xref: /freebsd/sys/kern/uipc_socket.c (revision 1e413cf93298b5b97441a21d9a50fdcd0ee9945e)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.
4  * Copyright (c) 2004 The FreeBSD Foundation
5  * Copyright (c) 2004-2007 Robert N. M. Watson
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)uipc_socket.c	8.3 (Berkeley) 4/15/94
33  */
34 
35 /*
36  * Comments on the socket life cycle:
37  *
38  * soalloc() sets of socket layer state for a socket, called only by
39  * socreate() and sonewconn().  Socket layer private.
40  *
41  * sodealloc() tears down socket layer state for a socket, called only by
42  * sofree() and sonewconn().  Socket layer private.
43  *
44  * pru_attach() associates protocol layer state with an allocated socket;
45  * called only once, may fail, aborting socket allocation.  This is called
46  * from socreate() and sonewconn().  Socket layer private.
47  *
48  * pru_detach() disassociates protocol layer state from an attached socket,
49  * and will be called exactly once for sockets in which pru_attach() has
50  * been successfully called.  If pru_attach() returned an error,
51  * pru_detach() will not be called.  Socket layer private.
52  *
53  * pru_abort() and pru_close() notify the protocol layer that the last
54  * consumer of a socket is starting to tear down the socket, and that the
55  * protocol should terminate the connection.  Historically, pru_abort() also
56  * detached protocol state from the socket state, but this is no longer the
57  * case.
58  *
59  * socreate() creates a socket and attaches protocol state.  This is a public
60  * interface that may be used by socket layer consumers to create new
61  * sockets.
62  *
63  * sonewconn() creates a socket and attaches protocol state.  This is a
64  * public interface  that may be used by protocols to create new sockets when
65  * a new connection is received and will be available for accept() on a
66  * listen socket.
67  *
68  * soclose() destroys a socket after possibly waiting for it to disconnect.
69  * This is a public interface that socket consumers should use to close and
70  * release a socket when done with it.
71  *
72  * soabort() destroys a socket without waiting for it to disconnect (used
73  * only for incoming connections that are already partially or fully
74  * connected).  This is used internally by the socket layer when clearing
75  * listen socket queues (due to overflow or close on the listen socket), but
76  * is also a public interface protocols may use to abort connections in
77  * their incomplete listen queues should they no longer be required.  Sockets
78  * placed in completed connection listen queues should not be aborted for
79  * reasons described in the comment above the soclose() implementation.  This
80  * is not a general purpose close routine, and except in the specific
81  * circumstances described here, should not be used.
82  *
83  * sofree() will free a socket and its protocol state if all references on
84  * the socket have been released, and is the public interface to attempt to
85  * free a socket when a reference is removed.  This is a socket layer private
86  * interface.
87  *
88  * NOTE: In addition to socreate() and soclose(), which provide a single
89  * socket reference to the consumer to be managed as required, there are two
90  * calls to explicitly manage socket references, soref(), and sorele().
91  * Currently, these are generally required only when transitioning a socket
92  * from a listen queue to a file descriptor, in order to prevent garbage
93  * collection of the socket at an untimely moment.  For a number of reasons,
94  * these interfaces are not preferred, and should be avoided.
95  */
96 
97 #include <sys/cdefs.h>
98 __FBSDID("$FreeBSD$");
99 
100 #include "opt_inet.h"
101 #include "opt_mac.h"
102 #include "opt_zero.h"
103 #include "opt_compat.h"
104 
105 #include <sys/param.h>
106 #include <sys/systm.h>
107 #include <sys/fcntl.h>
108 #include <sys/limits.h>
109 #include <sys/lock.h>
110 #include <sys/mac.h>
111 #include <sys/malloc.h>
112 #include <sys/mbuf.h>
113 #include <sys/mutex.h>
114 #include <sys/domain.h>
115 #include <sys/file.h>			/* for struct knote */
116 #include <sys/kernel.h>
117 #include <sys/event.h>
118 #include <sys/eventhandler.h>
119 #include <sys/poll.h>
120 #include <sys/proc.h>
121 #include <sys/protosw.h>
122 #include <sys/socket.h>
123 #include <sys/socketvar.h>
124 #include <sys/resourcevar.h>
125 #include <sys/signalvar.h>
126 #include <sys/stat.h>
127 #include <sys/sx.h>
128 #include <sys/sysctl.h>
129 #include <sys/uio.h>
130 #include <sys/jail.h>
131 
132 #include <security/mac/mac_framework.h>
133 
134 #include <vm/uma.h>
135 
136 #ifdef COMPAT_IA32
137 #include <sys/mount.h>
138 #include <compat/freebsd32/freebsd32.h>
139 
140 extern struct sysentvec ia32_freebsd_sysvec;
141 #endif
142 
143 static int	soreceive_rcvoob(struct socket *so, struct uio *uio,
144 		    int flags);
145 
146 static void	filt_sordetach(struct knote *kn);
147 static int	filt_soread(struct knote *kn, long hint);
148 static void	filt_sowdetach(struct knote *kn);
149 static int	filt_sowrite(struct knote *kn, long hint);
150 static int	filt_solisten(struct knote *kn, long hint);
151 
152 static struct filterops solisten_filtops =
153 	{ 1, NULL, filt_sordetach, filt_solisten };
154 static struct filterops soread_filtops =
155 	{ 1, NULL, filt_sordetach, filt_soread };
156 static struct filterops sowrite_filtops =
157 	{ 1, NULL, filt_sowdetach, filt_sowrite };
158 
159 uma_zone_t socket_zone;
160 so_gen_t	so_gencnt;	/* generation count for sockets */
161 
162 int	maxsockets;
163 
164 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
165 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
166 
167 static int somaxconn = SOMAXCONN;
168 static int sysctl_somaxconn(SYSCTL_HANDLER_ARGS);
169 /* XXX: we dont have SYSCTL_USHORT */
170 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLTYPE_UINT | CTLFLAG_RW,
171     0, sizeof(int), sysctl_somaxconn, "I", "Maximum pending socket connection "
172     "queue size");
173 static int numopensockets;
174 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,
175     &numopensockets, 0, "Number of open sockets");
176 #ifdef ZERO_COPY_SOCKETS
177 /* These aren't static because they're used in other files. */
178 int so_zero_copy_send = 1;
179 int so_zero_copy_receive = 1;
180 SYSCTL_NODE(_kern_ipc, OID_AUTO, zero_copy, CTLFLAG_RD, 0,
181     "Zero copy controls");
182 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, receive, CTLFLAG_RW,
183     &so_zero_copy_receive, 0, "Enable zero copy receive");
184 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, send, CTLFLAG_RW,
185     &so_zero_copy_send, 0, "Enable zero copy send");
186 #endif /* ZERO_COPY_SOCKETS */
187 
188 /*
189  * accept_mtx locks down per-socket fields relating to accept queues.  See
190  * socketvar.h for an annotation of the protected fields of struct socket.
191  */
192 struct mtx accept_mtx;
193 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF);
194 
195 /*
196  * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
197  * so_gencnt field.
198  */
199 static struct mtx so_global_mtx;
200 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
201 
202 /*
203  * General IPC sysctl name space, used by sockets and a variety of other IPC
204  * types.
205  */
206 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
207 
208 /*
209  * Sysctl to get and set the maximum global sockets limit.  Notify protocols
210  * of the change so that they can update their dependent limits as required.
211  */
212 static int
213 sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
214 {
215 	int error, newmaxsockets;
216 
217 	newmaxsockets = maxsockets;
218 	error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
219 	if (error == 0 && req->newptr) {
220 		if (newmaxsockets > maxsockets) {
221 			maxsockets = newmaxsockets;
222 			if (maxsockets > ((maxfiles / 4) * 3)) {
223 				maxfiles = (maxsockets * 5) / 4;
224 				maxfilesperproc = (maxfiles * 9) / 10;
225 			}
226 			EVENTHANDLER_INVOKE(maxsockets_change);
227 		} else
228 			error = EINVAL;
229 	}
230 	return (error);
231 }
232 
233 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, CTLTYPE_INT|CTLFLAG_RW,
234     &maxsockets, 0, sysctl_maxsockets, "IU",
235     "Maximum number of sockets avaliable");
236 
237 /*
238  * Initialise maxsockets.
239  */
240 static void init_maxsockets(void *ignored)
241 {
242 	TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
243 	maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters));
244 }
245 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
246 
247 /*
248  * Socket operation routines.  These routines are called by the routines in
249  * sys_socket.c or from a system process, and implement the semantics of
250  * socket operations by switching out to the protocol specific routines.
251  */
252 
253 /*
254  * Get a socket structure from our zone, and initialize it.  Note that it
255  * would probably be better to allocate socket and PCB at the same time, but
256  * I'm not convinced that all the protocols can be easily modified to do
257  * this.
258  *
259  * soalloc() returns a socket with a ref count of 0.
260  */
261 static struct socket *
262 soalloc(void)
263 {
264 	struct socket *so;
265 
266 	so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
267 	if (so == NULL)
268 		return (NULL);
269 #ifdef MAC
270 	if (mac_socket_init(so, M_NOWAIT) != 0) {
271 		uma_zfree(socket_zone, so);
272 		return (NULL);
273 	}
274 #endif
275 	SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd");
276 	SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv");
277 	sx_init(&so->so_snd.sb_sx, "so_snd_sx");
278 	sx_init(&so->so_rcv.sb_sx, "so_rcv_sx");
279 	TAILQ_INIT(&so->so_aiojobq);
280 	mtx_lock(&so_global_mtx);
281 	so->so_gencnt = ++so_gencnt;
282 	++numopensockets;
283 	mtx_unlock(&so_global_mtx);
284 	return (so);
285 }
286 
287 /*
288  * Free the storage associated with a socket at the socket layer, tear down
289  * locks, labels, etc.  All protocol state is assumed already to have been
290  * torn down (and possibly never set up) by the caller.
291  */
292 static void
293 sodealloc(struct socket *so)
294 {
295 
296 	KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
297 	KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
298 
299 	mtx_lock(&so_global_mtx);
300 	so->so_gencnt = ++so_gencnt;
301 	--numopensockets;	/* Could be below, but faster here. */
302 	mtx_unlock(&so_global_mtx);
303 	if (so->so_rcv.sb_hiwat)
304 		(void)chgsbsize(so->so_cred->cr_uidinfo,
305 		    &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
306 	if (so->so_snd.sb_hiwat)
307 		(void)chgsbsize(so->so_cred->cr_uidinfo,
308 		    &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
309 #ifdef INET
310 	/* remove acccept filter if one is present. */
311 	if (so->so_accf != NULL)
312 		do_setopt_accept_filter(so, NULL);
313 #endif
314 #ifdef MAC
315 	mac_socket_destroy(so);
316 #endif
317 	crfree(so->so_cred);
318 	sx_destroy(&so->so_snd.sb_sx);
319 	sx_destroy(&so->so_rcv.sb_sx);
320 	SOCKBUF_LOCK_DESTROY(&so->so_snd);
321 	SOCKBUF_LOCK_DESTROY(&so->so_rcv);
322 	uma_zfree(socket_zone, so);
323 }
324 
325 /*
326  * socreate returns a socket with a ref count of 1.  The socket should be
327  * closed with soclose().
328  */
329 int
330 socreate(int dom, struct socket **aso, int type, int proto,
331     struct ucred *cred, struct thread *td)
332 {
333 	struct protosw *prp;
334 	struct socket *so;
335 	int error;
336 
337 	if (proto)
338 		prp = pffindproto(dom, proto, type);
339 	else
340 		prp = pffindtype(dom, type);
341 
342 	if (prp == NULL || prp->pr_usrreqs->pru_attach == NULL ||
343 	    prp->pr_usrreqs->pru_attach == pru_attach_notsupp)
344 		return (EPROTONOSUPPORT);
345 
346 	if (jailed(cred) && jail_socket_unixiproute_only &&
347 	    prp->pr_domain->dom_family != PF_LOCAL &&
348 	    prp->pr_domain->dom_family != PF_INET &&
349 	    prp->pr_domain->dom_family != PF_ROUTE) {
350 		return (EPROTONOSUPPORT);
351 	}
352 
353 	if (prp->pr_type != type)
354 		return (EPROTOTYPE);
355 	so = soalloc();
356 	if (so == NULL)
357 		return (ENOBUFS);
358 
359 	TAILQ_INIT(&so->so_incomp);
360 	TAILQ_INIT(&so->so_comp);
361 	so->so_type = type;
362 	so->so_cred = crhold(cred);
363 	so->so_proto = prp;
364 #ifdef MAC
365 	mac_socket_create(cred, so);
366 #endif
367 	knlist_init(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv),
368 	    NULL, NULL, NULL);
369 	knlist_init(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd),
370 	    NULL, NULL, NULL);
371 	so->so_count = 1;
372 	/*
373 	 * Auto-sizing of socket buffers is managed by the protocols and
374 	 * the appropriate flags must be set in the pru_attach function.
375 	 */
376 	error = (*prp->pr_usrreqs->pru_attach)(so, proto, td);
377 	if (error) {
378 		KASSERT(so->so_count == 1, ("socreate: so_count %d",
379 		    so->so_count));
380 		so->so_count = 0;
381 		sodealloc(so);
382 		return (error);
383 	}
384 	*aso = so;
385 	return (0);
386 }
387 
388 #ifdef REGRESSION
389 static int regression_sonewconn_earlytest = 1;
390 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
391     &regression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
392 #endif
393 
394 /*
395  * When an attempt at a new connection is noted on a socket which accepts
396  * connections, sonewconn is called.  If the connection is possible (subject
397  * to space constraints, etc.) then we allocate a new structure, propoerly
398  * linked into the data structure of the original socket, and return this.
399  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
400  *
401  * Note: the ref count on the socket is 0 on return.
402  */
403 struct socket *
404 sonewconn(struct socket *head, int connstatus)
405 {
406 	struct socket *so;
407 	int over;
408 
409 	ACCEPT_LOCK();
410 	over = (head->so_qlen > 3 * head->so_qlimit / 2);
411 	ACCEPT_UNLOCK();
412 #ifdef REGRESSION
413 	if (regression_sonewconn_earlytest && over)
414 #else
415 	if (over)
416 #endif
417 		return (NULL);
418 	so = soalloc();
419 	if (so == NULL)
420 		return (NULL);
421 	if ((head->so_options & SO_ACCEPTFILTER) != 0)
422 		connstatus = 0;
423 	so->so_head = head;
424 	so->so_type = head->so_type;
425 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
426 	so->so_linger = head->so_linger;
427 	so->so_state = head->so_state | SS_NOFDREF;
428 	so->so_proto = head->so_proto;
429 	so->so_cred = crhold(head->so_cred);
430 #ifdef MAC
431 	SOCK_LOCK(head);
432 	mac_socket_newconn(head, so);
433 	SOCK_UNLOCK(head);
434 #endif
435 	knlist_init(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv),
436 	    NULL, NULL, NULL);
437 	knlist_init(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd),
438 	    NULL, NULL, NULL);
439 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) ||
440 	    (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
441 		sodealloc(so);
442 		return (NULL);
443 	}
444 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
445 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
446 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
447 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
448 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
449 	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
450 	so->so_state |= connstatus;
451 	ACCEPT_LOCK();
452 	if (connstatus) {
453 		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
454 		so->so_qstate |= SQ_COMP;
455 		head->so_qlen++;
456 	} else {
457 		/*
458 		 * Keep removing sockets from the head until there's room for
459 		 * us to insert on the tail.  In pre-locking revisions, this
460 		 * was a simple if(), but as we could be racing with other
461 		 * threads and soabort() requires dropping locks, we must
462 		 * loop waiting for the condition to be true.
463 		 */
464 		while (head->so_incqlen > head->so_qlimit) {
465 			struct socket *sp;
466 			sp = TAILQ_FIRST(&head->so_incomp);
467 			TAILQ_REMOVE(&head->so_incomp, sp, so_list);
468 			head->so_incqlen--;
469 			sp->so_qstate &= ~SQ_INCOMP;
470 			sp->so_head = NULL;
471 			ACCEPT_UNLOCK();
472 			soabort(sp);
473 			ACCEPT_LOCK();
474 		}
475 		TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
476 		so->so_qstate |= SQ_INCOMP;
477 		head->so_incqlen++;
478 	}
479 	ACCEPT_UNLOCK();
480 	if (connstatus) {
481 		sorwakeup(head);
482 		wakeup_one(&head->so_timeo);
483 	}
484 	return (so);
485 }
486 
487 int
488 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
489 {
490 
491 	return ((*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td));
492 }
493 
494 /*
495  * solisten() transitions a socket from a non-listening state to a listening
496  * state, but can also be used to update the listen queue depth on an
497  * existing listen socket.  The protocol will call back into the sockets
498  * layer using solisten_proto_check() and solisten_proto() to check and set
499  * socket-layer listen state.  Call backs are used so that the protocol can
500  * acquire both protocol and socket layer locks in whatever order is required
501  * by the protocol.
502  *
503  * Protocol implementors are advised to hold the socket lock across the
504  * socket-layer test and set to avoid races at the socket layer.
505  */
506 int
507 solisten(struct socket *so, int backlog, struct thread *td)
508 {
509 
510 	return ((*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td));
511 }
512 
513 int
514 solisten_proto_check(struct socket *so)
515 {
516 
517 	SOCK_LOCK_ASSERT(so);
518 
519 	if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
520 	    SS_ISDISCONNECTING))
521 		return (EINVAL);
522 	return (0);
523 }
524 
525 void
526 solisten_proto(struct socket *so, int backlog)
527 {
528 
529 	SOCK_LOCK_ASSERT(so);
530 
531 	if (backlog < 0 || backlog > somaxconn)
532 		backlog = somaxconn;
533 	so->so_qlimit = backlog;
534 	so->so_options |= SO_ACCEPTCONN;
535 }
536 
537 /*
538  * Attempt to free a socket.  This should really be sotryfree().
539  *
540  * sofree() will succeed if:
541  *
542  * - There are no outstanding file descriptor references or related consumers
543  *   (so_count == 0).
544  *
545  * - The socket has been closed by user space, if ever open (SS_NOFDREF).
546  *
547  * - The protocol does not have an outstanding strong reference on the socket
548  *   (SS_PROTOREF).
549  *
550  * - The socket is not in a completed connection queue, so a process has been
551  *   notified that it is present.  If it is removed, the user process may
552  *   block in accept() despite select() saying the socket was ready.
553  *
554  * Otherwise, it will quietly abort so that a future call to sofree(), when
555  * conditions are right, can succeed.
556  */
557 void
558 sofree(struct socket *so)
559 {
560 	struct protosw *pr = so->so_proto;
561 	struct socket *head;
562 
563 	ACCEPT_LOCK_ASSERT();
564 	SOCK_LOCK_ASSERT(so);
565 
566 	if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 ||
567 	    (so->so_state & SS_PROTOREF) || (so->so_qstate & SQ_COMP)) {
568 		SOCK_UNLOCK(so);
569 		ACCEPT_UNLOCK();
570 		return;
571 	}
572 
573 	head = so->so_head;
574 	if (head != NULL) {
575 		KASSERT((so->so_qstate & SQ_COMP) != 0 ||
576 		    (so->so_qstate & SQ_INCOMP) != 0,
577 		    ("sofree: so_head != NULL, but neither SQ_COMP nor "
578 		    "SQ_INCOMP"));
579 		KASSERT((so->so_qstate & SQ_COMP) == 0 ||
580 		    (so->so_qstate & SQ_INCOMP) == 0,
581 		    ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP"));
582 		TAILQ_REMOVE(&head->so_incomp, so, so_list);
583 		head->so_incqlen--;
584 		so->so_qstate &= ~SQ_INCOMP;
585 		so->so_head = NULL;
586 	}
587 	KASSERT((so->so_qstate & SQ_COMP) == 0 &&
588 	    (so->so_qstate & SQ_INCOMP) == 0,
589 	    ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)",
590 	    so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP));
591 	if (so->so_options & SO_ACCEPTCONN) {
592 		KASSERT((TAILQ_EMPTY(&so->so_comp)), ("sofree: so_comp populated"));
593 		KASSERT((TAILQ_EMPTY(&so->so_incomp)), ("sofree: so_comp populated"));
594 	}
595 	SOCK_UNLOCK(so);
596 	ACCEPT_UNLOCK();
597 
598 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
599 		(*pr->pr_domain->dom_dispose)(so->so_rcv.sb_mb);
600 	if (pr->pr_usrreqs->pru_detach != NULL)
601 		(*pr->pr_usrreqs->pru_detach)(so);
602 
603 	/*
604 	 * From this point on, we assume that no other references to this
605 	 * socket exist anywhere else in the stack.  Therefore, no locks need
606 	 * to be acquired or held.
607 	 *
608 	 * We used to do a lot of socket buffer and socket locking here, as
609 	 * well as invoke sorflush() and perform wakeups.  The direct call to
610 	 * dom_dispose() and sbrelease_internal() are an inlining of what was
611 	 * necessary from sorflush().
612 	 *
613 	 * Notice that the socket buffer and kqueue state are torn down
614 	 * before calling pru_detach.  This means that protocols shold not
615 	 * assume they can perform socket wakeups, etc, in their detach code.
616 	 */
617 	sbdestroy(&so->so_snd, so);
618 	sbdestroy(&so->so_rcv, so);
619 	knlist_destroy(&so->so_rcv.sb_sel.si_note);
620 	knlist_destroy(&so->so_snd.sb_sel.si_note);
621 	sodealloc(so);
622 }
623 
624 /*
625  * Close a socket on last file table reference removal.  Initiate disconnect
626  * if connected.  Free socket when disconnect complete.
627  *
628  * This function will sorele() the socket.  Note that soclose() may be called
629  * prior to the ref count reaching zero.  The actual socket structure will
630  * not be freed until the ref count reaches zero.
631  */
632 int
633 soclose(struct socket *so)
634 {
635 	int error = 0;
636 
637 	KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter"));
638 
639 	funsetown(&so->so_sigio);
640 	if (so->so_state & SS_ISCONNECTED) {
641 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
642 			error = sodisconnect(so);
643 			if (error)
644 				goto drop;
645 		}
646 		if (so->so_options & SO_LINGER) {
647 			if ((so->so_state & SS_ISDISCONNECTING) &&
648 			    (so->so_state & SS_NBIO))
649 				goto drop;
650 			while (so->so_state & SS_ISCONNECTED) {
651 				error = tsleep(&so->so_timeo,
652 				    PSOCK | PCATCH, "soclos", so->so_linger * hz);
653 				if (error)
654 					break;
655 			}
656 		}
657 	}
658 
659 drop:
660 	if (so->so_proto->pr_usrreqs->pru_close != NULL)
661 		(*so->so_proto->pr_usrreqs->pru_close)(so);
662 	if (so->so_options & SO_ACCEPTCONN) {
663 		struct socket *sp;
664 		ACCEPT_LOCK();
665 		while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) {
666 			TAILQ_REMOVE(&so->so_incomp, sp, so_list);
667 			so->so_incqlen--;
668 			sp->so_qstate &= ~SQ_INCOMP;
669 			sp->so_head = NULL;
670 			ACCEPT_UNLOCK();
671 			soabort(sp);
672 			ACCEPT_LOCK();
673 		}
674 		while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) {
675 			TAILQ_REMOVE(&so->so_comp, sp, so_list);
676 			so->so_qlen--;
677 			sp->so_qstate &= ~SQ_COMP;
678 			sp->so_head = NULL;
679 			ACCEPT_UNLOCK();
680 			soabort(sp);
681 			ACCEPT_LOCK();
682 		}
683 		ACCEPT_UNLOCK();
684 	}
685 	ACCEPT_LOCK();
686 	SOCK_LOCK(so);
687 	KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF"));
688 	so->so_state |= SS_NOFDREF;
689 	sorele(so);
690 	return (error);
691 }
692 
693 /*
694  * soabort() is used to abruptly tear down a connection, such as when a
695  * resource limit is reached (listen queue depth exceeded), or if a listen
696  * socket is closed while there are sockets waiting to be accepted.
697  *
698  * This interface is tricky, because it is called on an unreferenced socket,
699  * and must be called only by a thread that has actually removed the socket
700  * from the listen queue it was on, or races with other threads are risked.
701  *
702  * This interface will call into the protocol code, so must not be called
703  * with any socket locks held.  Protocols do call it while holding their own
704  * recursible protocol mutexes, but this is something that should be subject
705  * to review in the future.
706  */
707 void
708 soabort(struct socket *so)
709 {
710 
711 	/*
712 	 * In as much as is possible, assert that no references to this
713 	 * socket are held.  This is not quite the same as asserting that the
714 	 * current thread is responsible for arranging for no references, but
715 	 * is as close as we can get for now.
716 	 */
717 	KASSERT(so->so_count == 0, ("soabort: so_count"));
718 	KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF"));
719 	KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF"));
720 	KASSERT((so->so_state & SQ_COMP) == 0, ("soabort: SQ_COMP"));
721 	KASSERT((so->so_state & SQ_INCOMP) == 0, ("soabort: SQ_INCOMP"));
722 
723 	if (so->so_proto->pr_usrreqs->pru_abort != NULL)
724 		(*so->so_proto->pr_usrreqs->pru_abort)(so);
725 	ACCEPT_LOCK();
726 	SOCK_LOCK(so);
727 	sofree(so);
728 }
729 
730 int
731 soaccept(struct socket *so, struct sockaddr **nam)
732 {
733 	int error;
734 
735 	SOCK_LOCK(so);
736 	KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF"));
737 	so->so_state &= ~SS_NOFDREF;
738 	SOCK_UNLOCK(so);
739 	error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam);
740 	return (error);
741 }
742 
743 int
744 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
745 {
746 	int error;
747 
748 	if (so->so_options & SO_ACCEPTCONN)
749 		return (EOPNOTSUPP);
750 	/*
751 	 * If protocol is connection-based, can only connect once.
752 	 * Otherwise, if connected, try to disconnect first.  This allows
753 	 * user to disconnect by connecting to, e.g., a null address.
754 	 */
755 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
756 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
757 	    (error = sodisconnect(so)))) {
758 		error = EISCONN;
759 	} else {
760 		/*
761 		 * Prevent accumulated error from previous connection from
762 		 * biting us.
763 		 */
764 		so->so_error = 0;
765 		error = (*so->so_proto->pr_usrreqs->pru_connect)(so, nam, td);
766 	}
767 
768 	return (error);
769 }
770 
771 int
772 soconnect2(struct socket *so1, struct socket *so2)
773 {
774 
775 	return ((*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2));
776 }
777 
778 int
779 sodisconnect(struct socket *so)
780 {
781 	int error;
782 
783 	if ((so->so_state & SS_ISCONNECTED) == 0)
784 		return (ENOTCONN);
785 	if (so->so_state & SS_ISDISCONNECTING)
786 		return (EALREADY);
787 	error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so);
788 	return (error);
789 }
790 
791 #ifdef ZERO_COPY_SOCKETS
792 struct so_zerocopy_stats{
793 	int size_ok;
794 	int align_ok;
795 	int found_ifp;
796 };
797 struct so_zerocopy_stats so_zerocp_stats = {0,0,0};
798 #include <netinet/in.h>
799 #include <net/route.h>
800 #include <netinet/in_pcb.h>
801 #include <vm/vm.h>
802 #include <vm/vm_page.h>
803 #include <vm/vm_object.h>
804 
805 /*
806  * sosend_copyin() is only used if zero copy sockets are enabled.  Otherwise
807  * sosend_dgram() and sosend_generic() use m_uiotombuf().
808  *
809  * sosend_copyin() accepts a uio and prepares an mbuf chain holding part or
810  * all of the data referenced by the uio.  If desired, it uses zero-copy.
811  * *space will be updated to reflect data copied in.
812  *
813  * NB: If atomic I/O is requested, the caller must already have checked that
814  * space can hold resid bytes.
815  *
816  * NB: In the event of an error, the caller may need to free the partial
817  * chain pointed to by *mpp.  The contents of both *uio and *space may be
818  * modified even in the case of an error.
819  */
820 static int
821 sosend_copyin(struct uio *uio, struct mbuf **retmp, int atomic, long *space,
822     int flags)
823 {
824 	struct mbuf *m, **mp, *top;
825 	long len, resid;
826 	int error;
827 #ifdef ZERO_COPY_SOCKETS
828 	int cow_send;
829 #endif
830 
831 	*retmp = top = NULL;
832 	mp = &top;
833 	len = 0;
834 	resid = uio->uio_resid;
835 	error = 0;
836 	do {
837 #ifdef ZERO_COPY_SOCKETS
838 		cow_send = 0;
839 #endif /* ZERO_COPY_SOCKETS */
840 		if (resid >= MINCLSIZE) {
841 #ifdef ZERO_COPY_SOCKETS
842 			if (top == NULL) {
843 				m = m_gethdr(M_WAITOK, MT_DATA);
844 				m->m_pkthdr.len = 0;
845 				m->m_pkthdr.rcvif = NULL;
846 			} else
847 				m = m_get(M_WAITOK, MT_DATA);
848 			if (so_zero_copy_send &&
849 			    resid>=PAGE_SIZE &&
850 			    *space>=PAGE_SIZE &&
851 			    uio->uio_iov->iov_len>=PAGE_SIZE) {
852 				so_zerocp_stats.size_ok++;
853 				so_zerocp_stats.align_ok++;
854 				cow_send = socow_setup(m, uio);
855 				len = cow_send;
856 			}
857 			if (!cow_send) {
858 				m_clget(m, M_WAITOK);
859 				len = min(min(MCLBYTES, resid), *space);
860 			}
861 #else /* ZERO_COPY_SOCKETS */
862 			if (top == NULL) {
863 				m = m_getcl(M_TRYWAIT, MT_DATA, M_PKTHDR);
864 				m->m_pkthdr.len = 0;
865 				m->m_pkthdr.rcvif = NULL;
866 			} else
867 				m = m_getcl(M_TRYWAIT, MT_DATA, 0);
868 			len = min(min(MCLBYTES, resid), *space);
869 #endif /* ZERO_COPY_SOCKETS */
870 		} else {
871 			if (top == NULL) {
872 				m = m_gethdr(M_TRYWAIT, MT_DATA);
873 				m->m_pkthdr.len = 0;
874 				m->m_pkthdr.rcvif = NULL;
875 
876 				len = min(min(MHLEN, resid), *space);
877 				/*
878 				 * For datagram protocols, leave room
879 				 * for protocol headers in first mbuf.
880 				 */
881 				if (atomic && m && len < MHLEN)
882 					MH_ALIGN(m, len);
883 			} else {
884 				m = m_get(M_TRYWAIT, MT_DATA);
885 				len = min(min(MLEN, resid), *space);
886 			}
887 		}
888 		if (m == NULL) {
889 			error = ENOBUFS;
890 			goto out;
891 		}
892 
893 		*space -= len;
894 #ifdef ZERO_COPY_SOCKETS
895 		if (cow_send)
896 			error = 0;
897 		else
898 #endif /* ZERO_COPY_SOCKETS */
899 		error = uiomove(mtod(m, void *), (int)len, uio);
900 		resid = uio->uio_resid;
901 		m->m_len = len;
902 		*mp = m;
903 		top->m_pkthdr.len += len;
904 		if (error)
905 			goto out;
906 		mp = &m->m_next;
907 		if (resid <= 0) {
908 			if (flags & MSG_EOR)
909 				top->m_flags |= M_EOR;
910 			break;
911 		}
912 	} while (*space > 0 && atomic);
913 out:
914 	*retmp = top;
915 	return (error);
916 }
917 #endif /*ZERO_COPY_SOCKETS*/
918 
919 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
920 
921 int
922 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
923     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
924 {
925 	long space, resid;
926 	int clen = 0, error, dontroute;
927 #ifdef ZERO_COPY_SOCKETS
928 	int atomic = sosendallatonce(so) || top;
929 #endif
930 
931 	KASSERT(so->so_type == SOCK_DGRAM, ("sodgram_send: !SOCK_DGRAM"));
932 	KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
933 	    ("sodgram_send: !PR_ATOMIC"));
934 
935 	if (uio != NULL)
936 		resid = uio->uio_resid;
937 	else
938 		resid = top->m_pkthdr.len;
939 	/*
940 	 * In theory resid should be unsigned.  However, space must be
941 	 * signed, as it might be less than 0 if we over-committed, and we
942 	 * must use a signed comparison of space and resid.  On the other
943 	 * hand, a negative resid causes us to loop sending 0-length
944 	 * segments to the protocol.
945 	 *
946 	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
947 	 * type sockets since that's an error.
948 	 */
949 	if (resid < 0) {
950 		error = EINVAL;
951 		goto out;
952 	}
953 
954 	dontroute =
955 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
956 	if (td != NULL)
957 		td->td_ru.ru_msgsnd++;
958 	if (control != NULL)
959 		clen = control->m_len;
960 
961 	SOCKBUF_LOCK(&so->so_snd);
962 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
963 		SOCKBUF_UNLOCK(&so->so_snd);
964 		error = EPIPE;
965 		goto out;
966 	}
967 	if (so->so_error) {
968 		error = so->so_error;
969 		so->so_error = 0;
970 		SOCKBUF_UNLOCK(&so->so_snd);
971 		goto out;
972 	}
973 	if ((so->so_state & SS_ISCONNECTED) == 0) {
974 		/*
975 		 * `sendto' and `sendmsg' is allowed on a connection-based
976 		 * socket if it supports implied connect.  Return ENOTCONN if
977 		 * not connected and no address is supplied.
978 		 */
979 		if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
980 		    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
981 			if ((so->so_state & SS_ISCONFIRMING) == 0 &&
982 			    !(resid == 0 && clen != 0)) {
983 				SOCKBUF_UNLOCK(&so->so_snd);
984 				error = ENOTCONN;
985 				goto out;
986 			}
987 		} else if (addr == NULL) {
988 			if (so->so_proto->pr_flags & PR_CONNREQUIRED)
989 				error = ENOTCONN;
990 			else
991 				error = EDESTADDRREQ;
992 			SOCKBUF_UNLOCK(&so->so_snd);
993 			goto out;
994 		}
995 	}
996 
997 	/*
998 	 * Do we need MSG_OOB support in SOCK_DGRAM?  Signs here may be a
999 	 * problem and need fixing.
1000 	 */
1001 	space = sbspace(&so->so_snd);
1002 	if (flags & MSG_OOB)
1003 		space += 1024;
1004 	space -= clen;
1005 	SOCKBUF_UNLOCK(&so->so_snd);
1006 	if (resid > space) {
1007 		error = EMSGSIZE;
1008 		goto out;
1009 	}
1010 	if (uio == NULL) {
1011 		resid = 0;
1012 		if (flags & MSG_EOR)
1013 			top->m_flags |= M_EOR;
1014 	} else {
1015 #ifdef ZERO_COPY_SOCKETS
1016 		error = sosend_copyin(uio, &top, atomic, &space, flags);
1017 		if (error)
1018 			goto out;
1019 #else
1020 		/*
1021 		 * Copy the data from userland into a mbuf chain.
1022 		 * If no data is to be copied in, a single empty mbuf
1023 		 * is returned.
1024 		 */
1025 		top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
1026 		    (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
1027 		if (top == NULL) {
1028 			error = EFAULT;	/* only possible error */
1029 			goto out;
1030 		}
1031 		space -= resid - uio->uio_resid;
1032 #endif
1033 		resid = uio->uio_resid;
1034 	}
1035 	KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
1036 	/*
1037 	 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
1038 	 * than with.
1039 	 */
1040 	if (dontroute) {
1041 		SOCK_LOCK(so);
1042 		so->so_options |= SO_DONTROUTE;
1043 		SOCK_UNLOCK(so);
1044 	}
1045 	/*
1046 	 * XXX all the SBS_CANTSENDMORE checks previously done could be out
1047 	 * of date.  We could have recieved a reset packet in an interrupt or
1048 	 * maybe we slept while doing page faults in uiomove() etc.  We could
1049 	 * probably recheck again inside the locking protection here, but
1050 	 * there are probably other places that this also happens.  We must
1051 	 * rethink this.
1052 	 */
1053 	error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1054 	    (flags & MSG_OOB) ? PRUS_OOB :
1055 	/*
1056 	 * If the user set MSG_EOF, the protocol understands this flag and
1057 	 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
1058 	 */
1059 	    ((flags & MSG_EOF) &&
1060 	     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1061 	     (resid <= 0)) ?
1062 		PRUS_EOF :
1063 		/* If there is more to send set PRUS_MORETOCOME */
1064 		(resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1065 		top, addr, control, td);
1066 	if (dontroute) {
1067 		SOCK_LOCK(so);
1068 		so->so_options &= ~SO_DONTROUTE;
1069 		SOCK_UNLOCK(so);
1070 	}
1071 	clen = 0;
1072 	control = NULL;
1073 	top = NULL;
1074 out:
1075 	if (top != NULL)
1076 		m_freem(top);
1077 	if (control != NULL)
1078 		m_freem(control);
1079 	return (error);
1080 }
1081 
1082 /*
1083  * Send on a socket.  If send must go all at once and message is larger than
1084  * send buffering, then hard error.  Lock against other senders.  If must go
1085  * all at once and not enough room now, then inform user that this would
1086  * block and do nothing.  Otherwise, if nonblocking, send as much as
1087  * possible.  The data to be sent is described by "uio" if nonzero, otherwise
1088  * by the mbuf chain "top" (which must be null if uio is not).  Data provided
1089  * in mbuf chain must be small enough to send all at once.
1090  *
1091  * Returns nonzero on error, timeout or signal; callers must check for short
1092  * counts if EINTR/ERESTART are returned.  Data and control buffers are freed
1093  * on return.
1094  */
1095 int
1096 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
1097     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1098 {
1099 	long space, resid;
1100 	int clen = 0, error, dontroute;
1101 	int atomic = sosendallatonce(so) || top;
1102 
1103 	if (uio != NULL)
1104 		resid = uio->uio_resid;
1105 	else
1106 		resid = top->m_pkthdr.len;
1107 	/*
1108 	 * In theory resid should be unsigned.  However, space must be
1109 	 * signed, as it might be less than 0 if we over-committed, and we
1110 	 * must use a signed comparison of space and resid.  On the other
1111 	 * hand, a negative resid causes us to loop sending 0-length
1112 	 * segments to the protocol.
1113 	 *
1114 	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
1115 	 * type sockets since that's an error.
1116 	 */
1117 	if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
1118 		error = EINVAL;
1119 		goto out;
1120 	}
1121 
1122 	dontroute =
1123 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
1124 	    (so->so_proto->pr_flags & PR_ATOMIC);
1125 	if (td != NULL)
1126 		td->td_ru.ru_msgsnd++;
1127 	if (control != NULL)
1128 		clen = control->m_len;
1129 
1130 	error = sblock(&so->so_snd, SBLOCKWAIT(flags));
1131 	if (error)
1132 		goto out;
1133 
1134 restart:
1135 	do {
1136 		SOCKBUF_LOCK(&so->so_snd);
1137 		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1138 			SOCKBUF_UNLOCK(&so->so_snd);
1139 			error = EPIPE;
1140 			goto release;
1141 		}
1142 		if (so->so_error) {
1143 			error = so->so_error;
1144 			so->so_error = 0;
1145 			SOCKBUF_UNLOCK(&so->so_snd);
1146 			goto release;
1147 		}
1148 		if ((so->so_state & SS_ISCONNECTED) == 0) {
1149 			/*
1150 			 * `sendto' and `sendmsg' is allowed on a connection-
1151 			 * based socket if it supports implied connect.
1152 			 * Return ENOTCONN if not connected and no address is
1153 			 * supplied.
1154 			 */
1155 			if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1156 			    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1157 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1158 				    !(resid == 0 && clen != 0)) {
1159 					SOCKBUF_UNLOCK(&so->so_snd);
1160 					error = ENOTCONN;
1161 					goto release;
1162 				}
1163 			} else if (addr == NULL) {
1164 				SOCKBUF_UNLOCK(&so->so_snd);
1165 				if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1166 					error = ENOTCONN;
1167 				else
1168 					error = EDESTADDRREQ;
1169 				goto release;
1170 			}
1171 		}
1172 		space = sbspace(&so->so_snd);
1173 		if (flags & MSG_OOB)
1174 			space += 1024;
1175 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
1176 		    clen > so->so_snd.sb_hiwat) {
1177 			SOCKBUF_UNLOCK(&so->so_snd);
1178 			error = EMSGSIZE;
1179 			goto release;
1180 		}
1181 		if (space < resid + clen &&
1182 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
1183 			if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
1184 				SOCKBUF_UNLOCK(&so->so_snd);
1185 				error = EWOULDBLOCK;
1186 				goto release;
1187 			}
1188 			error = sbwait(&so->so_snd);
1189 			SOCKBUF_UNLOCK(&so->so_snd);
1190 			if (error)
1191 				goto release;
1192 			goto restart;
1193 		}
1194 		SOCKBUF_UNLOCK(&so->so_snd);
1195 		space -= clen;
1196 		do {
1197 			if (uio == NULL) {
1198 				resid = 0;
1199 				if (flags & MSG_EOR)
1200 					top->m_flags |= M_EOR;
1201 			} else {
1202 #ifdef ZERO_COPY_SOCKETS
1203 				error = sosend_copyin(uio, &top, atomic,
1204 				    &space, flags);
1205 				if (error != 0)
1206 					goto release;
1207 #else
1208 				/*
1209 				 * Copy the data from userland into a mbuf
1210 				 * chain.  If no data is to be copied in,
1211 				 * a single empty mbuf is returned.
1212 				 */
1213 				top = m_uiotombuf(uio, M_WAITOK, space,
1214 				    (atomic ? max_hdr : 0),
1215 				    (atomic ? M_PKTHDR : 0) |
1216 				    ((flags & MSG_EOR) ? M_EOR : 0));
1217 				if (top == NULL) {
1218 					error = EFAULT; /* only possible error */
1219 					goto release;
1220 				}
1221 				space -= resid - uio->uio_resid;
1222 #endif
1223 				resid = uio->uio_resid;
1224 			}
1225 			if (dontroute) {
1226 				SOCK_LOCK(so);
1227 				so->so_options |= SO_DONTROUTE;
1228 				SOCK_UNLOCK(so);
1229 			}
1230 			/*
1231 			 * XXX all the SBS_CANTSENDMORE checks previously
1232 			 * done could be out of date.  We could have recieved
1233 			 * a reset packet in an interrupt or maybe we slept
1234 			 * while doing page faults in uiomove() etc.  We
1235 			 * could probably recheck again inside the locking
1236 			 * protection here, but there are probably other
1237 			 * places that this also happens.  We must rethink
1238 			 * this.
1239 			 */
1240 			error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1241 			    (flags & MSG_OOB) ? PRUS_OOB :
1242 			/*
1243 			 * If the user set MSG_EOF, the protocol understands
1244 			 * this flag and nothing left to send then use
1245 			 * PRU_SEND_EOF instead of PRU_SEND.
1246 			 */
1247 			    ((flags & MSG_EOF) &&
1248 			     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1249 			     (resid <= 0)) ?
1250 				PRUS_EOF :
1251 			/* If there is more to send set PRUS_MORETOCOME. */
1252 			    (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1253 			    top, addr, control, td);
1254 			if (dontroute) {
1255 				SOCK_LOCK(so);
1256 				so->so_options &= ~SO_DONTROUTE;
1257 				SOCK_UNLOCK(so);
1258 			}
1259 			clen = 0;
1260 			control = NULL;
1261 			top = NULL;
1262 			if (error)
1263 				goto release;
1264 		} while (resid && space > 0);
1265 	} while (resid);
1266 
1267 release:
1268 	sbunlock(&so->so_snd);
1269 out:
1270 	if (top != NULL)
1271 		m_freem(top);
1272 	if (control != NULL)
1273 		m_freem(control);
1274 	return (error);
1275 }
1276 
1277 int
1278 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
1279     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1280 {
1281 
1282 	/* XXXRW: Temporary debugging. */
1283 	KASSERT(so->so_proto->pr_usrreqs->pru_sosend != sosend,
1284 	    ("sosend: protocol calls sosend"));
1285 
1286 	return (so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, top,
1287 	    control, flags, td));
1288 }
1289 
1290 /*
1291  * The part of soreceive() that implements reading non-inline out-of-band
1292  * data from a socket.  For more complete comments, see soreceive(), from
1293  * which this code originated.
1294  *
1295  * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
1296  * unable to return an mbuf chain to the caller.
1297  */
1298 static int
1299 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
1300 {
1301 	struct protosw *pr = so->so_proto;
1302 	struct mbuf *m;
1303 	int error;
1304 
1305 	KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
1306 
1307 	m = m_get(M_TRYWAIT, MT_DATA);
1308 	if (m == NULL)
1309 		return (ENOBUFS);
1310 	error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK);
1311 	if (error)
1312 		goto bad;
1313 	do {
1314 #ifdef ZERO_COPY_SOCKETS
1315 		if (so_zero_copy_receive) {
1316 			int disposable;
1317 
1318 			if ((m->m_flags & M_EXT)
1319 			 && (m->m_ext.ext_type == EXT_DISPOSABLE))
1320 				disposable = 1;
1321 			else
1322 				disposable = 0;
1323 
1324 			error = uiomoveco(mtod(m, void *),
1325 					  min(uio->uio_resid, m->m_len),
1326 					  uio, disposable);
1327 		} else
1328 #endif /* ZERO_COPY_SOCKETS */
1329 		error = uiomove(mtod(m, void *),
1330 		    (int) min(uio->uio_resid, m->m_len), uio);
1331 		m = m_free(m);
1332 	} while (uio->uio_resid && error == 0 && m);
1333 bad:
1334 	if (m != NULL)
1335 		m_freem(m);
1336 	return (error);
1337 }
1338 
1339 /*
1340  * Following replacement or removal of the first mbuf on the first mbuf chain
1341  * of a socket buffer, push necessary state changes back into the socket
1342  * buffer so that other consumers see the values consistently.  'nextrecord'
1343  * is the callers locally stored value of the original value of
1344  * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
1345  * NOTE: 'nextrecord' may be NULL.
1346  */
1347 static __inline void
1348 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
1349 {
1350 
1351 	SOCKBUF_LOCK_ASSERT(sb);
1352 	/*
1353 	 * First, update for the new value of nextrecord.  If necessary, make
1354 	 * it the first record.
1355 	 */
1356 	if (sb->sb_mb != NULL)
1357 		sb->sb_mb->m_nextpkt = nextrecord;
1358 	else
1359 		sb->sb_mb = nextrecord;
1360 
1361         /*
1362          * Now update any dependent socket buffer fields to reflect the new
1363          * state.  This is an expanded inline of SB_EMPTY_FIXUP(), with the
1364 	 * addition of a second clause that takes care of the case where
1365 	 * sb_mb has been updated, but remains the last record.
1366          */
1367         if (sb->sb_mb == NULL) {
1368                 sb->sb_mbtail = NULL;
1369                 sb->sb_lastrecord = NULL;
1370         } else if (sb->sb_mb->m_nextpkt == NULL)
1371                 sb->sb_lastrecord = sb->sb_mb;
1372 }
1373 
1374 
1375 /*
1376  * Implement receive operations on a socket.  We depend on the way that
1377  * records are added to the sockbuf by sbappend.  In particular, each record
1378  * (mbufs linked through m_next) must begin with an address if the protocol
1379  * so specifies, followed by an optional mbuf or mbufs containing ancillary
1380  * data, and then zero or more mbufs of data.  In order to allow parallelism
1381  * between network receive and copying to user space, as well as avoid
1382  * sleeping with a mutex held, we release the socket buffer mutex during the
1383  * user space copy.  Although the sockbuf is locked, new data may still be
1384  * appended, and thus we must maintain consistency of the sockbuf during that
1385  * time.
1386  *
1387  * The caller may receive the data as a single mbuf chain by supplying an
1388  * mbuf **mp0 for use in returning the chain.  The uio is then used only for
1389  * the count in uio_resid.
1390  */
1391 int
1392 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
1393     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1394 {
1395 	struct mbuf *m, **mp;
1396 	int flags, len, error, offset;
1397 	struct protosw *pr = so->so_proto;
1398 	struct mbuf *nextrecord;
1399 	int moff, type = 0;
1400 	int orig_resid = uio->uio_resid;
1401 
1402 	mp = mp0;
1403 	if (psa != NULL)
1404 		*psa = NULL;
1405 	if (controlp != NULL)
1406 		*controlp = NULL;
1407 	if (flagsp != NULL)
1408 		flags = *flagsp &~ MSG_EOR;
1409 	else
1410 		flags = 0;
1411 	if (flags & MSG_OOB)
1412 		return (soreceive_rcvoob(so, uio, flags));
1413 	if (mp != NULL)
1414 		*mp = NULL;
1415 	if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING)
1416 	    && uio->uio_resid)
1417 		(*pr->pr_usrreqs->pru_rcvd)(so, 0);
1418 
1419 	error = sblock(&so->so_rcv, SBLOCKWAIT(flags));
1420 	if (error)
1421 		return (error);
1422 
1423 restart:
1424 	SOCKBUF_LOCK(&so->so_rcv);
1425 	m = so->so_rcv.sb_mb;
1426 	/*
1427 	 * If we have less data than requested, block awaiting more (subject
1428 	 * to any timeout) if:
1429 	 *   1. the current count is less than the low water mark, or
1430 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
1431 	 *	receive operation at once if we block (resid <= hiwat).
1432 	 *   3. MSG_DONTWAIT is not set
1433 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1434 	 * we have to do the receive in sections, and thus risk returning a
1435 	 * short count if a timeout or signal occurs after we start.
1436 	 */
1437 	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
1438 	    so->so_rcv.sb_cc < uio->uio_resid) &&
1439 	    (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1440 	    ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1441 	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
1442 		KASSERT(m != NULL || !so->so_rcv.sb_cc,
1443 		    ("receive: m == %p so->so_rcv.sb_cc == %u",
1444 		    m, so->so_rcv.sb_cc));
1445 		if (so->so_error) {
1446 			if (m != NULL)
1447 				goto dontblock;
1448 			error = so->so_error;
1449 			if ((flags & MSG_PEEK) == 0)
1450 				so->so_error = 0;
1451 			SOCKBUF_UNLOCK(&so->so_rcv);
1452 			goto release;
1453 		}
1454 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1455 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1456 			if (m == NULL) {
1457 				SOCKBUF_UNLOCK(&so->so_rcv);
1458 				goto release;
1459 			} else
1460 				goto dontblock;
1461 		}
1462 		for (; m != NULL; m = m->m_next)
1463 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
1464 				m = so->so_rcv.sb_mb;
1465 				goto dontblock;
1466 			}
1467 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1468 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1469 			SOCKBUF_UNLOCK(&so->so_rcv);
1470 			error = ENOTCONN;
1471 			goto release;
1472 		}
1473 		if (uio->uio_resid == 0) {
1474 			SOCKBUF_UNLOCK(&so->so_rcv);
1475 			goto release;
1476 		}
1477 		if ((so->so_state & SS_NBIO) ||
1478 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1479 			SOCKBUF_UNLOCK(&so->so_rcv);
1480 			error = EWOULDBLOCK;
1481 			goto release;
1482 		}
1483 		SBLASTRECORDCHK(&so->so_rcv);
1484 		SBLASTMBUFCHK(&so->so_rcv);
1485 		error = sbwait(&so->so_rcv);
1486 		SOCKBUF_UNLOCK(&so->so_rcv);
1487 		if (error)
1488 			goto release;
1489 		goto restart;
1490 	}
1491 dontblock:
1492 	/*
1493 	 * From this point onward, we maintain 'nextrecord' as a cache of the
1494 	 * pointer to the next record in the socket buffer.  We must keep the
1495 	 * various socket buffer pointers and local stack versions of the
1496 	 * pointers in sync, pushing out modifications before dropping the
1497 	 * socket buffer mutex, and re-reading them when picking it up.
1498 	 *
1499 	 * Otherwise, we will race with the network stack appending new data
1500 	 * or records onto the socket buffer by using inconsistent/stale
1501 	 * versions of the field, possibly resulting in socket buffer
1502 	 * corruption.
1503 	 *
1504 	 * By holding the high-level sblock(), we prevent simultaneous
1505 	 * readers from pulling off the front of the socket buffer.
1506 	 */
1507 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1508 	if (uio->uio_td)
1509 		uio->uio_td->td_ru.ru_msgrcv++;
1510 	KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
1511 	SBLASTRECORDCHK(&so->so_rcv);
1512 	SBLASTMBUFCHK(&so->so_rcv);
1513 	nextrecord = m->m_nextpkt;
1514 	if (pr->pr_flags & PR_ADDR) {
1515 		KASSERT(m->m_type == MT_SONAME,
1516 		    ("m->m_type == %d", m->m_type));
1517 		orig_resid = 0;
1518 		if (psa != NULL)
1519 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
1520 			    M_NOWAIT);
1521 		if (flags & MSG_PEEK) {
1522 			m = m->m_next;
1523 		} else {
1524 			sbfree(&so->so_rcv, m);
1525 			so->so_rcv.sb_mb = m_free(m);
1526 			m = so->so_rcv.sb_mb;
1527 			sockbuf_pushsync(&so->so_rcv, nextrecord);
1528 		}
1529 	}
1530 
1531 	/*
1532 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
1533 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
1534 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
1535 	 * perform externalization (or freeing if controlp == NULL).
1536 	 */
1537 	if (m != NULL && m->m_type == MT_CONTROL) {
1538 		struct mbuf *cm = NULL, *cmn;
1539 		struct mbuf **cme = &cm;
1540 
1541 		do {
1542 			if (flags & MSG_PEEK) {
1543 				if (controlp != NULL) {
1544 					*controlp = m_copy(m, 0, m->m_len);
1545 					controlp = &(*controlp)->m_next;
1546 				}
1547 				m = m->m_next;
1548 			} else {
1549 				sbfree(&so->so_rcv, m);
1550 				so->so_rcv.sb_mb = m->m_next;
1551 				m->m_next = NULL;
1552 				*cme = m;
1553 				cme = &(*cme)->m_next;
1554 				m = so->so_rcv.sb_mb;
1555 			}
1556 		} while (m != NULL && m->m_type == MT_CONTROL);
1557 		if ((flags & MSG_PEEK) == 0)
1558 			sockbuf_pushsync(&so->so_rcv, nextrecord);
1559 		while (cm != NULL) {
1560 			cmn = cm->m_next;
1561 			cm->m_next = NULL;
1562 			if (pr->pr_domain->dom_externalize != NULL) {
1563 				SOCKBUF_UNLOCK(&so->so_rcv);
1564 				error = (*pr->pr_domain->dom_externalize)
1565 				    (cm, controlp);
1566 				SOCKBUF_LOCK(&so->so_rcv);
1567 			} else if (controlp != NULL)
1568 				*controlp = cm;
1569 			else
1570 				m_freem(cm);
1571 			if (controlp != NULL) {
1572 				orig_resid = 0;
1573 				while (*controlp != NULL)
1574 					controlp = &(*controlp)->m_next;
1575 			}
1576 			cm = cmn;
1577 		}
1578 		if (m != NULL)
1579 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1580 		else
1581 			nextrecord = so->so_rcv.sb_mb;
1582 		orig_resid = 0;
1583 	}
1584 	if (m != NULL) {
1585 		if ((flags & MSG_PEEK) == 0) {
1586 			KASSERT(m->m_nextpkt == nextrecord,
1587 			    ("soreceive: post-control, nextrecord !sync"));
1588 			if (nextrecord == NULL) {
1589 				KASSERT(so->so_rcv.sb_mb == m,
1590 				    ("soreceive: post-control, sb_mb!=m"));
1591 				KASSERT(so->so_rcv.sb_lastrecord == m,
1592 				    ("soreceive: post-control, lastrecord!=m"));
1593 			}
1594 		}
1595 		type = m->m_type;
1596 		if (type == MT_OOBDATA)
1597 			flags |= MSG_OOB;
1598 	} else {
1599 		if ((flags & MSG_PEEK) == 0) {
1600 			KASSERT(so->so_rcv.sb_mb == nextrecord,
1601 			    ("soreceive: sb_mb != nextrecord"));
1602 			if (so->so_rcv.sb_mb == NULL) {
1603 				KASSERT(so->so_rcv.sb_lastrecord == NULL,
1604 				    ("soreceive: sb_lastercord != NULL"));
1605 			}
1606 		}
1607 	}
1608 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1609 	SBLASTRECORDCHK(&so->so_rcv);
1610 	SBLASTMBUFCHK(&so->so_rcv);
1611 
1612 	/*
1613 	 * Now continue to read any data mbufs off of the head of the socket
1614 	 * buffer until the read request is satisfied.  Note that 'type' is
1615 	 * used to store the type of any mbuf reads that have happened so far
1616 	 * such that soreceive() can stop reading if the type changes, which
1617 	 * causes soreceive() to return only one of regular data and inline
1618 	 * out-of-band data in a single socket receive operation.
1619 	 */
1620 	moff = 0;
1621 	offset = 0;
1622 	while (m != NULL && uio->uio_resid > 0 && error == 0) {
1623 		/*
1624 		 * If the type of mbuf has changed since the last mbuf
1625 		 * examined ('type'), end the receive operation.
1626 	 	 */
1627 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1628 		if (m->m_type == MT_OOBDATA) {
1629 			if (type != MT_OOBDATA)
1630 				break;
1631 		} else if (type == MT_OOBDATA)
1632 			break;
1633 		else
1634 		    KASSERT(m->m_type == MT_DATA,
1635 			("m->m_type == %d", m->m_type));
1636 		so->so_rcv.sb_state &= ~SBS_RCVATMARK;
1637 		len = uio->uio_resid;
1638 		if (so->so_oobmark && len > so->so_oobmark - offset)
1639 			len = so->so_oobmark - offset;
1640 		if (len > m->m_len - moff)
1641 			len = m->m_len - moff;
1642 		/*
1643 		 * If mp is set, just pass back the mbufs.  Otherwise copy
1644 		 * them out via the uio, then free.  Sockbuf must be
1645 		 * consistent here (points to current mbuf, it points to next
1646 		 * record) when we drop priority; we must note any additions
1647 		 * to the sockbuf when we block interrupts again.
1648 		 */
1649 		if (mp == NULL) {
1650 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1651 			SBLASTRECORDCHK(&so->so_rcv);
1652 			SBLASTMBUFCHK(&so->so_rcv);
1653 			SOCKBUF_UNLOCK(&so->so_rcv);
1654 #ifdef ZERO_COPY_SOCKETS
1655 			if (so_zero_copy_receive) {
1656 				int disposable;
1657 
1658 				if ((m->m_flags & M_EXT)
1659 				 && (m->m_ext.ext_type == EXT_DISPOSABLE))
1660 					disposable = 1;
1661 				else
1662 					disposable = 0;
1663 
1664 				error = uiomoveco(mtod(m, char *) + moff,
1665 						  (int)len, uio,
1666 						  disposable);
1667 			} else
1668 #endif /* ZERO_COPY_SOCKETS */
1669 			error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1670 			SOCKBUF_LOCK(&so->so_rcv);
1671 			if (error) {
1672 				/*
1673 				 * The MT_SONAME mbuf has already been removed
1674 				 * from the record, so it is necessary to
1675 				 * remove the data mbufs, if any, to preserve
1676 				 * the invariant in the case of PR_ADDR that
1677 				 * requires MT_SONAME mbufs at the head of
1678 				 * each record.
1679 				 */
1680 				if (m && pr->pr_flags & PR_ATOMIC &&
1681 				    ((flags & MSG_PEEK) == 0))
1682 					(void)sbdroprecord_locked(&so->so_rcv);
1683 				SOCKBUF_UNLOCK(&so->so_rcv);
1684 				goto release;
1685 			}
1686 		} else
1687 			uio->uio_resid -= len;
1688 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1689 		if (len == m->m_len - moff) {
1690 			if (m->m_flags & M_EOR)
1691 				flags |= MSG_EOR;
1692 			if (flags & MSG_PEEK) {
1693 				m = m->m_next;
1694 				moff = 0;
1695 			} else {
1696 				nextrecord = m->m_nextpkt;
1697 				sbfree(&so->so_rcv, m);
1698 				if (mp != NULL) {
1699 					*mp = m;
1700 					mp = &m->m_next;
1701 					so->so_rcv.sb_mb = m = m->m_next;
1702 					*mp = NULL;
1703 				} else {
1704 					so->so_rcv.sb_mb = m_free(m);
1705 					m = so->so_rcv.sb_mb;
1706 				}
1707 				sockbuf_pushsync(&so->so_rcv, nextrecord);
1708 				SBLASTRECORDCHK(&so->so_rcv);
1709 				SBLASTMBUFCHK(&so->so_rcv);
1710 			}
1711 		} else {
1712 			if (flags & MSG_PEEK)
1713 				moff += len;
1714 			else {
1715 				if (mp != NULL) {
1716 					int copy_flag;
1717 
1718 					if (flags & MSG_DONTWAIT)
1719 						copy_flag = M_DONTWAIT;
1720 					else
1721 						copy_flag = M_TRYWAIT;
1722 					if (copy_flag == M_TRYWAIT)
1723 						SOCKBUF_UNLOCK(&so->so_rcv);
1724 					*mp = m_copym(m, 0, len, copy_flag);
1725 					if (copy_flag == M_TRYWAIT)
1726 						SOCKBUF_LOCK(&so->so_rcv);
1727  					if (*mp == NULL) {
1728  						/*
1729  						 * m_copym() couldn't
1730 						 * allocate an mbuf.  Adjust
1731 						 * uio_resid back (it was
1732 						 * adjusted down by len
1733 						 * bytes, which we didn't end
1734 						 * up "copying" over).
1735  						 */
1736  						uio->uio_resid += len;
1737  						break;
1738  					}
1739 				}
1740 				m->m_data += len;
1741 				m->m_len -= len;
1742 				so->so_rcv.sb_cc -= len;
1743 			}
1744 		}
1745 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1746 		if (so->so_oobmark) {
1747 			if ((flags & MSG_PEEK) == 0) {
1748 				so->so_oobmark -= len;
1749 				if (so->so_oobmark == 0) {
1750 					so->so_rcv.sb_state |= SBS_RCVATMARK;
1751 					break;
1752 				}
1753 			} else {
1754 				offset += len;
1755 				if (offset == so->so_oobmark)
1756 					break;
1757 			}
1758 		}
1759 		if (flags & MSG_EOR)
1760 			break;
1761 		/*
1762 		 * If the MSG_WAITALL flag is set (for non-atomic socket), we
1763 		 * must not quit until "uio->uio_resid == 0" or an error
1764 		 * termination.  If a signal/timeout occurs, return with a
1765 		 * short count but without error.  Keep sockbuf locked
1766 		 * against other readers.
1767 		 */
1768 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1769 		    !sosendallatonce(so) && nextrecord == NULL) {
1770 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1771 			if (so->so_error || so->so_rcv.sb_state & SBS_CANTRCVMORE)
1772 				break;
1773 			/*
1774 			 * Notify the protocol that some data has been
1775 			 * drained before blocking.
1776 			 */
1777 			if (pr->pr_flags & PR_WANTRCVD) {
1778 				SOCKBUF_UNLOCK(&so->so_rcv);
1779 				(*pr->pr_usrreqs->pru_rcvd)(so, flags);
1780 				SOCKBUF_LOCK(&so->so_rcv);
1781 			}
1782 			SBLASTRECORDCHK(&so->so_rcv);
1783 			SBLASTMBUFCHK(&so->so_rcv);
1784 			error = sbwait(&so->so_rcv);
1785 			if (error) {
1786 				SOCKBUF_UNLOCK(&so->so_rcv);
1787 				goto release;
1788 			}
1789 			m = so->so_rcv.sb_mb;
1790 			if (m != NULL)
1791 				nextrecord = m->m_nextpkt;
1792 		}
1793 	}
1794 
1795 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1796 	if (m != NULL && pr->pr_flags & PR_ATOMIC) {
1797 		flags |= MSG_TRUNC;
1798 		if ((flags & MSG_PEEK) == 0)
1799 			(void) sbdroprecord_locked(&so->so_rcv);
1800 	}
1801 	if ((flags & MSG_PEEK) == 0) {
1802 		if (m == NULL) {
1803 			/*
1804 			 * First part is an inline SB_EMPTY_FIXUP().  Second
1805 			 * part makes sure sb_lastrecord is up-to-date if
1806 			 * there is still data in the socket buffer.
1807 			 */
1808 			so->so_rcv.sb_mb = nextrecord;
1809 			if (so->so_rcv.sb_mb == NULL) {
1810 				so->so_rcv.sb_mbtail = NULL;
1811 				so->so_rcv.sb_lastrecord = NULL;
1812 			} else if (nextrecord->m_nextpkt == NULL)
1813 				so->so_rcv.sb_lastrecord = nextrecord;
1814 		}
1815 		SBLASTRECORDCHK(&so->so_rcv);
1816 		SBLASTMBUFCHK(&so->so_rcv);
1817 		/*
1818 		 * If soreceive() is being done from the socket callback,
1819 		 * then don't need to generate ACK to peer to update window,
1820 		 * since ACK will be generated on return to TCP.
1821 		 */
1822 		if (!(flags & MSG_SOCALLBCK) &&
1823 		    (pr->pr_flags & PR_WANTRCVD)) {
1824 			SOCKBUF_UNLOCK(&so->so_rcv);
1825 			(*pr->pr_usrreqs->pru_rcvd)(so, flags);
1826 			SOCKBUF_LOCK(&so->so_rcv);
1827 		}
1828 	}
1829 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1830 	if (orig_resid == uio->uio_resid && orig_resid &&
1831 	    (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
1832 		SOCKBUF_UNLOCK(&so->so_rcv);
1833 		goto restart;
1834 	}
1835 	SOCKBUF_UNLOCK(&so->so_rcv);
1836 
1837 	if (flagsp != NULL)
1838 		*flagsp |= flags;
1839 release:
1840 	sbunlock(&so->so_rcv);
1841 	return (error);
1842 }
1843 
1844 int
1845 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
1846     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1847 {
1848 
1849 	/* XXXRW: Temporary debugging. */
1850 	KASSERT(so->so_proto->pr_usrreqs->pru_soreceive != soreceive,
1851 	    ("soreceive: protocol calls soreceive"));
1852 
1853 	return (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, mp0,
1854 	    controlp, flagsp));
1855 }
1856 
1857 int
1858 soshutdown(struct socket *so, int how)
1859 {
1860 	struct protosw *pr = so->so_proto;
1861 
1862 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1863 		return (EINVAL);
1864 
1865 	if (how != SHUT_WR)
1866 		sorflush(so);
1867 	if (how != SHUT_RD)
1868 		return ((*pr->pr_usrreqs->pru_shutdown)(so));
1869 	return (0);
1870 }
1871 
1872 void
1873 sorflush(struct socket *so)
1874 {
1875 	struct sockbuf *sb = &so->so_rcv;
1876 	struct protosw *pr = so->so_proto;
1877 	struct sockbuf asb;
1878 
1879 	/*
1880 	 * XXXRW: This is quite ugly.  Previously, this code made a copy of
1881 	 * the socket buffer, then zero'd the original to clear the buffer
1882 	 * fields.  However, with mutexes in the socket buffer, this causes
1883 	 * problems.  We only clear the zeroable bits of the original;
1884 	 * however, we have to initialize and destroy the mutex in the copy
1885 	 * so that dom_dispose() and sbrelease() can lock t as needed.
1886 	 */
1887 	(void) sblock(sb, M_WAITOK);
1888 	SOCKBUF_LOCK(sb);
1889 	sb->sb_flags |= SB_NOINTR;
1890 	socantrcvmore_locked(so);
1891 	/*
1892 	 * Invalidate/clear most of the sockbuf structure, but leave selinfo
1893 	 * and mutex data unchanged.
1894 	 */
1895 	SOCKBUF_LOCK(sb);
1896 	bzero(&asb, offsetof(struct sockbuf, sb_startzero));
1897 	bcopy(&sb->sb_startzero, &asb.sb_startzero,
1898 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1899 	bzero(&sb->sb_startzero,
1900 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1901 	SOCKBUF_UNLOCK(sb);
1902 	sbunlock(sb);
1903 
1904 	SOCKBUF_LOCK_INIT(&asb, "so_rcv");
1905 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
1906 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
1907 	sbrelease(&asb, so);
1908 	SOCKBUF_LOCK_DESTROY(&asb);
1909 }
1910 
1911 /*
1912  * Perhaps this routine, and sooptcopyout(), below, ought to come in an
1913  * additional variant to handle the case where the option value needs to be
1914  * some kind of integer, but not a specific size.  In addition to their use
1915  * here, these functions are also called by the protocol-level pr_ctloutput()
1916  * routines.
1917  */
1918 int
1919 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
1920 {
1921 	size_t	valsize;
1922 
1923 	/*
1924 	 * If the user gives us more than we wanted, we ignore it, but if we
1925 	 * don't get the minimum length the caller wants, we return EINVAL.
1926 	 * On success, sopt->sopt_valsize is set to however much we actually
1927 	 * retrieved.
1928 	 */
1929 	if ((valsize = sopt->sopt_valsize) < minlen)
1930 		return EINVAL;
1931 	if (valsize > len)
1932 		sopt->sopt_valsize = valsize = len;
1933 
1934 	if (sopt->sopt_td != NULL)
1935 		return (copyin(sopt->sopt_val, buf, valsize));
1936 
1937 	bcopy(sopt->sopt_val, buf, valsize);
1938 	return (0);
1939 }
1940 
1941 /*
1942  * Kernel version of setsockopt(2).
1943  *
1944  * XXX: optlen is size_t, not socklen_t
1945  */
1946 int
1947 so_setsockopt(struct socket *so, int level, int optname, void *optval,
1948     size_t optlen)
1949 {
1950 	struct sockopt sopt;
1951 
1952 	sopt.sopt_level = level;
1953 	sopt.sopt_name = optname;
1954 	sopt.sopt_dir = SOPT_SET;
1955 	sopt.sopt_val = optval;
1956 	sopt.sopt_valsize = optlen;
1957 	sopt.sopt_td = NULL;
1958 	return (sosetopt(so, &sopt));
1959 }
1960 
1961 int
1962 sosetopt(struct socket *so, struct sockopt *sopt)
1963 {
1964 	int	error, optval;
1965 	struct	linger l;
1966 	struct	timeval tv;
1967 	u_long  val;
1968 #ifdef MAC
1969 	struct mac extmac;
1970 #endif
1971 
1972 	error = 0;
1973 	if (sopt->sopt_level != SOL_SOCKET) {
1974 		if (so->so_proto && so->so_proto->pr_ctloutput)
1975 			return ((*so->so_proto->pr_ctloutput)
1976 				  (so, sopt));
1977 		error = ENOPROTOOPT;
1978 	} else {
1979 		switch (sopt->sopt_name) {
1980 #ifdef INET
1981 		case SO_ACCEPTFILTER:
1982 			error = do_setopt_accept_filter(so, sopt);
1983 			if (error)
1984 				goto bad;
1985 			break;
1986 #endif
1987 		case SO_LINGER:
1988 			error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
1989 			if (error)
1990 				goto bad;
1991 
1992 			SOCK_LOCK(so);
1993 			so->so_linger = l.l_linger;
1994 			if (l.l_onoff)
1995 				so->so_options |= SO_LINGER;
1996 			else
1997 				so->so_options &= ~SO_LINGER;
1998 			SOCK_UNLOCK(so);
1999 			break;
2000 
2001 		case SO_DEBUG:
2002 		case SO_KEEPALIVE:
2003 		case SO_DONTROUTE:
2004 		case SO_USELOOPBACK:
2005 		case SO_BROADCAST:
2006 		case SO_REUSEADDR:
2007 		case SO_REUSEPORT:
2008 		case SO_OOBINLINE:
2009 		case SO_TIMESTAMP:
2010 		case SO_BINTIME:
2011 		case SO_NOSIGPIPE:
2012 			error = sooptcopyin(sopt, &optval, sizeof optval,
2013 					    sizeof optval);
2014 			if (error)
2015 				goto bad;
2016 			SOCK_LOCK(so);
2017 			if (optval)
2018 				so->so_options |= sopt->sopt_name;
2019 			else
2020 				so->so_options &= ~sopt->sopt_name;
2021 			SOCK_UNLOCK(so);
2022 			break;
2023 
2024 		case SO_SNDBUF:
2025 		case SO_RCVBUF:
2026 		case SO_SNDLOWAT:
2027 		case SO_RCVLOWAT:
2028 			error = sooptcopyin(sopt, &optval, sizeof optval,
2029 					    sizeof optval);
2030 			if (error)
2031 				goto bad;
2032 
2033 			/*
2034 			 * Values < 1 make no sense for any of these options,
2035 			 * so disallow them.
2036 			 */
2037 			if (optval < 1) {
2038 				error = EINVAL;
2039 				goto bad;
2040 			}
2041 
2042 			switch (sopt->sopt_name) {
2043 			case SO_SNDBUF:
2044 			case SO_RCVBUF:
2045 				if (sbreserve(sopt->sopt_name == SO_SNDBUF ?
2046 				    &so->so_snd : &so->so_rcv, (u_long)optval,
2047 				    so, curthread) == 0) {
2048 					error = ENOBUFS;
2049 					goto bad;
2050 				}
2051 				(sopt->sopt_name == SO_SNDBUF ? &so->so_snd :
2052 				    &so->so_rcv)->sb_flags &= ~SB_AUTOSIZE;
2053 				break;
2054 
2055 			/*
2056 			 * Make sure the low-water is never greater than the
2057 			 * high-water.
2058 			 */
2059 			case SO_SNDLOWAT:
2060 				SOCKBUF_LOCK(&so->so_snd);
2061 				so->so_snd.sb_lowat =
2062 				    (optval > so->so_snd.sb_hiwat) ?
2063 				    so->so_snd.sb_hiwat : optval;
2064 				SOCKBUF_UNLOCK(&so->so_snd);
2065 				break;
2066 			case SO_RCVLOWAT:
2067 				SOCKBUF_LOCK(&so->so_rcv);
2068 				so->so_rcv.sb_lowat =
2069 				    (optval > so->so_rcv.sb_hiwat) ?
2070 				    so->so_rcv.sb_hiwat : optval;
2071 				SOCKBUF_UNLOCK(&so->so_rcv);
2072 				break;
2073 			}
2074 			break;
2075 
2076 		case SO_SNDTIMEO:
2077 		case SO_RCVTIMEO:
2078 #ifdef COMPAT_IA32
2079 			if (curthread->td_proc->p_sysent == &ia32_freebsd_sysvec) {
2080 				struct timeval32 tv32;
2081 
2082 				error = sooptcopyin(sopt, &tv32, sizeof tv32,
2083 				    sizeof tv32);
2084 				CP(tv32, tv, tv_sec);
2085 				CP(tv32, tv, tv_usec);
2086 			} else
2087 #endif
2088 				error = sooptcopyin(sopt, &tv, sizeof tv,
2089 				    sizeof tv);
2090 			if (error)
2091 				goto bad;
2092 
2093 			/* assert(hz > 0); */
2094 			if (tv.tv_sec < 0 || tv.tv_sec > INT_MAX / hz ||
2095 			    tv.tv_usec < 0 || tv.tv_usec >= 1000000) {
2096 				error = EDOM;
2097 				goto bad;
2098 			}
2099 			/* assert(tick > 0); */
2100 			/* assert(ULONG_MAX - INT_MAX >= 1000000); */
2101 			val = (u_long)(tv.tv_sec * hz) + tv.tv_usec / tick;
2102 			if (val > INT_MAX) {
2103 				error = EDOM;
2104 				goto bad;
2105 			}
2106 			if (val == 0 && tv.tv_usec != 0)
2107 				val = 1;
2108 
2109 			switch (sopt->sopt_name) {
2110 			case SO_SNDTIMEO:
2111 				so->so_snd.sb_timeo = val;
2112 				break;
2113 			case SO_RCVTIMEO:
2114 				so->so_rcv.sb_timeo = val;
2115 				break;
2116 			}
2117 			break;
2118 
2119 		case SO_LABEL:
2120 #ifdef MAC
2121 			error = sooptcopyin(sopt, &extmac, sizeof extmac,
2122 			    sizeof extmac);
2123 			if (error)
2124 				goto bad;
2125 			error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
2126 			    so, &extmac);
2127 #else
2128 			error = EOPNOTSUPP;
2129 #endif
2130 			break;
2131 
2132 		default:
2133 			error = ENOPROTOOPT;
2134 			break;
2135 		}
2136 		if (error == 0 && so->so_proto != NULL &&
2137 		    so->so_proto->pr_ctloutput != NULL) {
2138 			(void) ((*so->so_proto->pr_ctloutput)
2139 				  (so, sopt));
2140 		}
2141 	}
2142 bad:
2143 	return (error);
2144 }
2145 
2146 /*
2147  * Helper routine for getsockopt.
2148  */
2149 int
2150 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
2151 {
2152 	int	error;
2153 	size_t	valsize;
2154 
2155 	error = 0;
2156 
2157 	/*
2158 	 * Documented get behavior is that we always return a value, possibly
2159 	 * truncated to fit in the user's buffer.  Traditional behavior is
2160 	 * that we always tell the user precisely how much we copied, rather
2161 	 * than something useful like the total amount we had available for
2162 	 * her.  Note that this interface is not idempotent; the entire
2163 	 * answer must generated ahead of time.
2164 	 */
2165 	valsize = min(len, sopt->sopt_valsize);
2166 	sopt->sopt_valsize = valsize;
2167 	if (sopt->sopt_val != NULL) {
2168 		if (sopt->sopt_td != NULL)
2169 			error = copyout(buf, sopt->sopt_val, valsize);
2170 		else
2171 			bcopy(buf, sopt->sopt_val, valsize);
2172 	}
2173 	return (error);
2174 }
2175 
2176 int
2177 sogetopt(struct socket *so, struct sockopt *sopt)
2178 {
2179 	int	error, optval;
2180 	struct	linger l;
2181 	struct	timeval tv;
2182 #ifdef MAC
2183 	struct mac extmac;
2184 #endif
2185 
2186 	error = 0;
2187 	if (sopt->sopt_level != SOL_SOCKET) {
2188 		if (so->so_proto && so->so_proto->pr_ctloutput) {
2189 			return ((*so->so_proto->pr_ctloutput)
2190 				  (so, sopt));
2191 		} else
2192 			return (ENOPROTOOPT);
2193 	} else {
2194 		switch (sopt->sopt_name) {
2195 #ifdef INET
2196 		case SO_ACCEPTFILTER:
2197 			error = do_getopt_accept_filter(so, sopt);
2198 			break;
2199 #endif
2200 		case SO_LINGER:
2201 			SOCK_LOCK(so);
2202 			l.l_onoff = so->so_options & SO_LINGER;
2203 			l.l_linger = so->so_linger;
2204 			SOCK_UNLOCK(so);
2205 			error = sooptcopyout(sopt, &l, sizeof l);
2206 			break;
2207 
2208 		case SO_USELOOPBACK:
2209 		case SO_DONTROUTE:
2210 		case SO_DEBUG:
2211 		case SO_KEEPALIVE:
2212 		case SO_REUSEADDR:
2213 		case SO_REUSEPORT:
2214 		case SO_BROADCAST:
2215 		case SO_OOBINLINE:
2216 		case SO_ACCEPTCONN:
2217 		case SO_TIMESTAMP:
2218 		case SO_BINTIME:
2219 		case SO_NOSIGPIPE:
2220 			optval = so->so_options & sopt->sopt_name;
2221 integer:
2222 			error = sooptcopyout(sopt, &optval, sizeof optval);
2223 			break;
2224 
2225 		case SO_TYPE:
2226 			optval = so->so_type;
2227 			goto integer;
2228 
2229 		case SO_ERROR:
2230 			SOCK_LOCK(so);
2231 			optval = so->so_error;
2232 			so->so_error = 0;
2233 			SOCK_UNLOCK(so);
2234 			goto integer;
2235 
2236 		case SO_SNDBUF:
2237 			optval = so->so_snd.sb_hiwat;
2238 			goto integer;
2239 
2240 		case SO_RCVBUF:
2241 			optval = so->so_rcv.sb_hiwat;
2242 			goto integer;
2243 
2244 		case SO_SNDLOWAT:
2245 			optval = so->so_snd.sb_lowat;
2246 			goto integer;
2247 
2248 		case SO_RCVLOWAT:
2249 			optval = so->so_rcv.sb_lowat;
2250 			goto integer;
2251 
2252 		case SO_SNDTIMEO:
2253 		case SO_RCVTIMEO:
2254 			optval = (sopt->sopt_name == SO_SNDTIMEO ?
2255 				  so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
2256 
2257 			tv.tv_sec = optval / hz;
2258 			tv.tv_usec = (optval % hz) * tick;
2259 #ifdef COMPAT_IA32
2260 			if (curthread->td_proc->p_sysent == &ia32_freebsd_sysvec) {
2261 				struct timeval32 tv32;
2262 
2263 				CP(tv, tv32, tv_sec);
2264 				CP(tv, tv32, tv_usec);
2265 				error = sooptcopyout(sopt, &tv32, sizeof tv32);
2266 			} else
2267 #endif
2268 				error = sooptcopyout(sopt, &tv, sizeof tv);
2269 			break;
2270 
2271 		case SO_LABEL:
2272 #ifdef MAC
2273 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
2274 			    sizeof(extmac));
2275 			if (error)
2276 				return (error);
2277 			error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
2278 			    so, &extmac);
2279 			if (error)
2280 				return (error);
2281 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
2282 #else
2283 			error = EOPNOTSUPP;
2284 #endif
2285 			break;
2286 
2287 		case SO_PEERLABEL:
2288 #ifdef MAC
2289 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
2290 			    sizeof(extmac));
2291 			if (error)
2292 				return (error);
2293 			error = mac_getsockopt_peerlabel(
2294 			    sopt->sopt_td->td_ucred, so, &extmac);
2295 			if (error)
2296 				return (error);
2297 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
2298 #else
2299 			error = EOPNOTSUPP;
2300 #endif
2301 			break;
2302 
2303 		case SO_LISTENQLIMIT:
2304 			optval = so->so_qlimit;
2305 			goto integer;
2306 
2307 		case SO_LISTENQLEN:
2308 			optval = so->so_qlen;
2309 			goto integer;
2310 
2311 		case SO_LISTENINCQLEN:
2312 			optval = so->so_incqlen;
2313 			goto integer;
2314 
2315 		default:
2316 			error = ENOPROTOOPT;
2317 			break;
2318 		}
2319 		return (error);
2320 	}
2321 }
2322 
2323 /* XXX; prepare mbuf for (__FreeBSD__ < 3) routines. */
2324 int
2325 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
2326 {
2327 	struct mbuf *m, *m_prev;
2328 	int sopt_size = sopt->sopt_valsize;
2329 
2330 	MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA);
2331 	if (m == NULL)
2332 		return ENOBUFS;
2333 	if (sopt_size > MLEN) {
2334 		MCLGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT);
2335 		if ((m->m_flags & M_EXT) == 0) {
2336 			m_free(m);
2337 			return ENOBUFS;
2338 		}
2339 		m->m_len = min(MCLBYTES, sopt_size);
2340 	} else {
2341 		m->m_len = min(MLEN, sopt_size);
2342 	}
2343 	sopt_size -= m->m_len;
2344 	*mp = m;
2345 	m_prev = m;
2346 
2347 	while (sopt_size) {
2348 		MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA);
2349 		if (m == NULL) {
2350 			m_freem(*mp);
2351 			return ENOBUFS;
2352 		}
2353 		if (sopt_size > MLEN) {
2354 			MCLGET(m, sopt->sopt_td != NULL ? M_TRYWAIT :
2355 			    M_DONTWAIT);
2356 			if ((m->m_flags & M_EXT) == 0) {
2357 				m_freem(m);
2358 				m_freem(*mp);
2359 				return ENOBUFS;
2360 			}
2361 			m->m_len = min(MCLBYTES, sopt_size);
2362 		} else {
2363 			m->m_len = min(MLEN, sopt_size);
2364 		}
2365 		sopt_size -= m->m_len;
2366 		m_prev->m_next = m;
2367 		m_prev = m;
2368 	}
2369 	return (0);
2370 }
2371 
2372 /* XXX; copyin sopt data into mbuf chain for (__FreeBSD__ < 3) routines. */
2373 int
2374 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
2375 {
2376 	struct mbuf *m0 = m;
2377 
2378 	if (sopt->sopt_val == NULL)
2379 		return (0);
2380 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
2381 		if (sopt->sopt_td != NULL) {
2382 			int error;
2383 
2384 			error = copyin(sopt->sopt_val, mtod(m, char *),
2385 				       m->m_len);
2386 			if (error != 0) {
2387 				m_freem(m0);
2388 				return(error);
2389 			}
2390 		} else
2391 			bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
2392 		sopt->sopt_valsize -= m->m_len;
2393 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
2394 		m = m->m_next;
2395 	}
2396 	if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
2397 		panic("ip6_sooptmcopyin");
2398 	return (0);
2399 }
2400 
2401 /* XXX; copyout mbuf chain data into soopt for (__FreeBSD__ < 3) routines. */
2402 int
2403 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
2404 {
2405 	struct mbuf *m0 = m;
2406 	size_t valsize = 0;
2407 
2408 	if (sopt->sopt_val == NULL)
2409 		return (0);
2410 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
2411 		if (sopt->sopt_td != NULL) {
2412 			int error;
2413 
2414 			error = copyout(mtod(m, char *), sopt->sopt_val,
2415 				       m->m_len);
2416 			if (error != 0) {
2417 				m_freem(m0);
2418 				return(error);
2419 			}
2420 		} else
2421 			bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
2422 	       sopt->sopt_valsize -= m->m_len;
2423 	       sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
2424 	       valsize += m->m_len;
2425 	       m = m->m_next;
2426 	}
2427 	if (m != NULL) {
2428 		/* enough soopt buffer should be given from user-land */
2429 		m_freem(m0);
2430 		return(EINVAL);
2431 	}
2432 	sopt->sopt_valsize = valsize;
2433 	return (0);
2434 }
2435 
2436 /*
2437  * sohasoutofband(): protocol notifies socket layer of the arrival of new
2438  * out-of-band data, which will then notify socket consumers.
2439  */
2440 void
2441 sohasoutofband(struct socket *so)
2442 {
2443 
2444 	if (so->so_sigio != NULL)
2445 		pgsigio(&so->so_sigio, SIGURG, 0);
2446 	selwakeuppri(&so->so_rcv.sb_sel, PSOCK);
2447 }
2448 
2449 int
2450 sopoll(struct socket *so, int events, struct ucred *active_cred,
2451     struct thread *td)
2452 {
2453 
2454 	/* XXXRW: Temporary debugging. */
2455 	KASSERT(so->so_proto->pr_usrreqs->pru_sopoll != sopoll,
2456 	    ("sopoll: protocol calls sopoll"));
2457 
2458 	return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred,
2459 	    td));
2460 }
2461 
2462 int
2463 sopoll_generic(struct socket *so, int events, struct ucred *active_cred,
2464     struct thread *td)
2465 {
2466 	int revents = 0;
2467 
2468 	SOCKBUF_LOCK(&so->so_snd);
2469 	SOCKBUF_LOCK(&so->so_rcv);
2470 	if (events & (POLLIN | POLLRDNORM))
2471 		if (soreadable(so))
2472 			revents |= events & (POLLIN | POLLRDNORM);
2473 
2474 	if (events & POLLINIGNEOF)
2475 		if (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat ||
2476 		    !TAILQ_EMPTY(&so->so_comp) || so->so_error)
2477 			revents |= POLLINIGNEOF;
2478 
2479 	if (events & (POLLOUT | POLLWRNORM))
2480 		if (sowriteable(so))
2481 			revents |= events & (POLLOUT | POLLWRNORM);
2482 
2483 	if (events & (POLLPRI | POLLRDBAND))
2484 		if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK))
2485 			revents |= events & (POLLPRI | POLLRDBAND);
2486 
2487 	if (revents == 0) {
2488 		if (events &
2489 		    (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM |
2490 		     POLLRDBAND)) {
2491 			selrecord(td, &so->so_rcv.sb_sel);
2492 			so->so_rcv.sb_flags |= SB_SEL;
2493 		}
2494 
2495 		if (events & (POLLOUT | POLLWRNORM)) {
2496 			selrecord(td, &so->so_snd.sb_sel);
2497 			so->so_snd.sb_flags |= SB_SEL;
2498 		}
2499 	}
2500 
2501 	SOCKBUF_UNLOCK(&so->so_rcv);
2502 	SOCKBUF_UNLOCK(&so->so_snd);
2503 	return (revents);
2504 }
2505 
2506 int
2507 soo_kqfilter(struct file *fp, struct knote *kn)
2508 {
2509 	struct socket *so = kn->kn_fp->f_data;
2510 	struct sockbuf *sb;
2511 
2512 	switch (kn->kn_filter) {
2513 	case EVFILT_READ:
2514 		if (so->so_options & SO_ACCEPTCONN)
2515 			kn->kn_fop = &solisten_filtops;
2516 		else
2517 			kn->kn_fop = &soread_filtops;
2518 		sb = &so->so_rcv;
2519 		break;
2520 	case EVFILT_WRITE:
2521 		kn->kn_fop = &sowrite_filtops;
2522 		sb = &so->so_snd;
2523 		break;
2524 	default:
2525 		return (EINVAL);
2526 	}
2527 
2528 	SOCKBUF_LOCK(sb);
2529 	knlist_add(&sb->sb_sel.si_note, kn, 1);
2530 	sb->sb_flags |= SB_KNOTE;
2531 	SOCKBUF_UNLOCK(sb);
2532 	return (0);
2533 }
2534 
2535 /*
2536  * Some routines that return EOPNOTSUPP for entry points that are not
2537  * supported by a protocol.  Fill in as needed.
2538  */
2539 int
2540 pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
2541 {
2542 
2543 	return EOPNOTSUPP;
2544 }
2545 
2546 int
2547 pru_attach_notsupp(struct socket *so, int proto, struct thread *td)
2548 {
2549 
2550 	return EOPNOTSUPP;
2551 }
2552 
2553 int
2554 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
2555 {
2556 
2557 	return EOPNOTSUPP;
2558 }
2559 
2560 int
2561 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
2562 {
2563 
2564 	return EOPNOTSUPP;
2565 }
2566 
2567 int
2568 pru_connect2_notsupp(struct socket *so1, struct socket *so2)
2569 {
2570 
2571 	return EOPNOTSUPP;
2572 }
2573 
2574 int
2575 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
2576     struct ifnet *ifp, struct thread *td)
2577 {
2578 
2579 	return EOPNOTSUPP;
2580 }
2581 
2582 int
2583 pru_disconnect_notsupp(struct socket *so)
2584 {
2585 
2586 	return EOPNOTSUPP;
2587 }
2588 
2589 int
2590 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td)
2591 {
2592 
2593 	return EOPNOTSUPP;
2594 }
2595 
2596 int
2597 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam)
2598 {
2599 
2600 	return EOPNOTSUPP;
2601 }
2602 
2603 int
2604 pru_rcvd_notsupp(struct socket *so, int flags)
2605 {
2606 
2607 	return EOPNOTSUPP;
2608 }
2609 
2610 int
2611 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
2612 {
2613 
2614 	return EOPNOTSUPP;
2615 }
2616 
2617 int
2618 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m,
2619     struct sockaddr *addr, struct mbuf *control, struct thread *td)
2620 {
2621 
2622 	return EOPNOTSUPP;
2623 }
2624 
2625 /*
2626  * This isn't really a ``null'' operation, but it's the default one and
2627  * doesn't do anything destructive.
2628  */
2629 int
2630 pru_sense_null(struct socket *so, struct stat *sb)
2631 {
2632 
2633 	sb->st_blksize = so->so_snd.sb_hiwat;
2634 	return 0;
2635 }
2636 
2637 int
2638 pru_shutdown_notsupp(struct socket *so)
2639 {
2640 
2641 	return EOPNOTSUPP;
2642 }
2643 
2644 int
2645 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam)
2646 {
2647 
2648 	return EOPNOTSUPP;
2649 }
2650 
2651 int
2652 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio,
2653     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2654 {
2655 
2656 	return EOPNOTSUPP;
2657 }
2658 
2659 int
2660 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr,
2661     struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2662 {
2663 
2664 	return EOPNOTSUPP;
2665 }
2666 
2667 int
2668 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred,
2669     struct thread *td)
2670 {
2671 
2672 	return EOPNOTSUPP;
2673 }
2674 
2675 static void
2676 filt_sordetach(struct knote *kn)
2677 {
2678 	struct socket *so = kn->kn_fp->f_data;
2679 
2680 	SOCKBUF_LOCK(&so->so_rcv);
2681 	knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1);
2682 	if (knlist_empty(&so->so_rcv.sb_sel.si_note))
2683 		so->so_rcv.sb_flags &= ~SB_KNOTE;
2684 	SOCKBUF_UNLOCK(&so->so_rcv);
2685 }
2686 
2687 /*ARGSUSED*/
2688 static int
2689 filt_soread(struct knote *kn, long hint)
2690 {
2691 	struct socket *so;
2692 
2693 	so = kn->kn_fp->f_data;
2694 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2695 
2696 	kn->kn_data = so->so_rcv.sb_cc - so->so_rcv.sb_ctl;
2697 	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2698 		kn->kn_flags |= EV_EOF;
2699 		kn->kn_fflags = so->so_error;
2700 		return (1);
2701 	} else if (so->so_error)	/* temporary udp error */
2702 		return (1);
2703 	else if (kn->kn_sfflags & NOTE_LOWAT)
2704 		return (kn->kn_data >= kn->kn_sdata);
2705 	else
2706 		return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat);
2707 }
2708 
2709 static void
2710 filt_sowdetach(struct knote *kn)
2711 {
2712 	struct socket *so = kn->kn_fp->f_data;
2713 
2714 	SOCKBUF_LOCK(&so->so_snd);
2715 	knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1);
2716 	if (knlist_empty(&so->so_snd.sb_sel.si_note))
2717 		so->so_snd.sb_flags &= ~SB_KNOTE;
2718 	SOCKBUF_UNLOCK(&so->so_snd);
2719 }
2720 
2721 /*ARGSUSED*/
2722 static int
2723 filt_sowrite(struct knote *kn, long hint)
2724 {
2725 	struct socket *so;
2726 
2727 	so = kn->kn_fp->f_data;
2728 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
2729 	kn->kn_data = sbspace(&so->so_snd);
2730 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2731 		kn->kn_flags |= EV_EOF;
2732 		kn->kn_fflags = so->so_error;
2733 		return (1);
2734 	} else if (so->so_error)	/* temporary udp error */
2735 		return (1);
2736 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2737 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
2738 		return (0);
2739 	else if (kn->kn_sfflags & NOTE_LOWAT)
2740 		return (kn->kn_data >= kn->kn_sdata);
2741 	else
2742 		return (kn->kn_data >= so->so_snd.sb_lowat);
2743 }
2744 
2745 /*ARGSUSED*/
2746 static int
2747 filt_solisten(struct knote *kn, long hint)
2748 {
2749 	struct socket *so = kn->kn_fp->f_data;
2750 
2751 	kn->kn_data = so->so_qlen;
2752 	return (! TAILQ_EMPTY(&so->so_comp));
2753 }
2754 
2755 int
2756 socheckuid(struct socket *so, uid_t uid)
2757 {
2758 
2759 	if (so == NULL)
2760 		return (EPERM);
2761 	if (so->so_cred->cr_uid != uid)
2762 		return (EPERM);
2763 	return (0);
2764 }
2765 
2766 static int
2767 sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
2768 {
2769 	int error;
2770 	int val;
2771 
2772 	val = somaxconn;
2773 	error = sysctl_handle_int(oidp, &val, 0, req);
2774 	if (error || !req->newptr )
2775 		return (error);
2776 
2777 	if (val < 1 || val > USHRT_MAX)
2778 		return (EINVAL);
2779 
2780 	somaxconn = val;
2781 	return (0);
2782 }
2783 
2784 /*
2785  * These functions are used by protocols to notify the socket layer (and its
2786  * consumers) of state changes in the sockets driven by protocol-side events.
2787  */
2788 
2789 /*
2790  * Procedures to manipulate state flags of socket and do appropriate wakeups.
2791  *
2792  * Normal sequence from the active (originating) side is that
2793  * soisconnecting() is called during processing of connect() call, resulting
2794  * in an eventual call to soisconnected() if/when the connection is
2795  * established.  When the connection is torn down soisdisconnecting() is
2796  * called during processing of disconnect() call, and soisdisconnected() is
2797  * called when the connection to the peer is totally severed.  The semantics
2798  * of these routines are such that connectionless protocols can call
2799  * soisconnected() and soisdisconnected() only, bypassing the in-progress
2800  * calls when setting up a ``connection'' takes no time.
2801  *
2802  * From the passive side, a socket is created with two queues of sockets:
2803  * so_incomp for connections in progress and so_comp for connections already
2804  * made and awaiting user acceptance.  As a protocol is preparing incoming
2805  * connections, it creates a socket structure queued on so_incomp by calling
2806  * sonewconn().  When the connection is established, soisconnected() is
2807  * called, and transfers the socket structure to so_comp, making it available
2808  * to accept().
2809  *
2810  * If a socket is closed with sockets on either so_incomp or so_comp, these
2811  * sockets are dropped.
2812  *
2813  * If higher-level protocols are implemented in the kernel, the wakeups done
2814  * here will sometimes cause software-interrupt process scheduling.
2815  */
2816 void
2817 soisconnecting(struct socket *so)
2818 {
2819 
2820 	SOCK_LOCK(so);
2821 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
2822 	so->so_state |= SS_ISCONNECTING;
2823 	SOCK_UNLOCK(so);
2824 }
2825 
2826 void
2827 soisconnected(struct socket *so)
2828 {
2829 	struct socket *head;
2830 
2831 	ACCEPT_LOCK();
2832 	SOCK_LOCK(so);
2833 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
2834 	so->so_state |= SS_ISCONNECTED;
2835 	head = so->so_head;
2836 	if (head != NULL && (so->so_qstate & SQ_INCOMP)) {
2837 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
2838 			SOCK_UNLOCK(so);
2839 			TAILQ_REMOVE(&head->so_incomp, so, so_list);
2840 			head->so_incqlen--;
2841 			so->so_qstate &= ~SQ_INCOMP;
2842 			TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
2843 			head->so_qlen++;
2844 			so->so_qstate |= SQ_COMP;
2845 			ACCEPT_UNLOCK();
2846 			sorwakeup(head);
2847 			wakeup_one(&head->so_timeo);
2848 		} else {
2849 			ACCEPT_UNLOCK();
2850 			so->so_upcall =
2851 			    head->so_accf->so_accept_filter->accf_callback;
2852 			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
2853 			so->so_rcv.sb_flags |= SB_UPCALL;
2854 			so->so_options &= ~SO_ACCEPTFILTER;
2855 			SOCK_UNLOCK(so);
2856 			so->so_upcall(so, so->so_upcallarg, M_DONTWAIT);
2857 		}
2858 		return;
2859 	}
2860 	SOCK_UNLOCK(so);
2861 	ACCEPT_UNLOCK();
2862 	wakeup(&so->so_timeo);
2863 	sorwakeup(so);
2864 	sowwakeup(so);
2865 }
2866 
2867 void
2868 soisdisconnecting(struct socket *so)
2869 {
2870 
2871 	/*
2872 	 * Note: This code assumes that SOCK_LOCK(so) and
2873 	 * SOCKBUF_LOCK(&so->so_rcv) are the same.
2874 	 */
2875 	SOCKBUF_LOCK(&so->so_rcv);
2876 	so->so_state &= ~SS_ISCONNECTING;
2877 	so->so_state |= SS_ISDISCONNECTING;
2878 	so->so_rcv.sb_state |= SBS_CANTRCVMORE;
2879 	sorwakeup_locked(so);
2880 	SOCKBUF_LOCK(&so->so_snd);
2881 	so->so_snd.sb_state |= SBS_CANTSENDMORE;
2882 	sowwakeup_locked(so);
2883 	wakeup(&so->so_timeo);
2884 }
2885 
2886 void
2887 soisdisconnected(struct socket *so)
2888 {
2889 
2890 	/*
2891 	 * Note: This code assumes that SOCK_LOCK(so) and
2892 	 * SOCKBUF_LOCK(&so->so_rcv) are the same.
2893 	 */
2894 	SOCKBUF_LOCK(&so->so_rcv);
2895 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
2896 	so->so_state |= SS_ISDISCONNECTED;
2897 	so->so_rcv.sb_state |= SBS_CANTRCVMORE;
2898 	sorwakeup_locked(so);
2899 	SOCKBUF_LOCK(&so->so_snd);
2900 	so->so_snd.sb_state |= SBS_CANTSENDMORE;
2901 	sbdrop_locked(&so->so_snd, so->so_snd.sb_cc);
2902 	sowwakeup_locked(so);
2903 	wakeup(&so->so_timeo);
2904 }
2905 
2906 /*
2907  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
2908  */
2909 struct sockaddr *
2910 sodupsockaddr(const struct sockaddr *sa, int mflags)
2911 {
2912 	struct sockaddr *sa2;
2913 
2914 	sa2 = malloc(sa->sa_len, M_SONAME, mflags);
2915 	if (sa2)
2916 		bcopy(sa, sa2, sa->sa_len);
2917 	return sa2;
2918 }
2919 
2920 /*
2921  * Create an external-format (``xsocket'') structure using the information in
2922  * the kernel-format socket structure pointed to by so.  This is done to
2923  * reduce the spew of irrelevant information over this interface, to isolate
2924  * user code from changes in the kernel structure, and potentially to provide
2925  * information-hiding if we decide that some of this information should be
2926  * hidden from users.
2927  */
2928 void
2929 sotoxsocket(struct socket *so, struct xsocket *xso)
2930 {
2931 
2932 	xso->xso_len = sizeof *xso;
2933 	xso->xso_so = so;
2934 	xso->so_type = so->so_type;
2935 	xso->so_options = so->so_options;
2936 	xso->so_linger = so->so_linger;
2937 	xso->so_state = so->so_state;
2938 	xso->so_pcb = so->so_pcb;
2939 	xso->xso_protocol = so->so_proto->pr_protocol;
2940 	xso->xso_family = so->so_proto->pr_domain->dom_family;
2941 	xso->so_qlen = so->so_qlen;
2942 	xso->so_incqlen = so->so_incqlen;
2943 	xso->so_qlimit = so->so_qlimit;
2944 	xso->so_timeo = so->so_timeo;
2945 	xso->so_error = so->so_error;
2946 	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
2947 	xso->so_oobmark = so->so_oobmark;
2948 	sbtoxsockbuf(&so->so_snd, &xso->so_snd);
2949 	sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
2950 	xso->so_uid = so->so_cred->cr_uid;
2951 }
2952