1 /* 2 * Copyright (c) 2004 The FreeBSD Foundation 3 * Copyright (c) 2004 Robert Watson 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 4. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_inet.h" 38 #include "opt_mac.h" 39 #include "opt_zero.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/fcntl.h> 44 #include <sys/limits.h> 45 #include <sys/lock.h> 46 #include <sys/mac.h> 47 #include <sys/malloc.h> 48 #include <sys/mbuf.h> 49 #include <sys/mutex.h> 50 #include <sys/domain.h> 51 #include <sys/file.h> /* for struct knote */ 52 #include <sys/kernel.h> 53 #include <sys/event.h> 54 #include <sys/poll.h> 55 #include <sys/proc.h> 56 #include <sys/protosw.h> 57 #include <sys/socket.h> 58 #include <sys/socketvar.h> 59 #include <sys/resourcevar.h> 60 #include <sys/signalvar.h> 61 #include <sys/sysctl.h> 62 #include <sys/uio.h> 63 #include <sys/jail.h> 64 65 #include <vm/uma.h> 66 67 68 static int soreceive_rcvoob(struct socket *so, struct uio *uio, 69 int flags); 70 71 #ifdef INET 72 static int do_setopt_accept_filter(struct socket *so, struct sockopt *sopt); 73 #endif 74 75 static void filt_sordetach(struct knote *kn); 76 static int filt_soread(struct knote *kn, long hint); 77 static void filt_sowdetach(struct knote *kn); 78 static int filt_sowrite(struct knote *kn, long hint); 79 static int filt_solisten(struct knote *kn, long hint); 80 81 static struct filterops solisten_filtops = 82 { 1, NULL, filt_sordetach, filt_solisten }; 83 static struct filterops soread_filtops = 84 { 1, NULL, filt_sordetach, filt_soread }; 85 static struct filterops sowrite_filtops = 86 { 1, NULL, filt_sowdetach, filt_sowrite }; 87 88 uma_zone_t socket_zone; 89 so_gen_t so_gencnt; /* generation count for sockets */ 90 91 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 92 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 93 94 SYSCTL_DECL(_kern_ipc); 95 96 static int somaxconn = SOMAXCONN; 97 SYSCTL_INT(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLFLAG_RW, 98 &somaxconn, 0, "Maximum pending socket connection queue size"); 99 static int numopensockets; 100 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, 101 &numopensockets, 0, "Number of open sockets"); 102 #ifdef ZERO_COPY_SOCKETS 103 /* These aren't static because they're used in other files. */ 104 int so_zero_copy_send = 1; 105 int so_zero_copy_receive = 1; 106 SYSCTL_NODE(_kern_ipc, OID_AUTO, zero_copy, CTLFLAG_RD, 0, 107 "Zero copy controls"); 108 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, receive, CTLFLAG_RW, 109 &so_zero_copy_receive, 0, "Enable zero copy receive"); 110 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, send, CTLFLAG_RW, 111 &so_zero_copy_send, 0, "Enable zero copy send"); 112 #endif /* ZERO_COPY_SOCKETS */ 113 114 /* 115 * accept_mtx locks down per-socket fields relating to accept queues. See 116 * socketvar.h for an annotation of the protected fields of struct socket. 117 */ 118 struct mtx accept_mtx; 119 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF); 120 121 /* 122 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket 123 * so_gencnt field. 124 */ 125 static struct mtx so_global_mtx; 126 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); 127 128 /* 129 * Socket operation routines. 130 * These routines are called by the routines in 131 * sys_socket.c or from a system process, and 132 * implement the semantics of socket operations by 133 * switching out to the protocol specific routines. 134 */ 135 136 /* 137 * Get a socket structure from our zone, and initialize it. 138 * Note that it would probably be better to allocate socket 139 * and PCB at the same time, but I'm not convinced that all 140 * the protocols can be easily modified to do this. 141 * 142 * soalloc() returns a socket with a ref count of 0. 143 */ 144 struct socket * 145 soalloc(int mflags) 146 { 147 struct socket *so; 148 149 so = uma_zalloc(socket_zone, mflags | M_ZERO); 150 if (so != NULL) { 151 #ifdef MAC 152 if (mac_init_socket(so, mflags) != 0) { 153 uma_zfree(socket_zone, so); 154 return (NULL); 155 } 156 #endif 157 SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd"); 158 SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv"); 159 /* sx_init(&so->so_sxlock, "socket sxlock"); */ 160 TAILQ_INIT(&so->so_aiojobq); 161 mtx_lock(&so_global_mtx); 162 so->so_gencnt = ++so_gencnt; 163 ++numopensockets; 164 mtx_unlock(&so_global_mtx); 165 } 166 return (so); 167 } 168 169 /* 170 * socreate returns a socket with a ref count of 1. The socket should be 171 * closed with soclose(). 172 */ 173 int 174 socreate(dom, aso, type, proto, cred, td) 175 int dom; 176 struct socket **aso; 177 int type; 178 int proto; 179 struct ucred *cred; 180 struct thread *td; 181 { 182 struct protosw *prp; 183 struct socket *so; 184 int error; 185 186 if (proto) 187 prp = pffindproto(dom, proto, type); 188 else 189 prp = pffindtype(dom, type); 190 191 if (prp == NULL || prp->pr_usrreqs->pru_attach == NULL || 192 prp->pr_usrreqs->pru_attach == pru_attach_notsupp) 193 return (EPROTONOSUPPORT); 194 195 if (jailed(cred) && jail_socket_unixiproute_only && 196 prp->pr_domain->dom_family != PF_LOCAL && 197 prp->pr_domain->dom_family != PF_INET && 198 prp->pr_domain->dom_family != PF_ROUTE) { 199 return (EPROTONOSUPPORT); 200 } 201 202 if (prp->pr_type != type) 203 return (EPROTOTYPE); 204 so = soalloc(M_WAITOK); 205 if (so == NULL) 206 return (ENOBUFS); 207 208 TAILQ_INIT(&so->so_incomp); 209 TAILQ_INIT(&so->so_comp); 210 so->so_type = type; 211 so->so_cred = crhold(cred); 212 so->so_proto = prp; 213 #ifdef MAC 214 mac_create_socket(cred, so); 215 #endif 216 SOCK_LOCK(so); 217 knlist_init(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv)); 218 knlist_init(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd)); 219 soref(so); 220 SOCK_UNLOCK(so); 221 error = (*prp->pr_usrreqs->pru_attach)(so, proto, td); 222 if (error) { 223 ACCEPT_LOCK(); 224 SOCK_LOCK(so); 225 so->so_state |= SS_NOFDREF; 226 sorele(so); 227 return (error); 228 } 229 *aso = so; 230 return (0); 231 } 232 233 int 234 sobind(so, nam, td) 235 struct socket *so; 236 struct sockaddr *nam; 237 struct thread *td; 238 { 239 240 return ((*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td)); 241 } 242 243 void 244 sodealloc(struct socket *so) 245 { 246 247 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); 248 mtx_lock(&so_global_mtx); 249 so->so_gencnt = ++so_gencnt; 250 mtx_unlock(&so_global_mtx); 251 if (so->so_rcv.sb_hiwat) 252 (void)chgsbsize(so->so_cred->cr_uidinfo, 253 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 254 if (so->so_snd.sb_hiwat) 255 (void)chgsbsize(so->so_cred->cr_uidinfo, 256 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 257 #ifdef INET 258 /* remove acccept filter if one is present. */ 259 if (so->so_accf != NULL) 260 do_setopt_accept_filter(so, NULL); 261 #endif 262 #ifdef MAC 263 mac_destroy_socket(so); 264 #endif 265 crfree(so->so_cred); 266 SOCKBUF_LOCK_DESTROY(&so->so_snd); 267 SOCKBUF_LOCK_DESTROY(&so->so_rcv); 268 /* sx_destroy(&so->so_sxlock); */ 269 uma_zfree(socket_zone, so); 270 mtx_lock(&so_global_mtx); 271 --numopensockets; 272 mtx_unlock(&so_global_mtx); 273 } 274 275 int 276 solisten(so, backlog, td) 277 struct socket *so; 278 int backlog; 279 struct thread *td; 280 { 281 int error; 282 283 /* 284 * XXXRW: Ordering issue here -- perhaps we need to set 285 * SO_ACCEPTCONN before the call to pru_listen()? 286 * XXXRW: General atomic test-and-set concerns here also. 287 */ 288 if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 289 SS_ISDISCONNECTING)) 290 return (EINVAL); 291 error = (*so->so_proto->pr_usrreqs->pru_listen)(so, td); 292 if (error) 293 return (error); 294 ACCEPT_LOCK(); 295 if (TAILQ_EMPTY(&so->so_comp)) { 296 SOCK_LOCK(so); 297 so->so_options |= SO_ACCEPTCONN; 298 SOCK_UNLOCK(so); 299 } 300 if (backlog < 0 || backlog > somaxconn) 301 backlog = somaxconn; 302 so->so_qlimit = backlog; 303 ACCEPT_UNLOCK(); 304 return (0); 305 } 306 307 /* 308 * Attempt to free a socket. This should really be sotryfree(). 309 * 310 * We free the socket if the protocol is no longer interested in the socket, 311 * there's no file descriptor reference, and the refcount is 0. While the 312 * calling macro sotryfree() tests the refcount, sofree() has to test it 313 * again as it's possible to race with an accept()ing thread if the socket is 314 * in an listen queue of a listen socket, as being in the listen queue 315 * doesn't elevate the reference count. sofree() acquires the accept mutex 316 * early for this test in order to avoid that race. 317 */ 318 void 319 sofree(so) 320 struct socket *so; 321 { 322 struct socket *head; 323 324 ACCEPT_LOCK_ASSERT(); 325 SOCK_LOCK_ASSERT(so); 326 327 if (so->so_pcb != NULL || (so->so_state & SS_NOFDREF) == 0 || 328 so->so_count != 0) { 329 SOCK_UNLOCK(so); 330 ACCEPT_UNLOCK(); 331 return; 332 } 333 334 head = so->so_head; 335 if (head != NULL) { 336 KASSERT((so->so_qstate & SQ_COMP) != 0 || 337 (so->so_qstate & SQ_INCOMP) != 0, 338 ("sofree: so_head != NULL, but neither SQ_COMP nor " 339 "SQ_INCOMP")); 340 KASSERT((so->so_qstate & SQ_COMP) == 0 || 341 (so->so_qstate & SQ_INCOMP) == 0, 342 ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP")); 343 /* 344 * accept(2) is responsible draining the completed 345 * connection queue and freeing those sockets, so 346 * we just return here if this socket is currently 347 * on the completed connection queue. Otherwise, 348 * accept(2) may hang after select(2) has indicating 349 * that a listening socket was ready. If it's an 350 * incomplete connection, we remove it from the queue 351 * and free it; otherwise, it won't be released until 352 * the listening socket is closed. 353 */ 354 if ((so->so_qstate & SQ_COMP) != 0) { 355 SOCK_UNLOCK(so); 356 ACCEPT_UNLOCK(); 357 return; 358 } 359 TAILQ_REMOVE(&head->so_incomp, so, so_list); 360 head->so_incqlen--; 361 so->so_qstate &= ~SQ_INCOMP; 362 so->so_head = NULL; 363 } 364 KASSERT((so->so_qstate & SQ_COMP) == 0 && 365 (so->so_qstate & SQ_INCOMP) == 0, 366 ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)", 367 so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP)); 368 SOCK_UNLOCK(so); 369 ACCEPT_UNLOCK(); 370 SOCKBUF_LOCK(&so->so_snd); 371 so->so_snd.sb_flags |= SB_NOINTR; 372 (void)sblock(&so->so_snd, M_WAITOK); 373 /* 374 * socantsendmore_locked() drops the socket buffer mutex so that it 375 * can safely perform wakeups. Re-acquire the mutex before 376 * continuing. 377 */ 378 socantsendmore_locked(so); 379 SOCKBUF_LOCK(&so->so_snd); 380 sbunlock(&so->so_snd); 381 sbrelease_locked(&so->so_snd, so); 382 SOCKBUF_UNLOCK(&so->so_snd); 383 sorflush(so); 384 knlist_destroy(&so->so_rcv.sb_sel.si_note); 385 knlist_destroy(&so->so_snd.sb_sel.si_note); 386 sodealloc(so); 387 } 388 389 /* 390 * Close a socket on last file table reference removal. 391 * Initiate disconnect if connected. 392 * Free socket when disconnect complete. 393 * 394 * This function will sorele() the socket. Note that soclose() may be 395 * called prior to the ref count reaching zero. The actual socket 396 * structure will not be freed until the ref count reaches zero. 397 */ 398 int 399 soclose(so) 400 struct socket *so; 401 { 402 int error = 0; 403 404 KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter")); 405 406 funsetown(&so->so_sigio); 407 if (so->so_options & SO_ACCEPTCONN) { 408 struct socket *sp; 409 ACCEPT_LOCK(); 410 while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) { 411 TAILQ_REMOVE(&so->so_incomp, sp, so_list); 412 so->so_incqlen--; 413 sp->so_qstate &= ~SQ_INCOMP; 414 sp->so_head = NULL; 415 ACCEPT_UNLOCK(); 416 (void) soabort(sp); 417 ACCEPT_LOCK(); 418 } 419 while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) { 420 TAILQ_REMOVE(&so->so_comp, sp, so_list); 421 so->so_qlen--; 422 sp->so_qstate &= ~SQ_COMP; 423 sp->so_head = NULL; 424 ACCEPT_UNLOCK(); 425 (void) soabort(sp); 426 ACCEPT_LOCK(); 427 } 428 ACCEPT_UNLOCK(); 429 } 430 if (so->so_pcb == NULL) 431 goto discard; 432 if (so->so_state & SS_ISCONNECTED) { 433 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 434 error = sodisconnect(so); 435 if (error) 436 goto drop; 437 } 438 if (so->so_options & SO_LINGER) { 439 if ((so->so_state & SS_ISDISCONNECTING) && 440 (so->so_state & SS_NBIO)) 441 goto drop; 442 while (so->so_state & SS_ISCONNECTED) { 443 error = tsleep(&so->so_timeo, 444 PSOCK | PCATCH, "soclos", so->so_linger * hz); 445 if (error) 446 break; 447 } 448 } 449 } 450 drop: 451 if (so->so_pcb != NULL) { 452 int error2 = (*so->so_proto->pr_usrreqs->pru_detach)(so); 453 if (error == 0) 454 error = error2; 455 } 456 discard: 457 ACCEPT_LOCK(); 458 SOCK_LOCK(so); 459 KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF")); 460 so->so_state |= SS_NOFDREF; 461 sorele(so); 462 return (error); 463 } 464 465 /* 466 * soabort() must not be called with any socket locks held, as it calls 467 * into the protocol, which will call back into the socket code causing 468 * it to acquire additional socket locks that may cause recursion or lock 469 * order reversals. 470 */ 471 int 472 soabort(so) 473 struct socket *so; 474 { 475 int error; 476 477 error = (*so->so_proto->pr_usrreqs->pru_abort)(so); 478 if (error) { 479 ACCEPT_LOCK(); 480 SOCK_LOCK(so); 481 sotryfree(so); /* note: does not decrement the ref count */ 482 return error; 483 } 484 return (0); 485 } 486 487 int 488 soaccept(so, nam) 489 struct socket *so; 490 struct sockaddr **nam; 491 { 492 int error; 493 494 SOCK_LOCK(so); 495 KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF")); 496 so->so_state &= ~SS_NOFDREF; 497 SOCK_UNLOCK(so); 498 error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam); 499 return (error); 500 } 501 502 int 503 soconnect(so, nam, td) 504 struct socket *so; 505 struct sockaddr *nam; 506 struct thread *td; 507 { 508 int error; 509 510 if (so->so_options & SO_ACCEPTCONN) 511 return (EOPNOTSUPP); 512 /* 513 * If protocol is connection-based, can only connect once. 514 * Otherwise, if connected, try to disconnect first. 515 * This allows user to disconnect by connecting to, e.g., 516 * a null address. 517 */ 518 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 519 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 520 (error = sodisconnect(so)))) 521 error = EISCONN; 522 else 523 error = (*so->so_proto->pr_usrreqs->pru_connect)(so, nam, td); 524 return (error); 525 } 526 527 int 528 soconnect2(so1, so2) 529 struct socket *so1; 530 struct socket *so2; 531 { 532 533 return ((*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2)); 534 } 535 536 int 537 sodisconnect(so) 538 struct socket *so; 539 { 540 int error; 541 542 if ((so->so_state & SS_ISCONNECTED) == 0) 543 return (ENOTCONN); 544 if (so->so_state & SS_ISDISCONNECTING) 545 return (EALREADY); 546 error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so); 547 return (error); 548 } 549 550 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK) 551 /* 552 * Send on a socket. 553 * If send must go all at once and message is larger than 554 * send buffering, then hard error. 555 * Lock against other senders. 556 * If must go all at once and not enough room now, then 557 * inform user that this would block and do nothing. 558 * Otherwise, if nonblocking, send as much as possible. 559 * The data to be sent is described by "uio" if nonzero, 560 * otherwise by the mbuf chain "top" (which must be null 561 * if uio is not). Data provided in mbuf chain must be small 562 * enough to send all at once. 563 * 564 * Returns nonzero on error, timeout or signal; callers 565 * must check for short counts if EINTR/ERESTART are returned. 566 * Data and control buffers are freed on return. 567 */ 568 569 #ifdef ZERO_COPY_SOCKETS 570 struct so_zerocopy_stats{ 571 int size_ok; 572 int align_ok; 573 int found_ifp; 574 }; 575 struct so_zerocopy_stats so_zerocp_stats = {0,0,0}; 576 #include <netinet/in.h> 577 #include <net/route.h> 578 #include <netinet/in_pcb.h> 579 #include <vm/vm.h> 580 #include <vm/vm_page.h> 581 #include <vm/vm_object.h> 582 #endif /*ZERO_COPY_SOCKETS*/ 583 584 int 585 sosend(so, addr, uio, top, control, flags, td) 586 struct socket *so; 587 struct sockaddr *addr; 588 struct uio *uio; 589 struct mbuf *top; 590 struct mbuf *control; 591 int flags; 592 struct thread *td; 593 { 594 struct mbuf **mp; 595 struct mbuf *m; 596 long space, len = 0, resid; 597 int clen = 0, error, dontroute; 598 int atomic = sosendallatonce(so) || top; 599 #ifdef ZERO_COPY_SOCKETS 600 int cow_send; 601 #endif /* ZERO_COPY_SOCKETS */ 602 603 if (uio != NULL) 604 resid = uio->uio_resid; 605 else 606 resid = top->m_pkthdr.len; 607 /* 608 * In theory resid should be unsigned. 609 * However, space must be signed, as it might be less than 0 610 * if we over-committed, and we must use a signed comparison 611 * of space and resid. On the other hand, a negative resid 612 * causes us to loop sending 0-length segments to the protocol. 613 * 614 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 615 * type sockets since that's an error. 616 */ 617 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 618 error = EINVAL; 619 goto out; 620 } 621 622 dontroute = 623 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 624 (so->so_proto->pr_flags & PR_ATOMIC); 625 if (td != NULL) 626 td->td_proc->p_stats->p_ru.ru_msgsnd++; 627 if (control != NULL) 628 clen = control->m_len; 629 #define snderr(errno) { error = (errno); goto release; } 630 631 SOCKBUF_LOCK(&so->so_snd); 632 restart: 633 SOCKBUF_LOCK_ASSERT(&so->so_snd); 634 error = sblock(&so->so_snd, SBLOCKWAIT(flags)); 635 if (error) 636 goto out_locked; 637 do { 638 SOCKBUF_LOCK_ASSERT(&so->so_snd); 639 if (so->so_snd.sb_state & SBS_CANTSENDMORE) 640 snderr(EPIPE); 641 if (so->so_error) { 642 error = so->so_error; 643 so->so_error = 0; 644 goto release; 645 } 646 if ((so->so_state & SS_ISCONNECTED) == 0) { 647 /* 648 * `sendto' and `sendmsg' is allowed on a connection- 649 * based socket if it supports implied connect. 650 * Return ENOTCONN if not connected and no address is 651 * supplied. 652 */ 653 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 654 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 655 if ((so->so_state & SS_ISCONFIRMING) == 0 && 656 !(resid == 0 && clen != 0)) 657 snderr(ENOTCONN); 658 } else if (addr == NULL) 659 snderr(so->so_proto->pr_flags & PR_CONNREQUIRED ? 660 ENOTCONN : EDESTADDRREQ); 661 } 662 space = sbspace(&so->so_snd); 663 if (flags & MSG_OOB) 664 space += 1024; 665 if ((atomic && resid > so->so_snd.sb_hiwat) || 666 clen > so->so_snd.sb_hiwat) 667 snderr(EMSGSIZE); 668 if (space < resid + clen && 669 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 670 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) 671 snderr(EWOULDBLOCK); 672 sbunlock(&so->so_snd); 673 error = sbwait(&so->so_snd); 674 if (error) 675 goto out_locked; 676 goto restart; 677 } 678 SOCKBUF_UNLOCK(&so->so_snd); 679 mp = ⊤ 680 space -= clen; 681 do { 682 if (uio == NULL) { 683 /* 684 * Data is prepackaged in "top". 685 */ 686 resid = 0; 687 if (flags & MSG_EOR) 688 top->m_flags |= M_EOR; 689 } else do { 690 #ifdef ZERO_COPY_SOCKETS 691 cow_send = 0; 692 #endif /* ZERO_COPY_SOCKETS */ 693 if (resid >= MINCLSIZE) { 694 #ifdef ZERO_COPY_SOCKETS 695 if (top == NULL) { 696 MGETHDR(m, M_TRYWAIT, MT_DATA); 697 if (m == NULL) { 698 error = ENOBUFS; 699 SOCKBUF_LOCK(&so->so_snd); 700 goto release; 701 } 702 m->m_pkthdr.len = 0; 703 m->m_pkthdr.rcvif = (struct ifnet *)0; 704 } else { 705 MGET(m, M_TRYWAIT, MT_DATA); 706 if (m == NULL) { 707 error = ENOBUFS; 708 SOCKBUF_LOCK(&so->so_snd); 709 goto release; 710 } 711 } 712 if (so_zero_copy_send && 713 resid>=PAGE_SIZE && 714 space>=PAGE_SIZE && 715 uio->uio_iov->iov_len>=PAGE_SIZE) { 716 so_zerocp_stats.size_ok++; 717 if (!((vm_offset_t) 718 uio->uio_iov->iov_base & PAGE_MASK)){ 719 so_zerocp_stats.align_ok++; 720 cow_send = socow_setup(m, uio); 721 } 722 } 723 if (!cow_send) { 724 MCLGET(m, M_TRYWAIT); 725 if ((m->m_flags & M_EXT) == 0) { 726 m_free(m); 727 m = NULL; 728 } else { 729 len = min(min(MCLBYTES, resid), space); 730 } 731 } else 732 len = PAGE_SIZE; 733 #else /* ZERO_COPY_SOCKETS */ 734 if (top == NULL) { 735 m = m_getcl(M_TRYWAIT, MT_DATA, M_PKTHDR); 736 m->m_pkthdr.len = 0; 737 m->m_pkthdr.rcvif = (struct ifnet *)0; 738 } else 739 m = m_getcl(M_TRYWAIT, MT_DATA, 0); 740 len = min(min(MCLBYTES, resid), space); 741 #endif /* ZERO_COPY_SOCKETS */ 742 } else { 743 if (top == NULL) { 744 m = m_gethdr(M_TRYWAIT, MT_DATA); 745 m->m_pkthdr.len = 0; 746 m->m_pkthdr.rcvif = (struct ifnet *)0; 747 748 len = min(min(MHLEN, resid), space); 749 /* 750 * For datagram protocols, leave room 751 * for protocol headers in first mbuf. 752 */ 753 if (atomic && m && len < MHLEN) 754 MH_ALIGN(m, len); 755 } else { 756 m = m_get(M_TRYWAIT, MT_DATA); 757 len = min(min(MLEN, resid), space); 758 } 759 } 760 if (m == NULL) { 761 error = ENOBUFS; 762 SOCKBUF_LOCK(&so->so_snd); 763 goto release; 764 } 765 766 space -= len; 767 #ifdef ZERO_COPY_SOCKETS 768 if (cow_send) 769 error = 0; 770 else 771 #endif /* ZERO_COPY_SOCKETS */ 772 error = uiomove(mtod(m, void *), (int)len, uio); 773 resid = uio->uio_resid; 774 m->m_len = len; 775 *mp = m; 776 top->m_pkthdr.len += len; 777 if (error) { 778 SOCKBUF_LOCK(&so->so_snd); 779 goto release; 780 } 781 mp = &m->m_next; 782 if (resid <= 0) { 783 if (flags & MSG_EOR) 784 top->m_flags |= M_EOR; 785 break; 786 } 787 } while (space > 0 && atomic); 788 if (dontroute) { 789 SOCK_LOCK(so); 790 so->so_options |= SO_DONTROUTE; 791 SOCK_UNLOCK(so); 792 } 793 /* 794 * XXX all the SBS_CANTSENDMORE checks previously 795 * done could be out of date. We could have recieved 796 * a reset packet in an interrupt or maybe we slept 797 * while doing page faults in uiomove() etc. We could 798 * probably recheck again inside the locking protection 799 * here, but there are probably other places that this 800 * also happens. We must rethink this. 801 */ 802 error = (*so->so_proto->pr_usrreqs->pru_send)(so, 803 (flags & MSG_OOB) ? PRUS_OOB : 804 /* 805 * If the user set MSG_EOF, the protocol 806 * understands this flag and nothing left to 807 * send then use PRU_SEND_EOF instead of PRU_SEND. 808 */ 809 ((flags & MSG_EOF) && 810 (so->so_proto->pr_flags & PR_IMPLOPCL) && 811 (resid <= 0)) ? 812 PRUS_EOF : 813 /* If there is more to send set PRUS_MORETOCOME */ 814 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, 815 top, addr, control, td); 816 if (dontroute) { 817 SOCK_LOCK(so); 818 so->so_options &= ~SO_DONTROUTE; 819 SOCK_UNLOCK(so); 820 } 821 clen = 0; 822 control = NULL; 823 top = NULL; 824 mp = ⊤ 825 if (error) { 826 SOCKBUF_LOCK(&so->so_snd); 827 goto release; 828 } 829 } while (resid && space > 0); 830 SOCKBUF_LOCK(&so->so_snd); 831 } while (resid); 832 833 release: 834 SOCKBUF_LOCK_ASSERT(&so->so_snd); 835 sbunlock(&so->so_snd); 836 out_locked: 837 SOCKBUF_LOCK_ASSERT(&so->so_snd); 838 SOCKBUF_UNLOCK(&so->so_snd); 839 out: 840 if (top != NULL) 841 m_freem(top); 842 if (control != NULL) 843 m_freem(control); 844 return (error); 845 } 846 847 /* 848 * The part of soreceive() that implements reading non-inline out-of-band 849 * data from a socket. For more complete comments, see soreceive(), from 850 * which this code originated. 851 * 852 * Note that soreceive_rcvoob(), unlike the remainder of soreiceve(), is 853 * unable to return an mbuf chain to the caller. 854 */ 855 static int 856 soreceive_rcvoob(so, uio, flags) 857 struct socket *so; 858 struct uio *uio; 859 int flags; 860 { 861 struct protosw *pr = so->so_proto; 862 struct mbuf *m; 863 int error; 864 865 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); 866 867 m = m_get(M_TRYWAIT, MT_DATA); 868 if (m == NULL) 869 return (ENOBUFS); 870 error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK); 871 if (error) 872 goto bad; 873 do { 874 #ifdef ZERO_COPY_SOCKETS 875 if (so_zero_copy_receive) { 876 int disposable; 877 878 if ((m->m_flags & M_EXT) 879 && (m->m_ext.ext_type == EXT_DISPOSABLE)) 880 disposable = 1; 881 else 882 disposable = 0; 883 884 error = uiomoveco(mtod(m, void *), 885 min(uio->uio_resid, m->m_len), 886 uio, disposable); 887 } else 888 #endif /* ZERO_COPY_SOCKETS */ 889 error = uiomove(mtod(m, void *), 890 (int) min(uio->uio_resid, m->m_len), uio); 891 m = m_free(m); 892 } while (uio->uio_resid && error == 0 && m); 893 bad: 894 if (m != NULL) 895 m_freem(m); 896 return (error); 897 } 898 899 /* 900 * Following replacement or removal of the first mbuf on the first mbuf chain 901 * of a socket buffer, push necessary state changes back into the socket 902 * buffer so that other consumers see the values consistently. 'nextrecord' 903 * is the callers locally stored value of the original value of 904 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. 905 * NOTE: 'nextrecord' may be NULL. 906 */ 907 static __inline void 908 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) 909 { 910 911 SOCKBUF_LOCK_ASSERT(sb); 912 /* 913 * First, update for the new value of nextrecord. If necessary, make 914 * it the first record. 915 */ 916 if (sb->sb_mb != NULL) 917 sb->sb_mb->m_nextpkt = nextrecord; 918 else 919 sb->sb_mb = nextrecord; 920 921 /* 922 * Now update any dependent socket buffer fields to reflect the new 923 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the 924 * addition of a second clause that takes care of the case where 925 * sb_mb has been updated, but remains the last record. 926 */ 927 if (sb->sb_mb == NULL) { 928 sb->sb_mbtail = NULL; 929 sb->sb_lastrecord = NULL; 930 } else if (sb->sb_mb->m_nextpkt == NULL) 931 sb->sb_lastrecord = sb->sb_mb; 932 } 933 934 935 /* 936 * Implement receive operations on a socket. 937 * We depend on the way that records are added to the sockbuf 938 * by sbappend*. In particular, each record (mbufs linked through m_next) 939 * must begin with an address if the protocol so specifies, 940 * followed by an optional mbuf or mbufs containing ancillary data, 941 * and then zero or more mbufs of data. 942 * In order to avoid blocking network interrupts for the entire time here, 943 * we splx() while doing the actual copy to user space. 944 * Although the sockbuf is locked, new data may still be appended, 945 * and thus we must maintain consistency of the sockbuf during that time. 946 * 947 * The caller may receive the data as a single mbuf chain by supplying 948 * an mbuf **mp0 for use in returning the chain. The uio is then used 949 * only for the count in uio_resid. 950 */ 951 int 952 soreceive(so, psa, uio, mp0, controlp, flagsp) 953 struct socket *so; 954 struct sockaddr **psa; 955 struct uio *uio; 956 struct mbuf **mp0; 957 struct mbuf **controlp; 958 int *flagsp; 959 { 960 struct mbuf *m, **mp; 961 int flags, len, error, offset; 962 struct protosw *pr = so->so_proto; 963 struct mbuf *nextrecord; 964 int moff, type = 0; 965 int orig_resid = uio->uio_resid; 966 967 mp = mp0; 968 if (psa != NULL) 969 *psa = NULL; 970 if (controlp != NULL) 971 *controlp = NULL; 972 if (flagsp != NULL) 973 flags = *flagsp &~ MSG_EOR; 974 else 975 flags = 0; 976 if (flags & MSG_OOB) 977 return (soreceive_rcvoob(so, uio, flags)); 978 if (mp != NULL) 979 *mp = NULL; 980 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid) 981 (*pr->pr_usrreqs->pru_rcvd)(so, 0); 982 983 SOCKBUF_LOCK(&so->so_rcv); 984 restart: 985 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 986 error = sblock(&so->so_rcv, SBLOCKWAIT(flags)); 987 if (error) 988 goto out; 989 990 m = so->so_rcv.sb_mb; 991 /* 992 * If we have less data than requested, block awaiting more 993 * (subject to any timeout) if: 994 * 1. the current count is less than the low water mark, or 995 * 2. MSG_WAITALL is set, and it is possible to do the entire 996 * receive operation at once if we block (resid <= hiwat). 997 * 3. MSG_DONTWAIT is not set 998 * If MSG_WAITALL is set but resid is larger than the receive buffer, 999 * we have to do the receive in sections, and thus risk returning 1000 * a short count if a timeout or signal occurs after we start. 1001 */ 1002 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 1003 so->so_rcv.sb_cc < uio->uio_resid) && 1004 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat || 1005 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) && 1006 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 1007 KASSERT(m != NULL || !so->so_rcv.sb_cc, 1008 ("receive: m == %p so->so_rcv.sb_cc == %u", 1009 m, so->so_rcv.sb_cc)); 1010 if (so->so_error) { 1011 if (m != NULL) 1012 goto dontblock; 1013 error = so->so_error; 1014 if ((flags & MSG_PEEK) == 0) 1015 so->so_error = 0; 1016 goto release; 1017 } 1018 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1019 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 1020 if (m) 1021 goto dontblock; 1022 else 1023 goto release; 1024 } 1025 for (; m != NULL; m = m->m_next) 1026 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 1027 m = so->so_rcv.sb_mb; 1028 goto dontblock; 1029 } 1030 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 1031 (so->so_proto->pr_flags & PR_CONNREQUIRED)) { 1032 error = ENOTCONN; 1033 goto release; 1034 } 1035 if (uio->uio_resid == 0) 1036 goto release; 1037 if ((so->so_state & SS_NBIO) || 1038 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 1039 error = EWOULDBLOCK; 1040 goto release; 1041 } 1042 SBLASTRECORDCHK(&so->so_rcv); 1043 SBLASTMBUFCHK(&so->so_rcv); 1044 sbunlock(&so->so_rcv); 1045 error = sbwait(&so->so_rcv); 1046 if (error) 1047 goto out; 1048 goto restart; 1049 } 1050 dontblock: 1051 /* 1052 * From this point onward, we maintain 'nextrecord' as a cache of the 1053 * pointer to the next record in the socket buffer. We must keep the 1054 * various socket buffer pointers and local stack versions of the 1055 * pointers in sync, pushing out modifications before dropping the 1056 * socket buffer mutex, and re-reading them when picking it up. 1057 * 1058 * Otherwise, we will race with the network stack appending new data 1059 * or records onto the socket buffer by using inconsistent/stale 1060 * versions of the field, possibly resulting in socket buffer 1061 * corruption. 1062 * 1063 * By holding the high-level sblock(), we prevent simultaneous 1064 * readers from pulling off the front of the socket buffer. 1065 */ 1066 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1067 if (uio->uio_td) 1068 uio->uio_td->td_proc->p_stats->p_ru.ru_msgrcv++; 1069 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); 1070 SBLASTRECORDCHK(&so->so_rcv); 1071 SBLASTMBUFCHK(&so->so_rcv); 1072 nextrecord = m->m_nextpkt; 1073 if (pr->pr_flags & PR_ADDR) { 1074 KASSERT(m->m_type == MT_SONAME, 1075 ("m->m_type == %d", m->m_type)); 1076 orig_resid = 0; 1077 if (psa != NULL) 1078 *psa = sodupsockaddr(mtod(m, struct sockaddr *), 1079 M_NOWAIT); 1080 if (flags & MSG_PEEK) { 1081 m = m->m_next; 1082 } else { 1083 sbfree(&so->so_rcv, m); 1084 so->so_rcv.sb_mb = m_free(m); 1085 m = so->so_rcv.sb_mb; 1086 sockbuf_pushsync(&so->so_rcv, nextrecord); 1087 } 1088 } 1089 1090 /* 1091 * Process one or more MT_CONTROL mbufs present before any data mbufs 1092 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 1093 * just copy the data; if !MSG_PEEK, we call into the protocol to 1094 * perform externalization (or freeing if controlp == NULL). 1095 */ 1096 if (m != NULL && m->m_type == MT_CONTROL) { 1097 struct mbuf *cm = NULL, *cmn; 1098 struct mbuf **cme = &cm; 1099 1100 do { 1101 if (flags & MSG_PEEK) { 1102 if (controlp != NULL) { 1103 *controlp = m_copy(m, 0, m->m_len); 1104 controlp = &(*controlp)->m_next; 1105 } 1106 m = m->m_next; 1107 } else { 1108 sbfree(&so->so_rcv, m); 1109 so->so_rcv.sb_mb = m->m_next; 1110 m->m_next = NULL; 1111 *cme = m; 1112 cme = &(*cme)->m_next; 1113 m = so->so_rcv.sb_mb; 1114 } 1115 } while (m != NULL && m->m_type == MT_CONTROL); 1116 if ((flags & MSG_PEEK) == 0) 1117 sockbuf_pushsync(&so->so_rcv, nextrecord); 1118 while (cm != NULL) { 1119 cmn = cm->m_next; 1120 cm->m_next = NULL; 1121 if (pr->pr_domain->dom_externalize != NULL) { 1122 SOCKBUF_UNLOCK(&so->so_rcv); 1123 error = (*pr->pr_domain->dom_externalize) 1124 (cm, controlp); 1125 SOCKBUF_LOCK(&so->so_rcv); 1126 } else if (controlp != NULL) 1127 *controlp = cm; 1128 else 1129 m_freem(cm); 1130 if (controlp != NULL) { 1131 orig_resid = 0; 1132 while (*controlp != NULL) 1133 controlp = &(*controlp)->m_next; 1134 } 1135 cm = cmn; 1136 } 1137 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 1138 orig_resid = 0; 1139 } 1140 if (m != NULL) { 1141 if ((flags & MSG_PEEK) == 0) { 1142 KASSERT(m->m_nextpkt == nextrecord, 1143 ("soreceive: post-control, nextrecord !sync")); 1144 if (nextrecord == NULL) { 1145 KASSERT(so->so_rcv.sb_mb == m, 1146 ("soreceive: post-control, sb_mb!=m")); 1147 KASSERT(so->so_rcv.sb_lastrecord == m, 1148 ("soreceive: post-control, lastrecord!=m")); 1149 } 1150 } 1151 type = m->m_type; 1152 if (type == MT_OOBDATA) 1153 flags |= MSG_OOB; 1154 } else { 1155 if ((flags & MSG_PEEK) == 0) { 1156 KASSERT(so->so_rcv.sb_mb == nextrecord, 1157 ("soreceive: sb_mb != nextrecord")); 1158 if (so->so_rcv.sb_mb == NULL) { 1159 KASSERT(so->so_rcv.sb_lastrecord == NULL, 1160 ("soreceive: sb_lastercord != NULL")); 1161 } 1162 } 1163 } 1164 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1165 SBLASTRECORDCHK(&so->so_rcv); 1166 SBLASTMBUFCHK(&so->so_rcv); 1167 1168 /* 1169 * Now continue to read any data mbufs off of the head of the socket 1170 * buffer until the read request is satisfied. Note that 'type' is 1171 * used to store the type of any mbuf reads that have happened so far 1172 * such that soreceive() can stop reading if the type changes, which 1173 * causes soreceive() to return only one of regular data and inline 1174 * out-of-band data in a single socket receive operation. 1175 */ 1176 moff = 0; 1177 offset = 0; 1178 while (m != NULL && uio->uio_resid > 0 && error == 0) { 1179 /* 1180 * If the type of mbuf has changed since the last mbuf 1181 * examined ('type'), end the receive operation. 1182 */ 1183 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1184 if (m->m_type == MT_OOBDATA) { 1185 if (type != MT_OOBDATA) 1186 break; 1187 } else if (type == MT_OOBDATA) 1188 break; 1189 else 1190 KASSERT(m->m_type == MT_DATA || m->m_type == MT_HEADER, 1191 ("m->m_type == %d", m->m_type)); 1192 so->so_rcv.sb_state &= ~SBS_RCVATMARK; 1193 len = uio->uio_resid; 1194 if (so->so_oobmark && len > so->so_oobmark - offset) 1195 len = so->so_oobmark - offset; 1196 if (len > m->m_len - moff) 1197 len = m->m_len - moff; 1198 /* 1199 * If mp is set, just pass back the mbufs. 1200 * Otherwise copy them out via the uio, then free. 1201 * Sockbuf must be consistent here (points to current mbuf, 1202 * it points to next record) when we drop priority; 1203 * we must note any additions to the sockbuf when we 1204 * block interrupts again. 1205 */ 1206 if (mp == NULL) { 1207 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1208 SBLASTRECORDCHK(&so->so_rcv); 1209 SBLASTMBUFCHK(&so->so_rcv); 1210 SOCKBUF_UNLOCK(&so->so_rcv); 1211 #ifdef ZERO_COPY_SOCKETS 1212 if (so_zero_copy_receive) { 1213 int disposable; 1214 1215 if ((m->m_flags & M_EXT) 1216 && (m->m_ext.ext_type == EXT_DISPOSABLE)) 1217 disposable = 1; 1218 else 1219 disposable = 0; 1220 1221 error = uiomoveco(mtod(m, char *) + moff, 1222 (int)len, uio, 1223 disposable); 1224 } else 1225 #endif /* ZERO_COPY_SOCKETS */ 1226 error = uiomove(mtod(m, char *) + moff, (int)len, uio); 1227 SOCKBUF_LOCK(&so->so_rcv); 1228 if (error) 1229 goto release; 1230 } else 1231 uio->uio_resid -= len; 1232 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1233 if (len == m->m_len - moff) { 1234 if (m->m_flags & M_EOR) 1235 flags |= MSG_EOR; 1236 if (flags & MSG_PEEK) { 1237 m = m->m_next; 1238 moff = 0; 1239 } else { 1240 nextrecord = m->m_nextpkt; 1241 sbfree(&so->so_rcv, m); 1242 if (mp != NULL) { 1243 *mp = m; 1244 mp = &m->m_next; 1245 so->so_rcv.sb_mb = m = m->m_next; 1246 *mp = NULL; 1247 } else { 1248 so->so_rcv.sb_mb = m_free(m); 1249 m = so->so_rcv.sb_mb; 1250 } 1251 if (m != NULL) { 1252 m->m_nextpkt = nextrecord; 1253 if (nextrecord == NULL) 1254 so->so_rcv.sb_lastrecord = m; 1255 } else { 1256 so->so_rcv.sb_mb = nextrecord; 1257 SB_EMPTY_FIXUP(&so->so_rcv); 1258 } 1259 SBLASTRECORDCHK(&so->so_rcv); 1260 SBLASTMBUFCHK(&so->so_rcv); 1261 } 1262 } else { 1263 if (flags & MSG_PEEK) 1264 moff += len; 1265 else { 1266 if (mp != NULL) { 1267 int copy_flag; 1268 1269 if (flags & MSG_DONTWAIT) 1270 copy_flag = M_DONTWAIT; 1271 else 1272 copy_flag = M_TRYWAIT; 1273 if (copy_flag == M_TRYWAIT) 1274 SOCKBUF_UNLOCK(&so->so_rcv); 1275 *mp = m_copym(m, 0, len, copy_flag); 1276 if (copy_flag == M_TRYWAIT) 1277 SOCKBUF_LOCK(&so->so_rcv); 1278 if (*mp == NULL) { 1279 /* 1280 * m_copym() couldn't allocate an mbuf. 1281 * Adjust uio_resid back (it was adjusted 1282 * down by len bytes, which we didn't end 1283 * up "copying" over). 1284 */ 1285 uio->uio_resid += len; 1286 break; 1287 } 1288 } 1289 m->m_data += len; 1290 m->m_len -= len; 1291 so->so_rcv.sb_cc -= len; 1292 } 1293 } 1294 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1295 if (so->so_oobmark) { 1296 if ((flags & MSG_PEEK) == 0) { 1297 so->so_oobmark -= len; 1298 if (so->so_oobmark == 0) { 1299 so->so_rcv.sb_state |= SBS_RCVATMARK; 1300 break; 1301 } 1302 } else { 1303 offset += len; 1304 if (offset == so->so_oobmark) 1305 break; 1306 } 1307 } 1308 if (flags & MSG_EOR) 1309 break; 1310 /* 1311 * If the MSG_WAITALL flag is set (for non-atomic socket), 1312 * we must not quit until "uio->uio_resid == 0" or an error 1313 * termination. If a signal/timeout occurs, return 1314 * with a short count but without error. 1315 * Keep sockbuf locked against other readers. 1316 */ 1317 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 1318 !sosendallatonce(so) && nextrecord == NULL) { 1319 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1320 if (so->so_error || so->so_rcv.sb_state & SBS_CANTRCVMORE) 1321 break; 1322 /* 1323 * Notify the protocol that some data has been 1324 * drained before blocking. 1325 */ 1326 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb != NULL) { 1327 SOCKBUF_UNLOCK(&so->so_rcv); 1328 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 1329 SOCKBUF_LOCK(&so->so_rcv); 1330 } 1331 SBLASTRECORDCHK(&so->so_rcv); 1332 SBLASTMBUFCHK(&so->so_rcv); 1333 error = sbwait(&so->so_rcv); 1334 if (error) 1335 goto release; 1336 m = so->so_rcv.sb_mb; 1337 if (m != NULL) 1338 nextrecord = m->m_nextpkt; 1339 } 1340 } 1341 1342 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1343 if (m != NULL && pr->pr_flags & PR_ATOMIC) { 1344 flags |= MSG_TRUNC; 1345 if ((flags & MSG_PEEK) == 0) 1346 (void) sbdroprecord_locked(&so->so_rcv); 1347 } 1348 if ((flags & MSG_PEEK) == 0) { 1349 if (m == NULL) { 1350 /* 1351 * First part is an inline SB_EMPTY_FIXUP(). Second 1352 * part makes sure sb_lastrecord is up-to-date if 1353 * there is still data in the socket buffer. 1354 */ 1355 so->so_rcv.sb_mb = nextrecord; 1356 if (so->so_rcv.sb_mb == NULL) { 1357 so->so_rcv.sb_mbtail = NULL; 1358 so->so_rcv.sb_lastrecord = NULL; 1359 } else if (nextrecord->m_nextpkt == NULL) 1360 so->so_rcv.sb_lastrecord = nextrecord; 1361 } 1362 SBLASTRECORDCHK(&so->so_rcv); 1363 SBLASTMBUFCHK(&so->so_rcv); 1364 /* 1365 * If soreceive() is being done from the socket callback, then 1366 * don't need to generate ACK to peer to update window, since 1367 * ACK will be generated on return to TCP. 1368 */ 1369 if (!(flags & MSG_SOCALLBCK) && 1370 (pr->pr_flags & PR_WANTRCVD) && so->so_pcb) { 1371 SOCKBUF_UNLOCK(&so->so_rcv); 1372 (*pr->pr_usrreqs->pru_rcvd)(so, flags); 1373 SOCKBUF_LOCK(&so->so_rcv); 1374 } 1375 } 1376 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1377 if (orig_resid == uio->uio_resid && orig_resid && 1378 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { 1379 sbunlock(&so->so_rcv); 1380 goto restart; 1381 } 1382 1383 if (flagsp != NULL) 1384 *flagsp |= flags; 1385 release: 1386 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1387 sbunlock(&so->so_rcv); 1388 out: 1389 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1390 SOCKBUF_UNLOCK(&so->so_rcv); 1391 return (error); 1392 } 1393 1394 int 1395 soshutdown(so, how) 1396 struct socket *so; 1397 int how; 1398 { 1399 struct protosw *pr = so->so_proto; 1400 1401 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 1402 return (EINVAL); 1403 1404 if (how != SHUT_WR) 1405 sorflush(so); 1406 if (how != SHUT_RD) 1407 return ((*pr->pr_usrreqs->pru_shutdown)(so)); 1408 return (0); 1409 } 1410 1411 void 1412 sorflush(so) 1413 struct socket *so; 1414 { 1415 struct sockbuf *sb = &so->so_rcv; 1416 struct protosw *pr = so->so_proto; 1417 struct sockbuf asb; 1418 1419 /* 1420 * XXXRW: This is quite ugly. Previously, this code made a copy of 1421 * the socket buffer, then zero'd the original to clear the buffer 1422 * fields. However, with mutexes in the socket buffer, this causes 1423 * problems. We only clear the zeroable bits of the original; 1424 * however, we have to initialize and destroy the mutex in the copy 1425 * so that dom_dispose() and sbrelease() can lock t as needed. 1426 */ 1427 SOCKBUF_LOCK(sb); 1428 sb->sb_flags |= SB_NOINTR; 1429 (void) sblock(sb, M_WAITOK); 1430 /* 1431 * socantrcvmore_locked() drops the socket buffer mutex so that it 1432 * can safely perform wakeups. Re-acquire the mutex before 1433 * continuing. 1434 */ 1435 socantrcvmore_locked(so); 1436 SOCKBUF_LOCK(sb); 1437 sbunlock(sb); 1438 /* 1439 * Invalidate/clear most of the sockbuf structure, but leave 1440 * selinfo and mutex data unchanged. 1441 */ 1442 bzero(&asb, offsetof(struct sockbuf, sb_startzero)); 1443 bcopy(&sb->sb_startzero, &asb.sb_startzero, 1444 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 1445 bzero(&sb->sb_startzero, 1446 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 1447 SOCKBUF_UNLOCK(sb); 1448 1449 SOCKBUF_LOCK_INIT(&asb, "so_rcv"); 1450 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) 1451 (*pr->pr_domain->dom_dispose)(asb.sb_mb); 1452 sbrelease(&asb, so); 1453 SOCKBUF_LOCK_DESTROY(&asb); 1454 } 1455 1456 #ifdef INET 1457 static int 1458 do_setopt_accept_filter(so, sopt) 1459 struct socket *so; 1460 struct sockopt *sopt; 1461 { 1462 struct accept_filter_arg *afap; 1463 struct accept_filter *afp; 1464 struct so_accf *newaf; 1465 int error = 0; 1466 1467 newaf = NULL; 1468 afap = NULL; 1469 1470 /* 1471 * XXXRW: Configuring accept filters should be an atomic test-and-set 1472 * operation to prevent races during setup and attach. There may be 1473 * more general issues of racing and ordering here that are not yet 1474 * addressed by locking. 1475 */ 1476 /* do not set/remove accept filters on non listen sockets */ 1477 SOCK_LOCK(so); 1478 if ((so->so_options & SO_ACCEPTCONN) == 0) { 1479 SOCK_UNLOCK(so); 1480 return (EINVAL); 1481 } 1482 1483 /* removing the filter */ 1484 if (sopt == NULL) { 1485 if (so->so_accf != NULL) { 1486 struct so_accf *af = so->so_accf; 1487 if (af->so_accept_filter != NULL && 1488 af->so_accept_filter->accf_destroy != NULL) { 1489 af->so_accept_filter->accf_destroy(so); 1490 } 1491 if (af->so_accept_filter_str != NULL) { 1492 FREE(af->so_accept_filter_str, M_ACCF); 1493 } 1494 FREE(af, M_ACCF); 1495 so->so_accf = NULL; 1496 } 1497 so->so_options &= ~SO_ACCEPTFILTER; 1498 SOCK_UNLOCK(so); 1499 return (0); 1500 } 1501 SOCK_UNLOCK(so); 1502 1503 /*- 1504 * Adding a filter. 1505 * 1506 * Do memory allocation, copyin, and filter lookup now while we're 1507 * not holding any locks. Avoids sleeping with a mutex, as well as 1508 * introducing a lock order between accept filter locks and socket 1509 * locks here. 1510 */ 1511 MALLOC(afap, struct accept_filter_arg *, sizeof(*afap), M_TEMP, 1512 M_WAITOK); 1513 /* don't put large objects on the kernel stack */ 1514 error = sooptcopyin(sopt, afap, sizeof *afap, sizeof *afap); 1515 afap->af_name[sizeof(afap->af_name)-1] = '\0'; 1516 afap->af_arg[sizeof(afap->af_arg)-1] = '\0'; 1517 if (error) { 1518 FREE(afap, M_TEMP); 1519 return (error); 1520 } 1521 afp = accept_filt_get(afap->af_name); 1522 if (afp == NULL) { 1523 FREE(afap, M_TEMP); 1524 return (ENOENT); 1525 } 1526 1527 /* 1528 * Allocate the new accept filter instance storage. We may have to 1529 * free it again later if we fail to attach it. If attached 1530 * properly, 'newaf' is NULLed to avoid a free() while in use. 1531 */ 1532 MALLOC(newaf, struct so_accf *, sizeof(*newaf), M_ACCF, M_WAITOK | 1533 M_ZERO); 1534 if (afp->accf_create != NULL && afap->af_name[0] != '\0') { 1535 int len = strlen(afap->af_name) + 1; 1536 MALLOC(newaf->so_accept_filter_str, char *, len, M_ACCF, 1537 M_WAITOK); 1538 strcpy(newaf->so_accept_filter_str, afap->af_name); 1539 } 1540 1541 SOCK_LOCK(so); 1542 /* must remove previous filter first */ 1543 if (so->so_accf != NULL) { 1544 error = EINVAL; 1545 goto out; 1546 } 1547 /* 1548 * Invoke the accf_create() method of the filter if required. 1549 * XXXRW: the socket mutex is held over this call, so the create 1550 * method cannot block. This may be something we have to change, but 1551 * it would require addressing possible races. 1552 */ 1553 if (afp->accf_create != NULL) { 1554 newaf->so_accept_filter_arg = 1555 afp->accf_create(so, afap->af_arg); 1556 if (newaf->so_accept_filter_arg == NULL) { 1557 error = EINVAL; 1558 goto out; 1559 } 1560 } 1561 newaf->so_accept_filter = afp; 1562 so->so_accf = newaf; 1563 so->so_options |= SO_ACCEPTFILTER; 1564 newaf = NULL; 1565 out: 1566 SOCK_UNLOCK(so); 1567 if (newaf != NULL) { 1568 if (newaf->so_accept_filter_str != NULL) 1569 FREE(newaf->so_accept_filter_str, M_ACCF); 1570 FREE(newaf, M_ACCF); 1571 } 1572 if (afap != NULL) 1573 FREE(afap, M_TEMP); 1574 return (error); 1575 } 1576 #endif /* INET */ 1577 1578 /* 1579 * Perhaps this routine, and sooptcopyout(), below, ought to come in 1580 * an additional variant to handle the case where the option value needs 1581 * to be some kind of integer, but not a specific size. 1582 * In addition to their use here, these functions are also called by the 1583 * protocol-level pr_ctloutput() routines. 1584 */ 1585 int 1586 sooptcopyin(sopt, buf, len, minlen) 1587 struct sockopt *sopt; 1588 void *buf; 1589 size_t len; 1590 size_t minlen; 1591 { 1592 size_t valsize; 1593 1594 /* 1595 * If the user gives us more than we wanted, we ignore it, 1596 * but if we don't get the minimum length the caller 1597 * wants, we return EINVAL. On success, sopt->sopt_valsize 1598 * is set to however much we actually retrieved. 1599 */ 1600 if ((valsize = sopt->sopt_valsize) < minlen) 1601 return EINVAL; 1602 if (valsize > len) 1603 sopt->sopt_valsize = valsize = len; 1604 1605 if (sopt->sopt_td != NULL) 1606 return (copyin(sopt->sopt_val, buf, valsize)); 1607 1608 bcopy(sopt->sopt_val, buf, valsize); 1609 return 0; 1610 } 1611 1612 /* 1613 * Kernel version of setsockopt(2)/ 1614 * XXX: optlen is size_t, not socklen_t 1615 */ 1616 int 1617 so_setsockopt(struct socket *so, int level, int optname, void *optval, 1618 size_t optlen) 1619 { 1620 struct sockopt sopt; 1621 1622 sopt.sopt_level = level; 1623 sopt.sopt_name = optname; 1624 sopt.sopt_dir = SOPT_SET; 1625 sopt.sopt_val = optval; 1626 sopt.sopt_valsize = optlen; 1627 sopt.sopt_td = NULL; 1628 return (sosetopt(so, &sopt)); 1629 } 1630 1631 int 1632 sosetopt(so, sopt) 1633 struct socket *so; 1634 struct sockopt *sopt; 1635 { 1636 int error, optval; 1637 struct linger l; 1638 struct timeval tv; 1639 u_long val; 1640 #ifdef MAC 1641 struct mac extmac; 1642 #endif 1643 1644 error = 0; 1645 if (sopt->sopt_level != SOL_SOCKET) { 1646 if (so->so_proto && so->so_proto->pr_ctloutput) 1647 return ((*so->so_proto->pr_ctloutput) 1648 (so, sopt)); 1649 error = ENOPROTOOPT; 1650 } else { 1651 switch (sopt->sopt_name) { 1652 #ifdef INET 1653 case SO_ACCEPTFILTER: 1654 error = do_setopt_accept_filter(so, sopt); 1655 if (error) 1656 goto bad; 1657 break; 1658 #endif 1659 case SO_LINGER: 1660 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 1661 if (error) 1662 goto bad; 1663 1664 SOCK_LOCK(so); 1665 so->so_linger = l.l_linger; 1666 if (l.l_onoff) 1667 so->so_options |= SO_LINGER; 1668 else 1669 so->so_options &= ~SO_LINGER; 1670 SOCK_UNLOCK(so); 1671 break; 1672 1673 case SO_DEBUG: 1674 case SO_KEEPALIVE: 1675 case SO_DONTROUTE: 1676 case SO_USELOOPBACK: 1677 case SO_BROADCAST: 1678 case SO_REUSEADDR: 1679 case SO_REUSEPORT: 1680 case SO_OOBINLINE: 1681 case SO_TIMESTAMP: 1682 case SO_BINTIME: 1683 case SO_NOSIGPIPE: 1684 error = sooptcopyin(sopt, &optval, sizeof optval, 1685 sizeof optval); 1686 if (error) 1687 goto bad; 1688 SOCK_LOCK(so); 1689 if (optval) 1690 so->so_options |= sopt->sopt_name; 1691 else 1692 so->so_options &= ~sopt->sopt_name; 1693 SOCK_UNLOCK(so); 1694 break; 1695 1696 case SO_SNDBUF: 1697 case SO_RCVBUF: 1698 case SO_SNDLOWAT: 1699 case SO_RCVLOWAT: 1700 error = sooptcopyin(sopt, &optval, sizeof optval, 1701 sizeof optval); 1702 if (error) 1703 goto bad; 1704 1705 /* 1706 * Values < 1 make no sense for any of these 1707 * options, so disallow them. 1708 */ 1709 if (optval < 1) { 1710 error = EINVAL; 1711 goto bad; 1712 } 1713 1714 switch (sopt->sopt_name) { 1715 case SO_SNDBUF: 1716 case SO_RCVBUF: 1717 if (sbreserve(sopt->sopt_name == SO_SNDBUF ? 1718 &so->so_snd : &so->so_rcv, (u_long)optval, 1719 so, curthread) == 0) { 1720 error = ENOBUFS; 1721 goto bad; 1722 } 1723 break; 1724 1725 /* 1726 * Make sure the low-water is never greater than 1727 * the high-water. 1728 */ 1729 case SO_SNDLOWAT: 1730 SOCKBUF_LOCK(&so->so_snd); 1731 so->so_snd.sb_lowat = 1732 (optval > so->so_snd.sb_hiwat) ? 1733 so->so_snd.sb_hiwat : optval; 1734 SOCKBUF_UNLOCK(&so->so_snd); 1735 break; 1736 case SO_RCVLOWAT: 1737 SOCKBUF_LOCK(&so->so_rcv); 1738 so->so_rcv.sb_lowat = 1739 (optval > so->so_rcv.sb_hiwat) ? 1740 so->so_rcv.sb_hiwat : optval; 1741 SOCKBUF_UNLOCK(&so->so_rcv); 1742 break; 1743 } 1744 break; 1745 1746 case SO_SNDTIMEO: 1747 case SO_RCVTIMEO: 1748 error = sooptcopyin(sopt, &tv, sizeof tv, 1749 sizeof tv); 1750 if (error) 1751 goto bad; 1752 1753 /* assert(hz > 0); */ 1754 if (tv.tv_sec < 0 || tv.tv_sec > INT_MAX / hz || 1755 tv.tv_usec < 0 || tv.tv_usec >= 1000000) { 1756 error = EDOM; 1757 goto bad; 1758 } 1759 /* assert(tick > 0); */ 1760 /* assert(ULONG_MAX - INT_MAX >= 1000000); */ 1761 val = (u_long)(tv.tv_sec * hz) + tv.tv_usec / tick; 1762 if (val > INT_MAX) { 1763 error = EDOM; 1764 goto bad; 1765 } 1766 if (val == 0 && tv.tv_usec != 0) 1767 val = 1; 1768 1769 switch (sopt->sopt_name) { 1770 case SO_SNDTIMEO: 1771 so->so_snd.sb_timeo = val; 1772 break; 1773 case SO_RCVTIMEO: 1774 so->so_rcv.sb_timeo = val; 1775 break; 1776 } 1777 break; 1778 case SO_LABEL: 1779 #ifdef MAC 1780 error = sooptcopyin(sopt, &extmac, sizeof extmac, 1781 sizeof extmac); 1782 if (error) 1783 goto bad; 1784 error = mac_setsockopt_label(sopt->sopt_td->td_ucred, 1785 so, &extmac); 1786 #else 1787 error = EOPNOTSUPP; 1788 #endif 1789 break; 1790 default: 1791 error = ENOPROTOOPT; 1792 break; 1793 } 1794 if (error == 0 && so->so_proto != NULL && 1795 so->so_proto->pr_ctloutput != NULL) { 1796 (void) ((*so->so_proto->pr_ctloutput) 1797 (so, sopt)); 1798 } 1799 } 1800 bad: 1801 return (error); 1802 } 1803 1804 /* Helper routine for getsockopt */ 1805 int 1806 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 1807 { 1808 int error; 1809 size_t valsize; 1810 1811 error = 0; 1812 1813 /* 1814 * Documented get behavior is that we always return a value, 1815 * possibly truncated to fit in the user's buffer. 1816 * Traditional behavior is that we always tell the user 1817 * precisely how much we copied, rather than something useful 1818 * like the total amount we had available for her. 1819 * Note that this interface is not idempotent; the entire answer must 1820 * generated ahead of time. 1821 */ 1822 valsize = min(len, sopt->sopt_valsize); 1823 sopt->sopt_valsize = valsize; 1824 if (sopt->sopt_val != NULL) { 1825 if (sopt->sopt_td != NULL) 1826 error = copyout(buf, sopt->sopt_val, valsize); 1827 else 1828 bcopy(buf, sopt->sopt_val, valsize); 1829 } 1830 return error; 1831 } 1832 1833 int 1834 sogetopt(so, sopt) 1835 struct socket *so; 1836 struct sockopt *sopt; 1837 { 1838 int error, optval; 1839 struct linger l; 1840 struct timeval tv; 1841 #ifdef INET 1842 struct accept_filter_arg *afap; 1843 #endif 1844 #ifdef MAC 1845 struct mac extmac; 1846 #endif 1847 1848 error = 0; 1849 if (sopt->sopt_level != SOL_SOCKET) { 1850 if (so->so_proto && so->so_proto->pr_ctloutput) { 1851 return ((*so->so_proto->pr_ctloutput) 1852 (so, sopt)); 1853 } else 1854 return (ENOPROTOOPT); 1855 } else { 1856 switch (sopt->sopt_name) { 1857 #ifdef INET 1858 case SO_ACCEPTFILTER: 1859 /* Unlocked read. */ 1860 if ((so->so_options & SO_ACCEPTCONN) == 0) 1861 return (EINVAL); 1862 MALLOC(afap, struct accept_filter_arg *, sizeof(*afap), 1863 M_TEMP, M_WAITOK | M_ZERO); 1864 SOCK_LOCK(so); 1865 if ((so->so_options & SO_ACCEPTFILTER) != 0) { 1866 strcpy(afap->af_name, so->so_accf->so_accept_filter->accf_name); 1867 if (so->so_accf->so_accept_filter_str != NULL) 1868 strcpy(afap->af_arg, so->so_accf->so_accept_filter_str); 1869 } 1870 SOCK_UNLOCK(so); 1871 error = sooptcopyout(sopt, afap, sizeof(*afap)); 1872 FREE(afap, M_TEMP); 1873 break; 1874 #endif 1875 1876 case SO_LINGER: 1877 SOCK_LOCK(so); 1878 l.l_onoff = so->so_options & SO_LINGER; 1879 l.l_linger = so->so_linger; 1880 SOCK_UNLOCK(so); 1881 error = sooptcopyout(sopt, &l, sizeof l); 1882 break; 1883 1884 case SO_USELOOPBACK: 1885 case SO_DONTROUTE: 1886 case SO_DEBUG: 1887 case SO_KEEPALIVE: 1888 case SO_REUSEADDR: 1889 case SO_REUSEPORT: 1890 case SO_BROADCAST: 1891 case SO_OOBINLINE: 1892 case SO_TIMESTAMP: 1893 case SO_BINTIME: 1894 case SO_NOSIGPIPE: 1895 optval = so->so_options & sopt->sopt_name; 1896 integer: 1897 error = sooptcopyout(sopt, &optval, sizeof optval); 1898 break; 1899 1900 case SO_TYPE: 1901 optval = so->so_type; 1902 goto integer; 1903 1904 case SO_ERROR: 1905 optval = so->so_error; 1906 so->so_error = 0; 1907 goto integer; 1908 1909 case SO_SNDBUF: 1910 optval = so->so_snd.sb_hiwat; 1911 goto integer; 1912 1913 case SO_RCVBUF: 1914 optval = so->so_rcv.sb_hiwat; 1915 goto integer; 1916 1917 case SO_SNDLOWAT: 1918 optval = so->so_snd.sb_lowat; 1919 goto integer; 1920 1921 case SO_RCVLOWAT: 1922 optval = so->so_rcv.sb_lowat; 1923 goto integer; 1924 1925 case SO_SNDTIMEO: 1926 case SO_RCVTIMEO: 1927 optval = (sopt->sopt_name == SO_SNDTIMEO ? 1928 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 1929 1930 tv.tv_sec = optval / hz; 1931 tv.tv_usec = (optval % hz) * tick; 1932 error = sooptcopyout(sopt, &tv, sizeof tv); 1933 break; 1934 case SO_LABEL: 1935 #ifdef MAC 1936 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 1937 sizeof(extmac)); 1938 if (error) 1939 return (error); 1940 error = mac_getsockopt_label(sopt->sopt_td->td_ucred, 1941 so, &extmac); 1942 if (error) 1943 return (error); 1944 error = sooptcopyout(sopt, &extmac, sizeof extmac); 1945 #else 1946 error = EOPNOTSUPP; 1947 #endif 1948 break; 1949 case SO_PEERLABEL: 1950 #ifdef MAC 1951 error = sooptcopyin(sopt, &extmac, sizeof(extmac), 1952 sizeof(extmac)); 1953 if (error) 1954 return (error); 1955 error = mac_getsockopt_peerlabel( 1956 sopt->sopt_td->td_ucred, so, &extmac); 1957 if (error) 1958 return (error); 1959 error = sooptcopyout(sopt, &extmac, sizeof extmac); 1960 #else 1961 error = EOPNOTSUPP; 1962 #endif 1963 break; 1964 default: 1965 error = ENOPROTOOPT; 1966 break; 1967 } 1968 return (error); 1969 } 1970 } 1971 1972 /* XXX; prepare mbuf for (__FreeBSD__ < 3) routines. */ 1973 int 1974 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 1975 { 1976 struct mbuf *m, *m_prev; 1977 int sopt_size = sopt->sopt_valsize; 1978 1979 MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA); 1980 if (m == NULL) 1981 return ENOBUFS; 1982 if (sopt_size > MLEN) { 1983 MCLGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT); 1984 if ((m->m_flags & M_EXT) == 0) { 1985 m_free(m); 1986 return ENOBUFS; 1987 } 1988 m->m_len = min(MCLBYTES, sopt_size); 1989 } else { 1990 m->m_len = min(MLEN, sopt_size); 1991 } 1992 sopt_size -= m->m_len; 1993 *mp = m; 1994 m_prev = m; 1995 1996 while (sopt_size) { 1997 MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA); 1998 if (m == NULL) { 1999 m_freem(*mp); 2000 return ENOBUFS; 2001 } 2002 if (sopt_size > MLEN) { 2003 MCLGET(m, sopt->sopt_td != NULL ? M_TRYWAIT : 2004 M_DONTWAIT); 2005 if ((m->m_flags & M_EXT) == 0) { 2006 m_freem(m); 2007 m_freem(*mp); 2008 return ENOBUFS; 2009 } 2010 m->m_len = min(MCLBYTES, sopt_size); 2011 } else { 2012 m->m_len = min(MLEN, sopt_size); 2013 } 2014 sopt_size -= m->m_len; 2015 m_prev->m_next = m; 2016 m_prev = m; 2017 } 2018 return 0; 2019 } 2020 2021 /* XXX; copyin sopt data into mbuf chain for (__FreeBSD__ < 3) routines. */ 2022 int 2023 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 2024 { 2025 struct mbuf *m0 = m; 2026 2027 if (sopt->sopt_val == NULL) 2028 return 0; 2029 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 2030 if (sopt->sopt_td != NULL) { 2031 int error; 2032 2033 error = copyin(sopt->sopt_val, mtod(m, char *), 2034 m->m_len); 2035 if (error != 0) { 2036 m_freem(m0); 2037 return(error); 2038 } 2039 } else 2040 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 2041 sopt->sopt_valsize -= m->m_len; 2042 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 2043 m = m->m_next; 2044 } 2045 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 2046 panic("ip6_sooptmcopyin"); 2047 return 0; 2048 } 2049 2050 /* XXX; copyout mbuf chain data into soopt for (__FreeBSD__ < 3) routines. */ 2051 int 2052 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 2053 { 2054 struct mbuf *m0 = m; 2055 size_t valsize = 0; 2056 2057 if (sopt->sopt_val == NULL) 2058 return 0; 2059 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 2060 if (sopt->sopt_td != NULL) { 2061 int error; 2062 2063 error = copyout(mtod(m, char *), sopt->sopt_val, 2064 m->m_len); 2065 if (error != 0) { 2066 m_freem(m0); 2067 return(error); 2068 } 2069 } else 2070 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 2071 sopt->sopt_valsize -= m->m_len; 2072 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; 2073 valsize += m->m_len; 2074 m = m->m_next; 2075 } 2076 if (m != NULL) { 2077 /* enough soopt buffer should be given from user-land */ 2078 m_freem(m0); 2079 return(EINVAL); 2080 } 2081 sopt->sopt_valsize = valsize; 2082 return 0; 2083 } 2084 2085 void 2086 sohasoutofband(so) 2087 struct socket *so; 2088 { 2089 if (so->so_sigio != NULL) 2090 pgsigio(&so->so_sigio, SIGURG, 0); 2091 selwakeuppri(&so->so_rcv.sb_sel, PSOCK); 2092 } 2093 2094 int 2095 sopoll(struct socket *so, int events, struct ucred *active_cred, 2096 struct thread *td) 2097 { 2098 int revents = 0; 2099 2100 SOCKBUF_LOCK(&so->so_snd); 2101 SOCKBUF_LOCK(&so->so_rcv); 2102 if (events & (POLLIN | POLLRDNORM)) 2103 if (soreadable(so)) 2104 revents |= events & (POLLIN | POLLRDNORM); 2105 2106 if (events & POLLINIGNEOF) 2107 if (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat || 2108 !TAILQ_EMPTY(&so->so_comp) || so->so_error) 2109 revents |= POLLINIGNEOF; 2110 2111 if (events & (POLLOUT | POLLWRNORM)) 2112 if (sowriteable(so)) 2113 revents |= events & (POLLOUT | POLLWRNORM); 2114 2115 if (events & (POLLPRI | POLLRDBAND)) 2116 if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK)) 2117 revents |= events & (POLLPRI | POLLRDBAND); 2118 2119 if (revents == 0) { 2120 if (events & 2121 (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | 2122 POLLRDBAND)) { 2123 selrecord(td, &so->so_rcv.sb_sel); 2124 so->so_rcv.sb_flags |= SB_SEL; 2125 } 2126 2127 if (events & (POLLOUT | POLLWRNORM)) { 2128 selrecord(td, &so->so_snd.sb_sel); 2129 so->so_snd.sb_flags |= SB_SEL; 2130 } 2131 } 2132 2133 SOCKBUF_UNLOCK(&so->so_rcv); 2134 SOCKBUF_UNLOCK(&so->so_snd); 2135 return (revents); 2136 } 2137 2138 int 2139 soo_kqfilter(struct file *fp, struct knote *kn) 2140 { 2141 struct socket *so = kn->kn_fp->f_data; 2142 struct sockbuf *sb; 2143 2144 switch (kn->kn_filter) { 2145 case EVFILT_READ: 2146 if (so->so_options & SO_ACCEPTCONN) 2147 kn->kn_fop = &solisten_filtops; 2148 else 2149 kn->kn_fop = &soread_filtops; 2150 sb = &so->so_rcv; 2151 break; 2152 case EVFILT_WRITE: 2153 kn->kn_fop = &sowrite_filtops; 2154 sb = &so->so_snd; 2155 break; 2156 default: 2157 return (EINVAL); 2158 } 2159 2160 SOCKBUF_LOCK(sb); 2161 knlist_add(&sb->sb_sel.si_note, kn, 1); 2162 sb->sb_flags |= SB_KNOTE; 2163 SOCKBUF_UNLOCK(sb); 2164 return (0); 2165 } 2166 2167 static void 2168 filt_sordetach(struct knote *kn) 2169 { 2170 struct socket *so = kn->kn_fp->f_data; 2171 2172 SOCKBUF_LOCK(&so->so_rcv); 2173 knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1); 2174 if (knlist_empty(&so->so_rcv.sb_sel.si_note)) 2175 so->so_rcv.sb_flags &= ~SB_KNOTE; 2176 SOCKBUF_UNLOCK(&so->so_rcv); 2177 } 2178 2179 /*ARGSUSED*/ 2180 static int 2181 filt_soread(struct knote *kn, long hint) 2182 { 2183 struct socket *so; 2184 2185 so = kn->kn_fp->f_data; 2186 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 2187 2188 kn->kn_data = so->so_rcv.sb_cc - so->so_rcv.sb_ctl; 2189 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { 2190 kn->kn_flags |= EV_EOF; 2191 kn->kn_fflags = so->so_error; 2192 return (1); 2193 } else if (so->so_error) /* temporary udp error */ 2194 return (1); 2195 else if (kn->kn_sfflags & NOTE_LOWAT) 2196 return (kn->kn_data >= kn->kn_sdata); 2197 else 2198 return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat); 2199 } 2200 2201 static void 2202 filt_sowdetach(struct knote *kn) 2203 { 2204 struct socket *so = kn->kn_fp->f_data; 2205 2206 SOCKBUF_LOCK(&so->so_snd); 2207 knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1); 2208 if (knlist_empty(&so->so_snd.sb_sel.si_note)) 2209 so->so_snd.sb_flags &= ~SB_KNOTE; 2210 SOCKBUF_UNLOCK(&so->so_snd); 2211 } 2212 2213 /*ARGSUSED*/ 2214 static int 2215 filt_sowrite(struct knote *kn, long hint) 2216 { 2217 struct socket *so; 2218 2219 so = kn->kn_fp->f_data; 2220 SOCKBUF_LOCK_ASSERT(&so->so_snd); 2221 kn->kn_data = sbspace(&so->so_snd); 2222 if (so->so_snd.sb_state & SBS_CANTSENDMORE) { 2223 kn->kn_flags |= EV_EOF; 2224 kn->kn_fflags = so->so_error; 2225 return (1); 2226 } else if (so->so_error) /* temporary udp error */ 2227 return (1); 2228 else if (((so->so_state & SS_ISCONNECTED) == 0) && 2229 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 2230 return (0); 2231 else if (kn->kn_sfflags & NOTE_LOWAT) 2232 return (kn->kn_data >= kn->kn_sdata); 2233 else 2234 return (kn->kn_data >= so->so_snd.sb_lowat); 2235 } 2236 2237 /*ARGSUSED*/ 2238 static int 2239 filt_solisten(struct knote *kn, long hint) 2240 { 2241 struct socket *so = kn->kn_fp->f_data; 2242 2243 kn->kn_data = so->so_qlen; 2244 return (! TAILQ_EMPTY(&so->so_comp)); 2245 } 2246 2247 int 2248 socheckuid(struct socket *so, uid_t uid) 2249 { 2250 2251 if (so == NULL) 2252 return (EPERM); 2253 if (so->so_cred->cr_uid == uid) 2254 return (0); 2255 return (EPERM); 2256 } 2257