1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993 3 * The Regents of the University of California. 4 * Copyright (c) 2004 The FreeBSD Foundation 5 * Copyright (c) 2004-2008 Robert N. M. Watson 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 33 */ 34 35 /* 36 * Comments on the socket life cycle: 37 * 38 * soalloc() sets of socket layer state for a socket, called only by 39 * socreate() and sonewconn(). Socket layer private. 40 * 41 * sodealloc() tears down socket layer state for a socket, called only by 42 * sofree() and sonewconn(). Socket layer private. 43 * 44 * pru_attach() associates protocol layer state with an allocated socket; 45 * called only once, may fail, aborting socket allocation. This is called 46 * from socreate() and sonewconn(). Socket layer private. 47 * 48 * pru_detach() disassociates protocol layer state from an attached socket, 49 * and will be called exactly once for sockets in which pru_attach() has 50 * been successfully called. If pru_attach() returned an error, 51 * pru_detach() will not be called. Socket layer private. 52 * 53 * pru_abort() and pru_close() notify the protocol layer that the last 54 * consumer of a socket is starting to tear down the socket, and that the 55 * protocol should terminate the connection. Historically, pru_abort() also 56 * detached protocol state from the socket state, but this is no longer the 57 * case. 58 * 59 * socreate() creates a socket and attaches protocol state. This is a public 60 * interface that may be used by socket layer consumers to create new 61 * sockets. 62 * 63 * sonewconn() creates a socket and attaches protocol state. This is a 64 * public interface that may be used by protocols to create new sockets when 65 * a new connection is received and will be available for accept() on a 66 * listen socket. 67 * 68 * soclose() destroys a socket after possibly waiting for it to disconnect. 69 * This is a public interface that socket consumers should use to close and 70 * release a socket when done with it. 71 * 72 * soabort() destroys a socket without waiting for it to disconnect (used 73 * only for incoming connections that are already partially or fully 74 * connected). This is used internally by the socket layer when clearing 75 * listen socket queues (due to overflow or close on the listen socket), but 76 * is also a public interface protocols may use to abort connections in 77 * their incomplete listen queues should they no longer be required. Sockets 78 * placed in completed connection listen queues should not be aborted for 79 * reasons described in the comment above the soclose() implementation. This 80 * is not a general purpose close routine, and except in the specific 81 * circumstances described here, should not be used. 82 * 83 * sofree() will free a socket and its protocol state if all references on 84 * the socket have been released, and is the public interface to attempt to 85 * free a socket when a reference is removed. This is a socket layer private 86 * interface. 87 * 88 * NOTE: In addition to socreate() and soclose(), which provide a single 89 * socket reference to the consumer to be managed as required, there are two 90 * calls to explicitly manage socket references, soref(), and sorele(). 91 * Currently, these are generally required only when transitioning a socket 92 * from a listen queue to a file descriptor, in order to prevent garbage 93 * collection of the socket at an untimely moment. For a number of reasons, 94 * these interfaces are not preferred, and should be avoided. 95 * 96 * NOTE: With regard to VNETs the general rule is that callers do not set 97 * curvnet. Exceptions to this rule include soabort(), sodisconnect(), 98 * sofree() (and with that sorele(), sotryfree()), as well as sonewconn() 99 * and sorflush(), which are usually called from a pre-set VNET context. 100 * sopoll() currently does not need a VNET context to be set. 101 */ 102 103 #include <sys/cdefs.h> 104 __FBSDID("$FreeBSD$"); 105 106 #include "opt_inet.h" 107 #include "opt_inet6.h" 108 #include "opt_compat.h" 109 110 #include <sys/param.h> 111 #include <sys/systm.h> 112 #include <sys/fcntl.h> 113 #include <sys/limits.h> 114 #include <sys/lock.h> 115 #include <sys/mac.h> 116 #include <sys/malloc.h> 117 #include <sys/mbuf.h> 118 #include <sys/mutex.h> 119 #include <sys/domain.h> 120 #include <sys/file.h> /* for struct knote */ 121 #include <sys/kernel.h> 122 #include <sys/event.h> 123 #include <sys/eventhandler.h> 124 #include <sys/poll.h> 125 #include <sys/proc.h> 126 #include <sys/protosw.h> 127 #include <sys/socket.h> 128 #include <sys/socketvar.h> 129 #include <sys/resourcevar.h> 130 #include <net/route.h> 131 #include <sys/signalvar.h> 132 #include <sys/stat.h> 133 #include <sys/sx.h> 134 #include <sys/sysctl.h> 135 #include <sys/uio.h> 136 #include <sys/jail.h> 137 #include <sys/syslog.h> 138 #include <netinet/in.h> 139 140 #include <net/vnet.h> 141 142 #include <security/mac/mac_framework.h> 143 144 #include <vm/uma.h> 145 146 #ifdef COMPAT_FREEBSD32 147 #include <sys/mount.h> 148 #include <sys/sysent.h> 149 #include <compat/freebsd32/freebsd32.h> 150 #endif 151 152 static int soreceive_rcvoob(struct socket *so, struct uio *uio, 153 int flags); 154 155 static void filt_sordetach(struct knote *kn); 156 static int filt_soread(struct knote *kn, long hint); 157 static void filt_sowdetach(struct knote *kn); 158 static int filt_sowrite(struct knote *kn, long hint); 159 static int filt_solisten(struct knote *kn, long hint); 160 161 static struct filterops solisten_filtops = { 162 .f_isfd = 1, 163 .f_detach = filt_sordetach, 164 .f_event = filt_solisten, 165 }; 166 static struct filterops soread_filtops = { 167 .f_isfd = 1, 168 .f_detach = filt_sordetach, 169 .f_event = filt_soread, 170 }; 171 static struct filterops sowrite_filtops = { 172 .f_isfd = 1, 173 .f_detach = filt_sowdetach, 174 .f_event = filt_sowrite, 175 }; 176 177 so_gen_t so_gencnt; /* generation count for sockets */ 178 179 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 180 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 181 182 #define VNET_SO_ASSERT(so) \ 183 VNET_ASSERT(curvnet != NULL, \ 184 ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so))); 185 186 /* 187 * Limit on the number of connections in the listen queue waiting 188 * for accept(2). 189 * NB: The orginal sysctl somaxconn is still available but hidden 190 * to prevent confusion about the actual purpose of this number. 191 */ 192 static int somaxconn = SOMAXCONN; 193 194 static int 195 sysctl_somaxconn(SYSCTL_HANDLER_ARGS) 196 { 197 int error; 198 int val; 199 200 val = somaxconn; 201 error = sysctl_handle_int(oidp, &val, 0, req); 202 if (error || !req->newptr ) 203 return (error); 204 205 if (val < 1 || val > USHRT_MAX) 206 return (EINVAL); 207 208 somaxconn = val; 209 return (0); 210 } 211 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue, CTLTYPE_UINT | CTLFLAG_RW, 212 0, sizeof(int), sysctl_somaxconn, "I", 213 "Maximum listen socket pending connection accept queue size"); 214 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, 215 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP, 216 0, sizeof(int), sysctl_somaxconn, "I", 217 "Maximum listen socket pending connection accept queue size (compat)"); 218 219 static int numopensockets; 220 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, 221 &numopensockets, 0, "Number of open sockets"); 222 223 /* 224 * accept_mtx locks down per-socket fields relating to accept queues. See 225 * socketvar.h for an annotation of the protected fields of struct socket. 226 */ 227 struct mtx accept_mtx; 228 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF); 229 230 /* 231 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket 232 * so_gencnt field. 233 */ 234 static struct mtx so_global_mtx; 235 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); 236 237 /* 238 * General IPC sysctl name space, used by sockets and a variety of other IPC 239 * types. 240 */ 241 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC"); 242 243 /* 244 * Initialize the socket subsystem and set up the socket 245 * memory allocator. 246 */ 247 static uma_zone_t socket_zone; 248 int maxsockets; 249 250 static void 251 socket_zone_change(void *tag) 252 { 253 254 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 255 } 256 257 static void 258 socket_init(void *tag) 259 { 260 261 socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL, 262 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 263 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 264 uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached"); 265 EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL, 266 EVENTHANDLER_PRI_FIRST); 267 } 268 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL); 269 270 /* 271 * Initialise maxsockets. This SYSINIT must be run after 272 * tunable_mbinit(). 273 */ 274 static void 275 init_maxsockets(void *ignored) 276 { 277 278 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 279 maxsockets = imax(maxsockets, maxfiles); 280 } 281 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 282 283 /* 284 * Sysctl to get and set the maximum global sockets limit. Notify protocols 285 * of the change so that they can update their dependent limits as required. 286 */ 287 static int 288 sysctl_maxsockets(SYSCTL_HANDLER_ARGS) 289 { 290 int error, newmaxsockets; 291 292 newmaxsockets = maxsockets; 293 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req); 294 if (error == 0 && req->newptr) { 295 if (newmaxsockets > maxsockets && 296 newmaxsockets <= maxfiles) { 297 maxsockets = newmaxsockets; 298 EVENTHANDLER_INVOKE(maxsockets_change); 299 } else 300 error = EINVAL; 301 } 302 return (error); 303 } 304 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, CTLTYPE_INT|CTLFLAG_RW, 305 &maxsockets, 0, sysctl_maxsockets, "IU", 306 "Maximum number of sockets avaliable"); 307 308 /* 309 * Socket operation routines. These routines are called by the routines in 310 * sys_socket.c or from a system process, and implement the semantics of 311 * socket operations by switching out to the protocol specific routines. 312 */ 313 314 /* 315 * Get a socket structure from our zone, and initialize it. Note that it 316 * would probably be better to allocate socket and PCB at the same time, but 317 * I'm not convinced that all the protocols can be easily modified to do 318 * this. 319 * 320 * soalloc() returns a socket with a ref count of 0. 321 */ 322 static struct socket * 323 soalloc(struct vnet *vnet) 324 { 325 struct socket *so; 326 327 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO); 328 if (so == NULL) 329 return (NULL); 330 #ifdef MAC 331 if (mac_socket_init(so, M_NOWAIT) != 0) { 332 uma_zfree(socket_zone, so); 333 return (NULL); 334 } 335 #endif 336 SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd"); 337 SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv"); 338 sx_init(&so->so_snd.sb_sx, "so_snd_sx"); 339 sx_init(&so->so_rcv.sb_sx, "so_rcv_sx"); 340 TAILQ_INIT(&so->so_aiojobq); 341 mtx_lock(&so_global_mtx); 342 so->so_gencnt = ++so_gencnt; 343 ++numopensockets; 344 #ifdef VIMAGE 345 VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p", 346 __func__, __LINE__, so)); 347 vnet->vnet_sockcnt++; 348 so->so_vnet = vnet; 349 #endif 350 mtx_unlock(&so_global_mtx); 351 return (so); 352 } 353 354 /* 355 * Free the storage associated with a socket at the socket layer, tear down 356 * locks, labels, etc. All protocol state is assumed already to have been 357 * torn down (and possibly never set up) by the caller. 358 */ 359 static void 360 sodealloc(struct socket *so) 361 { 362 363 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); 364 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL")); 365 366 mtx_lock(&so_global_mtx); 367 so->so_gencnt = ++so_gencnt; 368 --numopensockets; /* Could be below, but faster here. */ 369 #ifdef VIMAGE 370 VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p", 371 __func__, __LINE__, so)); 372 so->so_vnet->vnet_sockcnt--; 373 #endif 374 mtx_unlock(&so_global_mtx); 375 if (so->so_rcv.sb_hiwat) 376 (void)chgsbsize(so->so_cred->cr_uidinfo, 377 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 378 if (so->so_snd.sb_hiwat) 379 (void)chgsbsize(so->so_cred->cr_uidinfo, 380 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 381 #ifdef INET 382 /* remove acccept filter if one is present. */ 383 if (so->so_accf != NULL) 384 do_setopt_accept_filter(so, NULL); 385 #endif 386 #ifdef MAC 387 mac_socket_destroy(so); 388 #endif 389 crfree(so->so_cred); 390 sx_destroy(&so->so_snd.sb_sx); 391 sx_destroy(&so->so_rcv.sb_sx); 392 SOCKBUF_LOCK_DESTROY(&so->so_snd); 393 SOCKBUF_LOCK_DESTROY(&so->so_rcv); 394 uma_zfree(socket_zone, so); 395 } 396 397 /* 398 * socreate returns a socket with a ref count of 1. The socket should be 399 * closed with soclose(). 400 */ 401 int 402 socreate(int dom, struct socket **aso, int type, int proto, 403 struct ucred *cred, struct thread *td) 404 { 405 struct protosw *prp; 406 struct socket *so; 407 int error; 408 409 if (proto) 410 prp = pffindproto(dom, proto, type); 411 else 412 prp = pffindtype(dom, type); 413 414 if (prp == NULL) { 415 /* No support for domain. */ 416 if (pffinddomain(dom) == NULL) 417 return (EAFNOSUPPORT); 418 /* No support for socket type. */ 419 if (proto == 0 && type != 0) 420 return (EPROTOTYPE); 421 return (EPROTONOSUPPORT); 422 } 423 if (prp->pr_usrreqs->pru_attach == NULL || 424 prp->pr_usrreqs->pru_attach == pru_attach_notsupp) 425 return (EPROTONOSUPPORT); 426 427 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0) 428 return (EPROTONOSUPPORT); 429 430 if (prp->pr_type != type) 431 return (EPROTOTYPE); 432 so = soalloc(CRED_TO_VNET(cred)); 433 if (so == NULL) 434 return (ENOBUFS); 435 436 TAILQ_INIT(&so->so_incomp); 437 TAILQ_INIT(&so->so_comp); 438 so->so_type = type; 439 so->so_cred = crhold(cred); 440 if ((prp->pr_domain->dom_family == PF_INET) || 441 (prp->pr_domain->dom_family == PF_INET6) || 442 (prp->pr_domain->dom_family == PF_ROUTE)) 443 so->so_fibnum = td->td_proc->p_fibnum; 444 else 445 so->so_fibnum = 0; 446 so->so_proto = prp; 447 #ifdef MAC 448 mac_socket_create(cred, so); 449 #endif 450 knlist_init_mtx(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv)); 451 knlist_init_mtx(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd)); 452 so->so_count = 1; 453 /* 454 * Auto-sizing of socket buffers is managed by the protocols and 455 * the appropriate flags must be set in the pru_attach function. 456 */ 457 CURVNET_SET(so->so_vnet); 458 error = (*prp->pr_usrreqs->pru_attach)(so, proto, td); 459 CURVNET_RESTORE(); 460 if (error) { 461 KASSERT(so->so_count == 1, ("socreate: so_count %d", 462 so->so_count)); 463 so->so_count = 0; 464 sodealloc(so); 465 return (error); 466 } 467 *aso = so; 468 return (0); 469 } 470 471 #ifdef REGRESSION 472 static int regression_sonewconn_earlytest = 1; 473 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW, 474 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test"); 475 #endif 476 477 /* 478 * When an attempt at a new connection is noted on a socket which accepts 479 * connections, sonewconn is called. If the connection is possible (subject 480 * to space constraints, etc.) then we allocate a new structure, propoerly 481 * linked into the data structure of the original socket, and return this. 482 * Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED. 483 * 484 * Note: the ref count on the socket is 0 on return. 485 */ 486 struct socket * 487 sonewconn(struct socket *head, int connstatus) 488 { 489 static struct timeval lastover; 490 static struct timeval overinterval = { 60, 0 }; 491 static int overcount; 492 493 struct socket *so; 494 int over; 495 496 ACCEPT_LOCK(); 497 over = (head->so_qlen > 3 * head->so_qlimit / 2); 498 ACCEPT_UNLOCK(); 499 #ifdef REGRESSION 500 if (regression_sonewconn_earlytest && over) { 501 #else 502 if (over) { 503 #endif 504 overcount++; 505 506 if (ratecheck(&lastover, &overinterval)) { 507 log(LOG_DEBUG, "%s: pcb %p: Listen queue overflow: " 508 "%i already in queue awaiting acceptance " 509 "(%d occurrences)\n", 510 __func__, head->so_pcb, head->so_qlen, overcount); 511 512 overcount = 0; 513 } 514 515 return (NULL); 516 } 517 VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p", 518 __func__, __LINE__, head)); 519 so = soalloc(head->so_vnet); 520 if (so == NULL) { 521 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 522 "limit reached or out of memory\n", 523 __func__, head->so_pcb); 524 return (NULL); 525 } 526 if ((head->so_options & SO_ACCEPTFILTER) != 0) 527 connstatus = 0; 528 so->so_head = head; 529 so->so_type = head->so_type; 530 so->so_options = head->so_options &~ SO_ACCEPTCONN; 531 so->so_linger = head->so_linger; 532 so->so_state = head->so_state | SS_NOFDREF; 533 so->so_fibnum = head->so_fibnum; 534 so->so_proto = head->so_proto; 535 so->so_cred = crhold(head->so_cred); 536 #ifdef MAC 537 mac_socket_newconn(head, so); 538 #endif 539 knlist_init_mtx(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv)); 540 knlist_init_mtx(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd)); 541 VNET_SO_ASSERT(head); 542 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) { 543 sodealloc(so); 544 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 545 __func__, head->so_pcb); 546 return (NULL); 547 } 548 if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 549 sodealloc(so); 550 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", 551 __func__, head->so_pcb); 552 return (NULL); 553 } 554 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; 555 so->so_snd.sb_lowat = head->so_snd.sb_lowat; 556 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; 557 so->so_snd.sb_timeo = head->so_snd.sb_timeo; 558 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE; 559 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE; 560 so->so_state |= connstatus; 561 ACCEPT_LOCK(); 562 /* 563 * The accept socket may be tearing down but we just 564 * won a race on the ACCEPT_LOCK. 565 * However, if sctp_peeloff() is called on a 1-to-many 566 * style socket, the SO_ACCEPTCONN doesn't need to be set. 567 */ 568 if (!(head->so_options & SO_ACCEPTCONN) && 569 ((head->so_proto->pr_protocol != IPPROTO_SCTP) || 570 (head->so_type != SOCK_SEQPACKET))) { 571 SOCK_LOCK(so); 572 so->so_head = NULL; 573 sofree(so); /* NB: returns ACCEPT_UNLOCK'ed. */ 574 return (NULL); 575 } 576 if (connstatus) { 577 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 578 so->so_qstate |= SQ_COMP; 579 head->so_qlen++; 580 } else { 581 /* 582 * Keep removing sockets from the head until there's room for 583 * us to insert on the tail. In pre-locking revisions, this 584 * was a simple if(), but as we could be racing with other 585 * threads and soabort() requires dropping locks, we must 586 * loop waiting for the condition to be true. 587 */ 588 while (head->so_incqlen > head->so_qlimit) { 589 struct socket *sp; 590 sp = TAILQ_FIRST(&head->so_incomp); 591 TAILQ_REMOVE(&head->so_incomp, sp, so_list); 592 head->so_incqlen--; 593 sp->so_qstate &= ~SQ_INCOMP; 594 sp->so_head = NULL; 595 ACCEPT_UNLOCK(); 596 soabort(sp); 597 ACCEPT_LOCK(); 598 } 599 TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list); 600 so->so_qstate |= SQ_INCOMP; 601 head->so_incqlen++; 602 } 603 ACCEPT_UNLOCK(); 604 if (connstatus) { 605 sorwakeup(head); 606 wakeup_one(&head->so_timeo); 607 } 608 return (so); 609 } 610 611 int 612 sobind(struct socket *so, struct sockaddr *nam, struct thread *td) 613 { 614 int error; 615 616 CURVNET_SET(so->so_vnet); 617 error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td); 618 CURVNET_RESTORE(); 619 return (error); 620 } 621 622 int 623 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 624 { 625 int error; 626 627 CURVNET_SET(so->so_vnet); 628 error = (*so->so_proto->pr_usrreqs->pru_bindat)(fd, so, nam, td); 629 CURVNET_RESTORE(); 630 return (error); 631 } 632 633 /* 634 * solisten() transitions a socket from a non-listening state to a listening 635 * state, but can also be used to update the listen queue depth on an 636 * existing listen socket. The protocol will call back into the sockets 637 * layer using solisten_proto_check() and solisten_proto() to check and set 638 * socket-layer listen state. Call backs are used so that the protocol can 639 * acquire both protocol and socket layer locks in whatever order is required 640 * by the protocol. 641 * 642 * Protocol implementors are advised to hold the socket lock across the 643 * socket-layer test and set to avoid races at the socket layer. 644 */ 645 int 646 solisten(struct socket *so, int backlog, struct thread *td) 647 { 648 int error; 649 650 CURVNET_SET(so->so_vnet); 651 error = (*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td); 652 CURVNET_RESTORE(); 653 return (error); 654 } 655 656 int 657 solisten_proto_check(struct socket *so) 658 { 659 660 SOCK_LOCK_ASSERT(so); 661 662 if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 663 SS_ISDISCONNECTING)) 664 return (EINVAL); 665 return (0); 666 } 667 668 void 669 solisten_proto(struct socket *so, int backlog) 670 { 671 672 SOCK_LOCK_ASSERT(so); 673 674 if (backlog < 0 || backlog > somaxconn) 675 backlog = somaxconn; 676 so->so_qlimit = backlog; 677 so->so_options |= SO_ACCEPTCONN; 678 } 679 680 /* 681 * Evaluate the reference count and named references on a socket; if no 682 * references remain, free it. This should be called whenever a reference is 683 * released, such as in sorele(), but also when named reference flags are 684 * cleared in socket or protocol code. 685 * 686 * sofree() will free the socket if: 687 * 688 * - There are no outstanding file descriptor references or related consumers 689 * (so_count == 0). 690 * 691 * - The socket has been closed by user space, if ever open (SS_NOFDREF). 692 * 693 * - The protocol does not have an outstanding strong reference on the socket 694 * (SS_PROTOREF). 695 * 696 * - The socket is not in a completed connection queue, so a process has been 697 * notified that it is present. If it is removed, the user process may 698 * block in accept() despite select() saying the socket was ready. 699 */ 700 void 701 sofree(struct socket *so) 702 { 703 struct protosw *pr = so->so_proto; 704 struct socket *head; 705 706 ACCEPT_LOCK_ASSERT(); 707 SOCK_LOCK_ASSERT(so); 708 709 if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 || 710 (so->so_state & SS_PROTOREF) || (so->so_qstate & SQ_COMP)) { 711 SOCK_UNLOCK(so); 712 ACCEPT_UNLOCK(); 713 return; 714 } 715 716 head = so->so_head; 717 if (head != NULL) { 718 KASSERT((so->so_qstate & SQ_COMP) != 0 || 719 (so->so_qstate & SQ_INCOMP) != 0, 720 ("sofree: so_head != NULL, but neither SQ_COMP nor " 721 "SQ_INCOMP")); 722 KASSERT((so->so_qstate & SQ_COMP) == 0 || 723 (so->so_qstate & SQ_INCOMP) == 0, 724 ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP")); 725 TAILQ_REMOVE(&head->so_incomp, so, so_list); 726 head->so_incqlen--; 727 so->so_qstate &= ~SQ_INCOMP; 728 so->so_head = NULL; 729 } 730 KASSERT((so->so_qstate & SQ_COMP) == 0 && 731 (so->so_qstate & SQ_INCOMP) == 0, 732 ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)", 733 so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP)); 734 if (so->so_options & SO_ACCEPTCONN) { 735 KASSERT((TAILQ_EMPTY(&so->so_comp)), 736 ("sofree: so_comp populated")); 737 KASSERT((TAILQ_EMPTY(&so->so_incomp)), 738 ("sofree: so_incomp populated")); 739 } 740 SOCK_UNLOCK(so); 741 ACCEPT_UNLOCK(); 742 743 VNET_SO_ASSERT(so); 744 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 745 (*pr->pr_domain->dom_dispose)(so->so_rcv.sb_mb); 746 if (pr->pr_usrreqs->pru_detach != NULL) 747 (*pr->pr_usrreqs->pru_detach)(so); 748 749 /* 750 * From this point on, we assume that no other references to this 751 * socket exist anywhere else in the stack. Therefore, no locks need 752 * to be acquired or held. 753 * 754 * We used to do a lot of socket buffer and socket locking here, as 755 * well as invoke sorflush() and perform wakeups. The direct call to 756 * dom_dispose() and sbrelease_internal() are an inlining of what was 757 * necessary from sorflush(). 758 * 759 * Notice that the socket buffer and kqueue state are torn down 760 * before calling pru_detach. This means that protocols shold not 761 * assume they can perform socket wakeups, etc, in their detach code. 762 */ 763 sbdestroy(&so->so_snd, so); 764 sbdestroy(&so->so_rcv, so); 765 seldrain(&so->so_snd.sb_sel); 766 seldrain(&so->so_rcv.sb_sel); 767 knlist_destroy(&so->so_rcv.sb_sel.si_note); 768 knlist_destroy(&so->so_snd.sb_sel.si_note); 769 sodealloc(so); 770 } 771 772 /* 773 * Close a socket on last file table reference removal. Initiate disconnect 774 * if connected. Free socket when disconnect complete. 775 * 776 * This function will sorele() the socket. Note that soclose() may be called 777 * prior to the ref count reaching zero. The actual socket structure will 778 * not be freed until the ref count reaches zero. 779 */ 780 int 781 soclose(struct socket *so) 782 { 783 int error = 0; 784 785 KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter")); 786 787 CURVNET_SET(so->so_vnet); 788 funsetown(&so->so_sigio); 789 if (so->so_state & SS_ISCONNECTED) { 790 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 791 error = sodisconnect(so); 792 if (error) { 793 if (error == ENOTCONN) 794 error = 0; 795 goto drop; 796 } 797 } 798 if (so->so_options & SO_LINGER) { 799 if ((so->so_state & SS_ISDISCONNECTING) && 800 (so->so_state & SS_NBIO)) 801 goto drop; 802 while (so->so_state & SS_ISCONNECTED) { 803 error = tsleep(&so->so_timeo, 804 PSOCK | PCATCH, "soclos", 805 so->so_linger * hz); 806 if (error) 807 break; 808 } 809 } 810 } 811 812 drop: 813 if (so->so_proto->pr_usrreqs->pru_close != NULL) 814 (*so->so_proto->pr_usrreqs->pru_close)(so); 815 ACCEPT_LOCK(); 816 if (so->so_options & SO_ACCEPTCONN) { 817 struct socket *sp; 818 /* 819 * Prevent new additions to the accept queues due 820 * to ACCEPT_LOCK races while we are draining them. 821 */ 822 so->so_options &= ~SO_ACCEPTCONN; 823 while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) { 824 TAILQ_REMOVE(&so->so_incomp, sp, so_list); 825 so->so_incqlen--; 826 sp->so_qstate &= ~SQ_INCOMP; 827 sp->so_head = NULL; 828 ACCEPT_UNLOCK(); 829 soabort(sp); 830 ACCEPT_LOCK(); 831 } 832 while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) { 833 TAILQ_REMOVE(&so->so_comp, sp, so_list); 834 so->so_qlen--; 835 sp->so_qstate &= ~SQ_COMP; 836 sp->so_head = NULL; 837 ACCEPT_UNLOCK(); 838 soabort(sp); 839 ACCEPT_LOCK(); 840 } 841 KASSERT((TAILQ_EMPTY(&so->so_comp)), 842 ("%s: so_comp populated", __func__)); 843 KASSERT((TAILQ_EMPTY(&so->so_incomp)), 844 ("%s: so_incomp populated", __func__)); 845 } 846 SOCK_LOCK(so); 847 KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF")); 848 so->so_state |= SS_NOFDREF; 849 sorele(so); /* NB: Returns with ACCEPT_UNLOCK(). */ 850 CURVNET_RESTORE(); 851 return (error); 852 } 853 854 /* 855 * soabort() is used to abruptly tear down a connection, such as when a 856 * resource limit is reached (listen queue depth exceeded), or if a listen 857 * socket is closed while there are sockets waiting to be accepted. 858 * 859 * This interface is tricky, because it is called on an unreferenced socket, 860 * and must be called only by a thread that has actually removed the socket 861 * from the listen queue it was on, or races with other threads are risked. 862 * 863 * This interface will call into the protocol code, so must not be called 864 * with any socket locks held. Protocols do call it while holding their own 865 * recursible protocol mutexes, but this is something that should be subject 866 * to review in the future. 867 */ 868 void 869 soabort(struct socket *so) 870 { 871 872 /* 873 * In as much as is possible, assert that no references to this 874 * socket are held. This is not quite the same as asserting that the 875 * current thread is responsible for arranging for no references, but 876 * is as close as we can get for now. 877 */ 878 KASSERT(so->so_count == 0, ("soabort: so_count")); 879 KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF")); 880 KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF")); 881 KASSERT((so->so_state & SQ_COMP) == 0, ("soabort: SQ_COMP")); 882 KASSERT((so->so_state & SQ_INCOMP) == 0, ("soabort: SQ_INCOMP")); 883 VNET_SO_ASSERT(so); 884 885 if (so->so_proto->pr_usrreqs->pru_abort != NULL) 886 (*so->so_proto->pr_usrreqs->pru_abort)(so); 887 ACCEPT_LOCK(); 888 SOCK_LOCK(so); 889 sofree(so); 890 } 891 892 int 893 soaccept(struct socket *so, struct sockaddr **nam) 894 { 895 int error; 896 897 SOCK_LOCK(so); 898 KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF")); 899 so->so_state &= ~SS_NOFDREF; 900 SOCK_UNLOCK(so); 901 902 CURVNET_SET(so->so_vnet); 903 error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam); 904 CURVNET_RESTORE(); 905 return (error); 906 } 907 908 int 909 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td) 910 { 911 912 return (soconnectat(AT_FDCWD, so, nam, td)); 913 } 914 915 int 916 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 917 { 918 int error; 919 920 if (so->so_options & SO_ACCEPTCONN) 921 return (EOPNOTSUPP); 922 923 CURVNET_SET(so->so_vnet); 924 /* 925 * If protocol is connection-based, can only connect once. 926 * Otherwise, if connected, try to disconnect first. This allows 927 * user to disconnect by connecting to, e.g., a null address. 928 */ 929 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 930 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 931 (error = sodisconnect(so)))) { 932 error = EISCONN; 933 } else { 934 /* 935 * Prevent accumulated error from previous connection from 936 * biting us. 937 */ 938 so->so_error = 0; 939 if (fd == AT_FDCWD) { 940 error = (*so->so_proto->pr_usrreqs->pru_connect)(so, 941 nam, td); 942 } else { 943 error = (*so->so_proto->pr_usrreqs->pru_connectat)(fd, 944 so, nam, td); 945 } 946 } 947 CURVNET_RESTORE(); 948 949 return (error); 950 } 951 952 int 953 soconnect2(struct socket *so1, struct socket *so2) 954 { 955 int error; 956 957 CURVNET_SET(so1->so_vnet); 958 error = (*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2); 959 CURVNET_RESTORE(); 960 return (error); 961 } 962 963 int 964 sodisconnect(struct socket *so) 965 { 966 int error; 967 968 if ((so->so_state & SS_ISCONNECTED) == 0) 969 return (ENOTCONN); 970 if (so->so_state & SS_ISDISCONNECTING) 971 return (EALREADY); 972 VNET_SO_ASSERT(so); 973 error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so); 974 return (error); 975 } 976 977 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT) 978 979 int 980 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, 981 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 982 { 983 long space; 984 ssize_t resid; 985 int clen = 0, error, dontroute; 986 987 KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM")); 988 KASSERT(so->so_proto->pr_flags & PR_ATOMIC, 989 ("sosend_dgram: !PR_ATOMIC")); 990 991 if (uio != NULL) 992 resid = uio->uio_resid; 993 else 994 resid = top->m_pkthdr.len; 995 /* 996 * In theory resid should be unsigned. However, space must be 997 * signed, as it might be less than 0 if we over-committed, and we 998 * must use a signed comparison of space and resid. On the other 999 * hand, a negative resid causes us to loop sending 0-length 1000 * segments to the protocol. 1001 */ 1002 if (resid < 0) { 1003 error = EINVAL; 1004 goto out; 1005 } 1006 1007 dontroute = 1008 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0; 1009 if (td != NULL) 1010 td->td_ru.ru_msgsnd++; 1011 if (control != NULL) 1012 clen = control->m_len; 1013 1014 SOCKBUF_LOCK(&so->so_snd); 1015 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1016 SOCKBUF_UNLOCK(&so->so_snd); 1017 error = EPIPE; 1018 goto out; 1019 } 1020 if (so->so_error) { 1021 error = so->so_error; 1022 so->so_error = 0; 1023 SOCKBUF_UNLOCK(&so->so_snd); 1024 goto out; 1025 } 1026 if ((so->so_state & SS_ISCONNECTED) == 0) { 1027 /* 1028 * `sendto' and `sendmsg' is allowed on a connection-based 1029 * socket if it supports implied connect. Return ENOTCONN if 1030 * not connected and no address is supplied. 1031 */ 1032 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1033 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1034 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1035 !(resid == 0 && clen != 0)) { 1036 SOCKBUF_UNLOCK(&so->so_snd); 1037 error = ENOTCONN; 1038 goto out; 1039 } 1040 } else if (addr == NULL) { 1041 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1042 error = ENOTCONN; 1043 else 1044 error = EDESTADDRREQ; 1045 SOCKBUF_UNLOCK(&so->so_snd); 1046 goto out; 1047 } 1048 } 1049 1050 /* 1051 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a 1052 * problem and need fixing. 1053 */ 1054 space = sbspace(&so->so_snd); 1055 if (flags & MSG_OOB) 1056 space += 1024; 1057 space -= clen; 1058 SOCKBUF_UNLOCK(&so->so_snd); 1059 if (resid > space) { 1060 error = EMSGSIZE; 1061 goto out; 1062 } 1063 if (uio == NULL) { 1064 resid = 0; 1065 if (flags & MSG_EOR) 1066 top->m_flags |= M_EOR; 1067 } else { 1068 /* 1069 * Copy the data from userland into a mbuf chain. 1070 * If no data is to be copied in, a single empty mbuf 1071 * is returned. 1072 */ 1073 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr, 1074 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0))); 1075 if (top == NULL) { 1076 error = EFAULT; /* only possible error */ 1077 goto out; 1078 } 1079 space -= resid - uio->uio_resid; 1080 resid = uio->uio_resid; 1081 } 1082 KASSERT(resid == 0, ("sosend_dgram: resid != 0")); 1083 /* 1084 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock 1085 * than with. 1086 */ 1087 if (dontroute) { 1088 SOCK_LOCK(so); 1089 so->so_options |= SO_DONTROUTE; 1090 SOCK_UNLOCK(so); 1091 } 1092 /* 1093 * XXX all the SBS_CANTSENDMORE checks previously done could be out 1094 * of date. We could have recieved a reset packet in an interrupt or 1095 * maybe we slept while doing page faults in uiomove() etc. We could 1096 * probably recheck again inside the locking protection here, but 1097 * there are probably other places that this also happens. We must 1098 * rethink this. 1099 */ 1100 VNET_SO_ASSERT(so); 1101 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1102 (flags & MSG_OOB) ? PRUS_OOB : 1103 /* 1104 * If the user set MSG_EOF, the protocol understands this flag and 1105 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND. 1106 */ 1107 ((flags & MSG_EOF) && 1108 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1109 (resid <= 0)) ? 1110 PRUS_EOF : 1111 /* If there is more to send set PRUS_MORETOCOME */ 1112 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1113 top, addr, control, td); 1114 if (dontroute) { 1115 SOCK_LOCK(so); 1116 so->so_options &= ~SO_DONTROUTE; 1117 SOCK_UNLOCK(so); 1118 } 1119 clen = 0; 1120 control = NULL; 1121 top = NULL; 1122 out: 1123 if (top != NULL) 1124 m_freem(top); 1125 if (control != NULL) 1126 m_freem(control); 1127 return (error); 1128 } 1129 1130 /* 1131 * Send on a socket. If send must go all at once and message is larger than 1132 * send buffering, then hard error. Lock against other senders. If must go 1133 * all at once and not enough room now, then inform user that this would 1134 * block and do nothing. Otherwise, if nonblocking, send as much as 1135 * possible. The data to be sent is described by "uio" if nonzero, otherwise 1136 * by the mbuf chain "top" (which must be null if uio is not). Data provided 1137 * in mbuf chain must be small enough to send all at once. 1138 * 1139 * Returns nonzero on error, timeout or signal; callers must check for short 1140 * counts if EINTR/ERESTART are returned. Data and control buffers are freed 1141 * on return. 1142 */ 1143 int 1144 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio, 1145 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1146 { 1147 long space; 1148 ssize_t resid; 1149 int clen = 0, error, dontroute; 1150 int atomic = sosendallatonce(so) || top; 1151 1152 if (uio != NULL) 1153 resid = uio->uio_resid; 1154 else 1155 resid = top->m_pkthdr.len; 1156 /* 1157 * In theory resid should be unsigned. However, space must be 1158 * signed, as it might be less than 0 if we over-committed, and we 1159 * must use a signed comparison of space and resid. On the other 1160 * hand, a negative resid causes us to loop sending 0-length 1161 * segments to the protocol. 1162 * 1163 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 1164 * type sockets since that's an error. 1165 */ 1166 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 1167 error = EINVAL; 1168 goto out; 1169 } 1170 1171 dontroute = 1172 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 1173 (so->so_proto->pr_flags & PR_ATOMIC); 1174 if (td != NULL) 1175 td->td_ru.ru_msgsnd++; 1176 if (control != NULL) 1177 clen = control->m_len; 1178 1179 error = sblock(&so->so_snd, SBLOCKWAIT(flags)); 1180 if (error) 1181 goto out; 1182 1183 restart: 1184 do { 1185 SOCKBUF_LOCK(&so->so_snd); 1186 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1187 SOCKBUF_UNLOCK(&so->so_snd); 1188 error = EPIPE; 1189 goto release; 1190 } 1191 if (so->so_error) { 1192 error = so->so_error; 1193 so->so_error = 0; 1194 SOCKBUF_UNLOCK(&so->so_snd); 1195 goto release; 1196 } 1197 if ((so->so_state & SS_ISCONNECTED) == 0) { 1198 /* 1199 * `sendto' and `sendmsg' is allowed on a connection- 1200 * based socket if it supports implied connect. 1201 * Return ENOTCONN if not connected and no address is 1202 * supplied. 1203 */ 1204 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1205 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1206 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1207 !(resid == 0 && clen != 0)) { 1208 SOCKBUF_UNLOCK(&so->so_snd); 1209 error = ENOTCONN; 1210 goto release; 1211 } 1212 } else if (addr == NULL) { 1213 SOCKBUF_UNLOCK(&so->so_snd); 1214 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1215 error = ENOTCONN; 1216 else 1217 error = EDESTADDRREQ; 1218 goto release; 1219 } 1220 } 1221 space = sbspace(&so->so_snd); 1222 if (flags & MSG_OOB) 1223 space += 1024; 1224 if ((atomic && resid > so->so_snd.sb_hiwat) || 1225 clen > so->so_snd.sb_hiwat) { 1226 SOCKBUF_UNLOCK(&so->so_snd); 1227 error = EMSGSIZE; 1228 goto release; 1229 } 1230 if (space < resid + clen && 1231 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 1232 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) { 1233 SOCKBUF_UNLOCK(&so->so_snd); 1234 error = EWOULDBLOCK; 1235 goto release; 1236 } 1237 error = sbwait(&so->so_snd); 1238 SOCKBUF_UNLOCK(&so->so_snd); 1239 if (error) 1240 goto release; 1241 goto restart; 1242 } 1243 SOCKBUF_UNLOCK(&so->so_snd); 1244 space -= clen; 1245 do { 1246 if (uio == NULL) { 1247 resid = 0; 1248 if (flags & MSG_EOR) 1249 top->m_flags |= M_EOR; 1250 } else { 1251 /* 1252 * Copy the data from userland into a mbuf 1253 * chain. If no data is to be copied in, 1254 * a single empty mbuf is returned. 1255 */ 1256 top = m_uiotombuf(uio, M_WAITOK, space, 1257 (atomic ? max_hdr : 0), 1258 (atomic ? M_PKTHDR : 0) | 1259 ((flags & MSG_EOR) ? M_EOR : 0)); 1260 if (top == NULL) { 1261 error = EFAULT; /* only possible error */ 1262 goto release; 1263 } 1264 space -= resid - uio->uio_resid; 1265 resid = uio->uio_resid; 1266 } 1267 if (dontroute) { 1268 SOCK_LOCK(so); 1269 so->so_options |= SO_DONTROUTE; 1270 SOCK_UNLOCK(so); 1271 } 1272 /* 1273 * XXX all the SBS_CANTSENDMORE checks previously 1274 * done could be out of date. We could have recieved 1275 * a reset packet in an interrupt or maybe we slept 1276 * while doing page faults in uiomove() etc. We 1277 * could probably recheck again inside the locking 1278 * protection here, but there are probably other 1279 * places that this also happens. We must rethink 1280 * this. 1281 */ 1282 VNET_SO_ASSERT(so); 1283 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1284 (flags & MSG_OOB) ? PRUS_OOB : 1285 /* 1286 * If the user set MSG_EOF, the protocol understands 1287 * this flag and nothing left to send then use 1288 * PRU_SEND_EOF instead of PRU_SEND. 1289 */ 1290 ((flags & MSG_EOF) && 1291 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1292 (resid <= 0)) ? 1293 PRUS_EOF : 1294 /* If there is more to send set PRUS_MORETOCOME. */ 1295 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1296 top, addr, control, td); 1297 if (dontroute) { 1298 SOCK_LOCK(so); 1299 so->so_options &= ~SO_DONTROUTE; 1300 SOCK_UNLOCK(so); 1301 } 1302 clen = 0; 1303 control = NULL; 1304 top = NULL; 1305 if (error) 1306 goto release; 1307 } while (resid && space > 0); 1308 } while (resid); 1309 1310 release: 1311 sbunlock(&so->so_snd); 1312 out: 1313 if (top != NULL) 1314 m_freem(top); 1315 if (control != NULL) 1316 m_freem(control); 1317 return (error); 1318 } 1319 1320 int 1321 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, 1322 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1323 { 1324 int error; 1325 1326 CURVNET_SET(so->so_vnet); 1327 error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, top, 1328 control, flags, td); 1329 CURVNET_RESTORE(); 1330 return (error); 1331 } 1332 1333 /* 1334 * The part of soreceive() that implements reading non-inline out-of-band 1335 * data from a socket. For more complete comments, see soreceive(), from 1336 * which this code originated. 1337 * 1338 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is 1339 * unable to return an mbuf chain to the caller. 1340 */ 1341 static int 1342 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags) 1343 { 1344 struct protosw *pr = so->so_proto; 1345 struct mbuf *m; 1346 int error; 1347 1348 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); 1349 VNET_SO_ASSERT(so); 1350 1351 m = m_get(M_WAITOK, MT_DATA); 1352 error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK); 1353 if (error) 1354 goto bad; 1355 do { 1356 error = uiomove(mtod(m, void *), 1357 (int) min(uio->uio_resid, m->m_len), uio); 1358 m = m_free(m); 1359 } while (uio->uio_resid && error == 0 && m); 1360 bad: 1361 if (m != NULL) 1362 m_freem(m); 1363 return (error); 1364 } 1365 1366 /* 1367 * Following replacement or removal of the first mbuf on the first mbuf chain 1368 * of a socket buffer, push necessary state changes back into the socket 1369 * buffer so that other consumers see the values consistently. 'nextrecord' 1370 * is the callers locally stored value of the original value of 1371 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. 1372 * NOTE: 'nextrecord' may be NULL. 1373 */ 1374 static __inline void 1375 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) 1376 { 1377 1378 SOCKBUF_LOCK_ASSERT(sb); 1379 /* 1380 * First, update for the new value of nextrecord. If necessary, make 1381 * it the first record. 1382 */ 1383 if (sb->sb_mb != NULL) 1384 sb->sb_mb->m_nextpkt = nextrecord; 1385 else 1386 sb->sb_mb = nextrecord; 1387 1388 /* 1389 * Now update any dependent socket buffer fields to reflect the new 1390 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the 1391 * addition of a second clause that takes care of the case where 1392 * sb_mb has been updated, but remains the last record. 1393 */ 1394 if (sb->sb_mb == NULL) { 1395 sb->sb_mbtail = NULL; 1396 sb->sb_lastrecord = NULL; 1397 } else if (sb->sb_mb->m_nextpkt == NULL) 1398 sb->sb_lastrecord = sb->sb_mb; 1399 } 1400 1401 /* 1402 * Implement receive operations on a socket. We depend on the way that 1403 * records are added to the sockbuf by sbappend. In particular, each record 1404 * (mbufs linked through m_next) must begin with an address if the protocol 1405 * so specifies, followed by an optional mbuf or mbufs containing ancillary 1406 * data, and then zero or more mbufs of data. In order to allow parallelism 1407 * between network receive and copying to user space, as well as avoid 1408 * sleeping with a mutex held, we release the socket buffer mutex during the 1409 * user space copy. Although the sockbuf is locked, new data may still be 1410 * appended, and thus we must maintain consistency of the sockbuf during that 1411 * time. 1412 * 1413 * The caller may receive the data as a single mbuf chain by supplying an 1414 * mbuf **mp0 for use in returning the chain. The uio is then used only for 1415 * the count in uio_resid. 1416 */ 1417 int 1418 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio, 1419 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1420 { 1421 struct mbuf *m, **mp; 1422 int flags, error, offset; 1423 ssize_t len; 1424 struct protosw *pr = so->so_proto; 1425 struct mbuf *nextrecord; 1426 int moff, type = 0; 1427 ssize_t orig_resid = uio->uio_resid; 1428 1429 mp = mp0; 1430 if (psa != NULL) 1431 *psa = NULL; 1432 if (controlp != NULL) 1433 *controlp = NULL; 1434 if (flagsp != NULL) 1435 flags = *flagsp &~ MSG_EOR; 1436 else 1437 flags = 0; 1438 if (flags & MSG_OOB) 1439 return (soreceive_rcvoob(so, uio, flags)); 1440 if (mp != NULL) 1441 *mp = NULL; 1442 if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING) 1443 && uio->uio_resid) { 1444 VNET_SO_ASSERT(so); 1445 (*pr->pr_usrreqs->pru_rcvd)(so, 0); 1446 } 1447 1448 error = sblock(&so->so_rcv, SBLOCKWAIT(flags)); 1449 if (error) 1450 return (error); 1451 1452 restart: 1453 SOCKBUF_LOCK(&so->so_rcv); 1454 m = so->so_rcv.sb_mb; 1455 /* 1456 * If we have less data than requested, block awaiting more (subject 1457 * to any timeout) if: 1458 * 1. the current count is less than the low water mark, or 1459 * 2. MSG_DONTWAIT is not set 1460 */ 1461 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 1462 so->so_rcv.sb_cc < uio->uio_resid) && 1463 so->so_rcv.sb_cc < so->so_rcv.sb_lowat && 1464 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 1465 KASSERT(m != NULL || !so->so_rcv.sb_cc, 1466 ("receive: m == %p so->so_rcv.sb_cc == %u", 1467 m, so->so_rcv.sb_cc)); 1468 if (so->so_error) { 1469 if (m != NULL) 1470 goto dontblock; 1471 error = so->so_error; 1472 if ((flags & MSG_PEEK) == 0) 1473 so->so_error = 0; 1474 SOCKBUF_UNLOCK(&so->so_rcv); 1475 goto release; 1476 } 1477 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1478 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 1479 if (m == NULL) { 1480 SOCKBUF_UNLOCK(&so->so_rcv); 1481 goto release; 1482 } else 1483 goto dontblock; 1484 } 1485 for (; m != NULL; m = m->m_next) 1486 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 1487 m = so->so_rcv.sb_mb; 1488 goto dontblock; 1489 } 1490 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 1491 (so->so_proto->pr_flags & PR_CONNREQUIRED)) { 1492 SOCKBUF_UNLOCK(&so->so_rcv); 1493 error = ENOTCONN; 1494 goto release; 1495 } 1496 if (uio->uio_resid == 0) { 1497 SOCKBUF_UNLOCK(&so->so_rcv); 1498 goto release; 1499 } 1500 if ((so->so_state & SS_NBIO) || 1501 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 1502 SOCKBUF_UNLOCK(&so->so_rcv); 1503 error = EWOULDBLOCK; 1504 goto release; 1505 } 1506 SBLASTRECORDCHK(&so->so_rcv); 1507 SBLASTMBUFCHK(&so->so_rcv); 1508 error = sbwait(&so->so_rcv); 1509 SOCKBUF_UNLOCK(&so->so_rcv); 1510 if (error) 1511 goto release; 1512 goto restart; 1513 } 1514 dontblock: 1515 /* 1516 * From this point onward, we maintain 'nextrecord' as a cache of the 1517 * pointer to the next record in the socket buffer. We must keep the 1518 * various socket buffer pointers and local stack versions of the 1519 * pointers in sync, pushing out modifications before dropping the 1520 * socket buffer mutex, and re-reading them when picking it up. 1521 * 1522 * Otherwise, we will race with the network stack appending new data 1523 * or records onto the socket buffer by using inconsistent/stale 1524 * versions of the field, possibly resulting in socket buffer 1525 * corruption. 1526 * 1527 * By holding the high-level sblock(), we prevent simultaneous 1528 * readers from pulling off the front of the socket buffer. 1529 */ 1530 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1531 if (uio->uio_td) 1532 uio->uio_td->td_ru.ru_msgrcv++; 1533 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); 1534 SBLASTRECORDCHK(&so->so_rcv); 1535 SBLASTMBUFCHK(&so->so_rcv); 1536 nextrecord = m->m_nextpkt; 1537 if (pr->pr_flags & PR_ADDR) { 1538 KASSERT(m->m_type == MT_SONAME, 1539 ("m->m_type == %d", m->m_type)); 1540 orig_resid = 0; 1541 if (psa != NULL) 1542 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 1543 M_NOWAIT); 1544 if (flags & MSG_PEEK) { 1545 m = m->m_next; 1546 } else { 1547 sbfree(&so->so_rcv, m); 1548 so->so_rcv.sb_mb = m_free(m); 1549 m = so->so_rcv.sb_mb; 1550 sockbuf_pushsync(&so->so_rcv, nextrecord); 1551 } 1552 } 1553 1554 /* 1555 * Process one or more MT_CONTROL mbufs present before any data mbufs 1556 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 1557 * just copy the data; if !MSG_PEEK, we call into the protocol to 1558 * perform externalization (or freeing if controlp == NULL). 1559 */ 1560 if (m != NULL && m->m_type == MT_CONTROL) { 1561 struct mbuf *cm = NULL, *cmn; 1562 struct mbuf **cme = &cm; 1563 1564 do { 1565 if (flags & MSG_PEEK) { 1566 if (controlp != NULL) { 1567 *controlp = m_copy(m, 0, m->m_len); 1568 controlp = &(*controlp)->m_next; 1569 } 1570 m = m->m_next; 1571 } else { 1572 sbfree(&so->so_rcv, m); 1573 so->so_rcv.sb_mb = m->m_next; 1574 m->m_next = NULL; 1575 *cme = m; 1576 cme = &(*cme)->m_next; 1577 m = so->so_rcv.sb_mb; 1578 } 1579 } while (m != NULL && m->m_type == MT_CONTROL); 1580 if ((flags & MSG_PEEK) == 0) 1581 sockbuf_pushsync(&so->so_rcv, nextrecord); 1582 while (cm != NULL) { 1583 cmn = cm->m_next; 1584 cm->m_next = NULL; 1585 if (pr->pr_domain->dom_externalize != NULL) { 1586 SOCKBUF_UNLOCK(&so->so_rcv); 1587 VNET_SO_ASSERT(so); 1588 error = (*pr->pr_domain->dom_externalize) 1589 (cm, controlp, flags); 1590 SOCKBUF_LOCK(&so->so_rcv); 1591 } else if (controlp != NULL) 1592 *controlp = cm; 1593 else 1594 m_freem(cm); 1595 if (controlp != NULL) { 1596 orig_resid = 0; 1597 while (*controlp != NULL) 1598 controlp = &(*controlp)->m_next; 1599 } 1600 cm = cmn; 1601 } 1602 if (m != NULL) 1603 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 1604 else 1605 nextrecord = so->so_rcv.sb_mb; 1606 orig_resid = 0; 1607 } 1608 if (m != NULL) { 1609 if ((flags & MSG_PEEK) == 0) { 1610 KASSERT(m->m_nextpkt == nextrecord, 1611 ("soreceive: post-control, nextrecord !sync")); 1612 if (nextrecord == NULL) { 1613 KASSERT(so->so_rcv.sb_mb == m, 1614 ("soreceive: post-control, sb_mb!=m")); 1615 KASSERT(so->so_rcv.sb_lastrecord == m, 1616 ("soreceive: post-control, lastrecord!=m")); 1617 } 1618 } 1619 type = m->m_type; 1620 if (type == MT_OOBDATA) 1621 flags |= MSG_OOB; 1622 } else { 1623 if ((flags & MSG_PEEK) == 0) { 1624 KASSERT(so->so_rcv.sb_mb == nextrecord, 1625 ("soreceive: sb_mb != nextrecord")); 1626 if (so->so_rcv.sb_mb == NULL) { 1627 KASSERT(so->so_rcv.sb_lastrecord == NULL, 1628 ("soreceive: sb_lastercord != NULL")); 1629 } 1630 } 1631 } 1632 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1633 SBLASTRECORDCHK(&so->so_rcv); 1634 SBLASTMBUFCHK(&so->so_rcv); 1635 1636 /* 1637 * Now continue to read any data mbufs off of the head of the socket 1638 * buffer until the read request is satisfied. Note that 'type' is 1639 * used to store the type of any mbuf reads that have happened so far 1640 * such that soreceive() can stop reading if the type changes, which 1641 * causes soreceive() to return only one of regular data and inline 1642 * out-of-band data in a single socket receive operation. 1643 */ 1644 moff = 0; 1645 offset = 0; 1646 while (m != NULL && uio->uio_resid > 0 && error == 0) { 1647 /* 1648 * If the type of mbuf has changed since the last mbuf 1649 * examined ('type'), end the receive operation. 1650 */ 1651 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1652 if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) { 1653 if (type != m->m_type) 1654 break; 1655 } else if (type == MT_OOBDATA) 1656 break; 1657 else 1658 KASSERT(m->m_type == MT_DATA, 1659 ("m->m_type == %d", m->m_type)); 1660 so->so_rcv.sb_state &= ~SBS_RCVATMARK; 1661 len = uio->uio_resid; 1662 if (so->so_oobmark && len > so->so_oobmark - offset) 1663 len = so->so_oobmark - offset; 1664 if (len > m->m_len - moff) 1665 len = m->m_len - moff; 1666 /* 1667 * If mp is set, just pass back the mbufs. Otherwise copy 1668 * them out via the uio, then free. Sockbuf must be 1669 * consistent here (points to current mbuf, it points to next 1670 * record) when we drop priority; we must note any additions 1671 * to the sockbuf when we block interrupts again. 1672 */ 1673 if (mp == NULL) { 1674 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1675 SBLASTRECORDCHK(&so->so_rcv); 1676 SBLASTMBUFCHK(&so->so_rcv); 1677 SOCKBUF_UNLOCK(&so->so_rcv); 1678 error = uiomove(mtod(m, char *) + moff, (int)len, uio); 1679 SOCKBUF_LOCK(&so->so_rcv); 1680 if (error) { 1681 /* 1682 * The MT_SONAME mbuf has already been removed 1683 * from the record, so it is necessary to 1684 * remove the data mbufs, if any, to preserve 1685 * the invariant in the case of PR_ADDR that 1686 * requires MT_SONAME mbufs at the head of 1687 * each record. 1688 */ 1689 if (m && pr->pr_flags & PR_ATOMIC && 1690 ((flags & MSG_PEEK) == 0)) 1691 (void)sbdroprecord_locked(&so->so_rcv); 1692 SOCKBUF_UNLOCK(&so->so_rcv); 1693 goto release; 1694 } 1695 } else 1696 uio->uio_resid -= len; 1697 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1698 if (len == m->m_len - moff) { 1699 if (m->m_flags & M_EOR) 1700 flags |= MSG_EOR; 1701 if (flags & MSG_PEEK) { 1702 m = m->m_next; 1703 moff = 0; 1704 } else { 1705 nextrecord = m->m_nextpkt; 1706 sbfree(&so->so_rcv, m); 1707 if (mp != NULL) { 1708 m->m_nextpkt = NULL; 1709 *mp = m; 1710 mp = &m->m_next; 1711 so->so_rcv.sb_mb = m = m->m_next; 1712 *mp = NULL; 1713 } else { 1714 so->so_rcv.sb_mb = m_free(m); 1715 m = so->so_rcv.sb_mb; 1716 } 1717 sockbuf_pushsync(&so->so_rcv, nextrecord); 1718 SBLASTRECORDCHK(&so->so_rcv); 1719 SBLASTMBUFCHK(&so->so_rcv); 1720 } 1721 } else { 1722 if (flags & MSG_PEEK) 1723 moff += len; 1724 else { 1725 if (mp != NULL) { 1726 int copy_flag; 1727 1728 if (flags & MSG_DONTWAIT) 1729 copy_flag = M_NOWAIT; 1730 else 1731 copy_flag = M_WAIT; 1732 if (copy_flag == M_WAITOK) 1733 SOCKBUF_UNLOCK(&so->so_rcv); 1734 *mp = m_copym(m, 0, len, copy_flag); 1735 if (copy_flag == M_WAITOK) 1736 SOCKBUF_LOCK(&so->so_rcv); 1737 if (*mp == NULL) { 1738 /* 1739 * m_copym() couldn't 1740 * allocate an mbuf. Adjust 1741 * uio_resid back (it was 1742 * adjusted down by len 1743 * bytes, which we didn't end 1744 * up "copying" over). 1745 */ 1746 uio->uio_resid += len; 1747 break; 1748 } 1749 } 1750 m->m_data += len; 1751 m->m_len -= len; 1752 so->so_rcv.sb_cc -= len; 1753 } 1754 } 1755 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1756 if (so->so_oobmark) { 1757 if ((flags & MSG_PEEK) == 0) { 1758 so->so_oobmark -= len; 1759 if (so->so_oobmark == 0) { 1760 so->so_rcv.sb_state |= SBS_RCVATMARK; 1761 break; 1762 } 1763 } else { 1764 offset += len; 1765 if (offset == so->so_oobmark) 1766 break; 1767 } 1768 } 1769 if (flags & MSG_EOR) 1770 break; 1771 /* 1772 * If the MSG_WAITALL flag is set (for non-atomic socket), we 1773 * must not quit until "uio->uio_resid == 0" or an error 1774 * termination. If a signal/timeout occurs, return with a 1775 * short count but without error. Keep sockbuf locked 1776 * against other readers. 1777 */ 1778 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 1779 !sosendallatonce(so) && nextrecord == NULL) { 1780 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1781 if (so->so_error || 1782 so->so_rcv.sb_state & SBS_CANTRCVMORE) 1783 break; 1784 /* 1785 * Notify the protocol that some data has been 1786 * drained before blocking. 1787 */ 1788 if (pr->pr_flags & PR_WANTRCVD) { 1789 SOCKBUF_UNLOCK(&so->so_rcv); 1790 VNET_SO_ASSERT(so); 1791 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 1792 SOCKBUF_LOCK(&so->so_rcv); 1793 } 1794 SBLASTRECORDCHK(&so->so_rcv); 1795 SBLASTMBUFCHK(&so->so_rcv); 1796 /* 1797 * We could receive some data while was notifying 1798 * the protocol. Skip blocking in this case. 1799 */ 1800 if (so->so_rcv.sb_mb == NULL) { 1801 error = sbwait(&so->so_rcv); 1802 if (error) { 1803 SOCKBUF_UNLOCK(&so->so_rcv); 1804 goto release; 1805 } 1806 } 1807 m = so->so_rcv.sb_mb; 1808 if (m != NULL) 1809 nextrecord = m->m_nextpkt; 1810 } 1811 } 1812 1813 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1814 if (m != NULL && pr->pr_flags & PR_ATOMIC) { 1815 flags |= MSG_TRUNC; 1816 if ((flags & MSG_PEEK) == 0) 1817 (void) sbdroprecord_locked(&so->so_rcv); 1818 } 1819 if ((flags & MSG_PEEK) == 0) { 1820 if (m == NULL) { 1821 /* 1822 * First part is an inline SB_EMPTY_FIXUP(). Second 1823 * part makes sure sb_lastrecord is up-to-date if 1824 * there is still data in the socket buffer. 1825 */ 1826 so->so_rcv.sb_mb = nextrecord; 1827 if (so->so_rcv.sb_mb == NULL) { 1828 so->so_rcv.sb_mbtail = NULL; 1829 so->so_rcv.sb_lastrecord = NULL; 1830 } else if (nextrecord->m_nextpkt == NULL) 1831 so->so_rcv.sb_lastrecord = nextrecord; 1832 } 1833 SBLASTRECORDCHK(&so->so_rcv); 1834 SBLASTMBUFCHK(&so->so_rcv); 1835 /* 1836 * If soreceive() is being done from the socket callback, 1837 * then don't need to generate ACK to peer to update window, 1838 * since ACK will be generated on return to TCP. 1839 */ 1840 if (!(flags & MSG_SOCALLBCK) && 1841 (pr->pr_flags & PR_WANTRCVD)) { 1842 SOCKBUF_UNLOCK(&so->so_rcv); 1843 VNET_SO_ASSERT(so); 1844 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 1845 SOCKBUF_LOCK(&so->so_rcv); 1846 } 1847 } 1848 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1849 if (orig_resid == uio->uio_resid && orig_resid && 1850 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { 1851 SOCKBUF_UNLOCK(&so->so_rcv); 1852 goto restart; 1853 } 1854 SOCKBUF_UNLOCK(&so->so_rcv); 1855 1856 if (flagsp != NULL) 1857 *flagsp |= flags; 1858 release: 1859 sbunlock(&so->so_rcv); 1860 return (error); 1861 } 1862 1863 /* 1864 * Optimized version of soreceive() for stream (TCP) sockets. 1865 * XXXAO: (MSG_WAITALL | MSG_PEEK) isn't properly handled. 1866 */ 1867 int 1868 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio, 1869 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1870 { 1871 int len = 0, error = 0, flags, oresid; 1872 struct sockbuf *sb; 1873 struct mbuf *m, *n = NULL; 1874 1875 /* We only do stream sockets. */ 1876 if (so->so_type != SOCK_STREAM) 1877 return (EINVAL); 1878 if (psa != NULL) 1879 *psa = NULL; 1880 if (controlp != NULL) 1881 return (EINVAL); 1882 if (flagsp != NULL) 1883 flags = *flagsp &~ MSG_EOR; 1884 else 1885 flags = 0; 1886 if (flags & MSG_OOB) 1887 return (soreceive_rcvoob(so, uio, flags)); 1888 if (mp0 != NULL) 1889 *mp0 = NULL; 1890 1891 sb = &so->so_rcv; 1892 1893 /* Prevent other readers from entering the socket. */ 1894 error = sblock(sb, SBLOCKWAIT(flags)); 1895 if (error) 1896 goto out; 1897 SOCKBUF_LOCK(sb); 1898 1899 /* Easy one, no space to copyout anything. */ 1900 if (uio->uio_resid == 0) { 1901 error = EINVAL; 1902 goto out; 1903 } 1904 oresid = uio->uio_resid; 1905 1906 /* We will never ever get anything unless we are or were connected. */ 1907 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 1908 error = ENOTCONN; 1909 goto out; 1910 } 1911 1912 restart: 1913 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1914 1915 /* Abort if socket has reported problems. */ 1916 if (so->so_error) { 1917 if (sb->sb_cc > 0) 1918 goto deliver; 1919 if (oresid > uio->uio_resid) 1920 goto out; 1921 error = so->so_error; 1922 if (!(flags & MSG_PEEK)) 1923 so->so_error = 0; 1924 goto out; 1925 } 1926 1927 /* Door is closed. Deliver what is left, if any. */ 1928 if (sb->sb_state & SBS_CANTRCVMORE) { 1929 if (sb->sb_cc > 0) 1930 goto deliver; 1931 else 1932 goto out; 1933 } 1934 1935 /* Socket buffer is empty and we shall not block. */ 1936 if (sb->sb_cc == 0 && 1937 ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) { 1938 error = EAGAIN; 1939 goto out; 1940 } 1941 1942 /* Socket buffer got some data that we shall deliver now. */ 1943 if (sb->sb_cc > 0 && !(flags & MSG_WAITALL) && 1944 ((sb->sb_flags & SS_NBIO) || 1945 (flags & (MSG_DONTWAIT|MSG_NBIO)) || 1946 sb->sb_cc >= sb->sb_lowat || 1947 sb->sb_cc >= uio->uio_resid || 1948 sb->sb_cc >= sb->sb_hiwat) ) { 1949 goto deliver; 1950 } 1951 1952 /* On MSG_WAITALL we must wait until all data or error arrives. */ 1953 if ((flags & MSG_WAITALL) && 1954 (sb->sb_cc >= uio->uio_resid || sb->sb_cc >= sb->sb_hiwat)) 1955 goto deliver; 1956 1957 /* 1958 * Wait and block until (more) data comes in. 1959 * NB: Drops the sockbuf lock during wait. 1960 */ 1961 error = sbwait(sb); 1962 if (error) 1963 goto out; 1964 goto restart; 1965 1966 deliver: 1967 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1968 KASSERT(sb->sb_cc > 0, ("%s: sockbuf empty", __func__)); 1969 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__)); 1970 1971 /* Statistics. */ 1972 if (uio->uio_td) 1973 uio->uio_td->td_ru.ru_msgrcv++; 1974 1975 /* Fill uio until full or current end of socket buffer is reached. */ 1976 len = min(uio->uio_resid, sb->sb_cc); 1977 if (mp0 != NULL) { 1978 /* Dequeue as many mbufs as possible. */ 1979 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) { 1980 if (*mp0 == NULL) 1981 *mp0 = sb->sb_mb; 1982 else 1983 m_cat(*mp0, sb->sb_mb); 1984 for (m = sb->sb_mb; 1985 m != NULL && m->m_len <= len; 1986 m = m->m_next) { 1987 len -= m->m_len; 1988 uio->uio_resid -= m->m_len; 1989 sbfree(sb, m); 1990 n = m; 1991 } 1992 n->m_next = NULL; 1993 sb->sb_mb = m; 1994 sb->sb_lastrecord = sb->sb_mb; 1995 if (sb->sb_mb == NULL) 1996 SB_EMPTY_FIXUP(sb); 1997 } 1998 /* Copy the remainder. */ 1999 if (len > 0) { 2000 KASSERT(sb->sb_mb != NULL, 2001 ("%s: len > 0 && sb->sb_mb empty", __func__)); 2002 2003 m = m_copym(sb->sb_mb, 0, len, M_NOWAIT); 2004 if (m == NULL) 2005 len = 0; /* Don't flush data from sockbuf. */ 2006 else 2007 uio->uio_resid -= len; 2008 if (*mp0 != NULL) 2009 m_cat(*mp0, m); 2010 else 2011 *mp0 = m; 2012 if (*mp0 == NULL) { 2013 error = ENOBUFS; 2014 goto out; 2015 } 2016 } 2017 } else { 2018 /* NB: Must unlock socket buffer as uiomove may sleep. */ 2019 SOCKBUF_UNLOCK(sb); 2020 error = m_mbuftouio(uio, sb->sb_mb, len); 2021 SOCKBUF_LOCK(sb); 2022 if (error) 2023 goto out; 2024 } 2025 SBLASTRECORDCHK(sb); 2026 SBLASTMBUFCHK(sb); 2027 2028 /* 2029 * Remove the delivered data from the socket buffer unless we 2030 * were only peeking. 2031 */ 2032 if (!(flags & MSG_PEEK)) { 2033 if (len > 0) 2034 sbdrop_locked(sb, len); 2035 2036 /* Notify protocol that we drained some data. */ 2037 if ((so->so_proto->pr_flags & PR_WANTRCVD) && 2038 (((flags & MSG_WAITALL) && uio->uio_resid > 0) || 2039 !(flags & MSG_SOCALLBCK))) { 2040 SOCKBUF_UNLOCK(sb); 2041 VNET_SO_ASSERT(so); 2042 (*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags); 2043 SOCKBUF_LOCK(sb); 2044 } 2045 } 2046 2047 /* 2048 * For MSG_WAITALL we may have to loop again and wait for 2049 * more data to come in. 2050 */ 2051 if ((flags & MSG_WAITALL) && uio->uio_resid > 0) 2052 goto restart; 2053 out: 2054 SOCKBUF_LOCK_ASSERT(sb); 2055 SBLASTRECORDCHK(sb); 2056 SBLASTMBUFCHK(sb); 2057 SOCKBUF_UNLOCK(sb); 2058 sbunlock(sb); 2059 return (error); 2060 } 2061 2062 /* 2063 * Optimized version of soreceive() for simple datagram cases from userspace. 2064 * Unlike in the stream case, we're able to drop a datagram if copyout() 2065 * fails, and because we handle datagrams atomically, we don't need to use a 2066 * sleep lock to prevent I/O interlacing. 2067 */ 2068 int 2069 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio, 2070 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2071 { 2072 struct mbuf *m, *m2; 2073 int flags, error; 2074 ssize_t len; 2075 struct protosw *pr = so->so_proto; 2076 struct mbuf *nextrecord; 2077 2078 if (psa != NULL) 2079 *psa = NULL; 2080 if (controlp != NULL) 2081 *controlp = NULL; 2082 if (flagsp != NULL) 2083 flags = *flagsp &~ MSG_EOR; 2084 else 2085 flags = 0; 2086 2087 /* 2088 * For any complicated cases, fall back to the full 2089 * soreceive_generic(). 2090 */ 2091 if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB)) 2092 return (soreceive_generic(so, psa, uio, mp0, controlp, 2093 flagsp)); 2094 2095 /* 2096 * Enforce restrictions on use. 2097 */ 2098 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0, 2099 ("soreceive_dgram: wantrcvd")); 2100 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic")); 2101 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0, 2102 ("soreceive_dgram: SBS_RCVATMARK")); 2103 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0, 2104 ("soreceive_dgram: P_CONNREQUIRED")); 2105 2106 /* 2107 * Loop blocking while waiting for a datagram. 2108 */ 2109 SOCKBUF_LOCK(&so->so_rcv); 2110 while ((m = so->so_rcv.sb_mb) == NULL) { 2111 KASSERT(so->so_rcv.sb_cc == 0, 2112 ("soreceive_dgram: sb_mb NULL but sb_cc %u", 2113 so->so_rcv.sb_cc)); 2114 if (so->so_error) { 2115 error = so->so_error; 2116 so->so_error = 0; 2117 SOCKBUF_UNLOCK(&so->so_rcv); 2118 return (error); 2119 } 2120 if (so->so_rcv.sb_state & SBS_CANTRCVMORE || 2121 uio->uio_resid == 0) { 2122 SOCKBUF_UNLOCK(&so->so_rcv); 2123 return (0); 2124 } 2125 if ((so->so_state & SS_NBIO) || 2126 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2127 SOCKBUF_UNLOCK(&so->so_rcv); 2128 return (EWOULDBLOCK); 2129 } 2130 SBLASTRECORDCHK(&so->so_rcv); 2131 SBLASTMBUFCHK(&so->so_rcv); 2132 error = sbwait(&so->so_rcv); 2133 if (error) { 2134 SOCKBUF_UNLOCK(&so->so_rcv); 2135 return (error); 2136 } 2137 } 2138 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2139 2140 if (uio->uio_td) 2141 uio->uio_td->td_ru.ru_msgrcv++; 2142 SBLASTRECORDCHK(&so->so_rcv); 2143 SBLASTMBUFCHK(&so->so_rcv); 2144 nextrecord = m->m_nextpkt; 2145 if (nextrecord == NULL) { 2146 KASSERT(so->so_rcv.sb_lastrecord == m, 2147 ("soreceive_dgram: lastrecord != m")); 2148 } 2149 2150 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord, 2151 ("soreceive_dgram: m_nextpkt != nextrecord")); 2152 2153 /* 2154 * Pull 'm' and its chain off the front of the packet queue. 2155 */ 2156 so->so_rcv.sb_mb = NULL; 2157 sockbuf_pushsync(&so->so_rcv, nextrecord); 2158 2159 /* 2160 * Walk 'm's chain and free that many bytes from the socket buffer. 2161 */ 2162 for (m2 = m; m2 != NULL; m2 = m2->m_next) 2163 sbfree(&so->so_rcv, m2); 2164 2165 /* 2166 * Do a few last checks before we let go of the lock. 2167 */ 2168 SBLASTRECORDCHK(&so->so_rcv); 2169 SBLASTMBUFCHK(&so->so_rcv); 2170 SOCKBUF_UNLOCK(&so->so_rcv); 2171 2172 if (pr->pr_flags & PR_ADDR) { 2173 KASSERT(m->m_type == MT_SONAME, 2174 ("m->m_type == %d", m->m_type)); 2175 if (psa != NULL) 2176 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2177 M_NOWAIT); 2178 m = m_free(m); 2179 } 2180 if (m == NULL) { 2181 /* XXXRW: Can this happen? */ 2182 return (0); 2183 } 2184 2185 /* 2186 * Packet to copyout() is now in 'm' and it is disconnected from the 2187 * queue. 2188 * 2189 * Process one or more MT_CONTROL mbufs present before any data mbufs 2190 * in the first mbuf chain on the socket buffer. We call into the 2191 * protocol to perform externalization (or freeing if controlp == 2192 * NULL). 2193 */ 2194 if (m->m_type == MT_CONTROL) { 2195 struct mbuf *cm = NULL, *cmn; 2196 struct mbuf **cme = &cm; 2197 2198 do { 2199 m2 = m->m_next; 2200 m->m_next = NULL; 2201 *cme = m; 2202 cme = &(*cme)->m_next; 2203 m = m2; 2204 } while (m != NULL && m->m_type == MT_CONTROL); 2205 while (cm != NULL) { 2206 cmn = cm->m_next; 2207 cm->m_next = NULL; 2208 if (pr->pr_domain->dom_externalize != NULL) { 2209 error = (*pr->pr_domain->dom_externalize) 2210 (cm, controlp, flags); 2211 } else if (controlp != NULL) 2212 *controlp = cm; 2213 else 2214 m_freem(cm); 2215 if (controlp != NULL) { 2216 while (*controlp != NULL) 2217 controlp = &(*controlp)->m_next; 2218 } 2219 cm = cmn; 2220 } 2221 } 2222 KASSERT(m->m_type == MT_DATA, ("soreceive_dgram: !data")); 2223 2224 while (m != NULL && uio->uio_resid > 0) { 2225 len = uio->uio_resid; 2226 if (len > m->m_len) 2227 len = m->m_len; 2228 error = uiomove(mtod(m, char *), (int)len, uio); 2229 if (error) { 2230 m_freem(m); 2231 return (error); 2232 } 2233 if (len == m->m_len) 2234 m = m_free(m); 2235 else { 2236 m->m_data += len; 2237 m->m_len -= len; 2238 } 2239 } 2240 if (m != NULL) 2241 flags |= MSG_TRUNC; 2242 m_freem(m); 2243 if (flagsp != NULL) 2244 *flagsp |= flags; 2245 return (0); 2246 } 2247 2248 int 2249 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, 2250 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2251 { 2252 int error; 2253 2254 CURVNET_SET(so->so_vnet); 2255 error = (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, mp0, 2256 controlp, flagsp)); 2257 CURVNET_RESTORE(); 2258 return (error); 2259 } 2260 2261 int 2262 soshutdown(struct socket *so, int how) 2263 { 2264 struct protosw *pr = so->so_proto; 2265 int error; 2266 2267 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 2268 return (EINVAL); 2269 2270 CURVNET_SET(so->so_vnet); 2271 if (pr->pr_usrreqs->pru_flush != NULL) 2272 (*pr->pr_usrreqs->pru_flush)(so, how); 2273 if (how != SHUT_WR) 2274 sorflush(so); 2275 if (how != SHUT_RD) { 2276 error = (*pr->pr_usrreqs->pru_shutdown)(so); 2277 wakeup(&so->so_timeo); 2278 CURVNET_RESTORE(); 2279 return (error); 2280 } 2281 wakeup(&so->so_timeo); 2282 CURVNET_RESTORE(); 2283 return (0); 2284 } 2285 2286 void 2287 sorflush(struct socket *so) 2288 { 2289 struct sockbuf *sb = &so->so_rcv; 2290 struct protosw *pr = so->so_proto; 2291 struct sockbuf asb; 2292 2293 VNET_SO_ASSERT(so); 2294 2295 /* 2296 * In order to avoid calling dom_dispose with the socket buffer mutex 2297 * held, and in order to generally avoid holding the lock for a long 2298 * time, we make a copy of the socket buffer and clear the original 2299 * (except locks, state). The new socket buffer copy won't have 2300 * initialized locks so we can only call routines that won't use or 2301 * assert those locks. 2302 * 2303 * Dislodge threads currently blocked in receive and wait to acquire 2304 * a lock against other simultaneous readers before clearing the 2305 * socket buffer. Don't let our acquire be interrupted by a signal 2306 * despite any existing socket disposition on interruptable waiting. 2307 */ 2308 socantrcvmore(so); 2309 (void) sblock(sb, SBL_WAIT | SBL_NOINTR); 2310 2311 /* 2312 * Invalidate/clear most of the sockbuf structure, but leave selinfo 2313 * and mutex data unchanged. 2314 */ 2315 SOCKBUF_LOCK(sb); 2316 bzero(&asb, offsetof(struct sockbuf, sb_startzero)); 2317 bcopy(&sb->sb_startzero, &asb.sb_startzero, 2318 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 2319 bzero(&sb->sb_startzero, 2320 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 2321 SOCKBUF_UNLOCK(sb); 2322 sbunlock(sb); 2323 2324 /* 2325 * Dispose of special rights and flush the socket buffer. Don't call 2326 * any unsafe routines (that rely on locks being initialized) on asb. 2327 */ 2328 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 2329 (*pr->pr_domain->dom_dispose)(asb.sb_mb); 2330 sbrelease_internal(&asb, so); 2331 } 2332 2333 /* 2334 * Perhaps this routine, and sooptcopyout(), below, ought to come in an 2335 * additional variant to handle the case where the option value needs to be 2336 * some kind of integer, but not a specific size. In addition to their use 2337 * here, these functions are also called by the protocol-level pr_ctloutput() 2338 * routines. 2339 */ 2340 int 2341 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen) 2342 { 2343 size_t valsize; 2344 2345 /* 2346 * If the user gives us more than we wanted, we ignore it, but if we 2347 * don't get the minimum length the caller wants, we return EINVAL. 2348 * On success, sopt->sopt_valsize is set to however much we actually 2349 * retrieved. 2350 */ 2351 if ((valsize = sopt->sopt_valsize) < minlen) 2352 return EINVAL; 2353 if (valsize > len) 2354 sopt->sopt_valsize = valsize = len; 2355 2356 if (sopt->sopt_td != NULL) 2357 return (copyin(sopt->sopt_val, buf, valsize)); 2358 2359 bcopy(sopt->sopt_val, buf, valsize); 2360 return (0); 2361 } 2362 2363 /* 2364 * Kernel version of setsockopt(2). 2365 * 2366 * XXX: optlen is size_t, not socklen_t 2367 */ 2368 int 2369 so_setsockopt(struct socket *so, int level, int optname, void *optval, 2370 size_t optlen) 2371 { 2372 struct sockopt sopt; 2373 2374 sopt.sopt_level = level; 2375 sopt.sopt_name = optname; 2376 sopt.sopt_dir = SOPT_SET; 2377 sopt.sopt_val = optval; 2378 sopt.sopt_valsize = optlen; 2379 sopt.sopt_td = NULL; 2380 return (sosetopt(so, &sopt)); 2381 } 2382 2383 int 2384 sosetopt(struct socket *so, struct sockopt *sopt) 2385 { 2386 int error, optval; 2387 struct linger l; 2388 struct timeval tv; 2389 sbintime_t val; 2390 uint32_t val32; 2391 #ifdef MAC 2392 struct mac extmac; 2393 #endif 2394 2395 CURVNET_SET(so->so_vnet); 2396 error = 0; 2397 if (sopt->sopt_level != SOL_SOCKET) { 2398 if (so->so_proto->pr_ctloutput != NULL) { 2399 error = (*so->so_proto->pr_ctloutput)(so, sopt); 2400 CURVNET_RESTORE(); 2401 return (error); 2402 } 2403 error = ENOPROTOOPT; 2404 } else { 2405 switch (sopt->sopt_name) { 2406 #ifdef INET 2407 case SO_ACCEPTFILTER: 2408 error = do_setopt_accept_filter(so, sopt); 2409 if (error) 2410 goto bad; 2411 break; 2412 #endif 2413 case SO_LINGER: 2414 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 2415 if (error) 2416 goto bad; 2417 2418 SOCK_LOCK(so); 2419 so->so_linger = l.l_linger; 2420 if (l.l_onoff) 2421 so->so_options |= SO_LINGER; 2422 else 2423 so->so_options &= ~SO_LINGER; 2424 SOCK_UNLOCK(so); 2425 break; 2426 2427 case SO_DEBUG: 2428 case SO_KEEPALIVE: 2429 case SO_DONTROUTE: 2430 case SO_USELOOPBACK: 2431 case SO_BROADCAST: 2432 case SO_REUSEADDR: 2433 case SO_REUSEPORT: 2434 case SO_OOBINLINE: 2435 case SO_TIMESTAMP: 2436 case SO_BINTIME: 2437 case SO_NOSIGPIPE: 2438 case SO_NO_DDP: 2439 case SO_NO_OFFLOAD: 2440 error = sooptcopyin(sopt, &optval, sizeof optval, 2441 sizeof optval); 2442 if (error) 2443 goto bad; 2444 SOCK_LOCK(so); 2445 if (optval) 2446 so->so_options |= sopt->sopt_name; 2447 else 2448 so->so_options &= ~sopt->sopt_name; 2449 SOCK_UNLOCK(so); 2450 break; 2451 2452 case SO_SETFIB: 2453 error = sooptcopyin(sopt, &optval, sizeof optval, 2454 sizeof optval); 2455 if (error) 2456 goto bad; 2457 2458 if (optval < 0 || optval >= rt_numfibs) { 2459 error = EINVAL; 2460 goto bad; 2461 } 2462 if (((so->so_proto->pr_domain->dom_family == PF_INET) || 2463 (so->so_proto->pr_domain->dom_family == PF_INET6) || 2464 (so->so_proto->pr_domain->dom_family == PF_ROUTE))) 2465 so->so_fibnum = optval; 2466 else 2467 so->so_fibnum = 0; 2468 break; 2469 2470 case SO_USER_COOKIE: 2471 error = sooptcopyin(sopt, &val32, sizeof val32, 2472 sizeof val32); 2473 if (error) 2474 goto bad; 2475 so->so_user_cookie = val32; 2476 break; 2477 2478 case SO_SNDBUF: 2479 case SO_RCVBUF: 2480 case SO_SNDLOWAT: 2481 case SO_RCVLOWAT: 2482 error = sooptcopyin(sopt, &optval, sizeof optval, 2483 sizeof optval); 2484 if (error) 2485 goto bad; 2486 2487 /* 2488 * Values < 1 make no sense for any of these options, 2489 * so disallow them. 2490 */ 2491 if (optval < 1) { 2492 error = EINVAL; 2493 goto bad; 2494 } 2495 2496 switch (sopt->sopt_name) { 2497 case SO_SNDBUF: 2498 case SO_RCVBUF: 2499 if (sbreserve(sopt->sopt_name == SO_SNDBUF ? 2500 &so->so_snd : &so->so_rcv, (u_long)optval, 2501 so, curthread) == 0) { 2502 error = ENOBUFS; 2503 goto bad; 2504 } 2505 (sopt->sopt_name == SO_SNDBUF ? &so->so_snd : 2506 &so->so_rcv)->sb_flags &= ~SB_AUTOSIZE; 2507 break; 2508 2509 /* 2510 * Make sure the low-water is never greater than the 2511 * high-water. 2512 */ 2513 case SO_SNDLOWAT: 2514 SOCKBUF_LOCK(&so->so_snd); 2515 so->so_snd.sb_lowat = 2516 (optval > so->so_snd.sb_hiwat) ? 2517 so->so_snd.sb_hiwat : optval; 2518 SOCKBUF_UNLOCK(&so->so_snd); 2519 break; 2520 case SO_RCVLOWAT: 2521 SOCKBUF_LOCK(&so->so_rcv); 2522 so->so_rcv.sb_lowat = 2523 (optval > so->so_rcv.sb_hiwat) ? 2524 so->so_rcv.sb_hiwat : optval; 2525 SOCKBUF_UNLOCK(&so->so_rcv); 2526 break; 2527 } 2528 break; 2529 2530 case SO_SNDTIMEO: 2531 case SO_RCVTIMEO: 2532 #ifdef COMPAT_FREEBSD32 2533 if (SV_CURPROC_FLAG(SV_ILP32)) { 2534 struct timeval32 tv32; 2535 2536 error = sooptcopyin(sopt, &tv32, sizeof tv32, 2537 sizeof tv32); 2538 CP(tv32, tv, tv_sec); 2539 CP(tv32, tv, tv_usec); 2540 } else 2541 #endif 2542 error = sooptcopyin(sopt, &tv, sizeof tv, 2543 sizeof tv); 2544 if (error) 2545 goto bad; 2546 if (tv.tv_sec < 0 || tv.tv_usec < 0 || 2547 tv.tv_usec >= 1000000) { 2548 error = EDOM; 2549 goto bad; 2550 } 2551 val = tvtosbt(tv); 2552 2553 switch (sopt->sopt_name) { 2554 case SO_SNDTIMEO: 2555 so->so_snd.sb_timeo = val; 2556 break; 2557 case SO_RCVTIMEO: 2558 so->so_rcv.sb_timeo = val; 2559 break; 2560 } 2561 break; 2562 2563 case SO_LABEL: 2564 #ifdef MAC 2565 error = sooptcopyin(sopt, &extmac, sizeof extmac, 2566 sizeof extmac); 2567 if (error) 2568 goto bad; 2569 error = mac_setsockopt_label(sopt->sopt_td->td_ucred, 2570 so, &extmac); 2571 #else 2572 error = EOPNOTSUPP; 2573 #endif 2574 break; 2575 2576 default: 2577 error = ENOPROTOOPT; 2578 break; 2579 } 2580 if (error == 0 && so->so_proto->pr_ctloutput != NULL) 2581 (void)(*so->so_proto->pr_ctloutput)(so, sopt); 2582 } 2583 bad: 2584 CURVNET_RESTORE(); 2585 return (error); 2586 } 2587 2588 /* 2589 * Helper routine for getsockopt. 2590 */ 2591 int 2592 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 2593 { 2594 int error; 2595 size_t valsize; 2596 2597 error = 0; 2598 2599 /* 2600 * Documented get behavior is that we always return a value, possibly 2601 * truncated to fit in the user's buffer. Traditional behavior is 2602 * that we always tell the user precisely how much we copied, rather 2603 * than something useful like the total amount we had available for 2604 * her. Note that this interface is not idempotent; the entire 2605 * answer must generated ahead of time. 2606 */ 2607 valsize = min(len, sopt->sopt_valsize); 2608 sopt->sopt_valsize = valsize; 2609 if (sopt->sopt_val != NULL) { 2610 if (sopt->sopt_td != NULL) 2611 error = copyout(buf, sopt->sopt_val, valsize); 2612 else 2613 bcopy(buf, sopt->sopt_val, valsize); 2614 } 2615 return (error); 2616 } 2617 2618 int 2619 sogetopt(struct socket *so, struct sockopt *sopt) 2620 { 2621 int error, optval; 2622 struct linger l; 2623 struct timeval tv; 2624 #ifdef MAC 2625 struct mac extmac; 2626 #endif 2627 2628 CURVNET_SET(so->so_vnet); 2629 error = 0; 2630 if (sopt->sopt_level != SOL_SOCKET) { 2631 if (so->so_proto->pr_ctloutput != NULL) 2632 error = (*so->so_proto->pr_ctloutput)(so, sopt); 2633 else 2634 error = ENOPROTOOPT; 2635 CURVNET_RESTORE(); 2636 return (error); 2637 } else { 2638 switch (sopt->sopt_name) { 2639 #ifdef INET 2640 case SO_ACCEPTFILTER: 2641 error = do_getopt_accept_filter(so, sopt); 2642 break; 2643 #endif 2644 case SO_LINGER: 2645 SOCK_LOCK(so); 2646 l.l_onoff = so->so_options & SO_LINGER; 2647 l.l_linger = so->so_linger; 2648 SOCK_UNLOCK(so); 2649 error = sooptcopyout(sopt, &l, sizeof l); 2650 break; 2651 2652 case SO_USELOOPBACK: 2653 case SO_DONTROUTE: 2654 case SO_DEBUG: 2655 case SO_KEEPALIVE: 2656 case SO_REUSEADDR: 2657 case SO_REUSEPORT: 2658 case SO_BROADCAST: 2659 case SO_OOBINLINE: 2660 case SO_ACCEPTCONN: 2661 case SO_TIMESTAMP: 2662 case SO_BINTIME: 2663 case SO_NOSIGPIPE: 2664 optval = so->so_options & sopt->sopt_name; 2665 integer: 2666 error = sooptcopyout(sopt, &optval, sizeof optval); 2667 break; 2668 2669 case SO_TYPE: 2670 optval = so->so_type; 2671 goto integer; 2672 2673 case SO_PROTOCOL: 2674 optval = so->so_proto->pr_protocol; 2675 goto integer; 2676 2677 case SO_ERROR: 2678 SOCK_LOCK(so); 2679 optval = so->so_error; 2680 so->so_error = 0; 2681 SOCK_UNLOCK(so); 2682 goto integer; 2683 2684 case SO_SNDBUF: 2685 optval = so->so_snd.sb_hiwat; 2686 goto integer; 2687 2688 case SO_RCVBUF: 2689 optval = so->so_rcv.sb_hiwat; 2690 goto integer; 2691 2692 case SO_SNDLOWAT: 2693 optval = so->so_snd.sb_lowat; 2694 goto integer; 2695 2696 case SO_RCVLOWAT: 2697 optval = so->so_rcv.sb_lowat; 2698 goto integer; 2699 2700 case SO_SNDTIMEO: 2701 case SO_RCVTIMEO: 2702 optval = (sopt->sopt_name == SO_SNDTIMEO ? 2703 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 2704 2705 tv = sbttotv(optval); 2706 #ifdef COMPAT_FREEBSD32 2707 if (SV_CURPROC_FLAG(SV_ILP32)) { 2708 struct timeval32 tv32; 2709 2710 CP(tv, tv32, tv_sec); 2711 CP(tv, tv32, tv_usec); 2712 error = sooptcopyout(sopt, &tv32, sizeof tv32); 2713 } else 2714 #endif 2715 error = sooptcopyout(sopt, &tv, sizeof tv); 2716 break; 2717 2718 case SO_LABEL: 2719 #ifdef MAC 2720 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 2721 sizeof(extmac)); 2722 if (error) 2723 goto bad; 2724 error = mac_getsockopt_label(sopt->sopt_td->td_ucred, 2725 so, &extmac); 2726 if (error) 2727 goto bad; 2728 error = sooptcopyout(sopt, &extmac, sizeof extmac); 2729 #else 2730 error = EOPNOTSUPP; 2731 #endif 2732 break; 2733 2734 case SO_PEERLABEL: 2735 #ifdef MAC 2736 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 2737 sizeof(extmac)); 2738 if (error) 2739 goto bad; 2740 error = mac_getsockopt_peerlabel( 2741 sopt->sopt_td->td_ucred, so, &extmac); 2742 if (error) 2743 goto bad; 2744 error = sooptcopyout(sopt, &extmac, sizeof extmac); 2745 #else 2746 error = EOPNOTSUPP; 2747 #endif 2748 break; 2749 2750 case SO_LISTENQLIMIT: 2751 optval = so->so_qlimit; 2752 goto integer; 2753 2754 case SO_LISTENQLEN: 2755 optval = so->so_qlen; 2756 goto integer; 2757 2758 case SO_LISTENINCQLEN: 2759 optval = so->so_incqlen; 2760 goto integer; 2761 2762 default: 2763 error = ENOPROTOOPT; 2764 break; 2765 } 2766 } 2767 #ifdef MAC 2768 bad: 2769 #endif 2770 CURVNET_RESTORE(); 2771 return (error); 2772 } 2773 2774 int 2775 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 2776 { 2777 struct mbuf *m, *m_prev; 2778 int sopt_size = sopt->sopt_valsize; 2779 2780 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 2781 if (m == NULL) 2782 return ENOBUFS; 2783 if (sopt_size > MLEN) { 2784 MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT); 2785 if ((m->m_flags & M_EXT) == 0) { 2786 m_free(m); 2787 return ENOBUFS; 2788 } 2789 m->m_len = min(MCLBYTES, sopt_size); 2790 } else { 2791 m->m_len = min(MLEN, sopt_size); 2792 } 2793 sopt_size -= m->m_len; 2794 *mp = m; 2795 m_prev = m; 2796 2797 while (sopt_size) { 2798 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 2799 if (m == NULL) { 2800 m_freem(*mp); 2801 return ENOBUFS; 2802 } 2803 if (sopt_size > MLEN) { 2804 MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK : 2805 M_NOWAIT); 2806 if ((m->m_flags & M_EXT) == 0) { 2807 m_freem(m); 2808 m_freem(*mp); 2809 return ENOBUFS; 2810 } 2811 m->m_len = min(MCLBYTES, sopt_size); 2812 } else { 2813 m->m_len = min(MLEN, sopt_size); 2814 } 2815 sopt_size -= m->m_len; 2816 m_prev->m_next = m; 2817 m_prev = m; 2818 } 2819 return (0); 2820 } 2821 2822 int 2823 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 2824 { 2825 struct mbuf *m0 = m; 2826 2827 if (sopt->sopt_val == NULL) 2828 return (0); 2829 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 2830 if (sopt->sopt_td != NULL) { 2831 int error; 2832 2833 error = copyin(sopt->sopt_val, mtod(m, char *), 2834 m->m_len); 2835 if (error != 0) { 2836 m_freem(m0); 2837 return(error); 2838 } 2839 } else 2840 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 2841 sopt->sopt_valsize -= m->m_len; 2842 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 2843 m = m->m_next; 2844 } 2845 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 2846 panic("ip6_sooptmcopyin"); 2847 return (0); 2848 } 2849 2850 int 2851 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 2852 { 2853 struct mbuf *m0 = m; 2854 size_t valsize = 0; 2855 2856 if (sopt->sopt_val == NULL) 2857 return (0); 2858 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 2859 if (sopt->sopt_td != NULL) { 2860 int error; 2861 2862 error = copyout(mtod(m, char *), sopt->sopt_val, 2863 m->m_len); 2864 if (error != 0) { 2865 m_freem(m0); 2866 return(error); 2867 } 2868 } else 2869 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 2870 sopt->sopt_valsize -= m->m_len; 2871 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 2872 valsize += m->m_len; 2873 m = m->m_next; 2874 } 2875 if (m != NULL) { 2876 /* enough soopt buffer should be given from user-land */ 2877 m_freem(m0); 2878 return(EINVAL); 2879 } 2880 sopt->sopt_valsize = valsize; 2881 return (0); 2882 } 2883 2884 /* 2885 * sohasoutofband(): protocol notifies socket layer of the arrival of new 2886 * out-of-band data, which will then notify socket consumers. 2887 */ 2888 void 2889 sohasoutofband(struct socket *so) 2890 { 2891 2892 if (so->so_sigio != NULL) 2893 pgsigio(&so->so_sigio, SIGURG, 0); 2894 selwakeuppri(&so->so_rcv.sb_sel, PSOCK); 2895 } 2896 2897 int 2898 sopoll(struct socket *so, int events, struct ucred *active_cred, 2899 struct thread *td) 2900 { 2901 2902 /* 2903 * We do not need to set or assert curvnet as long as everyone uses 2904 * sopoll_generic(). 2905 */ 2906 return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred, 2907 td)); 2908 } 2909 2910 int 2911 sopoll_generic(struct socket *so, int events, struct ucred *active_cred, 2912 struct thread *td) 2913 { 2914 int revents = 0; 2915 2916 SOCKBUF_LOCK(&so->so_snd); 2917 SOCKBUF_LOCK(&so->so_rcv); 2918 if (events & (POLLIN | POLLRDNORM)) 2919 if (soreadabledata(so)) 2920 revents |= events & (POLLIN | POLLRDNORM); 2921 2922 if (events & (POLLOUT | POLLWRNORM)) 2923 if (sowriteable(so)) 2924 revents |= events & (POLLOUT | POLLWRNORM); 2925 2926 if (events & (POLLPRI | POLLRDBAND)) 2927 if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK)) 2928 revents |= events & (POLLPRI | POLLRDBAND); 2929 2930 if ((events & POLLINIGNEOF) == 0) { 2931 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 2932 revents |= events & (POLLIN | POLLRDNORM); 2933 if (so->so_snd.sb_state & SBS_CANTSENDMORE) 2934 revents |= POLLHUP; 2935 } 2936 } 2937 2938 if (revents == 0) { 2939 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) { 2940 selrecord(td, &so->so_rcv.sb_sel); 2941 so->so_rcv.sb_flags |= SB_SEL; 2942 } 2943 2944 if (events & (POLLOUT | POLLWRNORM)) { 2945 selrecord(td, &so->so_snd.sb_sel); 2946 so->so_snd.sb_flags |= SB_SEL; 2947 } 2948 } 2949 2950 SOCKBUF_UNLOCK(&so->so_rcv); 2951 SOCKBUF_UNLOCK(&so->so_snd); 2952 return (revents); 2953 } 2954 2955 int 2956 soo_kqfilter(struct file *fp, struct knote *kn) 2957 { 2958 struct socket *so = kn->kn_fp->f_data; 2959 struct sockbuf *sb; 2960 2961 switch (kn->kn_filter) { 2962 case EVFILT_READ: 2963 if (so->so_options & SO_ACCEPTCONN) 2964 kn->kn_fop = &solisten_filtops; 2965 else 2966 kn->kn_fop = &soread_filtops; 2967 sb = &so->so_rcv; 2968 break; 2969 case EVFILT_WRITE: 2970 kn->kn_fop = &sowrite_filtops; 2971 sb = &so->so_snd; 2972 break; 2973 default: 2974 return (EINVAL); 2975 } 2976 2977 SOCKBUF_LOCK(sb); 2978 knlist_add(&sb->sb_sel.si_note, kn, 1); 2979 sb->sb_flags |= SB_KNOTE; 2980 SOCKBUF_UNLOCK(sb); 2981 return (0); 2982 } 2983 2984 /* 2985 * Some routines that return EOPNOTSUPP for entry points that are not 2986 * supported by a protocol. Fill in as needed. 2987 */ 2988 int 2989 pru_accept_notsupp(struct socket *so, struct sockaddr **nam) 2990 { 2991 2992 return EOPNOTSUPP; 2993 } 2994 2995 int 2996 pru_attach_notsupp(struct socket *so, int proto, struct thread *td) 2997 { 2998 2999 return EOPNOTSUPP; 3000 } 3001 3002 int 3003 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 3004 { 3005 3006 return EOPNOTSUPP; 3007 } 3008 3009 int 3010 pru_bindat_notsupp(int fd, struct socket *so, struct sockaddr *nam, 3011 struct thread *td) 3012 { 3013 3014 return EOPNOTSUPP; 3015 } 3016 3017 int 3018 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 3019 { 3020 3021 return EOPNOTSUPP; 3022 } 3023 3024 int 3025 pru_connectat_notsupp(int fd, struct socket *so, struct sockaddr *nam, 3026 struct thread *td) 3027 { 3028 3029 return EOPNOTSUPP; 3030 } 3031 3032 int 3033 pru_connect2_notsupp(struct socket *so1, struct socket *so2) 3034 { 3035 3036 return EOPNOTSUPP; 3037 } 3038 3039 int 3040 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, 3041 struct ifnet *ifp, struct thread *td) 3042 { 3043 3044 return EOPNOTSUPP; 3045 } 3046 3047 int 3048 pru_disconnect_notsupp(struct socket *so) 3049 { 3050 3051 return EOPNOTSUPP; 3052 } 3053 3054 int 3055 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td) 3056 { 3057 3058 return EOPNOTSUPP; 3059 } 3060 3061 int 3062 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam) 3063 { 3064 3065 return EOPNOTSUPP; 3066 } 3067 3068 int 3069 pru_rcvd_notsupp(struct socket *so, int flags) 3070 { 3071 3072 return EOPNOTSUPP; 3073 } 3074 3075 int 3076 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) 3077 { 3078 3079 return EOPNOTSUPP; 3080 } 3081 3082 int 3083 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m, 3084 struct sockaddr *addr, struct mbuf *control, struct thread *td) 3085 { 3086 3087 return EOPNOTSUPP; 3088 } 3089 3090 /* 3091 * This isn't really a ``null'' operation, but it's the default one and 3092 * doesn't do anything destructive. 3093 */ 3094 int 3095 pru_sense_null(struct socket *so, struct stat *sb) 3096 { 3097 3098 sb->st_blksize = so->so_snd.sb_hiwat; 3099 return 0; 3100 } 3101 3102 int 3103 pru_shutdown_notsupp(struct socket *so) 3104 { 3105 3106 return EOPNOTSUPP; 3107 } 3108 3109 int 3110 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam) 3111 { 3112 3113 return EOPNOTSUPP; 3114 } 3115 3116 int 3117 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio, 3118 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 3119 { 3120 3121 return EOPNOTSUPP; 3122 } 3123 3124 int 3125 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr, 3126 struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 3127 { 3128 3129 return EOPNOTSUPP; 3130 } 3131 3132 int 3133 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred, 3134 struct thread *td) 3135 { 3136 3137 return EOPNOTSUPP; 3138 } 3139 3140 static void 3141 filt_sordetach(struct knote *kn) 3142 { 3143 struct socket *so = kn->kn_fp->f_data; 3144 3145 SOCKBUF_LOCK(&so->so_rcv); 3146 knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1); 3147 if (knlist_empty(&so->so_rcv.sb_sel.si_note)) 3148 so->so_rcv.sb_flags &= ~SB_KNOTE; 3149 SOCKBUF_UNLOCK(&so->so_rcv); 3150 } 3151 3152 /*ARGSUSED*/ 3153 static int 3154 filt_soread(struct knote *kn, long hint) 3155 { 3156 struct socket *so; 3157 3158 so = kn->kn_fp->f_data; 3159 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 3160 3161 kn->kn_data = so->so_rcv.sb_cc - so->so_rcv.sb_ctl; 3162 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3163 kn->kn_flags |= EV_EOF; 3164 kn->kn_fflags = so->so_error; 3165 return (1); 3166 } else if (so->so_error) /* temporary udp error */ 3167 return (1); 3168 else if (kn->kn_sfflags & NOTE_LOWAT) 3169 return (kn->kn_data >= kn->kn_sdata); 3170 else 3171 return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat); 3172 } 3173 3174 static void 3175 filt_sowdetach(struct knote *kn) 3176 { 3177 struct socket *so = kn->kn_fp->f_data; 3178 3179 SOCKBUF_LOCK(&so->so_snd); 3180 knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1); 3181 if (knlist_empty(&so->so_snd.sb_sel.si_note)) 3182 so->so_snd.sb_flags &= ~SB_KNOTE; 3183 SOCKBUF_UNLOCK(&so->so_snd); 3184 } 3185 3186 /*ARGSUSED*/ 3187 static int 3188 filt_sowrite(struct knote *kn, long hint) 3189 { 3190 struct socket *so; 3191 3192 so = kn->kn_fp->f_data; 3193 SOCKBUF_LOCK_ASSERT(&so->so_snd); 3194 kn->kn_data = sbspace(&so->so_snd); 3195 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 3196 kn->kn_flags |= EV_EOF; 3197 kn->kn_fflags = so->so_error; 3198 return (1); 3199 } else if (so->so_error) /* temporary udp error */ 3200 return (1); 3201 else if (((so->so_state & SS_ISCONNECTED) == 0) && 3202 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 3203 return (0); 3204 else if (kn->kn_sfflags & NOTE_LOWAT) 3205 return (kn->kn_data >= kn->kn_sdata); 3206 else 3207 return (kn->kn_data >= so->so_snd.sb_lowat); 3208 } 3209 3210 /*ARGSUSED*/ 3211 static int 3212 filt_solisten(struct knote *kn, long hint) 3213 { 3214 struct socket *so = kn->kn_fp->f_data; 3215 3216 kn->kn_data = so->so_qlen; 3217 return (!TAILQ_EMPTY(&so->so_comp)); 3218 } 3219 3220 int 3221 socheckuid(struct socket *so, uid_t uid) 3222 { 3223 3224 if (so == NULL) 3225 return (EPERM); 3226 if (so->so_cred->cr_uid != uid) 3227 return (EPERM); 3228 return (0); 3229 } 3230 3231 /* 3232 * These functions are used by protocols to notify the socket layer (and its 3233 * consumers) of state changes in the sockets driven by protocol-side events. 3234 */ 3235 3236 /* 3237 * Procedures to manipulate state flags of socket and do appropriate wakeups. 3238 * 3239 * Normal sequence from the active (originating) side is that 3240 * soisconnecting() is called during processing of connect() call, resulting 3241 * in an eventual call to soisconnected() if/when the connection is 3242 * established. When the connection is torn down soisdisconnecting() is 3243 * called during processing of disconnect() call, and soisdisconnected() is 3244 * called when the connection to the peer is totally severed. The semantics 3245 * of these routines are such that connectionless protocols can call 3246 * soisconnected() and soisdisconnected() only, bypassing the in-progress 3247 * calls when setting up a ``connection'' takes no time. 3248 * 3249 * From the passive side, a socket is created with two queues of sockets: 3250 * so_incomp for connections in progress and so_comp for connections already 3251 * made and awaiting user acceptance. As a protocol is preparing incoming 3252 * connections, it creates a socket structure queued on so_incomp by calling 3253 * sonewconn(). When the connection is established, soisconnected() is 3254 * called, and transfers the socket structure to so_comp, making it available 3255 * to accept(). 3256 * 3257 * If a socket is closed with sockets on either so_incomp or so_comp, these 3258 * sockets are dropped. 3259 * 3260 * If higher-level protocols are implemented in the kernel, the wakeups done 3261 * here will sometimes cause software-interrupt process scheduling. 3262 */ 3263 void 3264 soisconnecting(struct socket *so) 3265 { 3266 3267 SOCK_LOCK(so); 3268 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 3269 so->so_state |= SS_ISCONNECTING; 3270 SOCK_UNLOCK(so); 3271 } 3272 3273 void 3274 soisconnected(struct socket *so) 3275 { 3276 struct socket *head; 3277 int ret; 3278 3279 restart: 3280 ACCEPT_LOCK(); 3281 SOCK_LOCK(so); 3282 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 3283 so->so_state |= SS_ISCONNECTED; 3284 head = so->so_head; 3285 if (head != NULL && (so->so_qstate & SQ_INCOMP)) { 3286 if ((so->so_options & SO_ACCEPTFILTER) == 0) { 3287 SOCK_UNLOCK(so); 3288 TAILQ_REMOVE(&head->so_incomp, so, so_list); 3289 head->so_incqlen--; 3290 so->so_qstate &= ~SQ_INCOMP; 3291 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 3292 head->so_qlen++; 3293 so->so_qstate |= SQ_COMP; 3294 ACCEPT_UNLOCK(); 3295 sorwakeup(head); 3296 wakeup_one(&head->so_timeo); 3297 } else { 3298 ACCEPT_UNLOCK(); 3299 soupcall_set(so, SO_RCV, 3300 head->so_accf->so_accept_filter->accf_callback, 3301 head->so_accf->so_accept_filter_arg); 3302 so->so_options &= ~SO_ACCEPTFILTER; 3303 ret = head->so_accf->so_accept_filter->accf_callback(so, 3304 head->so_accf->so_accept_filter_arg, M_NOWAIT); 3305 if (ret == SU_ISCONNECTED) 3306 soupcall_clear(so, SO_RCV); 3307 SOCK_UNLOCK(so); 3308 if (ret == SU_ISCONNECTED) 3309 goto restart; 3310 } 3311 return; 3312 } 3313 SOCK_UNLOCK(so); 3314 ACCEPT_UNLOCK(); 3315 wakeup(&so->so_timeo); 3316 sorwakeup(so); 3317 sowwakeup(so); 3318 } 3319 3320 void 3321 soisdisconnecting(struct socket *so) 3322 { 3323 3324 /* 3325 * Note: This code assumes that SOCK_LOCK(so) and 3326 * SOCKBUF_LOCK(&so->so_rcv) are the same. 3327 */ 3328 SOCKBUF_LOCK(&so->so_rcv); 3329 so->so_state &= ~SS_ISCONNECTING; 3330 so->so_state |= SS_ISDISCONNECTING; 3331 so->so_rcv.sb_state |= SBS_CANTRCVMORE; 3332 sorwakeup_locked(so); 3333 SOCKBUF_LOCK(&so->so_snd); 3334 so->so_snd.sb_state |= SBS_CANTSENDMORE; 3335 sowwakeup_locked(so); 3336 wakeup(&so->so_timeo); 3337 } 3338 3339 void 3340 soisdisconnected(struct socket *so) 3341 { 3342 3343 /* 3344 * Note: This code assumes that SOCK_LOCK(so) and 3345 * SOCKBUF_LOCK(&so->so_rcv) are the same. 3346 */ 3347 SOCKBUF_LOCK(&so->so_rcv); 3348 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 3349 so->so_state |= SS_ISDISCONNECTED; 3350 so->so_rcv.sb_state |= SBS_CANTRCVMORE; 3351 sorwakeup_locked(so); 3352 SOCKBUF_LOCK(&so->so_snd); 3353 so->so_snd.sb_state |= SBS_CANTSENDMORE; 3354 sbdrop_locked(&so->so_snd, so->so_snd.sb_cc); 3355 sowwakeup_locked(so); 3356 wakeup(&so->so_timeo); 3357 } 3358 3359 /* 3360 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 3361 */ 3362 struct sockaddr * 3363 sodupsockaddr(const struct sockaddr *sa, int mflags) 3364 { 3365 struct sockaddr *sa2; 3366 3367 sa2 = malloc(sa->sa_len, M_SONAME, mflags); 3368 if (sa2) 3369 bcopy(sa, sa2, sa->sa_len); 3370 return sa2; 3371 } 3372 3373 /* 3374 * Register per-socket buffer upcalls. 3375 */ 3376 void 3377 soupcall_set(struct socket *so, int which, 3378 int (*func)(struct socket *, void *, int), void *arg) 3379 { 3380 struct sockbuf *sb; 3381 3382 switch (which) { 3383 case SO_RCV: 3384 sb = &so->so_rcv; 3385 break; 3386 case SO_SND: 3387 sb = &so->so_snd; 3388 break; 3389 default: 3390 panic("soupcall_set: bad which"); 3391 } 3392 SOCKBUF_LOCK_ASSERT(sb); 3393 #if 0 3394 /* XXX: accf_http actually wants to do this on purpose. */ 3395 KASSERT(sb->sb_upcall == NULL, ("soupcall_set: overwriting upcall")); 3396 #endif 3397 sb->sb_upcall = func; 3398 sb->sb_upcallarg = arg; 3399 sb->sb_flags |= SB_UPCALL; 3400 } 3401 3402 void 3403 soupcall_clear(struct socket *so, int which) 3404 { 3405 struct sockbuf *sb; 3406 3407 switch (which) { 3408 case SO_RCV: 3409 sb = &so->so_rcv; 3410 break; 3411 case SO_SND: 3412 sb = &so->so_snd; 3413 break; 3414 default: 3415 panic("soupcall_clear: bad which"); 3416 } 3417 SOCKBUF_LOCK_ASSERT(sb); 3418 KASSERT(sb->sb_upcall != NULL, ("soupcall_clear: no upcall to clear")); 3419 sb->sb_upcall = NULL; 3420 sb->sb_upcallarg = NULL; 3421 sb->sb_flags &= ~SB_UPCALL; 3422 } 3423 3424 /* 3425 * Create an external-format (``xsocket'') structure using the information in 3426 * the kernel-format socket structure pointed to by so. This is done to 3427 * reduce the spew of irrelevant information over this interface, to isolate 3428 * user code from changes in the kernel structure, and potentially to provide 3429 * information-hiding if we decide that some of this information should be 3430 * hidden from users. 3431 */ 3432 void 3433 sotoxsocket(struct socket *so, struct xsocket *xso) 3434 { 3435 3436 xso->xso_len = sizeof *xso; 3437 xso->xso_so = so; 3438 xso->so_type = so->so_type; 3439 xso->so_options = so->so_options; 3440 xso->so_linger = so->so_linger; 3441 xso->so_state = so->so_state; 3442 xso->so_pcb = so->so_pcb; 3443 xso->xso_protocol = so->so_proto->pr_protocol; 3444 xso->xso_family = so->so_proto->pr_domain->dom_family; 3445 xso->so_qlen = so->so_qlen; 3446 xso->so_incqlen = so->so_incqlen; 3447 xso->so_qlimit = so->so_qlimit; 3448 xso->so_timeo = so->so_timeo; 3449 xso->so_error = so->so_error; 3450 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 3451 xso->so_oobmark = so->so_oobmark; 3452 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 3453 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 3454 xso->so_uid = so->so_cred->cr_uid; 3455 } 3456 3457 3458 /* 3459 * Socket accessor functions to provide external consumers with 3460 * a safe interface to socket state 3461 * 3462 */ 3463 3464 void 3465 so_listeners_apply_all(struct socket *so, void (*func)(struct socket *, void *), 3466 void *arg) 3467 { 3468 3469 TAILQ_FOREACH(so, &so->so_comp, so_list) 3470 func(so, arg); 3471 } 3472 3473 struct sockbuf * 3474 so_sockbuf_rcv(struct socket *so) 3475 { 3476 3477 return (&so->so_rcv); 3478 } 3479 3480 struct sockbuf * 3481 so_sockbuf_snd(struct socket *so) 3482 { 3483 3484 return (&so->so_snd); 3485 } 3486 3487 int 3488 so_state_get(const struct socket *so) 3489 { 3490 3491 return (so->so_state); 3492 } 3493 3494 void 3495 so_state_set(struct socket *so, int val) 3496 { 3497 3498 so->so_state = val; 3499 } 3500 3501 int 3502 so_options_get(const struct socket *so) 3503 { 3504 3505 return (so->so_options); 3506 } 3507 3508 void 3509 so_options_set(struct socket *so, int val) 3510 { 3511 3512 so->so_options = val; 3513 } 3514 3515 int 3516 so_error_get(const struct socket *so) 3517 { 3518 3519 return (so->so_error); 3520 } 3521 3522 void 3523 so_error_set(struct socket *so, int val) 3524 { 3525 3526 so->so_error = val; 3527 } 3528 3529 int 3530 so_linger_get(const struct socket *so) 3531 { 3532 3533 return (so->so_linger); 3534 } 3535 3536 void 3537 so_linger_set(struct socket *so, int val) 3538 { 3539 3540 so->so_linger = val; 3541 } 3542 3543 struct protosw * 3544 so_protosw_get(const struct socket *so) 3545 { 3546 3547 return (so->so_proto); 3548 } 3549 3550 void 3551 so_protosw_set(struct socket *so, struct protosw *val) 3552 { 3553 3554 so->so_proto = val; 3555 } 3556 3557 void 3558 so_sorwakeup(struct socket *so) 3559 { 3560 3561 sorwakeup(so); 3562 } 3563 3564 void 3565 so_sowwakeup(struct socket *so) 3566 { 3567 3568 sowwakeup(so); 3569 } 3570 3571 void 3572 so_sorwakeup_locked(struct socket *so) 3573 { 3574 3575 sorwakeup_locked(so); 3576 } 3577 3578 void 3579 so_sowwakeup_locked(struct socket *so) 3580 { 3581 3582 sowwakeup_locked(so); 3583 } 3584 3585 void 3586 so_lock(struct socket *so) 3587 { 3588 3589 SOCK_LOCK(so); 3590 } 3591 3592 void 3593 so_unlock(struct socket *so) 3594 { 3595 3596 SOCK_UNLOCK(so); 3597 } 3598