1291 if (flags & MSG_OOB) 1292 space += 1024; 1293 if ((atomic && resid > so->so_snd.sb_hiwat) || 1294 clen > so->so_snd.sb_hiwat) { 1295 SOCKBUF_UNLOCK(&so->so_snd); 1296 error = EMSGSIZE; 1297 goto release; 1298 } 1299 if (space < resid + clen && 1300 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 1301 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) { 1302 SOCKBUF_UNLOCK(&so->so_snd); 1303 error = EWOULDBLOCK; 1304 goto release; 1305 } 1306 error = sbwait(&so->so_snd); 1307 SOCKBUF_UNLOCK(&so->so_snd); 1308 if (error) 1309 goto release; 1310 goto restart; 1311 } 1312 SOCKBUF_UNLOCK(&so->so_snd); 1313 space -= clen; 1314 do { 1315 if (uio == NULL) { 1316 resid = 0; 1317 if (flags & MSG_EOR) 1318 top->m_flags |= M_EOR; 1319 } else { 1320 /* 1321 * Copy the data from userland into a mbuf 1322 * chain. If resid is 0, which can happen 1323 * only if we have control to send, then 1324 * a single empty mbuf is returned. This 1325 * is a workaround to prevent protocol send 1326 * methods to panic. 1327 */ 1328 top = m_uiotombuf(uio, M_WAITOK, space, 1329 (atomic ? max_hdr : 0), 1330 (atomic ? M_PKTHDR : 0) | 1331 ((flags & MSG_EOR) ? M_EOR : 0)); 1332 if (top == NULL) { 1333 error = EFAULT; /* only possible error */ 1334 goto release; 1335 } 1336 space -= resid - uio->uio_resid; 1337 resid = uio->uio_resid; 1338 } 1339 if (dontroute) { 1340 SOCK_LOCK(so); 1341 so->so_options |= SO_DONTROUTE; 1342 SOCK_UNLOCK(so); 1343 } 1344 /* 1345 * XXX all the SBS_CANTSENDMORE checks previously 1346 * done could be out of date. We could have recieved 1347 * a reset packet in an interrupt or maybe we slept 1348 * while doing page faults in uiomove() etc. We 1349 * could probably recheck again inside the locking 1350 * protection here, but there are probably other 1351 * places that this also happens. We must rethink 1352 * this. 1353 */ 1354 VNET_SO_ASSERT(so); 1355 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1356 (flags & MSG_OOB) ? PRUS_OOB : 1357 /* 1358 * If the user set MSG_EOF, the protocol understands 1359 * this flag and nothing left to send then use 1360 * PRU_SEND_EOF instead of PRU_SEND. 1361 */ 1362 ((flags & MSG_EOF) && 1363 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1364 (resid <= 0)) ? 1365 PRUS_EOF : 1366 /* If there is more to send set PRUS_MORETOCOME. */ 1367 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1368 top, addr, control, td); 1369 if (dontroute) { 1370 SOCK_LOCK(so); 1371 so->so_options &= ~SO_DONTROUTE; 1372 SOCK_UNLOCK(so); 1373 } 1374 clen = 0; 1375 control = NULL; 1376 top = NULL; 1377 if (error) 1378 goto release; 1379 } while (resid && space > 0); 1380 } while (resid); 1381 1382 release: 1383 sbunlock(&so->so_snd); 1384 out: 1385 if (top != NULL) 1386 m_freem(top); 1387 if (control != NULL) 1388 m_freem(control); 1389 return (error); 1390 } 1391 1392 int 1393 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, 1394 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1395 { 1396 int error; 1397 1398 CURVNET_SET(so->so_vnet); 1399 error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, top, 1400 control, flags, td); 1401 CURVNET_RESTORE(); 1402 return (error); 1403 } 1404 1405 /* 1406 * The part of soreceive() that implements reading non-inline out-of-band 1407 * data from a socket. For more complete comments, see soreceive(), from 1408 * which this code originated. 1409 * 1410 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is 1411 * unable to return an mbuf chain to the caller. 1412 */ 1413 static int 1414 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags) 1415 { 1416 struct protosw *pr = so->so_proto; 1417 struct mbuf *m; 1418 int error; 1419 1420 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); 1421 VNET_SO_ASSERT(so); 1422 1423 m = m_get(M_WAITOK, MT_DATA); 1424 error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK); 1425 if (error) 1426 goto bad; 1427 do { 1428 error = uiomove(mtod(m, void *), 1429 (int) min(uio->uio_resid, m->m_len), uio); 1430 m = m_free(m); 1431 } while (uio->uio_resid && error == 0 && m); 1432 bad: 1433 if (m != NULL) 1434 m_freem(m); 1435 return (error); 1436 } 1437 1438 /* 1439 * Following replacement or removal of the first mbuf on the first mbuf chain 1440 * of a socket buffer, push necessary state changes back into the socket 1441 * buffer so that other consumers see the values consistently. 'nextrecord' 1442 * is the callers locally stored value of the original value of 1443 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. 1444 * NOTE: 'nextrecord' may be NULL. 1445 */ 1446 static __inline void 1447 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) 1448 { 1449 1450 SOCKBUF_LOCK_ASSERT(sb); 1451 /* 1452 * First, update for the new value of nextrecord. If necessary, make 1453 * it the first record. 1454 */ 1455 if (sb->sb_mb != NULL) 1456 sb->sb_mb->m_nextpkt = nextrecord; 1457 else 1458 sb->sb_mb = nextrecord; 1459 1460 /* 1461 * Now update any dependent socket buffer fields to reflect the new 1462 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the 1463 * addition of a second clause that takes care of the case where 1464 * sb_mb has been updated, but remains the last record. 1465 */ 1466 if (sb->sb_mb == NULL) { 1467 sb->sb_mbtail = NULL; 1468 sb->sb_lastrecord = NULL; 1469 } else if (sb->sb_mb->m_nextpkt == NULL) 1470 sb->sb_lastrecord = sb->sb_mb; 1471 } 1472 1473 /* 1474 * Implement receive operations on a socket. We depend on the way that 1475 * records are added to the sockbuf by sbappend. In particular, each record 1476 * (mbufs linked through m_next) must begin with an address if the protocol 1477 * so specifies, followed by an optional mbuf or mbufs containing ancillary 1478 * data, and then zero or more mbufs of data. In order to allow parallelism 1479 * between network receive and copying to user space, as well as avoid 1480 * sleeping with a mutex held, we release the socket buffer mutex during the 1481 * user space copy. Although the sockbuf is locked, new data may still be 1482 * appended, and thus we must maintain consistency of the sockbuf during that 1483 * time. 1484 * 1485 * The caller may receive the data as a single mbuf chain by supplying an 1486 * mbuf **mp0 for use in returning the chain. The uio is then used only for 1487 * the count in uio_resid. 1488 */ 1489 int 1490 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio, 1491 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1492 { 1493 struct mbuf *m, **mp; 1494 int flags, error, offset; 1495 ssize_t len; 1496 struct protosw *pr = so->so_proto; 1497 struct mbuf *nextrecord; 1498 int moff, type = 0; 1499 ssize_t orig_resid = uio->uio_resid; 1500 1501 mp = mp0; 1502 if (psa != NULL) 1503 *psa = NULL; 1504 if (controlp != NULL) 1505 *controlp = NULL; 1506 if (flagsp != NULL) 1507 flags = *flagsp &~ MSG_EOR; 1508 else 1509 flags = 0; 1510 if (flags & MSG_OOB) 1511 return (soreceive_rcvoob(so, uio, flags)); 1512 if (mp != NULL) 1513 *mp = NULL; 1514 if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING) 1515 && uio->uio_resid) { 1516 VNET_SO_ASSERT(so); 1517 (*pr->pr_usrreqs->pru_rcvd)(so, 0); 1518 } 1519 1520 error = sblock(&so->so_rcv, SBLOCKWAIT(flags)); 1521 if (error) 1522 return (error); 1523 1524 restart: 1525 SOCKBUF_LOCK(&so->so_rcv); 1526 m = so->so_rcv.sb_mb; 1527 /* 1528 * If we have less data than requested, block awaiting more (subject 1529 * to any timeout) if: 1530 * 1. the current count is less than the low water mark, or 1531 * 2. MSG_DONTWAIT is not set 1532 */ 1533 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 1534 sbavail(&so->so_rcv) < uio->uio_resid) && 1535 sbavail(&so->so_rcv) < so->so_rcv.sb_lowat && 1536 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 1537 KASSERT(m != NULL || !sbavail(&so->so_rcv), 1538 ("receive: m == %p sbavail == %u", 1539 m, sbavail(&so->so_rcv))); 1540 if (so->so_error) { 1541 if (m != NULL) 1542 goto dontblock; 1543 error = so->so_error; 1544 if ((flags & MSG_PEEK) == 0) 1545 so->so_error = 0; 1546 SOCKBUF_UNLOCK(&so->so_rcv); 1547 goto release; 1548 } 1549 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1550 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 1551 if (m == NULL) { 1552 SOCKBUF_UNLOCK(&so->so_rcv); 1553 goto release; 1554 } else 1555 goto dontblock; 1556 } 1557 for (; m != NULL; m = m->m_next) 1558 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 1559 m = so->so_rcv.sb_mb; 1560 goto dontblock; 1561 } 1562 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 1563 (so->so_proto->pr_flags & PR_CONNREQUIRED)) { 1564 SOCKBUF_UNLOCK(&so->so_rcv); 1565 error = ENOTCONN; 1566 goto release; 1567 } 1568 if (uio->uio_resid == 0) { 1569 SOCKBUF_UNLOCK(&so->so_rcv); 1570 goto release; 1571 } 1572 if ((so->so_state & SS_NBIO) || 1573 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 1574 SOCKBUF_UNLOCK(&so->so_rcv); 1575 error = EWOULDBLOCK; 1576 goto release; 1577 } 1578 SBLASTRECORDCHK(&so->so_rcv); 1579 SBLASTMBUFCHK(&so->so_rcv); 1580 error = sbwait(&so->so_rcv); 1581 SOCKBUF_UNLOCK(&so->so_rcv); 1582 if (error) 1583 goto release; 1584 goto restart; 1585 } 1586 dontblock: 1587 /* 1588 * From this point onward, we maintain 'nextrecord' as a cache of the 1589 * pointer to the next record in the socket buffer. We must keep the 1590 * various socket buffer pointers and local stack versions of the 1591 * pointers in sync, pushing out modifications before dropping the 1592 * socket buffer mutex, and re-reading them when picking it up. 1593 * 1594 * Otherwise, we will race with the network stack appending new data 1595 * or records onto the socket buffer by using inconsistent/stale 1596 * versions of the field, possibly resulting in socket buffer 1597 * corruption. 1598 * 1599 * By holding the high-level sblock(), we prevent simultaneous 1600 * readers from pulling off the front of the socket buffer. 1601 */ 1602 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1603 if (uio->uio_td) 1604 uio->uio_td->td_ru.ru_msgrcv++; 1605 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); 1606 SBLASTRECORDCHK(&so->so_rcv); 1607 SBLASTMBUFCHK(&so->so_rcv); 1608 nextrecord = m->m_nextpkt; 1609 if (pr->pr_flags & PR_ADDR) { 1610 KASSERT(m->m_type == MT_SONAME, 1611 ("m->m_type == %d", m->m_type)); 1612 orig_resid = 0; 1613 if (psa != NULL) 1614 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 1615 M_NOWAIT); 1616 if (flags & MSG_PEEK) { 1617 m = m->m_next; 1618 } else { 1619 sbfree(&so->so_rcv, m); 1620 so->so_rcv.sb_mb = m_free(m); 1621 m = so->so_rcv.sb_mb; 1622 sockbuf_pushsync(&so->so_rcv, nextrecord); 1623 } 1624 } 1625 1626 /* 1627 * Process one or more MT_CONTROL mbufs present before any data mbufs 1628 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 1629 * just copy the data; if !MSG_PEEK, we call into the protocol to 1630 * perform externalization (or freeing if controlp == NULL). 1631 */ 1632 if (m != NULL && m->m_type == MT_CONTROL) { 1633 struct mbuf *cm = NULL, *cmn; 1634 struct mbuf **cme = &cm; 1635 1636 do { 1637 if (flags & MSG_PEEK) { 1638 if (controlp != NULL) { 1639 *controlp = m_copy(m, 0, m->m_len); 1640 controlp = &(*controlp)->m_next; 1641 } 1642 m = m->m_next; 1643 } else { 1644 sbfree(&so->so_rcv, m); 1645 so->so_rcv.sb_mb = m->m_next; 1646 m->m_next = NULL; 1647 *cme = m; 1648 cme = &(*cme)->m_next; 1649 m = so->so_rcv.sb_mb; 1650 } 1651 } while (m != NULL && m->m_type == MT_CONTROL); 1652 if ((flags & MSG_PEEK) == 0) 1653 sockbuf_pushsync(&so->so_rcv, nextrecord); 1654 while (cm != NULL) { 1655 cmn = cm->m_next; 1656 cm->m_next = NULL; 1657 if (pr->pr_domain->dom_externalize != NULL) { 1658 SOCKBUF_UNLOCK(&so->so_rcv); 1659 VNET_SO_ASSERT(so); 1660 error = (*pr->pr_domain->dom_externalize) 1661 (cm, controlp, flags); 1662 SOCKBUF_LOCK(&so->so_rcv); 1663 } else if (controlp != NULL) 1664 *controlp = cm; 1665 else 1666 m_freem(cm); 1667 if (controlp != NULL) { 1668 orig_resid = 0; 1669 while (*controlp != NULL) 1670 controlp = &(*controlp)->m_next; 1671 } 1672 cm = cmn; 1673 } 1674 if (m != NULL) 1675 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 1676 else 1677 nextrecord = so->so_rcv.sb_mb; 1678 orig_resid = 0; 1679 } 1680 if (m != NULL) { 1681 if ((flags & MSG_PEEK) == 0) { 1682 KASSERT(m->m_nextpkt == nextrecord, 1683 ("soreceive: post-control, nextrecord !sync")); 1684 if (nextrecord == NULL) { 1685 KASSERT(so->so_rcv.sb_mb == m, 1686 ("soreceive: post-control, sb_mb!=m")); 1687 KASSERT(so->so_rcv.sb_lastrecord == m, 1688 ("soreceive: post-control, lastrecord!=m")); 1689 } 1690 } 1691 type = m->m_type; 1692 if (type == MT_OOBDATA) 1693 flags |= MSG_OOB; 1694 } else { 1695 if ((flags & MSG_PEEK) == 0) { 1696 KASSERT(so->so_rcv.sb_mb == nextrecord, 1697 ("soreceive: sb_mb != nextrecord")); 1698 if (so->so_rcv.sb_mb == NULL) { 1699 KASSERT(so->so_rcv.sb_lastrecord == NULL, 1700 ("soreceive: sb_lastercord != NULL")); 1701 } 1702 } 1703 } 1704 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1705 SBLASTRECORDCHK(&so->so_rcv); 1706 SBLASTMBUFCHK(&so->so_rcv); 1707 1708 /* 1709 * Now continue to read any data mbufs off of the head of the socket 1710 * buffer until the read request is satisfied. Note that 'type' is 1711 * used to store the type of any mbuf reads that have happened so far 1712 * such that soreceive() can stop reading if the type changes, which 1713 * causes soreceive() to return only one of regular data and inline 1714 * out-of-band data in a single socket receive operation. 1715 */ 1716 moff = 0; 1717 offset = 0; 1718 while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0 1719 && error == 0) { 1720 /* 1721 * If the type of mbuf has changed since the last mbuf 1722 * examined ('type'), end the receive operation. 1723 */ 1724 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1725 if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) { 1726 if (type != m->m_type) 1727 break; 1728 } else if (type == MT_OOBDATA) 1729 break; 1730 else 1731 KASSERT(m->m_type == MT_DATA, 1732 ("m->m_type == %d", m->m_type)); 1733 so->so_rcv.sb_state &= ~SBS_RCVATMARK; 1734 len = uio->uio_resid; 1735 if (so->so_oobmark && len > so->so_oobmark - offset) 1736 len = so->so_oobmark - offset; 1737 if (len > m->m_len - moff) 1738 len = m->m_len - moff; 1739 /* 1740 * If mp is set, just pass back the mbufs. Otherwise copy 1741 * them out via the uio, then free. Sockbuf must be 1742 * consistent here (points to current mbuf, it points to next 1743 * record) when we drop priority; we must note any additions 1744 * to the sockbuf when we block interrupts again. 1745 */ 1746 if (mp == NULL) { 1747 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1748 SBLASTRECORDCHK(&so->so_rcv); 1749 SBLASTMBUFCHK(&so->so_rcv); 1750 SOCKBUF_UNLOCK(&so->so_rcv); 1751 error = uiomove(mtod(m, char *) + moff, (int)len, uio); 1752 SOCKBUF_LOCK(&so->so_rcv); 1753 if (error) { 1754 /* 1755 * The MT_SONAME mbuf has already been removed 1756 * from the record, so it is necessary to 1757 * remove the data mbufs, if any, to preserve 1758 * the invariant in the case of PR_ADDR that 1759 * requires MT_SONAME mbufs at the head of 1760 * each record. 1761 */ 1762 if (m && pr->pr_flags & PR_ATOMIC && 1763 ((flags & MSG_PEEK) == 0)) 1764 (void)sbdroprecord_locked(&so->so_rcv); 1765 SOCKBUF_UNLOCK(&so->so_rcv); 1766 goto release; 1767 } 1768 } else 1769 uio->uio_resid -= len; 1770 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1771 if (len == m->m_len - moff) { 1772 if (m->m_flags & M_EOR) 1773 flags |= MSG_EOR; 1774 if (flags & MSG_PEEK) { 1775 m = m->m_next; 1776 moff = 0; 1777 } else { 1778 nextrecord = m->m_nextpkt; 1779 sbfree(&so->so_rcv, m); 1780 if (mp != NULL) { 1781 m->m_nextpkt = NULL; 1782 *mp = m; 1783 mp = &m->m_next; 1784 so->so_rcv.sb_mb = m = m->m_next; 1785 *mp = NULL; 1786 } else { 1787 so->so_rcv.sb_mb = m_free(m); 1788 m = so->so_rcv.sb_mb; 1789 } 1790 sockbuf_pushsync(&so->so_rcv, nextrecord); 1791 SBLASTRECORDCHK(&so->so_rcv); 1792 SBLASTMBUFCHK(&so->so_rcv); 1793 } 1794 } else { 1795 if (flags & MSG_PEEK) 1796 moff += len; 1797 else { 1798 if (mp != NULL) { 1799 if (flags & MSG_DONTWAIT) { 1800 *mp = m_copym(m, 0, len, 1801 M_NOWAIT); 1802 if (*mp == NULL) { 1803 /* 1804 * m_copym() couldn't 1805 * allocate an mbuf. 1806 * Adjust uio_resid back 1807 * (it was adjusted 1808 * down by len bytes, 1809 * which we didn't end 1810 * up "copying" over). 1811 */ 1812 uio->uio_resid += len; 1813 break; 1814 } 1815 } else { 1816 SOCKBUF_UNLOCK(&so->so_rcv); 1817 *mp = m_copym(m, 0, len, 1818 M_WAITOK); 1819 SOCKBUF_LOCK(&so->so_rcv); 1820 } 1821 } 1822 sbcut_locked(&so->so_rcv, len); 1823 } 1824 } 1825 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1826 if (so->so_oobmark) { 1827 if ((flags & MSG_PEEK) == 0) { 1828 so->so_oobmark -= len; 1829 if (so->so_oobmark == 0) { 1830 so->so_rcv.sb_state |= SBS_RCVATMARK; 1831 break; 1832 } 1833 } else { 1834 offset += len; 1835 if (offset == so->so_oobmark) 1836 break; 1837 } 1838 } 1839 if (flags & MSG_EOR) 1840 break; 1841 /* 1842 * If the MSG_WAITALL flag is set (for non-atomic socket), we 1843 * must not quit until "uio->uio_resid == 0" or an error 1844 * termination. If a signal/timeout occurs, return with a 1845 * short count but without error. Keep sockbuf locked 1846 * against other readers. 1847 */ 1848 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 1849 !sosendallatonce(so) && nextrecord == NULL) { 1850 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1851 if (so->so_error || 1852 so->so_rcv.sb_state & SBS_CANTRCVMORE) 1853 break; 1854 /* 1855 * Notify the protocol that some data has been 1856 * drained before blocking. 1857 */ 1858 if (pr->pr_flags & PR_WANTRCVD) { 1859 SOCKBUF_UNLOCK(&so->so_rcv); 1860 VNET_SO_ASSERT(so); 1861 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 1862 SOCKBUF_LOCK(&so->so_rcv); 1863 } 1864 SBLASTRECORDCHK(&so->so_rcv); 1865 SBLASTMBUFCHK(&so->so_rcv); 1866 /* 1867 * We could receive some data while was notifying 1868 * the protocol. Skip blocking in this case. 1869 */ 1870 if (so->so_rcv.sb_mb == NULL) { 1871 error = sbwait(&so->so_rcv); 1872 if (error) { 1873 SOCKBUF_UNLOCK(&so->so_rcv); 1874 goto release; 1875 } 1876 } 1877 m = so->so_rcv.sb_mb; 1878 if (m != NULL) 1879 nextrecord = m->m_nextpkt; 1880 } 1881 } 1882 1883 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1884 if (m != NULL && pr->pr_flags & PR_ATOMIC) { 1885 flags |= MSG_TRUNC; 1886 if ((flags & MSG_PEEK) == 0) 1887 (void) sbdroprecord_locked(&so->so_rcv); 1888 } 1889 if ((flags & MSG_PEEK) == 0) { 1890 if (m == NULL) { 1891 /* 1892 * First part is an inline SB_EMPTY_FIXUP(). Second 1893 * part makes sure sb_lastrecord is up-to-date if 1894 * there is still data in the socket buffer. 1895 */ 1896 so->so_rcv.sb_mb = nextrecord; 1897 if (so->so_rcv.sb_mb == NULL) { 1898 so->so_rcv.sb_mbtail = NULL; 1899 so->so_rcv.sb_lastrecord = NULL; 1900 } else if (nextrecord->m_nextpkt == NULL) 1901 so->so_rcv.sb_lastrecord = nextrecord; 1902 } 1903 SBLASTRECORDCHK(&so->so_rcv); 1904 SBLASTMBUFCHK(&so->so_rcv); 1905 /* 1906 * If soreceive() is being done from the socket callback, 1907 * then don't need to generate ACK to peer to update window, 1908 * since ACK will be generated on return to TCP. 1909 */ 1910 if (!(flags & MSG_SOCALLBCK) && 1911 (pr->pr_flags & PR_WANTRCVD)) { 1912 SOCKBUF_UNLOCK(&so->so_rcv); 1913 VNET_SO_ASSERT(so); 1914 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 1915 SOCKBUF_LOCK(&so->so_rcv); 1916 } 1917 } 1918 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1919 if (orig_resid == uio->uio_resid && orig_resid && 1920 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { 1921 SOCKBUF_UNLOCK(&so->so_rcv); 1922 goto restart; 1923 } 1924 SOCKBUF_UNLOCK(&so->so_rcv); 1925 1926 if (flagsp != NULL) 1927 *flagsp |= flags; 1928 release: 1929 sbunlock(&so->so_rcv); 1930 return (error); 1931 } 1932 1933 /* 1934 * Optimized version of soreceive() for stream (TCP) sockets. 1935 * XXXAO: (MSG_WAITALL | MSG_PEEK) isn't properly handled. 1936 */ 1937 int 1938 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio, 1939 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1940 { 1941 int len = 0, error = 0, flags, oresid; 1942 struct sockbuf *sb; 1943 struct mbuf *m, *n = NULL; 1944 1945 /* We only do stream sockets. */ 1946 if (so->so_type != SOCK_STREAM) 1947 return (EINVAL); 1948 if (psa != NULL) 1949 *psa = NULL; 1950 if (controlp != NULL) 1951 return (EINVAL); 1952 if (flagsp != NULL) 1953 flags = *flagsp &~ MSG_EOR; 1954 else 1955 flags = 0; 1956 if (flags & MSG_OOB) 1957 return (soreceive_rcvoob(so, uio, flags)); 1958 if (mp0 != NULL) 1959 *mp0 = NULL; 1960 1961 sb = &so->so_rcv; 1962 1963 /* Prevent other readers from entering the socket. */ 1964 error = sblock(sb, SBLOCKWAIT(flags)); 1965 if (error) 1966 goto out; 1967 SOCKBUF_LOCK(sb); 1968 1969 /* Easy one, no space to copyout anything. */ 1970 if (uio->uio_resid == 0) { 1971 error = EINVAL; 1972 goto out; 1973 } 1974 oresid = uio->uio_resid; 1975 1976 /* We will never ever get anything unless we are or were connected. */ 1977 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 1978 error = ENOTCONN; 1979 goto out; 1980 } 1981 1982 restart: 1983 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1984 1985 /* Abort if socket has reported problems. */ 1986 if (so->so_error) { 1987 if (sbavail(sb) > 0) 1988 goto deliver; 1989 if (oresid > uio->uio_resid) 1990 goto out; 1991 error = so->so_error; 1992 if (!(flags & MSG_PEEK)) 1993 so->so_error = 0; 1994 goto out; 1995 } 1996 1997 /* Door is closed. Deliver what is left, if any. */ 1998 if (sb->sb_state & SBS_CANTRCVMORE) { 1999 if (sbavail(sb) > 0) 2000 goto deliver; 2001 else 2002 goto out; 2003 } 2004 2005 /* Socket buffer is empty and we shall not block. */ 2006 if (sbavail(sb) == 0 && 2007 ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) { 2008 error = EAGAIN; 2009 goto out; 2010 } 2011 2012 /* Socket buffer got some data that we shall deliver now. */ 2013 if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) && 2014 ((so->so_state & SS_NBIO) || 2015 (flags & (MSG_DONTWAIT|MSG_NBIO)) || 2016 sbavail(sb) >= sb->sb_lowat || 2017 sbavail(sb) >= uio->uio_resid || 2018 sbavail(sb) >= sb->sb_hiwat) ) { 2019 goto deliver; 2020 } 2021 2022 /* On MSG_WAITALL we must wait until all data or error arrives. */ 2023 if ((flags & MSG_WAITALL) && 2024 (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat)) 2025 goto deliver; 2026 2027 /* 2028 * Wait and block until (more) data comes in. 2029 * NB: Drops the sockbuf lock during wait. 2030 */ 2031 error = sbwait(sb); 2032 if (error) 2033 goto out; 2034 goto restart; 2035 2036 deliver: 2037 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2038 KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__)); 2039 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__)); 2040 2041 /* Statistics. */ 2042 if (uio->uio_td) 2043 uio->uio_td->td_ru.ru_msgrcv++; 2044 2045 /* Fill uio until full or current end of socket buffer is reached. */ 2046 len = min(uio->uio_resid, sbavail(sb)); 2047 if (mp0 != NULL) { 2048 /* Dequeue as many mbufs as possible. */ 2049 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) { 2050 if (*mp0 == NULL) 2051 *mp0 = sb->sb_mb; 2052 else 2053 m_cat(*mp0, sb->sb_mb); 2054 for (m = sb->sb_mb; 2055 m != NULL && m->m_len <= len; 2056 m = m->m_next) { 2057 KASSERT(!(m->m_flags & M_NOTAVAIL), 2058 ("%s: m %p not available", __func__, m)); 2059 len -= m->m_len; 2060 uio->uio_resid -= m->m_len; 2061 sbfree(sb, m); 2062 n = m; 2063 } 2064 n->m_next = NULL; 2065 sb->sb_mb = m; 2066 sb->sb_lastrecord = sb->sb_mb; 2067 if (sb->sb_mb == NULL) 2068 SB_EMPTY_FIXUP(sb); 2069 } 2070 /* Copy the remainder. */ 2071 if (len > 0) { 2072 KASSERT(sb->sb_mb != NULL, 2073 ("%s: len > 0 && sb->sb_mb empty", __func__)); 2074 2075 m = m_copym(sb->sb_mb, 0, len, M_NOWAIT); 2076 if (m == NULL) 2077 len = 0; /* Don't flush data from sockbuf. */ 2078 else 2079 uio->uio_resid -= len; 2080 if (*mp0 != NULL) 2081 m_cat(*mp0, m); 2082 else 2083 *mp0 = m; 2084 if (*mp0 == NULL) { 2085 error = ENOBUFS; 2086 goto out; 2087 } 2088 } 2089 } else { 2090 /* NB: Must unlock socket buffer as uiomove may sleep. */ 2091 SOCKBUF_UNLOCK(sb); 2092 error = m_mbuftouio(uio, sb->sb_mb, len); 2093 SOCKBUF_LOCK(sb); 2094 if (error) 2095 goto out; 2096 } 2097 SBLASTRECORDCHK(sb); 2098 SBLASTMBUFCHK(sb); 2099 2100 /* 2101 * Remove the delivered data from the socket buffer unless we 2102 * were only peeking. 2103 */ 2104 if (!(flags & MSG_PEEK)) { 2105 if (len > 0) 2106 sbdrop_locked(sb, len); 2107 2108 /* Notify protocol that we drained some data. */ 2109 if ((so->so_proto->pr_flags & PR_WANTRCVD) && 2110 (((flags & MSG_WAITALL) && uio->uio_resid > 0) || 2111 !(flags & MSG_SOCALLBCK))) { 2112 SOCKBUF_UNLOCK(sb); 2113 VNET_SO_ASSERT(so); 2114 (*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags); 2115 SOCKBUF_LOCK(sb); 2116 } 2117 } 2118 2119 /* 2120 * For MSG_WAITALL we may have to loop again and wait for 2121 * more data to come in. 2122 */ 2123 if ((flags & MSG_WAITALL) && uio->uio_resid > 0) 2124 goto restart; 2125 out: 2126 SOCKBUF_LOCK_ASSERT(sb); 2127 SBLASTRECORDCHK(sb); 2128 SBLASTMBUFCHK(sb); 2129 SOCKBUF_UNLOCK(sb); 2130 sbunlock(sb); 2131 return (error); 2132 } 2133 2134 /* 2135 * Optimized version of soreceive() for simple datagram cases from userspace. 2136 * Unlike in the stream case, we're able to drop a datagram if copyout() 2137 * fails, and because we handle datagrams atomically, we don't need to use a 2138 * sleep lock to prevent I/O interlacing. 2139 */ 2140 int 2141 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio, 2142 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2143 { 2144 struct mbuf *m, *m2; 2145 int flags, error; 2146 ssize_t len; 2147 struct protosw *pr = so->so_proto; 2148 struct mbuf *nextrecord; 2149 2150 if (psa != NULL) 2151 *psa = NULL; 2152 if (controlp != NULL) 2153 *controlp = NULL; 2154 if (flagsp != NULL) 2155 flags = *flagsp &~ MSG_EOR; 2156 else 2157 flags = 0; 2158 2159 /* 2160 * For any complicated cases, fall back to the full 2161 * soreceive_generic(). 2162 */ 2163 if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB)) 2164 return (soreceive_generic(so, psa, uio, mp0, controlp, 2165 flagsp)); 2166 2167 /* 2168 * Enforce restrictions on use. 2169 */ 2170 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0, 2171 ("soreceive_dgram: wantrcvd")); 2172 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic")); 2173 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0, 2174 ("soreceive_dgram: SBS_RCVATMARK")); 2175 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0, 2176 ("soreceive_dgram: P_CONNREQUIRED")); 2177 2178 /* 2179 * Loop blocking while waiting for a datagram. 2180 */ 2181 SOCKBUF_LOCK(&so->so_rcv); 2182 while ((m = so->so_rcv.sb_mb) == NULL) { 2183 KASSERT(sbavail(&so->so_rcv) == 0, 2184 ("soreceive_dgram: sb_mb NULL but sbavail %u", 2185 sbavail(&so->so_rcv))); 2186 if (so->so_error) { 2187 error = so->so_error; 2188 so->so_error = 0; 2189 SOCKBUF_UNLOCK(&so->so_rcv); 2190 return (error); 2191 } 2192 if (so->so_rcv.sb_state & SBS_CANTRCVMORE || 2193 uio->uio_resid == 0) { 2194 SOCKBUF_UNLOCK(&so->so_rcv); 2195 return (0); 2196 } 2197 if ((so->so_state & SS_NBIO) || 2198 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2199 SOCKBUF_UNLOCK(&so->so_rcv); 2200 return (EWOULDBLOCK); 2201 } 2202 SBLASTRECORDCHK(&so->so_rcv); 2203 SBLASTMBUFCHK(&so->so_rcv); 2204 error = sbwait(&so->so_rcv); 2205 if (error) { 2206 SOCKBUF_UNLOCK(&so->so_rcv); 2207 return (error); 2208 } 2209 } 2210 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2211 2212 if (uio->uio_td) 2213 uio->uio_td->td_ru.ru_msgrcv++; 2214 SBLASTRECORDCHK(&so->so_rcv); 2215 SBLASTMBUFCHK(&so->so_rcv); 2216 nextrecord = m->m_nextpkt; 2217 if (nextrecord == NULL) { 2218 KASSERT(so->so_rcv.sb_lastrecord == m, 2219 ("soreceive_dgram: lastrecord != m")); 2220 } 2221 2222 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord, 2223 ("soreceive_dgram: m_nextpkt != nextrecord")); 2224 2225 /* 2226 * Pull 'm' and its chain off the front of the packet queue. 2227 */ 2228 so->so_rcv.sb_mb = NULL; 2229 sockbuf_pushsync(&so->so_rcv, nextrecord); 2230 2231 /* 2232 * Walk 'm's chain and free that many bytes from the socket buffer. 2233 */ 2234 for (m2 = m; m2 != NULL; m2 = m2->m_next) 2235 sbfree(&so->so_rcv, m2); 2236 2237 /* 2238 * Do a few last checks before we let go of the lock. 2239 */ 2240 SBLASTRECORDCHK(&so->so_rcv); 2241 SBLASTMBUFCHK(&so->so_rcv); 2242 SOCKBUF_UNLOCK(&so->so_rcv); 2243 2244 if (pr->pr_flags & PR_ADDR) { 2245 KASSERT(m->m_type == MT_SONAME, 2246 ("m->m_type == %d", m->m_type)); 2247 if (psa != NULL) 2248 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2249 M_NOWAIT); 2250 m = m_free(m); 2251 } 2252 if (m == NULL) { 2253 /* XXXRW: Can this happen? */ 2254 return (0); 2255 } 2256 2257 /* 2258 * Packet to copyout() is now in 'm' and it is disconnected from the 2259 * queue. 2260 * 2261 * Process one or more MT_CONTROL mbufs present before any data mbufs 2262 * in the first mbuf chain on the socket buffer. We call into the 2263 * protocol to perform externalization (or freeing if controlp == 2264 * NULL). In some cases there can be only MT_CONTROL mbufs without 2265 * MT_DATA mbufs. 2266 */ 2267 if (m->m_type == MT_CONTROL) { 2268 struct mbuf *cm = NULL, *cmn; 2269 struct mbuf **cme = &cm; 2270 2271 do { 2272 m2 = m->m_next; 2273 m->m_next = NULL; 2274 *cme = m; 2275 cme = &(*cme)->m_next; 2276 m = m2; 2277 } while (m != NULL && m->m_type == MT_CONTROL); 2278 while (cm != NULL) { 2279 cmn = cm->m_next; 2280 cm->m_next = NULL; 2281 if (pr->pr_domain->dom_externalize != NULL) { 2282 error = (*pr->pr_domain->dom_externalize) 2283 (cm, controlp, flags); 2284 } else if (controlp != NULL) 2285 *controlp = cm; 2286 else 2287 m_freem(cm); 2288 if (controlp != NULL) { 2289 while (*controlp != NULL) 2290 controlp = &(*controlp)->m_next; 2291 } 2292 cm = cmn; 2293 } 2294 } 2295 KASSERT(m == NULL || m->m_type == MT_DATA, 2296 ("soreceive_dgram: !data")); 2297 while (m != NULL && uio->uio_resid > 0) { 2298 len = uio->uio_resid; 2299 if (len > m->m_len) 2300 len = m->m_len; 2301 error = uiomove(mtod(m, char *), (int)len, uio); 2302 if (error) { 2303 m_freem(m); 2304 return (error); 2305 } 2306 if (len == m->m_len) 2307 m = m_free(m); 2308 else { 2309 m->m_data += len; 2310 m->m_len -= len; 2311 } 2312 } 2313 if (m != NULL) { 2314 flags |= MSG_TRUNC; 2315 m_freem(m); 2316 } 2317 if (flagsp != NULL) 2318 *flagsp |= flags; 2319 return (0); 2320 } 2321 2322 int 2323 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, 2324 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2325 { 2326 int error; 2327 2328 CURVNET_SET(so->so_vnet); 2329 error = (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, mp0, 2330 controlp, flagsp)); 2331 CURVNET_RESTORE(); 2332 return (error); 2333 } 2334 2335 int 2336 soshutdown(struct socket *so, int how) 2337 { 2338 struct protosw *pr = so->so_proto; 2339 int error; 2340 2341 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 2342 return (EINVAL); 2343 if ((so->so_state & 2344 (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) 2345 return (ENOTCONN); 2346 2347 CURVNET_SET(so->so_vnet); 2348 if (pr->pr_usrreqs->pru_flush != NULL) 2349 (*pr->pr_usrreqs->pru_flush)(so, how); 2350 if (how != SHUT_WR) 2351 sorflush(so); 2352 if (how != SHUT_RD) { 2353 error = (*pr->pr_usrreqs->pru_shutdown)(so); 2354 wakeup(&so->so_timeo); 2355 CURVNET_RESTORE(); 2356 return (error); 2357 } 2358 wakeup(&so->so_timeo); 2359 CURVNET_RESTORE(); 2360 return (0); 2361 } 2362 2363 void 2364 sorflush(struct socket *so) 2365 { 2366 struct sockbuf *sb = &so->so_rcv; 2367 struct protosw *pr = so->so_proto; 2368 struct socket aso; 2369 2370 VNET_SO_ASSERT(so); 2371 2372 /* 2373 * In order to avoid calling dom_dispose with the socket buffer mutex 2374 * held, and in order to generally avoid holding the lock for a long 2375 * time, we make a copy of the socket buffer and clear the original 2376 * (except locks, state). The new socket buffer copy won't have 2377 * initialized locks so we can only call routines that won't use or 2378 * assert those locks. 2379 * 2380 * Dislodge threads currently blocked in receive and wait to acquire 2381 * a lock against other simultaneous readers before clearing the 2382 * socket buffer. Don't let our acquire be interrupted by a signal 2383 * despite any existing socket disposition on interruptable waiting. 2384 */ 2385 socantrcvmore(so); 2386 (void) sblock(sb, SBL_WAIT | SBL_NOINTR); 2387 2388 /* 2389 * Invalidate/clear most of the sockbuf structure, but leave selinfo 2390 * and mutex data unchanged. 2391 */ 2392 SOCKBUF_LOCK(sb); 2393 bzero(&aso, sizeof(aso)); 2394 aso.so_pcb = so->so_pcb; 2395 bcopy(&sb->sb_startzero, &aso.so_rcv.sb_startzero, 2396 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 2397 bzero(&sb->sb_startzero, 2398 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 2399 SOCKBUF_UNLOCK(sb); 2400 sbunlock(sb); 2401 2402 /* 2403 * Dispose of special rights and flush the copied socket. Don't call 2404 * any unsafe routines (that rely on locks being initialized) on aso. 2405 */ 2406 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 2407 (*pr->pr_domain->dom_dispose)(&aso); 2408 sbrelease_internal(&aso.so_rcv, so); 2409 } 2410 2411 /* 2412 * Wrapper for Socket established helper hook. 2413 * Parameters: socket, context of the hook point, hook id. 2414 */ 2415 static int inline 2416 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id) 2417 { 2418 struct socket_hhook_data hhook_data = { 2419 .so = so, 2420 .hctx = hctx, 2421 .m = NULL, 2422 .status = 0 2423 }; 2424 2425 CURVNET_SET(so->so_vnet); 2426 HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd); 2427 CURVNET_RESTORE(); 2428 2429 /* Ugly but needed, since hhooks return void for now */ 2430 return (hhook_data.status); 2431 } 2432 2433 /* 2434 * Perhaps this routine, and sooptcopyout(), below, ought to come in an 2435 * additional variant to handle the case where the option value needs to be 2436 * some kind of integer, but not a specific size. In addition to their use 2437 * here, these functions are also called by the protocol-level pr_ctloutput() 2438 * routines. 2439 */ 2440 int 2441 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen) 2442 { 2443 size_t valsize; 2444 2445 /* 2446 * If the user gives us more than we wanted, we ignore it, but if we 2447 * don't get the minimum length the caller wants, we return EINVAL. 2448 * On success, sopt->sopt_valsize is set to however much we actually 2449 * retrieved. 2450 */ 2451 if ((valsize = sopt->sopt_valsize) < minlen) 2452 return EINVAL; 2453 if (valsize > len) 2454 sopt->sopt_valsize = valsize = len; 2455 2456 if (sopt->sopt_td != NULL) 2457 return (copyin(sopt->sopt_val, buf, valsize)); 2458 2459 bcopy(sopt->sopt_val, buf, valsize); 2460 return (0); 2461 } 2462 2463 /* 2464 * Kernel version of setsockopt(2). 2465 * 2466 * XXX: optlen is size_t, not socklen_t 2467 */ 2468 int 2469 so_setsockopt(struct socket *so, int level, int optname, void *optval, 2470 size_t optlen) 2471 { 2472 struct sockopt sopt; 2473 2474 sopt.sopt_level = level; 2475 sopt.sopt_name = optname; 2476 sopt.sopt_dir = SOPT_SET; 2477 sopt.sopt_val = optval; 2478 sopt.sopt_valsize = optlen; 2479 sopt.sopt_td = NULL; 2480 return (sosetopt(so, &sopt)); 2481 } 2482 2483 int 2484 sosetopt(struct socket *so, struct sockopt *sopt) 2485 { 2486 int error, optval; 2487 struct linger l; 2488 struct timeval tv; 2489 sbintime_t val; 2490 uint32_t val32; 2491 #ifdef MAC 2492 struct mac extmac; 2493 #endif 2494 2495 CURVNET_SET(so->so_vnet); 2496 error = 0; 2497 if (sopt->sopt_level != SOL_SOCKET) { 2498 if (so->so_proto->pr_ctloutput != NULL) { 2499 error = (*so->so_proto->pr_ctloutput)(so, sopt); 2500 CURVNET_RESTORE(); 2501 return (error); 2502 } 2503 error = ENOPROTOOPT; 2504 } else { 2505 switch (sopt->sopt_name) { 2506 case SO_ACCEPTFILTER: 2507 error = do_setopt_accept_filter(so, sopt); 2508 if (error) 2509 goto bad; 2510 break; 2511 2512 case SO_LINGER: 2513 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 2514 if (error) 2515 goto bad; 2516 2517 SOCK_LOCK(so); 2518 so->so_linger = l.l_linger; 2519 if (l.l_onoff) 2520 so->so_options |= SO_LINGER; 2521 else 2522 so->so_options &= ~SO_LINGER; 2523 SOCK_UNLOCK(so); 2524 break; 2525 2526 case SO_DEBUG: 2527 case SO_KEEPALIVE: 2528 case SO_DONTROUTE: 2529 case SO_USELOOPBACK: 2530 case SO_BROADCAST: 2531 case SO_REUSEADDR: 2532 case SO_REUSEPORT: 2533 case SO_OOBINLINE: 2534 case SO_TIMESTAMP: 2535 case SO_BINTIME: 2536 case SO_NOSIGPIPE: 2537 case SO_NO_DDP: 2538 case SO_NO_OFFLOAD: 2539 error = sooptcopyin(sopt, &optval, sizeof optval, 2540 sizeof optval); 2541 if (error) 2542 goto bad; 2543 SOCK_LOCK(so); 2544 if (optval) 2545 so->so_options |= sopt->sopt_name; 2546 else 2547 so->so_options &= ~sopt->sopt_name; 2548 SOCK_UNLOCK(so); 2549 break; 2550 2551 case SO_SETFIB: 2552 error = sooptcopyin(sopt, &optval, sizeof optval, 2553 sizeof optval); 2554 if (error) 2555 goto bad; 2556 2557 if (optval < 0 || optval >= rt_numfibs) { 2558 error = EINVAL; 2559 goto bad; 2560 } 2561 if (((so->so_proto->pr_domain->dom_family == PF_INET) || 2562 (so->so_proto->pr_domain->dom_family == PF_INET6) || 2563 (so->so_proto->pr_domain->dom_family == PF_ROUTE))) 2564 so->so_fibnum = optval; 2565 else 2566 so->so_fibnum = 0; 2567 break; 2568 2569 case SO_USER_COOKIE: 2570 error = sooptcopyin(sopt, &val32, sizeof val32, 2571 sizeof val32); 2572 if (error) 2573 goto bad; 2574 so->so_user_cookie = val32; 2575 break; 2576 2577 case SO_SNDBUF: 2578 case SO_RCVBUF: 2579 case SO_SNDLOWAT: 2580 case SO_RCVLOWAT: 2581 error = sooptcopyin(sopt, &optval, sizeof optval, 2582 sizeof optval); 2583 if (error) 2584 goto bad; 2585 2586 /* 2587 * Values < 1 make no sense for any of these options, 2588 * so disallow them. 2589 */ 2590 if (optval < 1) { 2591 error = EINVAL; 2592 goto bad; 2593 } 2594 2595 switch (sopt->sopt_name) { 2596 case SO_SNDBUF: 2597 case SO_RCVBUF: 2598 if (sbreserve(sopt->sopt_name == SO_SNDBUF ? 2599 &so->so_snd : &so->so_rcv, (u_long)optval, 2600 so, curthread) == 0) { 2601 error = ENOBUFS; 2602 goto bad; 2603 } 2604 (sopt->sopt_name == SO_SNDBUF ? &so->so_snd : 2605 &so->so_rcv)->sb_flags &= ~SB_AUTOSIZE; 2606 break; 2607 2608 /* 2609 * Make sure the low-water is never greater than the 2610 * high-water. 2611 */ 2612 case SO_SNDLOWAT: 2613 SOCKBUF_LOCK(&so->so_snd); 2614 so->so_snd.sb_lowat = 2615 (optval > so->so_snd.sb_hiwat) ? 2616 so->so_snd.sb_hiwat : optval; 2617 SOCKBUF_UNLOCK(&so->so_snd); 2618 break; 2619 case SO_RCVLOWAT: 2620 SOCKBUF_LOCK(&so->so_rcv); 2621 so->so_rcv.sb_lowat = 2622 (optval > so->so_rcv.sb_hiwat) ? 2623 so->so_rcv.sb_hiwat : optval; 2624 SOCKBUF_UNLOCK(&so->so_rcv); 2625 break; 2626 } 2627 break; 2628 2629 case SO_SNDTIMEO: 2630 case SO_RCVTIMEO: 2631 #ifdef COMPAT_FREEBSD32 2632 if (SV_CURPROC_FLAG(SV_ILP32)) { 2633 struct timeval32 tv32; 2634 2635 error = sooptcopyin(sopt, &tv32, sizeof tv32, 2636 sizeof tv32); 2637 CP(tv32, tv, tv_sec); 2638 CP(tv32, tv, tv_usec); 2639 } else 2640 #endif 2641 error = sooptcopyin(sopt, &tv, sizeof tv, 2642 sizeof tv); 2643 if (error) 2644 goto bad; 2645 if (tv.tv_sec < 0 || tv.tv_usec < 0 || 2646 tv.tv_usec >= 1000000) { 2647 error = EDOM; 2648 goto bad; 2649 } 2650 if (tv.tv_sec > INT32_MAX) 2651 val = SBT_MAX; 2652 else 2653 val = tvtosbt(tv); 2654 switch (sopt->sopt_name) { 2655 case SO_SNDTIMEO: 2656 so->so_snd.sb_timeo = val; 2657 break; 2658 case SO_RCVTIMEO: 2659 so->so_rcv.sb_timeo = val; 2660 break; 2661 } 2662 break; 2663 2664 case SO_LABEL: 2665 #ifdef MAC 2666 error = sooptcopyin(sopt, &extmac, sizeof extmac, 2667 sizeof extmac); 2668 if (error) 2669 goto bad; 2670 error = mac_setsockopt_label(sopt->sopt_td->td_ucred, 2671 so, &extmac); 2672 #else 2673 error = EOPNOTSUPP; 2674 #endif 2675 break; 2676 2677 default: 2678 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 2679 error = hhook_run_socket(so, sopt, 2680 HHOOK_SOCKET_OPT); 2681 else 2682 error = ENOPROTOOPT; 2683 break; 2684 } 2685 if (error == 0 && so->so_proto->pr_ctloutput != NULL) 2686 (void)(*so->so_proto->pr_ctloutput)(so, sopt); 2687 } 2688 bad: 2689 CURVNET_RESTORE(); 2690 return (error); 2691 } 2692 2693 /* 2694 * Helper routine for getsockopt. 2695 */ 2696 int 2697 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 2698 { 2699 int error; 2700 size_t valsize; 2701 2702 error = 0; 2703 2704 /* 2705 * Documented get behavior is that we always return a value, possibly 2706 * truncated to fit in the user's buffer. Traditional behavior is 2707 * that we always tell the user precisely how much we copied, rather 2708 * than something useful like the total amount we had available for 2709 * her. Note that this interface is not idempotent; the entire 2710 * answer must generated ahead of time. 2711 */ 2712 valsize = min(len, sopt->sopt_valsize); 2713 sopt->sopt_valsize = valsize; 2714 if (sopt->sopt_val != NULL) { 2715 if (sopt->sopt_td != NULL) 2716 error = copyout(buf, sopt->sopt_val, valsize); 2717 else 2718 bcopy(buf, sopt->sopt_val, valsize); 2719 } 2720 return (error); 2721 } 2722 2723 int 2724 sogetopt(struct socket *so, struct sockopt *sopt) 2725 { 2726 int error, optval; 2727 struct linger l; 2728 struct timeval tv; 2729 #ifdef MAC 2730 struct mac extmac; 2731 #endif 2732 2733 CURVNET_SET(so->so_vnet); 2734 error = 0; 2735 if (sopt->sopt_level != SOL_SOCKET) { 2736 if (so->so_proto->pr_ctloutput != NULL) 2737 error = (*so->so_proto->pr_ctloutput)(so, sopt); 2738 else 2739 error = ENOPROTOOPT; 2740 CURVNET_RESTORE(); 2741 return (error); 2742 } else { 2743 switch (sopt->sopt_name) { 2744 case SO_ACCEPTFILTER: 2745 error = do_getopt_accept_filter(so, sopt); 2746 break; 2747 2748 case SO_LINGER: 2749 SOCK_LOCK(so); 2750 l.l_onoff = so->so_options & SO_LINGER; 2751 l.l_linger = so->so_linger; 2752 SOCK_UNLOCK(so); 2753 error = sooptcopyout(sopt, &l, sizeof l); 2754 break; 2755 2756 case SO_USELOOPBACK: 2757 case SO_DONTROUTE: 2758 case SO_DEBUG: 2759 case SO_KEEPALIVE: 2760 case SO_REUSEADDR: 2761 case SO_REUSEPORT: 2762 case SO_BROADCAST: 2763 case SO_OOBINLINE: 2764 case SO_ACCEPTCONN: 2765 case SO_TIMESTAMP: 2766 case SO_BINTIME: 2767 case SO_NOSIGPIPE: 2768 optval = so->so_options & sopt->sopt_name; 2769 integer: 2770 error = sooptcopyout(sopt, &optval, sizeof optval); 2771 break; 2772 2773 case SO_TYPE: 2774 optval = so->so_type; 2775 goto integer; 2776 2777 case SO_PROTOCOL: 2778 optval = so->so_proto->pr_protocol; 2779 goto integer; 2780 2781 case SO_ERROR: 2782 SOCK_LOCK(so); 2783 optval = so->so_error; 2784 so->so_error = 0; 2785 SOCK_UNLOCK(so); 2786 goto integer; 2787 2788 case SO_SNDBUF: 2789 optval = so->so_snd.sb_hiwat; 2790 goto integer; 2791 2792 case SO_RCVBUF: 2793 optval = so->so_rcv.sb_hiwat; 2794 goto integer; 2795 2796 case SO_SNDLOWAT: 2797 optval = so->so_snd.sb_lowat; 2798 goto integer; 2799 2800 case SO_RCVLOWAT: 2801 optval = so->so_rcv.sb_lowat; 2802 goto integer; 2803 2804 case SO_SNDTIMEO: 2805 case SO_RCVTIMEO: 2806 tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ? 2807 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 2808 #ifdef COMPAT_FREEBSD32 2809 if (SV_CURPROC_FLAG(SV_ILP32)) { 2810 struct timeval32 tv32; 2811 2812 CP(tv, tv32, tv_sec); 2813 CP(tv, tv32, tv_usec); 2814 error = sooptcopyout(sopt, &tv32, sizeof tv32); 2815 } else 2816 #endif 2817 error = sooptcopyout(sopt, &tv, sizeof tv); 2818 break; 2819 2820 case SO_LABEL: 2821 #ifdef MAC 2822 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 2823 sizeof(extmac)); 2824 if (error) 2825 goto bad; 2826 error = mac_getsockopt_label(sopt->sopt_td->td_ucred, 2827 so, &extmac); 2828 if (error) 2829 goto bad; 2830 error = sooptcopyout(sopt, &extmac, sizeof extmac); 2831 #else 2832 error = EOPNOTSUPP; 2833 #endif 2834 break; 2835 2836 case SO_PEERLABEL: 2837 #ifdef MAC 2838 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 2839 sizeof(extmac)); 2840 if (error) 2841 goto bad; 2842 error = mac_getsockopt_peerlabel( 2843 sopt->sopt_td->td_ucred, so, &extmac); 2844 if (error) 2845 goto bad; 2846 error = sooptcopyout(sopt, &extmac, sizeof extmac); 2847 #else 2848 error = EOPNOTSUPP; 2849 #endif 2850 break; 2851 2852 case SO_LISTENQLIMIT: 2853 optval = so->so_qlimit; 2854 goto integer; 2855 2856 case SO_LISTENQLEN: 2857 optval = so->so_qlen; 2858 goto integer; 2859 2860 case SO_LISTENINCQLEN: 2861 optval = so->so_incqlen; 2862 goto integer; 2863 2864 default: 2865 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 2866 error = hhook_run_socket(so, sopt, 2867 HHOOK_SOCKET_OPT); 2868 else 2869 error = ENOPROTOOPT; 2870 break; 2871 } 2872 } 2873 #ifdef MAC 2874 bad: 2875 #endif 2876 CURVNET_RESTORE(); 2877 return (error); 2878 } 2879 2880 int 2881 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 2882 { 2883 struct mbuf *m, *m_prev; 2884 int sopt_size = sopt->sopt_valsize; 2885 2886 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 2887 if (m == NULL) 2888 return ENOBUFS; 2889 if (sopt_size > MLEN) { 2890 MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT); 2891 if ((m->m_flags & M_EXT) == 0) { 2892 m_free(m); 2893 return ENOBUFS; 2894 } 2895 m->m_len = min(MCLBYTES, sopt_size); 2896 } else { 2897 m->m_len = min(MLEN, sopt_size); 2898 } 2899 sopt_size -= m->m_len; 2900 *mp = m; 2901 m_prev = m; 2902 2903 while (sopt_size) { 2904 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 2905 if (m == NULL) { 2906 m_freem(*mp); 2907 return ENOBUFS; 2908 } 2909 if (sopt_size > MLEN) { 2910 MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK : 2911 M_NOWAIT); 2912 if ((m->m_flags & M_EXT) == 0) { 2913 m_freem(m); 2914 m_freem(*mp); 2915 return ENOBUFS; 2916 } 2917 m->m_len = min(MCLBYTES, sopt_size); 2918 } else { 2919 m->m_len = min(MLEN, sopt_size); 2920 } 2921 sopt_size -= m->m_len; 2922 m_prev->m_next = m; 2923 m_prev = m; 2924 } 2925 return (0); 2926 } 2927 2928 int 2929 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 2930 { 2931 struct mbuf *m0 = m; 2932 2933 if (sopt->sopt_val == NULL) 2934 return (0); 2935 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 2936 if (sopt->sopt_td != NULL) { 2937 int error; 2938 2939 error = copyin(sopt->sopt_val, mtod(m, char *), 2940 m->m_len); 2941 if (error != 0) { 2942 m_freem(m0); 2943 return(error); 2944 } 2945 } else 2946 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 2947 sopt->sopt_valsize -= m->m_len; 2948 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 2949 m = m->m_next; 2950 } 2951 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 2952 panic("ip6_sooptmcopyin"); 2953 return (0); 2954 } 2955 2956 int 2957 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 2958 { 2959 struct mbuf *m0 = m; 2960 size_t valsize = 0; 2961 2962 if (sopt->sopt_val == NULL) 2963 return (0); 2964 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 2965 if (sopt->sopt_td != NULL) { 2966 int error; 2967 2968 error = copyout(mtod(m, char *), sopt->sopt_val, 2969 m->m_len); 2970 if (error != 0) { 2971 m_freem(m0); 2972 return(error); 2973 } 2974 } else 2975 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 2976 sopt->sopt_valsize -= m->m_len; 2977 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 2978 valsize += m->m_len; 2979 m = m->m_next; 2980 } 2981 if (m != NULL) { 2982 /* enough soopt buffer should be given from user-land */ 2983 m_freem(m0); 2984 return(EINVAL); 2985 } 2986 sopt->sopt_valsize = valsize; 2987 return (0); 2988 } 2989 2990 /* 2991 * sohasoutofband(): protocol notifies socket layer of the arrival of new 2992 * out-of-band data, which will then notify socket consumers. 2993 */ 2994 void 2995 sohasoutofband(struct socket *so) 2996 { 2997 2998 if (so->so_sigio != NULL) 2999 pgsigio(&so->so_sigio, SIGURG, 0); 3000 selwakeuppri(&so->so_rcv.sb_sel, PSOCK); 3001 } 3002 3003 int 3004 sopoll(struct socket *so, int events, struct ucred *active_cred, 3005 struct thread *td) 3006 { 3007 3008 /* 3009 * We do not need to set or assert curvnet as long as everyone uses 3010 * sopoll_generic(). 3011 */ 3012 return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred, 3013 td)); 3014 } 3015 3016 int 3017 sopoll_generic(struct socket *so, int events, struct ucred *active_cred, 3018 struct thread *td) 3019 { 3020 int revents = 0; 3021 3022 SOCKBUF_LOCK(&so->so_snd); 3023 SOCKBUF_LOCK(&so->so_rcv); 3024 if (events & (POLLIN | POLLRDNORM)) 3025 if (soreadabledata(so)) 3026 revents |= events & (POLLIN | POLLRDNORM); 3027 3028 if (events & (POLLOUT | POLLWRNORM)) 3029 if (sowriteable(so)) 3030 revents |= events & (POLLOUT | POLLWRNORM); 3031 3032 if (events & (POLLPRI | POLLRDBAND)) 3033 if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK)) 3034 revents |= events & (POLLPRI | POLLRDBAND); 3035 3036 if ((events & POLLINIGNEOF) == 0) { 3037 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3038 revents |= events & (POLLIN | POLLRDNORM); 3039 if (so->so_snd.sb_state & SBS_CANTSENDMORE) 3040 revents |= POLLHUP; 3041 } 3042 } 3043 3044 if (revents == 0) { 3045 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) { 3046 selrecord(td, &so->so_rcv.sb_sel); 3047 so->so_rcv.sb_flags |= SB_SEL; 3048 } 3049 3050 if (events & (POLLOUT | POLLWRNORM)) { 3051 selrecord(td, &so->so_snd.sb_sel); 3052 so->so_snd.sb_flags |= SB_SEL; 3053 } 3054 } 3055 3056 SOCKBUF_UNLOCK(&so->so_rcv); 3057 SOCKBUF_UNLOCK(&so->so_snd); 3058 return (revents); 3059 } 3060 3061 int 3062 soo_kqfilter(struct file *fp, struct knote *kn) 3063 { 3064 struct socket *so = kn->kn_fp->f_data; 3065 struct sockbuf *sb; 3066 3067 switch (kn->kn_filter) { 3068 case EVFILT_READ: 3069 if (so->so_options & SO_ACCEPTCONN) 3070 kn->kn_fop = &solisten_filtops; 3071 else 3072 kn->kn_fop = &soread_filtops; 3073 sb = &so->so_rcv; 3074 break; 3075 case EVFILT_WRITE: 3076 kn->kn_fop = &sowrite_filtops; 3077 sb = &so->so_snd; 3078 break; 3079 default: 3080 return (EINVAL); 3081 } 3082 3083 SOCKBUF_LOCK(sb); 3084 knlist_add(&sb->sb_sel.si_note, kn, 1); 3085 sb->sb_flags |= SB_KNOTE; 3086 SOCKBUF_UNLOCK(sb); 3087 return (0); 3088 } 3089 3090 /* 3091 * Some routines that return EOPNOTSUPP for entry points that are not 3092 * supported by a protocol. Fill in as needed. 3093 */ 3094 int 3095 pru_accept_notsupp(struct socket *so, struct sockaddr **nam) 3096 { 3097 3098 return EOPNOTSUPP; 3099 } 3100 3101 int 3102 pru_attach_notsupp(struct socket *so, int proto, struct thread *td) 3103 { 3104 3105 return EOPNOTSUPP; 3106 } 3107 3108 int 3109 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 3110 { 3111 3112 return EOPNOTSUPP; 3113 } 3114 3115 int 3116 pru_bindat_notsupp(int fd, struct socket *so, struct sockaddr *nam, 3117 struct thread *td) 3118 { 3119 3120 return EOPNOTSUPP; 3121 } 3122 3123 int 3124 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 3125 { 3126 3127 return EOPNOTSUPP; 3128 } 3129 3130 int 3131 pru_connectat_notsupp(int fd, struct socket *so, struct sockaddr *nam, 3132 struct thread *td) 3133 { 3134 3135 return EOPNOTSUPP; 3136 } 3137 3138 int 3139 pru_connect2_notsupp(struct socket *so1, struct socket *so2) 3140 { 3141 3142 return EOPNOTSUPP; 3143 } 3144 3145 int 3146 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, 3147 struct ifnet *ifp, struct thread *td) 3148 { 3149 3150 return EOPNOTSUPP; 3151 } 3152 3153 int 3154 pru_disconnect_notsupp(struct socket *so) 3155 { 3156 3157 return EOPNOTSUPP; 3158 } 3159 3160 int 3161 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td) 3162 { 3163 3164 return EOPNOTSUPP; 3165 } 3166 3167 int 3168 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam) 3169 { 3170 3171 return EOPNOTSUPP; 3172 } 3173 3174 int 3175 pru_rcvd_notsupp(struct socket *so, int flags) 3176 { 3177 3178 return EOPNOTSUPP; 3179 } 3180 3181 int 3182 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) 3183 { 3184 3185 return EOPNOTSUPP; 3186 } 3187 3188 int 3189 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m, 3190 struct sockaddr *addr, struct mbuf *control, struct thread *td) 3191 { 3192 3193 return EOPNOTSUPP; 3194 } 3195 3196 int 3197 pru_ready_notsupp(struct socket *so, struct mbuf *m, int count) 3198 { 3199 3200 return (EOPNOTSUPP); 3201 } 3202 3203 /* 3204 * This isn't really a ``null'' operation, but it's the default one and 3205 * doesn't do anything destructive. 3206 */ 3207 int 3208 pru_sense_null(struct socket *so, struct stat *sb) 3209 { 3210 3211 sb->st_blksize = so->so_snd.sb_hiwat; 3212 return 0; 3213 } 3214 3215 int 3216 pru_shutdown_notsupp(struct socket *so) 3217 { 3218 3219 return EOPNOTSUPP; 3220 } 3221 3222 int 3223 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam) 3224 { 3225 3226 return EOPNOTSUPP; 3227 } 3228 3229 int 3230 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio, 3231 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 3232 { 3233 3234 return EOPNOTSUPP; 3235 } 3236 3237 int 3238 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr, 3239 struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 3240 { 3241 3242 return EOPNOTSUPP; 3243 } 3244 3245 int 3246 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred, 3247 struct thread *td) 3248 { 3249 3250 return EOPNOTSUPP; 3251 } 3252 3253 static void 3254 filt_sordetach(struct knote *kn) 3255 { 3256 struct socket *so = kn->kn_fp->f_data; 3257 3258 SOCKBUF_LOCK(&so->so_rcv); 3259 knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1); 3260 if (knlist_empty(&so->so_rcv.sb_sel.si_note)) 3261 so->so_rcv.sb_flags &= ~SB_KNOTE; 3262 SOCKBUF_UNLOCK(&so->so_rcv); 3263 } 3264 3265 /*ARGSUSED*/ 3266 static int 3267 filt_soread(struct knote *kn, long hint) 3268 { 3269 struct socket *so; 3270 3271 so = kn->kn_fp->f_data; 3272 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 3273 3274 kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl; 3275 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3276 kn->kn_flags |= EV_EOF; 3277 kn->kn_fflags = so->so_error; 3278 return (1); 3279 } else if (so->so_error) /* temporary udp error */ 3280 return (1); 3281 3282 if (kn->kn_sfflags & NOTE_LOWAT) { 3283 if (kn->kn_data >= kn->kn_sdata) 3284 return 1; 3285 } else { 3286 if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat) 3287 return 1; 3288 } 3289 3290 /* This hook returning non-zero indicates an event, not error */ 3291 return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD)); 3292 } 3293 3294 static void 3295 filt_sowdetach(struct knote *kn) 3296 { 3297 struct socket *so = kn->kn_fp->f_data; 3298 3299 SOCKBUF_LOCK(&so->so_snd); 3300 knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1); 3301 if (knlist_empty(&so->so_snd.sb_sel.si_note)) 3302 so->so_snd.sb_flags &= ~SB_KNOTE; 3303 SOCKBUF_UNLOCK(&so->so_snd); 3304 } 3305 3306 /*ARGSUSED*/ 3307 static int 3308 filt_sowrite(struct knote *kn, long hint) 3309 { 3310 struct socket *so; 3311 3312 so = kn->kn_fp->f_data; 3313 SOCKBUF_LOCK_ASSERT(&so->so_snd); 3314 kn->kn_data = sbspace(&so->so_snd); 3315 3316 hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE); 3317 3318 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 3319 kn->kn_flags |= EV_EOF; 3320 kn->kn_fflags = so->so_error; 3321 return (1); 3322 } else if (so->so_error) /* temporary udp error */ 3323 return (1); 3324 else if (((so->so_state & SS_ISCONNECTED) == 0) && 3325 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 3326 return (0); 3327 else if (kn->kn_sfflags & NOTE_LOWAT) 3328 return (kn->kn_data >= kn->kn_sdata); 3329 else 3330 return (kn->kn_data >= so->so_snd.sb_lowat); 3331 } 3332 3333 /*ARGSUSED*/ 3334 static int 3335 filt_solisten(struct knote *kn, long hint) 3336 { 3337 struct socket *so = kn->kn_fp->f_data; 3338 3339 kn->kn_data = so->so_qlen; 3340 return (!TAILQ_EMPTY(&so->so_comp)); 3341 } 3342 3343 int 3344 socheckuid(struct socket *so, uid_t uid) 3345 { 3346 3347 if (so == NULL) 3348 return (EPERM); 3349 if (so->so_cred->cr_uid != uid) 3350 return (EPERM); 3351 return (0); 3352 } 3353 3354 /* 3355 * These functions are used by protocols to notify the socket layer (and its 3356 * consumers) of state changes in the sockets driven by protocol-side events. 3357 */ 3358 3359 /* 3360 * Procedures to manipulate state flags of socket and do appropriate wakeups. 3361 * 3362 * Normal sequence from the active (originating) side is that 3363 * soisconnecting() is called during processing of connect() call, resulting 3364 * in an eventual call to soisconnected() if/when the connection is 3365 * established. When the connection is torn down soisdisconnecting() is 3366 * called during processing of disconnect() call, and soisdisconnected() is 3367 * called when the connection to the peer is totally severed. The semantics 3368 * of these routines are such that connectionless protocols can call 3369 * soisconnected() and soisdisconnected() only, bypassing the in-progress 3370 * calls when setting up a ``connection'' takes no time. 3371 * 3372 * From the passive side, a socket is created with two queues of sockets: 3373 * so_incomp for connections in progress and so_comp for connections already 3374 * made and awaiting user acceptance. As a protocol is preparing incoming 3375 * connections, it creates a socket structure queued on so_incomp by calling 3376 * sonewconn(). When the connection is established, soisconnected() is 3377 * called, and transfers the socket structure to so_comp, making it available 3378 * to accept(). 3379 * 3380 * If a socket is closed with sockets on either so_incomp or so_comp, these 3381 * sockets are dropped. 3382 * 3383 * If higher-level protocols are implemented in the kernel, the wakeups done 3384 * here will sometimes cause software-interrupt process scheduling. 3385 */ 3386 void 3387 soisconnecting(struct socket *so) 3388 { 3389 3390 SOCK_LOCK(so); 3391 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 3392 so->so_state |= SS_ISCONNECTING; 3393 SOCK_UNLOCK(so); 3394 } 3395 3396 void 3397 soisconnected(struct socket *so) 3398 { 3399 struct socket *head; 3400 int ret; 3401 3402 restart: 3403 ACCEPT_LOCK(); 3404 SOCK_LOCK(so); 3405 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 3406 so->so_state |= SS_ISCONNECTED; 3407 head = so->so_head; 3408 if (head != NULL && (so->so_qstate & SQ_INCOMP)) { 3409 if ((so->so_options & SO_ACCEPTFILTER) == 0) { 3410 SOCK_UNLOCK(so); 3411 TAILQ_REMOVE(&head->so_incomp, so, so_list); 3412 head->so_incqlen--; 3413 so->so_qstate &= ~SQ_INCOMP; 3414 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 3415 head->so_qlen++; 3416 so->so_qstate |= SQ_COMP; 3417 ACCEPT_UNLOCK(); 3418 sorwakeup(head); 3419 wakeup_one(&head->so_timeo); 3420 } else { 3421 ACCEPT_UNLOCK(); 3422 soupcall_set(so, SO_RCV, 3423 head->so_accf->so_accept_filter->accf_callback, 3424 head->so_accf->so_accept_filter_arg); 3425 so->so_options &= ~SO_ACCEPTFILTER; 3426 ret = head->so_accf->so_accept_filter->accf_callback(so, 3427 head->so_accf->so_accept_filter_arg, M_NOWAIT); 3428 if (ret == SU_ISCONNECTED) 3429 soupcall_clear(so, SO_RCV); 3430 SOCK_UNLOCK(so); 3431 if (ret == SU_ISCONNECTED) 3432 goto restart; 3433 } 3434 return; 3435 } 3436 SOCK_UNLOCK(so); 3437 ACCEPT_UNLOCK(); 3438 wakeup(&so->so_timeo); 3439 sorwakeup(so); 3440 sowwakeup(so); 3441 } 3442 3443 void 3444 soisdisconnecting(struct socket *so) 3445 { 3446 3447 /* 3448 * Note: This code assumes that SOCK_LOCK(so) and 3449 * SOCKBUF_LOCK(&so->so_rcv) are the same. 3450 */ 3451 SOCKBUF_LOCK(&so->so_rcv); 3452 so->so_state &= ~SS_ISCONNECTING; 3453 so->so_state |= SS_ISDISCONNECTING; 3454 socantrcvmore_locked(so); 3455 SOCKBUF_LOCK(&so->so_snd); 3456 socantsendmore_locked(so); 3457 wakeup(&so->so_timeo); 3458 } 3459 3460 void 3461 soisdisconnected(struct socket *so) 3462 { 3463 3464 /* 3465 * Note: This code assumes that SOCK_LOCK(so) and 3466 * SOCKBUF_LOCK(&so->so_rcv) are the same. 3467 */ 3468 SOCKBUF_LOCK(&so->so_rcv); 3469 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 3470 so->so_state |= SS_ISDISCONNECTED; 3471 socantrcvmore_locked(so); 3472 SOCKBUF_LOCK(&so->so_snd); 3473 sbdrop_locked(&so->so_snd, sbused(&so->so_snd)); 3474 socantsendmore_locked(so); 3475 wakeup(&so->so_timeo); 3476 } 3477 3478 /* 3479 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 3480 */ 3481 struct sockaddr * 3482 sodupsockaddr(const struct sockaddr *sa, int mflags) 3483 { 3484 struct sockaddr *sa2; 3485 3486 sa2 = malloc(sa->sa_len, M_SONAME, mflags); 3487 if (sa2) 3488 bcopy(sa, sa2, sa->sa_len); 3489 return sa2; 3490 } 3491 3492 /* 3493 * Register per-socket buffer upcalls. 3494 */ 3495 void 3496 soupcall_set(struct socket *so, int which, 3497 int (*func)(struct socket *, void *, int), void *arg) 3498 { 3499 struct sockbuf *sb; 3500 3501 switch (which) { 3502 case SO_RCV: 3503 sb = &so->so_rcv; 3504 break; 3505 case SO_SND: 3506 sb = &so->so_snd; 3507 break; 3508 default: 3509 panic("soupcall_set: bad which"); 3510 } 3511 SOCKBUF_LOCK_ASSERT(sb); 3512 #if 0 3513 /* XXX: accf_http actually wants to do this on purpose. */ 3514 KASSERT(sb->sb_upcall == NULL, ("soupcall_set: overwriting upcall")); 3515 #endif 3516 sb->sb_upcall = func; 3517 sb->sb_upcallarg = arg; 3518 sb->sb_flags |= SB_UPCALL; 3519 } 3520 3521 void 3522 soupcall_clear(struct socket *so, int which) 3523 { 3524 struct sockbuf *sb; 3525 3526 switch (which) { 3527 case SO_RCV: 3528 sb = &so->so_rcv; 3529 break; 3530 case SO_SND: 3531 sb = &so->so_snd; 3532 break; 3533 default: 3534 panic("soupcall_clear: bad which"); 3535 } 3536 SOCKBUF_LOCK_ASSERT(sb); 3537 KASSERT(sb->sb_upcall != NULL, ("soupcall_clear: no upcall to clear")); 3538 sb->sb_upcall = NULL; 3539 sb->sb_upcallarg = NULL; 3540 sb->sb_flags &= ~SB_UPCALL; 3541 } 3542 3543 /* 3544 * Create an external-format (``xsocket'') structure using the information in 3545 * the kernel-format socket structure pointed to by so. This is done to 3546 * reduce the spew of irrelevant information over this interface, to isolate 3547 * user code from changes in the kernel structure, and potentially to provide 3548 * information-hiding if we decide that some of this information should be 3549 * hidden from users. 3550 */ 3551 void 3552 sotoxsocket(struct socket *so, struct xsocket *xso) 3553 { 3554 3555 xso->xso_len = sizeof *xso; 3556 xso->xso_so = so; 3557 xso->so_type = so->so_type; 3558 xso->so_options = so->so_options; 3559 xso->so_linger = so->so_linger; 3560 xso->so_state = so->so_state; 3561 xso->so_pcb = so->so_pcb; 3562 xso->xso_protocol = so->so_proto->pr_protocol; 3563 xso->xso_family = so->so_proto->pr_domain->dom_family; 3564 xso->so_qlen = so->so_qlen; 3565 xso->so_incqlen = so->so_incqlen; 3566 xso->so_qlimit = so->so_qlimit; 3567 xso->so_timeo = so->so_timeo; 3568 xso->so_error = so->so_error; 3569 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 3570 xso->so_oobmark = so->so_oobmark; 3571 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 3572 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 3573 xso->so_uid = so->so_cred->cr_uid; 3574 } 3575 3576 3577 /* 3578 * Socket accessor functions to provide external consumers with 3579 * a safe interface to socket state 3580 * 3581 */ 3582 3583 void 3584 so_listeners_apply_all(struct socket *so, void (*func)(struct socket *, void *), 3585 void *arg) 3586 { 3587 3588 TAILQ_FOREACH(so, &so->so_comp, so_list) 3589 func(so, arg); 3590 } 3591 3592 struct sockbuf * 3593 so_sockbuf_rcv(struct socket *so) 3594 { 3595 3596 return (&so->so_rcv); 3597 } 3598 3599 struct sockbuf * 3600 so_sockbuf_snd(struct socket *so) 3601 { 3602 3603 return (&so->so_snd); 3604 } 3605 3606 int 3607 so_state_get(const struct socket *so) 3608 { 3609 3610 return (so->so_state); 3611 } 3612 3613 void 3614 so_state_set(struct socket *so, int val) 3615 { 3616 3617 so->so_state = val; 3618 } 3619 3620 int 3621 so_options_get(const struct socket *so) 3622 { 3623 3624 return (so->so_options); 3625 } 3626 3627 void 3628 so_options_set(struct socket *so, int val) 3629 { 3630 3631 so->so_options = val; 3632 } 3633 3634 int 3635 so_error_get(const struct socket *so) 3636 { 3637 3638 return (so->so_error); 3639 } 3640 3641 void 3642 so_error_set(struct socket *so, int val) 3643 { 3644 3645 so->so_error = val; 3646 } 3647 3648 int 3649 so_linger_get(const struct socket *so) 3650 { 3651 3652 return (so->so_linger); 3653 } 3654 3655 void 3656 so_linger_set(struct socket *so, int val) 3657 { 3658 3659 so->so_linger = val; 3660 } 3661 3662 struct protosw * 3663 so_protosw_get(const struct socket *so) 3664 { 3665 3666 return (so->so_proto); 3667 } 3668 3669 void 3670 so_protosw_set(struct socket *so, struct protosw *val) 3671 { 3672 3673 so->so_proto = val; 3674 } 3675 3676 void 3677 so_sorwakeup(struct socket *so) 3678 { 3679 3680 sorwakeup(so); 3681 } 3682 3683 void 3684 so_sowwakeup(struct socket *so) 3685 { 3686 3687 sowwakeup(so); 3688 } 3689 3690 void 3691 so_sorwakeup_locked(struct socket *so) 3692 { 3693 3694 sorwakeup_locked(so); 3695 } 3696 3697 void 3698 so_sowwakeup_locked(struct socket *so) 3699 { 3700 3701 sowwakeup_locked(so); 3702 } 3703 3704 void 3705 so_lock(struct socket *so) 3706 { 3707 3708 SOCK_LOCK(so); 3709 } 3710 3711 void 3712 so_unlock(struct socket *so) 3713 { 3714 3715 SOCK_UNLOCK(so); 3716 } 3717