1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. 6 * Copyright (c) 2004 The FreeBSD Foundation 7 * Copyright (c) 2004-2008 Robert N. M. Watson 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 35 */ 36 37 /* 38 * Comments on the socket life cycle: 39 * 40 * soalloc() sets of socket layer state for a socket, called only by 41 * socreate() and sonewconn(). Socket layer private. 42 * 43 * sodealloc() tears down socket layer state for a socket, called only by 44 * sofree() and sonewconn(). Socket layer private. 45 * 46 * pru_attach() associates protocol layer state with an allocated socket; 47 * called only once, may fail, aborting socket allocation. This is called 48 * from socreate() and sonewconn(). Socket layer private. 49 * 50 * pru_detach() disassociates protocol layer state from an attached socket, 51 * and will be called exactly once for sockets in which pru_attach() has 52 * been successfully called. If pru_attach() returned an error, 53 * pru_detach() will not be called. Socket layer private. 54 * 55 * pru_abort() and pru_close() notify the protocol layer that the last 56 * consumer of a socket is starting to tear down the socket, and that the 57 * protocol should terminate the connection. Historically, pru_abort() also 58 * detached protocol state from the socket state, but this is no longer the 59 * case. 60 * 61 * socreate() creates a socket and attaches protocol state. This is a public 62 * interface that may be used by socket layer consumers to create new 63 * sockets. 64 * 65 * sonewconn() creates a socket and attaches protocol state. This is a 66 * public interface that may be used by protocols to create new sockets when 67 * a new connection is received and will be available for accept() on a 68 * listen socket. 69 * 70 * soclose() destroys a socket after possibly waiting for it to disconnect. 71 * This is a public interface that socket consumers should use to close and 72 * release a socket when done with it. 73 * 74 * soabort() destroys a socket without waiting for it to disconnect (used 75 * only for incoming connections that are already partially or fully 76 * connected). This is used internally by the socket layer when clearing 77 * listen socket queues (due to overflow or close on the listen socket), but 78 * is also a public interface protocols may use to abort connections in 79 * their incomplete listen queues should they no longer be required. Sockets 80 * placed in completed connection listen queues should not be aborted for 81 * reasons described in the comment above the soclose() implementation. This 82 * is not a general purpose close routine, and except in the specific 83 * circumstances described here, should not be used. 84 * 85 * sofree() will free a socket and its protocol state if all references on 86 * the socket have been released, and is the public interface to attempt to 87 * free a socket when a reference is removed. This is a socket layer private 88 * interface. 89 * 90 * NOTE: In addition to socreate() and soclose(), which provide a single 91 * socket reference to the consumer to be managed as required, there are two 92 * calls to explicitly manage socket references, soref(), and sorele(). 93 * Currently, these are generally required only when transitioning a socket 94 * from a listen queue to a file descriptor, in order to prevent garbage 95 * collection of the socket at an untimely moment. For a number of reasons, 96 * these interfaces are not preferred, and should be avoided. 97 * 98 * NOTE: With regard to VNETs the general rule is that callers do not set 99 * curvnet. Exceptions to this rule include soabort(), sodisconnect(), 100 * sofree() (and with that sorele(), sotryfree()), as well as sonewconn() 101 * and sorflush(), which are usually called from a pre-set VNET context. 102 * sopoll() currently does not need a VNET context to be set. 103 */ 104 105 #include <sys/cdefs.h> 106 __FBSDID("$FreeBSD$"); 107 108 #include "opt_inet.h" 109 #include "opt_inet6.h" 110 #include "opt_kern_tls.h" 111 #include "opt_sctp.h" 112 113 #include <sys/param.h> 114 #include <sys/systm.h> 115 #include <sys/capsicum.h> 116 #include <sys/fcntl.h> 117 #include <sys/limits.h> 118 #include <sys/lock.h> 119 #include <sys/mac.h> 120 #include <sys/malloc.h> 121 #include <sys/mbuf.h> 122 #include <sys/mutex.h> 123 #include <sys/domain.h> 124 #include <sys/file.h> /* for struct knote */ 125 #include <sys/hhook.h> 126 #include <sys/kernel.h> 127 #include <sys/khelp.h> 128 #include <sys/ktls.h> 129 #include <sys/event.h> 130 #include <sys/eventhandler.h> 131 #include <sys/poll.h> 132 #include <sys/proc.h> 133 #include <sys/protosw.h> 134 #include <sys/sbuf.h> 135 #include <sys/socket.h> 136 #include <sys/socketvar.h> 137 #include <sys/resourcevar.h> 138 #include <net/route.h> 139 #include <sys/signalvar.h> 140 #include <sys/stat.h> 141 #include <sys/sx.h> 142 #include <sys/sysctl.h> 143 #include <sys/taskqueue.h> 144 #include <sys/uio.h> 145 #include <sys/un.h> 146 #include <sys/unpcb.h> 147 #include <sys/jail.h> 148 #include <sys/syslog.h> 149 #include <netinet/in.h> 150 #include <netinet/in_pcb.h> 151 #include <netinet/tcp.h> 152 153 #include <net/vnet.h> 154 155 #include <security/mac/mac_framework.h> 156 157 #include <vm/uma.h> 158 159 #ifdef COMPAT_FREEBSD32 160 #include <sys/mount.h> 161 #include <sys/sysent.h> 162 #include <compat/freebsd32/freebsd32.h> 163 #endif 164 165 static int soreceive_rcvoob(struct socket *so, struct uio *uio, 166 int flags); 167 static void so_rdknl_lock(void *); 168 static void so_rdknl_unlock(void *); 169 static void so_rdknl_assert_lock(void *, int); 170 static void so_wrknl_lock(void *); 171 static void so_wrknl_unlock(void *); 172 static void so_wrknl_assert_lock(void *, int); 173 174 static void filt_sordetach(struct knote *kn); 175 static int filt_soread(struct knote *kn, long hint); 176 static void filt_sowdetach(struct knote *kn); 177 static int filt_sowrite(struct knote *kn, long hint); 178 static int filt_soempty(struct knote *kn, long hint); 179 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id); 180 fo_kqfilter_t soo_kqfilter; 181 182 static struct filterops soread_filtops = { 183 .f_isfd = 1, 184 .f_detach = filt_sordetach, 185 .f_event = filt_soread, 186 }; 187 static struct filterops sowrite_filtops = { 188 .f_isfd = 1, 189 .f_detach = filt_sowdetach, 190 .f_event = filt_sowrite, 191 }; 192 static struct filterops soempty_filtops = { 193 .f_isfd = 1, 194 .f_detach = filt_sowdetach, 195 .f_event = filt_soempty, 196 }; 197 198 so_gen_t so_gencnt; /* generation count for sockets */ 199 200 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 201 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 202 203 #define VNET_SO_ASSERT(so) \ 204 VNET_ASSERT(curvnet != NULL, \ 205 ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so))); 206 207 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]); 208 #define V_socket_hhh VNET(socket_hhh) 209 210 /* 211 * Limit on the number of connections in the listen queue waiting 212 * for accept(2). 213 * NB: The original sysctl somaxconn is still available but hidden 214 * to prevent confusion about the actual purpose of this number. 215 */ 216 static u_int somaxconn = SOMAXCONN; 217 218 static int 219 sysctl_somaxconn(SYSCTL_HANDLER_ARGS) 220 { 221 int error; 222 int val; 223 224 val = somaxconn; 225 error = sysctl_handle_int(oidp, &val, 0, req); 226 if (error || !req->newptr ) 227 return (error); 228 229 /* 230 * The purpose of the UINT_MAX / 3 limit, is so that the formula 231 * 3 * so_qlimit / 2 232 * below, will not overflow. 233 */ 234 235 if (val < 1 || val > UINT_MAX / 3) 236 return (EINVAL); 237 238 somaxconn = val; 239 return (0); 240 } 241 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue, 242 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, sizeof(int), 243 sysctl_somaxconn, "I", 244 "Maximum listen socket pending connection accept queue size"); 245 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, 246 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE, 0, 247 sizeof(int), sysctl_somaxconn, "I", 248 "Maximum listen socket pending connection accept queue size (compat)"); 249 250 static int numopensockets; 251 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, 252 &numopensockets, 0, "Number of open sockets"); 253 254 /* 255 * accept_mtx locks down per-socket fields relating to accept queues. See 256 * socketvar.h for an annotation of the protected fields of struct socket. 257 */ 258 struct mtx accept_mtx; 259 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF); 260 261 /* 262 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket 263 * so_gencnt field. 264 */ 265 static struct mtx so_global_mtx; 266 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); 267 268 /* 269 * General IPC sysctl name space, used by sockets and a variety of other IPC 270 * types. 271 */ 272 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 273 "IPC"); 274 275 /* 276 * Initialize the socket subsystem and set up the socket 277 * memory allocator. 278 */ 279 static uma_zone_t socket_zone; 280 int maxsockets; 281 282 static void 283 socket_zone_change(void *tag) 284 { 285 286 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 287 } 288 289 static void 290 socket_hhook_register(int subtype) 291 { 292 293 if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype, 294 &V_socket_hhh[subtype], 295 HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 296 printf("%s: WARNING: unable to register hook\n", __func__); 297 } 298 299 static void 300 socket_hhook_deregister(int subtype) 301 { 302 303 if (hhook_head_deregister(V_socket_hhh[subtype]) != 0) 304 printf("%s: WARNING: unable to deregister hook\n", __func__); 305 } 306 307 static void 308 socket_init(void *tag) 309 { 310 311 socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL, 312 NULL, NULL, UMA_ALIGN_PTR, 0); 313 maxsockets = uma_zone_set_max(socket_zone, maxsockets); 314 uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached"); 315 EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL, 316 EVENTHANDLER_PRI_FIRST); 317 } 318 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL); 319 320 static void 321 socket_vnet_init(const void *unused __unused) 322 { 323 int i; 324 325 /* We expect a contiguous range */ 326 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 327 socket_hhook_register(i); 328 } 329 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 330 socket_vnet_init, NULL); 331 332 static void 333 socket_vnet_uninit(const void *unused __unused) 334 { 335 int i; 336 337 for (i = 0; i <= HHOOK_SOCKET_LAST; i++) 338 socket_hhook_deregister(i); 339 } 340 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, 341 socket_vnet_uninit, NULL); 342 343 /* 344 * Initialise maxsockets. This SYSINIT must be run after 345 * tunable_mbinit(). 346 */ 347 static void 348 init_maxsockets(void *ignored) 349 { 350 351 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 352 maxsockets = imax(maxsockets, maxfiles); 353 } 354 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 355 356 /* 357 * Sysctl to get and set the maximum global sockets limit. Notify protocols 358 * of the change so that they can update their dependent limits as required. 359 */ 360 static int 361 sysctl_maxsockets(SYSCTL_HANDLER_ARGS) 362 { 363 int error, newmaxsockets; 364 365 newmaxsockets = maxsockets; 366 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req); 367 if (error == 0 && req->newptr && newmaxsockets != maxsockets) { 368 if (newmaxsockets > maxsockets && 369 newmaxsockets <= maxfiles) { 370 maxsockets = newmaxsockets; 371 EVENTHANDLER_INVOKE(maxsockets_change); 372 } else 373 error = EINVAL; 374 } 375 return (error); 376 } 377 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, 378 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, &maxsockets, 0, 379 sysctl_maxsockets, "IU", 380 "Maximum number of sockets available"); 381 382 /* 383 * Socket operation routines. These routines are called by the routines in 384 * sys_socket.c or from a system process, and implement the semantics of 385 * socket operations by switching out to the protocol specific routines. 386 */ 387 388 /* 389 * Get a socket structure from our zone, and initialize it. Note that it 390 * would probably be better to allocate socket and PCB at the same time, but 391 * I'm not convinced that all the protocols can be easily modified to do 392 * this. 393 * 394 * soalloc() returns a socket with a ref count of 0. 395 */ 396 static struct socket * 397 soalloc(struct vnet *vnet) 398 { 399 struct socket *so; 400 401 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO); 402 if (so == NULL) 403 return (NULL); 404 #ifdef MAC 405 if (mac_socket_init(so, M_NOWAIT) != 0) { 406 uma_zfree(socket_zone, so); 407 return (NULL); 408 } 409 #endif 410 if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) { 411 uma_zfree(socket_zone, so); 412 return (NULL); 413 } 414 415 /* 416 * The socket locking protocol allows to lock 2 sockets at a time, 417 * however, the first one must be a listening socket. WITNESS lacks 418 * a feature to change class of an existing lock, so we use DUPOK. 419 */ 420 mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK); 421 mtx_init(&so->so_snd_mtx, "so_snd", NULL, MTX_DEF); 422 mtx_init(&so->so_rcv_mtx, "so_rcv", NULL, MTX_DEF); 423 so->so_rcv.sb_sel = &so->so_rdsel; 424 so->so_snd.sb_sel = &so->so_wrsel; 425 sx_init(&so->so_snd_sx, "so_snd_sx"); 426 sx_init(&so->so_rcv_sx, "so_rcv_sx"); 427 TAILQ_INIT(&so->so_snd.sb_aiojobq); 428 TAILQ_INIT(&so->so_rcv.sb_aiojobq); 429 TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so); 430 TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so); 431 #ifdef VIMAGE 432 VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p", 433 __func__, __LINE__, so)); 434 so->so_vnet = vnet; 435 #endif 436 /* We shouldn't need the so_global_mtx */ 437 if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) { 438 /* Do we need more comprehensive error returns? */ 439 uma_zfree(socket_zone, so); 440 return (NULL); 441 } 442 mtx_lock(&so_global_mtx); 443 so->so_gencnt = ++so_gencnt; 444 ++numopensockets; 445 #ifdef VIMAGE 446 vnet->vnet_sockcnt++; 447 #endif 448 mtx_unlock(&so_global_mtx); 449 450 return (so); 451 } 452 453 /* 454 * Free the storage associated with a socket at the socket layer, tear down 455 * locks, labels, etc. All protocol state is assumed already to have been 456 * torn down (and possibly never set up) by the caller. 457 */ 458 static void 459 sodealloc(struct socket *so) 460 { 461 462 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); 463 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL")); 464 465 mtx_lock(&so_global_mtx); 466 so->so_gencnt = ++so_gencnt; 467 --numopensockets; /* Could be below, but faster here. */ 468 #ifdef VIMAGE 469 VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p", 470 __func__, __LINE__, so)); 471 so->so_vnet->vnet_sockcnt--; 472 #endif 473 mtx_unlock(&so_global_mtx); 474 #ifdef MAC 475 mac_socket_destroy(so); 476 #endif 477 hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE); 478 479 khelp_destroy_osd(&so->osd); 480 if (SOLISTENING(so)) { 481 if (so->sol_accept_filter != NULL) 482 accept_filt_setopt(so, NULL); 483 } else { 484 if (so->so_rcv.sb_hiwat) 485 (void)chgsbsize(so->so_cred->cr_uidinfo, 486 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 487 if (so->so_snd.sb_hiwat) 488 (void)chgsbsize(so->so_cred->cr_uidinfo, 489 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 490 sx_destroy(&so->so_snd_sx); 491 sx_destroy(&so->so_rcv_sx); 492 mtx_destroy(&so->so_snd_mtx); 493 mtx_destroy(&so->so_rcv_mtx); 494 } 495 crfree(so->so_cred); 496 mtx_destroy(&so->so_lock); 497 uma_zfree(socket_zone, so); 498 } 499 500 /* 501 * socreate returns a socket with a ref count of 1 and a file descriptor 502 * reference. The socket should be closed with soclose(). 503 */ 504 int 505 socreate(int dom, struct socket **aso, int type, int proto, 506 struct ucred *cred, struct thread *td) 507 { 508 struct protosw *prp; 509 struct socket *so; 510 int error; 511 512 if (proto) 513 prp = pffindproto(dom, proto, type); 514 else 515 prp = pffindtype(dom, type); 516 517 if (prp == NULL) { 518 /* No support for domain. */ 519 if (pffinddomain(dom) == NULL) 520 return (EAFNOSUPPORT); 521 /* No support for socket type. */ 522 if (proto == 0 && type != 0) 523 return (EPROTOTYPE); 524 return (EPROTONOSUPPORT); 525 } 526 if (prp->pr_usrreqs->pru_attach == NULL || 527 prp->pr_usrreqs->pru_attach == pru_attach_notsupp) 528 return (EPROTONOSUPPORT); 529 530 if (IN_CAPABILITY_MODE(td) && (prp->pr_flags & PR_CAPATTACH) == 0) 531 return (ECAPMODE); 532 533 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0) 534 return (EPROTONOSUPPORT); 535 536 if (prp->pr_type != type) 537 return (EPROTOTYPE); 538 so = soalloc(CRED_TO_VNET(cred)); 539 if (so == NULL) 540 return (ENOBUFS); 541 542 so->so_type = type; 543 so->so_cred = crhold(cred); 544 if ((prp->pr_domain->dom_family == PF_INET) || 545 (prp->pr_domain->dom_family == PF_INET6) || 546 (prp->pr_domain->dom_family == PF_ROUTE)) 547 so->so_fibnum = td->td_proc->p_fibnum; 548 else 549 so->so_fibnum = 0; 550 so->so_proto = prp; 551 #ifdef MAC 552 mac_socket_create(cred, so); 553 #endif 554 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 555 so_rdknl_assert_lock); 556 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 557 so_wrknl_assert_lock); 558 if ((prp->pr_flags & PR_SOCKBUF) == 0) { 559 so->so_snd.sb_mtx = &so->so_snd_mtx; 560 so->so_rcv.sb_mtx = &so->so_rcv_mtx; 561 } 562 /* 563 * Auto-sizing of socket buffers is managed by the protocols and 564 * the appropriate flags must be set in the pru_attach function. 565 */ 566 CURVNET_SET(so->so_vnet); 567 error = (*prp->pr_usrreqs->pru_attach)(so, proto, td); 568 CURVNET_RESTORE(); 569 if (error) { 570 sodealloc(so); 571 return (error); 572 } 573 soref(so); 574 *aso = so; 575 return (0); 576 } 577 578 #ifdef REGRESSION 579 static int regression_sonewconn_earlytest = 1; 580 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW, 581 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test"); 582 #endif 583 584 static struct timeval overinterval = { 60, 0 }; 585 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW, 586 &overinterval, 587 "Delay in seconds between warnings for listen socket overflows"); 588 589 /* 590 * When an attempt at a new connection is noted on a socket which accepts 591 * connections, sonewconn is called. If the connection is possible (subject 592 * to space constraints, etc.) then we allocate a new structure, properly 593 * linked into the data structure of the original socket, and return this. 594 * Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED. 595 * 596 * Note: the ref count on the socket is 0 on return. 597 */ 598 struct socket * 599 sonewconn(struct socket *head, int connstatus) 600 { 601 struct sbuf descrsb; 602 struct socket *so; 603 int len, overcount; 604 u_int qlen; 605 const char localprefix[] = "local:"; 606 char descrbuf[SUNPATHLEN + sizeof(localprefix)]; 607 #if defined(INET6) 608 char addrbuf[INET6_ADDRSTRLEN]; 609 #elif defined(INET) 610 char addrbuf[INET_ADDRSTRLEN]; 611 #endif 612 bool dolog, over; 613 614 SOLISTEN_LOCK(head); 615 over = (head->sol_qlen > 3 * head->sol_qlimit / 2); 616 #ifdef REGRESSION 617 if (regression_sonewconn_earlytest && over) { 618 #else 619 if (over) { 620 #endif 621 head->sol_overcount++; 622 dolog = !!ratecheck(&head->sol_lastover, &overinterval); 623 624 /* 625 * If we're going to log, copy the overflow count and queue 626 * length from the listen socket before dropping the lock. 627 * Also, reset the overflow count. 628 */ 629 if (dolog) { 630 overcount = head->sol_overcount; 631 head->sol_overcount = 0; 632 qlen = head->sol_qlen; 633 } 634 SOLISTEN_UNLOCK(head); 635 636 if (dolog) { 637 /* 638 * Try to print something descriptive about the 639 * socket for the error message. 640 */ 641 sbuf_new(&descrsb, descrbuf, sizeof(descrbuf), 642 SBUF_FIXEDLEN); 643 switch (head->so_proto->pr_domain->dom_family) { 644 #if defined(INET) || defined(INET6) 645 #ifdef INET 646 case AF_INET: 647 #endif 648 #ifdef INET6 649 case AF_INET6: 650 if (head->so_proto->pr_domain->dom_family == 651 AF_INET6 || 652 (sotoinpcb(head)->inp_inc.inc_flags & 653 INC_ISIPV6)) { 654 ip6_sprintf(addrbuf, 655 &sotoinpcb(head)->inp_inc.inc6_laddr); 656 sbuf_printf(&descrsb, "[%s]", addrbuf); 657 } else 658 #endif 659 { 660 #ifdef INET 661 inet_ntoa_r( 662 sotoinpcb(head)->inp_inc.inc_laddr, 663 addrbuf); 664 sbuf_cat(&descrsb, addrbuf); 665 #endif 666 } 667 sbuf_printf(&descrsb, ":%hu (proto %u)", 668 ntohs(sotoinpcb(head)->inp_inc.inc_lport), 669 head->so_proto->pr_protocol); 670 break; 671 #endif /* INET || INET6 */ 672 case AF_UNIX: 673 sbuf_cat(&descrsb, localprefix); 674 if (sotounpcb(head)->unp_addr != NULL) 675 len = 676 sotounpcb(head)->unp_addr->sun_len - 677 offsetof(struct sockaddr_un, 678 sun_path); 679 else 680 len = 0; 681 if (len > 0) 682 sbuf_bcat(&descrsb, 683 sotounpcb(head)->unp_addr->sun_path, 684 len); 685 else 686 sbuf_cat(&descrsb, "(unknown)"); 687 break; 688 } 689 690 /* 691 * If we can't print something more specific, at least 692 * print the domain name. 693 */ 694 if (sbuf_finish(&descrsb) != 0 || 695 sbuf_len(&descrsb) <= 0) { 696 sbuf_clear(&descrsb); 697 sbuf_cat(&descrsb, 698 head->so_proto->pr_domain->dom_name ?: 699 "unknown"); 700 sbuf_finish(&descrsb); 701 } 702 KASSERT(sbuf_len(&descrsb) > 0, 703 ("%s: sbuf creation failed", __func__)); 704 if (head->so_cred == 0) { 705 log(LOG_DEBUG, 706 "%s: pcb %p (%s): Listen queue overflow: " 707 "%i already in queue awaiting acceptance " 708 "(%d occurrences)\n", 709 __func__, head->so_pcb, sbuf_data(&descrsb), 710 qlen, overcount); 711 } else { 712 log(LOG_DEBUG, "%s: pcb %p (%s): Listen queue overflow: " 713 "%i already in queue awaiting acceptance " 714 "(%d occurrences), euid %d, rgid %d, jail %s\n", 715 __func__, head->so_pcb, sbuf_data(&descrsb), 716 qlen, overcount, 717 head->so_cred->cr_uid, head->so_cred->cr_rgid, 718 head->so_cred->cr_prison ? 719 head->so_cred->cr_prison->pr_name : 720 "not_jailed"); 721 } 722 sbuf_delete(&descrsb); 723 724 overcount = 0; 725 } 726 727 return (NULL); 728 } 729 SOLISTEN_UNLOCK(head); 730 VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL", 731 __func__, head)); 732 so = soalloc(head->so_vnet); 733 if (so == NULL) { 734 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 735 "limit reached or out of memory\n", 736 __func__, head->so_pcb); 737 return (NULL); 738 } 739 so->so_listen = head; 740 so->so_type = head->so_type; 741 so->so_options = head->so_options & ~SO_ACCEPTCONN; 742 so->so_linger = head->so_linger; 743 so->so_state = head->so_state; 744 so->so_fibnum = head->so_fibnum; 745 so->so_proto = head->so_proto; 746 so->so_cred = crhold(head->so_cred); 747 #ifdef MAC 748 mac_socket_newconn(head, so); 749 #endif 750 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 751 so_rdknl_assert_lock); 752 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 753 so_wrknl_assert_lock); 754 VNET_SO_ASSERT(head); 755 if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) { 756 sodealloc(so); 757 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 758 __func__, head->so_pcb); 759 return (NULL); 760 } 761 if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) { 762 so->so_snd.sb_mtx = &so->so_snd_mtx; 763 so->so_rcv.sb_mtx = &so->so_rcv_mtx; 764 } 765 /* Socket starts with a reference from the listen queue. */ 766 refcount_init(&so->so_count, 1); 767 if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 768 MPASS(refcount_release(&so->so_count)); 769 sodealloc(so); 770 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", 771 __func__, head->so_pcb); 772 return (NULL); 773 } 774 so->so_rcv.sb_lowat = head->sol_sbrcv_lowat; 775 so->so_snd.sb_lowat = head->sol_sbsnd_lowat; 776 so->so_rcv.sb_timeo = head->sol_sbrcv_timeo; 777 so->so_snd.sb_timeo = head->sol_sbsnd_timeo; 778 so->so_rcv.sb_flags |= head->sol_sbrcv_flags & SB_AUTOSIZE; 779 so->so_snd.sb_flags |= head->sol_sbsnd_flags & SB_AUTOSIZE; 780 781 SOLISTEN_LOCK(head); 782 if (head->sol_accept_filter != NULL) 783 connstatus = 0; 784 so->so_state |= connstatus; 785 soref(head); /* A socket on (in)complete queue refs head. */ 786 if (connstatus) { 787 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 788 so->so_qstate = SQ_COMP; 789 head->sol_qlen++; 790 solisten_wakeup(head); /* unlocks */ 791 } else { 792 /* 793 * Keep removing sockets from the head until there's room for 794 * us to insert on the tail. In pre-locking revisions, this 795 * was a simple if(), but as we could be racing with other 796 * threads and soabort() requires dropping locks, we must 797 * loop waiting for the condition to be true. 798 */ 799 while (head->sol_incqlen > head->sol_qlimit) { 800 struct socket *sp; 801 802 sp = TAILQ_FIRST(&head->sol_incomp); 803 TAILQ_REMOVE(&head->sol_incomp, sp, so_list); 804 head->sol_incqlen--; 805 SOCK_LOCK(sp); 806 sp->so_qstate = SQ_NONE; 807 sp->so_listen = NULL; 808 SOCK_UNLOCK(sp); 809 sorele_locked(head); /* does SOLISTEN_UNLOCK, head stays */ 810 soabort(sp); 811 SOLISTEN_LOCK(head); 812 } 813 TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list); 814 so->so_qstate = SQ_INCOMP; 815 head->sol_incqlen++; 816 SOLISTEN_UNLOCK(head); 817 } 818 return (so); 819 } 820 821 #if defined(SCTP) || defined(SCTP_SUPPORT) 822 /* 823 * Socket part of sctp_peeloff(). Detach a new socket from an 824 * association. The new socket is returned with a reference. 825 */ 826 struct socket * 827 sopeeloff(struct socket *head) 828 { 829 struct socket *so; 830 831 VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p", 832 __func__, __LINE__, head)); 833 so = soalloc(head->so_vnet); 834 if (so == NULL) { 835 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " 836 "limit reached or out of memory\n", 837 __func__, head->so_pcb); 838 return (NULL); 839 } 840 so->so_type = head->so_type; 841 so->so_options = head->so_options; 842 so->so_linger = head->so_linger; 843 so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED; 844 so->so_fibnum = head->so_fibnum; 845 so->so_proto = head->so_proto; 846 so->so_cred = crhold(head->so_cred); 847 #ifdef MAC 848 mac_socket_newconn(head, so); 849 #endif 850 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, 851 so_rdknl_assert_lock); 852 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, 853 so_wrknl_assert_lock); 854 VNET_SO_ASSERT(head); 855 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) { 856 sodealloc(so); 857 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", 858 __func__, head->so_pcb); 859 return (NULL); 860 } 861 if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 862 sodealloc(so); 863 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", 864 __func__, head->so_pcb); 865 return (NULL); 866 } 867 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; 868 so->so_snd.sb_lowat = head->so_snd.sb_lowat; 869 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; 870 so->so_snd.sb_timeo = head->so_snd.sb_timeo; 871 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE; 872 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE; 873 874 soref(so); 875 876 return (so); 877 } 878 #endif /* SCTP */ 879 880 int 881 sobind(struct socket *so, struct sockaddr *nam, struct thread *td) 882 { 883 int error; 884 885 CURVNET_SET(so->so_vnet); 886 error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td); 887 CURVNET_RESTORE(); 888 return (error); 889 } 890 891 int 892 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 893 { 894 int error; 895 896 CURVNET_SET(so->so_vnet); 897 error = (*so->so_proto->pr_usrreqs->pru_bindat)(fd, so, nam, td); 898 CURVNET_RESTORE(); 899 return (error); 900 } 901 902 /* 903 * solisten() transitions a socket from a non-listening state to a listening 904 * state, but can also be used to update the listen queue depth on an 905 * existing listen socket. The protocol will call back into the sockets 906 * layer using solisten_proto_check() and solisten_proto() to check and set 907 * socket-layer listen state. Call backs are used so that the protocol can 908 * acquire both protocol and socket layer locks in whatever order is required 909 * by the protocol. 910 * 911 * Protocol implementors are advised to hold the socket lock across the 912 * socket-layer test and set to avoid races at the socket layer. 913 */ 914 int 915 solisten(struct socket *so, int backlog, struct thread *td) 916 { 917 int error; 918 919 CURVNET_SET(so->so_vnet); 920 error = (*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td); 921 CURVNET_RESTORE(); 922 return (error); 923 } 924 925 /* 926 * Prepare for a call to solisten_proto(). Acquire all socket buffer locks in 927 * order to interlock with socket I/O. 928 */ 929 int 930 solisten_proto_check(struct socket *so) 931 { 932 SOCK_LOCK_ASSERT(so); 933 934 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 935 SS_ISDISCONNECTING)) != 0) 936 return (EINVAL); 937 938 /* 939 * Sleeping is not permitted here, so simply fail if userspace is 940 * attempting to transmit or receive on the socket. This kind of 941 * transient failure is not ideal, but it should occur only if userspace 942 * is misusing the socket interfaces. 943 */ 944 if (!sx_try_xlock(&so->so_snd_sx)) 945 return (EAGAIN); 946 if (!sx_try_xlock(&so->so_rcv_sx)) { 947 sx_xunlock(&so->so_snd_sx); 948 return (EAGAIN); 949 } 950 mtx_lock(&so->so_snd_mtx); 951 mtx_lock(&so->so_rcv_mtx); 952 953 /* Interlock with soo_aio_queue(). */ 954 if (!SOLISTENING(so) && 955 ((so->so_snd.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0 || 956 (so->so_rcv.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0)) { 957 solisten_proto_abort(so); 958 return (EINVAL); 959 } 960 return (0); 961 } 962 963 /* 964 * Undo the setup done by solisten_proto_check(). 965 */ 966 void 967 solisten_proto_abort(struct socket *so) 968 { 969 mtx_unlock(&so->so_snd_mtx); 970 mtx_unlock(&so->so_rcv_mtx); 971 sx_xunlock(&so->so_snd_sx); 972 sx_xunlock(&so->so_rcv_sx); 973 } 974 975 void 976 solisten_proto(struct socket *so, int backlog) 977 { 978 int sbrcv_lowat, sbsnd_lowat; 979 u_int sbrcv_hiwat, sbsnd_hiwat; 980 short sbrcv_flags, sbsnd_flags; 981 sbintime_t sbrcv_timeo, sbsnd_timeo; 982 983 SOCK_LOCK_ASSERT(so); 984 KASSERT((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 985 SS_ISDISCONNECTING)) == 0, 986 ("%s: bad socket state %p", __func__, so)); 987 988 if (SOLISTENING(so)) 989 goto listening; 990 991 /* 992 * Change this socket to listening state. 993 */ 994 sbrcv_lowat = so->so_rcv.sb_lowat; 995 sbsnd_lowat = so->so_snd.sb_lowat; 996 sbrcv_hiwat = so->so_rcv.sb_hiwat; 997 sbsnd_hiwat = so->so_snd.sb_hiwat; 998 sbrcv_flags = so->so_rcv.sb_flags; 999 sbsnd_flags = so->so_snd.sb_flags; 1000 sbrcv_timeo = so->so_rcv.sb_timeo; 1001 sbsnd_timeo = so->so_snd.sb_timeo; 1002 1003 sbdestroy(so, SO_SND); 1004 sbdestroy(so, SO_RCV); 1005 1006 #ifdef INVARIANTS 1007 bzero(&so->so_rcv, 1008 sizeof(struct socket) - offsetof(struct socket, so_rcv)); 1009 #endif 1010 1011 so->sol_sbrcv_lowat = sbrcv_lowat; 1012 so->sol_sbsnd_lowat = sbsnd_lowat; 1013 so->sol_sbrcv_hiwat = sbrcv_hiwat; 1014 so->sol_sbsnd_hiwat = sbsnd_hiwat; 1015 so->sol_sbrcv_flags = sbrcv_flags; 1016 so->sol_sbsnd_flags = sbsnd_flags; 1017 so->sol_sbrcv_timeo = sbrcv_timeo; 1018 so->sol_sbsnd_timeo = sbsnd_timeo; 1019 1020 so->sol_qlen = so->sol_incqlen = 0; 1021 TAILQ_INIT(&so->sol_incomp); 1022 TAILQ_INIT(&so->sol_comp); 1023 1024 so->sol_accept_filter = NULL; 1025 so->sol_accept_filter_arg = NULL; 1026 so->sol_accept_filter_str = NULL; 1027 1028 so->sol_upcall = NULL; 1029 so->sol_upcallarg = NULL; 1030 1031 so->so_options |= SO_ACCEPTCONN; 1032 1033 listening: 1034 if (backlog < 0 || backlog > somaxconn) 1035 backlog = somaxconn; 1036 so->sol_qlimit = backlog; 1037 1038 mtx_unlock(&so->so_snd_mtx); 1039 mtx_unlock(&so->so_rcv_mtx); 1040 sx_xunlock(&so->so_snd_sx); 1041 sx_xunlock(&so->so_rcv_sx); 1042 } 1043 1044 /* 1045 * Wakeup listeners/subsystems once we have a complete connection. 1046 * Enters with lock, returns unlocked. 1047 */ 1048 void 1049 solisten_wakeup(struct socket *sol) 1050 { 1051 1052 if (sol->sol_upcall != NULL) 1053 (void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT); 1054 else { 1055 selwakeuppri(&sol->so_rdsel, PSOCK); 1056 KNOTE_LOCKED(&sol->so_rdsel.si_note, 0); 1057 } 1058 SOLISTEN_UNLOCK(sol); 1059 wakeup_one(&sol->sol_comp); 1060 if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL) 1061 pgsigio(&sol->so_sigio, SIGIO, 0); 1062 } 1063 1064 /* 1065 * Return single connection off a listening socket queue. Main consumer of 1066 * the function is kern_accept4(). Some modules, that do their own accept 1067 * management also use the function. The socket reference held by the 1068 * listen queue is handed to the caller. 1069 * 1070 * Listening socket must be locked on entry and is returned unlocked on 1071 * return. 1072 * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT. 1073 */ 1074 int 1075 solisten_dequeue(struct socket *head, struct socket **ret, int flags) 1076 { 1077 struct socket *so; 1078 int error; 1079 1080 SOLISTEN_LOCK_ASSERT(head); 1081 1082 while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) && 1083 head->so_error == 0) { 1084 error = msleep(&head->sol_comp, SOCK_MTX(head), PSOCK | PCATCH, 1085 "accept", 0); 1086 if (error != 0) { 1087 SOLISTEN_UNLOCK(head); 1088 return (error); 1089 } 1090 } 1091 if (head->so_error) { 1092 error = head->so_error; 1093 head->so_error = 0; 1094 } else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp)) 1095 error = EWOULDBLOCK; 1096 else 1097 error = 0; 1098 if (error) { 1099 SOLISTEN_UNLOCK(head); 1100 return (error); 1101 } 1102 so = TAILQ_FIRST(&head->sol_comp); 1103 SOCK_LOCK(so); 1104 KASSERT(so->so_qstate == SQ_COMP, 1105 ("%s: so %p not SQ_COMP", __func__, so)); 1106 head->sol_qlen--; 1107 so->so_qstate = SQ_NONE; 1108 so->so_listen = NULL; 1109 TAILQ_REMOVE(&head->sol_comp, so, so_list); 1110 if (flags & ACCEPT4_INHERIT) 1111 so->so_state |= (head->so_state & SS_NBIO); 1112 else 1113 so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0; 1114 SOCK_UNLOCK(so); 1115 sorele_locked(head); 1116 1117 *ret = so; 1118 return (0); 1119 } 1120 1121 /* 1122 * Free socket upon release of the very last reference. 1123 */ 1124 static void 1125 sofree(struct socket *so) 1126 { 1127 struct protosw *pr = so->so_proto; 1128 1129 SOCK_LOCK_ASSERT(so); 1130 KASSERT(refcount_load(&so->so_count) == 0, 1131 ("%s: so %p has references", __func__, so)); 1132 KASSERT(SOLISTENING(so) || so->so_qstate == SQ_NONE, 1133 ("%s: so %p is on listen queue", __func__, so)); 1134 1135 SOCK_UNLOCK(so); 1136 1137 if (so->so_dtor != NULL) 1138 so->so_dtor(so); 1139 1140 VNET_SO_ASSERT(so); 1141 if ((pr->pr_flags & PR_RIGHTS) && !SOLISTENING(so)) { 1142 MPASS(pr->pr_domain->dom_dispose != NULL); 1143 (*pr->pr_domain->dom_dispose)(so); 1144 } 1145 if (pr->pr_usrreqs->pru_detach != NULL) 1146 (*pr->pr_usrreqs->pru_detach)(so); 1147 1148 /* 1149 * From this point on, we assume that no other references to this 1150 * socket exist anywhere else in the stack. Therefore, no locks need 1151 * to be acquired or held. 1152 */ 1153 if (!(pr->pr_flags & PR_SOCKBUF) && !SOLISTENING(so)) { 1154 sbdestroy(so, SO_SND); 1155 sbdestroy(so, SO_RCV); 1156 } 1157 seldrain(&so->so_rdsel); 1158 seldrain(&so->so_wrsel); 1159 knlist_destroy(&so->so_rdsel.si_note); 1160 knlist_destroy(&so->so_wrsel.si_note); 1161 sodealloc(so); 1162 } 1163 1164 /* 1165 * Release a reference on a socket while holding the socket lock. 1166 * Unlocks the socket lock before returning. 1167 */ 1168 void 1169 sorele_locked(struct socket *so) 1170 { 1171 SOCK_LOCK_ASSERT(so); 1172 if (refcount_release(&so->so_count)) 1173 sofree(so); 1174 else 1175 SOCK_UNLOCK(so); 1176 } 1177 1178 /* 1179 * Close a socket on last file table reference removal. Initiate disconnect 1180 * if connected. Free socket when disconnect complete. 1181 * 1182 * This function will sorele() the socket. Note that soclose() may be called 1183 * prior to the ref count reaching zero. The actual socket structure will 1184 * not be freed until the ref count reaches zero. 1185 */ 1186 int 1187 soclose(struct socket *so) 1188 { 1189 struct accept_queue lqueue; 1190 int error = 0; 1191 bool listening, last __diagused; 1192 1193 CURVNET_SET(so->so_vnet); 1194 funsetown(&so->so_sigio); 1195 if (so->so_state & SS_ISCONNECTED) { 1196 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 1197 error = sodisconnect(so); 1198 if (error) { 1199 if (error == ENOTCONN) 1200 error = 0; 1201 goto drop; 1202 } 1203 } 1204 1205 if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) { 1206 if ((so->so_state & SS_ISDISCONNECTING) && 1207 (so->so_state & SS_NBIO)) 1208 goto drop; 1209 while (so->so_state & SS_ISCONNECTED) { 1210 error = tsleep(&so->so_timeo, 1211 PSOCK | PCATCH, "soclos", 1212 so->so_linger * hz); 1213 if (error) 1214 break; 1215 } 1216 } 1217 } 1218 1219 drop: 1220 if (so->so_proto->pr_usrreqs->pru_close != NULL) 1221 (*so->so_proto->pr_usrreqs->pru_close)(so); 1222 1223 SOCK_LOCK(so); 1224 if ((listening = SOLISTENING(so))) { 1225 struct socket *sp; 1226 1227 TAILQ_INIT(&lqueue); 1228 TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list); 1229 TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list); 1230 1231 so->sol_qlen = so->sol_incqlen = 0; 1232 1233 TAILQ_FOREACH(sp, &lqueue, so_list) { 1234 SOCK_LOCK(sp); 1235 sp->so_qstate = SQ_NONE; 1236 sp->so_listen = NULL; 1237 SOCK_UNLOCK(sp); 1238 last = refcount_release(&so->so_count); 1239 KASSERT(!last, ("%s: released last reference for %p", 1240 __func__, so)); 1241 } 1242 } 1243 sorele_locked(so); 1244 if (listening) { 1245 struct socket *sp, *tsp; 1246 1247 TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp) 1248 soabort(sp); 1249 } 1250 CURVNET_RESTORE(); 1251 return (error); 1252 } 1253 1254 /* 1255 * soabort() is used to abruptly tear down a connection, such as when a 1256 * resource limit is reached (listen queue depth exceeded), or if a listen 1257 * socket is closed while there are sockets waiting to be accepted. 1258 * 1259 * This interface is tricky, because it is called on an unreferenced socket, 1260 * and must be called only by a thread that has actually removed the socket 1261 * from the listen queue it was on. Likely this thread holds the last 1262 * reference on the socket and soabort() will proceed with sofree(). But 1263 * it might be not the last, as the sockets on the listen queues are seen 1264 * from the protocol side. 1265 * 1266 * This interface will call into the protocol code, so must not be called 1267 * with any socket locks held. Protocols do call it while holding their own 1268 * recursible protocol mutexes, but this is something that should be subject 1269 * to review in the future. 1270 * 1271 * Usually socket should have a single reference left, but this is not a 1272 * requirement. In the past, when we have had named references for file 1273 * descriptor and protocol, we asserted that none of them are being held. 1274 */ 1275 void 1276 soabort(struct socket *so) 1277 { 1278 1279 VNET_SO_ASSERT(so); 1280 1281 if (so->so_proto->pr_usrreqs->pru_abort != NULL) 1282 (*so->so_proto->pr_usrreqs->pru_abort)(so); 1283 SOCK_LOCK(so); 1284 sorele_locked(so); 1285 } 1286 1287 int 1288 soaccept(struct socket *so, struct sockaddr **nam) 1289 { 1290 int error; 1291 1292 CURVNET_SET(so->so_vnet); 1293 error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam); 1294 CURVNET_RESTORE(); 1295 return (error); 1296 } 1297 1298 int 1299 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td) 1300 { 1301 1302 return (soconnectat(AT_FDCWD, so, nam, td)); 1303 } 1304 1305 int 1306 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) 1307 { 1308 int error; 1309 1310 CURVNET_SET(so->so_vnet); 1311 /* 1312 * If protocol is connection-based, can only connect once. 1313 * Otherwise, if connected, try to disconnect first. This allows 1314 * user to disconnect by connecting to, e.g., a null address. 1315 */ 1316 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 1317 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 1318 (error = sodisconnect(so)))) { 1319 error = EISCONN; 1320 } else { 1321 /* 1322 * Prevent accumulated error from previous connection from 1323 * biting us. 1324 */ 1325 so->so_error = 0; 1326 if (fd == AT_FDCWD) { 1327 error = (*so->so_proto->pr_usrreqs->pru_connect)(so, 1328 nam, td); 1329 } else { 1330 error = (*so->so_proto->pr_usrreqs->pru_connectat)(fd, 1331 so, nam, td); 1332 } 1333 } 1334 CURVNET_RESTORE(); 1335 1336 return (error); 1337 } 1338 1339 int 1340 soconnect2(struct socket *so1, struct socket *so2) 1341 { 1342 int error; 1343 1344 CURVNET_SET(so1->so_vnet); 1345 error = (*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2); 1346 CURVNET_RESTORE(); 1347 return (error); 1348 } 1349 1350 int 1351 sodisconnect(struct socket *so) 1352 { 1353 int error; 1354 1355 if ((so->so_state & SS_ISCONNECTED) == 0) 1356 return (ENOTCONN); 1357 if (so->so_state & SS_ISDISCONNECTING) 1358 return (EALREADY); 1359 VNET_SO_ASSERT(so); 1360 error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so); 1361 return (error); 1362 } 1363 1364 int 1365 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, 1366 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1367 { 1368 long space; 1369 ssize_t resid; 1370 int clen = 0, error, dontroute; 1371 1372 KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM")); 1373 KASSERT(so->so_proto->pr_flags & PR_ATOMIC, 1374 ("sosend_dgram: !PR_ATOMIC")); 1375 1376 if (uio != NULL) 1377 resid = uio->uio_resid; 1378 else 1379 resid = top->m_pkthdr.len; 1380 /* 1381 * In theory resid should be unsigned. However, space must be 1382 * signed, as it might be less than 0 if we over-committed, and we 1383 * must use a signed comparison of space and resid. On the other 1384 * hand, a negative resid causes us to loop sending 0-length 1385 * segments to the protocol. 1386 */ 1387 if (resid < 0) { 1388 error = EINVAL; 1389 goto out; 1390 } 1391 1392 dontroute = 1393 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0; 1394 if (td != NULL) 1395 td->td_ru.ru_msgsnd++; 1396 if (control != NULL) 1397 clen = control->m_len; 1398 1399 SOCKBUF_LOCK(&so->so_snd); 1400 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1401 SOCKBUF_UNLOCK(&so->so_snd); 1402 error = EPIPE; 1403 goto out; 1404 } 1405 if (so->so_error) { 1406 error = so->so_error; 1407 so->so_error = 0; 1408 SOCKBUF_UNLOCK(&so->so_snd); 1409 goto out; 1410 } 1411 if ((so->so_state & SS_ISCONNECTED) == 0) { 1412 /* 1413 * `sendto' and `sendmsg' is allowed on a connection-based 1414 * socket if it supports implied connect. Return ENOTCONN if 1415 * not connected and no address is supplied. 1416 */ 1417 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1418 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1419 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1420 !(resid == 0 && clen != 0)) { 1421 SOCKBUF_UNLOCK(&so->so_snd); 1422 error = ENOTCONN; 1423 goto out; 1424 } 1425 } else if (addr == NULL) { 1426 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1427 error = ENOTCONN; 1428 else 1429 error = EDESTADDRREQ; 1430 SOCKBUF_UNLOCK(&so->so_snd); 1431 goto out; 1432 } 1433 } 1434 1435 /* 1436 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a 1437 * problem and need fixing. 1438 */ 1439 space = sbspace(&so->so_snd); 1440 if (flags & MSG_OOB) 1441 space += 1024; 1442 space -= clen; 1443 SOCKBUF_UNLOCK(&so->so_snd); 1444 if (resid > space) { 1445 error = EMSGSIZE; 1446 goto out; 1447 } 1448 if (uio == NULL) { 1449 resid = 0; 1450 if (flags & MSG_EOR) 1451 top->m_flags |= M_EOR; 1452 } else { 1453 /* 1454 * Copy the data from userland into a mbuf chain. 1455 * If no data is to be copied in, a single empty mbuf 1456 * is returned. 1457 */ 1458 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr, 1459 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0))); 1460 if (top == NULL) { 1461 error = EFAULT; /* only possible error */ 1462 goto out; 1463 } 1464 space -= resid - uio->uio_resid; 1465 resid = uio->uio_resid; 1466 } 1467 KASSERT(resid == 0, ("sosend_dgram: resid != 0")); 1468 /* 1469 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock 1470 * than with. 1471 */ 1472 if (dontroute) { 1473 SOCK_LOCK(so); 1474 so->so_options |= SO_DONTROUTE; 1475 SOCK_UNLOCK(so); 1476 } 1477 /* 1478 * XXX all the SBS_CANTSENDMORE checks previously done could be out 1479 * of date. We could have received a reset packet in an interrupt or 1480 * maybe we slept while doing page faults in uiomove() etc. We could 1481 * probably recheck again inside the locking protection here, but 1482 * there are probably other places that this also happens. We must 1483 * rethink this. 1484 */ 1485 VNET_SO_ASSERT(so); 1486 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1487 (flags & MSG_OOB) ? PRUS_OOB : 1488 /* 1489 * If the user set MSG_EOF, the protocol understands this flag and 1490 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND. 1491 */ 1492 ((flags & MSG_EOF) && 1493 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1494 (resid <= 0)) ? 1495 PRUS_EOF : 1496 /* If there is more to send set PRUS_MORETOCOME */ 1497 (flags & MSG_MORETOCOME) || 1498 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 1499 top, addr, control, td); 1500 if (dontroute) { 1501 SOCK_LOCK(so); 1502 so->so_options &= ~SO_DONTROUTE; 1503 SOCK_UNLOCK(so); 1504 } 1505 clen = 0; 1506 control = NULL; 1507 top = NULL; 1508 out: 1509 if (top != NULL) 1510 m_freem(top); 1511 if (control != NULL) 1512 m_freem(control); 1513 return (error); 1514 } 1515 1516 /* 1517 * Send on a socket. If send must go all at once and message is larger than 1518 * send buffering, then hard error. Lock against other senders. If must go 1519 * all at once and not enough room now, then inform user that this would 1520 * block and do nothing. Otherwise, if nonblocking, send as much as 1521 * possible. The data to be sent is described by "uio" if nonzero, otherwise 1522 * by the mbuf chain "top" (which must be null if uio is not). Data provided 1523 * in mbuf chain must be small enough to send all at once. 1524 * 1525 * Returns nonzero on error, timeout or signal; callers must check for short 1526 * counts if EINTR/ERESTART are returned. Data and control buffers are freed 1527 * on return. 1528 */ 1529 int 1530 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio, 1531 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1532 { 1533 long space; 1534 ssize_t resid; 1535 int clen = 0, error, dontroute; 1536 int atomic = sosendallatonce(so) || top; 1537 int pru_flag; 1538 #ifdef KERN_TLS 1539 struct ktls_session *tls; 1540 int tls_enq_cnt, tls_pruflag; 1541 uint8_t tls_rtype; 1542 1543 tls = NULL; 1544 tls_rtype = TLS_RLTYPE_APP; 1545 #endif 1546 if (uio != NULL) 1547 resid = uio->uio_resid; 1548 else if ((top->m_flags & M_PKTHDR) != 0) 1549 resid = top->m_pkthdr.len; 1550 else 1551 resid = m_length(top, NULL); 1552 /* 1553 * In theory resid should be unsigned. However, space must be 1554 * signed, as it might be less than 0 if we over-committed, and we 1555 * must use a signed comparison of space and resid. On the other 1556 * hand, a negative resid causes us to loop sending 0-length 1557 * segments to the protocol. 1558 * 1559 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 1560 * type sockets since that's an error. 1561 */ 1562 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 1563 error = EINVAL; 1564 goto out; 1565 } 1566 1567 dontroute = 1568 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 1569 (so->so_proto->pr_flags & PR_ATOMIC); 1570 if (td != NULL) 1571 td->td_ru.ru_msgsnd++; 1572 if (control != NULL) 1573 clen = control->m_len; 1574 1575 error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags)); 1576 if (error) 1577 goto out; 1578 1579 #ifdef KERN_TLS 1580 tls_pruflag = 0; 1581 tls = ktls_hold(so->so_snd.sb_tls_info); 1582 if (tls != NULL) { 1583 if (tls->mode == TCP_TLS_MODE_SW) 1584 tls_pruflag = PRUS_NOTREADY; 1585 1586 if (control != NULL) { 1587 struct cmsghdr *cm = mtod(control, struct cmsghdr *); 1588 1589 if (clen >= sizeof(*cm) && 1590 cm->cmsg_type == TLS_SET_RECORD_TYPE) { 1591 tls_rtype = *((uint8_t *)CMSG_DATA(cm)); 1592 clen = 0; 1593 m_freem(control); 1594 control = NULL; 1595 atomic = 1; 1596 } 1597 } 1598 1599 if (resid == 0 && !ktls_permit_empty_frames(tls)) { 1600 error = EINVAL; 1601 goto release; 1602 } 1603 } 1604 #endif 1605 1606 restart: 1607 do { 1608 SOCKBUF_LOCK(&so->so_snd); 1609 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 1610 SOCKBUF_UNLOCK(&so->so_snd); 1611 error = EPIPE; 1612 goto release; 1613 } 1614 if (so->so_error) { 1615 error = so->so_error; 1616 so->so_error = 0; 1617 SOCKBUF_UNLOCK(&so->so_snd); 1618 goto release; 1619 } 1620 if ((so->so_state & SS_ISCONNECTED) == 0) { 1621 /* 1622 * `sendto' and `sendmsg' is allowed on a connection- 1623 * based socket if it supports implied connect. 1624 * Return ENOTCONN if not connected and no address is 1625 * supplied. 1626 */ 1627 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 1628 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 1629 if ((so->so_state & SS_ISCONFIRMING) == 0 && 1630 !(resid == 0 && clen != 0)) { 1631 SOCKBUF_UNLOCK(&so->so_snd); 1632 error = ENOTCONN; 1633 goto release; 1634 } 1635 } else if (addr == NULL) { 1636 SOCKBUF_UNLOCK(&so->so_snd); 1637 if (so->so_proto->pr_flags & PR_CONNREQUIRED) 1638 error = ENOTCONN; 1639 else 1640 error = EDESTADDRREQ; 1641 goto release; 1642 } 1643 } 1644 space = sbspace(&so->so_snd); 1645 if (flags & MSG_OOB) 1646 space += 1024; 1647 if ((atomic && resid > so->so_snd.sb_hiwat) || 1648 clen > so->so_snd.sb_hiwat) { 1649 SOCKBUF_UNLOCK(&so->so_snd); 1650 error = EMSGSIZE; 1651 goto release; 1652 } 1653 if (space < resid + clen && 1654 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 1655 if ((so->so_state & SS_NBIO) || 1656 (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) { 1657 SOCKBUF_UNLOCK(&so->so_snd); 1658 error = EWOULDBLOCK; 1659 goto release; 1660 } 1661 error = sbwait(so, SO_SND); 1662 SOCKBUF_UNLOCK(&so->so_snd); 1663 if (error) 1664 goto release; 1665 goto restart; 1666 } 1667 SOCKBUF_UNLOCK(&so->so_snd); 1668 space -= clen; 1669 do { 1670 if (uio == NULL) { 1671 resid = 0; 1672 if (flags & MSG_EOR) 1673 top->m_flags |= M_EOR; 1674 #ifdef KERN_TLS 1675 if (tls != NULL) { 1676 ktls_frame(top, tls, &tls_enq_cnt, 1677 tls_rtype); 1678 tls_rtype = TLS_RLTYPE_APP; 1679 } 1680 #endif 1681 } else { 1682 /* 1683 * Copy the data from userland into a mbuf 1684 * chain. If resid is 0, which can happen 1685 * only if we have control to send, then 1686 * a single empty mbuf is returned. This 1687 * is a workaround to prevent protocol send 1688 * methods to panic. 1689 */ 1690 #ifdef KERN_TLS 1691 if (tls != NULL) { 1692 top = m_uiotombuf(uio, M_WAITOK, space, 1693 tls->params.max_frame_len, 1694 M_EXTPG | 1695 ((flags & MSG_EOR) ? M_EOR : 0)); 1696 if (top != NULL) { 1697 ktls_frame(top, tls, 1698 &tls_enq_cnt, tls_rtype); 1699 } 1700 tls_rtype = TLS_RLTYPE_APP; 1701 } else 1702 #endif 1703 top = m_uiotombuf(uio, M_WAITOK, space, 1704 (atomic ? max_hdr : 0), 1705 (atomic ? M_PKTHDR : 0) | 1706 ((flags & MSG_EOR) ? M_EOR : 0)); 1707 if (top == NULL) { 1708 error = EFAULT; /* only possible error */ 1709 goto release; 1710 } 1711 space -= resid - uio->uio_resid; 1712 resid = uio->uio_resid; 1713 } 1714 if (dontroute) { 1715 SOCK_LOCK(so); 1716 so->so_options |= SO_DONTROUTE; 1717 SOCK_UNLOCK(so); 1718 } 1719 /* 1720 * XXX all the SBS_CANTSENDMORE checks previously 1721 * done could be out of date. We could have received 1722 * a reset packet in an interrupt or maybe we slept 1723 * while doing page faults in uiomove() etc. We 1724 * could probably recheck again inside the locking 1725 * protection here, but there are probably other 1726 * places that this also happens. We must rethink 1727 * this. 1728 */ 1729 VNET_SO_ASSERT(so); 1730 1731 pru_flag = (flags & MSG_OOB) ? PRUS_OOB : 1732 /* 1733 * If the user set MSG_EOF, the protocol understands 1734 * this flag and nothing left to send then use 1735 * PRU_SEND_EOF instead of PRU_SEND. 1736 */ 1737 ((flags & MSG_EOF) && 1738 (so->so_proto->pr_flags & PR_IMPLOPCL) && 1739 (resid <= 0)) ? 1740 PRUS_EOF : 1741 /* If there is more to send set PRUS_MORETOCOME. */ 1742 (flags & MSG_MORETOCOME) || 1743 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0; 1744 1745 #ifdef KERN_TLS 1746 pru_flag |= tls_pruflag; 1747 #endif 1748 1749 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 1750 pru_flag, top, addr, control, td); 1751 1752 if (dontroute) { 1753 SOCK_LOCK(so); 1754 so->so_options &= ~SO_DONTROUTE; 1755 SOCK_UNLOCK(so); 1756 } 1757 1758 #ifdef KERN_TLS 1759 if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) { 1760 if (error != 0) { 1761 m_freem(top); 1762 top = NULL; 1763 } else { 1764 soref(so); 1765 ktls_enqueue(top, so, tls_enq_cnt); 1766 } 1767 } 1768 #endif 1769 clen = 0; 1770 control = NULL; 1771 top = NULL; 1772 if (error) 1773 goto release; 1774 } while (resid && space > 0); 1775 } while (resid); 1776 1777 release: 1778 SOCK_IO_SEND_UNLOCK(so); 1779 out: 1780 #ifdef KERN_TLS 1781 if (tls != NULL) 1782 ktls_free(tls); 1783 #endif 1784 if (top != NULL) 1785 m_freem(top); 1786 if (control != NULL) 1787 m_freem(control); 1788 return (error); 1789 } 1790 1791 int 1792 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, 1793 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 1794 { 1795 int error; 1796 1797 CURVNET_SET(so->so_vnet); 1798 error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, 1799 top, control, flags, td); 1800 CURVNET_RESTORE(); 1801 return (error); 1802 } 1803 1804 /* 1805 * The part of soreceive() that implements reading non-inline out-of-band 1806 * data from a socket. For more complete comments, see soreceive(), from 1807 * which this code originated. 1808 * 1809 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is 1810 * unable to return an mbuf chain to the caller. 1811 */ 1812 static int 1813 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags) 1814 { 1815 struct protosw *pr = so->so_proto; 1816 struct mbuf *m; 1817 int error; 1818 1819 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); 1820 VNET_SO_ASSERT(so); 1821 1822 m = m_get(M_WAITOK, MT_DATA); 1823 error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK); 1824 if (error) 1825 goto bad; 1826 do { 1827 error = uiomove(mtod(m, void *), 1828 (int) min(uio->uio_resid, m->m_len), uio); 1829 m = m_free(m); 1830 } while (uio->uio_resid && error == 0 && m); 1831 bad: 1832 if (m != NULL) 1833 m_freem(m); 1834 return (error); 1835 } 1836 1837 /* 1838 * Following replacement or removal of the first mbuf on the first mbuf chain 1839 * of a socket buffer, push necessary state changes back into the socket 1840 * buffer so that other consumers see the values consistently. 'nextrecord' 1841 * is the callers locally stored value of the original value of 1842 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. 1843 * NOTE: 'nextrecord' may be NULL. 1844 */ 1845 static __inline void 1846 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) 1847 { 1848 1849 SOCKBUF_LOCK_ASSERT(sb); 1850 /* 1851 * First, update for the new value of nextrecord. If necessary, make 1852 * it the first record. 1853 */ 1854 if (sb->sb_mb != NULL) 1855 sb->sb_mb->m_nextpkt = nextrecord; 1856 else 1857 sb->sb_mb = nextrecord; 1858 1859 /* 1860 * Now update any dependent socket buffer fields to reflect the new 1861 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the 1862 * addition of a second clause that takes care of the case where 1863 * sb_mb has been updated, but remains the last record. 1864 */ 1865 if (sb->sb_mb == NULL) { 1866 sb->sb_mbtail = NULL; 1867 sb->sb_lastrecord = NULL; 1868 } else if (sb->sb_mb->m_nextpkt == NULL) 1869 sb->sb_lastrecord = sb->sb_mb; 1870 } 1871 1872 /* 1873 * Implement receive operations on a socket. We depend on the way that 1874 * records are added to the sockbuf by sbappend. In particular, each record 1875 * (mbufs linked through m_next) must begin with an address if the protocol 1876 * so specifies, followed by an optional mbuf or mbufs containing ancillary 1877 * data, and then zero or more mbufs of data. In order to allow parallelism 1878 * between network receive and copying to user space, as well as avoid 1879 * sleeping with a mutex held, we release the socket buffer mutex during the 1880 * user space copy. Although the sockbuf is locked, new data may still be 1881 * appended, and thus we must maintain consistency of the sockbuf during that 1882 * time. 1883 * 1884 * The caller may receive the data as a single mbuf chain by supplying an 1885 * mbuf **mp0 for use in returning the chain. The uio is then used only for 1886 * the count in uio_resid. 1887 */ 1888 int 1889 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio, 1890 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1891 { 1892 struct mbuf *m, **mp; 1893 int flags, error, offset; 1894 ssize_t len; 1895 struct protosw *pr = so->so_proto; 1896 struct mbuf *nextrecord; 1897 int moff, type = 0; 1898 ssize_t orig_resid = uio->uio_resid; 1899 bool report_real_len = false; 1900 1901 mp = mp0; 1902 if (psa != NULL) 1903 *psa = NULL; 1904 if (controlp != NULL) 1905 *controlp = NULL; 1906 if (flagsp != NULL) { 1907 report_real_len = *flagsp & MSG_TRUNC; 1908 *flagsp &= ~MSG_TRUNC; 1909 flags = *flagsp &~ MSG_EOR; 1910 } else 1911 flags = 0; 1912 if (flags & MSG_OOB) 1913 return (soreceive_rcvoob(so, uio, flags)); 1914 if (mp != NULL) 1915 *mp = NULL; 1916 if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING) 1917 && uio->uio_resid) { 1918 VNET_SO_ASSERT(so); 1919 (*pr->pr_usrreqs->pru_rcvd)(so, 0); 1920 } 1921 1922 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags)); 1923 if (error) 1924 return (error); 1925 1926 restart: 1927 SOCKBUF_LOCK(&so->so_rcv); 1928 m = so->so_rcv.sb_mb; 1929 /* 1930 * If we have less data than requested, block awaiting more (subject 1931 * to any timeout) if: 1932 * 1. the current count is less than the low water mark, or 1933 * 2. MSG_DONTWAIT is not set 1934 */ 1935 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 1936 sbavail(&so->so_rcv) < uio->uio_resid) && 1937 sbavail(&so->so_rcv) < so->so_rcv.sb_lowat && 1938 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 1939 KASSERT(m != NULL || !sbavail(&so->so_rcv), 1940 ("receive: m == %p sbavail == %u", 1941 m, sbavail(&so->so_rcv))); 1942 if (so->so_error || so->so_rerror) { 1943 if (m != NULL) 1944 goto dontblock; 1945 if (so->so_error) 1946 error = so->so_error; 1947 else 1948 error = so->so_rerror; 1949 if ((flags & MSG_PEEK) == 0) { 1950 if (so->so_error) 1951 so->so_error = 0; 1952 else 1953 so->so_rerror = 0; 1954 } 1955 SOCKBUF_UNLOCK(&so->so_rcv); 1956 goto release; 1957 } 1958 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1959 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 1960 if (m != NULL) 1961 goto dontblock; 1962 #ifdef KERN_TLS 1963 else if (so->so_rcv.sb_tlsdcc == 0 && 1964 so->so_rcv.sb_tlscc == 0) { 1965 #else 1966 else { 1967 #endif 1968 SOCKBUF_UNLOCK(&so->so_rcv); 1969 goto release; 1970 } 1971 } 1972 for (; m != NULL; m = m->m_next) 1973 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 1974 m = so->so_rcv.sb_mb; 1975 goto dontblock; 1976 } 1977 if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED | 1978 SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 && 1979 (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) { 1980 SOCKBUF_UNLOCK(&so->so_rcv); 1981 error = ENOTCONN; 1982 goto release; 1983 } 1984 if (uio->uio_resid == 0 && !report_real_len) { 1985 SOCKBUF_UNLOCK(&so->so_rcv); 1986 goto release; 1987 } 1988 if ((so->so_state & SS_NBIO) || 1989 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 1990 SOCKBUF_UNLOCK(&so->so_rcv); 1991 error = EWOULDBLOCK; 1992 goto release; 1993 } 1994 SBLASTRECORDCHK(&so->so_rcv); 1995 SBLASTMBUFCHK(&so->so_rcv); 1996 error = sbwait(so, SO_RCV); 1997 SOCKBUF_UNLOCK(&so->so_rcv); 1998 if (error) 1999 goto release; 2000 goto restart; 2001 } 2002 dontblock: 2003 /* 2004 * From this point onward, we maintain 'nextrecord' as a cache of the 2005 * pointer to the next record in the socket buffer. We must keep the 2006 * various socket buffer pointers and local stack versions of the 2007 * pointers in sync, pushing out modifications before dropping the 2008 * socket buffer mutex, and re-reading them when picking it up. 2009 * 2010 * Otherwise, we will race with the network stack appending new data 2011 * or records onto the socket buffer by using inconsistent/stale 2012 * versions of the field, possibly resulting in socket buffer 2013 * corruption. 2014 * 2015 * By holding the high-level sblock(), we prevent simultaneous 2016 * readers from pulling off the front of the socket buffer. 2017 */ 2018 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2019 if (uio->uio_td) 2020 uio->uio_td->td_ru.ru_msgrcv++; 2021 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); 2022 SBLASTRECORDCHK(&so->so_rcv); 2023 SBLASTMBUFCHK(&so->so_rcv); 2024 nextrecord = m->m_nextpkt; 2025 if (pr->pr_flags & PR_ADDR) { 2026 KASSERT(m->m_type == MT_SONAME, 2027 ("m->m_type == %d", m->m_type)); 2028 orig_resid = 0; 2029 if (psa != NULL) 2030 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2031 M_NOWAIT); 2032 if (flags & MSG_PEEK) { 2033 m = m->m_next; 2034 } else { 2035 sbfree(&so->so_rcv, m); 2036 so->so_rcv.sb_mb = m_free(m); 2037 m = so->so_rcv.sb_mb; 2038 sockbuf_pushsync(&so->so_rcv, nextrecord); 2039 } 2040 } 2041 2042 /* 2043 * Process one or more MT_CONTROL mbufs present before any data mbufs 2044 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 2045 * just copy the data; if !MSG_PEEK, we call into the protocol to 2046 * perform externalization (or freeing if controlp == NULL). 2047 */ 2048 if (m != NULL && m->m_type == MT_CONTROL) { 2049 struct mbuf *cm = NULL, *cmn; 2050 struct mbuf **cme = &cm; 2051 #ifdef KERN_TLS 2052 struct cmsghdr *cmsg; 2053 struct tls_get_record tgr; 2054 2055 /* 2056 * For MSG_TLSAPPDATA, check for an alert record. 2057 * If found, return ENXIO without removing 2058 * it from the receive queue. This allows a subsequent 2059 * call without MSG_TLSAPPDATA to receive it. 2060 * Note that, for TLS, there should only be a single 2061 * control mbuf with the TLS_GET_RECORD message in it. 2062 */ 2063 if (flags & MSG_TLSAPPDATA) { 2064 cmsg = mtod(m, struct cmsghdr *); 2065 if (cmsg->cmsg_type == TLS_GET_RECORD && 2066 cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) { 2067 memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr)); 2068 if (__predict_false(tgr.tls_type == 2069 TLS_RLTYPE_ALERT)) { 2070 SOCKBUF_UNLOCK(&so->so_rcv); 2071 error = ENXIO; 2072 goto release; 2073 } 2074 } 2075 } 2076 #endif 2077 2078 do { 2079 if (flags & MSG_PEEK) { 2080 if (controlp != NULL) { 2081 *controlp = m_copym(m, 0, m->m_len, 2082 M_NOWAIT); 2083 controlp = &(*controlp)->m_next; 2084 } 2085 m = m->m_next; 2086 } else { 2087 sbfree(&so->so_rcv, m); 2088 so->so_rcv.sb_mb = m->m_next; 2089 m->m_next = NULL; 2090 *cme = m; 2091 cme = &(*cme)->m_next; 2092 m = so->so_rcv.sb_mb; 2093 } 2094 } while (m != NULL && m->m_type == MT_CONTROL); 2095 if ((flags & MSG_PEEK) == 0) 2096 sockbuf_pushsync(&so->so_rcv, nextrecord); 2097 while (cm != NULL) { 2098 cmn = cm->m_next; 2099 cm->m_next = NULL; 2100 if (pr->pr_domain->dom_externalize != NULL) { 2101 SOCKBUF_UNLOCK(&so->so_rcv); 2102 VNET_SO_ASSERT(so); 2103 error = (*pr->pr_domain->dom_externalize) 2104 (cm, controlp, flags); 2105 SOCKBUF_LOCK(&so->so_rcv); 2106 } else if (controlp != NULL) 2107 *controlp = cm; 2108 else 2109 m_freem(cm); 2110 if (controlp != NULL) { 2111 while (*controlp != NULL) 2112 controlp = &(*controlp)->m_next; 2113 } 2114 cm = cmn; 2115 } 2116 if (m != NULL) 2117 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 2118 else 2119 nextrecord = so->so_rcv.sb_mb; 2120 orig_resid = 0; 2121 } 2122 if (m != NULL) { 2123 if ((flags & MSG_PEEK) == 0) { 2124 KASSERT(m->m_nextpkt == nextrecord, 2125 ("soreceive: post-control, nextrecord !sync")); 2126 if (nextrecord == NULL) { 2127 KASSERT(so->so_rcv.sb_mb == m, 2128 ("soreceive: post-control, sb_mb!=m")); 2129 KASSERT(so->so_rcv.sb_lastrecord == m, 2130 ("soreceive: post-control, lastrecord!=m")); 2131 } 2132 } 2133 type = m->m_type; 2134 if (type == MT_OOBDATA) 2135 flags |= MSG_OOB; 2136 } else { 2137 if ((flags & MSG_PEEK) == 0) { 2138 KASSERT(so->so_rcv.sb_mb == nextrecord, 2139 ("soreceive: sb_mb != nextrecord")); 2140 if (so->so_rcv.sb_mb == NULL) { 2141 KASSERT(so->so_rcv.sb_lastrecord == NULL, 2142 ("soreceive: sb_lastercord != NULL")); 2143 } 2144 } 2145 } 2146 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2147 SBLASTRECORDCHK(&so->so_rcv); 2148 SBLASTMBUFCHK(&so->so_rcv); 2149 2150 /* 2151 * Now continue to read any data mbufs off of the head of the socket 2152 * buffer until the read request is satisfied. Note that 'type' is 2153 * used to store the type of any mbuf reads that have happened so far 2154 * such that soreceive() can stop reading if the type changes, which 2155 * causes soreceive() to return only one of regular data and inline 2156 * out-of-band data in a single socket receive operation. 2157 */ 2158 moff = 0; 2159 offset = 0; 2160 while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0 2161 && error == 0) { 2162 /* 2163 * If the type of mbuf has changed since the last mbuf 2164 * examined ('type'), end the receive operation. 2165 */ 2166 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2167 if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) { 2168 if (type != m->m_type) 2169 break; 2170 } else if (type == MT_OOBDATA) 2171 break; 2172 else 2173 KASSERT(m->m_type == MT_DATA, 2174 ("m->m_type == %d", m->m_type)); 2175 so->so_rcv.sb_state &= ~SBS_RCVATMARK; 2176 len = uio->uio_resid; 2177 if (so->so_oobmark && len > so->so_oobmark - offset) 2178 len = so->so_oobmark - offset; 2179 if (len > m->m_len - moff) 2180 len = m->m_len - moff; 2181 /* 2182 * If mp is set, just pass back the mbufs. Otherwise copy 2183 * them out via the uio, then free. Sockbuf must be 2184 * consistent here (points to current mbuf, it points to next 2185 * record) when we drop priority; we must note any additions 2186 * to the sockbuf when we block interrupts again. 2187 */ 2188 if (mp == NULL) { 2189 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2190 SBLASTRECORDCHK(&so->so_rcv); 2191 SBLASTMBUFCHK(&so->so_rcv); 2192 SOCKBUF_UNLOCK(&so->so_rcv); 2193 if ((m->m_flags & M_EXTPG) != 0) 2194 error = m_unmapped_uiomove(m, moff, uio, 2195 (int)len); 2196 else 2197 error = uiomove(mtod(m, char *) + moff, 2198 (int)len, uio); 2199 SOCKBUF_LOCK(&so->so_rcv); 2200 if (error) { 2201 /* 2202 * The MT_SONAME mbuf has already been removed 2203 * from the record, so it is necessary to 2204 * remove the data mbufs, if any, to preserve 2205 * the invariant in the case of PR_ADDR that 2206 * requires MT_SONAME mbufs at the head of 2207 * each record. 2208 */ 2209 if (pr->pr_flags & PR_ATOMIC && 2210 ((flags & MSG_PEEK) == 0)) 2211 (void)sbdroprecord_locked(&so->so_rcv); 2212 SOCKBUF_UNLOCK(&so->so_rcv); 2213 goto release; 2214 } 2215 } else 2216 uio->uio_resid -= len; 2217 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2218 if (len == m->m_len - moff) { 2219 if (m->m_flags & M_EOR) 2220 flags |= MSG_EOR; 2221 if (flags & MSG_PEEK) { 2222 m = m->m_next; 2223 moff = 0; 2224 } else { 2225 nextrecord = m->m_nextpkt; 2226 sbfree(&so->so_rcv, m); 2227 if (mp != NULL) { 2228 m->m_nextpkt = NULL; 2229 *mp = m; 2230 mp = &m->m_next; 2231 so->so_rcv.sb_mb = m = m->m_next; 2232 *mp = NULL; 2233 } else { 2234 so->so_rcv.sb_mb = m_free(m); 2235 m = so->so_rcv.sb_mb; 2236 } 2237 sockbuf_pushsync(&so->so_rcv, nextrecord); 2238 SBLASTRECORDCHK(&so->so_rcv); 2239 SBLASTMBUFCHK(&so->so_rcv); 2240 } 2241 } else { 2242 if (flags & MSG_PEEK) 2243 moff += len; 2244 else { 2245 if (mp != NULL) { 2246 if (flags & MSG_DONTWAIT) { 2247 *mp = m_copym(m, 0, len, 2248 M_NOWAIT); 2249 if (*mp == NULL) { 2250 /* 2251 * m_copym() couldn't 2252 * allocate an mbuf. 2253 * Adjust uio_resid back 2254 * (it was adjusted 2255 * down by len bytes, 2256 * which we didn't end 2257 * up "copying" over). 2258 */ 2259 uio->uio_resid += len; 2260 break; 2261 } 2262 } else { 2263 SOCKBUF_UNLOCK(&so->so_rcv); 2264 *mp = m_copym(m, 0, len, 2265 M_WAITOK); 2266 SOCKBUF_LOCK(&so->so_rcv); 2267 } 2268 } 2269 sbcut_locked(&so->so_rcv, len); 2270 } 2271 } 2272 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2273 if (so->so_oobmark) { 2274 if ((flags & MSG_PEEK) == 0) { 2275 so->so_oobmark -= len; 2276 if (so->so_oobmark == 0) { 2277 so->so_rcv.sb_state |= SBS_RCVATMARK; 2278 break; 2279 } 2280 } else { 2281 offset += len; 2282 if (offset == so->so_oobmark) 2283 break; 2284 } 2285 } 2286 if (flags & MSG_EOR) 2287 break; 2288 /* 2289 * If the MSG_WAITALL flag is set (for non-atomic socket), we 2290 * must not quit until "uio->uio_resid == 0" or an error 2291 * termination. If a signal/timeout occurs, return with a 2292 * short count but without error. Keep sockbuf locked 2293 * against other readers. 2294 */ 2295 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 2296 !sosendallatonce(so) && nextrecord == NULL) { 2297 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2298 if (so->so_error || so->so_rerror || 2299 so->so_rcv.sb_state & SBS_CANTRCVMORE) 2300 break; 2301 /* 2302 * Notify the protocol that some data has been 2303 * drained before blocking. 2304 */ 2305 if (pr->pr_flags & PR_WANTRCVD) { 2306 SOCKBUF_UNLOCK(&so->so_rcv); 2307 VNET_SO_ASSERT(so); 2308 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 2309 SOCKBUF_LOCK(&so->so_rcv); 2310 } 2311 SBLASTRECORDCHK(&so->so_rcv); 2312 SBLASTMBUFCHK(&so->so_rcv); 2313 /* 2314 * We could receive some data while was notifying 2315 * the protocol. Skip blocking in this case. 2316 */ 2317 if (so->so_rcv.sb_mb == NULL) { 2318 error = sbwait(so, SO_RCV); 2319 if (error) { 2320 SOCKBUF_UNLOCK(&so->so_rcv); 2321 goto release; 2322 } 2323 } 2324 m = so->so_rcv.sb_mb; 2325 if (m != NULL) 2326 nextrecord = m->m_nextpkt; 2327 } 2328 } 2329 2330 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2331 if (m != NULL && pr->pr_flags & PR_ATOMIC) { 2332 if (report_real_len) 2333 uio->uio_resid -= m_length(m, NULL) - moff; 2334 flags |= MSG_TRUNC; 2335 if ((flags & MSG_PEEK) == 0) 2336 (void) sbdroprecord_locked(&so->so_rcv); 2337 } 2338 if ((flags & MSG_PEEK) == 0) { 2339 if (m == NULL) { 2340 /* 2341 * First part is an inline SB_EMPTY_FIXUP(). Second 2342 * part makes sure sb_lastrecord is up-to-date if 2343 * there is still data in the socket buffer. 2344 */ 2345 so->so_rcv.sb_mb = nextrecord; 2346 if (so->so_rcv.sb_mb == NULL) { 2347 so->so_rcv.sb_mbtail = NULL; 2348 so->so_rcv.sb_lastrecord = NULL; 2349 } else if (nextrecord->m_nextpkt == NULL) 2350 so->so_rcv.sb_lastrecord = nextrecord; 2351 } 2352 SBLASTRECORDCHK(&so->so_rcv); 2353 SBLASTMBUFCHK(&so->so_rcv); 2354 /* 2355 * If soreceive() is being done from the socket callback, 2356 * then don't need to generate ACK to peer to update window, 2357 * since ACK will be generated on return to TCP. 2358 */ 2359 if (!(flags & MSG_SOCALLBCK) && 2360 (pr->pr_flags & PR_WANTRCVD)) { 2361 SOCKBUF_UNLOCK(&so->so_rcv); 2362 VNET_SO_ASSERT(so); 2363 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 2364 SOCKBUF_LOCK(&so->so_rcv); 2365 } 2366 } 2367 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2368 if (orig_resid == uio->uio_resid && orig_resid && 2369 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { 2370 SOCKBUF_UNLOCK(&so->so_rcv); 2371 goto restart; 2372 } 2373 SOCKBUF_UNLOCK(&so->so_rcv); 2374 2375 if (flagsp != NULL) 2376 *flagsp |= flags; 2377 release: 2378 SOCK_IO_RECV_UNLOCK(so); 2379 return (error); 2380 } 2381 2382 /* 2383 * Optimized version of soreceive() for stream (TCP) sockets. 2384 */ 2385 int 2386 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio, 2387 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2388 { 2389 int len = 0, error = 0, flags, oresid; 2390 struct sockbuf *sb; 2391 struct mbuf *m, *n = NULL; 2392 2393 /* We only do stream sockets. */ 2394 if (so->so_type != SOCK_STREAM) 2395 return (EINVAL); 2396 if (psa != NULL) 2397 *psa = NULL; 2398 if (flagsp != NULL) 2399 flags = *flagsp &~ MSG_EOR; 2400 else 2401 flags = 0; 2402 if (controlp != NULL) 2403 *controlp = NULL; 2404 if (flags & MSG_OOB) 2405 return (soreceive_rcvoob(so, uio, flags)); 2406 if (mp0 != NULL) 2407 *mp0 = NULL; 2408 2409 sb = &so->so_rcv; 2410 2411 #ifdef KERN_TLS 2412 /* 2413 * KTLS store TLS records as records with a control message to 2414 * describe the framing. 2415 * 2416 * We check once here before acquiring locks to optimize the 2417 * common case. 2418 */ 2419 if (sb->sb_tls_info != NULL) 2420 return (soreceive_generic(so, psa, uio, mp0, controlp, 2421 flagsp)); 2422 #endif 2423 2424 /* Prevent other readers from entering the socket. */ 2425 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags)); 2426 if (error) 2427 return (error); 2428 SOCKBUF_LOCK(sb); 2429 2430 #ifdef KERN_TLS 2431 if (sb->sb_tls_info != NULL) { 2432 SOCKBUF_UNLOCK(sb); 2433 SOCK_IO_RECV_UNLOCK(so); 2434 return (soreceive_generic(so, psa, uio, mp0, controlp, 2435 flagsp)); 2436 } 2437 #endif 2438 2439 /* Easy one, no space to copyout anything. */ 2440 if (uio->uio_resid == 0) { 2441 error = EINVAL; 2442 goto out; 2443 } 2444 oresid = uio->uio_resid; 2445 2446 /* We will never ever get anything unless we are or were connected. */ 2447 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 2448 error = ENOTCONN; 2449 goto out; 2450 } 2451 2452 restart: 2453 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2454 2455 /* Abort if socket has reported problems. */ 2456 if (so->so_error) { 2457 if (sbavail(sb) > 0) 2458 goto deliver; 2459 if (oresid > uio->uio_resid) 2460 goto out; 2461 error = so->so_error; 2462 if (!(flags & MSG_PEEK)) 2463 so->so_error = 0; 2464 goto out; 2465 } 2466 2467 /* Door is closed. Deliver what is left, if any. */ 2468 if (sb->sb_state & SBS_CANTRCVMORE) { 2469 if (sbavail(sb) > 0) 2470 goto deliver; 2471 else 2472 goto out; 2473 } 2474 2475 /* Socket buffer is empty and we shall not block. */ 2476 if (sbavail(sb) == 0 && 2477 ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) { 2478 error = EAGAIN; 2479 goto out; 2480 } 2481 2482 /* Socket buffer got some data that we shall deliver now. */ 2483 if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) && 2484 ((so->so_state & SS_NBIO) || 2485 (flags & (MSG_DONTWAIT|MSG_NBIO)) || 2486 sbavail(sb) >= sb->sb_lowat || 2487 sbavail(sb) >= uio->uio_resid || 2488 sbavail(sb) >= sb->sb_hiwat) ) { 2489 goto deliver; 2490 } 2491 2492 /* On MSG_WAITALL we must wait until all data or error arrives. */ 2493 if ((flags & MSG_WAITALL) && 2494 (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat)) 2495 goto deliver; 2496 2497 /* 2498 * Wait and block until (more) data comes in. 2499 * NB: Drops the sockbuf lock during wait. 2500 */ 2501 error = sbwait(so, SO_RCV); 2502 if (error) 2503 goto out; 2504 goto restart; 2505 2506 deliver: 2507 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2508 KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__)); 2509 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__)); 2510 2511 /* Statistics. */ 2512 if (uio->uio_td) 2513 uio->uio_td->td_ru.ru_msgrcv++; 2514 2515 /* Fill uio until full or current end of socket buffer is reached. */ 2516 len = min(uio->uio_resid, sbavail(sb)); 2517 if (mp0 != NULL) { 2518 /* Dequeue as many mbufs as possible. */ 2519 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) { 2520 if (*mp0 == NULL) 2521 *mp0 = sb->sb_mb; 2522 else 2523 m_cat(*mp0, sb->sb_mb); 2524 for (m = sb->sb_mb; 2525 m != NULL && m->m_len <= len; 2526 m = m->m_next) { 2527 KASSERT(!(m->m_flags & M_NOTAVAIL), 2528 ("%s: m %p not available", __func__, m)); 2529 len -= m->m_len; 2530 uio->uio_resid -= m->m_len; 2531 sbfree(sb, m); 2532 n = m; 2533 } 2534 n->m_next = NULL; 2535 sb->sb_mb = m; 2536 sb->sb_lastrecord = sb->sb_mb; 2537 if (sb->sb_mb == NULL) 2538 SB_EMPTY_FIXUP(sb); 2539 } 2540 /* Copy the remainder. */ 2541 if (len > 0) { 2542 KASSERT(sb->sb_mb != NULL, 2543 ("%s: len > 0 && sb->sb_mb empty", __func__)); 2544 2545 m = m_copym(sb->sb_mb, 0, len, M_NOWAIT); 2546 if (m == NULL) 2547 len = 0; /* Don't flush data from sockbuf. */ 2548 else 2549 uio->uio_resid -= len; 2550 if (*mp0 != NULL) 2551 m_cat(*mp0, m); 2552 else 2553 *mp0 = m; 2554 if (*mp0 == NULL) { 2555 error = ENOBUFS; 2556 goto out; 2557 } 2558 } 2559 } else { 2560 /* NB: Must unlock socket buffer as uiomove may sleep. */ 2561 SOCKBUF_UNLOCK(sb); 2562 error = m_mbuftouio(uio, sb->sb_mb, len); 2563 SOCKBUF_LOCK(sb); 2564 if (error) 2565 goto out; 2566 } 2567 SBLASTRECORDCHK(sb); 2568 SBLASTMBUFCHK(sb); 2569 2570 /* 2571 * Remove the delivered data from the socket buffer unless we 2572 * were only peeking. 2573 */ 2574 if (!(flags & MSG_PEEK)) { 2575 if (len > 0) 2576 sbdrop_locked(sb, len); 2577 2578 /* Notify protocol that we drained some data. */ 2579 if ((so->so_proto->pr_flags & PR_WANTRCVD) && 2580 (((flags & MSG_WAITALL) && uio->uio_resid > 0) || 2581 !(flags & MSG_SOCALLBCK))) { 2582 SOCKBUF_UNLOCK(sb); 2583 VNET_SO_ASSERT(so); 2584 (*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags); 2585 SOCKBUF_LOCK(sb); 2586 } 2587 } 2588 2589 /* 2590 * For MSG_WAITALL we may have to loop again and wait for 2591 * more data to come in. 2592 */ 2593 if ((flags & MSG_WAITALL) && uio->uio_resid > 0) 2594 goto restart; 2595 out: 2596 SBLASTRECORDCHK(sb); 2597 SBLASTMBUFCHK(sb); 2598 SOCKBUF_UNLOCK(sb); 2599 SOCK_IO_RECV_UNLOCK(so); 2600 return (error); 2601 } 2602 2603 /* 2604 * Optimized version of soreceive() for simple datagram cases from userspace. 2605 * Unlike in the stream case, we're able to drop a datagram if copyout() 2606 * fails, and because we handle datagrams atomically, we don't need to use a 2607 * sleep lock to prevent I/O interlacing. 2608 */ 2609 int 2610 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio, 2611 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2612 { 2613 struct mbuf *m, *m2; 2614 int flags, error; 2615 ssize_t len; 2616 struct protosw *pr = so->so_proto; 2617 struct mbuf *nextrecord; 2618 2619 if (psa != NULL) 2620 *psa = NULL; 2621 if (controlp != NULL) 2622 *controlp = NULL; 2623 if (flagsp != NULL) 2624 flags = *flagsp &~ MSG_EOR; 2625 else 2626 flags = 0; 2627 2628 /* 2629 * For any complicated cases, fall back to the full 2630 * soreceive_generic(). 2631 */ 2632 if (mp0 != NULL || (flags & (MSG_PEEK | MSG_OOB | MSG_TRUNC))) 2633 return (soreceive_generic(so, psa, uio, mp0, controlp, 2634 flagsp)); 2635 2636 /* 2637 * Enforce restrictions on use. 2638 */ 2639 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0, 2640 ("soreceive_dgram: wantrcvd")); 2641 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic")); 2642 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0, 2643 ("soreceive_dgram: SBS_RCVATMARK")); 2644 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0, 2645 ("soreceive_dgram: P_CONNREQUIRED")); 2646 2647 /* 2648 * Loop blocking while waiting for a datagram. 2649 */ 2650 SOCKBUF_LOCK(&so->so_rcv); 2651 while ((m = so->so_rcv.sb_mb) == NULL) { 2652 KASSERT(sbavail(&so->so_rcv) == 0, 2653 ("soreceive_dgram: sb_mb NULL but sbavail %u", 2654 sbavail(&so->so_rcv))); 2655 if (so->so_error) { 2656 error = so->so_error; 2657 so->so_error = 0; 2658 SOCKBUF_UNLOCK(&so->so_rcv); 2659 return (error); 2660 } 2661 if (so->so_rcv.sb_state & SBS_CANTRCVMORE || 2662 uio->uio_resid == 0) { 2663 SOCKBUF_UNLOCK(&so->so_rcv); 2664 return (0); 2665 } 2666 if ((so->so_state & SS_NBIO) || 2667 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 2668 SOCKBUF_UNLOCK(&so->so_rcv); 2669 return (EWOULDBLOCK); 2670 } 2671 SBLASTRECORDCHK(&so->so_rcv); 2672 SBLASTMBUFCHK(&so->so_rcv); 2673 error = sbwait(so, SO_RCV); 2674 if (error) { 2675 SOCKBUF_UNLOCK(&so->so_rcv); 2676 return (error); 2677 } 2678 } 2679 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2680 2681 if (uio->uio_td) 2682 uio->uio_td->td_ru.ru_msgrcv++; 2683 SBLASTRECORDCHK(&so->so_rcv); 2684 SBLASTMBUFCHK(&so->so_rcv); 2685 nextrecord = m->m_nextpkt; 2686 if (nextrecord == NULL) { 2687 KASSERT(so->so_rcv.sb_lastrecord == m, 2688 ("soreceive_dgram: lastrecord != m")); 2689 } 2690 2691 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord, 2692 ("soreceive_dgram: m_nextpkt != nextrecord")); 2693 2694 /* 2695 * Pull 'm' and its chain off the front of the packet queue. 2696 */ 2697 so->so_rcv.sb_mb = NULL; 2698 sockbuf_pushsync(&so->so_rcv, nextrecord); 2699 2700 /* 2701 * Walk 'm's chain and free that many bytes from the socket buffer. 2702 */ 2703 for (m2 = m; m2 != NULL; m2 = m2->m_next) 2704 sbfree(&so->so_rcv, m2); 2705 2706 /* 2707 * Do a few last checks before we let go of the lock. 2708 */ 2709 SBLASTRECORDCHK(&so->so_rcv); 2710 SBLASTMBUFCHK(&so->so_rcv); 2711 SOCKBUF_UNLOCK(&so->so_rcv); 2712 2713 if (pr->pr_flags & PR_ADDR) { 2714 KASSERT(m->m_type == MT_SONAME, 2715 ("m->m_type == %d", m->m_type)); 2716 if (psa != NULL) 2717 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 2718 M_NOWAIT); 2719 m = m_free(m); 2720 } 2721 if (m == NULL) { 2722 /* XXXRW: Can this happen? */ 2723 return (0); 2724 } 2725 2726 /* 2727 * Packet to copyout() is now in 'm' and it is disconnected from the 2728 * queue. 2729 * 2730 * Process one or more MT_CONTROL mbufs present before any data mbufs 2731 * in the first mbuf chain on the socket buffer. We call into the 2732 * protocol to perform externalization (or freeing if controlp == 2733 * NULL). In some cases there can be only MT_CONTROL mbufs without 2734 * MT_DATA mbufs. 2735 */ 2736 if (m->m_type == MT_CONTROL) { 2737 struct mbuf *cm = NULL, *cmn; 2738 struct mbuf **cme = &cm; 2739 2740 do { 2741 m2 = m->m_next; 2742 m->m_next = NULL; 2743 *cme = m; 2744 cme = &(*cme)->m_next; 2745 m = m2; 2746 } while (m != NULL && m->m_type == MT_CONTROL); 2747 while (cm != NULL) { 2748 cmn = cm->m_next; 2749 cm->m_next = NULL; 2750 if (pr->pr_domain->dom_externalize != NULL) { 2751 error = (*pr->pr_domain->dom_externalize) 2752 (cm, controlp, flags); 2753 } else if (controlp != NULL) 2754 *controlp = cm; 2755 else 2756 m_freem(cm); 2757 if (controlp != NULL) { 2758 while (*controlp != NULL) 2759 controlp = &(*controlp)->m_next; 2760 } 2761 cm = cmn; 2762 } 2763 } 2764 KASSERT(m == NULL || m->m_type == MT_DATA, 2765 ("soreceive_dgram: !data")); 2766 while (m != NULL && uio->uio_resid > 0) { 2767 len = uio->uio_resid; 2768 if (len > m->m_len) 2769 len = m->m_len; 2770 error = uiomove(mtod(m, char *), (int)len, uio); 2771 if (error) { 2772 m_freem(m); 2773 return (error); 2774 } 2775 if (len == m->m_len) 2776 m = m_free(m); 2777 else { 2778 m->m_data += len; 2779 m->m_len -= len; 2780 } 2781 } 2782 if (m != NULL) { 2783 flags |= MSG_TRUNC; 2784 m_freem(m); 2785 } 2786 if (flagsp != NULL) 2787 *flagsp |= flags; 2788 return (0); 2789 } 2790 2791 int 2792 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, 2793 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 2794 { 2795 int error; 2796 2797 CURVNET_SET(so->so_vnet); 2798 error = (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, 2799 mp0, controlp, flagsp)); 2800 CURVNET_RESTORE(); 2801 return (error); 2802 } 2803 2804 int 2805 soshutdown(struct socket *so, int how) 2806 { 2807 struct protosw *pr; 2808 int error, soerror_enotconn; 2809 2810 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 2811 return (EINVAL); 2812 2813 soerror_enotconn = 0; 2814 SOCK_LOCK(so); 2815 if ((so->so_state & 2816 (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) { 2817 /* 2818 * POSIX mandates us to return ENOTCONN when shutdown(2) is 2819 * invoked on a datagram sockets, however historically we would 2820 * actually tear socket down. This is known to be leveraged by 2821 * some applications to unblock process waiting in recvXXX(2) 2822 * by other process that it shares that socket with. Try to meet 2823 * both backward-compatibility and POSIX requirements by forcing 2824 * ENOTCONN but still asking protocol to perform pru_shutdown(). 2825 */ 2826 if (so->so_type != SOCK_DGRAM && !SOLISTENING(so)) { 2827 SOCK_UNLOCK(so); 2828 return (ENOTCONN); 2829 } 2830 soerror_enotconn = 1; 2831 } 2832 2833 if (SOLISTENING(so)) { 2834 if (how != SHUT_WR) { 2835 so->so_error = ECONNABORTED; 2836 solisten_wakeup(so); /* unlocks so */ 2837 } else { 2838 SOCK_UNLOCK(so); 2839 } 2840 goto done; 2841 } 2842 SOCK_UNLOCK(so); 2843 2844 CURVNET_SET(so->so_vnet); 2845 pr = so->so_proto; 2846 if (pr->pr_usrreqs->pru_flush != NULL) 2847 (*pr->pr_usrreqs->pru_flush)(so, how); 2848 if (how != SHUT_WR) 2849 sorflush(so); 2850 if (how != SHUT_RD) { 2851 error = (*pr->pr_usrreqs->pru_shutdown)(so); 2852 wakeup(&so->so_timeo); 2853 CURVNET_RESTORE(); 2854 return ((error == 0 && soerror_enotconn) ? ENOTCONN : error); 2855 } 2856 wakeup(&so->so_timeo); 2857 CURVNET_RESTORE(); 2858 2859 done: 2860 return (soerror_enotconn ? ENOTCONN : 0); 2861 } 2862 2863 void 2864 sorflush(struct socket *so) 2865 { 2866 struct protosw *pr; 2867 int error; 2868 2869 VNET_SO_ASSERT(so); 2870 2871 /* 2872 * Dislodge threads currently blocked in receive and wait to acquire 2873 * a lock against other simultaneous readers before clearing the 2874 * socket buffer. Don't let our acquire be interrupted by a signal 2875 * despite any existing socket disposition on interruptable waiting. 2876 */ 2877 socantrcvmore(so); 2878 2879 error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR); 2880 if (error != 0) { 2881 KASSERT(SOLISTENING(so), 2882 ("%s: soiolock(%p) failed", __func__, so)); 2883 return; 2884 } 2885 2886 pr = so->so_proto; 2887 if (pr->pr_flags & PR_RIGHTS) { 2888 MPASS(pr->pr_domain->dom_dispose != NULL); 2889 (*pr->pr_domain->dom_dispose)(so); 2890 } else { 2891 sbrelease(so, SO_RCV); 2892 SOCK_IO_RECV_UNLOCK(so); 2893 } 2894 2895 } 2896 2897 /* 2898 * Wrapper for Socket established helper hook. 2899 * Parameters: socket, context of the hook point, hook id. 2900 */ 2901 static int inline 2902 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id) 2903 { 2904 struct socket_hhook_data hhook_data = { 2905 .so = so, 2906 .hctx = hctx, 2907 .m = NULL, 2908 .status = 0 2909 }; 2910 2911 CURVNET_SET(so->so_vnet); 2912 HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd); 2913 CURVNET_RESTORE(); 2914 2915 /* Ugly but needed, since hhooks return void for now */ 2916 return (hhook_data.status); 2917 } 2918 2919 /* 2920 * Perhaps this routine, and sooptcopyout(), below, ought to come in an 2921 * additional variant to handle the case where the option value needs to be 2922 * some kind of integer, but not a specific size. In addition to their use 2923 * here, these functions are also called by the protocol-level pr_ctloutput() 2924 * routines. 2925 */ 2926 int 2927 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen) 2928 { 2929 size_t valsize; 2930 2931 /* 2932 * If the user gives us more than we wanted, we ignore it, but if we 2933 * don't get the minimum length the caller wants, we return EINVAL. 2934 * On success, sopt->sopt_valsize is set to however much we actually 2935 * retrieved. 2936 */ 2937 if ((valsize = sopt->sopt_valsize) < minlen) 2938 return EINVAL; 2939 if (valsize > len) 2940 sopt->sopt_valsize = valsize = len; 2941 2942 if (sopt->sopt_td != NULL) 2943 return (copyin(sopt->sopt_val, buf, valsize)); 2944 2945 bcopy(sopt->sopt_val, buf, valsize); 2946 return (0); 2947 } 2948 2949 /* 2950 * Kernel version of setsockopt(2). 2951 * 2952 * XXX: optlen is size_t, not socklen_t 2953 */ 2954 int 2955 so_setsockopt(struct socket *so, int level, int optname, void *optval, 2956 size_t optlen) 2957 { 2958 struct sockopt sopt; 2959 2960 sopt.sopt_level = level; 2961 sopt.sopt_name = optname; 2962 sopt.sopt_dir = SOPT_SET; 2963 sopt.sopt_val = optval; 2964 sopt.sopt_valsize = optlen; 2965 sopt.sopt_td = NULL; 2966 return (sosetopt(so, &sopt)); 2967 } 2968 2969 int 2970 sosetopt(struct socket *so, struct sockopt *sopt) 2971 { 2972 int error, optval; 2973 struct linger l; 2974 struct timeval tv; 2975 sbintime_t val, *valp; 2976 uint32_t val32; 2977 #ifdef MAC 2978 struct mac extmac; 2979 #endif 2980 2981 CURVNET_SET(so->so_vnet); 2982 error = 0; 2983 if (sopt->sopt_level != SOL_SOCKET) { 2984 if (so->so_proto->pr_ctloutput != NULL) 2985 error = (*so->so_proto->pr_ctloutput)(so, sopt); 2986 else 2987 error = ENOPROTOOPT; 2988 } else { 2989 switch (sopt->sopt_name) { 2990 case SO_ACCEPTFILTER: 2991 error = accept_filt_setopt(so, sopt); 2992 if (error) 2993 goto bad; 2994 break; 2995 2996 case SO_LINGER: 2997 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 2998 if (error) 2999 goto bad; 3000 if (l.l_linger < 0 || 3001 l.l_linger > USHRT_MAX || 3002 l.l_linger > (INT_MAX / hz)) { 3003 error = EDOM; 3004 goto bad; 3005 } 3006 SOCK_LOCK(so); 3007 so->so_linger = l.l_linger; 3008 if (l.l_onoff) 3009 so->so_options |= SO_LINGER; 3010 else 3011 so->so_options &= ~SO_LINGER; 3012 SOCK_UNLOCK(so); 3013 break; 3014 3015 case SO_DEBUG: 3016 case SO_KEEPALIVE: 3017 case SO_DONTROUTE: 3018 case SO_USELOOPBACK: 3019 case SO_BROADCAST: 3020 case SO_REUSEADDR: 3021 case SO_REUSEPORT: 3022 case SO_REUSEPORT_LB: 3023 case SO_OOBINLINE: 3024 case SO_TIMESTAMP: 3025 case SO_BINTIME: 3026 case SO_NOSIGPIPE: 3027 case SO_NO_DDP: 3028 case SO_NO_OFFLOAD: 3029 case SO_RERROR: 3030 error = sooptcopyin(sopt, &optval, sizeof optval, 3031 sizeof optval); 3032 if (error) 3033 goto bad; 3034 SOCK_LOCK(so); 3035 if (optval) 3036 so->so_options |= sopt->sopt_name; 3037 else 3038 so->so_options &= ~sopt->sopt_name; 3039 SOCK_UNLOCK(so); 3040 break; 3041 3042 case SO_SETFIB: 3043 error = sooptcopyin(sopt, &optval, sizeof optval, 3044 sizeof optval); 3045 if (error) 3046 goto bad; 3047 3048 if (optval < 0 || optval >= rt_numfibs) { 3049 error = EINVAL; 3050 goto bad; 3051 } 3052 if (((so->so_proto->pr_domain->dom_family == PF_INET) || 3053 (so->so_proto->pr_domain->dom_family == PF_INET6) || 3054 (so->so_proto->pr_domain->dom_family == PF_ROUTE))) 3055 so->so_fibnum = optval; 3056 else 3057 so->so_fibnum = 0; 3058 break; 3059 3060 case SO_USER_COOKIE: 3061 error = sooptcopyin(sopt, &val32, sizeof val32, 3062 sizeof val32); 3063 if (error) 3064 goto bad; 3065 so->so_user_cookie = val32; 3066 break; 3067 3068 case SO_SNDBUF: 3069 case SO_RCVBUF: 3070 case SO_SNDLOWAT: 3071 case SO_RCVLOWAT: 3072 error = sooptcopyin(sopt, &optval, sizeof optval, 3073 sizeof optval); 3074 if (error) 3075 goto bad; 3076 3077 /* 3078 * Values < 1 make no sense for any of these options, 3079 * so disallow them. 3080 */ 3081 if (optval < 1) { 3082 error = EINVAL; 3083 goto bad; 3084 } 3085 3086 error = sbsetopt(so, sopt->sopt_name, optval); 3087 break; 3088 3089 case SO_SNDTIMEO: 3090 case SO_RCVTIMEO: 3091 #ifdef COMPAT_FREEBSD32 3092 if (SV_CURPROC_FLAG(SV_ILP32)) { 3093 struct timeval32 tv32; 3094 3095 error = sooptcopyin(sopt, &tv32, sizeof tv32, 3096 sizeof tv32); 3097 CP(tv32, tv, tv_sec); 3098 CP(tv32, tv, tv_usec); 3099 } else 3100 #endif 3101 error = sooptcopyin(sopt, &tv, sizeof tv, 3102 sizeof tv); 3103 if (error) 3104 goto bad; 3105 if (tv.tv_sec < 0 || tv.tv_usec < 0 || 3106 tv.tv_usec >= 1000000) { 3107 error = EDOM; 3108 goto bad; 3109 } 3110 if (tv.tv_sec > INT32_MAX) 3111 val = SBT_MAX; 3112 else 3113 val = tvtosbt(tv); 3114 SOCK_LOCK(so); 3115 valp = sopt->sopt_name == SO_SNDTIMEO ? 3116 (SOLISTENING(so) ? &so->sol_sbsnd_timeo : 3117 &so->so_snd.sb_timeo) : 3118 (SOLISTENING(so) ? &so->sol_sbrcv_timeo : 3119 &so->so_rcv.sb_timeo); 3120 *valp = val; 3121 SOCK_UNLOCK(so); 3122 break; 3123 3124 case SO_LABEL: 3125 #ifdef MAC 3126 error = sooptcopyin(sopt, &extmac, sizeof extmac, 3127 sizeof extmac); 3128 if (error) 3129 goto bad; 3130 error = mac_setsockopt_label(sopt->sopt_td->td_ucred, 3131 so, &extmac); 3132 #else 3133 error = EOPNOTSUPP; 3134 #endif 3135 break; 3136 3137 case SO_TS_CLOCK: 3138 error = sooptcopyin(sopt, &optval, sizeof optval, 3139 sizeof optval); 3140 if (error) 3141 goto bad; 3142 if (optval < 0 || optval > SO_TS_CLOCK_MAX) { 3143 error = EINVAL; 3144 goto bad; 3145 } 3146 so->so_ts_clock = optval; 3147 break; 3148 3149 case SO_MAX_PACING_RATE: 3150 error = sooptcopyin(sopt, &val32, sizeof(val32), 3151 sizeof(val32)); 3152 if (error) 3153 goto bad; 3154 so->so_max_pacing_rate = val32; 3155 break; 3156 3157 default: 3158 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 3159 error = hhook_run_socket(so, sopt, 3160 HHOOK_SOCKET_OPT); 3161 else 3162 error = ENOPROTOOPT; 3163 break; 3164 } 3165 if (error == 0 && so->so_proto->pr_ctloutput != NULL) 3166 (void)(*so->so_proto->pr_ctloutput)(so, sopt); 3167 } 3168 bad: 3169 CURVNET_RESTORE(); 3170 return (error); 3171 } 3172 3173 /* 3174 * Helper routine for getsockopt. 3175 */ 3176 int 3177 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 3178 { 3179 int error; 3180 size_t valsize; 3181 3182 error = 0; 3183 3184 /* 3185 * Documented get behavior is that we always return a value, possibly 3186 * truncated to fit in the user's buffer. Traditional behavior is 3187 * that we always tell the user precisely how much we copied, rather 3188 * than something useful like the total amount we had available for 3189 * her. Note that this interface is not idempotent; the entire 3190 * answer must be generated ahead of time. 3191 */ 3192 valsize = min(len, sopt->sopt_valsize); 3193 sopt->sopt_valsize = valsize; 3194 if (sopt->sopt_val != NULL) { 3195 if (sopt->sopt_td != NULL) 3196 error = copyout(buf, sopt->sopt_val, valsize); 3197 else 3198 bcopy(buf, sopt->sopt_val, valsize); 3199 } 3200 return (error); 3201 } 3202 3203 int 3204 sogetopt(struct socket *so, struct sockopt *sopt) 3205 { 3206 int error, optval; 3207 struct linger l; 3208 struct timeval tv; 3209 #ifdef MAC 3210 struct mac extmac; 3211 #endif 3212 3213 CURVNET_SET(so->so_vnet); 3214 error = 0; 3215 if (sopt->sopt_level != SOL_SOCKET) { 3216 if (so->so_proto->pr_ctloutput != NULL) 3217 error = (*so->so_proto->pr_ctloutput)(so, sopt); 3218 else 3219 error = ENOPROTOOPT; 3220 CURVNET_RESTORE(); 3221 return (error); 3222 } else { 3223 switch (sopt->sopt_name) { 3224 case SO_ACCEPTFILTER: 3225 error = accept_filt_getopt(so, sopt); 3226 break; 3227 3228 case SO_LINGER: 3229 SOCK_LOCK(so); 3230 l.l_onoff = so->so_options & SO_LINGER; 3231 l.l_linger = so->so_linger; 3232 SOCK_UNLOCK(so); 3233 error = sooptcopyout(sopt, &l, sizeof l); 3234 break; 3235 3236 case SO_USELOOPBACK: 3237 case SO_DONTROUTE: 3238 case SO_DEBUG: 3239 case SO_KEEPALIVE: 3240 case SO_REUSEADDR: 3241 case SO_REUSEPORT: 3242 case SO_REUSEPORT_LB: 3243 case SO_BROADCAST: 3244 case SO_OOBINLINE: 3245 case SO_ACCEPTCONN: 3246 case SO_TIMESTAMP: 3247 case SO_BINTIME: 3248 case SO_NOSIGPIPE: 3249 case SO_NO_DDP: 3250 case SO_NO_OFFLOAD: 3251 case SO_RERROR: 3252 optval = so->so_options & sopt->sopt_name; 3253 integer: 3254 error = sooptcopyout(sopt, &optval, sizeof optval); 3255 break; 3256 3257 case SO_DOMAIN: 3258 optval = so->so_proto->pr_domain->dom_family; 3259 goto integer; 3260 3261 case SO_TYPE: 3262 optval = so->so_type; 3263 goto integer; 3264 3265 case SO_PROTOCOL: 3266 optval = so->so_proto->pr_protocol; 3267 goto integer; 3268 3269 case SO_ERROR: 3270 SOCK_LOCK(so); 3271 if (so->so_error) { 3272 optval = so->so_error; 3273 so->so_error = 0; 3274 } else { 3275 optval = so->so_rerror; 3276 so->so_rerror = 0; 3277 } 3278 SOCK_UNLOCK(so); 3279 goto integer; 3280 3281 case SO_SNDBUF: 3282 optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat : 3283 so->so_snd.sb_hiwat; 3284 goto integer; 3285 3286 case SO_RCVBUF: 3287 optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat : 3288 so->so_rcv.sb_hiwat; 3289 goto integer; 3290 3291 case SO_SNDLOWAT: 3292 optval = SOLISTENING(so) ? so->sol_sbsnd_lowat : 3293 so->so_snd.sb_lowat; 3294 goto integer; 3295 3296 case SO_RCVLOWAT: 3297 optval = SOLISTENING(so) ? so->sol_sbrcv_lowat : 3298 so->so_rcv.sb_lowat; 3299 goto integer; 3300 3301 case SO_SNDTIMEO: 3302 case SO_RCVTIMEO: 3303 SOCK_LOCK(so); 3304 tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ? 3305 (SOLISTENING(so) ? so->sol_sbsnd_timeo : 3306 so->so_snd.sb_timeo) : 3307 (SOLISTENING(so) ? so->sol_sbrcv_timeo : 3308 so->so_rcv.sb_timeo)); 3309 SOCK_UNLOCK(so); 3310 #ifdef COMPAT_FREEBSD32 3311 if (SV_CURPROC_FLAG(SV_ILP32)) { 3312 struct timeval32 tv32; 3313 3314 CP(tv, tv32, tv_sec); 3315 CP(tv, tv32, tv_usec); 3316 error = sooptcopyout(sopt, &tv32, sizeof tv32); 3317 } else 3318 #endif 3319 error = sooptcopyout(sopt, &tv, sizeof tv); 3320 break; 3321 3322 case SO_LABEL: 3323 #ifdef MAC 3324 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 3325 sizeof(extmac)); 3326 if (error) 3327 goto bad; 3328 error = mac_getsockopt_label(sopt->sopt_td->td_ucred, 3329 so, &extmac); 3330 if (error) 3331 goto bad; 3332 error = sooptcopyout(sopt, &extmac, sizeof extmac); 3333 #else 3334 error = EOPNOTSUPP; 3335 #endif 3336 break; 3337 3338 case SO_PEERLABEL: 3339 #ifdef MAC 3340 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 3341 sizeof(extmac)); 3342 if (error) 3343 goto bad; 3344 error = mac_getsockopt_peerlabel( 3345 sopt->sopt_td->td_ucred, so, &extmac); 3346 if (error) 3347 goto bad; 3348 error = sooptcopyout(sopt, &extmac, sizeof extmac); 3349 #else 3350 error = EOPNOTSUPP; 3351 #endif 3352 break; 3353 3354 case SO_LISTENQLIMIT: 3355 optval = SOLISTENING(so) ? so->sol_qlimit : 0; 3356 goto integer; 3357 3358 case SO_LISTENQLEN: 3359 optval = SOLISTENING(so) ? so->sol_qlen : 0; 3360 goto integer; 3361 3362 case SO_LISTENINCQLEN: 3363 optval = SOLISTENING(so) ? so->sol_incqlen : 0; 3364 goto integer; 3365 3366 case SO_TS_CLOCK: 3367 optval = so->so_ts_clock; 3368 goto integer; 3369 3370 case SO_MAX_PACING_RATE: 3371 optval = so->so_max_pacing_rate; 3372 goto integer; 3373 3374 default: 3375 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) 3376 error = hhook_run_socket(so, sopt, 3377 HHOOK_SOCKET_OPT); 3378 else 3379 error = ENOPROTOOPT; 3380 break; 3381 } 3382 } 3383 #ifdef MAC 3384 bad: 3385 #endif 3386 CURVNET_RESTORE(); 3387 return (error); 3388 } 3389 3390 int 3391 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 3392 { 3393 struct mbuf *m, *m_prev; 3394 int sopt_size = sopt->sopt_valsize; 3395 3396 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 3397 if (m == NULL) 3398 return ENOBUFS; 3399 if (sopt_size > MLEN) { 3400 MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT); 3401 if ((m->m_flags & M_EXT) == 0) { 3402 m_free(m); 3403 return ENOBUFS; 3404 } 3405 m->m_len = min(MCLBYTES, sopt_size); 3406 } else { 3407 m->m_len = min(MLEN, sopt_size); 3408 } 3409 sopt_size -= m->m_len; 3410 *mp = m; 3411 m_prev = m; 3412 3413 while (sopt_size) { 3414 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); 3415 if (m == NULL) { 3416 m_freem(*mp); 3417 return ENOBUFS; 3418 } 3419 if (sopt_size > MLEN) { 3420 MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK : 3421 M_NOWAIT); 3422 if ((m->m_flags & M_EXT) == 0) { 3423 m_freem(m); 3424 m_freem(*mp); 3425 return ENOBUFS; 3426 } 3427 m->m_len = min(MCLBYTES, sopt_size); 3428 } else { 3429 m->m_len = min(MLEN, sopt_size); 3430 } 3431 sopt_size -= m->m_len; 3432 m_prev->m_next = m; 3433 m_prev = m; 3434 } 3435 return (0); 3436 } 3437 3438 int 3439 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 3440 { 3441 struct mbuf *m0 = m; 3442 3443 if (sopt->sopt_val == NULL) 3444 return (0); 3445 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 3446 if (sopt->sopt_td != NULL) { 3447 int error; 3448 3449 error = copyin(sopt->sopt_val, mtod(m, char *), 3450 m->m_len); 3451 if (error != 0) { 3452 m_freem(m0); 3453 return(error); 3454 } 3455 } else 3456 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 3457 sopt->sopt_valsize -= m->m_len; 3458 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 3459 m = m->m_next; 3460 } 3461 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 3462 panic("ip6_sooptmcopyin"); 3463 return (0); 3464 } 3465 3466 int 3467 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 3468 { 3469 struct mbuf *m0 = m; 3470 size_t valsize = 0; 3471 3472 if (sopt->sopt_val == NULL) 3473 return (0); 3474 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 3475 if (sopt->sopt_td != NULL) { 3476 int error; 3477 3478 error = copyout(mtod(m, char *), sopt->sopt_val, 3479 m->m_len); 3480 if (error != 0) { 3481 m_freem(m0); 3482 return(error); 3483 } 3484 } else 3485 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 3486 sopt->sopt_valsize -= m->m_len; 3487 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 3488 valsize += m->m_len; 3489 m = m->m_next; 3490 } 3491 if (m != NULL) { 3492 /* enough soopt buffer should be given from user-land */ 3493 m_freem(m0); 3494 return(EINVAL); 3495 } 3496 sopt->sopt_valsize = valsize; 3497 return (0); 3498 } 3499 3500 /* 3501 * sohasoutofband(): protocol notifies socket layer of the arrival of new 3502 * out-of-band data, which will then notify socket consumers. 3503 */ 3504 void 3505 sohasoutofband(struct socket *so) 3506 { 3507 3508 if (so->so_sigio != NULL) 3509 pgsigio(&so->so_sigio, SIGURG, 0); 3510 selwakeuppri(&so->so_rdsel, PSOCK); 3511 } 3512 3513 int 3514 sopoll(struct socket *so, int events, struct ucred *active_cred, 3515 struct thread *td) 3516 { 3517 3518 /* 3519 * We do not need to set or assert curvnet as long as everyone uses 3520 * sopoll_generic(). 3521 */ 3522 return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred, 3523 td)); 3524 } 3525 3526 int 3527 sopoll_generic(struct socket *so, int events, struct ucred *active_cred, 3528 struct thread *td) 3529 { 3530 int revents; 3531 3532 SOCK_LOCK(so); 3533 if (SOLISTENING(so)) { 3534 if (!(events & (POLLIN | POLLRDNORM))) 3535 revents = 0; 3536 else if (!TAILQ_EMPTY(&so->sol_comp)) 3537 revents = events & (POLLIN | POLLRDNORM); 3538 else if ((events & POLLINIGNEOF) == 0 && so->so_error) 3539 revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP; 3540 else { 3541 selrecord(td, &so->so_rdsel); 3542 revents = 0; 3543 } 3544 } else { 3545 revents = 0; 3546 SOCK_SENDBUF_LOCK(so); 3547 SOCK_RECVBUF_LOCK(so); 3548 if (events & (POLLIN | POLLRDNORM)) 3549 if (soreadabledata(so)) 3550 revents |= events & (POLLIN | POLLRDNORM); 3551 if (events & (POLLOUT | POLLWRNORM)) 3552 if (sowriteable(so)) 3553 revents |= events & (POLLOUT | POLLWRNORM); 3554 if (events & (POLLPRI | POLLRDBAND)) 3555 if (so->so_oobmark || 3556 (so->so_rcv.sb_state & SBS_RCVATMARK)) 3557 revents |= events & (POLLPRI | POLLRDBAND); 3558 if ((events & POLLINIGNEOF) == 0) { 3559 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3560 revents |= events & (POLLIN | POLLRDNORM); 3561 if (so->so_snd.sb_state & SBS_CANTSENDMORE) 3562 revents |= POLLHUP; 3563 } 3564 } 3565 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) 3566 revents |= events & POLLRDHUP; 3567 if (revents == 0) { 3568 if (events & 3569 (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND | POLLRDHUP)) { 3570 selrecord(td, &so->so_rdsel); 3571 so->so_rcv.sb_flags |= SB_SEL; 3572 } 3573 if (events & (POLLOUT | POLLWRNORM)) { 3574 selrecord(td, &so->so_wrsel); 3575 so->so_snd.sb_flags |= SB_SEL; 3576 } 3577 } 3578 SOCK_RECVBUF_UNLOCK(so); 3579 SOCK_SENDBUF_UNLOCK(so); 3580 } 3581 SOCK_UNLOCK(so); 3582 return (revents); 3583 } 3584 3585 int 3586 soo_kqfilter(struct file *fp, struct knote *kn) 3587 { 3588 struct socket *so = kn->kn_fp->f_data; 3589 struct sockbuf *sb; 3590 sb_which which; 3591 struct knlist *knl; 3592 3593 switch (kn->kn_filter) { 3594 case EVFILT_READ: 3595 kn->kn_fop = &soread_filtops; 3596 knl = &so->so_rdsel.si_note; 3597 sb = &so->so_rcv; 3598 which = SO_RCV; 3599 break; 3600 case EVFILT_WRITE: 3601 kn->kn_fop = &sowrite_filtops; 3602 knl = &so->so_wrsel.si_note; 3603 sb = &so->so_snd; 3604 which = SO_SND; 3605 break; 3606 case EVFILT_EMPTY: 3607 kn->kn_fop = &soempty_filtops; 3608 knl = &so->so_wrsel.si_note; 3609 sb = &so->so_snd; 3610 which = SO_SND; 3611 break; 3612 default: 3613 return (EINVAL); 3614 } 3615 3616 SOCK_LOCK(so); 3617 if (SOLISTENING(so)) { 3618 knlist_add(knl, kn, 1); 3619 } else { 3620 SOCK_BUF_LOCK(so, which); 3621 knlist_add(knl, kn, 1); 3622 sb->sb_flags |= SB_KNOTE; 3623 SOCK_BUF_UNLOCK(so, which); 3624 } 3625 SOCK_UNLOCK(so); 3626 return (0); 3627 } 3628 3629 /* 3630 * Some routines that return EOPNOTSUPP for entry points that are not 3631 * supported by a protocol. Fill in as needed. 3632 */ 3633 int 3634 pru_accept_notsupp(struct socket *so, struct sockaddr **nam) 3635 { 3636 3637 return EOPNOTSUPP; 3638 } 3639 3640 int 3641 pru_aio_queue_notsupp(struct socket *so, struct kaiocb *job) 3642 { 3643 3644 return EOPNOTSUPP; 3645 } 3646 3647 int 3648 pru_attach_notsupp(struct socket *so, int proto, struct thread *td) 3649 { 3650 3651 return EOPNOTSUPP; 3652 } 3653 3654 int 3655 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 3656 { 3657 3658 return EOPNOTSUPP; 3659 } 3660 3661 int 3662 pru_bindat_notsupp(int fd, struct socket *so, struct sockaddr *nam, 3663 struct thread *td) 3664 { 3665 3666 return EOPNOTSUPP; 3667 } 3668 3669 int 3670 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 3671 { 3672 3673 return EOPNOTSUPP; 3674 } 3675 3676 int 3677 pru_connectat_notsupp(int fd, struct socket *so, struct sockaddr *nam, 3678 struct thread *td) 3679 { 3680 3681 return EOPNOTSUPP; 3682 } 3683 3684 int 3685 pru_connect2_notsupp(struct socket *so1, struct socket *so2) 3686 { 3687 3688 return EOPNOTSUPP; 3689 } 3690 3691 int 3692 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, 3693 struct ifnet *ifp, struct thread *td) 3694 { 3695 3696 return EOPNOTSUPP; 3697 } 3698 3699 int 3700 pru_disconnect_notsupp(struct socket *so) 3701 { 3702 3703 return EOPNOTSUPP; 3704 } 3705 3706 int 3707 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td) 3708 { 3709 3710 return EOPNOTSUPP; 3711 } 3712 3713 int 3714 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam) 3715 { 3716 3717 return EOPNOTSUPP; 3718 } 3719 3720 int 3721 pru_rcvd_notsupp(struct socket *so, int flags) 3722 { 3723 3724 return EOPNOTSUPP; 3725 } 3726 3727 int 3728 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) 3729 { 3730 3731 return EOPNOTSUPP; 3732 } 3733 3734 int 3735 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m, 3736 struct sockaddr *addr, struct mbuf *control, struct thread *td) 3737 { 3738 3739 if (control != NULL) 3740 m_freem(control); 3741 if ((flags & PRUS_NOTREADY) == 0) 3742 m_freem(m); 3743 return (EOPNOTSUPP); 3744 } 3745 3746 int 3747 pru_ready_notsupp(struct socket *so, struct mbuf *m, int count) 3748 { 3749 3750 return (EOPNOTSUPP); 3751 } 3752 3753 /* 3754 * This isn't really a ``null'' operation, but it's the default one and 3755 * doesn't do anything destructive. 3756 */ 3757 int 3758 pru_sense_null(struct socket *so, struct stat *sb) 3759 { 3760 3761 sb->st_blksize = so->so_snd.sb_hiwat; 3762 return 0; 3763 } 3764 3765 int 3766 pru_shutdown_notsupp(struct socket *so) 3767 { 3768 3769 return EOPNOTSUPP; 3770 } 3771 3772 int 3773 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam) 3774 { 3775 3776 return EOPNOTSUPP; 3777 } 3778 3779 int 3780 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio, 3781 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 3782 { 3783 3784 return EOPNOTSUPP; 3785 } 3786 3787 int 3788 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr, 3789 struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 3790 { 3791 3792 return EOPNOTSUPP; 3793 } 3794 3795 int 3796 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred, 3797 struct thread *td) 3798 { 3799 3800 return EOPNOTSUPP; 3801 } 3802 3803 static void 3804 filt_sordetach(struct knote *kn) 3805 { 3806 struct socket *so = kn->kn_fp->f_data; 3807 3808 so_rdknl_lock(so); 3809 knlist_remove(&so->so_rdsel.si_note, kn, 1); 3810 if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note)) 3811 so->so_rcv.sb_flags &= ~SB_KNOTE; 3812 so_rdknl_unlock(so); 3813 } 3814 3815 /*ARGSUSED*/ 3816 static int 3817 filt_soread(struct knote *kn, long hint) 3818 { 3819 struct socket *so; 3820 3821 so = kn->kn_fp->f_data; 3822 3823 if (SOLISTENING(so)) { 3824 SOCK_LOCK_ASSERT(so); 3825 kn->kn_data = so->sol_qlen; 3826 if (so->so_error) { 3827 kn->kn_flags |= EV_EOF; 3828 kn->kn_fflags = so->so_error; 3829 return (1); 3830 } 3831 return (!TAILQ_EMPTY(&so->sol_comp)); 3832 } 3833 3834 SOCK_RECVBUF_LOCK_ASSERT(so); 3835 3836 kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl; 3837 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 3838 kn->kn_flags |= EV_EOF; 3839 kn->kn_fflags = so->so_error; 3840 return (1); 3841 } else if (so->so_error || so->so_rerror) 3842 return (1); 3843 3844 if (kn->kn_sfflags & NOTE_LOWAT) { 3845 if (kn->kn_data >= kn->kn_sdata) 3846 return (1); 3847 } else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat) 3848 return (1); 3849 3850 /* This hook returning non-zero indicates an event, not error */ 3851 return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD)); 3852 } 3853 3854 static void 3855 filt_sowdetach(struct knote *kn) 3856 { 3857 struct socket *so = kn->kn_fp->f_data; 3858 3859 so_wrknl_lock(so); 3860 knlist_remove(&so->so_wrsel.si_note, kn, 1); 3861 if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note)) 3862 so->so_snd.sb_flags &= ~SB_KNOTE; 3863 so_wrknl_unlock(so); 3864 } 3865 3866 /*ARGSUSED*/ 3867 static int 3868 filt_sowrite(struct knote *kn, long hint) 3869 { 3870 struct socket *so; 3871 3872 so = kn->kn_fp->f_data; 3873 3874 if (SOLISTENING(so)) 3875 return (0); 3876 3877 SOCK_SENDBUF_LOCK_ASSERT(so); 3878 kn->kn_data = sbspace(&so->so_snd); 3879 3880 hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE); 3881 3882 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 3883 kn->kn_flags |= EV_EOF; 3884 kn->kn_fflags = so->so_error; 3885 return (1); 3886 } else if (so->so_error) /* temporary udp error */ 3887 return (1); 3888 else if (((so->so_state & SS_ISCONNECTED) == 0) && 3889 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 3890 return (0); 3891 else if (kn->kn_sfflags & NOTE_LOWAT) 3892 return (kn->kn_data >= kn->kn_sdata); 3893 else 3894 return (kn->kn_data >= so->so_snd.sb_lowat); 3895 } 3896 3897 static int 3898 filt_soempty(struct knote *kn, long hint) 3899 { 3900 struct socket *so; 3901 3902 so = kn->kn_fp->f_data; 3903 3904 if (SOLISTENING(so)) 3905 return (1); 3906 3907 SOCK_SENDBUF_LOCK_ASSERT(so); 3908 kn->kn_data = sbused(&so->so_snd); 3909 3910 if (kn->kn_data == 0) 3911 return (1); 3912 else 3913 return (0); 3914 } 3915 3916 int 3917 socheckuid(struct socket *so, uid_t uid) 3918 { 3919 3920 if (so == NULL) 3921 return (EPERM); 3922 if (so->so_cred->cr_uid != uid) 3923 return (EPERM); 3924 return (0); 3925 } 3926 3927 /* 3928 * These functions are used by protocols to notify the socket layer (and its 3929 * consumers) of state changes in the sockets driven by protocol-side events. 3930 */ 3931 3932 /* 3933 * Procedures to manipulate state flags of socket and do appropriate wakeups. 3934 * 3935 * Normal sequence from the active (originating) side is that 3936 * soisconnecting() is called during processing of connect() call, resulting 3937 * in an eventual call to soisconnected() if/when the connection is 3938 * established. When the connection is torn down soisdisconnecting() is 3939 * called during processing of disconnect() call, and soisdisconnected() is 3940 * called when the connection to the peer is totally severed. The semantics 3941 * of these routines are such that connectionless protocols can call 3942 * soisconnected() and soisdisconnected() only, bypassing the in-progress 3943 * calls when setting up a ``connection'' takes no time. 3944 * 3945 * From the passive side, a socket is created with two queues of sockets: 3946 * so_incomp for connections in progress and so_comp for connections already 3947 * made and awaiting user acceptance. As a protocol is preparing incoming 3948 * connections, it creates a socket structure queued on so_incomp by calling 3949 * sonewconn(). When the connection is established, soisconnected() is 3950 * called, and transfers the socket structure to so_comp, making it available 3951 * to accept(). 3952 * 3953 * If a socket is closed with sockets on either so_incomp or so_comp, these 3954 * sockets are dropped. 3955 * 3956 * If higher-level protocols are implemented in the kernel, the wakeups done 3957 * here will sometimes cause software-interrupt process scheduling. 3958 */ 3959 void 3960 soisconnecting(struct socket *so) 3961 { 3962 3963 SOCK_LOCK(so); 3964 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 3965 so->so_state |= SS_ISCONNECTING; 3966 SOCK_UNLOCK(so); 3967 } 3968 3969 void 3970 soisconnected(struct socket *so) 3971 { 3972 bool last __diagused; 3973 3974 SOCK_LOCK(so); 3975 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 3976 so->so_state |= SS_ISCONNECTED; 3977 3978 if (so->so_qstate == SQ_INCOMP) { 3979 struct socket *head = so->so_listen; 3980 int ret; 3981 3982 KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so)); 3983 /* 3984 * Promoting a socket from incomplete queue to complete, we 3985 * need to go through reverse order of locking. We first do 3986 * trylock, and if that doesn't succeed, we go the hard way 3987 * leaving a reference and rechecking consistency after proper 3988 * locking. 3989 */ 3990 if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) { 3991 soref(head); 3992 SOCK_UNLOCK(so); 3993 SOLISTEN_LOCK(head); 3994 SOCK_LOCK(so); 3995 if (__predict_false(head != so->so_listen)) { 3996 /* 3997 * The socket went off the listen queue, 3998 * should be lost race to close(2) of sol. 3999 * The socket is about to soabort(). 4000 */ 4001 SOCK_UNLOCK(so); 4002 sorele_locked(head); 4003 return; 4004 } 4005 last = refcount_release(&head->so_count); 4006 KASSERT(!last, ("%s: released last reference for %p", 4007 __func__, head)); 4008 } 4009 again: 4010 if ((so->so_options & SO_ACCEPTFILTER) == 0) { 4011 TAILQ_REMOVE(&head->sol_incomp, so, so_list); 4012 head->sol_incqlen--; 4013 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); 4014 head->sol_qlen++; 4015 so->so_qstate = SQ_COMP; 4016 SOCK_UNLOCK(so); 4017 solisten_wakeup(head); /* unlocks */ 4018 } else { 4019 SOCK_RECVBUF_LOCK(so); 4020 soupcall_set(so, SO_RCV, 4021 head->sol_accept_filter->accf_callback, 4022 head->sol_accept_filter_arg); 4023 so->so_options &= ~SO_ACCEPTFILTER; 4024 ret = head->sol_accept_filter->accf_callback(so, 4025 head->sol_accept_filter_arg, M_NOWAIT); 4026 if (ret == SU_ISCONNECTED) { 4027 soupcall_clear(so, SO_RCV); 4028 SOCK_RECVBUF_UNLOCK(so); 4029 goto again; 4030 } 4031 SOCK_RECVBUF_UNLOCK(so); 4032 SOCK_UNLOCK(so); 4033 SOLISTEN_UNLOCK(head); 4034 } 4035 return; 4036 } 4037 SOCK_UNLOCK(so); 4038 wakeup(&so->so_timeo); 4039 sorwakeup(so); 4040 sowwakeup(so); 4041 } 4042 4043 void 4044 soisdisconnecting(struct socket *so) 4045 { 4046 4047 SOCK_LOCK(so); 4048 so->so_state &= ~SS_ISCONNECTING; 4049 so->so_state |= SS_ISDISCONNECTING; 4050 4051 if (!SOLISTENING(so)) { 4052 SOCK_RECVBUF_LOCK(so); 4053 socantrcvmore_locked(so); 4054 SOCK_SENDBUF_LOCK(so); 4055 socantsendmore_locked(so); 4056 } 4057 SOCK_UNLOCK(so); 4058 wakeup(&so->so_timeo); 4059 } 4060 4061 void 4062 soisdisconnected(struct socket *so) 4063 { 4064 4065 SOCK_LOCK(so); 4066 4067 /* 4068 * There is at least one reader of so_state that does not 4069 * acquire socket lock, namely soreceive_generic(). Ensure 4070 * that it never sees all flags that track connection status 4071 * cleared, by ordering the update with a barrier semantic of 4072 * our release thread fence. 4073 */ 4074 so->so_state |= SS_ISDISCONNECTED; 4075 atomic_thread_fence_rel(); 4076 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 4077 4078 if (!SOLISTENING(so)) { 4079 SOCK_UNLOCK(so); 4080 SOCK_RECVBUF_LOCK(so); 4081 socantrcvmore_locked(so); 4082 SOCK_SENDBUF_LOCK(so); 4083 sbdrop_locked(&so->so_snd, sbused(&so->so_snd)); 4084 socantsendmore_locked(so); 4085 } else 4086 SOCK_UNLOCK(so); 4087 wakeup(&so->so_timeo); 4088 } 4089 4090 int 4091 soiolock(struct socket *so, struct sx *sx, int flags) 4092 { 4093 int error; 4094 4095 KASSERT((flags & SBL_VALID) == flags, 4096 ("soiolock: invalid flags %#x", flags)); 4097 4098 if ((flags & SBL_WAIT) != 0) { 4099 if ((flags & SBL_NOINTR) != 0) { 4100 sx_xlock(sx); 4101 } else { 4102 error = sx_xlock_sig(sx); 4103 if (error != 0) 4104 return (error); 4105 } 4106 } else if (!sx_try_xlock(sx)) { 4107 return (EWOULDBLOCK); 4108 } 4109 4110 if (__predict_false(SOLISTENING(so))) { 4111 sx_xunlock(sx); 4112 return (ENOTCONN); 4113 } 4114 return (0); 4115 } 4116 4117 void 4118 soiounlock(struct sx *sx) 4119 { 4120 sx_xunlock(sx); 4121 } 4122 4123 /* 4124 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 4125 */ 4126 struct sockaddr * 4127 sodupsockaddr(const struct sockaddr *sa, int mflags) 4128 { 4129 struct sockaddr *sa2; 4130 4131 sa2 = malloc(sa->sa_len, M_SONAME, mflags); 4132 if (sa2) 4133 bcopy(sa, sa2, sa->sa_len); 4134 return sa2; 4135 } 4136 4137 /* 4138 * Register per-socket destructor. 4139 */ 4140 void 4141 sodtor_set(struct socket *so, so_dtor_t *func) 4142 { 4143 4144 SOCK_LOCK_ASSERT(so); 4145 so->so_dtor = func; 4146 } 4147 4148 /* 4149 * Register per-socket buffer upcalls. 4150 */ 4151 void 4152 soupcall_set(struct socket *so, sb_which which, so_upcall_t func, void *arg) 4153 { 4154 struct sockbuf *sb; 4155 4156 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 4157 4158 switch (which) { 4159 case SO_RCV: 4160 sb = &so->so_rcv; 4161 break; 4162 case SO_SND: 4163 sb = &so->so_snd; 4164 break; 4165 } 4166 SOCK_BUF_LOCK_ASSERT(so, which); 4167 sb->sb_upcall = func; 4168 sb->sb_upcallarg = arg; 4169 sb->sb_flags |= SB_UPCALL; 4170 } 4171 4172 void 4173 soupcall_clear(struct socket *so, sb_which which) 4174 { 4175 struct sockbuf *sb; 4176 4177 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); 4178 4179 switch (which) { 4180 case SO_RCV: 4181 sb = &so->so_rcv; 4182 break; 4183 case SO_SND: 4184 sb = &so->so_snd; 4185 break; 4186 } 4187 SOCK_BUF_LOCK_ASSERT(so, which); 4188 KASSERT(sb->sb_upcall != NULL, 4189 ("%s: so %p no upcall to clear", __func__, so)); 4190 sb->sb_upcall = NULL; 4191 sb->sb_upcallarg = NULL; 4192 sb->sb_flags &= ~SB_UPCALL; 4193 } 4194 4195 void 4196 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg) 4197 { 4198 4199 SOLISTEN_LOCK_ASSERT(so); 4200 so->sol_upcall = func; 4201 so->sol_upcallarg = arg; 4202 } 4203 4204 static void 4205 so_rdknl_lock(void *arg) 4206 { 4207 struct socket *so = arg; 4208 4209 retry: 4210 if (SOLISTENING(so)) { 4211 SOLISTEN_LOCK(so); 4212 } else { 4213 SOCK_RECVBUF_LOCK(so); 4214 if (__predict_false(SOLISTENING(so))) { 4215 SOCK_RECVBUF_UNLOCK(so); 4216 goto retry; 4217 } 4218 } 4219 } 4220 4221 static void 4222 so_rdknl_unlock(void *arg) 4223 { 4224 struct socket *so = arg; 4225 4226 if (SOLISTENING(so)) 4227 SOLISTEN_UNLOCK(so); 4228 else 4229 SOCK_RECVBUF_UNLOCK(so); 4230 } 4231 4232 static void 4233 so_rdknl_assert_lock(void *arg, int what) 4234 { 4235 struct socket *so = arg; 4236 4237 if (what == LA_LOCKED) { 4238 if (SOLISTENING(so)) 4239 SOLISTEN_LOCK_ASSERT(so); 4240 else 4241 SOCK_RECVBUF_LOCK_ASSERT(so); 4242 } else { 4243 if (SOLISTENING(so)) 4244 SOLISTEN_UNLOCK_ASSERT(so); 4245 else 4246 SOCK_RECVBUF_UNLOCK_ASSERT(so); 4247 } 4248 } 4249 4250 static void 4251 so_wrknl_lock(void *arg) 4252 { 4253 struct socket *so = arg; 4254 4255 retry: 4256 if (SOLISTENING(so)) { 4257 SOLISTEN_LOCK(so); 4258 } else { 4259 SOCK_SENDBUF_LOCK(so); 4260 if (__predict_false(SOLISTENING(so))) { 4261 SOCK_SENDBUF_UNLOCK(so); 4262 goto retry; 4263 } 4264 } 4265 } 4266 4267 static void 4268 so_wrknl_unlock(void *arg) 4269 { 4270 struct socket *so = arg; 4271 4272 if (SOLISTENING(so)) 4273 SOLISTEN_UNLOCK(so); 4274 else 4275 SOCK_SENDBUF_UNLOCK(so); 4276 } 4277 4278 static void 4279 so_wrknl_assert_lock(void *arg, int what) 4280 { 4281 struct socket *so = arg; 4282 4283 if (what == LA_LOCKED) { 4284 if (SOLISTENING(so)) 4285 SOLISTEN_LOCK_ASSERT(so); 4286 else 4287 SOCK_SENDBUF_LOCK_ASSERT(so); 4288 } else { 4289 if (SOLISTENING(so)) 4290 SOLISTEN_UNLOCK_ASSERT(so); 4291 else 4292 SOCK_SENDBUF_UNLOCK_ASSERT(so); 4293 } 4294 } 4295 4296 /* 4297 * Create an external-format (``xsocket'') structure using the information in 4298 * the kernel-format socket structure pointed to by so. This is done to 4299 * reduce the spew of irrelevant information over this interface, to isolate 4300 * user code from changes in the kernel structure, and potentially to provide 4301 * information-hiding if we decide that some of this information should be 4302 * hidden from users. 4303 */ 4304 void 4305 sotoxsocket(struct socket *so, struct xsocket *xso) 4306 { 4307 4308 bzero(xso, sizeof(*xso)); 4309 xso->xso_len = sizeof *xso; 4310 xso->xso_so = (uintptr_t)so; 4311 xso->so_type = so->so_type; 4312 xso->so_options = so->so_options; 4313 xso->so_linger = so->so_linger; 4314 xso->so_state = so->so_state; 4315 xso->so_pcb = (uintptr_t)so->so_pcb; 4316 xso->xso_protocol = so->so_proto->pr_protocol; 4317 xso->xso_family = so->so_proto->pr_domain->dom_family; 4318 xso->so_timeo = so->so_timeo; 4319 xso->so_error = so->so_error; 4320 xso->so_uid = so->so_cred->cr_uid; 4321 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 4322 if (SOLISTENING(so)) { 4323 xso->so_qlen = so->sol_qlen; 4324 xso->so_incqlen = so->sol_incqlen; 4325 xso->so_qlimit = so->sol_qlimit; 4326 xso->so_oobmark = 0; 4327 } else { 4328 xso->so_state |= so->so_qstate; 4329 xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0; 4330 xso->so_oobmark = so->so_oobmark; 4331 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 4332 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 4333 } 4334 } 4335 4336 struct sockbuf * 4337 so_sockbuf_rcv(struct socket *so) 4338 { 4339 4340 return (&so->so_rcv); 4341 } 4342 4343 struct sockbuf * 4344 so_sockbuf_snd(struct socket *so) 4345 { 4346 4347 return (&so->so_snd); 4348 } 4349 4350 int 4351 so_state_get(const struct socket *so) 4352 { 4353 4354 return (so->so_state); 4355 } 4356 4357 void 4358 so_state_set(struct socket *so, int val) 4359 { 4360 4361 so->so_state = val; 4362 } 4363 4364 int 4365 so_options_get(const struct socket *so) 4366 { 4367 4368 return (so->so_options); 4369 } 4370 4371 void 4372 so_options_set(struct socket *so, int val) 4373 { 4374 4375 so->so_options = val; 4376 } 4377 4378 int 4379 so_error_get(const struct socket *so) 4380 { 4381 4382 return (so->so_error); 4383 } 4384 4385 void 4386 so_error_set(struct socket *so, int val) 4387 { 4388 4389 so->so_error = val; 4390 } 4391 4392 int 4393 so_linger_get(const struct socket *so) 4394 { 4395 4396 return (so->so_linger); 4397 } 4398 4399 void 4400 so_linger_set(struct socket *so, int val) 4401 { 4402 4403 KASSERT(val >= 0 && val <= USHRT_MAX && val <= (INT_MAX / hz), 4404 ("%s: val %d out of range", __func__, val)); 4405 4406 so->so_linger = val; 4407 } 4408 4409 struct protosw * 4410 so_protosw_get(const struct socket *so) 4411 { 4412 4413 return (so->so_proto); 4414 } 4415 4416 void 4417 so_protosw_set(struct socket *so, struct protosw *val) 4418 { 4419 4420 so->so_proto = val; 4421 } 4422 4423 void 4424 so_sorwakeup(struct socket *so) 4425 { 4426 4427 sorwakeup(so); 4428 } 4429 4430 void 4431 so_sowwakeup(struct socket *so) 4432 { 4433 4434 sowwakeup(so); 4435 } 4436 4437 void 4438 so_sorwakeup_locked(struct socket *so) 4439 { 4440 4441 sorwakeup_locked(so); 4442 } 4443 4444 void 4445 so_sowwakeup_locked(struct socket *so) 4446 { 4447 4448 sowwakeup_locked(so); 4449 } 4450 4451 void 4452 so_lock(struct socket *so) 4453 { 4454 4455 SOCK_LOCK(so); 4456 } 4457 4458 void 4459 so_unlock(struct socket *so) 4460 { 4461 4462 SOCK_UNLOCK(so); 4463 } 4464