1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993 3 * The Regents of the University of California. 4 * Copyright (c) 2004 The FreeBSD Foundation 5 * Copyright (c) 2004-2007 Robert N. M. Watson 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 33 */ 34 35 /* 36 * Comments on the socket life cycle: 37 * 38 * soalloc() sets of socket layer state for a socket, called only by 39 * socreate() and sonewconn(). Socket layer private. 40 * 41 * sodealloc() tears down socket layer state for a socket, called only by 42 * sofree() and sonewconn(). Socket layer private. 43 * 44 * pru_attach() associates protocol layer state with an allocated socket; 45 * called only once, may fail, aborting socket allocation. This is called 46 * from socreate() and sonewconn(). Socket layer private. 47 * 48 * pru_detach() disassociates protocol layer state from an attached socket, 49 * and will be called exactly once for sockets in which pru_attach() has 50 * been successfully called. If pru_attach() returned an error, 51 * pru_detach() will not be called. Socket layer private. 52 * 53 * pru_abort() and pru_close() notify the protocol layer that the last 54 * consumer of a socket is starting to tear down the socket, and that the 55 * protocol should terminate the connection. Historically, pru_abort() also 56 * detached protocol state from the socket state, but this is no longer the 57 * case. 58 * 59 * socreate() creates a socket and attaches protocol state. This is a public 60 * interface that may be used by socket layer consumers to create new 61 * sockets. 62 * 63 * sonewconn() creates a socket and attaches protocol state. This is a 64 * public interface that may be used by protocols to create new sockets when 65 * a new connection is received and will be available for accept() on a 66 * listen socket. 67 * 68 * soclose() destroys a socket after possibly waiting for it to disconnect. 69 * This is a public interface that socket consumers should use to close and 70 * release a socket when done with it. 71 * 72 * soabort() destroys a socket without waiting for it to disconnect (used 73 * only for incoming connections that are already partially or fully 74 * connected). This is used internally by the socket layer when clearing 75 * listen socket queues (due to overflow or close on the listen socket), but 76 * is also a public interface protocols may use to abort connections in 77 * their incomplete listen queues should they no longer be required. Sockets 78 * placed in completed connection listen queues should not be aborted for 79 * reasons described in the comment above the soclose() implementation. This 80 * is not a general purpose close routine, and except in the specific 81 * circumstances described here, should not be used. 82 * 83 * sofree() will free a socket and its protocol state if all references on 84 * the socket have been released, and is the public interface to attempt to 85 * free a socket when a reference is removed. This is a socket layer private 86 * interface. 87 * 88 * NOTE: In addition to socreate() and soclose(), which provide a single 89 * socket reference to the consumer to be managed as required, there are two 90 * calls to explicitly manage socket references, soref(), and sorele(). 91 * Currently, these are generally required only when transitioning a socket 92 * from a listen queue to a file descriptor, in order to prevent garbage 93 * collection of the socket at an untimely moment. For a number of reasons, 94 * these interfaces are not preferred, and should be avoided. 95 */ 96 97 #include <sys/cdefs.h> 98 __FBSDID("$FreeBSD$"); 99 100 #include "opt_inet.h" 101 #include "opt_mac.h" 102 #include "opt_zero.h" 103 #include "opt_compat.h" 104 105 #include <sys/param.h> 106 #include <sys/systm.h> 107 #include <sys/fcntl.h> 108 #include <sys/limits.h> 109 #include <sys/lock.h> 110 #include <sys/mac.h> 111 #include <sys/malloc.h> 112 #include <sys/mbuf.h> 113 #include <sys/mutex.h> 114 #include <sys/domain.h> 115 #include <sys/file.h> /* for struct knote */ 116 #include <sys/kernel.h> 117 #include <sys/event.h> 118 #include <sys/eventhandler.h> 119 #include <sys/poll.h> 120 #include <sys/proc.h> 121 #include <sys/protosw.h> 122 #include <sys/socket.h> 123 #include <sys/socketvar.h> 124 #include <sys/resourcevar.h> 125 #include <sys/signalvar.h> 126 #include <sys/stat.h> 127 #include <sys/sx.h> 128 #include <sys/sysctl.h> 129 #include <sys/uio.h> 130 #include <sys/jail.h> 131 132 #include <security/mac/mac_framework.h> 133 134 #include <vm/uma.h> 135 136 #ifdef COMPAT_IA32 137 #include <sys/mount.h> 138 #include <compat/freebsd32/freebsd32.h> 139 140 extern struct sysentvec ia32_freebsd_sysvec; 141 #endif 142 143 static int soreceive_rcvoob(struct socket *so, struct uio *uio, 144 int flags); 145 146 static void filt_sordetach(struct knote *kn); 147 static int filt_soread(struct knote *kn, long hint); 148 static void filt_sowdetach(struct knote *kn); 149 static int filt_sowrite(struct knote *kn, long hint); 150 static int filt_solisten(struct knote *kn, long hint); 151 152 static struct filterops solisten_filtops = 153 { 1, NULL, filt_sordetach, filt_solisten }; 154 static struct filterops soread_filtops = 155 { 1, NULL, filt_sordetach, filt_soread }; 156 static struct filterops sowrite_filtops = 157 { 1, NULL, filt_sowdetach, filt_sowrite }; 158 159 uma_zone_t socket_zone; 160 so_gen_t so_gencnt; /* generation count for sockets */ 161 162 int maxsockets; 163 164 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 165 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 166 167 static int somaxconn = SOMAXCONN; 168 static int sysctl_somaxconn(SYSCTL_HANDLER_ARGS); 169 /* XXX: we dont have SYSCTL_USHORT */ 170 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLTYPE_UINT | CTLFLAG_RW, 171 0, sizeof(int), sysctl_somaxconn, "I", "Maximum pending socket connection " 172 "queue size"); 173 static int numopensockets; 174 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, 175 &numopensockets, 0, "Number of open sockets"); 176 #ifdef ZERO_COPY_SOCKETS 177 /* These aren't static because they're used in other files. */ 178 int so_zero_copy_send = 1; 179 int so_zero_copy_receive = 1; 180 SYSCTL_NODE(_kern_ipc, OID_AUTO, zero_copy, CTLFLAG_RD, 0, 181 "Zero copy controls"); 182 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, receive, CTLFLAG_RW, 183 &so_zero_copy_receive, 0, "Enable zero copy receive"); 184 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, send, CTLFLAG_RW, 185 &so_zero_copy_send, 0, "Enable zero copy send"); 186 #endif /* ZERO_COPY_SOCKETS */ 187 188 /* 189 * accept_mtx locks down per-socket fields relating to accept queues. See 190 * socketvar.h for an annotation of the protected fields of struct socket. 191 */ 192 struct mtx accept_mtx; 193 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF); 194 195 /* 196 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket 197 * so_gencnt field. 198 */ 199 static struct mtx so_global_mtx; 200 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); 201 202 /* 203 * General IPC sysctl name space, used by sockets and a variety of other IPC 204 * types. 205 */ 206 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC"); 207 208 /* 209 * Sysctl to get and set the maximum global sockets limit. Notify protocols 210 * of the change so that they can update their dependent limits as required. 211 */ 212 static int 213 sysctl_maxsockets(SYSCTL_HANDLER_ARGS) 214 { 215 int error, newmaxsockets; 216 217 newmaxsockets = maxsockets; 218 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req); 219 if (error == 0 && req->newptr) { 220 if (newmaxsockets > maxsockets) { 221 maxsockets = newmaxsockets; 222 if (maxsockets > ((maxfiles / 4) * 3)) { 223 maxfiles = (maxsockets * 5) / 4; 224 maxfilesperproc = (maxfiles * 9) / 10; 225 } 226 EVENTHANDLER_INVOKE(maxsockets_change); 227 } else 228 error = EINVAL; 229 } 230 return (error); 231 } 232 233 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, CTLTYPE_INT|CTLFLAG_RW, 234 &maxsockets, 0, sysctl_maxsockets, "IU", 235 "Maximum number of sockets avaliable"); 236 237 /* 238 * Initialise maxsockets. 239 */ 240 static void init_maxsockets(void *ignored) 241 { 242 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 243 maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters)); 244 } 245 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 246 247 /* 248 * Socket operation routines. These routines are called by the routines in 249 * sys_socket.c or from a system process, and implement the semantics of 250 * socket operations by switching out to the protocol specific routines. 251 */ 252 253 /* 254 * Get a socket structure from our zone, and initialize it. Note that it 255 * would probably be better to allocate socket and PCB at the same time, but 256 * I'm not convinced that all the protocols can be easily modified to do 257 * this. 258 * 259 * soalloc() returns a socket with a ref count of 0. 260 */ 261 static struct socket * 262 soalloc(void) 263 { 264 struct socket *so; 265 266 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO); 267 if (so == NULL) 268 return (NULL); 269 #ifdef MAC 270 if (mac_socket_init(so, M_NOWAIT) != 0) { 271 uma_zfree(socket_zone, so); 272 return (NULL); 273 } 274 #endif 275 SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd"); 276 SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv"); 277 sx_init(&so->so_snd.sb_sx, "so_snd_sx"); 278 sx_init(&so->so_rcv.sb_sx, "so_rcv_sx"); 279 TAILQ_INIT(&so->so_aiojobq); 280 mtx_lock(&so_global_mtx); 281 so->so_gencnt = ++so_gencnt; 282 ++numopensockets; 283 mtx_unlock(&so_global_mtx); 284 return (so); 285 } 286 287 /* 288 * Free the storage associated with a socket at the socket layer, tear down 289 * locks, labels, etc. All protocol state is assumed already to have been 290 * torn down (and possibly never set up) by the caller. 291 */ 292 static void 293 sodealloc(struct socket *so) 294 { 295 296 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); 297 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL")); 298 299 mtx_lock(&so_global_mtx); 300 so->so_gencnt = ++so_gencnt; 301 --numopensockets; /* Could be below, but faster here. */ 302 mtx_unlock(&so_global_mtx); 303 if (so->so_rcv.sb_hiwat) 304 (void)chgsbsize(so->so_cred->cr_uidinfo, 305 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 306 if (so->so_snd.sb_hiwat) 307 (void)chgsbsize(so->so_cred->cr_uidinfo, 308 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 309 #ifdef INET 310 /* remove acccept filter if one is present. */ 311 if (so->so_accf != NULL) 312 do_setopt_accept_filter(so, NULL); 313 #endif 314 #ifdef MAC 315 mac_socket_destroy(so); 316 #endif 317 crfree(so->so_cred); 318 sx_destroy(&so->so_snd.sb_sx); 319 sx_destroy(&so->so_rcv.sb_sx); 320 SOCKBUF_LOCK_DESTROY(&so->so_snd); 321 SOCKBUF_LOCK_DESTROY(&so->so_rcv); 322 uma_zfree(socket_zone, so); 323 } 324 325 /* 326 * socreate returns a socket with a ref count of 1. The socket should be 327 * closed with soclose(). 328 */ 329 int 330 socreate(int dom, struct socket **aso, int type, int proto, 331 struct ucred *cred, struct thread *td) 332 { 333 struct protosw *prp; 334 struct socket *so; 335 int error; 336 337 if (proto) 338 prp = pffindproto(dom, proto, type); 339 else 340 prp = pffindtype(dom, type); 341 342 if (prp == NULL || prp->pr_usrreqs->pru_attach == NULL || 343 prp->pr_usrreqs->pru_attach == pru_attach_notsupp) 344 return (EPROTONOSUPPORT); 345 346 if (jailed(cred) && jail_socket_unixiproute_only && 347 prp->pr_domain->dom_family != PF_LOCAL && 348 prp->pr_domain->dom_family != PF_INET && 349 prp->pr_domain->dom_family != PF_ROUTE) { 350 return (EPROTONOSUPPORT); 351 } 352 353 if (prp->pr_type != type) 354 return (EPROTOTYPE); 355 so = soalloc(); 356 if (so == NULL) 357 return (ENOBUFS); 358 359 TAILQ_INIT(&so->so_incomp); 360 TAILQ_INIT(&so->so_comp); 361 so->so_type = type; 362 so->so_cred = crhold(cred); 363 so->so_proto = prp; 364 #ifdef MAC 365 mac_socket_create(cred, so); 366 #endif 367 knlist_init(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv), 368 NULL, NULL, NULL); 369 knlist_init(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd), 370 NULL, NULL, NULL); 371 so->so_count = 1; 372 /* 373 * Auto-sizing of socket buffers is managed by the protocols and 374 * the appropriate flags must be set in the pru_attach function. 375 */ 376 error = (*prp->pr_usrreqs->pru_attach)(so, proto, td); 377 if (error) { 378 KASSERT(so->so_count == 1, ("socreate: so_count %d", 379 so->so_count)); 380 so->so_count = 0; 381 sodealloc(so); 382 return (error); 383 } 384 *aso = so; 385 return (0); 386 } 387 388 #ifdef REGRESSION 389 static int regression_sonewconn_earlytest = 1; 390 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW, 391 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test"); 392 #endif 393 394 /* 395 * When an attempt at a new connection is noted on a socket which accepts 396 * connections, sonewconn is called. If the connection is possible (subject 397 * to space constraints, etc.) then we allocate a new structure, propoerly 398 * linked into the data structure of the original socket, and return this. 399 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED. 400 * 401 * Note: the ref count on the socket is 0 on return. 402 */ 403 struct socket * 404 sonewconn(struct socket *head, int connstatus) 405 { 406 struct socket *so; 407 int over; 408 409 ACCEPT_LOCK(); 410 over = (head->so_qlen > 3 * head->so_qlimit / 2); 411 ACCEPT_UNLOCK(); 412 #ifdef REGRESSION 413 if (regression_sonewconn_earlytest && over) 414 #else 415 if (over) 416 #endif 417 return (NULL); 418 so = soalloc(); 419 if (so == NULL) 420 return (NULL); 421 if ((head->so_options & SO_ACCEPTFILTER) != 0) 422 connstatus = 0; 423 so->so_head = head; 424 so->so_type = head->so_type; 425 so->so_options = head->so_options &~ SO_ACCEPTCONN; 426 so->so_linger = head->so_linger; 427 so->so_state = head->so_state | SS_NOFDREF; 428 so->so_proto = head->so_proto; 429 so->so_cred = crhold(head->so_cred); 430 #ifdef MAC 431 SOCK_LOCK(head); 432 mac_socket_newconn(head, so); 433 SOCK_UNLOCK(head); 434 #endif 435 knlist_init(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv), 436 NULL, NULL, NULL); 437 knlist_init(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd), 438 NULL, NULL, NULL); 439 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) || 440 (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 441 sodealloc(so); 442 return (NULL); 443 } 444 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; 445 so->so_snd.sb_lowat = head->so_snd.sb_lowat; 446 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; 447 so->so_snd.sb_timeo = head->so_snd.sb_timeo; 448 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE; 449 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE; 450 so->so_state |= connstatus; 451 ACCEPT_LOCK(); 452 if (connstatus) { 453 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 454 so->so_qstate |= SQ_COMP; 455 head->so_qlen++; 456 } else { 457 /* 458 * Keep removing sockets from the head until there's room for 459 * us to insert on the tail. In pre-locking revisions, this 460 * was a simple if(), but as we could be racing with other 461 * threads and soabort() requires dropping locks, we must 462 * loop waiting for the condition to be true. 463 */ 464 while (head->so_incqlen > head->so_qlimit) { 465 struct socket *sp; 466 sp = TAILQ_FIRST(&head->so_incomp); 467 TAILQ_REMOVE(&head->so_incomp, sp, so_list); 468 head->so_incqlen--; 469 sp->so_qstate &= ~SQ_INCOMP; 470 sp->so_head = NULL; 471 ACCEPT_UNLOCK(); 472 soabort(sp); 473 ACCEPT_LOCK(); 474 } 475 TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list); 476 so->so_qstate |= SQ_INCOMP; 477 head->so_incqlen++; 478 } 479 ACCEPT_UNLOCK(); 480 if (connstatus) { 481 sorwakeup(head); 482 wakeup_one(&head->so_timeo); 483 } 484 return (so); 485 } 486 487 int 488 sobind(struct socket *so, struct sockaddr *nam, struct thread *td) 489 { 490 491 return ((*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td)); 492 } 493 494 /* 495 * solisten() transitions a socket from a non-listening state to a listening 496 * state, but can also be used to update the listen queue depth on an 497 * existing listen socket. The protocol will call back into the sockets 498 * layer using solisten_proto_check() and solisten_proto() to check and set 499 * socket-layer listen state. Call backs are used so that the protocol can 500 * acquire both protocol and socket layer locks in whatever order is required 501 * by the protocol. 502 * 503 * Protocol implementors are advised to hold the socket lock across the 504 * socket-layer test and set to avoid races at the socket layer. 505 */ 506 int 507 solisten(struct socket *so, int backlog, struct thread *td) 508 { 509 510 return ((*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td)); 511 } 512 513 int 514 solisten_proto_check(struct socket *so) 515 { 516 517 SOCK_LOCK_ASSERT(so); 518 519 if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 520 SS_ISDISCONNECTING)) 521 return (EINVAL); 522 return (0); 523 } 524 525 void 526 solisten_proto(struct socket *so, int backlog) 527 { 528 529 SOCK_LOCK_ASSERT(so); 530 531 if (backlog < 0 || backlog > somaxconn) 532 backlog = somaxconn; 533 so->so_qlimit = backlog; 534 so->so_options |= SO_ACCEPTCONN; 535 } 536 537 /* 538 * Attempt to free a socket. This should really be sotryfree(). 539 * 540 * sofree() will succeed if: 541 * 542 * - There are no outstanding file descriptor references or related consumers 543 * (so_count == 0). 544 * 545 * - The socket has been closed by user space, if ever open (SS_NOFDREF). 546 * 547 * - The protocol does not have an outstanding strong reference on the socket 548 * (SS_PROTOREF). 549 * 550 * - The socket is not in a completed connection queue, so a process has been 551 * notified that it is present. If it is removed, the user process may 552 * block in accept() despite select() saying the socket was ready. 553 * 554 * Otherwise, it will quietly abort so that a future call to sofree(), when 555 * conditions are right, can succeed. 556 */ 557 void 558 sofree(struct socket *so) 559 { 560 struct protosw *pr = so->so_proto; 561 struct socket *head; 562 563 ACCEPT_LOCK_ASSERT(); 564 SOCK_LOCK_ASSERT(so); 565 566 if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 || 567 (so->so_state & SS_PROTOREF) || (so->so_qstate & SQ_COMP)) { 568 SOCK_UNLOCK(so); 569 ACCEPT_UNLOCK(); 570 return; 571 } 572 573 head = so->so_head; 574 if (head != NULL) { 575 KASSERT((so->so_qstate & SQ_COMP) != 0 || 576 (so->so_qstate & SQ_INCOMP) != 0, 577 ("sofree: so_head != NULL, but neither SQ_COMP nor " 578 "SQ_INCOMP")); 579 KASSERT((so->so_qstate & SQ_COMP) == 0 || 580 (so->so_qstate & SQ_INCOMP) == 0, 581 ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP")); 582 TAILQ_REMOVE(&head->so_incomp, so, so_list); 583 head->so_incqlen--; 584 so->so_qstate &= ~SQ_INCOMP; 585 so->so_head = NULL; 586 } 587 KASSERT((so->so_qstate & SQ_COMP) == 0 && 588 (so->so_qstate & SQ_INCOMP) == 0, 589 ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)", 590 so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP)); 591 if (so->so_options & SO_ACCEPTCONN) { 592 KASSERT((TAILQ_EMPTY(&so->so_comp)), ("sofree: so_comp populated")); 593 KASSERT((TAILQ_EMPTY(&so->so_incomp)), ("sofree: so_comp populated")); 594 } 595 SOCK_UNLOCK(so); 596 ACCEPT_UNLOCK(); 597 598 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 599 (*pr->pr_domain->dom_dispose)(so->so_rcv.sb_mb); 600 if (pr->pr_usrreqs->pru_detach != NULL) 601 (*pr->pr_usrreqs->pru_detach)(so); 602 603 /* 604 * From this point on, we assume that no other references to this 605 * socket exist anywhere else in the stack. Therefore, no locks need 606 * to be acquired or held. 607 * 608 * We used to do a lot of socket buffer and socket locking here, as 609 * well as invoke sorflush() and perform wakeups. The direct call to 610 * dom_dispose() and sbrelease_internal() are an inlining of what was 611 * necessary from sorflush(). 612 * 613 * Notice that the socket buffer and kqueue state are torn down 614 * before calling pru_detach. This means that protocols shold not 615 * assume they can perform socket wakeups, etc, in their detach code. 616 */ 617 sbdestroy(&so->so_snd, so); 618 sbdestroy(&so->so_rcv, so); 619 knlist_destroy(&so->so_rcv.sb_sel.si_note); 620 knlist_destroy(&so->so_snd.sb_sel.si_note); 621 sodealloc(so); 622 } 623 624 /* 625 * Close a socket on last file table reference removal. Initiate disconnect 626 * if connected. Free socket when disconnect complete. 627 * 628 * This function will sorele() the socket. Note that soclose() may be called 629 * prior to the ref count reaching zero. The actual socket structure will 630 * not be freed until the ref count reaches zero. 631 */ 632 int 633 soclose(struct socket *so) 634 { 635 int error = 0; 636 637 KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter")); 638 639 funsetown(&so->so_sigio); 640 if (so->so_state & SS_ISCONNECTED) { 641 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 642 error = sodisconnect(so); 643 if (error) 644 goto drop; 645 } 646 if (so->so_options & SO_LINGER) { 647 if ((so->so_state & SS_ISDISCONNECTING) && 648 (so->so_state & SS_NBIO)) 649 goto drop; 650 while (so->so_state & SS_ISCONNECTED) { 651 error = tsleep(&so->so_timeo, 652 PSOCK | PCATCH, "soclos", so->so_linger * hz); 653 if (error) 654 break; 655 } 656 } 657 } 658 659 drop: 660 if (so->so_proto->pr_usrreqs->pru_close != NULL) 661 (*so->so_proto->pr_usrreqs->pru_close)(so); 662 if (so->so_options & SO_ACCEPTCONN) { 663 struct socket *sp; 664 ACCEPT_LOCK(); 665 while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) { 666 TAILQ_REMOVE(&so->so_incomp, sp, so_list); 667 so->so_incqlen--; 668 sp->so_qstate &= ~SQ_INCOMP; 669 sp->so_head = NULL; 670 ACCEPT_UNLOCK(); 671 soabort(sp); 672 ACCEPT_LOCK(); 673 } 674 while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) { 675 TAILQ_REMOVE(&so->so_comp, sp, so_list); 676 so->so_qlen--; 677 sp->so_qstate &= ~SQ_COMP; 678 sp->so_head = NULL; 679 ACCEPT_UNLOCK(); 680 soabort(sp); 681 ACCEPT_LOCK(); 682 } 683 ACCEPT_UNLOCK(); 684 } 685 ACCEPT_LOCK(); 686 SOCK_LOCK(so); 687 KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF")); 688 so->so_state |= SS_NOFDREF; 689 sorele(so); 690 return (error); 691 } 692 693 /* 694 * soabort() is used to abruptly tear down a connection, such as when a 695 * resource limit is reached (listen queue depth exceeded), or if a listen 696 * socket is closed while there are sockets waiting to be accepted. 697 * 698 * This interface is tricky, because it is called on an unreferenced socket, 699 * and must be called only by a thread that has actually removed the socket 700 * from the listen queue it was on, or races with other threads are risked. 701 * 702 * This interface will call into the protocol code, so must not be called 703 * with any socket locks held. Protocols do call it while holding their own 704 * recursible protocol mutexes, but this is something that should be subject 705 * to review in the future. 706 */ 707 void 708 soabort(struct socket *so) 709 { 710 711 /* 712 * In as much as is possible, assert that no references to this 713 * socket are held. This is not quite the same as asserting that the 714 * current thread is responsible for arranging for no references, but 715 * is as close as we can get for now. 716 */ 717 KASSERT(so->so_count == 0, ("soabort: so_count")); 718 KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF")); 719 KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF")); 720 KASSERT((so->so_state & SQ_COMP) == 0, ("soabort: SQ_COMP")); 721 KASSERT((so->so_state & SQ_INCOMP) == 0, ("soabort: SQ_INCOMP")); 722 723 if (so->so_proto->pr_usrreqs->pru_abort != NULL) 724 (*so->so_proto->pr_usrreqs->pru_abort)(so); 725 ACCEPT_LOCK(); 726 SOCK_LOCK(so); 727 sofree(so); 728 } 729 730 int 731 soaccept(struct socket *so, struct sockaddr **nam) 732 { 733 int error; 734 735 SOCK_LOCK(so); 736 KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF")); 737 so->so_state &= ~SS_NOFDREF; 738 SOCK_UNLOCK(so); 739 error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam); 740 return (error); 741 } 742 743 int 744 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td) 745 { 746 int error; 747 748 if (so->so_options & SO_ACCEPTCONN) 749 return (EOPNOTSUPP); 750 /* 751 * If protocol is connection-based, can only connect once. 752 * Otherwise, if connected, try to disconnect first. This allows 753 * user to disconnect by connecting to, e.g., a null address. 754 */ 755 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 756 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 757 (error = sodisconnect(so)))) { 758 error = EISCONN; 759 } else { 760 /* 761 * Prevent accumulated error from previous connection from 762 * biting us. 763 */ 764 so->so_error = 0; 765 error = (*so->so_proto->pr_usrreqs->pru_connect)(so, nam, td); 766 } 767 768 return (error); 769 } 770 771 int 772 soconnect2(struct socket *so1, struct socket *so2) 773 { 774 775 return ((*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2)); 776 } 777 778 int 779 sodisconnect(struct socket *so) 780 { 781 int error; 782 783 if ((so->so_state & SS_ISCONNECTED) == 0) 784 return (ENOTCONN); 785 if (so->so_state & SS_ISDISCONNECTING) 786 return (EALREADY); 787 error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so); 788 return (error); 789 } 790 791 #ifdef ZERO_COPY_SOCKETS 792 struct so_zerocopy_stats{ 793 int size_ok; 794 int align_ok; 795 int found_ifp; 796 }; 797 struct so_zerocopy_stats so_zerocp_stats = {0,0,0}; 798 #include <netinet/in.h> 799 #include <net/route.h> 800 #include <netinet/in_pcb.h> 801 #include <vm/vm.h> 802 #include <vm/vm_page.h> 803 #include <vm/vm_object.h> 804 805 /* 806 * sosend_copyin() is only used if zero copy sockets are enabled. Otherwise 807 * sosend_dgram() and sosend_generic() use m_uiotombuf(). 808 * 809 * sosend_copyin() accepts a uio and prepares an mbuf chain holding part or 810 * all of the data referenced by the uio. If desired, it uses zero-copy. 811 * *space will be updated to reflect data copied in. 812 * 813 * NB: If atomic I/O is requested, the caller must already have checked that 814 * space can hold resid bytes. 815 * 816 * NB: In the event of an error, the caller may need to free the partial 817 * chain pointed to by *mpp. The contents of both *uio and *space may be 818 * modified even in the case of an error. 819 */ 820 static int 821 sosend_copyin(struct uio *uio, struct mbuf **retmp, int atomic, long *space, 822 int flags) 823 { 824 struct mbuf *m, **mp, *top; 825 long len, resid; 826 int error; 827 #ifdef ZERO_COPY_SOCKETS 828 int cow_send; 829 #endif 830 831 *retmp = top = NULL; 832 mp = ⊤ 833 len = 0; 834 resid = uio->uio_resid; 835 error = 0; 836 do { 837 #ifdef ZERO_COPY_SOCKETS 838 cow_send = 0; 839 #endif /* ZERO_COPY_SOCKETS */ 840 if (resid >= MINCLSIZE) { 841 #ifdef ZERO_COPY_SOCKETS 842 if (top == NULL) { 843 m = m_gethdr(M_WAITOK, MT_DATA); 844 m->m_pkthdr.len = 0; 845 m->m_pkthdr.rcvif = NULL; 846 } else 847 m = m_get(M_WAITOK, MT_DATA); 848 if (so_zero_copy_send && 849 resid>=PAGE_SIZE && 850 *space>=PAGE_SIZE && 851 uio->uio_iov->iov_len>=PAGE_SIZE) { 852 so_zerocp_stats.size_ok++; 853 so_zerocp_stats.align_ok++; 854 cow_send = socow_setup(m, uio); 855 len = cow_send; 856 } 857 if (!cow_send) { 858 m_clget(m, M_WAITOK); 859 len = min(min(MCLBYTES, resid), *space); 860 } 861 #else /* ZERO_COPY_SOCKETS */ 862 if (top == NULL) { 863 m = m_getcl(M_TRYWAIT, MT_DATA, M_PKTHDR); 864 m->m_pkthdr.len = 0; 865 m->m_pkthdr.rcvif = NULL; 866 } else 867 m = m_getcl(M_TRYWAIT, MT_DATA, 0); 868 len = min(min(MCLBYTES, resid), *space); 869 #endif /* ZERO_COPY_SOCKETS */ 870 } else { 871 if (top == NULL) { 872 m = m_gethdr(M_TRYWAIT, MT_DATA); 873 m->m_pkthdr.len = 0; 874 m->m_pkthdr.rcvif = NULL; 875 876 len = min(min(MHLEN, resid), *space); 877 /* 878 * For datagram protocols, leave room 879 * for protocol headers in first mbuf. 880 */ 881 if (atomic && m && len < MHLEN) 882 MH_ALIGN(m, len); 883 } else { 884 m = m_get(M_TRYWAIT, MT_DATA); 885 len = min(min(MLEN, resid), *space); 886 } 887 } 888 if (m == NULL) { 889 error = ENOBUFS; 890 goto out; 891 } 892 893 *space -= len; 894 #ifdef ZERO_COPY_SOCKETS 895 if (cow_send) 896 error = 0; 897 else 898 #endif /* ZERO_COPY_SOCKETS */ 899 error = uiomove(mtod(m, void *), (int)len, uio); 900 resid = uio->uio_resid; 901 m->m_len = len; 902 *mp = m; 903 top->m_pkthdr.len += len; 904 if (error) 905 goto out; 906 mp = &m->m_next; 907 if (resid <= 0) { 908 if (flags & MSG_EOR) 909 top->m_flags |= M_EOR; 910 break; 911 } 912 } while (*space > 0 && atomic); 913 out: 914 *retmp = top; 915 return (error); 916 } 917 #endif /*ZERO_COPY_SOCKETS*/ 918 919 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK) 920 921 int 922 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, 923 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 924 { 925 long space, resid; 926 int clen = 0, error, dontroute; 927 #ifdef ZERO_COPY_SOCKETS 928 int atomic = sosendallatonce(so) || top; 929 #endif 930 931 KASSERT(so->so_type == SOCK_DGRAM, ("sodgram_send: !SOCK_DGRAM")); 932 KASSERT(so->so_proto->pr_flags & PR_ATOMIC, 933 ("sodgram_send: !PR_ATOMIC")); 934 935 if (uio != NULL) 936 resid = uio->uio_resid; 937 else 938 resid = top->m_pkthdr.len; 939 /* 940 * In theory resid should be unsigned. However, space must be 941 * signed, as it might be less than 0 if we over-committed, and we 942 * must use a signed comparison of space and resid. On the other 943 * hand, a negative resid causes us to loop sending 0-length 944 * segments to the protocol. 945 * 946 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 947 * type sockets since that's an error. 948 */ 949 if (resid < 0) { 950 error = EINVAL; 951 goto out; 952 } 953 954 dontroute = 955 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0; 956 if (td != NULL) 957 td->td_ru.ru_msgsnd++; 958 if (control != NULL) 959 clen = control->m_len; 960 961 SOCKBUF_LOCK(&so->so_snd); 962 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 963 SOCKBUF_UNLOCK(&so->so_snd); 964 error = EPIPE; 965 goto out; 966 } 967 if (so->so_error) { 968 error = so->so_error; 969 so->so_error = 0; 970 SOCKBUF_UNLOCK(&so->so_snd); 971 goto out; 972 } 973 if ((so->so_state & SS_ISCONNECTED) == 0) { 974 /* 975 * `sendto' and `sendmsg' is allowed on a connection-based 976 * socket if it supports implied connect. Return ENOTCONN if 977 * not connected and no address is supplied. 978 */ 979 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 980 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 981 if ((so->so_state & SS_ISCONFIRMING) == 0 && 982 !(resid == 0 && clen != 0)) { 983 SOCKBUF_UNLOCK(&so->so_snd); 984 error = ENOTCONN; 985 goto out; 986 } 987 } else if (addr == NULL) { 988 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 989 error = ENOTCONN; 990 else 991 error = EDESTADDRREQ; 992 SOCKBUF_UNLOCK(&so->so_snd); 993 goto out; 994 } 995 } 996 997 /* 998 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a 999 * problem and need fixing. 1000 */ 1001 space = sbspace(&so->so_snd); 1002 if (flags & MSG_OOB) 1003 space += 1024; 1004 space -= clen; 1005 SOCKBUF_UNLOCK(&so->so_snd); 1006 if (resid > space) { 1007 error = EMSGSIZE; 1008 goto out; 1009 } 1010 if (uio == NULL) { 1011 resid = 0; 1012 if (flags & MSG_EOR) 1013 top->m_flags |= M_EOR; 1014 } else { 1015 #ifdef ZERO_COPY_SOCKETS 1016 error = sosend_copyin(uio, &top, atomic, &space, flags); 1017 if (error) 1018 goto out; 1019 #else 1020 /* 1021 * Copy the data from userland into a mbuf chain. 1022 * If no data is to be copied in, a single empty mbuf 1023 * is returned. 1024 */ 1025 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr, 1026 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0))); 1027 if (top == NULL) { 1028 error = EFAULT; /* only possible error */ 1029 goto out; 1030 } 1031 space -= resid - uio->uio_resid; 1032 #endif 1033 resid = uio->uio_resid; 1034 } 1035 KASSERT(resid == 0, ("sosend_dgram: resid != 0")); 1036 /* 1037 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock 1038 * than with. 1039 */ 1040 if (dontroute) { 1041 SOCK_LOCK(so); 1042 so->so_options |= SO_DONTROUTE; 1043 SOCK_UNLOCK(so); 1044 } 1045 /* 1046 * XXX all the SBS_CANTSENDMORE checks previously done could be out 1047 * of date. We could have recieved a reset packet in an interrupt or 1048 * maybe we slept while doing page faults in uiomove() etc. We could 1049 * probably recheck again inside the locking protection here, but 1050 * there are probably other places that this also happens. We must 1051 * rethink this. 1052 */ 1053 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1054 (flags & MSG_OOB) ? PRUS_OOB : 1055 /* 1056 * If the user set MSG_EOF, the protocol understands this flag and 1057 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND. 1058 */ 1059 ((flags & MSG_EOF) && 1060 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1061 (resid <= 0)) ? 1062 PRUS_EOF : 1063 /* If there is more to send set PRUS_MORETOCOME */ 1064 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1065 top, addr, control, td); 1066 if (dontroute) { 1067 SOCK_LOCK(so); 1068 so->so_options &= ~SO_DONTROUTE; 1069 SOCK_UNLOCK(so); 1070 } 1071 clen = 0; 1072 control = NULL; 1073 top = NULL; 1074 out: 1075 if (top != NULL) 1076 m_freem(top); 1077 if (control != NULL) 1078 m_freem(control); 1079 return (error); 1080 } 1081 1082 /* 1083 * Send on a socket. If send must go all at once and message is larger than 1084 * send buffering, then hard error. Lock against other senders. If must go 1085 * all at once and not enough room now, then inform user that this would 1086 * block and do nothing. Otherwise, if nonblocking, send as much as 1087 * possible. The data to be sent is described by "uio" if nonzero, otherwise 1088 * by the mbuf chain "top" (which must be null if uio is not). Data provided 1089 * in mbuf chain must be small enough to send all at once. 1090 * 1091 * Returns nonzero on error, timeout or signal; callers must check for short 1092 * counts if EINTR/ERESTART are returned. Data and control buffers are freed 1093 * on return. 1094 */ 1095 int 1096 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio, 1097 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1098 { 1099 long space, resid; 1100 int clen = 0, error, dontroute; 1101 int atomic = sosendallatonce(so) || top; 1102 1103 if (uio != NULL) 1104 resid = uio->uio_resid; 1105 else 1106 resid = top->m_pkthdr.len; 1107 /* 1108 * In theory resid should be unsigned. However, space must be 1109 * signed, as it might be less than 0 if we over-committed, and we 1110 * must use a signed comparison of space and resid. On the other 1111 * hand, a negative resid causes us to loop sending 0-length 1112 * segments to the protocol. 1113 * 1114 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 1115 * type sockets since that's an error. 1116 */ 1117 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 1118 error = EINVAL; 1119 goto out; 1120 } 1121 1122 dontroute = 1123 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 1124 (so->so_proto->pr_flags & PR_ATOMIC); 1125 if (td != NULL) 1126 td->td_ru.ru_msgsnd++; 1127 if (control != NULL) 1128 clen = control->m_len; 1129 1130 error = sblock(&so->so_snd, SBLOCKWAIT(flags)); 1131 if (error) 1132 goto out; 1133 1134 restart: 1135 do { 1136 SOCKBUF_LOCK(&so->so_snd); 1137 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1138 SOCKBUF_UNLOCK(&so->so_snd); 1139 error = EPIPE; 1140 goto release; 1141 } 1142 if (so->so_error) { 1143 error = so->so_error; 1144 so->so_error = 0; 1145 SOCKBUF_UNLOCK(&so->so_snd); 1146 goto release; 1147 } 1148 if ((so->so_state & SS_ISCONNECTED) == 0) { 1149 /* 1150 * `sendto' and `sendmsg' is allowed on a connection- 1151 * based socket if it supports implied connect. 1152 * Return ENOTCONN if not connected and no address is 1153 * supplied. 1154 */ 1155 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1156 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1157 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1158 !(resid == 0 && clen != 0)) { 1159 SOCKBUF_UNLOCK(&so->so_snd); 1160 error = ENOTCONN; 1161 goto release; 1162 } 1163 } else if (addr == NULL) { 1164 SOCKBUF_UNLOCK(&so->so_snd); 1165 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1166 error = ENOTCONN; 1167 else 1168 error = EDESTADDRREQ; 1169 goto release; 1170 } 1171 } 1172 space = sbspace(&so->so_snd); 1173 if (flags & MSG_OOB) 1174 space += 1024; 1175 if ((atomic && resid > so->so_snd.sb_hiwat) || 1176 clen > so->so_snd.sb_hiwat) { 1177 SOCKBUF_UNLOCK(&so->so_snd); 1178 error = EMSGSIZE; 1179 goto release; 1180 } 1181 if (space < resid + clen && 1182 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 1183 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) { 1184 SOCKBUF_UNLOCK(&so->so_snd); 1185 error = EWOULDBLOCK; 1186 goto release; 1187 } 1188 error = sbwait(&so->so_snd); 1189 SOCKBUF_UNLOCK(&so->so_snd); 1190 if (error) 1191 goto release; 1192 goto restart; 1193 } 1194 SOCKBUF_UNLOCK(&so->so_snd); 1195 space -= clen; 1196 do { 1197 if (uio == NULL) { 1198 resid = 0; 1199 if (flags & MSG_EOR) 1200 top->m_flags |= M_EOR; 1201 } else { 1202 #ifdef ZERO_COPY_SOCKETS 1203 error = sosend_copyin(uio, &top, atomic, 1204 &space, flags); 1205 if (error != 0) 1206 goto release; 1207 #else 1208 /* 1209 * Copy the data from userland into a mbuf 1210 * chain. If no data is to be copied in, 1211 * a single empty mbuf is returned. 1212 */ 1213 top = m_uiotombuf(uio, M_WAITOK, space, 1214 (atomic ? max_hdr : 0), 1215 (atomic ? M_PKTHDR : 0) | 1216 ((flags & MSG_EOR) ? M_EOR : 0)); 1217 if (top == NULL) { 1218 error = EFAULT; /* only possible error */ 1219 goto release; 1220 } 1221 space -= resid - uio->uio_resid; 1222 #endif 1223 resid = uio->uio_resid; 1224 } 1225 if (dontroute) { 1226 SOCK_LOCK(so); 1227 so->so_options |= SO_DONTROUTE; 1228 SOCK_UNLOCK(so); 1229 } 1230 /* 1231 * XXX all the SBS_CANTSENDMORE checks previously 1232 * done could be out of date. We could have recieved 1233 * a reset packet in an interrupt or maybe we slept 1234 * while doing page faults in uiomove() etc. We 1235 * could probably recheck again inside the locking 1236 * protection here, but there are probably other 1237 * places that this also happens. We must rethink 1238 * this. 1239 */ 1240 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1241 (flags & MSG_OOB) ? PRUS_OOB : 1242 /* 1243 * If the user set MSG_EOF, the protocol understands 1244 * this flag and nothing left to send then use 1245 * PRU_SEND_EOF instead of PRU_SEND. 1246 */ 1247 ((flags & MSG_EOF) && 1248 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1249 (resid <= 0)) ? 1250 PRUS_EOF : 1251 /* If there is more to send set PRUS_MORETOCOME. */ 1252 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1253 top, addr, control, td); 1254 if (dontroute) { 1255 SOCK_LOCK(so); 1256 so->so_options &= ~SO_DONTROUTE; 1257 SOCK_UNLOCK(so); 1258 } 1259 clen = 0; 1260 control = NULL; 1261 top = NULL; 1262 if (error) 1263 goto release; 1264 } while (resid && space > 0); 1265 } while (resid); 1266 1267 release: 1268 sbunlock(&so->so_snd); 1269 out: 1270 if (top != NULL) 1271 m_freem(top); 1272 if (control != NULL) 1273 m_freem(control); 1274 return (error); 1275 } 1276 1277 int 1278 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, 1279 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1280 { 1281 1282 /* XXXRW: Temporary debugging. */ 1283 KASSERT(so->so_proto->pr_usrreqs->pru_sosend != sosend, 1284 ("sosend: protocol calls sosend")); 1285 1286 return (so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, top, 1287 control, flags, td)); 1288 } 1289 1290 /* 1291 * The part of soreceive() that implements reading non-inline out-of-band 1292 * data from a socket. For more complete comments, see soreceive(), from 1293 * which this code originated. 1294 * 1295 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is 1296 * unable to return an mbuf chain to the caller. 1297 */ 1298 static int 1299 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags) 1300 { 1301 struct protosw *pr = so->so_proto; 1302 struct mbuf *m; 1303 int error; 1304 1305 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); 1306 1307 m = m_get(M_TRYWAIT, MT_DATA); 1308 if (m == NULL) 1309 return (ENOBUFS); 1310 error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK); 1311 if (error) 1312 goto bad; 1313 do { 1314 #ifdef ZERO_COPY_SOCKETS 1315 if (so_zero_copy_receive) { 1316 int disposable; 1317 1318 if ((m->m_flags & M_EXT) 1319 && (m->m_ext.ext_type == EXT_DISPOSABLE)) 1320 disposable = 1; 1321 else 1322 disposable = 0; 1323 1324 error = uiomoveco(mtod(m, void *), 1325 min(uio->uio_resid, m->m_len), 1326 uio, disposable); 1327 } else 1328 #endif /* ZERO_COPY_SOCKETS */ 1329 error = uiomove(mtod(m, void *), 1330 (int) min(uio->uio_resid, m->m_len), uio); 1331 m = m_free(m); 1332 } while (uio->uio_resid && error == 0 && m); 1333 bad: 1334 if (m != NULL) 1335 m_freem(m); 1336 return (error); 1337 } 1338 1339 /* 1340 * Following replacement or removal of the first mbuf on the first mbuf chain 1341 * of a socket buffer, push necessary state changes back into the socket 1342 * buffer so that other consumers see the values consistently. 'nextrecord' 1343 * is the callers locally stored value of the original value of 1344 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. 1345 * NOTE: 'nextrecord' may be NULL. 1346 */ 1347 static __inline void 1348 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) 1349 { 1350 1351 SOCKBUF_LOCK_ASSERT(sb); 1352 /* 1353 * First, update for the new value of nextrecord. If necessary, make 1354 * it the first record. 1355 */ 1356 if (sb->sb_mb != NULL) 1357 sb->sb_mb->m_nextpkt = nextrecord; 1358 else 1359 sb->sb_mb = nextrecord; 1360 1361 /* 1362 * Now update any dependent socket buffer fields to reflect the new 1363 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the 1364 * addition of a second clause that takes care of the case where 1365 * sb_mb has been updated, but remains the last record. 1366 */ 1367 if (sb->sb_mb == NULL) { 1368 sb->sb_mbtail = NULL; 1369 sb->sb_lastrecord = NULL; 1370 } else if (sb->sb_mb->m_nextpkt == NULL) 1371 sb->sb_lastrecord = sb->sb_mb; 1372 } 1373 1374 1375 /* 1376 * Implement receive operations on a socket. We depend on the way that 1377 * records are added to the sockbuf by sbappend. In particular, each record 1378 * (mbufs linked through m_next) must begin with an address if the protocol 1379 * so specifies, followed by an optional mbuf or mbufs containing ancillary 1380 * data, and then zero or more mbufs of data. In order to allow parallelism 1381 * between network receive and copying to user space, as well as avoid 1382 * sleeping with a mutex held, we release the socket buffer mutex during the 1383 * user space copy. Although the sockbuf is locked, new data may still be 1384 * appended, and thus we must maintain consistency of the sockbuf during that 1385 * time. 1386 * 1387 * The caller may receive the data as a single mbuf chain by supplying an 1388 * mbuf **mp0 for use in returning the chain. The uio is then used only for 1389 * the count in uio_resid. 1390 */ 1391 int 1392 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio, 1393 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1394 { 1395 struct mbuf *m, **mp; 1396 int flags, len, error, offset; 1397 struct protosw *pr = so->so_proto; 1398 struct mbuf *nextrecord; 1399 int moff, type = 0; 1400 int orig_resid = uio->uio_resid; 1401 1402 mp = mp0; 1403 if (psa != NULL) 1404 *psa = NULL; 1405 if (controlp != NULL) 1406 *controlp = NULL; 1407 if (flagsp != NULL) 1408 flags = *flagsp &~ MSG_EOR; 1409 else 1410 flags = 0; 1411 if (flags & MSG_OOB) 1412 return (soreceive_rcvoob(so, uio, flags)); 1413 if (mp != NULL) 1414 *mp = NULL; 1415 if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING) 1416 && uio->uio_resid) 1417 (*pr->pr_usrreqs->pru_rcvd)(so, 0); 1418 1419 error = sblock(&so->so_rcv, SBLOCKWAIT(flags)); 1420 if (error) 1421 return (error); 1422 1423 restart: 1424 SOCKBUF_LOCK(&so->so_rcv); 1425 m = so->so_rcv.sb_mb; 1426 /* 1427 * If we have less data than requested, block awaiting more (subject 1428 * to any timeout) if: 1429 * 1. the current count is less than the low water mark, or 1430 * 2. MSG_WAITALL is set, and it is possible to do the entire 1431 * receive operation at once if we block (resid <= hiwat). 1432 * 3. MSG_DONTWAIT is not set 1433 * If MSG_WAITALL is set but resid is larger than the receive buffer, 1434 * we have to do the receive in sections, and thus risk returning a 1435 * short count if a timeout or signal occurs after we start. 1436 */ 1437 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 1438 so->so_rcv.sb_cc < uio->uio_resid) && 1439 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat || 1440 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) && 1441 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 1442 KASSERT(m != NULL || !so->so_rcv.sb_cc, 1443 ("receive: m == %p so->so_rcv.sb_cc == %u", 1444 m, so->so_rcv.sb_cc)); 1445 if (so->so_error) { 1446 if (m != NULL) 1447 goto dontblock; 1448 error = so->so_error; 1449 if ((flags & MSG_PEEK) == 0) 1450 so->so_error = 0; 1451 SOCKBUF_UNLOCK(&so->so_rcv); 1452 goto release; 1453 } 1454 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1455 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 1456 if (m == NULL) { 1457 SOCKBUF_UNLOCK(&so->so_rcv); 1458 goto release; 1459 } else 1460 goto dontblock; 1461 } 1462 for (; m != NULL; m = m->m_next) 1463 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 1464 m = so->so_rcv.sb_mb; 1465 goto dontblock; 1466 } 1467 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 1468 (so->so_proto->pr_flags & PR_CONNREQUIRED)) { 1469 SOCKBUF_UNLOCK(&so->so_rcv); 1470 error = ENOTCONN; 1471 goto release; 1472 } 1473 if (uio->uio_resid == 0) { 1474 SOCKBUF_UNLOCK(&so->so_rcv); 1475 goto release; 1476 } 1477 if ((so->so_state & SS_NBIO) || 1478 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 1479 SOCKBUF_UNLOCK(&so->so_rcv); 1480 error = EWOULDBLOCK; 1481 goto release; 1482 } 1483 SBLASTRECORDCHK(&so->so_rcv); 1484 SBLASTMBUFCHK(&so->so_rcv); 1485 error = sbwait(&so->so_rcv); 1486 SOCKBUF_UNLOCK(&so->so_rcv); 1487 if (error) 1488 goto release; 1489 goto restart; 1490 } 1491 dontblock: 1492 /* 1493 * From this point onward, we maintain 'nextrecord' as a cache of the 1494 * pointer to the next record in the socket buffer. We must keep the 1495 * various socket buffer pointers and local stack versions of the 1496 * pointers in sync, pushing out modifications before dropping the 1497 * socket buffer mutex, and re-reading them when picking it up. 1498 * 1499 * Otherwise, we will race with the network stack appending new data 1500 * or records onto the socket buffer by using inconsistent/stale 1501 * versions of the field, possibly resulting in socket buffer 1502 * corruption. 1503 * 1504 * By holding the high-level sblock(), we prevent simultaneous 1505 * readers from pulling off the front of the socket buffer. 1506 */ 1507 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1508 if (uio->uio_td) 1509 uio->uio_td->td_ru.ru_msgrcv++; 1510 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); 1511 SBLASTRECORDCHK(&so->so_rcv); 1512 SBLASTMBUFCHK(&so->so_rcv); 1513 nextrecord = m->m_nextpkt; 1514 if (pr->pr_flags & PR_ADDR) { 1515 KASSERT(m->m_type == MT_SONAME, 1516 ("m->m_type == %d", m->m_type)); 1517 orig_resid = 0; 1518 if (psa != NULL) 1519 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 1520 M_NOWAIT); 1521 if (flags & MSG_PEEK) { 1522 m = m->m_next; 1523 } else { 1524 sbfree(&so->so_rcv, m); 1525 so->so_rcv.sb_mb = m_free(m); 1526 m = so->so_rcv.sb_mb; 1527 sockbuf_pushsync(&so->so_rcv, nextrecord); 1528 } 1529 } 1530 1531 /* 1532 * Process one or more MT_CONTROL mbufs present before any data mbufs 1533 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 1534 * just copy the data; if !MSG_PEEK, we call into the protocol to 1535 * perform externalization (or freeing if controlp == NULL). 1536 */ 1537 if (m != NULL && m->m_type == MT_CONTROL) { 1538 struct mbuf *cm = NULL, *cmn; 1539 struct mbuf **cme = &cm; 1540 1541 do { 1542 if (flags & MSG_PEEK) { 1543 if (controlp != NULL) { 1544 *controlp = m_copy(m, 0, m->m_len); 1545 controlp = &(*controlp)->m_next; 1546 } 1547 m = m->m_next; 1548 } else { 1549 sbfree(&so->so_rcv, m); 1550 so->so_rcv.sb_mb = m->m_next; 1551 m->m_next = NULL; 1552 *cme = m; 1553 cme = &(*cme)->m_next; 1554 m = so->so_rcv.sb_mb; 1555 } 1556 } while (m != NULL && m->m_type == MT_CONTROL); 1557 if ((flags & MSG_PEEK) == 0) 1558 sockbuf_pushsync(&so->so_rcv, nextrecord); 1559 while (cm != NULL) { 1560 cmn = cm->m_next; 1561 cm->m_next = NULL; 1562 if (pr->pr_domain->dom_externalize != NULL) { 1563 SOCKBUF_UNLOCK(&so->so_rcv); 1564 error = (*pr->pr_domain->dom_externalize) 1565 (cm, controlp); 1566 SOCKBUF_LOCK(&so->so_rcv); 1567 } else if (controlp != NULL) 1568 *controlp = cm; 1569 else 1570 m_freem(cm); 1571 if (controlp != NULL) { 1572 orig_resid = 0; 1573 while (*controlp != NULL) 1574 controlp = &(*controlp)->m_next; 1575 } 1576 cm = cmn; 1577 } 1578 if (m != NULL) 1579 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 1580 else 1581 nextrecord = so->so_rcv.sb_mb; 1582 orig_resid = 0; 1583 } 1584 if (m != NULL) { 1585 if ((flags & MSG_PEEK) == 0) { 1586 KASSERT(m->m_nextpkt == nextrecord, 1587 ("soreceive: post-control, nextrecord !sync")); 1588 if (nextrecord == NULL) { 1589 KASSERT(so->so_rcv.sb_mb == m, 1590 ("soreceive: post-control, sb_mb!=m")); 1591 KASSERT(so->so_rcv.sb_lastrecord == m, 1592 ("soreceive: post-control, lastrecord!=m")); 1593 } 1594 } 1595 type = m->m_type; 1596 if (type == MT_OOBDATA) 1597 flags |= MSG_OOB; 1598 } else { 1599 if ((flags & MSG_PEEK) == 0) { 1600 KASSERT(so->so_rcv.sb_mb == nextrecord, 1601 ("soreceive: sb_mb != nextrecord")); 1602 if (so->so_rcv.sb_mb == NULL) { 1603 KASSERT(so->so_rcv.sb_lastrecord == NULL, 1604 ("soreceive: sb_lastercord != NULL")); 1605 } 1606 } 1607 } 1608 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1609 SBLASTRECORDCHK(&so->so_rcv); 1610 SBLASTMBUFCHK(&so->so_rcv); 1611 1612 /* 1613 * Now continue to read any data mbufs off of the head of the socket 1614 * buffer until the read request is satisfied. Note that 'type' is 1615 * used to store the type of any mbuf reads that have happened so far 1616 * such that soreceive() can stop reading if the type changes, which 1617 * causes soreceive() to return only one of regular data and inline 1618 * out-of-band data in a single socket receive operation. 1619 */ 1620 moff = 0; 1621 offset = 0; 1622 while (m != NULL && uio->uio_resid > 0 && error == 0) { 1623 /* 1624 * If the type of mbuf has changed since the last mbuf 1625 * examined ('type'), end the receive operation. 1626 */ 1627 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1628 if (m->m_type == MT_OOBDATA) { 1629 if (type != MT_OOBDATA) 1630 break; 1631 } else if (type == MT_OOBDATA) 1632 break; 1633 else 1634 KASSERT(m->m_type == MT_DATA, 1635 ("m->m_type == %d", m->m_type)); 1636 so->so_rcv.sb_state &= ~SBS_RCVATMARK; 1637 len = uio->uio_resid; 1638 if (so->so_oobmark && len > so->so_oobmark - offset) 1639 len = so->so_oobmark - offset; 1640 if (len > m->m_len - moff) 1641 len = m->m_len - moff; 1642 /* 1643 * If mp is set, just pass back the mbufs. Otherwise copy 1644 * them out via the uio, then free. Sockbuf must be 1645 * consistent here (points to current mbuf, it points to next 1646 * record) when we drop priority; we must note any additions 1647 * to the sockbuf when we block interrupts again. 1648 */ 1649 if (mp == NULL) { 1650 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1651 SBLASTRECORDCHK(&so->so_rcv); 1652 SBLASTMBUFCHK(&so->so_rcv); 1653 SOCKBUF_UNLOCK(&so->so_rcv); 1654 #ifdef ZERO_COPY_SOCKETS 1655 if (so_zero_copy_receive) { 1656 int disposable; 1657 1658 if ((m->m_flags & M_EXT) 1659 && (m->m_ext.ext_type == EXT_DISPOSABLE)) 1660 disposable = 1; 1661 else 1662 disposable = 0; 1663 1664 error = uiomoveco(mtod(m, char *) + moff, 1665 (int)len, uio, 1666 disposable); 1667 } else 1668 #endif /* ZERO_COPY_SOCKETS */ 1669 error = uiomove(mtod(m, char *) + moff, (int)len, uio); 1670 SOCKBUF_LOCK(&so->so_rcv); 1671 if (error) { 1672 /* 1673 * The MT_SONAME mbuf has already been removed 1674 * from the record, so it is necessary to 1675 * remove the data mbufs, if any, to preserve 1676 * the invariant in the case of PR_ADDR that 1677 * requires MT_SONAME mbufs at the head of 1678 * each record. 1679 */ 1680 if (m && pr->pr_flags & PR_ATOMIC && 1681 ((flags & MSG_PEEK) == 0)) 1682 (void)sbdroprecord_locked(&so->so_rcv); 1683 SOCKBUF_UNLOCK(&so->so_rcv); 1684 goto release; 1685 } 1686 } else 1687 uio->uio_resid -= len; 1688 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1689 if (len == m->m_len - moff) { 1690 if (m->m_flags & M_EOR) 1691 flags |= MSG_EOR; 1692 if (flags & MSG_PEEK) { 1693 m = m->m_next; 1694 moff = 0; 1695 } else { 1696 nextrecord = m->m_nextpkt; 1697 sbfree(&so->so_rcv, m); 1698 if (mp != NULL) { 1699 *mp = m; 1700 mp = &m->m_next; 1701 so->so_rcv.sb_mb = m = m->m_next; 1702 *mp = NULL; 1703 } else { 1704 so->so_rcv.sb_mb = m_free(m); 1705 m = so->so_rcv.sb_mb; 1706 } 1707 sockbuf_pushsync(&so->so_rcv, nextrecord); 1708 SBLASTRECORDCHK(&so->so_rcv); 1709 SBLASTMBUFCHK(&so->so_rcv); 1710 } 1711 } else { 1712 if (flags & MSG_PEEK) 1713 moff += len; 1714 else { 1715 if (mp != NULL) { 1716 int copy_flag; 1717 1718 if (flags & MSG_DONTWAIT) 1719 copy_flag = M_DONTWAIT; 1720 else 1721 copy_flag = M_TRYWAIT; 1722 if (copy_flag == M_TRYWAIT) 1723 SOCKBUF_UNLOCK(&so->so_rcv); 1724 *mp = m_copym(m, 0, len, copy_flag); 1725 if (copy_flag == M_TRYWAIT) 1726 SOCKBUF_LOCK(&so->so_rcv); 1727 if (*mp == NULL) { 1728 /* 1729 * m_copym() couldn't 1730 * allocate an mbuf. Adjust 1731 * uio_resid back (it was 1732 * adjusted down by len 1733 * bytes, which we didn't end 1734 * up "copying" over). 1735 */ 1736 uio->uio_resid += len; 1737 break; 1738 } 1739 } 1740 m->m_data += len; 1741 m->m_len -= len; 1742 so->so_rcv.sb_cc -= len; 1743 } 1744 } 1745 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1746 if (so->so_oobmark) { 1747 if ((flags & MSG_PEEK) == 0) { 1748 so->so_oobmark -= len; 1749 if (so->so_oobmark == 0) { 1750 so->so_rcv.sb_state |= SBS_RCVATMARK; 1751 break; 1752 } 1753 } else { 1754 offset += len; 1755 if (offset == so->so_oobmark) 1756 break; 1757 } 1758 } 1759 if (flags & MSG_EOR) 1760 break; 1761 /* 1762 * If the MSG_WAITALL flag is set (for non-atomic socket), we 1763 * must not quit until "uio->uio_resid == 0" or an error 1764 * termination. If a signal/timeout occurs, return with a 1765 * short count but without error. Keep sockbuf locked 1766 * against other readers. 1767 */ 1768 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 1769 !sosendallatonce(so) && nextrecord == NULL) { 1770 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1771 if (so->so_error || so->so_rcv.sb_state & SBS_CANTRCVMORE) 1772 break; 1773 /* 1774 * Notify the protocol that some data has been 1775 * drained before blocking. 1776 */ 1777 if (pr->pr_flags & PR_WANTRCVD) { 1778 SOCKBUF_UNLOCK(&so->so_rcv); 1779 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 1780 SOCKBUF_LOCK(&so->so_rcv); 1781 } 1782 SBLASTRECORDCHK(&so->so_rcv); 1783 SBLASTMBUFCHK(&so->so_rcv); 1784 error = sbwait(&so->so_rcv); 1785 if (error) { 1786 SOCKBUF_UNLOCK(&so->so_rcv); 1787 goto release; 1788 } 1789 m = so->so_rcv.sb_mb; 1790 if (m != NULL) 1791 nextrecord = m->m_nextpkt; 1792 } 1793 } 1794 1795 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1796 if (m != NULL && pr->pr_flags & PR_ATOMIC) { 1797 flags |= MSG_TRUNC; 1798 if ((flags & MSG_PEEK) == 0) 1799 (void) sbdroprecord_locked(&so->so_rcv); 1800 } 1801 if ((flags & MSG_PEEK) == 0) { 1802 if (m == NULL) { 1803 /* 1804 * First part is an inline SB_EMPTY_FIXUP(). Second 1805 * part makes sure sb_lastrecord is up-to-date if 1806 * there is still data in the socket buffer. 1807 */ 1808 so->so_rcv.sb_mb = nextrecord; 1809 if (so->so_rcv.sb_mb == NULL) { 1810 so->so_rcv.sb_mbtail = NULL; 1811 so->so_rcv.sb_lastrecord = NULL; 1812 } else if (nextrecord->m_nextpkt == NULL) 1813 so->so_rcv.sb_lastrecord = nextrecord; 1814 } 1815 SBLASTRECORDCHK(&so->so_rcv); 1816 SBLASTMBUFCHK(&so->so_rcv); 1817 /* 1818 * If soreceive() is being done from the socket callback, 1819 * then don't need to generate ACK to peer to update window, 1820 * since ACK will be generated on return to TCP. 1821 */ 1822 if (!(flags & MSG_SOCALLBCK) && 1823 (pr->pr_flags & PR_WANTRCVD)) { 1824 SOCKBUF_UNLOCK(&so->so_rcv); 1825 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 1826 SOCKBUF_LOCK(&so->so_rcv); 1827 } 1828 } 1829 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1830 if (orig_resid == uio->uio_resid && orig_resid && 1831 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { 1832 SOCKBUF_UNLOCK(&so->so_rcv); 1833 goto restart; 1834 } 1835 SOCKBUF_UNLOCK(&so->so_rcv); 1836 1837 if (flagsp != NULL) 1838 *flagsp |= flags; 1839 release: 1840 sbunlock(&so->so_rcv); 1841 return (error); 1842 } 1843 1844 int 1845 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, 1846 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1847 { 1848 1849 /* XXXRW: Temporary debugging. */ 1850 KASSERT(so->so_proto->pr_usrreqs->pru_soreceive != soreceive, 1851 ("soreceive: protocol calls soreceive")); 1852 1853 return (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, mp0, 1854 controlp, flagsp)); 1855 } 1856 1857 int 1858 soshutdown(struct socket *so, int how) 1859 { 1860 struct protosw *pr = so->so_proto; 1861 1862 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 1863 return (EINVAL); 1864 1865 if (how != SHUT_WR) 1866 sorflush(so); 1867 if (how != SHUT_RD) 1868 return ((*pr->pr_usrreqs->pru_shutdown)(so)); 1869 return (0); 1870 } 1871 1872 void 1873 sorflush(struct socket *so) 1874 { 1875 struct sockbuf *sb = &so->so_rcv; 1876 struct protosw *pr = so->so_proto; 1877 struct sockbuf asb; 1878 1879 /* 1880 * XXXRW: This is quite ugly. Previously, this code made a copy of 1881 * the socket buffer, then zero'd the original to clear the buffer 1882 * fields. However, with mutexes in the socket buffer, this causes 1883 * problems. We only clear the zeroable bits of the original; 1884 * however, we have to initialize and destroy the mutex in the copy 1885 * so that dom_dispose() and sbrelease() can lock t as needed. 1886 */ 1887 (void) sblock(sb, M_WAITOK); 1888 SOCKBUF_LOCK(sb); 1889 sb->sb_flags |= SB_NOINTR; 1890 socantrcvmore_locked(so); 1891 /* 1892 * Invalidate/clear most of the sockbuf structure, but leave selinfo 1893 * and mutex data unchanged. 1894 */ 1895 SOCKBUF_LOCK(sb); 1896 bzero(&asb, offsetof(struct sockbuf, sb_startzero)); 1897 bcopy(&sb->sb_startzero, &asb.sb_startzero, 1898 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 1899 bzero(&sb->sb_startzero, 1900 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 1901 SOCKBUF_UNLOCK(sb); 1902 sbunlock(sb); 1903 1904 SOCKBUF_LOCK_INIT(&asb, "so_rcv"); 1905 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 1906 (*pr->pr_domain->dom_dispose)(asb.sb_mb); 1907 sbrelease(&asb, so); 1908 SOCKBUF_LOCK_DESTROY(&asb); 1909 } 1910 1911 /* 1912 * Perhaps this routine, and sooptcopyout(), below, ought to come in an 1913 * additional variant to handle the case where the option value needs to be 1914 * some kind of integer, but not a specific size. In addition to their use 1915 * here, these functions are also called by the protocol-level pr_ctloutput() 1916 * routines. 1917 */ 1918 int 1919 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen) 1920 { 1921 size_t valsize; 1922 1923 /* 1924 * If the user gives us more than we wanted, we ignore it, but if we 1925 * don't get the minimum length the caller wants, we return EINVAL. 1926 * On success, sopt->sopt_valsize is set to however much we actually 1927 * retrieved. 1928 */ 1929 if ((valsize = sopt->sopt_valsize) < minlen) 1930 return EINVAL; 1931 if (valsize > len) 1932 sopt->sopt_valsize = valsize = len; 1933 1934 if (sopt->sopt_td != NULL) 1935 return (copyin(sopt->sopt_val, buf, valsize)); 1936 1937 bcopy(sopt->sopt_val, buf, valsize); 1938 return (0); 1939 } 1940 1941 /* 1942 * Kernel version of setsockopt(2). 1943 * 1944 * XXX: optlen is size_t, not socklen_t 1945 */ 1946 int 1947 so_setsockopt(struct socket *so, int level, int optname, void *optval, 1948 size_t optlen) 1949 { 1950 struct sockopt sopt; 1951 1952 sopt.sopt_level = level; 1953 sopt.sopt_name = optname; 1954 sopt.sopt_dir = SOPT_SET; 1955 sopt.sopt_val = optval; 1956 sopt.sopt_valsize = optlen; 1957 sopt.sopt_td = NULL; 1958 return (sosetopt(so, &sopt)); 1959 } 1960 1961 int 1962 sosetopt(struct socket *so, struct sockopt *sopt) 1963 { 1964 int error, optval; 1965 struct linger l; 1966 struct timeval tv; 1967 u_long val; 1968 #ifdef MAC 1969 struct mac extmac; 1970 #endif 1971 1972 error = 0; 1973 if (sopt->sopt_level != SOL_SOCKET) { 1974 if (so->so_proto && so->so_proto->pr_ctloutput) 1975 return ((*so->so_proto->pr_ctloutput) 1976 (so, sopt)); 1977 error = ENOPROTOOPT; 1978 } else { 1979 switch (sopt->sopt_name) { 1980 #ifdef INET 1981 case SO_ACCEPTFILTER: 1982 error = do_setopt_accept_filter(so, sopt); 1983 if (error) 1984 goto bad; 1985 break; 1986 #endif 1987 case SO_LINGER: 1988 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 1989 if (error) 1990 goto bad; 1991 1992 SOCK_LOCK(so); 1993 so->so_linger = l.l_linger; 1994 if (l.l_onoff) 1995 so->so_options |= SO_LINGER; 1996 else 1997 so->so_options &= ~SO_LINGER; 1998 SOCK_UNLOCK(so); 1999 break; 2000 2001 case SO_DEBUG: 2002 case SO_KEEPALIVE: 2003 case SO_DONTROUTE: 2004 case SO_USELOOPBACK: 2005 case SO_BROADCAST: 2006 case SO_REUSEADDR: 2007 case SO_REUSEPORT: 2008 case SO_OOBINLINE: 2009 case SO_TIMESTAMP: 2010 case SO_BINTIME: 2011 case SO_NOSIGPIPE: 2012 error = sooptcopyin(sopt, &optval, sizeof optval, 2013 sizeof optval); 2014 if (error) 2015 goto bad; 2016 SOCK_LOCK(so); 2017 if (optval) 2018 so->so_options |= sopt->sopt_name; 2019 else 2020 so->so_options &= ~sopt->sopt_name; 2021 SOCK_UNLOCK(so); 2022 break; 2023 2024 case SO_SNDBUF: 2025 case SO_RCVBUF: 2026 case SO_SNDLOWAT: 2027 case SO_RCVLOWAT: 2028 error = sooptcopyin(sopt, &optval, sizeof optval, 2029 sizeof optval); 2030 if (error) 2031 goto bad; 2032 2033 /* 2034 * Values < 1 make no sense for any of these options, 2035 * so disallow them. 2036 */ 2037 if (optval < 1) { 2038 error = EINVAL; 2039 goto bad; 2040 } 2041 2042 switch (sopt->sopt_name) { 2043 case SO_SNDBUF: 2044 case SO_RCVBUF: 2045 if (sbreserve(sopt->sopt_name == SO_SNDBUF ? 2046 &so->so_snd : &so->so_rcv, (u_long)optval, 2047 so, curthread) == 0) { 2048 error = ENOBUFS; 2049 goto bad; 2050 } 2051 (sopt->sopt_name == SO_SNDBUF ? &so->so_snd : 2052 &so->so_rcv)->sb_flags &= ~SB_AUTOSIZE; 2053 break; 2054 2055 /* 2056 * Make sure the low-water is never greater than the 2057 * high-water. 2058 */ 2059 case SO_SNDLOWAT: 2060 SOCKBUF_LOCK(&so->so_snd); 2061 so->so_snd.sb_lowat = 2062 (optval > so->so_snd.sb_hiwat) ? 2063 so->so_snd.sb_hiwat : optval; 2064 SOCKBUF_UNLOCK(&so->so_snd); 2065 break; 2066 case SO_RCVLOWAT: 2067 SOCKBUF_LOCK(&so->so_rcv); 2068 so->so_rcv.sb_lowat = 2069 (optval > so->so_rcv.sb_hiwat) ? 2070 so->so_rcv.sb_hiwat : optval; 2071 SOCKBUF_UNLOCK(&so->so_rcv); 2072 break; 2073 } 2074 break; 2075 2076 case SO_SNDTIMEO: 2077 case SO_RCVTIMEO: 2078 #ifdef COMPAT_IA32 2079 if (curthread->td_proc->p_sysent == &ia32_freebsd_sysvec) { 2080 struct timeval32 tv32; 2081 2082 error = sooptcopyin(sopt, &tv32, sizeof tv32, 2083 sizeof tv32); 2084 CP(tv32, tv, tv_sec); 2085 CP(tv32, tv, tv_usec); 2086 } else 2087 #endif 2088 error = sooptcopyin(sopt, &tv, sizeof tv, 2089 sizeof tv); 2090 if (error) 2091 goto bad; 2092 2093 /* assert(hz > 0); */ 2094 if (tv.tv_sec < 0 || tv.tv_sec > INT_MAX / hz || 2095 tv.tv_usec < 0 || tv.tv_usec >= 1000000) { 2096 error = EDOM; 2097 goto bad; 2098 } 2099 /* assert(tick > 0); */ 2100 /* assert(ULONG_MAX - INT_MAX >= 1000000); */ 2101 val = (u_long)(tv.tv_sec * hz) + tv.tv_usec / tick; 2102 if (val > INT_MAX) { 2103 error = EDOM; 2104 goto bad; 2105 } 2106 if (val == 0 && tv.tv_usec != 0) 2107 val = 1; 2108 2109 switch (sopt->sopt_name) { 2110 case SO_SNDTIMEO: 2111 so->so_snd.sb_timeo = val; 2112 break; 2113 case SO_RCVTIMEO: 2114 so->so_rcv.sb_timeo = val; 2115 break; 2116 } 2117 break; 2118 2119 case SO_LABEL: 2120 #ifdef MAC 2121 error = sooptcopyin(sopt, &extmac, sizeof extmac, 2122 sizeof extmac); 2123 if (error) 2124 goto bad; 2125 error = mac_setsockopt_label(sopt->sopt_td->td_ucred, 2126 so, &extmac); 2127 #else 2128 error = EOPNOTSUPP; 2129 #endif 2130 break; 2131 2132 default: 2133 error = ENOPROTOOPT; 2134 break; 2135 } 2136 if (error == 0 && so->so_proto != NULL && 2137 so->so_proto->pr_ctloutput != NULL) { 2138 (void) ((*so->so_proto->pr_ctloutput) 2139 (so, sopt)); 2140 } 2141 } 2142 bad: 2143 return (error); 2144 } 2145 2146 /* 2147 * Helper routine for getsockopt. 2148 */ 2149 int 2150 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 2151 { 2152 int error; 2153 size_t valsize; 2154 2155 error = 0; 2156 2157 /* 2158 * Documented get behavior is that we always return a value, possibly 2159 * truncated to fit in the user's buffer. Traditional behavior is 2160 * that we always tell the user precisely how much we copied, rather 2161 * than something useful like the total amount we had available for 2162 * her. Note that this interface is not idempotent; the entire 2163 * answer must generated ahead of time. 2164 */ 2165 valsize = min(len, sopt->sopt_valsize); 2166 sopt->sopt_valsize = valsize; 2167 if (sopt->sopt_val != NULL) { 2168 if (sopt->sopt_td != NULL) 2169 error = copyout(buf, sopt->sopt_val, valsize); 2170 else 2171 bcopy(buf, sopt->sopt_val, valsize); 2172 } 2173 return (error); 2174 } 2175 2176 int 2177 sogetopt(struct socket *so, struct sockopt *sopt) 2178 { 2179 int error, optval; 2180 struct linger l; 2181 struct timeval tv; 2182 #ifdef MAC 2183 struct mac extmac; 2184 #endif 2185 2186 error = 0; 2187 if (sopt->sopt_level != SOL_SOCKET) { 2188 if (so->so_proto && so->so_proto->pr_ctloutput) { 2189 return ((*so->so_proto->pr_ctloutput) 2190 (so, sopt)); 2191 } else 2192 return (ENOPROTOOPT); 2193 } else { 2194 switch (sopt->sopt_name) { 2195 #ifdef INET 2196 case SO_ACCEPTFILTER: 2197 error = do_getopt_accept_filter(so, sopt); 2198 break; 2199 #endif 2200 case SO_LINGER: 2201 SOCK_LOCK(so); 2202 l.l_onoff = so->so_options & SO_LINGER; 2203 l.l_linger = so->so_linger; 2204 SOCK_UNLOCK(so); 2205 error = sooptcopyout(sopt, &l, sizeof l); 2206 break; 2207 2208 case SO_USELOOPBACK: 2209 case SO_DONTROUTE: 2210 case SO_DEBUG: 2211 case SO_KEEPALIVE: 2212 case SO_REUSEADDR: 2213 case SO_REUSEPORT: 2214 case SO_BROADCAST: 2215 case SO_OOBINLINE: 2216 case SO_ACCEPTCONN: 2217 case SO_TIMESTAMP: 2218 case SO_BINTIME: 2219 case SO_NOSIGPIPE: 2220 optval = so->so_options & sopt->sopt_name; 2221 integer: 2222 error = sooptcopyout(sopt, &optval, sizeof optval); 2223 break; 2224 2225 case SO_TYPE: 2226 optval = so->so_type; 2227 goto integer; 2228 2229 case SO_ERROR: 2230 SOCK_LOCK(so); 2231 optval = so->so_error; 2232 so->so_error = 0; 2233 SOCK_UNLOCK(so); 2234 goto integer; 2235 2236 case SO_SNDBUF: 2237 optval = so->so_snd.sb_hiwat; 2238 goto integer; 2239 2240 case SO_RCVBUF: 2241 optval = so->so_rcv.sb_hiwat; 2242 goto integer; 2243 2244 case SO_SNDLOWAT: 2245 optval = so->so_snd.sb_lowat; 2246 goto integer; 2247 2248 case SO_RCVLOWAT: 2249 optval = so->so_rcv.sb_lowat; 2250 goto integer; 2251 2252 case SO_SNDTIMEO: 2253 case SO_RCVTIMEO: 2254 optval = (sopt->sopt_name == SO_SNDTIMEO ? 2255 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 2256 2257 tv.tv_sec = optval / hz; 2258 tv.tv_usec = (optval % hz) * tick; 2259 #ifdef COMPAT_IA32 2260 if (curthread->td_proc->p_sysent == &ia32_freebsd_sysvec) { 2261 struct timeval32 tv32; 2262 2263 CP(tv, tv32, tv_sec); 2264 CP(tv, tv32, tv_usec); 2265 error = sooptcopyout(sopt, &tv32, sizeof tv32); 2266 } else 2267 #endif 2268 error = sooptcopyout(sopt, &tv, sizeof tv); 2269 break; 2270 2271 case SO_LABEL: 2272 #ifdef MAC 2273 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 2274 sizeof(extmac)); 2275 if (error) 2276 return (error); 2277 error = mac_getsockopt_label(sopt->sopt_td->td_ucred, 2278 so, &extmac); 2279 if (error) 2280 return (error); 2281 error = sooptcopyout(sopt, &extmac, sizeof extmac); 2282 #else 2283 error = EOPNOTSUPP; 2284 #endif 2285 break; 2286 2287 case SO_PEERLABEL: 2288 #ifdef MAC 2289 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 2290 sizeof(extmac)); 2291 if (error) 2292 return (error); 2293 error = mac_getsockopt_peerlabel( 2294 sopt->sopt_td->td_ucred, so, &extmac); 2295 if (error) 2296 return (error); 2297 error = sooptcopyout(sopt, &extmac, sizeof extmac); 2298 #else 2299 error = EOPNOTSUPP; 2300 #endif 2301 break; 2302 2303 case SO_LISTENQLIMIT: 2304 optval = so->so_qlimit; 2305 goto integer; 2306 2307 case SO_LISTENQLEN: 2308 optval = so->so_qlen; 2309 goto integer; 2310 2311 case SO_LISTENINCQLEN: 2312 optval = so->so_incqlen; 2313 goto integer; 2314 2315 default: 2316 error = ENOPROTOOPT; 2317 break; 2318 } 2319 return (error); 2320 } 2321 } 2322 2323 /* XXX; prepare mbuf for (__FreeBSD__ < 3) routines. */ 2324 int 2325 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 2326 { 2327 struct mbuf *m, *m_prev; 2328 int sopt_size = sopt->sopt_valsize; 2329 2330 MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA); 2331 if (m == NULL) 2332 return ENOBUFS; 2333 if (sopt_size > MLEN) { 2334 MCLGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT); 2335 if ((m->m_flags & M_EXT) == 0) { 2336 m_free(m); 2337 return ENOBUFS; 2338 } 2339 m->m_len = min(MCLBYTES, sopt_size); 2340 } else { 2341 m->m_len = min(MLEN, sopt_size); 2342 } 2343 sopt_size -= m->m_len; 2344 *mp = m; 2345 m_prev = m; 2346 2347 while (sopt_size) { 2348 MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA); 2349 if (m == NULL) { 2350 m_freem(*mp); 2351 return ENOBUFS; 2352 } 2353 if (sopt_size > MLEN) { 2354 MCLGET(m, sopt->sopt_td != NULL ? M_TRYWAIT : 2355 M_DONTWAIT); 2356 if ((m->m_flags & M_EXT) == 0) { 2357 m_freem(m); 2358 m_freem(*mp); 2359 return ENOBUFS; 2360 } 2361 m->m_len = min(MCLBYTES, sopt_size); 2362 } else { 2363 m->m_len = min(MLEN, sopt_size); 2364 } 2365 sopt_size -= m->m_len; 2366 m_prev->m_next = m; 2367 m_prev = m; 2368 } 2369 return (0); 2370 } 2371 2372 /* XXX; copyin sopt data into mbuf chain for (__FreeBSD__ < 3) routines. */ 2373 int 2374 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 2375 { 2376 struct mbuf *m0 = m; 2377 2378 if (sopt->sopt_val == NULL) 2379 return (0); 2380 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 2381 if (sopt->sopt_td != NULL) { 2382 int error; 2383 2384 error = copyin(sopt->sopt_val, mtod(m, char *), 2385 m->m_len); 2386 if (error != 0) { 2387 m_freem(m0); 2388 return(error); 2389 } 2390 } else 2391 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 2392 sopt->sopt_valsize -= m->m_len; 2393 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 2394 m = m->m_next; 2395 } 2396 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 2397 panic("ip6_sooptmcopyin"); 2398 return (0); 2399 } 2400 2401 /* XXX; copyout mbuf chain data into soopt for (__FreeBSD__ < 3) routines. */ 2402 int 2403 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 2404 { 2405 struct mbuf *m0 = m; 2406 size_t valsize = 0; 2407 2408 if (sopt->sopt_val == NULL) 2409 return (0); 2410 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 2411 if (sopt->sopt_td != NULL) { 2412 int error; 2413 2414 error = copyout(mtod(m, char *), sopt->sopt_val, 2415 m->m_len); 2416 if (error != 0) { 2417 m_freem(m0); 2418 return(error); 2419 } 2420 } else 2421 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 2422 sopt->sopt_valsize -= m->m_len; 2423 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 2424 valsize += m->m_len; 2425 m = m->m_next; 2426 } 2427 if (m != NULL) { 2428 /* enough soopt buffer should be given from user-land */ 2429 m_freem(m0); 2430 return(EINVAL); 2431 } 2432 sopt->sopt_valsize = valsize; 2433 return (0); 2434 } 2435 2436 /* 2437 * sohasoutofband(): protocol notifies socket layer of the arrival of new 2438 * out-of-band data, which will then notify socket consumers. 2439 */ 2440 void 2441 sohasoutofband(struct socket *so) 2442 { 2443 2444 if (so->so_sigio != NULL) 2445 pgsigio(&so->so_sigio, SIGURG, 0); 2446 selwakeuppri(&so->so_rcv.sb_sel, PSOCK); 2447 } 2448 2449 int 2450 sopoll(struct socket *so, int events, struct ucred *active_cred, 2451 struct thread *td) 2452 { 2453 2454 /* XXXRW: Temporary debugging. */ 2455 KASSERT(so->so_proto->pr_usrreqs->pru_sopoll != sopoll, 2456 ("sopoll: protocol calls sopoll")); 2457 2458 return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred, 2459 td)); 2460 } 2461 2462 int 2463 sopoll_generic(struct socket *so, int events, struct ucred *active_cred, 2464 struct thread *td) 2465 { 2466 int revents = 0; 2467 2468 SOCKBUF_LOCK(&so->so_snd); 2469 SOCKBUF_LOCK(&so->so_rcv); 2470 if (events & (POLLIN | POLLRDNORM)) 2471 if (soreadable(so)) 2472 revents |= events & (POLLIN | POLLRDNORM); 2473 2474 if (events & POLLINIGNEOF) 2475 if (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat || 2476 !TAILQ_EMPTY(&so->so_comp) || so->so_error) 2477 revents |= POLLINIGNEOF; 2478 2479 if (events & (POLLOUT | POLLWRNORM)) 2480 if (sowriteable(so)) 2481 revents |= events & (POLLOUT | POLLWRNORM); 2482 2483 if (events & (POLLPRI | POLLRDBAND)) 2484 if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK)) 2485 revents |= events & (POLLPRI | POLLRDBAND); 2486 2487 if (revents == 0) { 2488 if (events & 2489 (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | 2490 POLLRDBAND)) { 2491 selrecord(td, &so->so_rcv.sb_sel); 2492 so->so_rcv.sb_flags |= SB_SEL; 2493 } 2494 2495 if (events & (POLLOUT | POLLWRNORM)) { 2496 selrecord(td, &so->so_snd.sb_sel); 2497 so->so_snd.sb_flags |= SB_SEL; 2498 } 2499 } 2500 2501 SOCKBUF_UNLOCK(&so->so_rcv); 2502 SOCKBUF_UNLOCK(&so->so_snd); 2503 return (revents); 2504 } 2505 2506 int 2507 soo_kqfilter(struct file *fp, struct knote *kn) 2508 { 2509 struct socket *so = kn->kn_fp->f_data; 2510 struct sockbuf *sb; 2511 2512 switch (kn->kn_filter) { 2513 case EVFILT_READ: 2514 if (so->so_options & SO_ACCEPTCONN) 2515 kn->kn_fop = &solisten_filtops; 2516 else 2517 kn->kn_fop = &soread_filtops; 2518 sb = &so->so_rcv; 2519 break; 2520 case EVFILT_WRITE: 2521 kn->kn_fop = &sowrite_filtops; 2522 sb = &so->so_snd; 2523 break; 2524 default: 2525 return (EINVAL); 2526 } 2527 2528 SOCKBUF_LOCK(sb); 2529 knlist_add(&sb->sb_sel.si_note, kn, 1); 2530 sb->sb_flags |= SB_KNOTE; 2531 SOCKBUF_UNLOCK(sb); 2532 return (0); 2533 } 2534 2535 /* 2536 * Some routines that return EOPNOTSUPP for entry points that are not 2537 * supported by a protocol. Fill in as needed. 2538 */ 2539 int 2540 pru_accept_notsupp(struct socket *so, struct sockaddr **nam) 2541 { 2542 2543 return EOPNOTSUPP; 2544 } 2545 2546 int 2547 pru_attach_notsupp(struct socket *so, int proto, struct thread *td) 2548 { 2549 2550 return EOPNOTSUPP; 2551 } 2552 2553 int 2554 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 2555 { 2556 2557 return EOPNOTSUPP; 2558 } 2559 2560 int 2561 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 2562 { 2563 2564 return EOPNOTSUPP; 2565 } 2566 2567 int 2568 pru_connect2_notsupp(struct socket *so1, struct socket *so2) 2569 { 2570 2571 return EOPNOTSUPP; 2572 } 2573 2574 int 2575 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, 2576 struct ifnet *ifp, struct thread *td) 2577 { 2578 2579 return EOPNOTSUPP; 2580 } 2581 2582 int 2583 pru_disconnect_notsupp(struct socket *so) 2584 { 2585 2586 return EOPNOTSUPP; 2587 } 2588 2589 int 2590 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td) 2591 { 2592 2593 return EOPNOTSUPP; 2594 } 2595 2596 int 2597 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam) 2598 { 2599 2600 return EOPNOTSUPP; 2601 } 2602 2603 int 2604 pru_rcvd_notsupp(struct socket *so, int flags) 2605 { 2606 2607 return EOPNOTSUPP; 2608 } 2609 2610 int 2611 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) 2612 { 2613 2614 return EOPNOTSUPP; 2615 } 2616 2617 int 2618 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m, 2619 struct sockaddr *addr, struct mbuf *control, struct thread *td) 2620 { 2621 2622 return EOPNOTSUPP; 2623 } 2624 2625 /* 2626 * This isn't really a ``null'' operation, but it's the default one and 2627 * doesn't do anything destructive. 2628 */ 2629 int 2630 pru_sense_null(struct socket *so, struct stat *sb) 2631 { 2632 2633 sb->st_blksize = so->so_snd.sb_hiwat; 2634 return 0; 2635 } 2636 2637 int 2638 pru_shutdown_notsupp(struct socket *so) 2639 { 2640 2641 return EOPNOTSUPP; 2642 } 2643 2644 int 2645 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam) 2646 { 2647 2648 return EOPNOTSUPP; 2649 } 2650 2651 int 2652 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio, 2653 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 2654 { 2655 2656 return EOPNOTSUPP; 2657 } 2658 2659 int 2660 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr, 2661 struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2662 { 2663 2664 return EOPNOTSUPP; 2665 } 2666 2667 int 2668 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred, 2669 struct thread *td) 2670 { 2671 2672 return EOPNOTSUPP; 2673 } 2674 2675 static void 2676 filt_sordetach(struct knote *kn) 2677 { 2678 struct socket *so = kn->kn_fp->f_data; 2679 2680 SOCKBUF_LOCK(&so->so_rcv); 2681 knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1); 2682 if (knlist_empty(&so->so_rcv.sb_sel.si_note)) 2683 so->so_rcv.sb_flags &= ~SB_KNOTE; 2684 SOCKBUF_UNLOCK(&so->so_rcv); 2685 } 2686 2687 /*ARGSUSED*/ 2688 static int 2689 filt_soread(struct knote *kn, long hint) 2690 { 2691 struct socket *so; 2692 2693 so = kn->kn_fp->f_data; 2694 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2695 2696 kn->kn_data = so->so_rcv.sb_cc - so->so_rcv.sb_ctl; 2697 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 2698 kn->kn_flags |= EV_EOF; 2699 kn->kn_fflags = so->so_error; 2700 return (1); 2701 } else if (so->so_error) /* temporary udp error */ 2702 return (1); 2703 else if (kn->kn_sfflags & NOTE_LOWAT) 2704 return (kn->kn_data >= kn->kn_sdata); 2705 else 2706 return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat); 2707 } 2708 2709 static void 2710 filt_sowdetach(struct knote *kn) 2711 { 2712 struct socket *so = kn->kn_fp->f_data; 2713 2714 SOCKBUF_LOCK(&so->so_snd); 2715 knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1); 2716 if (knlist_empty(&so->so_snd.sb_sel.si_note)) 2717 so->so_snd.sb_flags &= ~SB_KNOTE; 2718 SOCKBUF_UNLOCK(&so->so_snd); 2719 } 2720 2721 /*ARGSUSED*/ 2722 static int 2723 filt_sowrite(struct knote *kn, long hint) 2724 { 2725 struct socket *so; 2726 2727 so = kn->kn_fp->f_data; 2728 SOCKBUF_LOCK_ASSERT(&so->so_snd); 2729 kn->kn_data = sbspace(&so->so_snd); 2730 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 2731 kn->kn_flags |= EV_EOF; 2732 kn->kn_fflags = so->so_error; 2733 return (1); 2734 } else if (so->so_error) /* temporary udp error */ 2735 return (1); 2736 else if (((so->so_state & SS_ISCONNECTED) == 0) && 2737 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 2738 return (0); 2739 else if (kn->kn_sfflags & NOTE_LOWAT) 2740 return (kn->kn_data >= kn->kn_sdata); 2741 else 2742 return (kn->kn_data >= so->so_snd.sb_lowat); 2743 } 2744 2745 /*ARGSUSED*/ 2746 static int 2747 filt_solisten(struct knote *kn, long hint) 2748 { 2749 struct socket *so = kn->kn_fp->f_data; 2750 2751 kn->kn_data = so->so_qlen; 2752 return (! TAILQ_EMPTY(&so->so_comp)); 2753 } 2754 2755 int 2756 socheckuid(struct socket *so, uid_t uid) 2757 { 2758 2759 if (so == NULL) 2760 return (EPERM); 2761 if (so->so_cred->cr_uid != uid) 2762 return (EPERM); 2763 return (0); 2764 } 2765 2766 static int 2767 sysctl_somaxconn(SYSCTL_HANDLER_ARGS) 2768 { 2769 int error; 2770 int val; 2771 2772 val = somaxconn; 2773 error = sysctl_handle_int(oidp, &val, 0, req); 2774 if (error || !req->newptr ) 2775 return (error); 2776 2777 if (val < 1 || val > USHRT_MAX) 2778 return (EINVAL); 2779 2780 somaxconn = val; 2781 return (0); 2782 } 2783 2784 /* 2785 * These functions are used by protocols to notify the socket layer (and its 2786 * consumers) of state changes in the sockets driven by protocol-side events. 2787 */ 2788 2789 /* 2790 * Procedures to manipulate state flags of socket and do appropriate wakeups. 2791 * 2792 * Normal sequence from the active (originating) side is that 2793 * soisconnecting() is called during processing of connect() call, resulting 2794 * in an eventual call to soisconnected() if/when the connection is 2795 * established. When the connection is torn down soisdisconnecting() is 2796 * called during processing of disconnect() call, and soisdisconnected() is 2797 * called when the connection to the peer is totally severed. The semantics 2798 * of these routines are such that connectionless protocols can call 2799 * soisconnected() and soisdisconnected() only, bypassing the in-progress 2800 * calls when setting up a ``connection'' takes no time. 2801 * 2802 * From the passive side, a socket is created with two queues of sockets: 2803 * so_incomp for connections in progress and so_comp for connections already 2804 * made and awaiting user acceptance. As a protocol is preparing incoming 2805 * connections, it creates a socket structure queued on so_incomp by calling 2806 * sonewconn(). When the connection is established, soisconnected() is 2807 * called, and transfers the socket structure to so_comp, making it available 2808 * to accept(). 2809 * 2810 * If a socket is closed with sockets on either so_incomp or so_comp, these 2811 * sockets are dropped. 2812 * 2813 * If higher-level protocols are implemented in the kernel, the wakeups done 2814 * here will sometimes cause software-interrupt process scheduling. 2815 */ 2816 void 2817 soisconnecting(struct socket *so) 2818 { 2819 2820 SOCK_LOCK(so); 2821 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 2822 so->so_state |= SS_ISCONNECTING; 2823 SOCK_UNLOCK(so); 2824 } 2825 2826 void 2827 soisconnected(struct socket *so) 2828 { 2829 struct socket *head; 2830 2831 ACCEPT_LOCK(); 2832 SOCK_LOCK(so); 2833 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 2834 so->so_state |= SS_ISCONNECTED; 2835 head = so->so_head; 2836 if (head != NULL && (so->so_qstate & SQ_INCOMP)) { 2837 if ((so->so_options & SO_ACCEPTFILTER) == 0) { 2838 SOCK_UNLOCK(so); 2839 TAILQ_REMOVE(&head->so_incomp, so, so_list); 2840 head->so_incqlen--; 2841 so->so_qstate &= ~SQ_INCOMP; 2842 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 2843 head->so_qlen++; 2844 so->so_qstate |= SQ_COMP; 2845 ACCEPT_UNLOCK(); 2846 sorwakeup(head); 2847 wakeup_one(&head->so_timeo); 2848 } else { 2849 ACCEPT_UNLOCK(); 2850 so->so_upcall = 2851 head->so_accf->so_accept_filter->accf_callback; 2852 so->so_upcallarg = head->so_accf->so_accept_filter_arg; 2853 so->so_rcv.sb_flags |= SB_UPCALL; 2854 so->so_options &= ~SO_ACCEPTFILTER; 2855 SOCK_UNLOCK(so); 2856 so->so_upcall(so, so->so_upcallarg, M_DONTWAIT); 2857 } 2858 return; 2859 } 2860 SOCK_UNLOCK(so); 2861 ACCEPT_UNLOCK(); 2862 wakeup(&so->so_timeo); 2863 sorwakeup(so); 2864 sowwakeup(so); 2865 } 2866 2867 void 2868 soisdisconnecting(struct socket *so) 2869 { 2870 2871 /* 2872 * Note: This code assumes that SOCK_LOCK(so) and 2873 * SOCKBUF_LOCK(&so->so_rcv) are the same. 2874 */ 2875 SOCKBUF_LOCK(&so->so_rcv); 2876 so->so_state &= ~SS_ISCONNECTING; 2877 so->so_state |= SS_ISDISCONNECTING; 2878 so->so_rcv.sb_state |= SBS_CANTRCVMORE; 2879 sorwakeup_locked(so); 2880 SOCKBUF_LOCK(&so->so_snd); 2881 so->so_snd.sb_state |= SBS_CANTSENDMORE; 2882 sowwakeup_locked(so); 2883 wakeup(&so->so_timeo); 2884 } 2885 2886 void 2887 soisdisconnected(struct socket *so) 2888 { 2889 2890 /* 2891 * Note: This code assumes that SOCK_LOCK(so) and 2892 * SOCKBUF_LOCK(&so->so_rcv) are the same. 2893 */ 2894 SOCKBUF_LOCK(&so->so_rcv); 2895 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 2896 so->so_state |= SS_ISDISCONNECTED; 2897 so->so_rcv.sb_state |= SBS_CANTRCVMORE; 2898 sorwakeup_locked(so); 2899 SOCKBUF_LOCK(&so->so_snd); 2900 so->so_snd.sb_state |= SBS_CANTSENDMORE; 2901 sbdrop_locked(&so->so_snd, so->so_snd.sb_cc); 2902 sowwakeup_locked(so); 2903 wakeup(&so->so_timeo); 2904 } 2905 2906 /* 2907 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 2908 */ 2909 struct sockaddr * 2910 sodupsockaddr(const struct sockaddr *sa, int mflags) 2911 { 2912 struct sockaddr *sa2; 2913 2914 sa2 = malloc(sa->sa_len, M_SONAME, mflags); 2915 if (sa2) 2916 bcopy(sa, sa2, sa->sa_len); 2917 return sa2; 2918 } 2919 2920 /* 2921 * Create an external-format (``xsocket'') structure using the information in 2922 * the kernel-format socket structure pointed to by so. This is done to 2923 * reduce the spew of irrelevant information over this interface, to isolate 2924 * user code from changes in the kernel structure, and potentially to provide 2925 * information-hiding if we decide that some of this information should be 2926 * hidden from users. 2927 */ 2928 void 2929 sotoxsocket(struct socket *so, struct xsocket *xso) 2930 { 2931 2932 xso->xso_len = sizeof *xso; 2933 xso->xso_so = so; 2934 xso->so_type = so->so_type; 2935 xso->so_options = so->so_options; 2936 xso->so_linger = so->so_linger; 2937 xso->so_state = so->so_state; 2938 xso->so_pcb = so->so_pcb; 2939 xso->xso_protocol = so->so_proto->pr_protocol; 2940 xso->xso_family = so->so_proto->pr_domain->dom_family; 2941 xso->so_qlen = so->so_qlen; 2942 xso->so_incqlen = so->so_incqlen; 2943 xso->so_qlimit = so->so_qlimit; 2944 xso->so_timeo = so->so_timeo; 2945 xso->so_error = so->so_error; 2946 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 2947 xso->so_oobmark = so->so_oobmark; 2948 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 2949 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 2950 xso->so_uid = so->so_cred->cr_uid; 2951 } 2952