1 /* 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93 34 * $FreeBSD$ 35 */ 36 37 #include "opt_mac.h" 38 #include "opt_param.h" 39 40 #include <sys/param.h> 41 #include <sys/aio.h> /* for aio_swake proto */ 42 #include <sys/domain.h> 43 #include <sys/event.h> 44 #include <sys/file.h> /* for maxfiles */ 45 #include <sys/kernel.h> 46 #include <sys/lock.h> 47 #include <sys/mac.h> 48 #include <sys/malloc.h> 49 #include <sys/mbuf.h> 50 #include <sys/mutex.h> 51 #include <sys/proc.h> 52 #include <sys/protosw.h> 53 #include <sys/resourcevar.h> 54 #include <sys/signalvar.h> 55 #include <sys/socket.h> 56 #include <sys/socketvar.h> 57 #include <sys/stat.h> 58 #include <sys/sysctl.h> 59 #include <sys/systm.h> 60 61 int maxsockets; 62 63 void (*aio_swake)(struct socket *, struct sockbuf *); 64 65 /* 66 * Primitive routines for operating on sockets and socket buffers 67 */ 68 69 u_long sb_max = SB_MAX; 70 u_long sb_max_adj = 71 SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */ 72 73 static u_long sb_efficiency = 8; /* parameter for sbreserve() */ 74 75 /* 76 * Procedures to manipulate state flags of socket 77 * and do appropriate wakeups. Normal sequence from the 78 * active (originating) side is that soisconnecting() is 79 * called during processing of connect() call, 80 * resulting in an eventual call to soisconnected() if/when the 81 * connection is established. When the connection is torn down 82 * soisdisconnecting() is called during processing of disconnect() call, 83 * and soisdisconnected() is called when the connection to the peer 84 * is totally severed. The semantics of these routines are such that 85 * connectionless protocols can call soisconnected() and soisdisconnected() 86 * only, bypassing the in-progress calls when setting up a ``connection'' 87 * takes no time. 88 * 89 * From the passive side, a socket is created with 90 * two queues of sockets: so_incomp for connections in progress 91 * and so_comp for connections already made and awaiting user acceptance. 92 * As a protocol is preparing incoming connections, it creates a socket 93 * structure queued on so_incomp by calling sonewconn(). When the connection 94 * is established, soisconnected() is called, and transfers the 95 * socket structure to so_comp, making it available to accept(). 96 * 97 * If a socket is closed with sockets on either 98 * so_incomp or so_comp, these sockets are dropped. 99 * 100 * If higher level protocols are implemented in 101 * the kernel, the wakeups done here will sometimes 102 * cause software-interrupt process scheduling. 103 */ 104 105 void 106 soisconnecting(so) 107 register struct socket *so; 108 { 109 110 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 111 so->so_state |= SS_ISCONNECTING; 112 } 113 114 void 115 soisconnected(so) 116 struct socket *so; 117 { 118 struct socket *head = so->so_head; 119 120 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 121 so->so_state |= SS_ISCONNECTED; 122 if (head && (so->so_state & SS_INCOMP)) { 123 if ((so->so_options & SO_ACCEPTFILTER) != 0) { 124 so->so_upcall = head->so_accf->so_accept_filter->accf_callback; 125 so->so_upcallarg = head->so_accf->so_accept_filter_arg; 126 so->so_rcv.sb_flags |= SB_UPCALL; 127 so->so_options &= ~SO_ACCEPTFILTER; 128 so->so_upcall(so, so->so_upcallarg, M_TRYWAIT); 129 return; 130 } 131 TAILQ_REMOVE(&head->so_incomp, so, so_list); 132 head->so_incqlen--; 133 so->so_state &= ~SS_INCOMP; 134 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 135 head->so_qlen++; 136 so->so_state |= SS_COMP; 137 sorwakeup(head); 138 wakeup_one(&head->so_timeo); 139 } else { 140 wakeup(&so->so_timeo); 141 sorwakeup(so); 142 sowwakeup(so); 143 } 144 } 145 146 void 147 soisdisconnecting(so) 148 register struct socket *so; 149 { 150 151 so->so_state &= ~SS_ISCONNECTING; 152 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE); 153 wakeup(&so->so_timeo); 154 sowwakeup(so); 155 sorwakeup(so); 156 } 157 158 void 159 soisdisconnected(so) 160 register struct socket *so; 161 { 162 163 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 164 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED); 165 wakeup(&so->so_timeo); 166 sbdrop(&so->so_snd, so->so_snd.sb_cc); 167 sowwakeup(so); 168 sorwakeup(so); 169 } 170 171 /* 172 * When an attempt at a new connection is noted on a socket 173 * which accepts connections, sonewconn is called. If the 174 * connection is possible (subject to space constraints, etc.) 175 * then we allocate a new structure, propoerly linked into the 176 * data structure of the original socket, and return this. 177 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED. 178 * 179 * note: the ref count on the socket is 0 on return 180 */ 181 struct socket * 182 sonewconn(head, connstatus) 183 register struct socket *head; 184 int connstatus; 185 { 186 register struct socket *so; 187 188 if (head->so_qlen > 3 * head->so_qlimit / 2) 189 return ((struct socket *)0); 190 so = soalloc(0); 191 if (so == NULL) 192 return ((struct socket *)0); 193 if ((head->so_options & SO_ACCEPTFILTER) != 0) 194 connstatus = 0; 195 so->so_head = head; 196 so->so_type = head->so_type; 197 so->so_options = head->so_options &~ SO_ACCEPTCONN; 198 so->so_linger = head->so_linger; 199 so->so_state = head->so_state | SS_NOFDREF; 200 so->so_proto = head->so_proto; 201 so->so_timeo = head->so_timeo; 202 so->so_cred = crhold(head->so_cred); 203 #ifdef MAC 204 mac_create_socket_from_socket(head, so); 205 #endif 206 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) || 207 (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) { 208 sodealloc(so); 209 return ((struct socket *)0); 210 } 211 212 if (connstatus) { 213 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 214 so->so_state |= SS_COMP; 215 head->so_qlen++; 216 } else { 217 if (head->so_incqlen > head->so_qlimit) { 218 struct socket *sp; 219 sp = TAILQ_FIRST(&head->so_incomp); 220 (void) soabort(sp); 221 } 222 TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list); 223 so->so_state |= SS_INCOMP; 224 head->so_incqlen++; 225 } 226 if (connstatus) { 227 sorwakeup(head); 228 wakeup(&head->so_timeo); 229 so->so_state |= connstatus; 230 } 231 return (so); 232 } 233 234 /* 235 * Socantsendmore indicates that no more data will be sent on the 236 * socket; it would normally be applied to a socket when the user 237 * informs the system that no more data is to be sent, by the protocol 238 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data 239 * will be received, and will normally be applied to the socket by a 240 * protocol when it detects that the peer will send no more data. 241 * Data queued for reading in the socket may yet be read. 242 */ 243 244 void 245 socantsendmore(so) 246 struct socket *so; 247 { 248 249 so->so_state |= SS_CANTSENDMORE; 250 sowwakeup(so); 251 } 252 253 void 254 socantrcvmore(so) 255 struct socket *so; 256 { 257 258 so->so_state |= SS_CANTRCVMORE; 259 sorwakeup(so); 260 } 261 262 /* 263 * Wait for data to arrive at/drain from a socket buffer. 264 */ 265 int 266 sbwait(sb) 267 struct sockbuf *sb; 268 { 269 270 sb->sb_flags |= SB_WAIT; 271 return (tsleep(&sb->sb_cc, 272 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait", 273 sb->sb_timeo)); 274 } 275 276 /* 277 * Lock a sockbuf already known to be locked; 278 * return any error returned from sleep (EINTR). 279 */ 280 int 281 sb_lock(sb) 282 register struct sockbuf *sb; 283 { 284 int error; 285 286 while (sb->sb_flags & SB_LOCK) { 287 sb->sb_flags |= SB_WANT; 288 error = tsleep(&sb->sb_flags, 289 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH, 290 "sblock", 0); 291 if (error) 292 return (error); 293 } 294 sb->sb_flags |= SB_LOCK; 295 return (0); 296 } 297 298 /* 299 * Wakeup processes waiting on a socket buffer. 300 * Do asynchronous notification via SIGIO 301 * if the socket has the SS_ASYNC flag set. 302 */ 303 void 304 sowakeup(so, sb) 305 register struct socket *so; 306 register struct sockbuf *sb; 307 { 308 309 selwakeup(&sb->sb_sel); 310 sb->sb_flags &= ~SB_SEL; 311 if (sb->sb_flags & SB_WAIT) { 312 sb->sb_flags &= ~SB_WAIT; 313 wakeup(&sb->sb_cc); 314 } 315 if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL) 316 pgsigio(&so->so_sigio, SIGIO, 0); 317 if (sb->sb_flags & SB_UPCALL) 318 (*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT); 319 if (sb->sb_flags & SB_AIO) 320 aio_swake(so, sb); 321 KNOTE(&sb->sb_sel.si_note, 0); 322 } 323 324 /* 325 * Socket buffer (struct sockbuf) utility routines. 326 * 327 * Each socket contains two socket buffers: one for sending data and 328 * one for receiving data. Each buffer contains a queue of mbufs, 329 * information about the number of mbufs and amount of data in the 330 * queue, and other fields allowing select() statements and notification 331 * on data availability to be implemented. 332 * 333 * Data stored in a socket buffer is maintained as a list of records. 334 * Each record is a list of mbufs chained together with the m_next 335 * field. Records are chained together with the m_nextpkt field. The upper 336 * level routine soreceive() expects the following conventions to be 337 * observed when placing information in the receive buffer: 338 * 339 * 1. If the protocol requires each message be preceded by the sender's 340 * name, then a record containing that name must be present before 341 * any associated data (mbuf's must be of type MT_SONAME). 342 * 2. If the protocol supports the exchange of ``access rights'' (really 343 * just additional data associated with the message), and there are 344 * ``rights'' to be received, then a record containing this data 345 * should be present (mbuf's must be of type MT_RIGHTS). 346 * 3. If a name or rights record exists, then it must be followed by 347 * a data record, perhaps of zero length. 348 * 349 * Before using a new socket structure it is first necessary to reserve 350 * buffer space to the socket, by calling sbreserve(). This should commit 351 * some of the available buffer space in the system buffer pool for the 352 * socket (currently, it does nothing but enforce limits). The space 353 * should be released by calling sbrelease() when the socket is destroyed. 354 */ 355 356 int 357 soreserve(so, sndcc, rcvcc) 358 register struct socket *so; 359 u_long sndcc, rcvcc; 360 { 361 struct thread *td = curthread; 362 363 if (sbreserve(&so->so_snd, sndcc, so, td) == 0) 364 goto bad; 365 if (sbreserve(&so->so_rcv, rcvcc, so, td) == 0) 366 goto bad2; 367 if (so->so_rcv.sb_lowat == 0) 368 so->so_rcv.sb_lowat = 1; 369 if (so->so_snd.sb_lowat == 0) 370 so->so_snd.sb_lowat = MCLBYTES; 371 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat) 372 so->so_snd.sb_lowat = so->so_snd.sb_hiwat; 373 return (0); 374 bad2: 375 sbrelease(&so->so_snd, so); 376 bad: 377 return (ENOBUFS); 378 } 379 380 static int 381 sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS) 382 { 383 int error = 0; 384 u_long old_sb_max = sb_max; 385 386 error = SYSCTL_OUT(req, arg1, sizeof(u_long)); 387 if (error || !req->newptr) 388 return (error); 389 error = SYSCTL_IN(req, arg1, sizeof(u_long)); 390 if (error) 391 return (error); 392 if (sb_max < MSIZE + MCLBYTES) { 393 sb_max = old_sb_max; 394 return (EINVAL); 395 } 396 sb_max_adj = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES); 397 return (0); 398 } 399 400 /* 401 * Allot mbufs to a sockbuf. 402 * Attempt to scale mbmax so that mbcnt doesn't become limiting 403 * if buffering efficiency is near the normal case. 404 */ 405 int 406 sbreserve(sb, cc, so, td) 407 struct sockbuf *sb; 408 u_long cc; 409 struct socket *so; 410 struct thread *td; 411 { 412 413 /* 414 * td will only be NULL when we're in an interrupt 415 * (e.g. in tcp_input()) 416 */ 417 if (cc > sb_max_adj) 418 return (0); 419 if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc, 420 td ? td->td_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur : RLIM_INFINITY)) { 421 return (0); 422 } 423 sb->sb_mbmax = min(cc * sb_efficiency, sb_max); 424 if (sb->sb_lowat > sb->sb_hiwat) 425 sb->sb_lowat = sb->sb_hiwat; 426 return (1); 427 } 428 429 /* 430 * Free mbufs held by a socket, and reserved mbuf space. 431 */ 432 void 433 sbrelease(sb, so) 434 struct sockbuf *sb; 435 struct socket *so; 436 { 437 438 sbflush(sb); 439 (void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0, 440 RLIM_INFINITY); 441 sb->sb_mbmax = 0; 442 } 443 444 /* 445 * Routines to add and remove 446 * data from an mbuf queue. 447 * 448 * The routines sbappend() or sbappendrecord() are normally called to 449 * append new mbufs to a socket buffer, after checking that adequate 450 * space is available, comparing the function sbspace() with the amount 451 * of data to be added. sbappendrecord() differs from sbappend() in 452 * that data supplied is treated as the beginning of a new record. 453 * To place a sender's address, optional access rights, and data in a 454 * socket receive buffer, sbappendaddr() should be used. To place 455 * access rights and data in a socket receive buffer, sbappendrights() 456 * should be used. In either case, the new data begins a new record. 457 * Note that unlike sbappend() and sbappendrecord(), these routines check 458 * for the caller that there will be enough space to store the data. 459 * Each fails if there is not enough space, or if it cannot find mbufs 460 * to store additional information in. 461 * 462 * Reliable protocols may use the socket send buffer to hold data 463 * awaiting acknowledgement. Data is normally copied from a socket 464 * send buffer in a protocol with m_copy for output to a peer, 465 * and then removing the data from the socket buffer with sbdrop() 466 * or sbdroprecord() when the data is acknowledged by the peer. 467 */ 468 469 /* 470 * Append mbuf chain m to the last record in the 471 * socket buffer sb. The additional space associated 472 * the mbuf chain is recorded in sb. Empty mbufs are 473 * discarded and mbufs are compacted where possible. 474 */ 475 void 476 sbappend(sb, m) 477 struct sockbuf *sb; 478 struct mbuf *m; 479 { 480 register struct mbuf *n; 481 482 if (m == 0) 483 return; 484 n = sb->sb_mb; 485 if (n) { 486 while (n->m_nextpkt) 487 n = n->m_nextpkt; 488 do { 489 if (n->m_flags & M_EOR) { 490 sbappendrecord(sb, m); /* XXXXXX!!!! */ 491 return; 492 } 493 } while (n->m_next && (n = n->m_next)); 494 } 495 sbcompress(sb, m, n); 496 } 497 498 #ifdef SOCKBUF_DEBUG 499 void 500 sbcheck(sb) 501 struct sockbuf *sb; 502 { 503 struct mbuf *m; 504 struct mbuf *n = 0; 505 u_long len = 0, mbcnt = 0; 506 507 for (m = sb->sb_mb; m; m = n) { 508 n = m->m_nextpkt; 509 for (; m; m = m->m_next) { 510 len += m->m_len; 511 mbcnt += MSIZE; 512 if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */ 513 mbcnt += m->m_ext.ext_size; 514 } 515 } 516 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) { 517 printf("cc %ld != %ld || mbcnt %ld != %ld\n", len, sb->sb_cc, 518 mbcnt, sb->sb_mbcnt); 519 panic("sbcheck"); 520 } 521 } 522 #endif 523 524 /* 525 * As above, except the mbuf chain 526 * begins a new record. 527 */ 528 void 529 sbappendrecord(sb, m0) 530 register struct sockbuf *sb; 531 register struct mbuf *m0; 532 { 533 register struct mbuf *m; 534 535 if (m0 == 0) 536 return; 537 m = sb->sb_mb; 538 if (m) 539 while (m->m_nextpkt) 540 m = m->m_nextpkt; 541 /* 542 * Put the first mbuf on the queue. 543 * Note this permits zero length records. 544 */ 545 sballoc(sb, m0); 546 if (m) 547 m->m_nextpkt = m0; 548 else 549 sb->sb_mb = m0; 550 m = m0->m_next; 551 m0->m_next = 0; 552 if (m && (m0->m_flags & M_EOR)) { 553 m0->m_flags &= ~M_EOR; 554 m->m_flags |= M_EOR; 555 } 556 sbcompress(sb, m, m0); 557 } 558 559 /* 560 * As above except that OOB data 561 * is inserted at the beginning of the sockbuf, 562 * but after any other OOB data. 563 */ 564 void 565 sbinsertoob(sb, m0) 566 register struct sockbuf *sb; 567 register struct mbuf *m0; 568 { 569 register struct mbuf *m; 570 register struct mbuf **mp; 571 572 if (m0 == 0) 573 return; 574 for (mp = &sb->sb_mb; *mp ; mp = &((*mp)->m_nextpkt)) { 575 m = *mp; 576 again: 577 switch (m->m_type) { 578 579 case MT_OOBDATA: 580 continue; /* WANT next train */ 581 582 case MT_CONTROL: 583 m = m->m_next; 584 if (m) 585 goto again; /* inspect THIS train further */ 586 } 587 break; 588 } 589 /* 590 * Put the first mbuf on the queue. 591 * Note this permits zero length records. 592 */ 593 sballoc(sb, m0); 594 m0->m_nextpkt = *mp; 595 *mp = m0; 596 m = m0->m_next; 597 m0->m_next = 0; 598 if (m && (m0->m_flags & M_EOR)) { 599 m0->m_flags &= ~M_EOR; 600 m->m_flags |= M_EOR; 601 } 602 sbcompress(sb, m, m0); 603 } 604 605 /* 606 * Append address and data, and optionally, control (ancillary) data 607 * to the receive queue of a socket. If present, 608 * m0 must include a packet header with total length. 609 * Returns 0 if no space in sockbuf or insufficient mbufs. 610 */ 611 int 612 sbappendaddr(sb, asa, m0, control) 613 struct sockbuf *sb; 614 struct sockaddr *asa; 615 struct mbuf *m0, *control; 616 { 617 struct mbuf *m, *n; 618 int space = asa->sa_len; 619 620 if (m0 && (m0->m_flags & M_PKTHDR) == 0) 621 panic("sbappendaddr"); 622 if (m0) 623 space += m0->m_pkthdr.len; 624 space += m_length(control, &n); 625 if (space > sbspace(sb)) 626 return (0); 627 if (asa->sa_len > MLEN) 628 return (0); 629 MGET(m, M_DONTWAIT, MT_SONAME); 630 if (m == 0) 631 return (0); 632 m->m_len = asa->sa_len; 633 bcopy(asa, mtod(m, caddr_t), asa->sa_len); 634 if (n) 635 n->m_next = m0; /* concatenate data to control */ 636 else 637 control = m0; 638 m->m_next = control; 639 for (n = m; n; n = n->m_next) 640 sballoc(sb, n); 641 n = sb->sb_mb; 642 if (n) { 643 while (n->m_nextpkt) 644 n = n->m_nextpkt; 645 n->m_nextpkt = m; 646 } else 647 sb->sb_mb = m; 648 return (1); 649 } 650 651 int 652 sbappendcontrol(sb, m0, control) 653 struct sockbuf *sb; 654 struct mbuf *control, *m0; 655 { 656 struct mbuf *m, *n; 657 int space; 658 659 if (control == 0) 660 panic("sbappendcontrol"); 661 space = m_length(control, &n) + m_length(m0, NULL); 662 if (space > sbspace(sb)) 663 return (0); 664 n->m_next = m0; /* concatenate data to control */ 665 for (m = control; m; m = m->m_next) 666 sballoc(sb, m); 667 n = sb->sb_mb; 668 if (n) { 669 while (n->m_nextpkt) 670 n = n->m_nextpkt; 671 n->m_nextpkt = control; 672 } else 673 sb->sb_mb = control; 674 return (1); 675 } 676 677 /* 678 * Compress mbuf chain m into the socket 679 * buffer sb following mbuf n. If n 680 * is null, the buffer is presumed empty. 681 */ 682 void 683 sbcompress(sb, m, n) 684 register struct sockbuf *sb; 685 register struct mbuf *m, *n; 686 { 687 register int eor = 0; 688 register struct mbuf *o; 689 690 while (m) { 691 eor |= m->m_flags & M_EOR; 692 if (m->m_len == 0 && 693 (eor == 0 || 694 (((o = m->m_next) || (o = n)) && 695 o->m_type == m->m_type))) { 696 m = m_free(m); 697 continue; 698 } 699 if (n && (n->m_flags & M_EOR) == 0 && 700 M_WRITABLE(n) && 701 m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */ 702 m->m_len <= M_TRAILINGSPACE(n) && 703 n->m_type == m->m_type) { 704 bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len, 705 (unsigned)m->m_len); 706 n->m_len += m->m_len; 707 sb->sb_cc += m->m_len; 708 if (m->m_type != MT_DATA && m->m_type != MT_HEADER && 709 m->m_type != MT_OOBDATA) 710 /* XXX: Probably don't need.*/ 711 sb->sb_ctl += m->m_len; 712 m = m_free(m); 713 continue; 714 } 715 if (n) 716 n->m_next = m; 717 else 718 sb->sb_mb = m; 719 sballoc(sb, m); 720 n = m; 721 m->m_flags &= ~M_EOR; 722 m = m->m_next; 723 n->m_next = 0; 724 } 725 if (eor) { 726 if (n) 727 n->m_flags |= eor; 728 else 729 printf("semi-panic: sbcompress\n"); 730 } 731 } 732 733 /* 734 * Free all mbufs in a sockbuf. 735 * Check that all resources are reclaimed. 736 */ 737 void 738 sbflush(sb) 739 register struct sockbuf *sb; 740 { 741 742 if (sb->sb_flags & SB_LOCK) 743 panic("sbflush: locked"); 744 while (sb->sb_mbcnt) { 745 /* 746 * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty: 747 * we would loop forever. Panic instead. 748 */ 749 if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len)) 750 break; 751 sbdrop(sb, (int)sb->sb_cc); 752 } 753 if (sb->sb_cc || sb->sb_mb || sb->sb_mbcnt) 754 panic("sbflush: cc %u || mb %p || mbcnt %u", sb->sb_cc, (void *)sb->sb_mb, sb->sb_mbcnt); 755 } 756 757 /* 758 * Drop data from (the front of) a sockbuf. 759 */ 760 void 761 sbdrop(sb, len) 762 register struct sockbuf *sb; 763 register int len; 764 { 765 register struct mbuf *m; 766 struct mbuf *next; 767 768 next = (m = sb->sb_mb) ? m->m_nextpkt : 0; 769 while (len > 0) { 770 if (m == 0) { 771 if (next == 0) 772 panic("sbdrop"); 773 m = next; 774 next = m->m_nextpkt; 775 continue; 776 } 777 if (m->m_len > len) { 778 m->m_len -= len; 779 m->m_data += len; 780 sb->sb_cc -= len; 781 if (m->m_type != MT_DATA && m->m_type != MT_HEADER && 782 m->m_type != MT_OOBDATA) 783 sb->sb_ctl -= len; 784 break; 785 } 786 len -= m->m_len; 787 sbfree(sb, m); 788 m = m_free(m); 789 } 790 while (m && m->m_len == 0) { 791 sbfree(sb, m); 792 m = m_free(m); 793 } 794 if (m) { 795 sb->sb_mb = m; 796 m->m_nextpkt = next; 797 } else 798 sb->sb_mb = next; 799 } 800 801 /* 802 * Drop a record off the front of a sockbuf 803 * and move the next record to the front. 804 */ 805 void 806 sbdroprecord(sb) 807 register struct sockbuf *sb; 808 { 809 register struct mbuf *m; 810 811 m = sb->sb_mb; 812 if (m) { 813 sb->sb_mb = m->m_nextpkt; 814 do { 815 sbfree(sb, m); 816 m = m_free(m); 817 } while (m); 818 } 819 } 820 821 /* 822 * Create a "control" mbuf containing the specified data 823 * with the specified type for presentation on a socket buffer. 824 */ 825 struct mbuf * 826 sbcreatecontrol(p, size, type, level) 827 caddr_t p; 828 register int size; 829 int type, level; 830 { 831 register struct cmsghdr *cp; 832 struct mbuf *m; 833 834 if (CMSG_SPACE((u_int)size) > MCLBYTES) 835 return ((struct mbuf *) NULL); 836 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL) 837 return ((struct mbuf *) NULL); 838 if (CMSG_SPACE((u_int)size) > MLEN) { 839 MCLGET(m, M_DONTWAIT); 840 if ((m->m_flags & M_EXT) == 0) { 841 m_free(m); 842 return ((struct mbuf *) NULL); 843 } 844 } 845 cp = mtod(m, struct cmsghdr *); 846 m->m_len = 0; 847 KASSERT(CMSG_SPACE((u_int)size) <= M_TRAILINGSPACE(m), 848 ("sbcreatecontrol: short mbuf")); 849 if (p != NULL) 850 (void)memcpy(CMSG_DATA(cp), p, size); 851 m->m_len = CMSG_SPACE(size); 852 cp->cmsg_len = CMSG_LEN(size); 853 cp->cmsg_level = level; 854 cp->cmsg_type = type; 855 return (m); 856 } 857 858 /* 859 * Some routines that return EOPNOTSUPP for entry points that are not 860 * supported by a protocol. Fill in as needed. 861 */ 862 int 863 pru_accept_notsupp(struct socket *so, struct sockaddr **nam) 864 { 865 return EOPNOTSUPP; 866 } 867 868 int 869 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 870 { 871 return EOPNOTSUPP; 872 } 873 874 int 875 pru_connect2_notsupp(struct socket *so1, struct socket *so2) 876 { 877 return EOPNOTSUPP; 878 } 879 880 int 881 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, 882 struct ifnet *ifp, struct thread *td) 883 { 884 return EOPNOTSUPP; 885 } 886 887 int 888 pru_listen_notsupp(struct socket *so, struct thread *td) 889 { 890 return EOPNOTSUPP; 891 } 892 893 int 894 pru_rcvd_notsupp(struct socket *so, int flags) 895 { 896 return EOPNOTSUPP; 897 } 898 899 int 900 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) 901 { 902 return EOPNOTSUPP; 903 } 904 905 /* 906 * This isn't really a ``null'' operation, but it's the default one 907 * and doesn't do anything destructive. 908 */ 909 int 910 pru_sense_null(struct socket *so, struct stat *sb) 911 { 912 sb->st_blksize = so->so_snd.sb_hiwat; 913 return 0; 914 } 915 916 /* 917 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. 918 */ 919 struct sockaddr * 920 dup_sockaddr(sa, canwait) 921 struct sockaddr *sa; 922 int canwait; 923 { 924 struct sockaddr *sa2; 925 926 MALLOC(sa2, struct sockaddr *, sa->sa_len, M_SONAME, 927 canwait ? M_WAITOK : M_NOWAIT); 928 if (sa2) 929 bcopy(sa, sa2, sa->sa_len); 930 return sa2; 931 } 932 933 /* 934 * Create an external-format (``xsocket'') structure using the information 935 * in the kernel-format socket structure pointed to by so. This is done 936 * to reduce the spew of irrelevant information over this interface, 937 * to isolate user code from changes in the kernel structure, and 938 * potentially to provide information-hiding if we decide that 939 * some of this information should be hidden from users. 940 */ 941 void 942 sotoxsocket(struct socket *so, struct xsocket *xso) 943 { 944 xso->xso_len = sizeof *xso; 945 xso->xso_so = so; 946 xso->so_type = so->so_type; 947 xso->so_options = so->so_options; 948 xso->so_linger = so->so_linger; 949 xso->so_state = so->so_state; 950 xso->so_pcb = so->so_pcb; 951 xso->xso_protocol = so->so_proto->pr_protocol; 952 xso->xso_family = so->so_proto->pr_domain->dom_family; 953 xso->so_qlen = so->so_qlen; 954 xso->so_incqlen = so->so_incqlen; 955 xso->so_qlimit = so->so_qlimit; 956 xso->so_timeo = so->so_timeo; 957 xso->so_error = so->so_error; 958 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 959 xso->so_oobmark = so->so_oobmark; 960 sbtoxsockbuf(&so->so_snd, &xso->so_snd); 961 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 962 xso->so_uid = so->so_cred->cr_uid; 963 } 964 965 /* 966 * This does the same for sockbufs. Note that the xsockbuf structure, 967 * since it is always embedded in a socket, does not include a self 968 * pointer nor a length. We make this entry point public in case 969 * some other mechanism needs it. 970 */ 971 void 972 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb) 973 { 974 xsb->sb_cc = sb->sb_cc; 975 xsb->sb_hiwat = sb->sb_hiwat; 976 xsb->sb_mbcnt = sb->sb_mbcnt; 977 xsb->sb_mbmax = sb->sb_mbmax; 978 xsb->sb_lowat = sb->sb_lowat; 979 xsb->sb_flags = sb->sb_flags; 980 xsb->sb_timeo = sb->sb_timeo; 981 } 982 983 /* 984 * Here is the definition of some of the basic objects in the kern.ipc 985 * branch of the MIB. 986 */ 987 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC"); 988 989 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */ 990 static int dummy; 991 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, ""); 992 SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLTYPE_ULONG|CTLFLAG_RW, 993 &sb_max, 0, sysctl_handle_sb_max, "LU", "Maximum socket buffer size"); 994 SYSCTL_INT(_kern_ipc, OID_AUTO, maxsockets, CTLFLAG_RD, 995 &maxsockets, 0, "Maximum number of sockets avaliable"); 996 SYSCTL_ULONG(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW, 997 &sb_efficiency, 0, ""); 998 999 /* 1000 * Initialise maxsockets 1001 */ 1002 static void init_maxsockets(void *ignored) 1003 { 1004 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 1005 maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters)); 1006 } 1007 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); 1008