1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. 6 * Copyright (c) 2004 The FreeBSD Foundation 7 * Copyright (c) 2004-2008 Robert N. M. Watson 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 35 */ 36 37 /* 38 * Comments on the socket life cycle: 39 * 40 * soalloc() sets of socket layer state for a socket, called only by 41 * socreate() and sonewconn(). Socket layer private. 42 * 43 * sodealloc() tears down socket layer state for a socket, called only by 44 * sofree() and sonewconn(). Socket layer private. 45 * 46 * pru_attach() associates protocol layer state with an allocated socket; 47 * called only once, may fail, aborting socket allocation. This is called 48 * from socreate() and sonewconn(). Socket layer private. 49 * 50 * pru_detach() disassociates protocol layer state from an attached socket, 51 * and will be called exactly once for sockets in which pru_attach() has 52 * been successfully called. If pru_attach() returned an error, 53 * pru_detach() will not be called. Socket layer private. 54 * 55 * pru_abort() and pru_close() notify the protocol layer that the last 56 * consumer of a socket is starting to tear down the socket, and that the 57 * protocol should terminate the connection. Historically, pru_abort() also 58 * detached protocol state from the socket state, but this is no longer the 59 * case. 60 * 61 * socreate() creates a socket and attaches protocol state. This is a public 62 * interface that may be used by socket layer consumers to create new 63 * sockets. 64 * 65 * sonewconn() creates a socket and attaches protocol state. This is a 66 * public interface that may be used by protocols to create new sockets when 67 * a new connection is received and will be available for accept() on a 68 * listen socket. 69 * 70 * soclose() destroys a socket after possibly waiting for it to disconnect. 71 * This is a public interface that socket consumers should use to close and 72 * release a socket when done with it. 73 * 74 * soabort() destroys a socket without waiting for it to disconnect (used 75 * only for incoming connections that are already partially or fully 76 * connected). This is used internally by the socket layer when clearing 77 * listen socket queues (due to overflow or close on the listen socket), but 78 * is also a public interface protocols may use to abort connections in 79 * their incomplete listen queues should they no longer be required. Sockets 80 * placed in completed connection listen queues should not be aborted for 81 * reasons described in the comment above the soclose() implementation. This 82 * is not a general purpose close routine, and except in the specific 83 * circumstances described here, should not be used. 84 * 85 * sofree() will free a socket and its protocol state if all references on 86 * the socket have been released, and is the public interface to attempt to 87 * free a socket when a reference is removed. This is a socket layer private 88 * interface. 89 * 90 * NOTE: In addition to socreate() and soclose(), which provide a single 91 * socket reference to the consumer to be managed as required, there are two 92 * calls to explicitly manage socket references, soref(), and sorele(). 93 * Currently, these are generally required only when transitioning a socket 94 * from a listen queue to a file descriptor, in order to prevent garbage 95 * collection of the socket at an untimely moment. For a number of reasons, 96 * these interfaces are not preferred, and should be avoided. 97 * 98 * NOTE: With regard to VNETs the general rule is that callers do not set 99 * curvnet. Exceptions to this rule include soabort(), sodisconnect(), 100 * sofree() (and with that sorele(), sotryfree()), as well as sonewconn() 101 * and sorflush(), which are usually called from a pre-set VNET context. 102 * sopoll() currently does not need a VNET context to be set. 103 */ 104 105 #include <sys/cdefs.h> 106 __FBSDID("$FreeBSD$"); 107 108 #include "opt_inet.h" 109 #include "opt_inet6.h" 110 #include "opt_sctp.h" 111 112 #include <sys/param.h> 113 #include <sys/systm.h> 114 #include <sys/fcntl.h> 115 #include <sys/limits.h> 116 #include <sys/lock.h> 117 #include <sys/mac.h> 118 #include <sys/malloc.h> 119 #include <sys/mbuf.h> 120 #include <sys/mutex.h> 121 #include <sys/domain.h> 122 #include <sys/file.h> /* for struct knote */ 123 #include <sys/hhook.h> 124 #include <sys/kernel.h> 125 #include <sys/khelp.h> 126 #include <sys/event.h> 127 #include <sys/eventhandler.h> 128 #include <sys/poll.h> 129 #include <sys/proc.h> 130 #include <sys/protosw.h> 131 #include <sys/socket.h> 132 #include <sys/socketvar.h> 133 #include <sys/resourcevar.h> 134 #include <net/route.h> 135 #include <sys/signalvar.h> 136 #include <sys/stat.h> 137 #include <sys/sx.h> 138 #include <sys/sysctl.h> 139 #include <sys/taskqueue.h> 140 #include <sys/uio.h> 141 #include <sys/jail.h> 142 #include <sys/syslog.h> 143 #include <netinet/in.h> 144 145 #include <net/vnet.h> 146 147 #include <security/mac/mac_framework.h> 148 149 #include <vm/uma.h> 150 151 #ifdef COMPAT_FREEBSD32 152 #include <sys/mount.h> 153 #include <sys/sysent.h> 154 #include <compat/freebsd32/freebsd32.h> 155 #endif 156 157 static int soreceive_rcvoob(struct socket *so, struct uio *uio, 158 int flags); 159 static void so_rdknl_lock(void *); 160 static void so_rdknl_unlock(void *); 161 static void so_rdknl_assert_locked(void *); 162 static void so_rdknl_assert_unlocked(void *); 163 static void so_wrknl_lock(void *); 164 static void so_wrknl_unlock(void *); 165 static void so_wrknl_assert_locked(void *); 166 static void so_wrknl_assert_unlocked(void *); 167 168 static void filt_sordetach(struct knote *kn); 169 static int filt_soread(struct knote *kn, long hint); 170 static void filt_sowdetach(struct knote *kn); 171 static int filt_sowrite(struct knote *kn, long hint); 172 static int filt_soempty(struct knote *kn, long hint); 173 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id); 174 fo_kqfilter_t soo_kqfilter; 175 176 static struct filterops soread_filtops = { 177 .f_isfd = 1, 178 .f_detach = filt_sordetach, 179 .f_event = filt_soread, 180 }; 181 static struct filterops sowrite_filtops = { 182 .f_isfd = 1, 183 .f_detach = filt_sowdetach, 184 .f_event = filt_sowrite, 185 }; 186 static struct filterops soempty_filtops = { 187 .f_isfd = 1, 188 .f_detach = filt_sowdetach, 189 .f_event = filt_soempty, 190 }; 191 192 so_gen_t so_gencnt; /* generation count for sockets */ 193 194 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 195 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 196 197 #define VNET_SO_ASSERT(so) \ 198 VNET_ASSERT(curvnet != NULL, \ 199 ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so))); 200 201 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]); 202 #define V_socket_hhh VNET(socket_hhh) 203 204 /* 205 * Limit on the number of connections in the listen queue waiting 206 * for accept(2). 207 * NB: The original sysctl somaxconn is still available but hidden 208 * to prevent confusion about the actual purpose of this number. 209 */ 210 static u_int somaxconn = SOMAXCONN; 211 212 static int 213 sysctl_somaxconn(SYSCTL_HANDLER_ARGS) 214 { 215 int error; 216 int val; 217 218 val = somaxconn; 219 error = sysctl_handle_int(oidp, &val, 0, req); 220 if (error || !req->newptr ) 221 return (error); 222 223 /* 224 * The purpose of the UINT_MAX / 3 limit, is so that the formula 225 * 3 * so_qlimit / 2 226 * below, will not overflow. 227 */ 228 229 if (val < 1 || val > UINT_MAX / 3) 230 return (EINVAL); 231 232 somaxconn = val; 233 return (0); 234 } 235 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue, CTLTYPE_UINT | CTLFLAG_RW, 236 0, sizeof(int), sysctl_somaxconn, "I", 237 "Maximum listen socket pending connection accept queue size"); 238 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, 239 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP, 240 0, sizeof(int), sysctl_somaxconn, "I", 241 "Maximum listen socket pending connection accept queue size (compat)"); 242 243 static int numopensockets; 244 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, 245 &numopensockets, 0, "Number of open sockets"); 246 247 /* 248 * accept_mtx locks down per-socket fields relating to accept queues. See 249 * socketvar.h for an annotation of the protected fields of struct socket. 250 */ 251 struct mtx accept_mtx; 252 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF); 253 254 /* 255 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket 256 * so_gencnt field. 257 */ 258 static struct mtx so_global_mtx; 259 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); 260 261 /* 262 * General IPC sysctl name space, used by sockets and a variety of other IPC 263 * types. 264 */ 265 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC"); 266 267 /* 268 * Initialize the socket subsystem and set up the socket 269 * memory allocator. 270 */ 271 static uma_zone_t socket_zone; 272 int maxsockets; 273 274 static void 275 socket_zone_change(void *tag) 276 { 277 278 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 279 } 280 281 static void 282 socket_hhook_register(int subtype) 283 { 284 285 if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype, 286 &V_socket_hhh[subtype], 287 HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 288 printf("%s: WARNING: unable to register hook\n", __func__); 289 } 290 291 static void 292 socket_hhook_deregister(int subtype) 293 { 294 295 if (hhook_head_deregister(V_socket_hhh[subtype]) != 0) 296 printf("%s: WARNING: unable to deregister hook\n", __func__); 297 } 298 299 static void 300 socket_init(void *tag) 301 { 302 303 socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL, 304 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 305 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 306 uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached"); 307 EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL, 308 EVENTHANDLER_PRI_FIRST); 309 } 310 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL); 311 312 static void 313 socket_vnet_init(const void *unused __unused) 314 { 315 int i; 316 317 /* We expect a contiguous range */ 318 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 319 socket_hhook_register(i); 320 } 321 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 322 socket_vnet_init, NULL); 323 324 static void 325 socket_vnet_uninit(const void *unused __unused) 326 { 327 int i; 328 329 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 330 socket_hhook_deregister(i); 331 } 332 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 333 socket_vnet_uninit, NULL); 334 335 /* 336 * Initialise maxsockets. This SYSINIT must be run after 337 * tunable_mbinit(). 338 */ 339 static void 340 init_maxsockets(void *ignored) 341 { 342 343 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 344 maxsockets = imax(maxsockets, maxfiles); 345 } 346 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 347 348 /* 349 * Sysctl to get and set the maximum global sockets limit. Notify protocols 350 * of the change so that they can update their dependent limits as required. 351 */ 352 static int 353 sysctl_maxsockets(SYSCTL_HANDLER_ARGS) 354 { 355 int error, newmaxsockets; 356 357 newmaxsockets = maxsockets; 358 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req); 359 if (error == 0 && req->newptr) { 360 if (newmaxsockets > maxsockets && 361 newmaxsockets <= maxfiles) { 362 maxsockets = newmaxsockets; 363 EVENTHANDLER_INVOKE(maxsockets_change); 364 } else 365 error = EINVAL; 366 } 367 return (error); 368 } 369 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, CTLTYPE_INT|CTLFLAG_RW, 370 &maxsockets, 0, sysctl_maxsockets, "IU", 371 "Maximum number of sockets available"); 372 373 /* 374 * Socket operation routines. These routines are called by the routines in 375 * sys_socket.c or from a system process, and implement the semantics of 376 * socket operations by switching out to the protocol specific routines. 377 */ 378 379 /* 380 * Get a socket structure from our zone, and initialize it. Note that it 381 * would probably be better to allocate socket and PCB at the same time, but 382 * I'm not convinced that all the protocols can be easily modified to do 383 * this. 384 * 385 * soalloc() returns a socket with a ref count of 0. 386 */ 387 static struct socket * 388 soalloc(struct vnet *vnet) 389 { 390 struct socket *so; 391 392 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO); 393 if (so == NULL) 394 return (NULL); 395 #ifdef MAC 396 if (mac_socket_init(so, M_NOWAIT) != 0) { 397 uma_zfree(socket_zone, so); 398 return (NULL); 399 } 400 #endif 401 if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) { 402 uma_zfree(socket_zone, so); 403 return (NULL); 404 } 405 406 /* 407 * The socket locking protocol allows to lock 2 sockets at a time, 408 * however, the first one must be a listening socket. WITNESS lacks 409 * a feature to change class of an existing lock, so we use DUPOK. 410 */ 411 mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK); 412 SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd"); 413 SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv"); 414 so->so_rcv.sb_sel = &so->so_rdsel; 415 so->so_snd.sb_sel = &so->so_wrsel; 416 sx_init(&so->so_snd.sb_sx, "so_snd_sx"); 417 sx_init(&so->so_rcv.sb_sx, "so_rcv_sx"); 418 TAILQ_INIT(&so->so_snd.sb_aiojobq); 419 TAILQ_INIT(&so->so_rcv.sb_aiojobq); 420 TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so); 421 TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so); 422 #ifdef VIMAGE 423 VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p", 424 __func__, __LINE__, so)); 425 so->so_vnet = vnet; 426 #endif 427 /* We shouldn't need the so_global_mtx */ 428 if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) { 429 /* Do we need more comprehensive error returns? */ 430 uma_zfree(socket_zone, so); 431 return (NULL); 432 } 433 mtx_lock(&so_global_mtx); 434 so->so_gencnt = ++so_gencnt; 435 ++numopensockets; 436 #ifdef VIMAGE 437 vnet->vnet_sockcnt++; 438 #endif 439 mtx_unlock(&so_global_mtx); 440 441 return (so); 442 } 443 444 /* 445 * Free the storage associated with a socket at the socket layer, tear down 446 * locks, labels, etc. All protocol state is assumed already to have been 447 * torn down (and possibly never set up) by the caller. 448 */ 449 static void 450 sodealloc(struct socket *so) 451 { 452 453 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); 454 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL")); 455 456 mtx_lock(&so_global_mtx); 457 so->so_gencnt = ++so_gencnt; 458 --numopensockets; /* Could be below, but faster here. */ 459 #ifdef VIMAGE 460 VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p", 461 __func__, __LINE__, so)); 462 so->so_vnet->vnet_sockcnt--; 463 #endif 464 mtx_unlock(&so_global_mtx); 465 #ifdef MAC 466 mac_socket_destroy(so); 467 #endif 468 hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE); 469 470 crfree(so->so_cred); 471 khelp_destroy_osd(&so->osd); 472 if (SOLISTENING(so)) { 473 if (so->sol_accept_filter != NULL) 474 accept_filt_setopt(so, NULL); 475 } else { 476 if (so->so_rcv.sb_hiwat) 477 (void)chgsbsize(so->so_cred->cr_uidinfo, 478 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 479 if (so->so_snd.sb_hiwat) 480 (void)chgsbsize(so->so_cred->cr_uidinfo, 481 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 482 sx_destroy(&so->so_snd.sb_sx); 483 sx_destroy(&so->so_rcv.sb_sx); 484 SOCKBUF_LOCK_DESTROY(&so->so_snd); 485 SOCKBUF_LOCK_DESTROY(&so->so_rcv); 486 } 487 mtx_destroy(&so->so_lock); 488 uma_zfree(socket_zone, so); 489 } 490 491 /* 492 * socreate returns a socket with a ref count of 1. The socket should be 493 * closed with soclose(). 494 */ 495 int 496 socreate(int dom, struct socket **aso, int type, int proto, 497 struct ucred *cred, struct thread *td) 498 { 499 struct protosw *prp; 500 struct socket *so; 501 int error; 502 503 if (proto) 504 prp = pffindproto(dom, proto, type); 505 else 506 prp = pffindtype(dom, type); 507 508 if (prp == NULL) { 509 /* No support for domain. */ 510 if (pffinddomain(dom) == NULL) 511 return (EAFNOSUPPORT); 512 /* No support for socket type. */ 513 if (proto == 0 && type != 0) 514 return (EPROTOTYPE); 515 return (EPROTONOSUPPORT); 516 } 517 if (prp->pr_usrreqs->pru_attach == NULL || 518 prp->pr_usrreqs->pru_attach == pru_attach_notsupp) 519 return (EPROTONOSUPPORT); 520 521 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0) 522 return (EPROTONOSUPPORT); 523 524 if (prp->pr_type != type) 525 return (EPROTOTYPE); 526 so = soalloc(CRED_TO_VNET(cred)); 527 if (so == NULL) 528 return (ENOBUFS); 529 530 so->so_type = type; 531 so->so_cred = crhold(cred); 532 if ((prp->pr_domain->dom_family == PF_INET) || 533 (prp->pr_domain->dom_family == PF_INET6) || 534 (prp->pr_domain->dom_family == PF_ROUTE)) 535 so->so_fibnum = td->td_proc->p_fibnum; 536 else 537 so->so_fibnum = 0; 538 so->so_proto = prp; 539 #ifdef MAC 540 mac_socket_create(cred, so); 541 #endif 542 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 543 so_rdknl_assert_locked, so_rdknl_assert_unlocked); 544 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 545 so_wrknl_assert_locked, so_wrknl_assert_unlocked); 546 /* 547 * Auto-sizing of socket buffers is managed by the protocols and 548 * the appropriate flags must be set in the pru_attach function. 549 */ 550 CURVNET_SET(so->so_vnet); 551 error = (*prp->pr_usrreqs->pru_attach)(so, proto, td); 552 CURVNET_RESTORE(); 553 if (error) { 554 sodealloc(so); 555 return (error); 556 } 557 soref(so); 558 *aso = so; 559 return (0); 560 } 561 562 #ifdef REGRESSION 563 static int regression_sonewconn_earlytest = 1; 564 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW, 565 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test"); 566 #endif 567 568 /* 569 * When an attempt at a new connection is noted on a socket which accepts 570 * connections, sonewconn is called. If the connection is possible (subject 571 * to space constraints, etc.) then we allocate a new structure, properly 572 * linked into the data structure of the original socket, and return this. 573 * Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED. 574 * 575 * Note: the ref count on the socket is 0 on return. 576 */ 577 struct socket * 578 sonewconn(struct socket *head, int connstatus) 579 { 580 static struct timeval lastover; 581 static struct timeval overinterval = { 60, 0 }; 582 static int overcount; 583 584 struct socket *so; 585 u_int over; 586 587 SOLISTEN_LOCK(head); 588 over = (head->sol_qlen > 3 * head->sol_qlimit / 2); 589 SOLISTEN_UNLOCK(head); 590 #ifdef REGRESSION 591 if (regression_sonewconn_earlytest && over) { 592 #else 593 if (over) { 594 #endif 595 overcount++; 596 597 if (ratecheck(&lastover, &overinterval)) { 598 log(LOG_DEBUG, "%s: pcb %p: Listen queue overflow: " 599 "%i already in queue awaiting acceptance " 600 "(%d occurrences)\n", 601 __func__, head->so_pcb, head->sol_qlen, overcount); 602 603 overcount = 0; 604 } 605 606 return (NULL); 607 } 608 VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL", 609 __func__, head)); 610 so = soalloc(head->so_vnet); 611 if (so == NULL) { 612 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 613 "limit reached or out of memory\n", 614 __func__, head->so_pcb); 615 return (NULL); 616 } 617 so->so_listen = head; 618 so->so_type = head->so_type; 619 so->so_linger = head->so_linger; 620 so->so_state = head->so_state | SS_NOFDREF; 621 so->so_fibnum = head->so_fibnum; 622 so->so_proto = head->so_proto; 623 so->so_cred = crhold(head->so_cred); 624 #ifdef MAC 625 mac_socket_newconn(head, so); 626 #endif 627 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 628 so_rdknl_assert_locked, so_rdknl_assert_unlocked); 629 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 630 so_wrknl_assert_locked, so_wrknl_assert_unlocked); 631 VNET_SO_ASSERT(head); 632 if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) { 633 sodealloc(so); 634 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 635 __func__, head->so_pcb); 636 return (NULL); 637 } 638 if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 639 sodealloc(so); 640 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", 641 __func__, head->so_pcb); 642 return (NULL); 643 } 644 so->so_rcv.sb_lowat = head->sol_sbrcv_lowat; 645 so->so_snd.sb_lowat = head->sol_sbsnd_lowat; 646 so->so_rcv.sb_timeo = head->sol_sbrcv_timeo; 647 so->so_snd.sb_timeo = head->sol_sbsnd_timeo; 648 so->so_rcv.sb_flags |= head->sol_sbrcv_flags & SB_AUTOSIZE; 649 so->so_snd.sb_flags |= head->sol_sbsnd_flags & SB_AUTOSIZE; 650 651 SOLISTEN_LOCK(head); 652 if (head->sol_accept_filter != NULL) 653 connstatus = 0; 654 so->so_state |= connstatus; 655 so->so_options = head->so_options & ~SO_ACCEPTCONN; 656 soref(head); /* A socket on (in)complete queue refs head. */ 657 if (connstatus) { 658 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 659 so->so_qstate = SQ_COMP; 660 head->sol_qlen++; 661 solisten_wakeup(head); /* unlocks */ 662 } else { 663 /* 664 * Keep removing sockets from the head until there's room for 665 * us to insert on the tail. In pre-locking revisions, this 666 * was a simple if(), but as we could be racing with other 667 * threads and soabort() requires dropping locks, we must 668 * loop waiting for the condition to be true. 669 */ 670 while (head->sol_incqlen > head->sol_qlimit) { 671 struct socket *sp; 672 673 sp = TAILQ_FIRST(&head->sol_incomp); 674 TAILQ_REMOVE(&head->sol_incomp, sp, so_list); 675 head->sol_incqlen--; 676 SOCK_LOCK(sp); 677 sp->so_qstate = SQ_NONE; 678 sp->so_listen = NULL; 679 SOCK_UNLOCK(sp); 680 sorele(head); /* does SOLISTEN_UNLOCK, head stays */ 681 soabort(sp); 682 SOLISTEN_LOCK(head); 683 } 684 TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list); 685 so->so_qstate = SQ_INCOMP; 686 head->sol_incqlen++; 687 SOLISTEN_UNLOCK(head); 688 } 689 return (so); 690 } 691 692 #ifdef SCTP 693 /* 694 * Socket part of sctp_peeloff(). Detach a new socket from an 695 * association. The new socket is returned with a reference. 696 */ 697 struct socket * 698 sopeeloff(struct socket *head) 699 { 700 struct socket *so; 701 702 VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p", 703 __func__, __LINE__, head)); 704 so = soalloc(head->so_vnet); 705 if (so == NULL) { 706 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 707 "limit reached or out of memory\n", 708 __func__, head->so_pcb); 709 return (NULL); 710 } 711 so->so_type = head->so_type; 712 so->so_options = head->so_options; 713 so->so_linger = head->so_linger; 714 so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED; 715 so->so_fibnum = head->so_fibnum; 716 so->so_proto = head->so_proto; 717 so->so_cred = crhold(head->so_cred); 718 #ifdef MAC 719 mac_socket_newconn(head, so); 720 #endif 721 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 722 so_rdknl_assert_locked, so_rdknl_assert_unlocked); 723 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 724 so_wrknl_assert_locked, so_wrknl_assert_unlocked); 725 VNET_SO_ASSERT(head); 726 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) { 727 sodealloc(so); 728 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 729 __func__, head->so_pcb); 730 return (NULL); 731 } 732 if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 733 sodealloc(so); 734 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", 735 __func__, head->so_pcb); 736 return (NULL); 737 } 738 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; 739 so->so_snd.sb_lowat = head->so_snd.sb_lowat; 740 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; 741 so->so_snd.sb_timeo = head->so_snd.sb_timeo; 742 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE; 743 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE; 744 745 soref(so); 746 747 return (so); 748 } 749 #endif /* SCTP */ 750 751 int 752 sobind(struct socket *so, struct sockaddr *nam, struct thread *td) 753 { 754 int error; 755 756 CURVNET_SET(so->so_vnet); 757 error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td); 758 CURVNET_RESTORE(); 759 return (error); 760 } 761 762 int 763 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 764 { 765 int error; 766 767 CURVNET_SET(so->so_vnet); 768 error = (*so->so_proto->pr_usrreqs->pru_bindat)(fd, so, nam, td); 769 CURVNET_RESTORE(); 770 return (error); 771 } 772 773 /* 774 * solisten() transitions a socket from a non-listening state to a listening 775 * state, but can also be used to update the listen queue depth on an 776 * existing listen socket. The protocol will call back into the sockets 777 * layer using solisten_proto_check() and solisten_proto() to check and set 778 * socket-layer listen state. Call backs are used so that the protocol can 779 * acquire both protocol and socket layer locks in whatever order is required 780 * by the protocol. 781 * 782 * Protocol implementors are advised to hold the socket lock across the 783 * socket-layer test and set to avoid races at the socket layer. 784 */ 785 int 786 solisten(struct socket *so, int backlog, struct thread *td) 787 { 788 int error; 789 790 CURVNET_SET(so->so_vnet); 791 error = (*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td); 792 CURVNET_RESTORE(); 793 return (error); 794 } 795 796 int 797 solisten_proto_check(struct socket *so) 798 { 799 800 SOCK_LOCK_ASSERT(so); 801 802 if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 803 SS_ISDISCONNECTING)) 804 return (EINVAL); 805 return (0); 806 } 807 808 void 809 solisten_proto(struct socket *so, int backlog) 810 { 811 int sbrcv_lowat, sbsnd_lowat; 812 u_int sbrcv_hiwat, sbsnd_hiwat; 813 short sbrcv_flags, sbsnd_flags; 814 sbintime_t sbrcv_timeo, sbsnd_timeo; 815 816 SOCK_LOCK_ASSERT(so); 817 818 if (SOLISTENING(so)) 819 goto listening; 820 821 /* 822 * Change this socket to listening state. 823 */ 824 sbrcv_lowat = so->so_rcv.sb_lowat; 825 sbsnd_lowat = so->so_snd.sb_lowat; 826 sbrcv_hiwat = so->so_rcv.sb_hiwat; 827 sbsnd_hiwat = so->so_snd.sb_hiwat; 828 sbrcv_flags = so->so_rcv.sb_flags; 829 sbsnd_flags = so->so_snd.sb_flags; 830 sbrcv_timeo = so->so_rcv.sb_timeo; 831 sbsnd_timeo = so->so_snd.sb_timeo; 832 833 sbdestroy(&so->so_snd, so); 834 sbdestroy(&so->so_rcv, so); 835 sx_destroy(&so->so_snd.sb_sx); 836 sx_destroy(&so->so_rcv.sb_sx); 837 SOCKBUF_LOCK_DESTROY(&so->so_snd); 838 SOCKBUF_LOCK_DESTROY(&so->so_rcv); 839 840 #ifdef INVARIANTS 841 bzero(&so->so_rcv, 842 sizeof(struct socket) - offsetof(struct socket, so_rcv)); 843 #endif 844 845 so->sol_sbrcv_lowat = sbrcv_lowat; 846 so->sol_sbsnd_lowat = sbsnd_lowat; 847 so->sol_sbrcv_hiwat = sbrcv_hiwat; 848 so->sol_sbsnd_hiwat = sbsnd_hiwat; 849 so->sol_sbrcv_flags = sbrcv_flags; 850 so->sol_sbsnd_flags = sbsnd_flags; 851 so->sol_sbrcv_timeo = sbrcv_timeo; 852 so->sol_sbsnd_timeo = sbsnd_timeo; 853 854 so->sol_qlen = so->sol_incqlen = 0; 855 TAILQ_INIT(&so->sol_incomp); 856 TAILQ_INIT(&so->sol_comp); 857 858 so->sol_accept_filter = NULL; 859 so->sol_accept_filter_arg = NULL; 860 so->sol_accept_filter_str = NULL; 861 862 so->sol_upcall = NULL; 863 so->sol_upcallarg = NULL; 864 865 so->so_options |= SO_ACCEPTCONN; 866 867 listening: 868 if (backlog < 0 || backlog > somaxconn) 869 backlog = somaxconn; 870 so->sol_qlimit = backlog; 871 } 872 873 /* 874 * Wakeup listeners/subsystems once we have a complete connection. 875 * Enters with lock, returns unlocked. 876 */ 877 void 878 solisten_wakeup(struct socket *sol) 879 { 880 881 if (sol->sol_upcall != NULL) 882 (void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT); 883 else { 884 selwakeuppri(&sol->so_rdsel, PSOCK); 885 KNOTE_LOCKED(&sol->so_rdsel.si_note, 0); 886 } 887 SOLISTEN_UNLOCK(sol); 888 wakeup_one(&sol->sol_comp); 889 if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL) 890 pgsigio(&sol->so_sigio, SIGIO, 0); 891 } 892 893 /* 894 * Return single connection off a listening socket queue. Main consumer of 895 * the function is kern_accept4(). Some modules, that do their own accept 896 * management also use the function. 897 * 898 * Listening socket must be locked on entry and is returned unlocked on 899 * return. 900 * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT. 901 */ 902 int 903 solisten_dequeue(struct socket *head, struct socket **ret, int flags) 904 { 905 struct socket *so; 906 int error; 907 908 SOLISTEN_LOCK_ASSERT(head); 909 910 while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) && 911 head->so_error == 0) { 912 error = msleep(&head->sol_comp, &head->so_lock, PSOCK | PCATCH, 913 "accept", 0); 914 if (error != 0) { 915 SOLISTEN_UNLOCK(head); 916 return (error); 917 } 918 } 919 if (head->so_error) { 920 error = head->so_error; 921 head->so_error = 0; 922 } else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp)) 923 error = EWOULDBLOCK; 924 else 925 error = 0; 926 if (error) { 927 SOLISTEN_UNLOCK(head); 928 return (error); 929 } 930 so = TAILQ_FIRST(&head->sol_comp); 931 SOCK_LOCK(so); 932 KASSERT(so->so_qstate == SQ_COMP, 933 ("%s: so %p not SQ_COMP", __func__, so)); 934 soref(so); 935 head->sol_qlen--; 936 so->so_qstate = SQ_NONE; 937 so->so_listen = NULL; 938 TAILQ_REMOVE(&head->sol_comp, so, so_list); 939 if (flags & ACCEPT4_INHERIT) 940 so->so_state |= (head->so_state & SS_NBIO); 941 else 942 so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0; 943 SOCK_UNLOCK(so); 944 sorele(head); 945 946 *ret = so; 947 return (0); 948 } 949 950 /* 951 * Evaluate the reference count and named references on a socket; if no 952 * references remain, free it. This should be called whenever a reference is 953 * released, such as in sorele(), but also when named reference flags are 954 * cleared in socket or protocol code. 955 * 956 * sofree() will free the socket if: 957 * 958 * - There are no outstanding file descriptor references or related consumers 959 * (so_count == 0). 960 * 961 * - The socket has been closed by user space, if ever open (SS_NOFDREF). 962 * 963 * - The protocol does not have an outstanding strong reference on the socket 964 * (SS_PROTOREF). 965 * 966 * - The socket is not in a completed connection queue, so a process has been 967 * notified that it is present. If it is removed, the user process may 968 * block in accept() despite select() saying the socket was ready. 969 */ 970 void 971 sofree(struct socket *so) 972 { 973 struct protosw *pr = so->so_proto; 974 975 SOCK_LOCK_ASSERT(so); 976 977 if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 || 978 (so->so_state & SS_PROTOREF) || (so->so_qstate == SQ_COMP)) { 979 SOCK_UNLOCK(so); 980 return; 981 } 982 983 if (!SOLISTENING(so) && so->so_qstate == SQ_INCOMP) { 984 struct socket *sol; 985 986 sol = so->so_listen; 987 KASSERT(sol, ("%s: so %p on incomp of NULL", __func__, so)); 988 989 /* 990 * To solve race between close of a listening socket and 991 * a socket on its incomplete queue, we need to lock both. 992 * The order is first listening socket, then regular. 993 * Since we don't have SS_NOFDREF neither SS_PROTOREF, this 994 * function and the listening socket are the only pointers 995 * to so. To preserve so and sol, we reference both and then 996 * relock. 997 * After relock the socket may not move to so_comp since it 998 * doesn't have PCB already, but it may be removed from 999 * so_incomp. If that happens, we share responsiblity on 1000 * freeing the socket, but soclose() has already removed 1001 * it from queue. 1002 */ 1003 soref(sol); 1004 soref(so); 1005 SOCK_UNLOCK(so); 1006 SOLISTEN_LOCK(sol); 1007 SOCK_LOCK(so); 1008 if (so->so_qstate == SQ_INCOMP) { 1009 KASSERT(so->so_listen == sol, 1010 ("%s: so %p migrated out of sol %p", 1011 __func__, so, sol)); 1012 TAILQ_REMOVE(&sol->sol_incomp, so, so_list); 1013 sol->sol_incqlen--; 1014 /* This is guarenteed not to be the last. */ 1015 refcount_release(&sol->so_count); 1016 so->so_qstate = SQ_NONE; 1017 so->so_listen = NULL; 1018 } else 1019 KASSERT(so->so_listen == NULL, 1020 ("%s: so %p not on (in)comp with so_listen", 1021 __func__, so)); 1022 sorele(sol); 1023 KASSERT(so->so_count == 1, 1024 ("%s: so %p count %u", __func__, so, so->so_count)); 1025 so->so_count = 0; 1026 } 1027 if (SOLISTENING(so)) 1028 so->so_error = ECONNABORTED; 1029 SOCK_UNLOCK(so); 1030 1031 if (so->so_dtor != NULL) 1032 so->so_dtor(so); 1033 1034 VNET_SO_ASSERT(so); 1035 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 1036 (*pr->pr_domain->dom_dispose)(so); 1037 if (pr->pr_usrreqs->pru_detach != NULL) 1038 (*pr->pr_usrreqs->pru_detach)(so); 1039 1040 /* 1041 * From this point on, we assume that no other references to this 1042 * socket exist anywhere else in the stack. Therefore, no locks need 1043 * to be acquired or held. 1044 * 1045 * We used to do a lot of socket buffer and socket locking here, as 1046 * well as invoke sorflush() and perform wakeups. The direct call to 1047 * dom_dispose() and sbrelease_internal() are an inlining of what was 1048 * necessary from sorflush(). 1049 * 1050 * Notice that the socket buffer and kqueue state are torn down 1051 * before calling pru_detach. This means that protocols shold not 1052 * assume they can perform socket wakeups, etc, in their detach code. 1053 */ 1054 if (!SOLISTENING(so)) { 1055 sbdestroy(&so->so_snd, so); 1056 sbdestroy(&so->so_rcv, so); 1057 } 1058 seldrain(&so->so_rdsel); 1059 seldrain(&so->so_wrsel); 1060 knlist_destroy(&so->so_rdsel.si_note); 1061 knlist_destroy(&so->so_wrsel.si_note); 1062 sodealloc(so); 1063 } 1064 1065 /* 1066 * Close a socket on last file table reference removal. Initiate disconnect 1067 * if connected. Free socket when disconnect complete. 1068 * 1069 * This function will sorele() the socket. Note that soclose() may be called 1070 * prior to the ref count reaching zero. The actual socket structure will 1071 * not be freed until the ref count reaches zero. 1072 */ 1073 int 1074 soclose(struct socket *so) 1075 { 1076 struct accept_queue lqueue; 1077 bool listening; 1078 int error = 0; 1079 1080 KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter")); 1081 1082 CURVNET_SET(so->so_vnet); 1083 funsetown(&so->so_sigio); 1084 if (so->so_state & SS_ISCONNECTED) { 1085 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 1086 error = sodisconnect(so); 1087 if (error) { 1088 if (error == ENOTCONN) 1089 error = 0; 1090 goto drop; 1091 } 1092 } 1093 if (so->so_options & SO_LINGER) { 1094 if ((so->so_state & SS_ISDISCONNECTING) && 1095 (so->so_state & SS_NBIO)) 1096 goto drop; 1097 while (so->so_state & SS_ISCONNECTED) { 1098 error = tsleep(&so->so_timeo, 1099 PSOCK | PCATCH, "soclos", 1100 so->so_linger * hz); 1101 if (error) 1102 break; 1103 } 1104 } 1105 } 1106 1107 drop: 1108 if (so->so_proto->pr_usrreqs->pru_close != NULL) 1109 (*so->so_proto->pr_usrreqs->pru_close)(so); 1110 1111 SOCK_LOCK(so); 1112 if ((listening = (so->so_options & SO_ACCEPTCONN))) { 1113 struct socket *sp; 1114 1115 TAILQ_INIT(&lqueue); 1116 TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list); 1117 TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list); 1118 1119 so->sol_qlen = so->sol_incqlen = 0; 1120 1121 TAILQ_FOREACH(sp, &lqueue, so_list) { 1122 SOCK_LOCK(sp); 1123 sp->so_qstate = SQ_NONE; 1124 sp->so_listen = NULL; 1125 SOCK_UNLOCK(sp); 1126 /* Guaranteed not to be the last. */ 1127 refcount_release(&so->so_count); 1128 } 1129 } 1130 KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF")); 1131 so->so_state |= SS_NOFDREF; 1132 sorele(so); 1133 if (listening) { 1134 struct socket *sp; 1135 1136 TAILQ_FOREACH(sp, &lqueue, so_list) { 1137 SOCK_LOCK(sp); 1138 if (sp->so_count == 0) { 1139 SOCK_UNLOCK(sp); 1140 soabort(sp); 1141 } else 1142 /* sp is now in sofree() */ 1143 SOCK_UNLOCK(sp); 1144 } 1145 } 1146 CURVNET_RESTORE(); 1147 return (error); 1148 } 1149 1150 /* 1151 * soabort() is used to abruptly tear down a connection, such as when a 1152 * resource limit is reached (listen queue depth exceeded), or if a listen 1153 * socket is closed while there are sockets waiting to be accepted. 1154 * 1155 * This interface is tricky, because it is called on an unreferenced socket, 1156 * and must be called only by a thread that has actually removed the socket 1157 * from the listen queue it was on, or races with other threads are risked. 1158 * 1159 * This interface will call into the protocol code, so must not be called 1160 * with any socket locks held. Protocols do call it while holding their own 1161 * recursible protocol mutexes, but this is something that should be subject 1162 * to review in the future. 1163 */ 1164 void 1165 soabort(struct socket *so) 1166 { 1167 1168 /* 1169 * In as much as is possible, assert that no references to this 1170 * socket are held. This is not quite the same as asserting that the 1171 * current thread is responsible for arranging for no references, but 1172 * is as close as we can get for now. 1173 */ 1174 KASSERT(so->so_count == 0, ("soabort: so_count")); 1175 KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF")); 1176 KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF")); 1177 VNET_SO_ASSERT(so); 1178 1179 if (so->so_proto->pr_usrreqs->pru_abort != NULL) 1180 (*so->so_proto->pr_usrreqs->pru_abort)(so); 1181 SOCK_LOCK(so); 1182 sofree(so); 1183 } 1184 1185 int 1186 soaccept(struct socket *so, struct sockaddr **nam) 1187 { 1188 int error; 1189 1190 SOCK_LOCK(so); 1191 KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF")); 1192 so->so_state &= ~SS_NOFDREF; 1193 SOCK_UNLOCK(so); 1194 1195 CURVNET_SET(so->so_vnet); 1196 error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam); 1197 CURVNET_RESTORE(); 1198 return (error); 1199 } 1200 1201 int 1202 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td) 1203 { 1204 1205 return (soconnectat(AT_FDCWD, so, nam, td)); 1206 } 1207 1208 int 1209 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 1210 { 1211 int error; 1212 1213 if (so->so_options & SO_ACCEPTCONN) 1214 return (EOPNOTSUPP); 1215 1216 CURVNET_SET(so->so_vnet); 1217 /* 1218 * If protocol is connection-based, can only connect once. 1219 * Otherwise, if connected, try to disconnect first. This allows 1220 * user to disconnect by connecting to, e.g., a null address. 1221 */ 1222 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 1223 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 1224 (error = sodisconnect(so)))) { 1225 error = EISCONN; 1226 } else { 1227 /* 1228 * Prevent accumulated error from previous connection from 1229 * biting us. 1230 */ 1231 so->so_error = 0; 1232 if (fd == AT_FDCWD) { 1233 error = (*so->so_proto->pr_usrreqs->pru_connect)(so, 1234 nam, td); 1235 } else { 1236 error = (*so->so_proto->pr_usrreqs->pru_connectat)(fd, 1237 so, nam, td); 1238 } 1239 } 1240 CURVNET_RESTORE(); 1241 1242 return (error); 1243 } 1244 1245 int 1246 soconnect2(struct socket *so1, struct socket *so2) 1247 { 1248 int error; 1249 1250 CURVNET_SET(so1->so_vnet); 1251 error = (*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2); 1252 CURVNET_RESTORE(); 1253 return (error); 1254 } 1255 1256 int 1257 sodisconnect(struct socket *so) 1258 { 1259 int error; 1260 1261 if ((so->so_state & SS_ISCONNECTED) == 0) 1262 return (ENOTCONN); 1263 if (so->so_state & SS_ISDISCONNECTING) 1264 return (EALREADY); 1265 VNET_SO_ASSERT(so); 1266 error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so); 1267 return (error); 1268 } 1269 1270 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT) 1271 1272 int 1273 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, 1274 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1275 { 1276 long space; 1277 ssize_t resid; 1278 int clen = 0, error, dontroute; 1279 1280 KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM")); 1281 KASSERT(so->so_proto->pr_flags & PR_ATOMIC, 1282 ("sosend_dgram: !PR_ATOMIC")); 1283 1284 if (uio != NULL) 1285 resid = uio->uio_resid; 1286 else 1287 resid = top->m_pkthdr.len; 1288 /* 1289 * In theory resid should be unsigned. However, space must be 1290 * signed, as it might be less than 0 if we over-committed, and we 1291 * must use a signed comparison of space and resid. On the other 1292 * hand, a negative resid causes us to loop sending 0-length 1293 * segments to the protocol. 1294 */ 1295 if (resid < 0) { 1296 error = EINVAL; 1297 goto out; 1298 } 1299 1300 dontroute = 1301 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0; 1302 if (td != NULL) 1303 td->td_ru.ru_msgsnd++; 1304 if (control != NULL) 1305 clen = control->m_len; 1306 1307 SOCKBUF_LOCK(&so->so_snd); 1308 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1309 SOCKBUF_UNLOCK(&so->so_snd); 1310 error = EPIPE; 1311 goto out; 1312 } 1313 if (so->so_error) { 1314 error = so->so_error; 1315 so->so_error = 0; 1316 SOCKBUF_UNLOCK(&so->so_snd); 1317 goto out; 1318 } 1319 if ((so->so_state & SS_ISCONNECTED) == 0) { 1320 /* 1321 * `sendto' and `sendmsg' is allowed on a connection-based 1322 * socket if it supports implied connect. Return ENOTCONN if 1323 * not connected and no address is supplied. 1324 */ 1325 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1326 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1327 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1328 !(resid == 0 && clen != 0)) { 1329 SOCKBUF_UNLOCK(&so->so_snd); 1330 error = ENOTCONN; 1331 goto out; 1332 } 1333 } else if (addr == NULL) { 1334 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1335 error = ENOTCONN; 1336 else 1337 error = EDESTADDRREQ; 1338 SOCKBUF_UNLOCK(&so->so_snd); 1339 goto out; 1340 } 1341 } 1342 1343 /* 1344 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a 1345 * problem and need fixing. 1346 */ 1347 space = sbspace(&so->so_snd); 1348 if (flags & MSG_OOB) 1349 space += 1024; 1350 space -= clen; 1351 SOCKBUF_UNLOCK(&so->so_snd); 1352 if (resid > space) { 1353 error = EMSGSIZE; 1354 goto out; 1355 } 1356 if (uio == NULL) { 1357 resid = 0; 1358 if (flags & MSG_EOR) 1359 top->m_flags |= M_EOR; 1360 } else { 1361 /* 1362 * Copy the data from userland into a mbuf chain. 1363 * If no data is to be copied in, a single empty mbuf 1364 * is returned. 1365 */ 1366 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr, 1367 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0))); 1368 if (top == NULL) { 1369 error = EFAULT; /* only possible error */ 1370 goto out; 1371 } 1372 space -= resid - uio->uio_resid; 1373 resid = uio->uio_resid; 1374 } 1375 KASSERT(resid == 0, ("sosend_dgram: resid != 0")); 1376 /* 1377 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock 1378 * than with. 1379 */ 1380 if (dontroute) { 1381 SOCK_LOCK(so); 1382 so->so_options |= SO_DONTROUTE; 1383 SOCK_UNLOCK(so); 1384 } 1385 /* 1386 * XXX all the SBS_CANTSENDMORE checks previously done could be out 1387 * of date. We could have received a reset packet in an interrupt or 1388 * maybe we slept while doing page faults in uiomove() etc. We could 1389 * probably recheck again inside the locking protection here, but 1390 * there are probably other places that this also happens. We must 1391 * rethink this. 1392 */ 1393 VNET_SO_ASSERT(so); 1394 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1395 (flags & MSG_OOB) ? PRUS_OOB : 1396 /* 1397 * If the user set MSG_EOF, the protocol understands this flag and 1398 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND. 1399 */ 1400 ((flags & MSG_EOF) && 1401 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1402 (resid <= 0)) ? 1403 PRUS_EOF : 1404 /* If there is more to send set PRUS_MORETOCOME */ 1405 (flags & MSG_MORETOCOME) || 1406 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1407 top, addr, control, td); 1408 if (dontroute) { 1409 SOCK_LOCK(so); 1410 so->so_options &= ~SO_DONTROUTE; 1411 SOCK_UNLOCK(so); 1412 } 1413 clen = 0; 1414 control = NULL; 1415 top = NULL; 1416 out: 1417 if (top != NULL) 1418 m_freem(top); 1419 if (control != NULL) 1420 m_freem(control); 1421 return (error); 1422 } 1423 1424 /* 1425 * Send on a socket. If send must go all at once and message is larger than 1426 * send buffering, then hard error. Lock against other senders. If must go 1427 * all at once and not enough room now, then inform user that this would 1428 * block and do nothing. Otherwise, if nonblocking, send as much as 1429 * possible. The data to be sent is described by "uio" if nonzero, otherwise 1430 * by the mbuf chain "top" (which must be null if uio is not). Data provided 1431 * in mbuf chain must be small enough to send all at once. 1432 * 1433 * Returns nonzero on error, timeout or signal; callers must check for short 1434 * counts if EINTR/ERESTART are returned. Data and control buffers are freed 1435 * on return. 1436 */ 1437 int 1438 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio, 1439 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1440 { 1441 long space; 1442 ssize_t resid; 1443 int clen = 0, error, dontroute; 1444 int atomic = sosendallatonce(so) || top; 1445 1446 if (uio != NULL) 1447 resid = uio->uio_resid; 1448 else 1449 resid = top->m_pkthdr.len; 1450 /* 1451 * In theory resid should be unsigned. However, space must be 1452 * signed, as it might be less than 0 if we over-committed, and we 1453 * must use a signed comparison of space and resid. On the other 1454 * hand, a negative resid causes us to loop sending 0-length 1455 * segments to the protocol. 1456 * 1457 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 1458 * type sockets since that's an error. 1459 */ 1460 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 1461 error = EINVAL; 1462 goto out; 1463 } 1464 1465 dontroute = 1466 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 1467 (so->so_proto->pr_flags & PR_ATOMIC); 1468 if (td != NULL) 1469 td->td_ru.ru_msgsnd++; 1470 if (control != NULL) 1471 clen = control->m_len; 1472 1473 error = sblock(&so->so_snd, SBLOCKWAIT(flags)); 1474 if (error) 1475 goto out; 1476 1477 restart: 1478 do { 1479 SOCKBUF_LOCK(&so->so_snd); 1480 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1481 SOCKBUF_UNLOCK(&so->so_snd); 1482 error = EPIPE; 1483 goto release; 1484 } 1485 if (so->so_error) { 1486 error = so->so_error; 1487 so->so_error = 0; 1488 SOCKBUF_UNLOCK(&so->so_snd); 1489 goto release; 1490 } 1491 if ((so->so_state & SS_ISCONNECTED) == 0) { 1492 /* 1493 * `sendto' and `sendmsg' is allowed on a connection- 1494 * based socket if it supports implied connect. 1495 * Return ENOTCONN if not connected and no address is 1496 * supplied. 1497 */ 1498 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1499 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1500 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1501 !(resid == 0 && clen != 0)) { 1502 SOCKBUF_UNLOCK(&so->so_snd); 1503 error = ENOTCONN; 1504 goto release; 1505 } 1506 } else if (addr == NULL) { 1507 SOCKBUF_UNLOCK(&so->so_snd); 1508 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1509 error = ENOTCONN; 1510 else 1511 error = EDESTADDRREQ; 1512 goto release; 1513 } 1514 } 1515 space = sbspace(&so->so_snd); 1516 if (flags & MSG_OOB) 1517 space += 1024; 1518 if ((atomic && resid > so->so_snd.sb_hiwat) || 1519 clen > so->so_snd.sb_hiwat) { 1520 SOCKBUF_UNLOCK(&so->so_snd); 1521 error = EMSGSIZE; 1522 goto release; 1523 } 1524 if (space < resid + clen && 1525 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 1526 if ((so->so_state & SS_NBIO) || 1527 (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) { 1528 SOCKBUF_UNLOCK(&so->so_snd); 1529 error = EWOULDBLOCK; 1530 goto release; 1531 } 1532 error = sbwait(&so->so_snd); 1533 SOCKBUF_UNLOCK(&so->so_snd); 1534 if (error) 1535 goto release; 1536 goto restart; 1537 } 1538 SOCKBUF_UNLOCK(&so->so_snd); 1539 space -= clen; 1540 do { 1541 if (uio == NULL) { 1542 resid = 0; 1543 if (flags & MSG_EOR) 1544 top->m_flags |= M_EOR; 1545 } else { 1546 /* 1547 * Copy the data from userland into a mbuf 1548 * chain. If resid is 0, which can happen 1549 * only if we have control to send, then 1550 * a single empty mbuf is returned. This 1551 * is a workaround to prevent protocol send 1552 * methods to panic. 1553 */ 1554 top = m_uiotombuf(uio, M_WAITOK, space, 1555 (atomic ? max_hdr : 0), 1556 (atomic ? M_PKTHDR : 0) | 1557 ((flags & MSG_EOR) ? M_EOR : 0)); 1558 if (top == NULL) { 1559 error = EFAULT; /* only possible error */ 1560 goto release; 1561 } 1562 space -= resid - uio->uio_resid; 1563 resid = uio->uio_resid; 1564 } 1565 if (dontroute) { 1566 SOCK_LOCK(so); 1567 so->so_options |= SO_DONTROUTE; 1568 SOCK_UNLOCK(so); 1569 } 1570 /* 1571 * XXX all the SBS_CANTSENDMORE checks previously 1572 * done could be out of date. We could have received 1573 * a reset packet in an interrupt or maybe we slept 1574 * while doing page faults in uiomove() etc. We 1575 * could probably recheck again inside the locking 1576 * protection here, but there are probably other 1577 * places that this also happens. We must rethink 1578 * this. 1579 */ 1580 VNET_SO_ASSERT(so); 1581 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1582 (flags & MSG_OOB) ? PRUS_OOB : 1583 /* 1584 * If the user set MSG_EOF, the protocol understands 1585 * this flag and nothing left to send then use 1586 * PRU_SEND_EOF instead of PRU_SEND. 1587 */ 1588 ((flags & MSG_EOF) && 1589 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1590 (resid <= 0)) ? 1591 PRUS_EOF : 1592 /* If there is more to send set PRUS_MORETOCOME. */ 1593 (flags & MSG_MORETOCOME) || 1594 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1595 top, addr, control, td); 1596 if (dontroute) { 1597 SOCK_LOCK(so); 1598 so->so_options &= ~SO_DONTROUTE; 1599 SOCK_UNLOCK(so); 1600 } 1601 clen = 0; 1602 control = NULL; 1603 top = NULL; 1604 if (error) 1605 goto release; 1606 } while (resid && space > 0); 1607 } while (resid); 1608 1609 release: 1610 sbunlock(&so->so_snd); 1611 out: 1612 if (top != NULL) 1613 m_freem(top); 1614 if (control != NULL) 1615 m_freem(control); 1616 return (error); 1617 } 1618 1619 int 1620 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, 1621 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1622 { 1623 int error; 1624 1625 CURVNET_SET(so->so_vnet); 1626 if (!SOLISTENING(so)) 1627 error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, 1628 top, control, flags, td); 1629 else { 1630 m_freem(top); 1631 m_freem(control); 1632 error = ENOTCONN; 1633 } 1634 CURVNET_RESTORE(); 1635 return (error); 1636 } 1637 1638 /* 1639 * The part of soreceive() that implements reading non-inline out-of-band 1640 * data from a socket. For more complete comments, see soreceive(), from 1641 * which this code originated. 1642 * 1643 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is 1644 * unable to return an mbuf chain to the caller. 1645 */ 1646 static int 1647 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags) 1648 { 1649 struct protosw *pr = so->so_proto; 1650 struct mbuf *m; 1651 int error; 1652 1653 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); 1654 VNET_SO_ASSERT(so); 1655 1656 m = m_get(M_WAITOK, MT_DATA); 1657 error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK); 1658 if (error) 1659 goto bad; 1660 do { 1661 error = uiomove(mtod(m, void *), 1662 (int) min(uio->uio_resid, m->m_len), uio); 1663 m = m_free(m); 1664 } while (uio->uio_resid && error == 0 && m); 1665 bad: 1666 if (m != NULL) 1667 m_freem(m); 1668 return (error); 1669 } 1670 1671 /* 1672 * Following replacement or removal of the first mbuf on the first mbuf chain 1673 * of a socket buffer, push necessary state changes back into the socket 1674 * buffer so that other consumers see the values consistently. 'nextrecord' 1675 * is the callers locally stored value of the original value of 1676 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. 1677 * NOTE: 'nextrecord' may be NULL. 1678 */ 1679 static __inline void 1680 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) 1681 { 1682 1683 SOCKBUF_LOCK_ASSERT(sb); 1684 /* 1685 * First, update for the new value of nextrecord. If necessary, make 1686 * it the first record. 1687 */ 1688 if (sb->sb_mb != NULL) 1689 sb->sb_mb->m_nextpkt = nextrecord; 1690 else 1691 sb->sb_mb = nextrecord; 1692 1693 /* 1694 * Now update any dependent socket buffer fields to reflect the new 1695 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the 1696 * addition of a second clause that takes care of the case where 1697 * sb_mb has been updated, but remains the last record. 1698 */ 1699 if (sb->sb_mb == NULL) { 1700 sb->sb_mbtail = NULL; 1701 sb->sb_lastrecord = NULL; 1702 } else if (sb->sb_mb->m_nextpkt == NULL) 1703 sb->sb_lastrecord = sb->sb_mb; 1704 } 1705 1706 /* 1707 * Implement receive operations on a socket. We depend on the way that 1708 * records are added to the sockbuf by sbappend. In particular, each record 1709 * (mbufs linked through m_next) must begin with an address if the protocol 1710 * so specifies, followed by an optional mbuf or mbufs containing ancillary 1711 * data, and then zero or more mbufs of data. In order to allow parallelism 1712 * between network receive and copying to user space, as well as avoid 1713 * sleeping with a mutex held, we release the socket buffer mutex during the 1714 * user space copy. Although the sockbuf is locked, new data may still be 1715 * appended, and thus we must maintain consistency of the sockbuf during that 1716 * time. 1717 * 1718 * The caller may receive the data as a single mbuf chain by supplying an 1719 * mbuf **mp0 for use in returning the chain. The uio is then used only for 1720 * the count in uio_resid. 1721 */ 1722 int 1723 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio, 1724 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1725 { 1726 struct mbuf *m, **mp; 1727 int flags, error, offset; 1728 ssize_t len; 1729 struct protosw *pr = so->so_proto; 1730 struct mbuf *nextrecord; 1731 int moff, type = 0; 1732 ssize_t orig_resid = uio->uio_resid; 1733 1734 mp = mp0; 1735 if (psa != NULL) 1736 *psa = NULL; 1737 if (controlp != NULL) 1738 *controlp = NULL; 1739 if (flagsp != NULL) 1740 flags = *flagsp &~ MSG_EOR; 1741 else 1742 flags = 0; 1743 if (flags & MSG_OOB) 1744 return (soreceive_rcvoob(so, uio, flags)); 1745 if (mp != NULL) 1746 *mp = NULL; 1747 if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING) 1748 && uio->uio_resid) { 1749 VNET_SO_ASSERT(so); 1750 (*pr->pr_usrreqs->pru_rcvd)(so, 0); 1751 } 1752 1753 error = sblock(&so->so_rcv, SBLOCKWAIT(flags)); 1754 if (error) 1755 return (error); 1756 1757 restart: 1758 SOCKBUF_LOCK(&so->so_rcv); 1759 m = so->so_rcv.sb_mb; 1760 /* 1761 * If we have less data than requested, block awaiting more (subject 1762 * to any timeout) if: 1763 * 1. the current count is less than the low water mark, or 1764 * 2. MSG_DONTWAIT is not set 1765 */ 1766 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 1767 sbavail(&so->so_rcv) < uio->uio_resid) && 1768 sbavail(&so->so_rcv) < so->so_rcv.sb_lowat && 1769 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 1770 KASSERT(m != NULL || !sbavail(&so->so_rcv), 1771 ("receive: m == %p sbavail == %u", 1772 m, sbavail(&so->so_rcv))); 1773 if (so->so_error) { 1774 if (m != NULL) 1775 goto dontblock; 1776 error = so->so_error; 1777 if ((flags & MSG_PEEK) == 0) 1778 so->so_error = 0; 1779 SOCKBUF_UNLOCK(&so->so_rcv); 1780 goto release; 1781 } 1782 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1783 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 1784 if (m == NULL) { 1785 SOCKBUF_UNLOCK(&so->so_rcv); 1786 goto release; 1787 } else 1788 goto dontblock; 1789 } 1790 for (; m != NULL; m = m->m_next) 1791 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 1792 m = so->so_rcv.sb_mb; 1793 goto dontblock; 1794 } 1795 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 1796 (so->so_proto->pr_flags & PR_CONNREQUIRED)) { 1797 SOCKBUF_UNLOCK(&so->so_rcv); 1798 error = ENOTCONN; 1799 goto release; 1800 } 1801 if (uio->uio_resid == 0) { 1802 SOCKBUF_UNLOCK(&so->so_rcv); 1803 goto release; 1804 } 1805 if ((so->so_state & SS_NBIO) || 1806 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 1807 SOCKBUF_UNLOCK(&so->so_rcv); 1808 error = EWOULDBLOCK; 1809 goto release; 1810 } 1811 SBLASTRECORDCHK(&so->so_rcv); 1812 SBLASTMBUFCHK(&so->so_rcv); 1813 error = sbwait(&so->so_rcv); 1814 SOCKBUF_UNLOCK(&so->so_rcv); 1815 if (error) 1816 goto release; 1817 goto restart; 1818 } 1819 dontblock: 1820 /* 1821 * From this point onward, we maintain 'nextrecord' as a cache of the 1822 * pointer to the next record in the socket buffer. We must keep the 1823 * various socket buffer pointers and local stack versions of the 1824 * pointers in sync, pushing out modifications before dropping the 1825 * socket buffer mutex, and re-reading them when picking it up. 1826 * 1827 * Otherwise, we will race with the network stack appending new data 1828 * or records onto the socket buffer by using inconsistent/stale 1829 * versions of the field, possibly resulting in socket buffer 1830 * corruption. 1831 * 1832 * By holding the high-level sblock(), we prevent simultaneous 1833 * readers from pulling off the front of the socket buffer. 1834 */ 1835 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1836 if (uio->uio_td) 1837 uio->uio_td->td_ru.ru_msgrcv++; 1838 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); 1839 SBLASTRECORDCHK(&so->so_rcv); 1840 SBLASTMBUFCHK(&so->so_rcv); 1841 nextrecord = m->m_nextpkt; 1842 if (pr->pr_flags & PR_ADDR) { 1843 KASSERT(m->m_type == MT_SONAME, 1844 ("m->m_type == %d", m->m_type)); 1845 orig_resid = 0; 1846 if (psa != NULL) 1847 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 1848 M_NOWAIT); 1849 if (flags & MSG_PEEK) { 1850 m = m->m_next; 1851 } else { 1852 sbfree(&so->so_rcv, m); 1853 so->so_rcv.sb_mb = m_free(m); 1854 m = so->so_rcv.sb_mb; 1855 sockbuf_pushsync(&so->so_rcv, nextrecord); 1856 } 1857 } 1858 1859 /* 1860 * Process one or more MT_CONTROL mbufs present before any data mbufs 1861 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 1862 * just copy the data; if !MSG_PEEK, we call into the protocol to 1863 * perform externalization (or freeing if controlp == NULL). 1864 */ 1865 if (m != NULL && m->m_type == MT_CONTROL) { 1866 struct mbuf *cm = NULL, *cmn; 1867 struct mbuf **cme = &cm; 1868 1869 do { 1870 if (flags & MSG_PEEK) { 1871 if (controlp != NULL) { 1872 *controlp = m_copym(m, 0, m->m_len, 1873 M_NOWAIT); 1874 controlp = &(*controlp)->m_next; 1875 } 1876 m = m->m_next; 1877 } else { 1878 sbfree(&so->so_rcv, m); 1879 so->so_rcv.sb_mb = m->m_next; 1880 m->m_next = NULL; 1881 *cme = m; 1882 cme = &(*cme)->m_next; 1883 m = so->so_rcv.sb_mb; 1884 } 1885 } while (m != NULL && m->m_type == MT_CONTROL); 1886 if ((flags & MSG_PEEK) == 0) 1887 sockbuf_pushsync(&so->so_rcv, nextrecord); 1888 while (cm != NULL) { 1889 cmn = cm->m_next; 1890 cm->m_next = NULL; 1891 if (pr->pr_domain->dom_externalize != NULL) { 1892 SOCKBUF_UNLOCK(&so->so_rcv); 1893 VNET_SO_ASSERT(so); 1894 error = (*pr->pr_domain->dom_externalize) 1895 (cm, controlp, flags); 1896 SOCKBUF_LOCK(&so->so_rcv); 1897 } else if (controlp != NULL) 1898 *controlp = cm; 1899 else 1900 m_freem(cm); 1901 if (controlp != NULL) { 1902 orig_resid = 0; 1903 while (*controlp != NULL) 1904 controlp = &(*controlp)->m_next; 1905 } 1906 cm = cmn; 1907 } 1908 if (m != NULL) 1909 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 1910 else 1911 nextrecord = so->so_rcv.sb_mb; 1912 orig_resid = 0; 1913 } 1914 if (m != NULL) { 1915 if ((flags & MSG_PEEK) == 0) { 1916 KASSERT(m->m_nextpkt == nextrecord, 1917 ("soreceive: post-control, nextrecord !sync")); 1918 if (nextrecord == NULL) { 1919 KASSERT(so->so_rcv.sb_mb == m, 1920 ("soreceive: post-control, sb_mb!=m")); 1921 KASSERT(so->so_rcv.sb_lastrecord == m, 1922 ("soreceive: post-control, lastrecord!=m")); 1923 } 1924 } 1925 type = m->m_type; 1926 if (type == MT_OOBDATA) 1927 flags |= MSG_OOB; 1928 } else { 1929 if ((flags & MSG_PEEK) == 0) { 1930 KASSERT(so->so_rcv.sb_mb == nextrecord, 1931 ("soreceive: sb_mb != nextrecord")); 1932 if (so->so_rcv.sb_mb == NULL) { 1933 KASSERT(so->so_rcv.sb_lastrecord == NULL, 1934 ("soreceive: sb_lastercord != NULL")); 1935 } 1936 } 1937 } 1938 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1939 SBLASTRECORDCHK(&so->so_rcv); 1940 SBLASTMBUFCHK(&so->so_rcv); 1941 1942 /* 1943 * Now continue to read any data mbufs off of the head of the socket 1944 * buffer until the read request is satisfied. Note that 'type' is 1945 * used to store the type of any mbuf reads that have happened so far 1946 * such that soreceive() can stop reading if the type changes, which 1947 * causes soreceive() to return only one of regular data and inline 1948 * out-of-band data in a single socket receive operation. 1949 */ 1950 moff = 0; 1951 offset = 0; 1952 while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0 1953 && error == 0) { 1954 /* 1955 * If the type of mbuf has changed since the last mbuf 1956 * examined ('type'), end the receive operation. 1957 */ 1958 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1959 if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) { 1960 if (type != m->m_type) 1961 break; 1962 } else if (type == MT_OOBDATA) 1963 break; 1964 else 1965 KASSERT(m->m_type == MT_DATA, 1966 ("m->m_type == %d", m->m_type)); 1967 so->so_rcv.sb_state &= ~SBS_RCVATMARK; 1968 len = uio->uio_resid; 1969 if (so->so_oobmark && len > so->so_oobmark - offset) 1970 len = so->so_oobmark - offset; 1971 if (len > m->m_len - moff) 1972 len = m->m_len - moff; 1973 /* 1974 * If mp is set, just pass back the mbufs. Otherwise copy 1975 * them out via the uio, then free. Sockbuf must be 1976 * consistent here (points to current mbuf, it points to next 1977 * record) when we drop priority; we must note any additions 1978 * to the sockbuf when we block interrupts again. 1979 */ 1980 if (mp == NULL) { 1981 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1982 SBLASTRECORDCHK(&so->so_rcv); 1983 SBLASTMBUFCHK(&so->so_rcv); 1984 SOCKBUF_UNLOCK(&so->so_rcv); 1985 error = uiomove(mtod(m, char *) + moff, (int)len, uio); 1986 SOCKBUF_LOCK(&so->so_rcv); 1987 if (error) { 1988 /* 1989 * The MT_SONAME mbuf has already been removed 1990 * from the record, so it is necessary to 1991 * remove the data mbufs, if any, to preserve 1992 * the invariant in the case of PR_ADDR that 1993 * requires MT_SONAME mbufs at the head of 1994 * each record. 1995 */ 1996 if (pr->pr_flags & PR_ATOMIC && 1997 ((flags & MSG_PEEK) == 0)) 1998 (void)sbdroprecord_locked(&so->so_rcv); 1999 SOCKBUF_UNLOCK(&so->so_rcv); 2000 goto release; 2001 } 2002 } else 2003 uio->uio_resid -= len; 2004 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2005 if (len == m->m_len - moff) { 2006 if (m->m_flags & M_EOR) 2007 flags |= MSG_EOR; 2008 if (flags & MSG_PEEK) { 2009 m = m->m_next; 2010 moff = 0; 2011 } else { 2012 nextrecord = m->m_nextpkt; 2013 sbfree(&so->so_rcv, m); 2014 if (mp != NULL) { 2015 m->m_nextpkt = NULL; 2016 *mp = m; 2017 mp = &m->m_next; 2018 so->so_rcv.sb_mb = m = m->m_next; 2019 *mp = NULL; 2020 } else { 2021 so->so_rcv.sb_mb = m_free(m); 2022 m = so->so_rcv.sb_mb; 2023 } 2024 sockbuf_pushsync(&so->so_rcv, nextrecord); 2025 SBLASTRECORDCHK(&so->so_rcv); 2026 SBLASTMBUFCHK(&so->so_rcv); 2027 } 2028 } else { 2029 if (flags & MSG_PEEK) 2030 moff += len; 2031 else { 2032 if (mp != NULL) { 2033 if (flags & MSG_DONTWAIT) { 2034 *mp = m_copym(m, 0, len, 2035 M_NOWAIT); 2036 if (*mp == NULL) { 2037 /* 2038 * m_copym() couldn't 2039 * allocate an mbuf. 2040 * Adjust uio_resid back 2041 * (it was adjusted 2042 * down by len bytes, 2043 * which we didn't end 2044 * up "copying" over). 2045 */ 2046 uio->uio_resid += len; 2047 break; 2048 } 2049 } else { 2050 SOCKBUF_UNLOCK(&so->so_rcv); 2051 *mp = m_copym(m, 0, len, 2052 M_WAITOK); 2053 SOCKBUF_LOCK(&so->so_rcv); 2054 } 2055 } 2056 sbcut_locked(&so->so_rcv, len); 2057 } 2058 } 2059 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2060 if (so->so_oobmark) { 2061 if ((flags & MSG_PEEK) == 0) { 2062 so->so_oobmark -= len; 2063 if (so->so_oobmark == 0) { 2064 so->so_rcv.sb_state |= SBS_RCVATMARK; 2065 break; 2066 } 2067 } else { 2068 offset += len; 2069 if (offset == so->so_oobmark) 2070 break; 2071 } 2072 } 2073 if (flags & MSG_EOR) 2074 break; 2075 /* 2076 * If the MSG_WAITALL flag is set (for non-atomic socket), we 2077 * must not quit until "uio->uio_resid == 0" or an error 2078 * termination. If a signal/timeout occurs, return with a 2079 * short count but without error. Keep sockbuf locked 2080 * against other readers. 2081 */ 2082 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 2083 !sosendallatonce(so) && nextrecord == NULL) { 2084 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2085 if (so->so_error || 2086 so->so_rcv.sb_state & SBS_CANTRCVMORE) 2087 break; 2088 /* 2089 * Notify the protocol that some data has been 2090 * drained before blocking. 2091 */ 2092 if (pr->pr_flags & PR_WANTRCVD) { 2093 SOCKBUF_UNLOCK(&so->so_rcv); 2094 VNET_SO_ASSERT(so); 2095 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 2096 SOCKBUF_LOCK(&so->so_rcv); 2097 } 2098 SBLASTRECORDCHK(&so->so_rcv); 2099 SBLASTMBUFCHK(&so->so_rcv); 2100 /* 2101 * We could receive some data while was notifying 2102 * the protocol. Skip blocking in this case. 2103 */ 2104 if (so->so_rcv.sb_mb == NULL) { 2105 error = sbwait(&so->so_rcv); 2106 if (error) { 2107 SOCKBUF_UNLOCK(&so->so_rcv); 2108 goto release; 2109 } 2110 } 2111 m = so->so_rcv.sb_mb; 2112 if (m != NULL) 2113 nextrecord = m->m_nextpkt; 2114 } 2115 } 2116 2117 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2118 if (m != NULL && pr->pr_flags & PR_ATOMIC) { 2119 flags |= MSG_TRUNC; 2120 if ((flags & MSG_PEEK) == 0) 2121 (void) sbdroprecord_locked(&so->so_rcv); 2122 } 2123 if ((flags & MSG_PEEK) == 0) { 2124 if (m == NULL) { 2125 /* 2126 * First part is an inline SB_EMPTY_FIXUP(). Second 2127 * part makes sure sb_lastrecord is up-to-date if 2128 * there is still data in the socket buffer. 2129 */ 2130 so->so_rcv.sb_mb = nextrecord; 2131 if (so->so_rcv.sb_mb == NULL) { 2132 so->so_rcv.sb_mbtail = NULL; 2133 so->so_rcv.sb_lastrecord = NULL; 2134 } else if (nextrecord->m_nextpkt == NULL) 2135 so->so_rcv.sb_lastrecord = nextrecord; 2136 } 2137 SBLASTRECORDCHK(&so->so_rcv); 2138 SBLASTMBUFCHK(&so->so_rcv); 2139 /* 2140 * If soreceive() is being done from the socket callback, 2141 * then don't need to generate ACK to peer to update window, 2142 * since ACK will be generated on return to TCP. 2143 */ 2144 if (!(flags & MSG_SOCALLBCK) && 2145 (pr->pr_flags & PR_WANTRCVD)) { 2146 SOCKBUF_UNLOCK(&so->so_rcv); 2147 VNET_SO_ASSERT(so); 2148 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 2149 SOCKBUF_LOCK(&so->so_rcv); 2150 } 2151 } 2152 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2153 if (orig_resid == uio->uio_resid && orig_resid && 2154 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { 2155 SOCKBUF_UNLOCK(&so->so_rcv); 2156 goto restart; 2157 } 2158 SOCKBUF_UNLOCK(&so->so_rcv); 2159 2160 if (flagsp != NULL) 2161 *flagsp |= flags; 2162 release: 2163 sbunlock(&so->so_rcv); 2164 return (error); 2165 } 2166 2167 /* 2168 * Optimized version of soreceive() for stream (TCP) sockets. 2169 */ 2170 int 2171 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio, 2172 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2173 { 2174 int len = 0, error = 0, flags, oresid; 2175 struct sockbuf *sb; 2176 struct mbuf *m, *n = NULL; 2177 2178 /* We only do stream sockets. */ 2179 if (so->so_type != SOCK_STREAM) 2180 return (EINVAL); 2181 if (psa != NULL) 2182 *psa = NULL; 2183 if (flagsp != NULL) 2184 flags = *flagsp &~ MSG_EOR; 2185 else 2186 flags = 0; 2187 if (controlp != NULL) 2188 *controlp = NULL; 2189 if (flags & MSG_OOB) 2190 return (soreceive_rcvoob(so, uio, flags)); 2191 if (mp0 != NULL) 2192 *mp0 = NULL; 2193 2194 sb = &so->so_rcv; 2195 2196 /* Prevent other readers from entering the socket. */ 2197 error = sblock(sb, SBLOCKWAIT(flags)); 2198 if (error) 2199 goto out; 2200 SOCKBUF_LOCK(sb); 2201 2202 /* Easy one, no space to copyout anything. */ 2203 if (uio->uio_resid == 0) { 2204 error = EINVAL; 2205 goto out; 2206 } 2207 oresid = uio->uio_resid; 2208 2209 /* We will never ever get anything unless we are or were connected. */ 2210 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 2211 error = ENOTCONN; 2212 goto out; 2213 } 2214 2215 restart: 2216 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2217 2218 /* Abort if socket has reported problems. */ 2219 if (so->so_error) { 2220 if (sbavail(sb) > 0) 2221 goto deliver; 2222 if (oresid > uio->uio_resid) 2223 goto out; 2224 error = so->so_error; 2225 if (!(flags & MSG_PEEK)) 2226 so->so_error = 0; 2227 goto out; 2228 } 2229 2230 /* Door is closed. Deliver what is left, if any. */ 2231 if (sb->sb_state & SBS_CANTRCVMORE) { 2232 if (sbavail(sb) > 0) 2233 goto deliver; 2234 else 2235 goto out; 2236 } 2237 2238 /* Socket buffer is empty and we shall not block. */ 2239 if (sbavail(sb) == 0 && 2240 ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) { 2241 error = EAGAIN; 2242 goto out; 2243 } 2244 2245 /* Socket buffer got some data that we shall deliver now. */ 2246 if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) && 2247 ((so->so_state & SS_NBIO) || 2248 (flags & (MSG_DONTWAIT|MSG_NBIO)) || 2249 sbavail(sb) >= sb->sb_lowat || 2250 sbavail(sb) >= uio->uio_resid || 2251 sbavail(sb) >= sb->sb_hiwat) ) { 2252 goto deliver; 2253 } 2254 2255 /* On MSG_WAITALL we must wait until all data or error arrives. */ 2256 if ((flags & MSG_WAITALL) && 2257 (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat)) 2258 goto deliver; 2259 2260 /* 2261 * Wait and block until (more) data comes in. 2262 * NB: Drops the sockbuf lock during wait. 2263 */ 2264 error = sbwait(sb); 2265 if (error) 2266 goto out; 2267 goto restart; 2268 2269 deliver: 2270 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2271 KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__)); 2272 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__)); 2273 2274 /* Statistics. */ 2275 if (uio->uio_td) 2276 uio->uio_td->td_ru.ru_msgrcv++; 2277 2278 /* Fill uio until full or current end of socket buffer is reached. */ 2279 len = min(uio->uio_resid, sbavail(sb)); 2280 if (mp0 != NULL) { 2281 /* Dequeue as many mbufs as possible. */ 2282 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) { 2283 if (*mp0 == NULL) 2284 *mp0 = sb->sb_mb; 2285 else 2286 m_cat(*mp0, sb->sb_mb); 2287 for (m = sb->sb_mb; 2288 m != NULL && m->m_len <= len; 2289 m = m->m_next) { 2290 KASSERT(!(m->m_flags & M_NOTAVAIL), 2291 ("%s: m %p not available", __func__, m)); 2292 len -= m->m_len; 2293 uio->uio_resid -= m->m_len; 2294 sbfree(sb, m); 2295 n = m; 2296 } 2297 n->m_next = NULL; 2298 sb->sb_mb = m; 2299 sb->sb_lastrecord = sb->sb_mb; 2300 if (sb->sb_mb == NULL) 2301 SB_EMPTY_FIXUP(sb); 2302 } 2303 /* Copy the remainder. */ 2304 if (len > 0) { 2305 KASSERT(sb->sb_mb != NULL, 2306 ("%s: len > 0 && sb->sb_mb empty", __func__)); 2307 2308 m = m_copym(sb->sb_mb, 0, len, M_NOWAIT); 2309 if (m == NULL) 2310 len = 0; /* Don't flush data from sockbuf. */ 2311 else 2312 uio->uio_resid -= len; 2313 if (*mp0 != NULL) 2314 m_cat(*mp0, m); 2315 else 2316 *mp0 = m; 2317 if (*mp0 == NULL) { 2318 error = ENOBUFS; 2319 goto out; 2320 } 2321 } 2322 } else { 2323 /* NB: Must unlock socket buffer as uiomove may sleep. */ 2324 SOCKBUF_UNLOCK(sb); 2325 error = m_mbuftouio(uio, sb->sb_mb, len); 2326 SOCKBUF_LOCK(sb); 2327 if (error) 2328 goto out; 2329 } 2330 SBLASTRECORDCHK(sb); 2331 SBLASTMBUFCHK(sb); 2332 2333 /* 2334 * Remove the delivered data from the socket buffer unless we 2335 * were only peeking. 2336 */ 2337 if (!(flags & MSG_PEEK)) { 2338 if (len > 0) 2339 sbdrop_locked(sb, len); 2340 2341 /* Notify protocol that we drained some data. */ 2342 if ((so->so_proto->pr_flags & PR_WANTRCVD) && 2343 (((flags & MSG_WAITALL) && uio->uio_resid > 0) || 2344 !(flags & MSG_SOCALLBCK))) { 2345 SOCKBUF_UNLOCK(sb); 2346 VNET_SO_ASSERT(so); 2347 (*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags); 2348 SOCKBUF_LOCK(sb); 2349 } 2350 } 2351 2352 /* 2353 * For MSG_WAITALL we may have to loop again and wait for 2354 * more data to come in. 2355 */ 2356 if ((flags & MSG_WAITALL) && uio->uio_resid > 0) 2357 goto restart; 2358 out: 2359 SOCKBUF_LOCK_ASSERT(sb); 2360 SBLASTRECORDCHK(sb); 2361 SBLASTMBUFCHK(sb); 2362 SOCKBUF_UNLOCK(sb); 2363 sbunlock(sb); 2364 return (error); 2365 } 2366 2367 /* 2368 * Optimized version of soreceive() for simple datagram cases from userspace. 2369 * Unlike in the stream case, we're able to drop a datagram if copyout() 2370 * fails, and because we handle datagrams atomically, we don't need to use a 2371 * sleep lock to prevent I/O interlacing. 2372 */ 2373 int 2374 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio, 2375 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2376 { 2377 struct mbuf *m, *m2; 2378 int flags, error; 2379 ssize_t len; 2380 struct protosw *pr = so->so_proto; 2381 struct mbuf *nextrecord; 2382 2383 if (psa != NULL) 2384 *psa = NULL; 2385 if (controlp != NULL) 2386 *controlp = NULL; 2387 if (flagsp != NULL) 2388 flags = *flagsp &~ MSG_EOR; 2389 else 2390 flags = 0; 2391 2392 /* 2393 * For any complicated cases, fall back to the full 2394 * soreceive_generic(). 2395 */ 2396 if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB)) 2397 return (soreceive_generic(so, psa, uio, mp0, controlp, 2398 flagsp)); 2399 2400 /* 2401 * Enforce restrictions on use. 2402 */ 2403 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0, 2404 ("soreceive_dgram: wantrcvd")); 2405 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic")); 2406 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0, 2407 ("soreceive_dgram: SBS_RCVATMARK")); 2408 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0, 2409 ("soreceive_dgram: P_CONNREQUIRED")); 2410 2411 /* 2412 * Loop blocking while waiting for a datagram. 2413 */ 2414 SOCKBUF_LOCK(&so->so_rcv); 2415 while ((m = so->so_rcv.sb_mb) == NULL) { 2416 KASSERT(sbavail(&so->so_rcv) == 0, 2417 ("soreceive_dgram: sb_mb NULL but sbavail %u", 2418 sbavail(&so->so_rcv))); 2419 if (so->so_error) { 2420 error = so->so_error; 2421 so->so_error = 0; 2422 SOCKBUF_UNLOCK(&so->so_rcv); 2423 return (error); 2424 } 2425 if (so->so_rcv.sb_state & SBS_CANTRCVMORE || 2426 uio->uio_resid == 0) { 2427 SOCKBUF_UNLOCK(&so->so_rcv); 2428 return (0); 2429 } 2430 if ((so->so_state & SS_NBIO) || 2431 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2432 SOCKBUF_UNLOCK(&so->so_rcv); 2433 return (EWOULDBLOCK); 2434 } 2435 SBLASTRECORDCHK(&so->so_rcv); 2436 SBLASTMBUFCHK(&so->so_rcv); 2437 error = sbwait(&so->so_rcv); 2438 if (error) { 2439 SOCKBUF_UNLOCK(&so->so_rcv); 2440 return (error); 2441 } 2442 } 2443 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2444 2445 if (uio->uio_td) 2446 uio->uio_td->td_ru.ru_msgrcv++; 2447 SBLASTRECORDCHK(&so->so_rcv); 2448 SBLASTMBUFCHK(&so->so_rcv); 2449 nextrecord = m->m_nextpkt; 2450 if (nextrecord == NULL) { 2451 KASSERT(so->so_rcv.sb_lastrecord == m, 2452 ("soreceive_dgram: lastrecord != m")); 2453 } 2454 2455 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord, 2456 ("soreceive_dgram: m_nextpkt != nextrecord")); 2457 2458 /* 2459 * Pull 'm' and its chain off the front of the packet queue. 2460 */ 2461 so->so_rcv.sb_mb = NULL; 2462 sockbuf_pushsync(&so->so_rcv, nextrecord); 2463 2464 /* 2465 * Walk 'm's chain and free that many bytes from the socket buffer. 2466 */ 2467 for (m2 = m; m2 != NULL; m2 = m2->m_next) 2468 sbfree(&so->so_rcv, m2); 2469 2470 /* 2471 * Do a few last checks before we let go of the lock. 2472 */ 2473 SBLASTRECORDCHK(&so->so_rcv); 2474 SBLASTMBUFCHK(&so->so_rcv); 2475 SOCKBUF_UNLOCK(&so->so_rcv); 2476 2477 if (pr->pr_flags & PR_ADDR) { 2478 KASSERT(m->m_type == MT_SONAME, 2479 ("m->m_type == %d", m->m_type)); 2480 if (psa != NULL) 2481 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2482 M_NOWAIT); 2483 m = m_free(m); 2484 } 2485 if (m == NULL) { 2486 /* XXXRW: Can this happen? */ 2487 return (0); 2488 } 2489 2490 /* 2491 * Packet to copyout() is now in 'm' and it is disconnected from the 2492 * queue. 2493 * 2494 * Process one or more MT_CONTROL mbufs present before any data mbufs 2495 * in the first mbuf chain on the socket buffer. We call into the 2496 * protocol to perform externalization (or freeing if controlp == 2497 * NULL). In some cases there can be only MT_CONTROL mbufs without 2498 * MT_DATA mbufs. 2499 */ 2500 if (m->m_type == MT_CONTROL) { 2501 struct mbuf *cm = NULL, *cmn; 2502 struct mbuf **cme = &cm; 2503 2504 do { 2505 m2 = m->m_next; 2506 m->m_next = NULL; 2507 *cme = m; 2508 cme = &(*cme)->m_next; 2509 m = m2; 2510 } while (m != NULL && m->m_type == MT_CONTROL); 2511 while (cm != NULL) { 2512 cmn = cm->m_next; 2513 cm->m_next = NULL; 2514 if (pr->pr_domain->dom_externalize != NULL) { 2515 error = (*pr->pr_domain->dom_externalize) 2516 (cm, controlp, flags); 2517 } else if (controlp != NULL) 2518 *controlp = cm; 2519 else 2520 m_freem(cm); 2521 if (controlp != NULL) { 2522 while (*controlp != NULL) 2523 controlp = &(*controlp)->m_next; 2524 } 2525 cm = cmn; 2526 } 2527 } 2528 KASSERT(m == NULL || m->m_type == MT_DATA, 2529 ("soreceive_dgram: !data")); 2530 while (m != NULL && uio->uio_resid > 0) { 2531 len = uio->uio_resid; 2532 if (len > m->m_len) 2533 len = m->m_len; 2534 error = uiomove(mtod(m, char *), (int)len, uio); 2535 if (error) { 2536 m_freem(m); 2537 return (error); 2538 } 2539 if (len == m->m_len) 2540 m = m_free(m); 2541 else { 2542 m->m_data += len; 2543 m->m_len -= len; 2544 } 2545 } 2546 if (m != NULL) { 2547 flags |= MSG_TRUNC; 2548 m_freem(m); 2549 } 2550 if (flagsp != NULL) 2551 *flagsp |= flags; 2552 return (0); 2553 } 2554 2555 int 2556 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, 2557 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2558 { 2559 int error; 2560 2561 CURVNET_SET(so->so_vnet); 2562 if (!SOLISTENING(so)) 2563 error = (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, 2564 mp0, controlp, flagsp)); 2565 else 2566 error = ENOTCONN; 2567 CURVNET_RESTORE(); 2568 return (error); 2569 } 2570 2571 int 2572 soshutdown(struct socket *so, int how) 2573 { 2574 struct protosw *pr = so->so_proto; 2575 int error, soerror_enotconn; 2576 2577 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 2578 return (EINVAL); 2579 2580 soerror_enotconn = 0; 2581 if ((so->so_state & 2582 (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) { 2583 /* 2584 * POSIX mandates us to return ENOTCONN when shutdown(2) is 2585 * invoked on a datagram sockets, however historically we would 2586 * actually tear socket down. This is known to be leveraged by 2587 * some applications to unblock process waiting in recvXXX(2) 2588 * by other process that it shares that socket with. Try to meet 2589 * both backward-compatibility and POSIX requirements by forcing 2590 * ENOTCONN but still asking protocol to perform pru_shutdown(). 2591 */ 2592 if (so->so_type != SOCK_DGRAM && !SOLISTENING(so)) 2593 return (ENOTCONN); 2594 soerror_enotconn = 1; 2595 } 2596 2597 if (SOLISTENING(so)) { 2598 if (how != SHUT_WR) { 2599 SOLISTEN_LOCK(so); 2600 so->so_error = ECONNABORTED; 2601 solisten_wakeup(so); /* unlocks so */ 2602 } 2603 goto done; 2604 } 2605 2606 CURVNET_SET(so->so_vnet); 2607 if (pr->pr_usrreqs->pru_flush != NULL) 2608 (*pr->pr_usrreqs->pru_flush)(so, how); 2609 if (how != SHUT_WR) 2610 sorflush(so); 2611 if (how != SHUT_RD) { 2612 error = (*pr->pr_usrreqs->pru_shutdown)(so); 2613 wakeup(&so->so_timeo); 2614 CURVNET_RESTORE(); 2615 return ((error == 0 && soerror_enotconn) ? ENOTCONN : error); 2616 } 2617 wakeup(&so->so_timeo); 2618 CURVNET_RESTORE(); 2619 2620 done: 2621 return (soerror_enotconn ? ENOTCONN : 0); 2622 } 2623 2624 void 2625 sorflush(struct socket *so) 2626 { 2627 struct sockbuf *sb = &so->so_rcv; 2628 struct protosw *pr = so->so_proto; 2629 struct socket aso; 2630 2631 VNET_SO_ASSERT(so); 2632 2633 /* 2634 * In order to avoid calling dom_dispose with the socket buffer mutex 2635 * held, and in order to generally avoid holding the lock for a long 2636 * time, we make a copy of the socket buffer and clear the original 2637 * (except locks, state). The new socket buffer copy won't have 2638 * initialized locks so we can only call routines that won't use or 2639 * assert those locks. 2640 * 2641 * Dislodge threads currently blocked in receive and wait to acquire 2642 * a lock against other simultaneous readers before clearing the 2643 * socket buffer. Don't let our acquire be interrupted by a signal 2644 * despite any existing socket disposition on interruptable waiting. 2645 */ 2646 socantrcvmore(so); 2647 (void) sblock(sb, SBL_WAIT | SBL_NOINTR); 2648 2649 /* 2650 * Invalidate/clear most of the sockbuf structure, but leave selinfo 2651 * and mutex data unchanged. 2652 */ 2653 SOCKBUF_LOCK(sb); 2654 bzero(&aso, sizeof(aso)); 2655 aso.so_pcb = so->so_pcb; 2656 bcopy(&sb->sb_startzero, &aso.so_rcv.sb_startzero, 2657 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 2658 bzero(&sb->sb_startzero, 2659 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 2660 SOCKBUF_UNLOCK(sb); 2661 sbunlock(sb); 2662 2663 /* 2664 * Dispose of special rights and flush the copied socket. Don't call 2665 * any unsafe routines (that rely on locks being initialized) on aso. 2666 */ 2667 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 2668 (*pr->pr_domain->dom_dispose)(&aso); 2669 sbrelease_internal(&aso.so_rcv, so); 2670 } 2671 2672 /* 2673 * Wrapper for Socket established helper hook. 2674 * Parameters: socket, context of the hook point, hook id. 2675 */ 2676 static int inline 2677 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id) 2678 { 2679 struct socket_hhook_data hhook_data = { 2680 .so = so, 2681 .hctx = hctx, 2682 .m = NULL, 2683 .status = 0 2684 }; 2685 2686 CURVNET_SET(so->so_vnet); 2687 HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd); 2688 CURVNET_RESTORE(); 2689 2690 /* Ugly but needed, since hhooks return void for now */ 2691 return (hhook_data.status); 2692 } 2693 2694 /* 2695 * Perhaps this routine, and sooptcopyout(), below, ought to come in an 2696 * additional variant to handle the case where the option value needs to be 2697 * some kind of integer, but not a specific size. In addition to their use 2698 * here, these functions are also called by the protocol-level pr_ctloutput() 2699 * routines. 2700 */ 2701 int 2702 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen) 2703 { 2704 size_t valsize; 2705 2706 /* 2707 * If the user gives us more than we wanted, we ignore it, but if we 2708 * don't get the minimum length the caller wants, we return EINVAL. 2709 * On success, sopt->sopt_valsize is set to however much we actually 2710 * retrieved. 2711 */ 2712 if ((valsize = sopt->sopt_valsize) < minlen) 2713 return EINVAL; 2714 if (valsize > len) 2715 sopt->sopt_valsize = valsize = len; 2716 2717 if (sopt->sopt_td != NULL) 2718 return (copyin(sopt->sopt_val, buf, valsize)); 2719 2720 bcopy(sopt->sopt_val, buf, valsize); 2721 return (0); 2722 } 2723 2724 /* 2725 * Kernel version of setsockopt(2). 2726 * 2727 * XXX: optlen is size_t, not socklen_t 2728 */ 2729 int 2730 so_setsockopt(struct socket *so, int level, int optname, void *optval, 2731 size_t optlen) 2732 { 2733 struct sockopt sopt; 2734 2735 sopt.sopt_level = level; 2736 sopt.sopt_name = optname; 2737 sopt.sopt_dir = SOPT_SET; 2738 sopt.sopt_val = optval; 2739 sopt.sopt_valsize = optlen; 2740 sopt.sopt_td = NULL; 2741 return (sosetopt(so, &sopt)); 2742 } 2743 2744 int 2745 sosetopt(struct socket *so, struct sockopt *sopt) 2746 { 2747 int error, optval; 2748 struct linger l; 2749 struct timeval tv; 2750 sbintime_t val; 2751 uint32_t val32; 2752 #ifdef MAC 2753 struct mac extmac; 2754 #endif 2755 2756 CURVNET_SET(so->so_vnet); 2757 error = 0; 2758 if (sopt->sopt_level != SOL_SOCKET) { 2759 if (so->so_proto->pr_ctloutput != NULL) 2760 error = (*so->so_proto->pr_ctloutput)(so, sopt); 2761 else 2762 error = ENOPROTOOPT; 2763 } else { 2764 switch (sopt->sopt_name) { 2765 case SO_ACCEPTFILTER: 2766 error = accept_filt_setopt(so, sopt); 2767 if (error) 2768 goto bad; 2769 break; 2770 2771 case SO_LINGER: 2772 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 2773 if (error) 2774 goto bad; 2775 2776 SOCK_LOCK(so); 2777 so->so_linger = l.l_linger; 2778 if (l.l_onoff) 2779 so->so_options |= SO_LINGER; 2780 else 2781 so->so_options &= ~SO_LINGER; 2782 SOCK_UNLOCK(so); 2783 break; 2784 2785 case SO_DEBUG: 2786 case SO_KEEPALIVE: 2787 case SO_DONTROUTE: 2788 case SO_USELOOPBACK: 2789 case SO_BROADCAST: 2790 case SO_REUSEADDR: 2791 case SO_REUSEPORT: 2792 case SO_REUSEPORT_LB: 2793 case SO_OOBINLINE: 2794 case SO_TIMESTAMP: 2795 case SO_BINTIME: 2796 case SO_NOSIGPIPE: 2797 case SO_NO_DDP: 2798 case SO_NO_OFFLOAD: 2799 error = sooptcopyin(sopt, &optval, sizeof optval, 2800 sizeof optval); 2801 if (error) 2802 goto bad; 2803 SOCK_LOCK(so); 2804 if (optval) 2805 so->so_options |= sopt->sopt_name; 2806 else 2807 so->so_options &= ~sopt->sopt_name; 2808 SOCK_UNLOCK(so); 2809 break; 2810 2811 case SO_SETFIB: 2812 error = sooptcopyin(sopt, &optval, sizeof optval, 2813 sizeof optval); 2814 if (error) 2815 goto bad; 2816 2817 if (optval < 0 || optval >= rt_numfibs) { 2818 error = EINVAL; 2819 goto bad; 2820 } 2821 if (((so->so_proto->pr_domain->dom_family == PF_INET) || 2822 (so->so_proto->pr_domain->dom_family == PF_INET6) || 2823 (so->so_proto->pr_domain->dom_family == PF_ROUTE))) 2824 so->so_fibnum = optval; 2825 else 2826 so->so_fibnum = 0; 2827 break; 2828 2829 case SO_USER_COOKIE: 2830 error = sooptcopyin(sopt, &val32, sizeof val32, 2831 sizeof val32); 2832 if (error) 2833 goto bad; 2834 so->so_user_cookie = val32; 2835 break; 2836 2837 case SO_SNDBUF: 2838 case SO_RCVBUF: 2839 case SO_SNDLOWAT: 2840 case SO_RCVLOWAT: 2841 error = sooptcopyin(sopt, &optval, sizeof optval, 2842 sizeof optval); 2843 if (error) 2844 goto bad; 2845 2846 /* 2847 * Values < 1 make no sense for any of these options, 2848 * so disallow them. 2849 */ 2850 if (optval < 1) { 2851 error = EINVAL; 2852 goto bad; 2853 } 2854 2855 error = sbsetopt(so, sopt->sopt_name, optval); 2856 break; 2857 2858 case SO_SNDTIMEO: 2859 case SO_RCVTIMEO: 2860 #ifdef COMPAT_FREEBSD32 2861 if (SV_CURPROC_FLAG(SV_ILP32)) { 2862 struct timeval32 tv32; 2863 2864 error = sooptcopyin(sopt, &tv32, sizeof tv32, 2865 sizeof tv32); 2866 CP(tv32, tv, tv_sec); 2867 CP(tv32, tv, tv_usec); 2868 } else 2869 #endif 2870 error = sooptcopyin(sopt, &tv, sizeof tv, 2871 sizeof tv); 2872 if (error) 2873 goto bad; 2874 if (tv.tv_sec < 0 || tv.tv_usec < 0 || 2875 tv.tv_usec >= 1000000) { 2876 error = EDOM; 2877 goto bad; 2878 } 2879 if (tv.tv_sec > INT32_MAX) 2880 val = SBT_MAX; 2881 else 2882 val = tvtosbt(tv); 2883 switch (sopt->sopt_name) { 2884 case SO_SNDTIMEO: 2885 so->so_snd.sb_timeo = val; 2886 break; 2887 case SO_RCVTIMEO: 2888 so->so_rcv.sb_timeo = val; 2889 break; 2890 } 2891 break; 2892 2893 case SO_LABEL: 2894 #ifdef MAC 2895 error = sooptcopyin(sopt, &extmac, sizeof extmac, 2896 sizeof extmac); 2897 if (error) 2898 goto bad; 2899 error = mac_setsockopt_label(sopt->sopt_td->td_ucred, 2900 so, &extmac); 2901 #else 2902 error = EOPNOTSUPP; 2903 #endif 2904 break; 2905 2906 case SO_TS_CLOCK: 2907 error = sooptcopyin(sopt, &optval, sizeof optval, 2908 sizeof optval); 2909 if (error) 2910 goto bad; 2911 if (optval < 0 || optval > SO_TS_CLOCK_MAX) { 2912 error = EINVAL; 2913 goto bad; 2914 } 2915 so->so_ts_clock = optval; 2916 break; 2917 2918 case SO_MAX_PACING_RATE: 2919 error = sooptcopyin(sopt, &val32, sizeof(val32), 2920 sizeof(val32)); 2921 if (error) 2922 goto bad; 2923 so->so_max_pacing_rate = val32; 2924 break; 2925 2926 default: 2927 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 2928 error = hhook_run_socket(so, sopt, 2929 HHOOK_SOCKET_OPT); 2930 else 2931 error = ENOPROTOOPT; 2932 break; 2933 } 2934 if (error == 0 && so->so_proto->pr_ctloutput != NULL) 2935 (void)(*so->so_proto->pr_ctloutput)(so, sopt); 2936 } 2937 bad: 2938 CURVNET_RESTORE(); 2939 return (error); 2940 } 2941 2942 /* 2943 * Helper routine for getsockopt. 2944 */ 2945 int 2946 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 2947 { 2948 int error; 2949 size_t valsize; 2950 2951 error = 0; 2952 2953 /* 2954 * Documented get behavior is that we always return a value, possibly 2955 * truncated to fit in the user's buffer. Traditional behavior is 2956 * that we always tell the user precisely how much we copied, rather 2957 * than something useful like the total amount we had available for 2958 * her. Note that this interface is not idempotent; the entire 2959 * answer must be generated ahead of time. 2960 */ 2961 valsize = min(len, sopt->sopt_valsize); 2962 sopt->sopt_valsize = valsize; 2963 if (sopt->sopt_val != NULL) { 2964 if (sopt->sopt_td != NULL) 2965 error = copyout(buf, sopt->sopt_val, valsize); 2966 else 2967 bcopy(buf, sopt->sopt_val, valsize); 2968 } 2969 return (error); 2970 } 2971 2972 int 2973 sogetopt(struct socket *so, struct sockopt *sopt) 2974 { 2975 int error, optval; 2976 struct linger l; 2977 struct timeval tv; 2978 #ifdef MAC 2979 struct mac extmac; 2980 #endif 2981 2982 CURVNET_SET(so->so_vnet); 2983 error = 0; 2984 if (sopt->sopt_level != SOL_SOCKET) { 2985 if (so->so_proto->pr_ctloutput != NULL) 2986 error = (*so->so_proto->pr_ctloutput)(so, sopt); 2987 else 2988 error = ENOPROTOOPT; 2989 CURVNET_RESTORE(); 2990 return (error); 2991 } else { 2992 switch (sopt->sopt_name) { 2993 case SO_ACCEPTFILTER: 2994 error = accept_filt_getopt(so, sopt); 2995 break; 2996 2997 case SO_LINGER: 2998 SOCK_LOCK(so); 2999 l.l_onoff = so->so_options & SO_LINGER; 3000 l.l_linger = so->so_linger; 3001 SOCK_UNLOCK(so); 3002 error = sooptcopyout(sopt, &l, sizeof l); 3003 break; 3004 3005 case SO_USELOOPBACK: 3006 case SO_DONTROUTE: 3007 case SO_DEBUG: 3008 case SO_KEEPALIVE: 3009 case SO_REUSEADDR: 3010 case SO_REUSEPORT: 3011 case SO_REUSEPORT_LB: 3012 case SO_BROADCAST: 3013 case SO_OOBINLINE: 3014 case SO_ACCEPTCONN: 3015 case SO_TIMESTAMP: 3016 case SO_BINTIME: 3017 case SO_NOSIGPIPE: 3018 optval = so->so_options & sopt->sopt_name; 3019 integer: 3020 error = sooptcopyout(sopt, &optval, sizeof optval); 3021 break; 3022 3023 case SO_DOMAIN: 3024 optval = so->so_proto->pr_domain->dom_family; 3025 goto integer; 3026 3027 case SO_TYPE: 3028 optval = so->so_type; 3029 goto integer; 3030 3031 case SO_PROTOCOL: 3032 optval = so->so_proto->pr_protocol; 3033 goto integer; 3034 3035 case SO_ERROR: 3036 SOCK_LOCK(so); 3037 optval = so->so_error; 3038 so->so_error = 0; 3039 SOCK_UNLOCK(so); 3040 goto integer; 3041 3042 case SO_SNDBUF: 3043 optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat : 3044 so->so_snd.sb_hiwat; 3045 goto integer; 3046 3047 case SO_RCVBUF: 3048 optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat : 3049 so->so_rcv.sb_hiwat; 3050 goto integer; 3051 3052 case SO_SNDLOWAT: 3053 optval = SOLISTENING(so) ? so->sol_sbsnd_lowat : 3054 so->so_snd.sb_lowat; 3055 goto integer; 3056 3057 case SO_RCVLOWAT: 3058 optval = SOLISTENING(so) ? so->sol_sbrcv_lowat : 3059 so->so_rcv.sb_lowat; 3060 goto integer; 3061 3062 case SO_SNDTIMEO: 3063 case SO_RCVTIMEO: 3064 tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ? 3065 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 3066 #ifdef COMPAT_FREEBSD32 3067 if (SV_CURPROC_FLAG(SV_ILP32)) { 3068 struct timeval32 tv32; 3069 3070 CP(tv, tv32, tv_sec); 3071 CP(tv, tv32, tv_usec); 3072 error = sooptcopyout(sopt, &tv32, sizeof tv32); 3073 } else 3074 #endif 3075 error = sooptcopyout(sopt, &tv, sizeof tv); 3076 break; 3077 3078 case SO_LABEL: 3079 #ifdef MAC 3080 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 3081 sizeof(extmac)); 3082 if (error) 3083 goto bad; 3084 error = mac_getsockopt_label(sopt->sopt_td->td_ucred, 3085 so, &extmac); 3086 if (error) 3087 goto bad; 3088 error = sooptcopyout(sopt, &extmac, sizeof extmac); 3089 #else 3090 error = EOPNOTSUPP; 3091 #endif 3092 break; 3093 3094 case SO_PEERLABEL: 3095 #ifdef MAC 3096 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 3097 sizeof(extmac)); 3098 if (error) 3099 goto bad; 3100 error = mac_getsockopt_peerlabel( 3101 sopt->sopt_td->td_ucred, so, &extmac); 3102 if (error) 3103 goto bad; 3104 error = sooptcopyout(sopt, &extmac, sizeof extmac); 3105 #else 3106 error = EOPNOTSUPP; 3107 #endif 3108 break; 3109 3110 case SO_LISTENQLIMIT: 3111 optval = SOLISTENING(so) ? so->sol_qlimit : 0; 3112 goto integer; 3113 3114 case SO_LISTENQLEN: 3115 optval = SOLISTENING(so) ? so->sol_qlen : 0; 3116 goto integer; 3117 3118 case SO_LISTENINCQLEN: 3119 optval = SOLISTENING(so) ? so->sol_incqlen : 0; 3120 goto integer; 3121 3122 case SO_TS_CLOCK: 3123 optval = so->so_ts_clock; 3124 goto integer; 3125 3126 case SO_MAX_PACING_RATE: 3127 optval = so->so_max_pacing_rate; 3128 goto integer; 3129 3130 default: 3131 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 3132 error = hhook_run_socket(so, sopt, 3133 HHOOK_SOCKET_OPT); 3134 else 3135 error = ENOPROTOOPT; 3136 break; 3137 } 3138 } 3139 #ifdef MAC 3140 bad: 3141 #endif 3142 CURVNET_RESTORE(); 3143 return (error); 3144 } 3145 3146 int 3147 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 3148 { 3149 struct mbuf *m, *m_prev; 3150 int sopt_size = sopt->sopt_valsize; 3151 3152 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 3153 if (m == NULL) 3154 return ENOBUFS; 3155 if (sopt_size > MLEN) { 3156 MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT); 3157 if ((m->m_flags & M_EXT) == 0) { 3158 m_free(m); 3159 return ENOBUFS; 3160 } 3161 m->m_len = min(MCLBYTES, sopt_size); 3162 } else { 3163 m->m_len = min(MLEN, sopt_size); 3164 } 3165 sopt_size -= m->m_len; 3166 *mp = m; 3167 m_prev = m; 3168 3169 while (sopt_size) { 3170 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 3171 if (m == NULL) { 3172 m_freem(*mp); 3173 return ENOBUFS; 3174 } 3175 if (sopt_size > MLEN) { 3176 MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK : 3177 M_NOWAIT); 3178 if ((m->m_flags & M_EXT) == 0) { 3179 m_freem(m); 3180 m_freem(*mp); 3181 return ENOBUFS; 3182 } 3183 m->m_len = min(MCLBYTES, sopt_size); 3184 } else { 3185 m->m_len = min(MLEN, sopt_size); 3186 } 3187 sopt_size -= m->m_len; 3188 m_prev->m_next = m; 3189 m_prev = m; 3190 } 3191 return (0); 3192 } 3193 3194 int 3195 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 3196 { 3197 struct mbuf *m0 = m; 3198 3199 if (sopt->sopt_val == NULL) 3200 return (0); 3201 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 3202 if (sopt->sopt_td != NULL) { 3203 int error; 3204 3205 error = copyin(sopt->sopt_val, mtod(m, char *), 3206 m->m_len); 3207 if (error != 0) { 3208 m_freem(m0); 3209 return(error); 3210 } 3211 } else 3212 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 3213 sopt->sopt_valsize -= m->m_len; 3214 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 3215 m = m->m_next; 3216 } 3217 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 3218 panic("ip6_sooptmcopyin"); 3219 return (0); 3220 } 3221 3222 int 3223 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 3224 { 3225 struct mbuf *m0 = m; 3226 size_t valsize = 0; 3227 3228 if (sopt->sopt_val == NULL) 3229 return (0); 3230 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 3231 if (sopt->sopt_td != NULL) { 3232 int error; 3233 3234 error = copyout(mtod(m, char *), sopt->sopt_val, 3235 m->m_len); 3236 if (error != 0) { 3237 m_freem(m0); 3238 return(error); 3239 } 3240 } else 3241 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 3242 sopt->sopt_valsize -= m->m_len; 3243 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 3244 valsize += m->m_len; 3245 m = m->m_next; 3246 } 3247 if (m != NULL) { 3248 /* enough soopt buffer should be given from user-land */ 3249 m_freem(m0); 3250 return(EINVAL); 3251 } 3252 sopt->sopt_valsize = valsize; 3253 return (0); 3254 } 3255 3256 /* 3257 * sohasoutofband(): protocol notifies socket layer of the arrival of new 3258 * out-of-band data, which will then notify socket consumers. 3259 */ 3260 void 3261 sohasoutofband(struct socket *so) 3262 { 3263 3264 if (so->so_sigio != NULL) 3265 pgsigio(&so->so_sigio, SIGURG, 0); 3266 selwakeuppri(&so->so_rdsel, PSOCK); 3267 } 3268 3269 int 3270 sopoll(struct socket *so, int events, struct ucred *active_cred, 3271 struct thread *td) 3272 { 3273 3274 /* 3275 * We do not need to set or assert curvnet as long as everyone uses 3276 * sopoll_generic(). 3277 */ 3278 return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred, 3279 td)); 3280 } 3281 3282 int 3283 sopoll_generic(struct socket *so, int events, struct ucred *active_cred, 3284 struct thread *td) 3285 { 3286 int revents; 3287 3288 SOCK_LOCK(so); 3289 if (SOLISTENING(so)) { 3290 if (!(events & (POLLIN | POLLRDNORM))) 3291 revents = 0; 3292 else if (!TAILQ_EMPTY(&so->sol_comp)) 3293 revents = events & (POLLIN | POLLRDNORM); 3294 else if ((events & POLLINIGNEOF) == 0 && so->so_error) 3295 revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP; 3296 else { 3297 selrecord(td, &so->so_rdsel); 3298 revents = 0; 3299 } 3300 } else { 3301 revents = 0; 3302 SOCKBUF_LOCK(&so->so_snd); 3303 SOCKBUF_LOCK(&so->so_rcv); 3304 if (events & (POLLIN | POLLRDNORM)) 3305 if (soreadabledata(so)) 3306 revents |= events & (POLLIN | POLLRDNORM); 3307 if (events & (POLLOUT | POLLWRNORM)) 3308 if (sowriteable(so)) 3309 revents |= events & (POLLOUT | POLLWRNORM); 3310 if (events & (POLLPRI | POLLRDBAND)) 3311 if (so->so_oobmark || 3312 (so->so_rcv.sb_state & SBS_RCVATMARK)) 3313 revents |= events & (POLLPRI | POLLRDBAND); 3314 if ((events & POLLINIGNEOF) == 0) { 3315 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3316 revents |= events & (POLLIN | POLLRDNORM); 3317 if (so->so_snd.sb_state & SBS_CANTSENDMORE) 3318 revents |= POLLHUP; 3319 } 3320 } 3321 if (revents == 0) { 3322 if (events & 3323 (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) { 3324 selrecord(td, &so->so_rdsel); 3325 so->so_rcv.sb_flags |= SB_SEL; 3326 } 3327 if (events & (POLLOUT | POLLWRNORM)) { 3328 selrecord(td, &so->so_wrsel); 3329 so->so_snd.sb_flags |= SB_SEL; 3330 } 3331 } 3332 SOCKBUF_UNLOCK(&so->so_rcv); 3333 SOCKBUF_UNLOCK(&so->so_snd); 3334 } 3335 SOCK_UNLOCK(so); 3336 return (revents); 3337 } 3338 3339 int 3340 soo_kqfilter(struct file *fp, struct knote *kn) 3341 { 3342 struct socket *so = kn->kn_fp->f_data; 3343 struct sockbuf *sb; 3344 struct knlist *knl; 3345 3346 switch (kn->kn_filter) { 3347 case EVFILT_READ: 3348 kn->kn_fop = &soread_filtops; 3349 knl = &so->so_rdsel.si_note; 3350 sb = &so->so_rcv; 3351 break; 3352 case EVFILT_WRITE: 3353 kn->kn_fop = &sowrite_filtops; 3354 knl = &so->so_wrsel.si_note; 3355 sb = &so->so_snd; 3356 break; 3357 case EVFILT_EMPTY: 3358 kn->kn_fop = &soempty_filtops; 3359 knl = &so->so_wrsel.si_note; 3360 sb = &so->so_snd; 3361 break; 3362 default: 3363 return (EINVAL); 3364 } 3365 3366 SOCK_LOCK(so); 3367 if (SOLISTENING(so)) { 3368 knlist_add(knl, kn, 1); 3369 } else { 3370 SOCKBUF_LOCK(sb); 3371 knlist_add(knl, kn, 1); 3372 sb->sb_flags |= SB_KNOTE; 3373 SOCKBUF_UNLOCK(sb); 3374 } 3375 SOCK_UNLOCK(so); 3376 return (0); 3377 } 3378 3379 /* 3380 * Some routines that return EOPNOTSUPP for entry points that are not 3381 * supported by a protocol. Fill in as needed. 3382 */ 3383 int 3384 pru_accept_notsupp(struct socket *so, struct sockaddr **nam) 3385 { 3386 3387 return EOPNOTSUPP; 3388 } 3389 3390 int 3391 pru_aio_queue_notsupp(struct socket *so, struct kaiocb *job) 3392 { 3393 3394 return EOPNOTSUPP; 3395 } 3396 3397 int 3398 pru_attach_notsupp(struct socket *so, int proto, struct thread *td) 3399 { 3400 3401 return EOPNOTSUPP; 3402 } 3403 3404 int 3405 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 3406 { 3407 3408 return EOPNOTSUPP; 3409 } 3410 3411 int 3412 pru_bindat_notsupp(int fd, struct socket *so, struct sockaddr *nam, 3413 struct thread *td) 3414 { 3415 3416 return EOPNOTSUPP; 3417 } 3418 3419 int 3420 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 3421 { 3422 3423 return EOPNOTSUPP; 3424 } 3425 3426 int 3427 pru_connectat_notsupp(int fd, struct socket *so, struct sockaddr *nam, 3428 struct thread *td) 3429 { 3430 3431 return EOPNOTSUPP; 3432 } 3433 3434 int 3435 pru_connect2_notsupp(struct socket *so1, struct socket *so2) 3436 { 3437 3438 return EOPNOTSUPP; 3439 } 3440 3441 int 3442 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, 3443 struct ifnet *ifp, struct thread *td) 3444 { 3445 3446 return EOPNOTSUPP; 3447 } 3448 3449 int 3450 pru_disconnect_notsupp(struct socket *so) 3451 { 3452 3453 return EOPNOTSUPP; 3454 } 3455 3456 int 3457 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td) 3458 { 3459 3460 return EOPNOTSUPP; 3461 } 3462 3463 int 3464 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam) 3465 { 3466 3467 return EOPNOTSUPP; 3468 } 3469 3470 int 3471 pru_rcvd_notsupp(struct socket *so, int flags) 3472 { 3473 3474 return EOPNOTSUPP; 3475 } 3476 3477 int 3478 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) 3479 { 3480 3481 return EOPNOTSUPP; 3482 } 3483 3484 int 3485 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m, 3486 struct sockaddr *addr, struct mbuf *control, struct thread *td) 3487 { 3488 3489 return EOPNOTSUPP; 3490 } 3491 3492 int 3493 pru_ready_notsupp(struct socket *so, struct mbuf *m, int count) 3494 { 3495 3496 return (EOPNOTSUPP); 3497 } 3498 3499 /* 3500 * This isn't really a ``null'' operation, but it's the default one and 3501 * doesn't do anything destructive. 3502 */ 3503 int 3504 pru_sense_null(struct socket *so, struct stat *sb) 3505 { 3506 3507 sb->st_blksize = so->so_snd.sb_hiwat; 3508 return 0; 3509 } 3510 3511 int 3512 pru_shutdown_notsupp(struct socket *so) 3513 { 3514 3515 return EOPNOTSUPP; 3516 } 3517 3518 int 3519 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam) 3520 { 3521 3522 return EOPNOTSUPP; 3523 } 3524 3525 int 3526 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio, 3527 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 3528 { 3529 3530 return EOPNOTSUPP; 3531 } 3532 3533 int 3534 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr, 3535 struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 3536 { 3537 3538 return EOPNOTSUPP; 3539 } 3540 3541 int 3542 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred, 3543 struct thread *td) 3544 { 3545 3546 return EOPNOTSUPP; 3547 } 3548 3549 static void 3550 filt_sordetach(struct knote *kn) 3551 { 3552 struct socket *so = kn->kn_fp->f_data; 3553 3554 so_rdknl_lock(so); 3555 knlist_remove(&so->so_rdsel.si_note, kn, 1); 3556 if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note)) 3557 so->so_rcv.sb_flags &= ~SB_KNOTE; 3558 so_rdknl_unlock(so); 3559 } 3560 3561 /*ARGSUSED*/ 3562 static int 3563 filt_soread(struct knote *kn, long hint) 3564 { 3565 struct socket *so; 3566 3567 so = kn->kn_fp->f_data; 3568 3569 if (SOLISTENING(so)) { 3570 SOCK_LOCK_ASSERT(so); 3571 kn->kn_data = so->sol_qlen; 3572 if (so->so_error) { 3573 kn->kn_flags |= EV_EOF; 3574 kn->kn_fflags = so->so_error; 3575 return (1); 3576 } 3577 return (!TAILQ_EMPTY(&so->sol_comp)); 3578 } 3579 3580 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 3581 3582 kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl; 3583 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3584 kn->kn_flags |= EV_EOF; 3585 kn->kn_fflags = so->so_error; 3586 return (1); 3587 } else if (so->so_error) /* temporary udp error */ 3588 return (1); 3589 3590 if (kn->kn_sfflags & NOTE_LOWAT) { 3591 if (kn->kn_data >= kn->kn_sdata) 3592 return (1); 3593 } else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat) 3594 return (1); 3595 3596 /* This hook returning non-zero indicates an event, not error */ 3597 return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD)); 3598 } 3599 3600 static void 3601 filt_sowdetach(struct knote *kn) 3602 { 3603 struct socket *so = kn->kn_fp->f_data; 3604 3605 so_wrknl_lock(so); 3606 knlist_remove(&so->so_wrsel.si_note, kn, 1); 3607 if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note)) 3608 so->so_snd.sb_flags &= ~SB_KNOTE; 3609 so_wrknl_unlock(so); 3610 } 3611 3612 /*ARGSUSED*/ 3613 static int 3614 filt_sowrite(struct knote *kn, long hint) 3615 { 3616 struct socket *so; 3617 3618 so = kn->kn_fp->f_data; 3619 3620 if (SOLISTENING(so)) 3621 return (0); 3622 3623 SOCKBUF_LOCK_ASSERT(&so->so_snd); 3624 kn->kn_data = sbspace(&so->so_snd); 3625 3626 hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE); 3627 3628 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 3629 kn->kn_flags |= EV_EOF; 3630 kn->kn_fflags = so->so_error; 3631 return (1); 3632 } else if (so->so_error) /* temporary udp error */ 3633 return (1); 3634 else if (((so->so_state & SS_ISCONNECTED) == 0) && 3635 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 3636 return (0); 3637 else if (kn->kn_sfflags & NOTE_LOWAT) 3638 return (kn->kn_data >= kn->kn_sdata); 3639 else 3640 return (kn->kn_data >= so->so_snd.sb_lowat); 3641 } 3642 3643 static int 3644 filt_soempty(struct knote *kn, long hint) 3645 { 3646 struct socket *so; 3647 3648 so = kn->kn_fp->f_data; 3649 3650 if (SOLISTENING(so)) 3651 return (1); 3652 3653 SOCKBUF_LOCK_ASSERT(&so->so_snd); 3654 kn->kn_data = sbused(&so->so_snd); 3655 3656 if (kn->kn_data == 0) 3657 return (1); 3658 else 3659 return (0); 3660 } 3661 3662 int 3663 socheckuid(struct socket *so, uid_t uid) 3664 { 3665 3666 if (so == NULL) 3667 return (EPERM); 3668 if (so->so_cred->cr_uid != uid) 3669 return (EPERM); 3670 return (0); 3671 } 3672 3673 /* 3674 * These functions are used by protocols to notify the socket layer (and its 3675 * consumers) of state changes in the sockets driven by protocol-side events. 3676 */ 3677 3678 /* 3679 * Procedures to manipulate state flags of socket and do appropriate wakeups. 3680 * 3681 * Normal sequence from the active (originating) side is that 3682 * soisconnecting() is called during processing of connect() call, resulting 3683 * in an eventual call to soisconnected() if/when the connection is 3684 * established. When the connection is torn down soisdisconnecting() is 3685 * called during processing of disconnect() call, and soisdisconnected() is 3686 * called when the connection to the peer is totally severed. The semantics 3687 * of these routines are such that connectionless protocols can call 3688 * soisconnected() and soisdisconnected() only, bypassing the in-progress 3689 * calls when setting up a ``connection'' takes no time. 3690 * 3691 * From the passive side, a socket is created with two queues of sockets: 3692 * so_incomp for connections in progress and so_comp for connections already 3693 * made and awaiting user acceptance. As a protocol is preparing incoming 3694 * connections, it creates a socket structure queued on so_incomp by calling 3695 * sonewconn(). When the connection is established, soisconnected() is 3696 * called, and transfers the socket structure to so_comp, making it available 3697 * to accept(). 3698 * 3699 * If a socket is closed with sockets on either so_incomp or so_comp, these 3700 * sockets are dropped. 3701 * 3702 * If higher-level protocols are implemented in the kernel, the wakeups done 3703 * here will sometimes cause software-interrupt process scheduling. 3704 */ 3705 void 3706 soisconnecting(struct socket *so) 3707 { 3708 3709 SOCK_LOCK(so); 3710 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 3711 so->so_state |= SS_ISCONNECTING; 3712 SOCK_UNLOCK(so); 3713 } 3714 3715 void 3716 soisconnected(struct socket *so) 3717 { 3718 3719 SOCK_LOCK(so); 3720 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 3721 so->so_state |= SS_ISCONNECTED; 3722 3723 if (so->so_qstate == SQ_INCOMP) { 3724 struct socket *head = so->so_listen; 3725 int ret; 3726 3727 KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so)); 3728 /* 3729 * Promoting a socket from incomplete queue to complete, we 3730 * need to go through reverse order of locking. We first do 3731 * trylock, and if that doesn't succeed, we go the hard way 3732 * leaving a reference and rechecking consistency after proper 3733 * locking. 3734 */ 3735 if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) { 3736 soref(head); 3737 SOCK_UNLOCK(so); 3738 SOLISTEN_LOCK(head); 3739 SOCK_LOCK(so); 3740 if (__predict_false(head != so->so_listen)) { 3741 /* 3742 * The socket went off the listen queue, 3743 * should be lost race to close(2) of sol. 3744 * The socket is about to soabort(). 3745 */ 3746 SOCK_UNLOCK(so); 3747 sorele(head); 3748 return; 3749 } 3750 /* Not the last one, as so holds a ref. */ 3751 refcount_release(&head->so_count); 3752 } 3753 again: 3754 if ((so->so_options & SO_ACCEPTFILTER) == 0) { 3755 TAILQ_REMOVE(&head->sol_incomp, so, so_list); 3756 head->sol_incqlen--; 3757 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 3758 head->sol_qlen++; 3759 so->so_qstate = SQ_COMP; 3760 SOCK_UNLOCK(so); 3761 solisten_wakeup(head); /* unlocks */ 3762 } else { 3763 SOCKBUF_LOCK(&so->so_rcv); 3764 soupcall_set(so, SO_RCV, 3765 head->sol_accept_filter->accf_callback, 3766 head->sol_accept_filter_arg); 3767 so->so_options &= ~SO_ACCEPTFILTER; 3768 ret = head->sol_accept_filter->accf_callback(so, 3769 head->sol_accept_filter_arg, M_NOWAIT); 3770 if (ret == SU_ISCONNECTED) { 3771 soupcall_clear(so, SO_RCV); 3772 SOCKBUF_UNLOCK(&so->so_rcv); 3773 goto again; 3774 } 3775 SOCKBUF_UNLOCK(&so->so_rcv); 3776 SOCK_UNLOCK(so); 3777 SOLISTEN_UNLOCK(head); 3778 } 3779 return; 3780 } 3781 SOCK_UNLOCK(so); 3782 wakeup(&so->so_timeo); 3783 sorwakeup(so); 3784 sowwakeup(so); 3785 } 3786 3787 void 3788 soisdisconnecting(struct socket *so) 3789 { 3790 3791 SOCK_LOCK(so); 3792 so->so_state &= ~SS_ISCONNECTING; 3793 so->so_state |= SS_ISDISCONNECTING; 3794 3795 if (!SOLISTENING(so)) { 3796 SOCKBUF_LOCK(&so->so_rcv); 3797 socantrcvmore_locked(so); 3798 SOCKBUF_LOCK(&so->so_snd); 3799 socantsendmore_locked(so); 3800 } 3801 SOCK_UNLOCK(so); 3802 wakeup(&so->so_timeo); 3803 } 3804 3805 void 3806 soisdisconnected(struct socket *so) 3807 { 3808 3809 SOCK_LOCK(so); 3810 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 3811 so->so_state |= SS_ISDISCONNECTED; 3812 3813 if (!SOLISTENING(so)) { 3814 SOCK_UNLOCK(so); 3815 SOCKBUF_LOCK(&so->so_rcv); 3816 socantrcvmore_locked(so); 3817 SOCKBUF_LOCK(&so->so_snd); 3818 sbdrop_locked(&so->so_snd, sbused(&so->so_snd)); 3819 socantsendmore_locked(so); 3820 } else 3821 SOCK_UNLOCK(so); 3822 wakeup(&so->so_timeo); 3823 } 3824 3825 /* 3826 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 3827 */ 3828 struct sockaddr * 3829 sodupsockaddr(const struct sockaddr *sa, int mflags) 3830 { 3831 struct sockaddr *sa2; 3832 3833 sa2 = malloc(sa->sa_len, M_SONAME, mflags); 3834 if (sa2) 3835 bcopy(sa, sa2, sa->sa_len); 3836 return sa2; 3837 } 3838 3839 /* 3840 * Register per-socket destructor. 3841 */ 3842 void 3843 sodtor_set(struct socket *so, so_dtor_t *func) 3844 { 3845 3846 SOCK_LOCK_ASSERT(so); 3847 so->so_dtor = func; 3848 } 3849 3850 /* 3851 * Register per-socket buffer upcalls. 3852 */ 3853 void 3854 soupcall_set(struct socket *so, int which, so_upcall_t func, void *arg) 3855 { 3856 struct sockbuf *sb; 3857 3858 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 3859 3860 switch (which) { 3861 case SO_RCV: 3862 sb = &so->so_rcv; 3863 break; 3864 case SO_SND: 3865 sb = &so->so_snd; 3866 break; 3867 default: 3868 panic("soupcall_set: bad which"); 3869 } 3870 SOCKBUF_LOCK_ASSERT(sb); 3871 sb->sb_upcall = func; 3872 sb->sb_upcallarg = arg; 3873 sb->sb_flags |= SB_UPCALL; 3874 } 3875 3876 void 3877 soupcall_clear(struct socket *so, int which) 3878 { 3879 struct sockbuf *sb; 3880 3881 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 3882 3883 switch (which) { 3884 case SO_RCV: 3885 sb = &so->so_rcv; 3886 break; 3887 case SO_SND: 3888 sb = &so->so_snd; 3889 break; 3890 default: 3891 panic("soupcall_clear: bad which"); 3892 } 3893 SOCKBUF_LOCK_ASSERT(sb); 3894 KASSERT(sb->sb_upcall != NULL, 3895 ("%s: so %p no upcall to clear", __func__, so)); 3896 sb->sb_upcall = NULL; 3897 sb->sb_upcallarg = NULL; 3898 sb->sb_flags &= ~SB_UPCALL; 3899 } 3900 3901 void 3902 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg) 3903 { 3904 3905 SOLISTEN_LOCK_ASSERT(so); 3906 so->sol_upcall = func; 3907 so->sol_upcallarg = arg; 3908 } 3909 3910 static void 3911 so_rdknl_lock(void *arg) 3912 { 3913 struct socket *so = arg; 3914 3915 if (SOLISTENING(so)) 3916 SOCK_LOCK(so); 3917 else 3918 SOCKBUF_LOCK(&so->so_rcv); 3919 } 3920 3921 static void 3922 so_rdknl_unlock(void *arg) 3923 { 3924 struct socket *so = arg; 3925 3926 if (SOLISTENING(so)) 3927 SOCK_UNLOCK(so); 3928 else 3929 SOCKBUF_UNLOCK(&so->so_rcv); 3930 } 3931 3932 static void 3933 so_rdknl_assert_locked(void *arg) 3934 { 3935 struct socket *so = arg; 3936 3937 if (SOLISTENING(so)) 3938 SOCK_LOCK_ASSERT(so); 3939 else 3940 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 3941 } 3942 3943 static void 3944 so_rdknl_assert_unlocked(void *arg) 3945 { 3946 struct socket *so = arg; 3947 3948 if (SOLISTENING(so)) 3949 SOCK_UNLOCK_ASSERT(so); 3950 else 3951 SOCKBUF_UNLOCK_ASSERT(&so->so_rcv); 3952 } 3953 3954 static void 3955 so_wrknl_lock(void *arg) 3956 { 3957 struct socket *so = arg; 3958 3959 if (SOLISTENING(so)) 3960 SOCK_LOCK(so); 3961 else 3962 SOCKBUF_LOCK(&so->so_snd); 3963 } 3964 3965 static void 3966 so_wrknl_unlock(void *arg) 3967 { 3968 struct socket *so = arg; 3969 3970 if (SOLISTENING(so)) 3971 SOCK_UNLOCK(so); 3972 else 3973 SOCKBUF_UNLOCK(&so->so_snd); 3974 } 3975 3976 static void 3977 so_wrknl_assert_locked(void *arg) 3978 { 3979 struct socket *so = arg; 3980 3981 if (SOLISTENING(so)) 3982 SOCK_LOCK_ASSERT(so); 3983 else 3984 SOCKBUF_LOCK_ASSERT(&so->so_snd); 3985 } 3986 3987 static void 3988 so_wrknl_assert_unlocked(void *arg) 3989 { 3990 struct socket *so = arg; 3991 3992 if (SOLISTENING(so)) 3993 SOCK_UNLOCK_ASSERT(so); 3994 else 3995 SOCKBUF_UNLOCK_ASSERT(&so->so_snd); 3996 } 3997 3998 /* 3999 * Create an external-format (``xsocket'') structure using the information in 4000 * the kernel-format socket structure pointed to by so. This is done to 4001 * reduce the spew of irrelevant information over this interface, to isolate 4002 * user code from changes in the kernel structure, and potentially to provide 4003 * information-hiding if we decide that some of this information should be 4004 * hidden from users. 4005 */ 4006 void 4007 sotoxsocket(struct socket *so, struct xsocket *xso) 4008 { 4009 4010 bzero(xso, sizeof(*xso)); 4011 xso->xso_len = sizeof *xso; 4012 xso->xso_so = (uintptr_t)so; 4013 xso->so_type = so->so_type; 4014 xso->so_options = so->so_options; 4015 xso->so_linger = so->so_linger; 4016 xso->so_state = so->so_state; 4017 xso->so_pcb = (uintptr_t)so->so_pcb; 4018 xso->xso_protocol = so->so_proto->pr_protocol; 4019 xso->xso_family = so->so_proto->pr_domain->dom_family; 4020 xso->so_timeo = so->so_timeo; 4021 xso->so_error = so->so_error; 4022 xso->so_uid = so->so_cred->cr_uid; 4023 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 4024 if (SOLISTENING(so)) { 4025 xso->so_qlen = so->sol_qlen; 4026 xso->so_incqlen = so->sol_incqlen; 4027 xso->so_qlimit = so->sol_qlimit; 4028 xso->so_oobmark = 0; 4029 } else { 4030 xso->so_state |= so->so_qstate; 4031 xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0; 4032 xso->so_oobmark = so->so_oobmark; 4033 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 4034 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 4035 } 4036 } 4037 4038 struct sockbuf * 4039 so_sockbuf_rcv(struct socket *so) 4040 { 4041 4042 return (&so->so_rcv); 4043 } 4044 4045 struct sockbuf * 4046 so_sockbuf_snd(struct socket *so) 4047 { 4048 4049 return (&so->so_snd); 4050 } 4051 4052 int 4053 so_state_get(const struct socket *so) 4054 { 4055 4056 return (so->so_state); 4057 } 4058 4059 void 4060 so_state_set(struct socket *so, int val) 4061 { 4062 4063 so->so_state = val; 4064 } 4065 4066 int 4067 so_options_get(const struct socket *so) 4068 { 4069 4070 return (so->so_options); 4071 } 4072 4073 void 4074 so_options_set(struct socket *so, int val) 4075 { 4076 4077 so->so_options = val; 4078 } 4079 4080 int 4081 so_error_get(const struct socket *so) 4082 { 4083 4084 return (so->so_error); 4085 } 4086 4087 void 4088 so_error_set(struct socket *so, int val) 4089 { 4090 4091 so->so_error = val; 4092 } 4093 4094 int 4095 so_linger_get(const struct socket *so) 4096 { 4097 4098 return (so->so_linger); 4099 } 4100 4101 void 4102 so_linger_set(struct socket *so, int val) 4103 { 4104 4105 so->so_linger = val; 4106 } 4107 4108 struct protosw * 4109 so_protosw_get(const struct socket *so) 4110 { 4111 4112 return (so->so_proto); 4113 } 4114 4115 void 4116 so_protosw_set(struct socket *so, struct protosw *val) 4117 { 4118 4119 so->so_proto = val; 4120 } 4121 4122 void 4123 so_sorwakeup(struct socket *so) 4124 { 4125 4126 sorwakeup(so); 4127 } 4128 4129 void 4130 so_sowwakeup(struct socket *so) 4131 { 4132 4133 sowwakeup(so); 4134 } 4135 4136 void 4137 so_sorwakeup_locked(struct socket *so) 4138 { 4139 4140 sorwakeup_locked(so); 4141 } 4142 4143 void 4144 so_sowwakeup_locked(struct socket *so) 4145 { 4146 4147 sowwakeup_locked(so); 4148 } 4149 4150 void 4151 so_lock(struct socket *so) 4152 { 4153 4154 SOCK_LOCK(so); 4155 } 4156 4157 void 4158 so_unlock(struct socket *so) 4159 { 4160 4161 SOCK_UNLOCK(so); 4162 } 4163